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Abstract

Cooperative communication is a promising way to improve wireless network performance

by exploiting spatial diversity in fading channels in a distributed manner. Performance of

various wireless cooperative configurations are investigated. Theoretical expressions for

outage and error probabilities in general fading of amplify-and-forward multi-hop systems

are derived using the characteristic function or moment generating function of the inverse

of the instantaneous received signal-to-noise ratio.

In addition, ergodic capacity of different multi-hop systems is evaluated assuming the

channel state information is only available at the receiving terminals. It is shown that

decode-and-froward multi-hop systems achieve higher ergodic capacities than amplify-

and-forward multi-hop systems. Furthermore, theoretical expressions in the form of single

finite integrals for the capacity of different source-adaptive amplify-and-forward multi-hop

systems are obtained.

New optimal power allocation schemes that maximize the instantaneous received signal-

to-noise ratio in an amplify-and-forward multi-hop transmission system are also obtained

for short-term and long-term power constraints. The optimal power allocation strategy un-

der short-term power constraint requires a centralized implementation, whereas the optimal

power solutions to the long-term power constraints can be implemented in a decentralized

manner. Outage probabilities of the proposed power-optimized systems are derived and the

performance gains of the optimal power allocation schemes are examined.

Previous studies have been primarily focused on cooperative systems in which the func-

tionality of the receivers relies on availability of channel information. Low complexity

receivers for coherent amplify-and-forward multi-relay systems requiring no instantaneous

fading amplitude information are proposed. Analytical expressions for evaluation of the av-

erage output signal-to-noise ratio and symbol error probability are derived and it is demon-

strated that these schemes achieve full diversity. Furthermore, upper and lower bounds on



the ergodic capacity are obtained. In addition, a maximum energy selection scheme in a

noncoherent amplify-and-forward multi-relay system is investigated. An expression for the

symbol error probability of this system is derived. It is shown that this scheme achieves full

diversity whereas it requires neither instantaneous nor statistical channel gain information

at the destination.

Finally, performance of different multi-hop diversity transmission systems are studied

and expressions for evaluation of their outages and bit error probabilities are derived in

Rayleigh fading.
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Chapter 1

Introduction

The tremendous growth of wireless technologies in the wireless industry is expanding op-

portunities for economic growth, enhanced security and a better quality of life. Yet, the

industry is also facing many demands for providing services (especially with a multime-

dia content) with higher data rates, improved quality, greater mobility, and lower cost. The

conventional technique to mitigate channel impairments (such as noise, fading, and interfer-

ence from other users) and to increase data rates is the deployment of multiple antennas at

the transmitters and/or the receivers. However, due to size, cost, and hardware limitations,

multiple antennas may not be a feasible solution for some practical wireless networks.

Cooperative communications has emerged as a new communication paradigm promis-

ing significant capacity and coverage increase as well as enhanced performance in cur-

rent and future wireless networks. Different from conventional point-to-point communica-

tions, individual mobile users throughout a cooperative wireless network cooperate with the

nearby transmitting users to send data to a receiver, which is otherwise too far away to be

directly accessed reliably. In fact, in a cooperative communications network, a virtual mul-

tiple antenna system can be created by using antennas belonging to multiple users within

the network. Thus, cooperative communications benefits in the same way as promised

by the multiple antenna techniques. On the other hand, it eliminates the need for physi-

cal deployment of antennas at the transmitters and/or receivers within the network. This

significantly reduces the system cost, complexity, and especially the size of the receivers.

Cooperative wireless networks exhibit applications in many scenarios including crisis man-

agement services (such as disaster recovery, or rescue operations), home networking, en-

vironment control, vehicle-to-vehicle communications, medical monitoring, and low-cost

Internet access in remote residential areas.
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1.1 Thesis Motivations and Contributions

Since introduction of cooperative communications [1]–[3], a great deal of research has been

devoted to performance evaluation [4]–[29], developing new relaying protocols [4], [30]–

[32], designing more efficient receivers [33]–[43], and obtaining optimal power allocation

schemes [31], [44]–[58]. However, there are still a number of challenging problems and

issues that should be addressed to make cooperative communications more attractive for

practical applications. Motivations for this thesis followed by our contributions are outlined

in the following.

• Performance analysis of multi-hop relaying systems

Multi-hop transmission is a promising technique for application in multi-hop cellular

or ad hoc networks due to its low complexity, performance improvement as well as

providing broader coverage. Outage and error probabilities of a multi-hop system

employing a decode-and-forward (DF) relaying can be readily obtained [19], [26].

On the other hand, amplify-and-forward (AF) relaying is a less complex scheme

since the relays do not involve any sort of decoding or encoding and simply amplify

what they receive. However, performance of AF multi-hop relaying systems either

has been evaluated in terms of lower bounds [24] that are not tight, especially for

moderate to large values of signal-to-noise ratio (SNR) and larger number of hops,

or requires evaluation of double integrals [25] that not only have no closed-form

solution but also are numerically involved due to the mathematical forms of their

integrands. Thus, it is important to find simple, accurate closed-form expressions for

evaluation of the outage and error probabilities of AF multi-hop systems. In Chapter

3 of this thesis, we develop a new general framework for evaluation of the error

probabilities in fading of a variety of modulation schemes in terms of the moment

generating function (MGF) of the reciprocal of the instantaneous received SNR. The

solutions obtained are in the form of single integrals that can be readily evaluated

using standard mathematical software. A single integral expression for evaluation of

the outage probability is also given in terms of the characteristic function (CHF) of

the inverse of the received SNR. Furthermore, we study the asymptotic behavior of

the outage and error probabilities to determine the achievable diversity gains as well

as to gain more insights to the performances of the systems under study.

In addition, the performance of various wireless cooperative systems in fading chan-

nels has been mainly evaluated in terms of outage probability or error rate. On the
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other hand, another important performance metric of a wireless communication sys-

tem in a fading environment is its ergodic capacity which represents a measure of

the maximum average number of information bits that can be reliably transmitted.

There have been many papers investigating the capacity of a variety of Gaussian relay

channels [59]–[69]. However, relayed transmission is particularly attractive in fad-

ing environments for enabling reliable communication between a source-destination

pair when the direct link is subject to a deep fade. But, there have been only a few

studies on the ergodic capacity analysis of a single-relay cooperative system employ-

ing DF relaying or AF relaying [70] over Rayleigh fading channels. In [70], the

ergodic capacities were obtained through Monte Carlo simulations and no analytical

expressions for their calculation were given. Therefore, another aim of this work is to

develop a framework for evaluation of ergodic capacity1 of a variety of wireless coop-

erative systems. Thus, continuing our performance evaluation of multi-hop relaying

systems in Chapter 3, we investigate the ergodic capacity in Rayleigh fading of these

systems employing either AF relaying or DF relaying, assuming channel state infor-

mation (CSI) is only known at the receiving terminals. We derive upper bounds on

the ergodic capacity of an AF multi-hop relaying system based on Jensen’s inequality

and the harmonic-geometric means inequality. We also obtain a precise expression

for the ergodic capacity of an AF multi-hop relaying system in the form of an infinite

series. In addition, the ergodic capacity of a DF multi-hop transmission system is

obtained. It is shown that multi-hop transmission systems employing a DF relaying

scheme achieve higher ergodic capacities than multi-hop transmission systems with

AF relaying schemes.

In addition, all papers on multi-hop relaying systems consider fixed rate and fixed

power transmission. On the other hand, employment of an adaptive technique in

a wireless system can lead to better utilization of the channel [72], [73]. Thus, in

Chapter 3, we also investigate capacity in general fading of an AF multi-hop relay-

ing system employing different source-adaptive transmission techniques introduced

in [72], namely, optimal power and rate adaptation, optimal rate adaptation with con-

stant power, and channel inversion with fixed rate. In such systems the source adapts
1In this thesis, the maximum achievable rate in the Shannon sense is referred to as “capacity”. Note that, as shown

later in Chapters 3 and 5, the effective input-output relation in an AF relaying system can be written in a vector format.

Hence, according to [71, Theorem 1], the capacity in fading of an AF relaying system is the expected value of the maximum

achievable rate. However, as shown in [68] and [70] as well as Section 3.3.1.2, this statement is not valid for DF relaying

systems.
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its rate and/or power according to the channel variations utilizing only a feedback of

the effective received SNR from the destination to the source. We derive exact ex-

pressions for the capacity for each source-adaptive multi-hop transmission system in

terms of the CHF of the reciprocal of the instantaneous received SNR. It is shown that

a system with optimal power and rate adaptation outperforms the system with trun-

cated channel inversion adaptive technique. Systems employing optimal rate adapta-

tion with constant power achieve almost the same capacity as those with optimal rate

and power adaptation at large values of SNR. However, the capacity performance of a

system with the truncated channel inversion adaptive technique is better than the cor-

responding system employing optimal rate adaptation with constant power for small

values of SNR.

• Optimal power allocation for AF multi-hop relaying systems

Power efficiency is an important factor for a cooperative wireless system. Thus,

choosing the optimal power coefficients for the source and the relays is an impor-

tant design issue. Optimal power allocation schemes for several cooperative wire-

less systems under different optimization objectives and assumptions have been ob-

tained [31], [44]–[58]. However, there is no optimal power allocation scheme devel-

oped for AF multi-hop transmission systems with arbitrary number of hops. Thus, in

Chapter 4 of this thesis, we obtain optimal power allocation schemes that maximize

the instantaneous received SNR in an AF multi-hop transmission system under short-

term (ST) and long-term (LT) power constraints. Theoretical expressions for eval-

uation of the outage probability in Rayleigh fading of the proposed power-optimized

AF multi-hop transmission systems are evaluated using the infinite series approach

introduced by Beaulieu [74]. Furthermore, we examine large SNR behavior of the

outage probability of these systems. It is shown that at sufficiently large values of

SNR, the gap in the outage performance between a power-optimized AF multi-hop

transmission system under ST power constraint and that with uniform power alloca-

tion linearly increases with the number of hops. In contrast with the optimal power

allocation scheme under ST power constraint that requires a centralized implementa-

tion architecture, the optimal power allocation strategies for the LT power constraints

can be implemented in a decentralized manner. In addition, it is shown that a system

employing such optimal power allocation schemes can achieve a significant perfor-

mance gain by achieving diversity order 2.

4



• Low complexity receivers for AF multi-relay cooperative systems

Many studies on multi-relay cooperative systems consider employment of a maximal

ratio combining (MRC) receiver at the destination assuming that the relays retrans-

mit in orthogonal subchannels (i.e. repetition-based scheduling protocol [4]) [3], [4],

[14]. It is shown in [33], [34] that MRC is not the maximum likelihood (ML) detector

for DF multi-relay systems. ML and near-ML detection schemes for both coherent

and noncoherent DF multi-relay systems were then developed in [34]. On the other

hand, MRC of the signals received at the destination in an AF multi-relay coopera-

tive system is an ML scheme [33], [40]. However, it requires global knowledge at the

destination of CSI of all links. Other combining schemes such as selection combin-

ing (SC) [15] and switch-and-stay diversity combining [39] also require knowledge

of fading amplitude information for the source-relay channels as well as the relay-

destination channels at the receiver. In addition, an optimal scheme for an AF coop-

erative system where all relays forward their received signals simultaneously (i.e. a

spectral-efficient scheduling protocol) was developed in [75]. However, this optimal

scheme requires that global CSI knowledge of all links be available at all relays. This

requirement imposes a very large system overhead that makes it almost impractical.

Another alternate spectral efficient protocol for AF multi-relay cooperative systems

has been recently proposed in [31] in which only the best relay is selected for cooper-

ation. The selection algorithm is implemented at the destination assuming that fading

amplitude information of all channels is known. The relay selected as the best relay

at the destination is then activated through a feedback channel.

In Chapter 5, we investigate low complexity receivers for AF multi-relay cooperative

systems assuming that no instantaneous fading channel amplitudes are known (or

exploited) at the relays and the destination. We consider the following scenarios

where the channels’ phase information either can be acquired in a distributed manner

or is not required otherwise.

1. The phase information of the channels between source-destination and all relay-

destination links is known to the destination. Each relay also has knowledge of

the phase of the channel between the source and itself. In other words, each

relay terminal and the destination have phase information of their (immediate)

preceding channel(s).

2. Each relay has channel phase information of its backward (source-relay) and
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forward (relay-destination) links. Only the destination has (or exploits) phase

information of the source-destination channel.

3. No fading channel phase information is available at the relays and the destina-

tion.

Our goal is to develop detection schemes under these scenarios that achieve full spa-

tial diversity gain.

Coherent detection at the destination in an AF cooperative system assuming phase

information is known according to either the first or second scenarios is possible as

long as the fading channel phases are properly incorporated into the relay amplifica-

tion gains2 and an appropriate scheduling protocol is employed. In the first scenario,

a repetition-based scheduling should be employed. However, the relays in the sec-

ond scenario can simultaneously forward their signals to the destination. We propose

low complexity combining schemes for these two scenarios which simply add (co-

herently) the signals received at the destination. Since the required channel phase

information can be acquired in a distributed manner, these detectors are referred to as

distributed equal gain combining (DEGC) schemes. Note that the the employment

of a DEGC scheme for a repetition-based AF cooperative system has been proposed

in [77]. However, the instantaneous received SNR expression given in [77, eq. (4)]

is only valid if the noise powers of the signals received at the destination are equal.

This is clearly not the case for an AF cooperative system because the noise powers of

the signals received at the destination through the relays depend on the instantaneous

fading amplitude of the relay-destination channels. Therefore, the performance anal-

ysis given in [77] is not valid and a new analysis is given here. As a benchmark for

performance evaluation of the propped schemes, in the first part of Chapter 5, we ex-

amine the performance of systems employing MRC in terms of achievable diversity

gain and the ergodic capacity.

The third scenario requires employment of a noncoherent detection scheme at the

destination. It is shown in [40] that the general noncoherent ML detection for AF

multi-relay cooperative systems is too complex for employment in practice. On the

other hand, suboptimal receivers for noncoherent AF cooperative systems have been
2While the simplest form of AF relaying ignores the phase of the signal received at the relay, [76] has shown that using

phase information at the relay can enhance the performance of AF systems. The effect of phase adjustment by the relay can

be represented by a complex-valued relay gain.
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proposed in a few recent works [41]–[43]. However, they either have high implemen-

tation complexity or do not achieve full spatial diversity. In Chapter 5, we propose

employment of a maximum energy selection (MES) receiver scheme for noncoherent

AF cooperative diversity systems. A feature of this scheme is that the destination does

not require any instantaneous or statistical information of the fading channel gains.

An expression for the symbol error probability of this system with M -ary frequency

shift keying (FSK) modulation is derived. It is shown that a noncoherent AF sys-

tem employing the proposed MES scheme achieves full spatial diversity. This is an

important result regarding noncoherent AF cooperative systems. Note that the corre-

sponding noncoherent DF cooperative system (with more than one relay) employing

an ML detection scheme loses about half of the potential spatial diversity gain [34].

• Performance analysis of multi-hop diversity transmission systems

A multi-hop diversity transmission system is a generalization of multi-hop transmis-

sion systems in which relays collaborate with each other in order to exploit diver-

sity [26]. Although, the results presented in [26] show that the performance of multi-

hop diversity schemes must be superior to that of multi-hop systems without diversity,

an accurate analysis for outage probabilities of multi-hop diversity transmission sys-

tems with fixed DF or fixed AF relaying in Rayleigh fading was not given explicitly.

Furthermore, the bit error probability analysis given in [26] for a multi-hop diversity

transmission system with fixed AF relaying overestimates the bit error probability

performance. In addition, no discussion on the achievable diversity gains was pre-

sented in [26].

In Chapter 6 of this thesis, we focus on the performance analysis of multi-hop di-

versity schemes in which either a DF relaying or an AF relaying is employed at the

relays. Simple, accurate, closed-form approximations for the calculation of the out-

age and bit error probabilities of multi-hop diversity transmission systems employing

fixed AF relaying are derived. An exact expression for the calculation of the outage

probability of multi-hop diversity transmission systems employing fixed DF relaying

is also obtained. As is expected intuitively, the analysis shows that a multi-hop di-

versity transmission system with fixed DF relaying does not achieve diversity gain.

A selective relaying scheme for multi-hop diversity transmission, which adapts trans-

missions based on threshold tests on the received SNR at each relay, is proposed. The
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proposed scheme is an extension of the selective relaying protocol proposed in [3]3

to multi-hop scenarios in which relay nodes collaborate with each other. It is shown

that a multi-hop diversity transmission system employing the proposed selective DF

relaying protocol achieves diversity gain equal to the number of hops without the

need for additional resources (i.e. power and bandwidth). The proposed selective

DF relaying scheme is especially applicable to multi-hop cellular, or ad hoc networks

that already involve regenerative relay terminals along a multi-hop path relaying (by

decoding, re-encoding, and forwarding) data from a source to a destination. On the

other hand, the results show that multi-hop diversity transmission systems employ-

ing selective AF relaying do not perform as well as those employing the fixed AF

relaying protocol. However, the relay terminals in multi-hop diversity transmission

systems employing selective AF relaying use less, or at most equal power as those

in the corresponding systems with fixed AF relaying. Thus, the application of selec-

tive AF relaying protocol is more suitable for multi-hop transmission systems having

power limitations at the relays.

1.2 Thesis Outline

This thesis is organized as follows. In Chapter 2, we first describe the basic concepts of co-

operative communications. We then review the related works on the performance analysis,

design of efficient receivers and development of optimal power allocation schemes for a va-

riety of wireless cooperative communications systems. Chapter 3 focuses on performance

analysis of multi-hop relaying systems in terms of outage probability, error probability, and

capacity. In Chapter 4, optimal power allocation schemes for AF multi-hop relaying sys-

tems are developed. In Chapter 5, AF multi-relay cooperative systems are examined and

low complexity coherent and noncoherent detection schemes are proposed for employment

at the destination of these systems. Chapter 6 evaluates performance of multi-hop diver-

sity transmission systems employing different relaying protocols. Chapter 7 concludes the

thesis and gives ideas for future research.

3Note that in this thesis, the “selection relaying” scheme of [3] is re-named as “selective relaying” in order to avoid any

confusion with selection combining diversity schemes.
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Chapter 2

Background and Related Works

In this chapter, key ingredients of cooperative communications are first described. General

system configurations and assumptions considered in this thesis are also presented. In

addition, a detailed review of the research works related to the problems studied here is

given.

2.1 Elements of Cooperative Communications

2.1.1 Processing Methods at Relays

The relays can be classified in two main categories, regenerative and nonregenerative re-

lays. In systems with regenerative relays, the relay decodes its received signal, re-encodes it

and re-transmits. This signaling scheme at the relay is called decode-and-forward (DF) [3].

On the other hand, in systems with nonregenerative relays, the relay amplifies its received

signal and then forwards. This signaling scheme is referred to as amplify-and-forward (AF)

[3]. The choice of the amplification gain affects the overall system performance [3], [20].

In fact, nonregenerative relays can be further classified into two subcategories, variable-

gain relays and fixed-gain relays. In systems with nonregenerative variable-gain relays,

the amplification gain is adapted in such a way to provide a constant power at the relay

output for retransmission using the receiver CSI at the relays1 [3]. In contrast, in systems

with nonregenerative fixed-gain relays, the amplification gain is fixed and does not require

knowledge of the instantaneous received CSI at the relay [20]. Although systems with

nonregenerative fixed-gain relays may not perform as well as those with nonregenerative
1The required CSI at the relay can be obtained by employing a conventional practical channel estimation technique [78,

Ch. 6].
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variable-gain relays [20], their easy deployment and low complexity make them attractive

from a practical point of view.

Another processing scheme that dose not involve decoding at the relays is estimate-

and-forward (EF) relaying. In this scheme, the relay forwards an analog estimate of its

received signal [60]. In [60], the maximum achievable rate of an EF Gaussian single-relay

channel has been obtained. It is shown that when the relay is positioned close to the source,

DF performs better than EF in terms of the maximum achievable rate [79]. However, EF

achieves a higher rate than DF when the relay is close to the destination [79]. Both EF and

DF protocols outperform AF in terms of the maximum achievable rates [79]2.

In the EF protocol, an important question is how is the estimation performed at the

relays? A few methods have been proposed in the literature for forming an estimate of the

signal received at the relay [80], [81]. For example, estimation at the relay may be done by

entropy constrained scalar quantization of its received signal [80]. Although employment

of this estimation technique does not offer the theoretical maximum achievable rate of an

EF system, it achieves a higher rate than the DF system when the relay-destination link is

strong [80].

An estimate of the signal received at the relay may also be obtained by an unconstrained

minimum mean square error (MMSE) scheme [81]. In this scheme, the relay estimate is

a function of the hyperbolic tangent of its received signal [81, eq. (2)]. Note that in this

context, AF relaying can be viewed as a linear MMSE scheme with a normalization in order

to maintain the power constraint at the relay [81]. It has been shown that an EF system

employing the unconstrained MMSE scheme achieves a higher rate than the corresponding

AF system [81].

2.1.2 Relaying Protocols

Basically, there are three main classes for relaying protocols, namely, fixed relaying, selec-

tive relaying, and incremental relaying. In systems employing fixed relaying, relays process

what they receive (e.g. by amplifying or decoding) and then re-transmit. However, as intu-

itively expected and as analysis shows [3], the performance of a system employing fixed DF

relaying is limited by the direct transmission between the source and relays. Thus, another

class of relaying, selective relaying, is proposed in [3] and [4] to achieve diversity gain.

According to the selective relaying protocols, particular relays are selected to participate
2Note that, as shown in [3] as well as Chapters 5 and 6, AF relaying provides better diversity order than DF relaying for

specific system configurations.
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in the transmission. For instance, the selective relaying protocol in [3] suggests that if the

received SNR at the relay is above a certain threshold, the relay is allowed for cooperation;

otherwise the source repeats its message. In another selective relaying protocol, only the

relay that achieves the best end-to-end performance is chosen for cooperation [30]–[32].

Different policies have been proposed in the literature for selecting the best relays based

on the instantaneous amplitudes of source-relay and relay-destination links. The best re-

lay selection relaying algorithms usually require centralized implementations and impose

overhead to the system. Incremental relaying is another relaying method in which limited

feedback from the destination is utilized in order to determine relayed transmission ver-

sus direct transmission [3]. In this scheme, upon receipt of the signal at the destination,

a single bit is broadcast from the destination indicating the success or failure of the direct

transmission. If the received signal-to-noise ratio (SNR) over the source-destination chan-

nel was above a certain threshold, the feedback indicates success and the relay does not

cooperate. Otherwise, the feedback requests the relay to process its signal and forward it to

the destination. Although incremental relaying achieves better performance, it adds system

complexity and requires more overhead.

Different combinations of the relaying protocols mentioned earlier and the processing

methods described in Section 2.1.1 have been investigated in the literature [3], [4], [14],

[79]. Recall that the basic premise of cooperative communication is to achieve spatial di-

versity without physical deployment of antenna arrays at the source and/or destination [3].

From this point of view, the diversity benefit of cooperative communication depends on

specific channel conditions, system resources and hardware constraints at the relays, which

dictate employment of a particular relaying/processing combination at the relays [82]. For

instance, AF and EF cooperative systems with fixed relaying employing MRC at the des-

tination achieve full diversity gain [3], [14], [79]. However, the corresponding DF system

does not offer full diversity gain due to the propagation of the decoding errors at the re-

lays [3]. DF cooperative systems with selective relaying, on the other hand, have been

shown to achieve diversity gain by suppressing the error causing relays from the coopera-

tion [3], [4]. Furthermore, a hybrid EF/DF relaying scheme aiming to increase the maxi-

mum achievable rate has been investigated in [79]. In this hybrid scheme, the relay chooses

the relaying protocol resulting in a higher rate at the destination for a specific channel con-

dition in each time slot. Thus, the achievable rate of this hybrid scheme is the maximum

of the achievable rates of individual EF and DF relaying protocols [79]. It is shown that

this hybrid scheme offers superior outage performance over individual EF and DF relaying
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protocols for all channel conditions and achieves full diversity gain. Cooperative systems

employing AF selective relaying, AF incremental relaying and DF incremental relaying

have also been shown to achieve full diversity gain [3]. An EF cooperative system employ-

ing incremental relaying has not been investigated in the literature yet. However, note that

the incremental relaying protocol can be viewed as a distributed switch-and-stay combining

(DSSC) followed by MRC when the relay-destination link is active [38]. In addition, it is

shown that EF relaying always achieves a higher rate than direct transmission [79]. Hence,

the achievable rate at the destination when the relay is active is higher than that of the case

where the relay is not cooperating. Therefore, it is expected that an EF cooperative system

with incremental relaying achieves full diversity. Rigorous diversity order analysis of this

system is beyond the scope of this thesis.

2.1.3 Channel Allocation and Relays Modes of Operation

Another key element of a wireless cooperative system is how the channel is allocated to the

source and the relays for their transmissions. A medium access control (MAC) protocol

provides addressing and channel access mechanisms for several terminals to transmit over

a shared physical medium. Time-division multiple-access (TDMA), frequency-division

multiple-access (FDMA) and code-division multiple-access (CDMA) have been widely

used MAC protocols in cellular communications systems. The basic idea is to assign or-

thogonal channels (across time, frequency, or space ) to terminals in order to avoid interfer-

ence among them. For instance, the MAC protocol considered in [4] divides the available

bandwidth into orthogonal channels and allocates them to source terminals within the net-

work.

The relays in a cooperative communication system should also process their received

signals and then re-transmit. Basically, relay operations can be categorized into two modes,

full-duplex operation in which the relay can receive and transmit simultaneously and half-

duplex operation in which the relay cannot simultaneously transmit and receive in the same

time slot over the same frequency band. Due to the severe attenuations over the wireless

channels, and limitations of the current radio technology to provide sufficient electrical

isolation between the transmit and receive circuitry, the relay’s transmitted signal drowns

out the signal at its receiver input. This makes full-duplex operation of relays too difficult

for implementation. In order to satisfy a half-duplex operation constraint, each channel

is further divided into orthogonal sub channel(s) (e.g. across time using a time-division

scheme [3] and [4]) allocated to the relays cooperating in the transmission. Note that to
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achieve this time division multiplexing operation, the relays store their received signals

by either digital or analog delay circuits [83]. For instance, in an AF relaying system,

a digital delay can be implemented by a bandpass sampling scheme using an analog-to-

digital converter (ADC) and storing the digital samples [83]. The bandpass signal can

then be reconstructed using a digital-to-analog converter (DAC). Note that the baseband

processing, such as demodulating and decoding, is not required after ADC in AF relaying

systems as opposed to the DF relaying systems.

2.2 General System Configurations and Features

A wireless cooperative system configuration employing a relaying protocol imposes differ-

ent requirements on the wireless terminal hardware capabilities, channel availability, and

system resources. A framework was developed in [82] that determines a relationship be-

tween the constraints on the available system resources and the achievable combinations

of communication links among cooperating terminals within the system. In this thesis, we

focus on the three common system configurations, namely, multi-hop systems, multi-relay

cooperative systems, and multi-hop diversity systems.

Multi-hop relaying is a simple form of a wireless cooperative system in which a source

communicates with the destination via a number of relays. Multi-hop transmission has be-

come a promising technique for application in current and future cellular or ad hoc wireless

networks for saving transmitter power, extending converge and enhancing performance.

Figure 2.1 shows a multi-hop transmission system. In Chapter 3, we focus on the perfor-

mance evaluation of multi-hop relaying systems in terms of outage probability, error rate

and capacity. In Chapter 4, optimal power allocation schemes for AF multi-hop systems

under different power constraints are developed.

Another common scenario for a wireless cooperative system is the case where a source

communicates with a destination with the help of a number of relays in order to achieve

spatial diversity. This form of a cooperative system, referred to as multi-relay cooperative

system in this thesis, is shown in Figure 2.2. In Chapter 5, we introduce coherent and

noncoherent receiver structures for AF multi-relay systems requiring partial or no CSI.

The performances of the proposed schemes are evaluated and, in particular, it is shown

that full diversity gain is achieved. In addition, the partial CSI required can be obtained

in a disturbed manner making the proposed schemes attractive for application in ad hoc

wireless networks.
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Figure 2.1. A K-hop transmission system where the source, T0, communicates with the destination,

TK , via K − 1 relays, T1, . . . , TK−1.

In a conventional multi-hop transmission system, each relay receives the signal trans-

mitted from its immediately preceding terminal. Due to the broadcast nature of wireless

media, each relay can receive the signals from all preceding transmitting terminals as well

as the signal of the immediately preceding terminal, combine them appropriately, process

the combiner output (either by decoding or by amplifying) and then re-transmit it. This

concept forms the basis of multi-hop diversity schemes introduced in [26]. Figure 2.3

shows a multi-hop diversity transmission system. In Chapter 6, we evaluate the outage and

bit error probabilities of different AF and DF multi-hop diversity transmission systems. In

addition, a selective relaying scheme is proposed that achieves full diversity gain.

In all systems considered in this thesis, it is assumed that the relays operate in the half-

duplex mode. The MAC scheme allocates a frequency band to the source for its transmis-

sion, which is further divided into orthogonal subchannels across time using a time-division

scheme to permit half-duplex operation at the relays. In addition, we denote the fading gain

of the channel between terminals Ti and Tj by αi,j . The noise at the ith terminal, ni, is

modeled as a zero-mean complex Gaussian random variable with power N0 . The instanta-

neous SNR of the channel between terminals Ti and Tj is then defined as γi,j , Pi

N0
|αi,j |2

where Pi denotes the transmitter power from terminal Ti. The average SNR over the

channel between Ti and Tj is denoted by Γi,j , Pi

N0
Ωi,j where Ωi,j is the fading power

over the link.

2.3 Related Works

The basic idea behind cooperative communications returns back to the information-theoretic

analysis of a three-terminal Gaussian relay channel by van der Meulen [59] and Cover and

El Gamal [60]. While this past work considers the capacity improvements in Gaussian
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Figure 2.2. An N -relay cooperative system where the source, T0, communicates with the destina-

tion, TN+1, via N relays, T1, . . . , TN .

Figure 2.3. A K-hop diversity transmission system where the source, T0, communicates with the

destination, TK , via K − 1 relays, T1, . . . , TK−1.
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relay channels, cooperative communications exploits the broadcast nature of the wireless

medium aiming to provide spatial diversity in a fading environment through relaying by

forming a virtual antenna array. Cooperative diversity for wireless networks was first intro-

duced in [1], [2]. In [1], the implementation of user cooperation in a three-terminal (single-

relay) CDMA system was considered and analyzed in terms of achievable rate region and

outage probability. However, some assumptions made in [1], such as the availability of

CSI at the transmitters and the ability of full-duplex operation, make implementation of the

proposed protocol difficult from a practical point of view.

The next important work in the context of cooperative communications was by Laneman

et al. [3]. In [3], a three-terminal system was considered in which the MAC protocol not

only allocates orthogonal channels to each terminal but also achieves orthogonal relaying

(by dividing each channel into orthogonal sub-channels across time) to ensure half-duplex

operation. It was also assumed that CSI is only available at the receivers. Various coopera-

tive protocols were then developed and evaluated in terms of asymptotic outage probability

in Rayleigh fading.

Since then, a variety of wireless cooperative systems with different numbers of relays

and types of processing and detection at the relays and destination have been considered

and analyzed in terms of different performance metrics, such as outage and error proba-

bilities. In the following, a literature review of the research works in the area cooperative

communications related to the systems considered in this thesis is given.

2.3.1 Multi-Relay Cooperative Systems

2.3.1.1 Performance Analysis

Performance evaluation of multi-relay cooperative communication systems employing dif-

ferent relaying protocols has gained a lot of attention in the recent years. The asymptotic

outage performance of a multi-relay cooperative system employing either repetition-based

selective DF relaying or space-time coded selective DF relaying was studied in [4]. The

exact outage probability and bit error rate of multi-relay systems employing selective DF re-

laying over Rayleigh fading channels were obtained in [5] and [6], respectively. The outage

probability of DF multi-relay systems over Nakagami-m fading channels was investigated

in [7] and [8]. Symbol and bit error probabilities in Nakagami-m fading of M -ary phase

shift keying (PSK) DF multi-relay systems were evaluated in [9] and [10], respectively.

Recently, symbol error probability in Nakagami-m fading of a DF single-relay system was
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evaluated in [11]. Exact expressions for M -PSK and M -ary quadrature amplitude modu-

lation (QAM) were derived. Asymptotic approximations were also obtained. An optimal

power allocation scheme was investigated using the approximate error rate obtained. Fur-

thermore, a criterion for choosing a good relay was given in terms of fading channel and

system parameters.

The majority of works concerning error probability evaluations of DF cooperative com-

munication systems assume uncoded relaying protocols, due to the simplicity in both analy-

sis and implementation. In particular, uncoded DF relaying can perform symbol-by-symbol

demodulation and re-transmission. However, DF relaying protocols can be extended to

combine with coding techniques yielding an impressive gain [84]–[86]. However, since

these coded cooperation methods impose an increased system complexity and overhead,

we do not consider them in this thesis.

The relative simplicity of AF relaying has encouraged the design and/or performance

evaluation of cooperative systems employing this protocol.

In [12], an upper bound on the instantaneous received SNR in an AF multi-relay system

with variable-gain relays was obtained using the inequality between harmonic and geomet-

ric means and it was then used for error probability analysis. The lower bound on the error

probability obtained in [12] needs a numerical integration which is rather involved due to

the mathematical form of the MGF and it also loses its tightness as the numbers of relays

increases and in particular in large-SNR regimes. In [13], the error probability of an AF

multi-relay system with variable-gain relays was studied over Rayleigh fading channels.

An exact analytical expression for calculation of the error probability was given in [13].

However, it is numerically complex. Hence, upper and lower bounds on the error prob-

ability were derived in [13]. An approximate asymptotic expression for the symbol error

rate calculation of a multi-relay system with nonregenerative variable-gain relays employ-

ing fixed AF relaying was given in [14], using the methodology developed in [87]. The

approximate expressions obtained in [14] are accurate for moderate to large values of SNR

and are valid for Rayleigh, Ricean and Hoyt fading channels. In [15], closed-form expres-

sions for the probability density function (PDF) and cumulative density function (CDF)

of the end-to-end SNR of a cooperative system with a single nonregenerative relay (either

variable-gain or fixed-gain) in Nakagami-m fading were derived. The results in [15] were

then utilized for performance evaluation of a single-relay system employing SC diversity

at the destination. In [16], an upper bound on the outage probability of a multi-relay sys-

tem with variable-gain relays was derived by approximating the harmonic mean of two
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exponential random variables as another exponential random variable. Although the ob-

tained bound on the outage probability is tight for large values of SNR, it diverges in the

small-SNR regime. The outage and error probabilities in Nakagami-m of an AF multi-

relay system were evaluated in [17] by upper bounding the instantaneous received SNR at

the destination through each relay by the minimum of the instantaneous SNR over source-

relay and relay-destination links. The lower bounds obtained become tighter with increas-

ing SNR. Error probability in Nakagami-m of an AF cooperative system with a single

fixed-gain relay was evaluated in [88] using the MGF of the instantaneous received SNR.

Performance of an AF multi-relay system with variable-gain relays was evaluated in [18]

over Nakagami-m fading channels. In [18], an expression for the PDF of the instantaneous

received SNR at the destination through a relay was first derived in Nakagami-m fading.

Then, accurate single integral expressions for evaluation of symbol error probability of a

variety of modulation schemes were obtained.

2.3.1.2 Detection Schemes at the Destination

Most of works on cooperative communications assume CSI is available and employ MRC

at the destinations. Although MRC of the received signal in an AF cooperative communi-

cation system is an ML detector [33], this is not true for cooperative systems employing

DF relaying [33]. In [1], an ML detector was presented for a single-relay DF system with

binary phase shift keying (BPSK). However, as shown in [1], performance analysis of such

detector is too complicated. A suboptimal combiner, refereed to as λ-MRC, was then devel-

oped in [1]. Numerical results showed that this scheme performs very closely to the optimal

detector. In [34], a general framework for ML detection of coherent and noncoherent DF

multi-relay cooperative systems was given. However, the ML detectors obtained for both

coherent and noncoherent cases are nonlinear and hard to implement. Thus, near-optimal

detectors with piecewise-linear (PL) combiners, which closely approximate the non-linear

ML detectors, were developed for both coherent and noncoherent demodulation of binary

modulations. In a more recent work [35], a new weighted combiner, termed as cooperative-

MRC (C-MRC), was proposed for general coherent cooperative systems employing fixed

DF relaying. It was shown that this scheme can achieve full potential diversity gain re-

gardless of the underlying constellation. It was also shown that the error performance of

the C-MRC scheme provides a tight lower bound on that of ML detection. Furthermore,

the performance of a DF cooperative system employing a C-MRC scheme was compared

to that of the corresponding systems offering the same diversity gain, namely a coopera-
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tive system with either AF relaying or selective DF relaying employing MRC scheme at

the destination. Although the DF cooperative system with C-MRC offers slightly inferior

performance than that of the corresponding system with AF relaying, it outperforms the

system employing selective relaying.

However, note that employments of both MRC diversity in AF multi-relay systems and

C-MRC combiner in DF multi-relay systems require global knowledge at the destination

of CSI of all links. Thus, employment of other conventional diversity schemes that require

partial knowledge of CSI at the destination was proposed for application in cooperative

systems. Performance of multi-relay system with fixed DF relaying employing SC at the

destinations was evaluated in [36] and [37]. Employment of a DSSC for a DF single-relay

system was studied in [38]. In the proposed scheme, the destination compares the received

SNR with a predetermined fixed switching threshold. If the received SNR is lower than

this threshold, then a branch-switching occurs. This scheme requires a feedback to both the

source and the relay, indicating a switching on the transmission path (from the direct to the

relayed one and vice versa) during the next time slot. This scheme operates similarly to the

incremental relaying protocol described in [3]. However, the destination does not employ

an MRC in cases where the relayed branch is active. Outage and bit error probabilities

of this system were obtained in [38] and it was shown that employment of the proposed

DSSC in a DF single-relay system achieves full diversity. DSSC scheme in [38] was then

extend for AF and DF systems with two relays in [39]. Expressions for evaluation of

the outage and error probabilities were obtained over Rayleigh fading channels. Numerical

results presented in [39] showed that the dual-relay systems employing the proposed DSSC

achieve the same diversity gain and outage performance as if the best relay is selected for

each transmission slot, with less complexity.

As we have seen so far, multi-relay cooperative systems mostly involve receiver struc-

tures that require either global or partial knowledge of CSI at the destination. CSI in slow

fading of the source- and relay-destination links can be accurately obtained at the destina-

tion using the conventional practical channel estimation schemes [78, Ch. 6]. However, due

to the noise amplification at the relays, CSI of source-relay links required to be available

at the destination in many detection schemes employed in systems with AF relaying [3],

[39] may not be accurately estimated at the destination. In addition, obtaining CSI requires

channel monitoring in each coherence time. Thus, estimation of channel coefficients re-

duces the effective transmission rate in a situation where the channel parameters change

within the period of one transmission block. Therefore, noncoherent modulation and de-
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modulation seem more practical. In contrast with the noncoherent cooperative systems

employing fixed DF relaying for which a PL near-ML detector can be obtained [34], there

are few results for non-coherent cooperative systems with AF relaying [40]. In fact, ML

detection for a non-coherent AF cooperative system is too complex for analysis and imple-

mentation [40]. Suboptimal receivers for noncoherent AF cooperative systems have been

studied in a few recent works [41]–[43]. It was observed in [40] that a noncoherent com-

bining scheme inspired by MRC performs worse than direct transmission. In [41], ML and

suboptimal detection schemes for noncoherent AF cooperative systems with on-off keying

(OOK) and binary frequency shift keying (BFSK) signalings were obtained. Both ML

and suboptimal detection schemes require knowledge of the average fading channel gains

of all links at the destination. The numerical results presented in [41] show that the per-

formances of the suboptimal receivers are close to those of the ML schemes for the cases

considered. However, there was no rigorous analysis given for performance evaluation of

the suboptimal receivers and their achievable diversity gains. Closed-form lower bounds

on the bit error probabilities of OOK and BFSK AF systems employing the corresponding

ML detectors were derived in [41] assuming unfaded relay-destination links. Upper bounds

on the bit error probabilities of these systems were also obtained by numerical evaluation

of the Bhattacharyya distance between the likelihood functions. It was shown that an OOK

system with ML achieves at least half of the potential diversity gain, whereas a BFSK

system with ML achieves full diversity gain. However, the ML detectors in [41] involve in-

tegrals that have no closed-form solutions and hence are very complex for implementation.

It was further shown in [42] that there is no closed-form ML detector for a noncoherent AF

cooperative system where the relay outputs are under a long-term power constraint. Near-

ML as well as a simple diversity combining scheme for OOK or amplitude shift keying

(ASK) signalings were derived in [42] that can be expressed in closed-form and require

the second-order statistics of the fading channel gains. Although these schemes outper-

form direct transmission (noncooperative system), there is no rigorous analysis given for

the achievable diversity gain. In particular, it is clearly seen from the simulation results that

the diversity combining scheme in [42] does not achieve full spatial diversity. In addition,

it was shown in [42] that an ML detector for a noncoherent AF cooperative system where

the relay outputs are under short-term power constraints does not depend on the signals

received at the destination through the relays and thus performs the same as the noncoop-

erative system. A noncoherent detection scheme using the generalized likelihood ratio test

method was proposed in [43] that only requires knowledge of the local noise energy for its
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operation. Closed-form upper and lower bounds on the error probability of this detector for

the case of binary signaling and single-relay transmission were obtained. It was shown that

near full spatial diversity is achieved in this case. There was no analysis presented in [43]

for the general case of multiple relays and only a few simulation results showed perfor-

mance improvement (implying higher diversity orders, but not necessarily full diversity)

by adding more relays.

2.3.2 Multi-Hop and Multi-Hop Diversity Transmission Systems

A multi-hop transmission system is another class of cooperative communication systems

that has attracted a lot of attention in the recent years. In a serial multi-hop transmission

scheme without diversity, each relay terminal simply processes the received signal from the

immediately preceding transmitting terminal and then forwards it to the next terminal. The

outage probability and bit error rate of dual-hop transmission systems with regenerative

relays employing DF relaying, nonregenerative variable-gain relays, and nonregenerative

fixed-gain relays, both employing AF relaying, over Rayleigh fading channels were studied

in [19] and [20]. A dual-hop transmission system in which the relay gain is adopted based

on the CSI of both hops was proposed in [21] and closed-form expressions for its outage

probability and error rate were derived over Rayleigh fading channels. This system offers

better end-to-end performance compared to dual-hop systems with variable-gain and fixed-

gain relays, however, at the expense of an increase in the average power consumption.

Closed-form expression for evaluation of bit error probability in Nakagami-m fading of an

AF dual-hop system with a fixed-gain relay was derived in [22]. A closed-form asymptotic

expression for the bit error probability in large SNR regions was also obtained.

A numerical method was proposed in [28] to evaluate the outage probability of a multi-

hop transmission system with nonregenerative variable-gain relays over Nakagami-m fad-

ing channels. In [23], performance bounds on the outage probability and bit error rate of a

multi-hop transmission system with nonregenerative fixed-gain relays were obtained over

generalized fading channels based on Pade approximation. New performance bounds on

the outages and bit error probabilities of multi-hop transmission systems with nonregener-

ative relays (both variable-gain relays and fixed-gain relays) were obtained in Nakagami-m

fading in [24] using the statistics of the geometric mean of individual hop SNRs. However,

the performance bounds given in [23] and [24] are not tight for the case of non-identical hop

SNRs, particularly in large SNR regions. In [25], a single integral expression for evaluation

of the MGF of the instantaneous received SNR in an AF multi-hop system was obtained
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using the MGF of the inverse of instantaneous received SNR. The bit error probability was

then evaluated using the MGF-based approach described in [89, Ch. 9]. Therefore, exact

evaluation of error probability using the method in [25] requires numerical computation of

double integrals.

Note that each relay in a single primary route between the source and the destination

could employ diversity to improve the system performance. The outage probability and bit

error rate performances of this multi-hop diversity transmission system employing either

fixed DF relaying or a fixed AF relaying protocol have been studied in [26]. Performance of

AF multi-hop diversity systems with fixed-gain relays was evaluated in [27] over Rayleigh

fading channels and theoretical expressions for evaluation of the average received SNR and

symbol error probability were derived. The superior performance of a multi-hop diversity

system over that of the corresponding system without diversity was demonstrated in [26]

and [27].

2.3.3 Optimal Power Allocation for Cooperative Wireless Systems

Another issue in the context of cooperative communications is the development of power al-

location schemes. Generally, most of the works assume a uniform power allocation among

transmitting terminals. However, employing an optimal power allocation scheme can im-

prove the system performance. Optimal power allocation schemes for various cooperative

structures were investigated in the literature considering different relaying schemes, opti-

mization criteria, and assumptions on the availability of CSI [31], [44]–[58]. For example,

optimal power allocation schemes which maximize the instantaneous maximum mutual

information subject to total and individual power constraints, were given in [45] for dual-

hop systems equipped with a single regenerative relays, and in [46] for dual-hop systems

equipped with a single variable-gain relay. In [47], optimal power allocation schemes were

obtained for dual-hop transmission systems with and without diversity employing either DF

or AF relaying, and a multi-hop transmission system with DF relaying. The optimization

problem in [47] aimed to minimize the outage probability of each system in Rayleigh fad-

ing subject to a given power budget. In [48], the total power consumption in a DF multi-hop

transmission system is minimized subject to achieving a target bit error rate. The optimal

power allocation obtained requires having a global knowledge of location of each terminal

at the relays, which in turn implies a centralized implementation.

On the other hand, there have been a number of studies on obtaining optimal power allo-

cation schemes for multi-relay cooperative systems. Optimal power allocation schemes for
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both AF and DF Gaussian multi-relay systems were obtained in [49] aiming to maximize

the achievable rate under a total power constraint. In [50], optimal power allocation for a

DF single-relay system was investigated. Assuming CSI is known at both the transmitter

and the receiver, the achievable data rate was derived and optimized subject to different

power constraints at the source and the relay. In [51], optimal power allocations for an AF

single-relay system were obtained for minimizing the outage probability subject to total

and individual average power constraints and under different assumptions for availability

of CSI at the transmitter. For the case where the perfect CSI is available at the source

and the relay, the optimal power allocation strategy provides significant performance gain.

For a more practical case where limited feedback is used, a low complexity suboptimal

power allocation scheme is developed in [51] that achieves most of the gain offered by the

optimal scheme. In addition, [51] considers the case where there is no CSI known at the

transmitter and derives the optimal power allocation that minimizes the outage probability

subject to a total average power constraint. It was shown in [51] that there is a minimal

performance gain achieved in this scheme and in fact equal power allocation between the

source and the relay is nearly optimal. An optimal power allocation for a DF single-relay

system was derived in [52] that maximizes the achievable data rate subject to an average

power constraint. It was again shown that an impressive performance gain can be achieved

by incorporating a finite rate feedback in a cooperative system. In [53], a tight bound on the

outage probability in Rayleigh fading of an AF multi-relay system was first derived. Then,

an optimal power allocation scheme that minimizes the obtained outage probability bound

under a total power constraint was given using the knowledge of average link SNRs. It was

shown that the optimal power allocation scheme achieves performance gains of about 1-2

dB in large SNR regions. An optimal power allocation scheme for AF multi-relay systems

was obtained in [31] that maximizes the mutual information subject to both total and in-

dividual power constraints. The optimal power coefficients obtained depend on the global

knowledge of the CSI of all links and hence requires a centralized implementation. An

optimal power allocation scheme was proposed in [54] for maximizing the instantaneous

received SNR in an AF multi-relay system where the relays transmit simultaneously in the

second time slot. Since the obtained optimal power allocation scheme is too complex for

practical implementation, a closed-form suboptimal power allocation solution was obtained

in [54]. Although the suboptimal scheme performs as well the optimal scheme, it requires

global knowledge of CSI and hence, similar to [31], should be implemented in a centralized

manner. In [55], optimal power allocation schemes for different multi-relay systems were
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studied assuming that the statistical channel knowledge (in the form of fading distribution

and the path loss information across all nodes) and perfect CSI are, respectively, available

at the transmitters and the receivers. Optimal power allocation strategies that minimize

large SNR approximation of the outage probability in systems with AF and DF relaying

subject to a ST power constraint were then obtained. The optimal power coefficients at

the relays in both AF and DF systems depend only on the ratio of the average source-relay

channel gain to the average relay-destination channel gain. Numerical results in [55] show

that optimal power allocation scheme achieve a significant gain, especially as the number

of relays increases. However, the optimal power allocation strategies obtained in [55], re-

quire a centralized implementation. Distributed power allocation policies for both AF and

DF multi-relay systems that maximize the instantaneous received SNR at the destination

were derived in [56]. For the special case of a single-relay system, closed-form optimal

power coefficients were obtained. For the general case, derivation of a closed-from power

allocation solution based on the exact SNR expression is very involved. Hence, a sub-

optimal power allocation scheme was obtained in [56] based on an upper bound on the

instantaneous received SNR. Numerical results in this paper also indicate the importance

of the optimal power allocation scheme with increasing number of relays. In [57], an op-

timal power allocation scheme for a multi-relay system employing selective DF relaying

was studied assuming that only the average channel gains are known at the transmitters.

The optimal power allocation scheme obtained that minimizes the outage probability sub-

ject to a ST power constraint. However, due to the complex implementation of the optimal

scheme, a suboptimal power allocation policy was developed in [57]. In the suboptimal

scheme a fixed fraction of the total power is assigned to the source in the first stage of the

transmission and the remaining power is equally allocated to the set of relays selected for

the cooperation. Note that if this set is empty, the power is allocated to the source in the

second stage of the transmission. In this scheme, each terminal only need to have the aver-

age gain of the channel between itself and the destination as well as the number of selected

relays. Numerical results given in [57] show that the suboptimal scheme offers significant

performance gain. In addition, it achieves an outage probability close to that achieved in

the optimal scheme. In [58], a distributed power allocation strategy for multi-relay systems

employing selective DF relaying that minimizes the total transmit power subject to a target

SNR at the destination with a target outage probability was presented. In this scheme, each

relay that is able to decode the signal received from the source compares the gain of the

channel between itself and the destination with a given threshold value and then decides
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to cooperate with the source or not. The optimum strategy determines the source transmit

power as well as the threshold values at the relays. This optimal strategy requires CSI of

source-relay links and source-destination link available at the source. Two simpler dis-

tributed power allocation methods were also proposed in [58] having less computational

complexity with a little performance loss comparing to the optimal strategy.
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Chapter 3

Multi-Hop Relaying Systems

In this chapter, we focus on the performance evaluation of multi-hop relaying systems in

terms of outage probability, error rate and ergodic capacity. As mentioned earlier, exact

expressions for evaluation of the outage and error probabilities of DF multi-hop systems

can be readily obtained [19], [26]. Although, closed-form expressions for the outage and

error probabilities for dual-hop systems with variable-gain relays and fixed-gain relays are

derived in [29] and [20], respectively, there are no such expressions for AF multi-hop sys-

tems with arbitrary number of relays. In fact, the numerical method proposed in [28] for

evaluation of the outage probability of an AF multi-hop system with variable-gain relays

needs a large number of terms for convergence, especially for moderate to large values of

SNR, to get a required accuracy. Error probability analysis presented in [25] for AF multi-

hop systems with variable-gain relays requires evaluation of double integrals. In addition,

lower bounds on the outage and error probabilities in Nakagami-m fading of AF mulit-hop

systems with fixed-gain relays obtained in [24] are not tight, especially in larger values of

SNR and for larger number of hops. In Section 3.2, outage and error probabilities in gen-

eral fading of AF multi-hop systems both with variable-gain relays and fixed-gain relays

are evaluated and closed-form single integral expressions are derived. The asymptotic out-

ages and error probabilities for large values of SNR are also obtained. In addition, another

important performance measure of a wireless system in fading is its capacity. However,

capacity in fading of multi-hop relaying systems has not been examined in the literature.

Section 3.3 evaluates the ergodic capacity of different multi-hop relaying systems.

A version of this chapter has been submitted in part to IEEE Transactions on Communications and IEEE Transactions

on Vehicular Technology, and has been published in part in IEEE Transactions on Wireless Communications, 7:1851-1856

(2008) and 8:2286-2291 (2009), Proceedings of IEEE International Conference on Communications (ICC), 1:4300-4305

(2008), and Proceedings of IEEE Global Communications Conference (GLOBECOM), 1:1-6 (2008).
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3.1 System Models

Consider a K-hop wireless transmission system as shown in Figure (2.1) in which a source

terminal, T0, communicates with a destination terminal, TK , via K − 1 half-duplex relay

terminals, T1, T2, . . . , TK−1. In general, the kth relay terminal, Tk, receives the signal from

the immediately preceding transmitting terminal, Tk−1, in the kth time slot, processes it by

either decoding or amplifying and then forwards it to the next terminal, Tk+1, in the next

time slot. The received signal at the kth terminal, yk, is given by

yk = αk−1,kxk−1 + nk, k = 1, . . . , K (3.1)

where xk−1 denotes the transmitted signal from the (k − 1)th terminal. In a multi-hop

transmission system employing a DF relaying scheme, the transmitted signal from the kth

relay terminal, xk, k = 1, . . . , K − 1, is an estimate of the transmitted source signal, x0,

obtained by decoding of the received signal at the kth terminal, yk.

In a multi-hop transmission system employing AF relaying, the kth relay terminal am-

plifies its received signal by a gain Ak, i.e. xk = Akyk, and then forwards it to the next

terminal. In systems with variable-gain relays, the amplification factor at the kth relay is

chosen as [3]

AV
k =

√
Pk

Pk−1 |αk−1,k|2 + N0

, k = 1, . . . , K − 1 (3.2)

in order to ensure that the relay output power is Pk
1. In contrast, in systems with fixed-gain

relays, the amplification gain at the kth relay, AF
k , is a constant. The relay amplification

gain in this case can have an arbitrary value, in general. However, the relay output power

can take any value for an arbitrary choice of the relay gain. This requires that the relay

have access to an unconstraint source of power. In practice, the relay amplification gain is

chosen such that an average power constraint at the relay output is satisfied [41]- [43], i.e.

AF
k =

√
Pk

Pk−1E (|αk−1,k|2) + N0

1It can be shown using [3, Appendix II] that this choice for the relay amplification gain maximizes the instantaneous

received SNR in an AF dual-hop system. Note that, as shown in Sections 3.2.3 and 3.3.1.1, the error probability and the

achievable rate in systems with AF relaying are, respectively, decreasing and increasing functions of the instantaneous re-

ceived SNR at the destination. Thus, the amplification gain in (3.2) maximizes the achievable rate and minimizes the error

probability of this system. In addition, using [28, eqs. (13) and (14)], it can be readily shown that the instantaneous received

SNR in an AF multi-hop relaying system with an arbitrary number of hops is an increasing function with respect to the relay

amplification gains. Thus, the relay amplification factor in (3.2) which meets the power constraints at the relays with equal-

ity [3] maximizes the instantaneous received SNR in AF multi-hop relaying systems, and hence maximizes the achievable

rate and minimizes the error probability in these systems.
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=

√√√√ Pk

N0

Γk−1,k + 1
(3.3)

where E(·) denotes the expectation operator.

3.2 Outage and Error Probabilities of AF Multi-Hop Systems

Theoretical evaluation of outage and error probabilities of a wireless communication sys-

tem in fading is generally done using the PDF, MGF, or CHF of the instantaneous received

SNR [89]. However, closed-form expressions for the PDF, MGF, or CHF of the instanta-

neous received SNR of an AF multi-hop system with variable-gain relays and fixed-gain

relays are still unknown for an arbitrary number of hops. On the other hand, as shown in

Section 3.2.1, the MGF or CHF of the reciprocal of the instantaneous received SNR can be

obtained in closed-form for a variety of fading channel models. We then evaluate the outage

probability using the CHF of the inverse of the instantaneous received SNR. In addition,

we develop a new general framework for evaluation of the error probabilities in fading of a

variety of modulation schemes in terms of the MGF of the reciprocal of the instantaneous

received SNR. The solutions obtained are in the form of single integrals that can be readily

evaluated using standard mathematical software. Furthermore, simple closed-form expres-

sions for the outage and error probabilities of AF multi-hop systems with fixed-gain relays

are obtained for sufficiently large values of SNR. The analysis and methods are applicable

for all fading models having the property that the value of the signal power PDF at the

origin is nonzero; this includes, e.g., the important cases of Rayleigh, Ricean, and Hoyt

fading but excludes Nakagami-m fading with m 6= 1. A simple design criterion is then

presented which guarantees better outage and error performances for a multi-hop system

compared to direct transmission.

3.2.1 Statistical Properties of AF Multi-Hop Systems

3.2.1.1 Systems With Variable-Gain Relays

The instantaneous received SNR in an AF multi-hop system with an arbitrary number of

variable-gain relays is given by [28, eq. (2)]

γV
t =

(
K−1∏

i=0

(
1 +

1
γi,i+1

)
− 1

)−1

(3.4a)
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which can be well approximated as [28, eq. (4)]

γV
t ≈

(
K−1∑

i=0

1
γi,i+1

)−1

(3.4b)

especially for sufficiently large values of SNR. The expression given in (3.4b) for γV
t is

more mathematically tractable than the one given in (3.4a). However, closed-form expres-

sions for the PDF and CDF of γV
t in (3.4b) are unknown for an arbitrary number of hops2.

On the other hand, as seen in eq. (3.4b), the inverse of the end-to-end instantaneous re-

ceived SNR, XV = 1
γV

t

, is the sum of the inverse of individual per-hop SNRs. Then, the

MGF of XV is given by

MXV(s) =
K∏

i=1

M 1
γi−1,i

(s) (3.5)

where M 1
γi−1,i

(s) can be obtained in closed-form for a variety of fading channel models

[25, eqs. (6)-(12), (16)]. For example, it is given by [28]

M 1
γi−1,i

(s) =
2

Γ(mi)

(
mis

Γi−1,i

)mi
2

Kmi

(
2
√

mis

Γi−1,i

)
(3.6)

in Nakagami-m fading where mi ≥ 1
2 is the Nakagami-m fading parameter over the link

between terminals Ti−1 and Ti, Γ(·) denotes the gamma function [90, eq. (8.310.1)],

and Kmi
(·) denotes the modified Bessel function of the second kind of order mi [90, eq

(8.432.1)].

3.2.1.2 Systems With Fixed-Gain Relays

The instantaneous received SNR in an AF multi-hop system with fixed-gain relays is given

by [23, eq. (3)]

γF
t =

(
K−1∑

k=0

Yk

)−1

(3.7a)

where

Yk ,
k∏

i=0

Ci

γi,i+1
(3.7b)

where C0 , 1 and Ci , Pi

N0(AF
i )2

is a constant for the fixed gain AF
i . Closed-form expres-

sions for the PDF and CDF of γF
t for the special case of dual-hop systems are known and

given in [20]. However, such expressions for the PDF and CDF of a general system with

arbitrary number of fixed-gain relays have not been obtained yet. Similar to the systems
2Note that closed-form expressions for the PDF and CDF of γV

t are given in [19, eqs. (19) and (27)] for the special case

of an AF dual-hop system in Rayleigh fading.
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with variable-gain relays, we obtain an expression for the MGF of the reciprocal of the in-

stantaneous received SNR, XF = 1
γF

t
. Note that the random variables Yk, k = 0, . . . , K−1,

are correlated and hence the MGF of the reciprocal of the instantaneous received SNR, XF,

is not the product of individual MGFs of Yk. Let γγγ denote the vector of the instantaneous

received SNRs over the first K − 1 hops, i.e. γγγ = [γ0,1, γ1,2, . . . , γk,k+1, . . . , γK−2,K−1].

The MGF of XF conditioned on γγγ is obtained as

MXF|γγγ(s) = exp

(
−s

K−2∑

k=0

Yk

)
M 1

γK−1,K

( ∏K−1
i=1 Ci∏K−2

i=0 γi,i+1

s

)
(3.8)

where M 1
γK−1,K

(s) is given in (3.6) for the case of Nakagami-m fading. Recall that the

MGF of the inverse of individual per-hop SNR can be found in [25] for different types of

fading. The MGF of XF is then given by

MXF(s) =
∫ ∞

0
. . .

∫ ∞

0︸ ︷︷ ︸
(K−1)−fold

MXF|γγγ(s)
K−1∏

i=0

fγi,i+1 (γi,i+1) dγi,i+1 (3.9)

where fγ(·) denote the PDF of the random variable γ. The multi-fold integral in (3.9)

can be evaluated using the numerical integration method given in [91, eq. (25.4.45)] for a

variety of fading channel models. For instance,

MXF(s) ≈
Np∑

n0=1

. . .

Np∑

nK−2=1

(
K−2∏

i=0

ξni
ζmi−1
ni

Γ(mi+1)

)
MXF|γγγ(s)

∣∣∣∣γi,i+1=
ζni

Γi,i+1
mi

(3.10)

in Nakagami-m fading where ξn and ζn, n = 1, . . . , NP , are the weights and zeros of the

Laguerre polynomial of order Np [91, Table 25.9], respectively.

3.2.2 Outage Probability Analysis

The outage probability in an AF multi-hop system is defined as the probability that the

end-to-end instantaneous received SNR falls below a certain threshold, γth, i.e.

Pout = Pr (γt < γth) = Pr

(
X >

1
γth

)
(3.11)

where X = 1
γt

and γt is given in (3.4) and (3.7) for systems with variable-gain relays and

fixed-gain relays, respectively. The outage probability, in general, can be obtained using

the CHF of X as

Pout = 1− Pr

(
X >

1
γth

)

= 1−F−1
(

1
jω

ΨX(−ω) + πδ(ω)
)
|x= 1

γth
(3.12a)
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=
1
2

+
∫ ∞

−∞
exp (−jwx)ΨX(w)

2πjw
dw|x= 1

γth
(3.12b)

=
1
2

+ 2
∫ π

2

0
<

(
exp (−jx tan(θ))ΨX(tan(θ))

2πj tan(θ)

)
sec2(θ)dθ|x= 1

γth
(3.12c)

whereF−1(·) denotes the inverse Fourier transform operator, ΨX(w) is the CHF of X , δ(·)
denotes the delta function, (3.12a) is written using the integration property of the Fourier

transform, and (3.12c) is obtained using the change of variable w = tan(θ). Note that

ΨX(·) for systems with variable-gain relays and fixed-gain relays are given by (3.5) and

(3.9), respectively, with s replaced by −jw.

3.2.3 Error Probability Analysis

In this section, new solutions for the average symbol error probability are derived for dif-

ferent modulation formats. It will be convenient to organize different modulation formats

according to the mathematical form of the error rate expressions for the respective modula-

tion types. We consider modulation formats resulting in analyses involving the incomplete

gamma function, the Gaussian Q-function, and the Marcum Q-function, each in turn.

3.2.3.1 Error Probabilities Involving the Incomplete Gamma Function

The bit error probability conditioned on the instantaneous received SNR, γt, of different

binary modulation schemes can be generally written as [89, eq. (8.100)]

Pb =
Γ(b, aγt)
2Γ(b)

(3.13)

where the parameters a and b depend on the type of modulation/detection scheme given in

[89, Table 8.1] reproduced here as Table 3.1 for completeness, and Γ(·, ·) is the incomplete

gamma function [90, eq. (8.350.2)]. The bit error probability in the presence of fading is

then obtained by taking the expectation of (3.13) with respect to γt as

Pb = E

(
Γ(b, aγt)
2Γ(b)

)
. (3.14a)

Using the McLauren series of Γ(·, ·) given in [90, eq. (8.354.2)], one obtains

Pb =
1
2
−

∞∑

n=0

(−1)nab+nE(γb+n
t )

2Γ(b)n!(b + n)
. (3.14b)

Note that the moments of the instantaneous received SNR, i.e. E(γm
t ), ∀m ∈ N, can be

written in terms of the MGF of the reciprocal of the instantaneous received SNR, X , 1
γt

,

as

E(γm
t ) =

1
Γ(m)

∫ ∞

0
MX(s)sm−1ds (3.15)
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Table 3.1. Parameters a and b for different modulation/detection schemes from [89]

Type of modulation/detection a b

Orthogonal coherent BFSK 1
2

1
2

Orthogonal noncoherent BFSK 1
2 1

Binary phase-shift keying (BPSK) 1 1
2

Differentially coherent binary phase shift keying (DPSK) 1 1

using [90, eq. (3.381.4)] where MX(s) denotes the MGF of X . Then, the bit error proba-

bility in (3.14b) is evaluated as

Pb =
1
2
− 1

2Γ(b)

∫ ∞

0
MX(s)

∞∑

n=0

(−1)nsb+n−1ab+n

n!(b + n)Γ(b + n)
ds (3.16a)

=
1
2
− 1

2Γ(b)

∫ ∞

0
MX(s)s

b

2
−1a

b

2 Jb

(
2
√

sa
)
ds (3.16b)

=
1
2
− a

b

2

2Γ(b)

∫ π

2

0

MX(tan(u))Jb

(
2
√

a tan(u)
)

tan1− b

2 (u) cos2(u)
du (3.16c)

where Jb(·) is the Bessel function of the first kind of order b, (3.16b) is written using

the McLauren series of Jb(·) given in [90, eq. (8.402)], and (3.16c) is obtained using the

change of variable s = tan(u). Note that MX(·) for systems with variable-gain relays and

fixed-gain relays are given by (3.5) and (3.9), respectively. Note that (3.16c) is an exact

expression for Pb and the single integral is over a closed, finite interval. It can be readily

evaluated in MATLAB or MAPLE.

3.2.3.2 Error Probabilities Involving the Gaussian Q-Function

Evaluation of symbol or bit error probabilities of many coherent modulation schemes in-

volves taking the expectation of Q(τ
√

γt) with respect to γt where Q(·) is the Gaussian

Q-function [89, eq. (4.1)] and τ is a parameter depending on the type of modulation [89].

This is the case, for instance, for evaluation of the bit error probability of M -ASK with

Gray encoding [92, eqs. (9) and (10)], the symbol error probability of M -ASK [89, eq.

(8.3)], the bit error probability of M -QAM with Gray encoding [92, eqs. (14) and (16)], and

the symbol error probability of M -QAM [89, eq. (8.9)]. Table 3.2, reproduced from [89]

and [92], gives expressions for bit error probabilities, Pb, and symbol error probabilities,

Ps, of these modulation schemes. In Table 3.2, b·c denotes the integer part (floor) of its

argument.
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Table 3.2. Average bit and symbol error probabilities of different modulation schemes involving the

Gaussian Q-function

Modulation Average bit error probability Average symbol error probability
2

M log2 M

∑log2 M
k=1

∑(1−2−k)M−1
i=0

M -ASK
{

(−1)
⌊

i2k−1
M

⌋ (
2k−1 −

⌊
i2k−1

M + 1
2

⌋)
2

(
M−1

M

)
E

(
Q

(√
6γt

M2−1

))

E

(
Q

(√
6(2i+1)2γt log2 M

M2−1

))}
[89, eq. (8.3)]

[92, eqs. (9) and (10)]

M -QAM Pbit

∣∣∣∣∣√M−ASK

γt→ γt
2

[92, eqs. (14) and (16)] 1−
(

1− Ps

∣∣∣∣∣√M−ASK

γt→ γt
2

)2

[89, eq. (8.9]

The expected value of Q(τ
√

γt) can be evaluated as

E
(
Q

(
τ
√

γt

))
=

1
2
E

(
1− erf

(
τ

√
γt

2

))
(3.17)

where erf(·) denotes the error function [90, eq. (8.250.1)]. The expectation in (3.17) cannot

be evaluated in closed-form using the MGF-based method of [89, Ch. 9] because the MGF

of the SNR in general multi-hop transmission systems is not known in closed-form. We

can, however, proceed by using the McLauren series of erf(·) and sin(·) given in [90, eq.

(8.253.1)] and [90, eq. (1.411.1)], respectively. One obtains

E
(
Q

(
τ
√

γt

))
=

1
2
− 1√

π

∞∑

n=0

(−1)nτ2n+1E

(
γ

n+ 1
2

t

)

n!(2n + 1)2n+ 1
2

(3.18a)

=
1
2
− 1√

π

∫ ∞

0
MX(s)

∞∑

n=0

(−1)nτ2n+1sn− 1
2

n!(2n + 1)2n+ 1
2 Γ(n + 1

2)
ds (3.18b)

where we have used (3.15) to obtain (3.18b). Then, using the McLauren series of sin(·)
given in [90, eq. (1.411.1)], eq. (3.18b) is evaluated as

E
(
Q

(
τ
√

γt

))
=

1
2
− 1

π

∫ ∞

0
MX(s)

sin
(
τ
√

2s
)

s
ds

=
1
2
− 1

π

∫ π

2

0

MX(tan(u)) sin(τ
√

2 tan(u))
cos2(u) tan(u)

du. (3.18c)

Eq. (3.18c) provides a new solution for evaluation of the average bit and symbol error

probabilities in general fading of different modulation schemes involving the Gaussian Q-

function using the MGF of the reciprocal of the instantaneous received SNR.
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Table 3.3. Average bit error probabilities of different modulation schemes involving the Marcum

Q-function

Modulation Average bit error probability

Offset BPSK
1
2 − 1

2E
(
Q1

(
(
√

G + 1)
√

γt

2 , (
√

G− 1)
√

γt

2

))

+ 1
2E

(
Q1

(
(
√

G− 1)
√

γt

2 , (
√

G + 1)
√

γt

2

))
[89, eqs. (8.61), (8.62)]

1
4 − 1

4E
(
Q1

(
(
√

2G + 1)
√

γt

2 , (
√

2G− 1)
√

γt

2

))

+ 1
4E

(
Q1

(
(
√

2G− 1)
√

γt

2 , (
√

2G + 1)
√

γt

2

))

Offset QPSK + 1
4 − 1

4E

(
Q1

(√
γt

(
G + 1 +

√
2G

)
,

√
γ

(
G + 1−√2G

)))

+ 1
4E

(
Q1

(√
γt

(
G + 1−√2G

)
,

√
γt

(
G + 1 +

√
2G

)))

[89, eqs. (8.64), (8.65)]

4-DPSK
1
2 − 1

2E

(
Q1

(√
(2 +

√
2)γt,

√
(2−√2)γt,

))

+ 1
2E

(
Q1

(√
(2−√2)γt,

√
(2 +

√
2)γt,

))
[89, eqs. (8.61), (8.88)]

3.2.3.3 Error Probabilities Involving the Marcum Q-Function

Evaluation of error probability of some differentially coherent and noncoherent modula-

tion schemes requires taking the expectation of Ql

(√
τ1γt,

√
τ2γt

)
with respect to γt where

Ql(·, ·) denotes the Marcum Q-function [89, eq. (4.60)] of integer order l, and τ1 and τ2 de-

pend on the type of modulation. This is the case, for instance, for evaluation of the bit error

probabilities of offset BPSK [89, eqs. (8.61), (8.62)], offset quadrature phase-shift keying

(QPSK) [89, eqs. (8.64)-(8.66)], and 4-ary DPSK (4-DPSK) [89, eqs. (8.61), (8.88)], as

summarized in Table 3.3, compiled from [89, Ch. 8]. In Table 3.3, the parameter G denotes

the SNR gain of the carrier synchronization technique used to produce an estimate of the

received carrier phase [89].

The expected value of Ql

(√
τ1γt,

√
τ2γt

)
can be evaluated as

E (Ql (
√

τ1γt,
√

τ2γt))

=
∞∑

n=0

τn
1

2nn!

n+l−1∑

k=0

τk
2

2kk!
E

(
γn+k

t exp
(
−τ1 + τ2

2
γ

))
(3.19a)

using the series representation for the Marcum Q-function of integer order [93, eq. (4)]

where

E

(
γn+k

t exp
(
−τ1 + τ2

2
γ

))
(3.19b)
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=
∞∑

m=0

(−1)m
( τ1+τ2

2

)m

m!
E

(
γn+k+m

t

)
(3.19c)

=
∫ ∞

0
MX(s)

∞∑

m=0

(−1)m
( τ1+τ2

2

)m
sn+k+m−1

m!(n + k + m− 1)!
ds (3.19d)

=
∫ ∞

0
MX(s)

sn+k−1Jn+k−1

(
2
√

τ1+τ2
2 s

)

(
τ1+τ2

2 s
)n+k−1

2

ds (3.19e)

where (3.19c) and (3.19e) are written using the McLauren series for exp(·) and Jn+k−1(·)
functions given in [90, eq. (1.211.1)] and [90, eq. (8.402)], respectively. Note that the

number of terms needed in (3.19a) to get a required accuracy in evaluation of the expected

value of Ql

(√
τ1γt,

√
τ2γt

)
(and consequently the error probability) depends on system and

channel parameters, in general. However, since the series in (3.19a) contains a product of

two factorial terms in its denominator, it converges rapidly. The expression (3.19) provides

a new solution for evaluation of the average error probabilities in fading of modulation

schemes involving the Marcum Q-function.

Note that for the special case of τ1 = 0, Ql

(
0,
√

τ2γt
)

can be written in terms of

incomplete gamma function as [89, eq. (4.71)]

Ql (0,
√

τ2γt) =
Γ

(
l, τ2γt

2

)

Γ(l)
(3.20)

and hence the result obtained in Section 3.2.3.1 can be used to evaluate the expected value

of Ql

(
0,
√

τ2γt
)
.

3.2.4 Numerical Results

In this section, several numerical examples are presented to test the accuracy of the ana-

lytical expressions obtained in Sections 3.2.2 and 3.2.3 for evaluation of the outage and

error probabilities of AF multi-hop systems with variable-gain and fixed-gain relays. In

the numerical examples, we assume multi-hop systems for which the average SNR over

the kth hop is Γk−1,k = 1
kΓ0,1. We consider BPSK, 16-QAM and 4-DPSK systems both

in Rayleigh fading (mk = 1, k = 1, . . . ,K) and in Nakagami-m fading with mk = 2,

k = 1, . . . , K. The bit error probabilities of these modulation schemes can be obtained

using Tables 3.1-3.3. The MGF expression presented in Section 3.2.1.2 for systems with

fixed-gain relays is valid for any arbitrary fixed gain. In addition, for evaluation of the

MGF, we take Np = 15 in small SNR regions and Np = 603 for large values of SNR. In

numerical examples, Ci = 1.7 for all relay terminals, as assumed in [24].
3Note that the weights and zeros of the Laguerre polynomial are given in [91, Table 25.9] up to the order Np = 15.

However, the weights and zeros can be readily obtained in MAPLE for higher orders of Laguerre polynomials.
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Figure 3.1. Outage probabilities for different AF multi-hop relaying systems with variable-gain

relays (γth = 1).

Figures 3.1 and 3.2 show the outage probabilities for different AF multi-hop systems

with variable-gain and fixed-gain relays, respectively. It is seen in these figures that the

theoretical results obtained using (3.12) exactly match the Monte Carlo simulation results.

For comparison purposes, in Figure 3.2, we have also included the lower bound on the

outage probability obtained in [24]. It is clearly seen that the lower bound loses its tightness

with increasing SNR and especially for larger numbers of hops.

Figures 3.3 and 3.4 show bit error probabilities for different BPSK and 16-QAM multi-

hop transmission systems with variable-gain relays and fixed-gain relays, respectively,

computed using (3.16) and (3.18). Simulation results are also shown in Figures 3.3 and 3.4

to validate the theoretical results. It is clearly seen that the analytical results are in exact

agreement with the simulation results. It is also seen that systems with different numbers

of hops follow the same error rate performance behavior for sufficiently large values of

SNR. For instance, double-hop and triple-hop systems in Rayleigh fading achieve diversity

gain one, as also shown later in Section 3.2.5. However, note that the amount of fading in

a Nakagami-m channel is given by 1
m [89, eq. (2.24)]. This indicates that the severity of

fading decreases with increasing Nakagami parameter m. Thus, as seen in Figures 3.3 and

3.4, systems operating in Nakagami fading with m = 2 perform better (have curves with
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Figure 3.2. Outage probabilities for different AF multi-hop relaying systems with fixed-gain relays

(γth = 1).
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Figure 3.3. Bit error probabilities for different BPSK and 16-QAM AF multi-hop relaying systems

with variable-gain relays.
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Figure 3.4. Bit error probabilities for different BPSK and 16-QAM AF multi-hop relaying systems

with fixed-gain relays.

higher slopes) than the corresponding systems in Rayleigh fading (i.e. Nakagami fading

with m = 1). Figure 3.5 compares exact bit error probabilities of BPSK multi-hop systems

with fixed-gain relays with the lower bound given in [24, eq. (25)]. It is again seen that

the lower bound significantly overestimates the system performance for moderate to large

values of SNR. Figure 3.6 illustrates bit error probabilities for different 4-DPSK multi-hop

transmission systems with variable-gain relays. The number of terms used in (3.19a) to

evaluate the bit error probabilities was as few as 50 for small to moderate values of SNR.

As the SNR increases, more terms in (3.19a) were required to get high accuracy (e. g.

as many as 150 terms for large values of SNR). Again, it is seen from this figure that the

theoretical results precisely match the simulation results.

3.2.5 Asymptotic Behavior

The large SNR behavior of outage and error probabilities in AF multi-hop systems is exam-

ined in this section. Although, accurate theoretical expressions for evaluation of the outage

and error probabilities for AF multi-hop relaying systems with variable-gain and fixed-gain

relays were obtained in Sections 3.2.2 and 3.2.3, studying the asymptotic behavior of the

outage and error probabilities for sufficiently large values of SNR provides valuable in-

sights into the system performance as well as simple system design criteria, as we will see
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Figure 3.5. Comparison between the exact bit error probability and the lower bound given in [24]

for different BPSK AF multi-hop relaying systems with fixed-gain relays.
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Figure 3.6. Bit error probabilities for different 4-DPSK AF multi-hop relaying systems with

variable-gain relays.
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later.

The following Lemma states that the outage and error probabilities for sufficiently large

values of SNR can be determined by the behavior of the PDF of the received SNR at the

origin.

Lemma 3.1: The outage and error probabilities for sufficiently large values of SNR are

given by

Pout → γt+1
th

(t + 1)!
∂tfγt

∂γt
(0) (3.21)

Pb → Γ(b + t + 1)
2Γ(b)at+1(t + 1)!

∂tfγt

∂γt
(0) (3.22)

and

Ps = E
(
Q

(
τ0
√

γt

)) →
∏t+1

i=1(2i− 1)

2(t + 1)τ2(t+1)
0

∂tfγt

∂γt
(0) (3.23)

where τ0 depends on the type of modulation (e.g. τ0 =
√

2 for BPSK) [89] and fγt
(·)

denotes the PDF of γt and t is the order of the first nonzero derivative of fγt
(γ) at γ = 0.

Proof: A proof for eq. (3.21) as well as a proof for eq. (3.23) are given in [87]

and [14], respectively. A proof for eq. (3.22) and an alternate proof for eq. (3.21) are given

in Appendix A.1.

Thus, the calculation of outages or error probabilities reduces to the evaluation of the

derivatives of fγt
(γ) at the origin. In a multi-hop system with variable-gain relays, one has

fγV
t
(0) =

K∑

k=1

fγk−1,k
(0) (3.24a)

using [14, Proposition 3] where fγk−1,k
(0) denotes the value of the PDF of the kth hop SNR

at the origin and is given by

fγk−1,k
(0) =

r

Γk−1,k
(3.24b)

where r is a constant parameter given in Table 3.4 for different types of fading. In Table

3.4, Kr and q respectively denote the Ricean and Hoyt fading parameters. The outage and

error probabilities for sufficiently large values of SNR are then obtained by (3.21)-(3.23)

with t = 0 and fγt
(0) replaced by (3.24).

In systems with fixed-gain relays, a lower bound on the value of the pdf of γF
t at zero,

fγF
t
(0), can be calculated using the following lemma.

Lemma 3.2: Consider M nonnegative independent random variables, X1, . . . , XM,

whose PDFs at zero, fXm
(0), and expected values, E(Xm), are known and nonzero for
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Table 3.4. Values of r for different types of fading from [89]

Type of Fading r

Rayleigh 1

Ricean (Kr + 1) exp(−Kr)

Hoyt 1+q2

2q

m = 1, . . . ,M. If the random variable V is defined as

V = g (X1, . . . , XM) =

( M∑

m=1

m∏

h=1

Ψh−1

Xh

)−1

(3.25)

where Ψm, m = 0, . . . ,M − 1, is an arbitrary constant, then the PDF of V at zero is

bounded by

fV (0) ≥
M∑

m=1

fXm
(0)




M−1∑

j=m−1

∏j
h=0 Ψh∏j+1

h=1
h6=m

E (Xh)


 . (3.26)

Proof: A proof of Lemma 3.2 is given in Appendix A.2.

Thus, using Lemma 3.2 the value of the PDF of γF
t at zero is bounded by

fγF
t
(0) ≥

K∑

k=1

r

Γk−1,k

K−1∑

j=k−1

∏j
h=0 Ch∏j+1

h=1
h6=m

Γh−1,h

. (3.27)

Lower bounds on the asymptotic outages and error probabilities for AF multi-hop systems

with fixed-gain relays are then obtained by (3.21)-(3.23) with t = 0 and fγt
(0) replaced by

(3.27).

The asymptotic error probabilities obtained using (3.24) and (3.27) show that a multi-

hop transmission system either with variable-gain relays or fixed gain relays has diversity

order one. However, a multi-hop system with variable-gain relays can perform better than

a single-hop system if [14, eq. (41)]

K∑

k=1

1
Γk−1,k

<
1
Γ0

(3.28)

where Γ0 denotes the single-hop average SNR. Similarly, using Lemmas 3.1 and 3.2, a

multi-hop system with fixed-gain relays outperforms a single hop system in terms of outage

and error probabilities for sufficiently large values of SNR if

K∑

k=1

(K − k + 1)µH

(
Γ̃k, Γ̃k+1, . . . , Γ̃K

)−1
<

1
Γ0

(3.29)
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where Γ̃k =
∏k

h=1
Γh−1,h∏k−1

h=1
Ch

and µH

(
Γ̃k, Γ̃k+1, . . . , Γ̃K

)
denotes the harmonic mean of

Γ̃k, . . . , Γ̃K
4. Generally, one can conclude that a K1-hop transmission system performs

better than a K2-hop transmission system (where we assume without loss of generality that

K2 < K1) if
K1∑

k=1

1
Γk−1,k

<
K2∑

k=1

1
Γk−1,k

(3.30)

in systems with variable gain relays, and

K1∑

k=1

(K1−k+1)µH

(
Γ̃k, Γ̃k+1, . . . , Γ̃K1

)−1
<

K2∑

k=1

(K2−k+1)µH

(
Γ̃k, Γ̃k+1, . . . , Γ̃K2

)−1

(3.31)

in systems with fixed-gain relays.

3.2.5.1 Numerical Examples

The accuracy of the asymptotic results for AF multi-hop systems with variable-gain relays

has been shown in [14]. In this section, several numerical examples are presented to inves-

tigate the performances of different AF multi-hop systems with fixed-gain relays for suffi-

ciently large values of SNR. In the numerical examples, we consider systems with BPSK

operating over Rayleigh fading channels. We also take Ci = 1.7 for all relay terminals.

Example 1: Multi-hop transmission systems with balanced links

In this example, we consider the outage and bit error rate performances of different

multi-hop transmission systems in which each terminal is located an equal distant from

the preceding transmitting terminal. To have a fair performance comparison between sys-

tems with different numbers of hops, it is assumed that all systems use the same total

transmission power. Each terminal in a K-hop transmission system then uses 1
K of the

total transmission power according to a uniform power allocation policy5. Thus, using the

Friis propagation formula [94], the average link SNRs in a K-hop system are given by,

Γk−1,k = Kε−1Γ0, k = 1, . . . , K where ε is the path loss exponent.

Figures 3.7 and 3.8, respectively, show the outages and the bit error probabilities versus

Γ0 for this system configuration for different numbers of hops and ε = 3. These figures

clearly indicate the high accuracy of the analytically obtained outage and bit error proba-

bilities for multi-hop transmission systems with balanced links in moderate to large SNR

4The harmonic mean of X1, X2, . . . , XN is defined as N
(∑N

i=1
1/Xi

)(−1)
[91, eq. (3.1.13)].

5This implies that the peak power per terminal in a multi-hop relaying system employing uniform power allocation policy

linearly decreases with the number of hops which in turn increases lifetime of the individual terminals within the system

compared to that of the source terminal in the single-hop system.
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Figure 3.7. Outage probabilities for different multi-hop transmission systems with fixed-gain relays

and balanced links (γth = 1).
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Figure 3.8. Bit error probabilities for different multi-hop transmission systems with fixed-gain relays

and balanced links.
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Figure 3.9. Outage probabilities for different multi-hop transmission systems with fixed-gain relays

and unbalanced links ( γth = 1).

regions. It is also seen that by increasing the number of hops, the outage and bit error rate

performances improve (and the corresponding conditions (3.29) and (3.31) are satisfied).

This result further reveals the importance of multi-hopping in wireless communication sys-

tems because, not only, can it save transmitter power at the individual terminals in the

system, but can improve the outage and error rate performances, as well.

Example 2: Multi-hop transmission systems with unbalanced links

Consider a K-hop transmission system in which the kth relay, k = 1, · · · , K − 1 is

located at a distance 2k
K(K+1)d0 from its previous terminal where d0 denotes the distance

between source and destination. All systems use equal transmission power. Each terminal

in a K-hop transmission system is allocated 1
K of the total transmission power. Thus, using

the Friis propagation formula [94], the average link SNRs in a K-hop system are given by,

Γk−1,k = 1
K

(
K(K+1)

2k

)ε
Γ0. Figures 3.9 and 3.10, respectively, show the outages and the

bit error probabilities of this system configuration for different numbers of hops and ε = 3.

These figures again show close agreement between analytical and simulation results for

multi-hop transmission systems with unbalanced links in moderate to large SNR regions.

The average individual link SNRs assumed for this example also satisfy the conditions

(3.29) and (3.31). Thus, as seen in Figures 3.9 and 3.10, the outage and bit error rate

performances improve as the number of hops increases.
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Figure 3.10. Bit error probabilities for different multi-hop transmission systems with fixed-gain

relays and unbalanced links.

3.3 Capacity Analysis

Another fundamental performance metric of any wireless communication system in a fad-

ing environment is its capacity. Most previous works have examined the capacity of wire-

less relay networks in Gaussian channels assuming no fading. However, relayed transmis-

sion is particularly attractive in fading environments for enabling reliable communications

between a source-destination pair when the direct link is subject to a deep fade. In Sec-

tion 3.3.1, we evaluate the ergodic capacity in Rayleigh fading of a multi-hop transmission

system with an arbitrary number of half-duplex relays employing either AF or DF relay-

ing, assuming CSI is only known at the receiving terminals. In Section 3.3.2, we consider

capacity in general fading of an AF multi-hop relaying system employing different source-

adaptive transmission techniques introduced in [72], namely, optimal power and rate adap-

tation, optimal rate adaptation with constant power, and channel inversion with fixed rate.

In such systems the source adapts its rate and/or power according to the channel variations

utilizing only a feedback of the effective received SNR from the destination to the source.
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3.3.1 Ergodic Capacity Without Transmitter CSI

Consider a K-hop wireless relaying system described in Section 3.1. It is assumed that CSI

is only known at the receiving terminals. Thus, the total available transmitter power, PT ,

is equally allocated to the transmitting terminals according to a uniform power allocation

policy, i.e Pk = 1
K PT . In addition, equal portions of the total transmission time are allo-

cated to each transmitting terminal along the multi-hop path. Furthermore, it is assumed

that only one terminal transmits in each time slot.

3.3.1.1 AF Multi-Hop Transmission Systems

The input-output relation in a K-hop transmission system with AF relaying is given by [28]

yK = αK−1,K

K−1∏

i=1

AV
i αi−1,ix0 +

K−1∑

i=1

K−1∏

k=i

AV
k αk−1,knk + nK (3.32)

where AV
i , i = 1, . . . ,K − 1, is given by (3.2) to ensure that the instantaneous power

constraint at the ith relay output is satisfied. Suppose that the transmitted signal from the

source is chosen from an independent identically distributed (i.i.d.) Gaussian codebook6.

Then, according to [71, Theorem 1], the ergodic capacity of an AF multi-hop relaying

system is obtained as7

EAF =
1
K
E

(
log

(
1 + γV

t

))
(3.33)

where γV
t denotes the end-to-end received instantaneous SNR at the destination given

by (3.4). Recall that a closed-form expression for the PDF of γV
t given in (3.4b), which

facilitates the ergodic capacity analysis of an AF multi-hop relaying system, is unknown

for an arbitrary number of hops. In the sequel, we first derive two upper bounds on the

ergodic capacity of an AF multi-hop transmission system using Jensen’s inequality and an

inequality between harmonic and geometric means. Then, we obtain a precise infinite series

representation for the ergodic capacity. An integral expression for the ergodic capacity in

general fading of AF multi-hop systems is obtained later in Section 3.3.2.2.

• Upper Bound Based on Jensen’s Inequality: Using Jensen’s inequality [96], an

upper bound on the ergodic capacity in (3.33) is obtained as

EAF ≤ 1
K

log
(
1 + ΓV

t

)
(3.34a)

6Note that the codeword should be long enough to capture the ergodic nature of the fading channels. This indicates that

the transmission length over each time slot should be much larger than the channel coherence time [95]. This requirement

implies that the ergodic capacity can be achieved for delay-tolerant applications, such as transmission of a long text document.
7Note that the factor 1

K
is due to transmission of information over K orthogonal time slots in a K-hop system.
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where ΓV
t = E(γV

t ) is the expected value of the end-to-end received SNR at the

destination given by

ΓV
t =

∫ ∞

0
MXV(s)ds (3.34b)

using eq. (3.15) for an AF multi-hop system with an arbitrary number of hops where

MXV(s) is given by (3.5) with the individual product terms replaced by (3.6). Note

that, in general, the integral in (3.34b) has no closed-form solution and it is numeri-

cally evaluated.

• Upper Bound Based on Harmonic-Geometric Means Inequality: According to an

inequality between the harmonic mean and the geometric mean [91, eq. (3.2.1)], the

received end-to-end instantaneous SNR, γV
t , is upper bounded as

γV
t ≤ γg =

1
K

K∏

k=1

γ
1/K
i . (3.35)

The pdf of γg is given by [24]

fγg
(γ) =

K

γ
GK,0

0,K


(γK)K

K∏

k=1

1
Γk−1,k

∣∣∣∣∣∣∣∣

−

1, 1, · · · , 1︸ ︷︷ ︸
K


 (3.36)

for independent non-identical Rayleigh fading channels where G(·) denotes the Mei-

jer G-function [90, eq. (9.301)]. Since γV
t ≤ γg, log

(
1 + γV

t

) ≤ log (1 + γg),

and therefore, the ergodic capacity of an AF multi-hop transmission system is upper

bounded as

EAF ≤ 1
K
E (log (1 + γg))

=

G2K,K
K,2K


KK ∏K

k=1
1

Γk−1,k

∣∣∣∣∣∣∣∣∣

0, 1
K

, 2
K

,··· ,
K−1

K

1, 1, · · · , 1︸ ︷︷ ︸
K−1

,
K−1

K
,

K−2
K

,··· , 1
K

,0,0




K (2π)K−1 ln 2
(3.37)

which can be simply evaluated in MAPLE.

• Infinite Series Representation: A precise approach for evaluating the ergodic ca-

pacity of an AF multi-hop transmission system can be based on using the series rep-

resentation of the function ln(1 + x) given by

ln(1 + x) = 2
∞∑

n=1

1
2n− 1

(
x

x + 2

)2n−1

, ∀x > −1 (3.38)
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or

ln(1 + x) =
∞∑

n=1

1
n

(
x

x + 1

)n

, ∀x > −1/2 (3.39)

from [90, eq. (1.512.2)] and [90, eq. (1.512.3)], respectively. The well known series

for ln(1 + x) given by [90, eq. (1.511.1)]

ln(1 + x) =
∞∑

n=1

(−1)n+1 x

n
(3.40)

cannot be used here because its radius of convergence is not sufficiently large; in

fact (3.40) requires −1 < x < 1 for convergence. Since the expectation in (3.33) is

over values of SNR from 0 to infinity, we require an infinite series representation that

converges on 0 to infinity. The series in (3.38) and (3.39) satisfy this requirement.

The following Lemma establishes that the series in (3.38) converges (almost) twice

as fast as the series in (3.39) to the value of the function ln(1 + x).

Lemma 3.3: The series in (3.38) truncated at n = M gives more accurate estimation

of the function ln(1 + x) than the series in (3.39) truncated at n = 2M − 1.

Proof: A proof of Lemma 3.3 is given in Appendix A.3.

In addition, it is shown in the following Lemma that the series in (3.38) converges

uniformly over x ≥ 0.

Lemma 3.4: The series in (3.38) is uniformly convergent for x ≥ 0.

Proof: A proof of Lemma 3.4 is given in Appendix A.4.

This property ensures that the series whose nth term is the expected value of the nth

term of (3.38) is convergent to E (ln (1 + x)). Thus, utilizing the series representa-

tion of ln(1 + γt) given in (3.38) and its uniform convergence property, the ergodic

capacity of an AF multi-hop transmission system is obtained as

EAF =
2

K ln 2

∞∑

n=1

1
2n− 1

E(Z2n−1) (3.41a)

where Z = γV
t

γV
t +2

= 1
2XV+1 and it can be shown that the mth moment of Z is given

by

E(Zm) =
1

(m− 1)!

∫ ∞

0
sm−1 exp(−s)MXV(2s)ds (3.41b)

where MXV(s) is given by (3.5) with the individual product terms replaced by (3.6).

Note that the ergodic capacity expression in (3.41a) requires only calculation of the

odd moments of Z. In addition, truncating the series in (3.41a) at a certain moment of

Z gives a lower bound on the ergodic capacity since all the terms in the series (3.41a)

are positive.
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3.3.1.2 DF Multi-Hop Transmission Systems

In a DF multi-hop transmission system, the received signal at each relay is fully decoded,

re-encoded and then re-transmitted to the next terminal. Suppose that the transmitted code-

words from the source and the relays are chosen from an i.i.d. Gaussian codebook. The kth

terminal, k = 1, 2, . . . ,K, can then decode the codeword transmitted from the (k − 1)th

terminal with rate Rk if

Rk ≤ Ek =
1
K
E (log(1 + γk−1,k))

=
1

K ln 2
exp

(
1

Γk−1,k

)
E1

(
1

Γk−1,k

)
(3.42)

where Ek denotes the capacity of the kth link [71] in Rayleigh fading, and E1(·) denotes

the exponential integral function [91, eq. (5.1.1)]. Thus, the overall system achievable

rate should be the minimum of the achievable rates over each individual link. On the other

hand, according to the min-cut max-flow theorem [60], the overall system capacity cannot

be larger than the capacity of each individual link. Therefore, the ergodic capacity in a DF

multi-hop transmission system is given by

EDF = min {E1, E2, . . . , EK} . (3.43)

Note that according to Jensen’s inequality [96], one has

EDF > E

(
min

{
1
K

log(1 + γ0,1), . . . ,
1
K

log(1 + γk−1,k)
})

(3.44)

which indicates that the ergodic capacity in fading of a DF multi-hop relaying system is not

the average of the maximum achievable rate (mutual information) over the random fading.

3.3.1.3 Comparison Between AF and DF Multi-hop Transmission Systems

According to Jensen’s inequality [96], one has

EDF >
1
K
E (min {log(1 + γ0,1), . . . , log(1 + γK−1,K)})

=
1
K
E (log (1 + min {γ0,1, . . . , γK−1,K})) . (3.45)

On the other hand, it can be readily shown that

XV ≥ max

{
1

γ0,1
,

1
γ1,2

, . . . ,
1

γK−1,K

}
(3.46)

and thus

γV
t ≤ min {γ0,1, γ1,2, . . . , γK−1,K} . (3.47)
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Therefore, combining (3.45) and (3.47), one obtains

EDF >
1
K
E

(
log(1 + γV

t )
)

= EAF (3.48)

which proves that a DF multi-hop transmission system achieves higher ergodic capacity

than the corresponding AF multi-hop transmission system, regardless of the type of fading.

3.3.1.4 Results and Discussion

In this section, numerical results are presented for different multi-hop transmission oper-

ating over Rayleigh fading channels. In the numerical examples, we consider multi-hop

systems with both balanced and unbalanced links, as described, respectively, in examples 1

and 2 of Section 3.2.5.1. Recall that all systems use equal total power and employ uniform

power allocation policy to distribute the total available power to the source and the relays.

Then, the average link SNRs in K-hop transmission systems with balanced links and unbal-

anced links are, respectively, given by Γk−1,k = Kε−1Γ0 and Γk−1,k = 1
K

(
K(K+1)

2k

)ε
Γ0,

k = 1, . . . ,K. In the following numerical examples, we assume that ε = 4.

Figures 3.11 and 3.12 show the ergodic capacities versus Γ0 for different AF multi-

hop transmission systems with balanced links and unbalanced links, respectively. Figures

3.11 and 3.12 indicate the tightness of the upper bound based on Jensen’s inequality. For

instance, the inaccuracies of this upper bound in the 4-hop transmission systems with i.i.d.

(balanced) and non i.d. (unbalanced) links are, respectively, around 6% and 8% at 20 dB.

It is also seen that the upper bound based on Jensen’s inequality gets tighter than the upper

bound based on the inequality between harmonic and geometric means, as the number of

hops increases and especially in the non i.d. case. For example, the gap between these

upper bounds in a 4-hop transmission system at 20 dB increases from 0.06 in the i.i.d.

case to 0.43 in the non i.d. case. Note that the inequality in (3.35) is an equality when

γ1 = γ2 = . . . = γK [91], and thus it is expected that the upper bound given in (3.37) will

be less tight in systems with unbalanced links, as seen in Figure 3.12. In addition, Figures

3.11 and 3.12 show the high accuracy of the infinite series approach for evaluation of the

ergodic capacity in systems both with i.i.d. and non i.d. links. As shown in Figures 3.11

and 3.12, in small SNR regimes, the series in (3.41) converges fast and a small number of

terms (e.g. as few as 10 terms) are enough to get high accuracy. However, by increasing

SNR and the number of hops, the series in (3.41) converges more slowly, and then more

terms (e.g. as many as 1000 terms for moderate values of SNR and 3500 terms for large

values of SNR) are required to get acceptable accuracy.
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Figure 3.11. The ergodic capacities of K-hop transmission systems with balanced links employing

an AF relaying scheme. M denotes the number of terms used to evaluate the series given in (3.41).
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Figure 3.12. The ergodic capacities of K-hop transmission systems with unbalanced links employ-

ing an AF relaying scheme. M denotes the number of terms used to evaluate the series given in

(3.41).

51



0 10 20 305 15 25

1

2

3

4

5

6

7

Γ
0
  (dB) 

E
rg

od
ic

 c
ap

ac
ity

 (
B

it/
S

ec
/H

z)

 

 

DF relaying 
AF relaying 
Direct transmission

 K= 2,3, 4,5 

 K=2,3,4,5

Figure 3.13. Comparison between ergodic capacities of K-hop transmission systems employing

either DF relaying or AF relaying.

Figure 3.13 compares the ergodic capacities of DF and AF multi-hop transmission sys-

tems with balanced links. As shown in Section 3.3.1.3, it is seen from this figure that a DF

multi-hop transmission system achieves higher ergodic capacities than the corresponding

system with AF relaying. In addition, as seen in Figure 3.13, increasing the number of

hops may improve ergodic capacity in small-SNR regimes, but degrades the performance

for larger values of SNR. The degradation of the ergodic capacity resulting from increasing

the number of hops is mainly due to the time-division channel allocation scheme considered

in this thesis. However, ergodic capacity also depends on the average link SNRs and conse-

quently the location of the relay terminals. A particular configuration of the relay terminals

may outweigh the impact of the time-division channel allocation scheme and consequently

contribute to the ergodic capacity. For example, Figure 3.14 shows the impact of relay

location on the ergodic capacities of DF and AF dual-hop transmission systems where the

relay is located at a distance dr from the source on a straight line between the source and

destination. Two cases are considered in Figure 3.14. In the first case, it is assumed that

the noise powers at the relay and destination are equal and the total transmitter power is

PT , and thus, the average link SNRs over the first and the second hops are, respectively,

given by Γ0,1 = Γ0
2dε

r
and Γ1,2 = Γ0

2(d0−dr)ε . In the second case, it is assumed that the noise
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Figure 3.14. Ergodic capacities versus relay location of dual-hop transmission systems employing

either DF relaying or AF relaying.

power at the destination is twice the noise power at the relay and again the total transmitter

power is PT . Thus, in this case, Γ0,1 = Γ0
dε

r
and Γ1,2 = Γ0

2(d0−dr)ε . In Figure 3.14, it is also

assumed that d0 = 1 meter, and Γ0 = 1 dB. It is seen that the DF dual-hop system performs

better than direct transmission when the relay is located over the range [0.369, 0.631] in

the first case and over the range [0.369, 0.749] in second case. The AF dual-hop system

performs worse than direct transmission over the entire range of dr in the first case, but its

performance is better than direct transmission in the second case when the relay is located

over the range [0.442, 0.707]. In addition, in the first case, the optimal relay location that

maximizes the ergodic capacity is at the midpoint between source and destination in both

DF and AF systems. However, the optimal relay location is shifted closer to the destination

in the second case, at dr = 0.55 meter in the DF dual-hop system and at dr = 0.6 meter in

the AF dual-hop system.

3.3.2 Capacity of AF Relaying Systems Under Adaptive Transmission

In this section, we study capacity in general fading of an AF multi-hop relaying system em-

ploying different source-adaptive transmission techniques introduced in [72], namely, op-

timal power and rate adaptation, optimal rate adaptation with constant power, and channel

inversion with fixed rate. In such systems the source adapts its rate and/or power according
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Figure 3.15. The source-adaptive multi-hop relaying system.

to the channel variations utilizing only a feedback of the effective received SNR from the

destination to the source. Note that rate adaptation at the source is typically done by fix-

ing the symbol rate and using multiple modulation schemes or changing the constellation

size [73] based on the the instantaneous end-to-end received SNR that is measured at the

destination and is fed back to the source.

Figure 3.15 shows a K-hop wireless system employing a source-adaptive transmission

technique. All transmissions are over orthogonal time slots to ensure half-duplex operation

at the relay terminals. The amplification at each relay is chosen as (3.2) to satisfy an

instantaneous power constraint at the relay output.

Note that capacity analysis of a wireless communication system in fading under adap-

tive transmission generally involves evaluating integrals that require a closed-form expres-

sion for the PDF of the instantaneous received SNR [72]. However, as mentioned earlier,

a closed-form expression for the PDF of the instantaneous received SNR for an AF multi-

hop relaying system with an arbitrary number of hops is still unknown. In the following,

we derive expressions for the evaluation of the capacity of an AF multi-hop relaying sys-

tem under different source-adaptive transmission techniques in terms of the CHF of the

reciprocal of the instantaneous received SNR.

3.3.2.1 Optimal Power and Rate Adaptation

The channel capacity given an average power constraint under optimal power and rate

adaptation is given by [72, eq. (7)]

COPR =
1
K

∫ ∞

γc

log2

(
γ

γc

)
fγV

t
(γ)dγ (3.49a)

where γc is the optimal cutoff SNR below which no data is transmitted that must satisfy [72,

eq. (8)] ∫ ∞

γc

(
1
γc
− 1

γ

)
fγV

t
(γ)dγ = 1 (3.49b)
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according to the average power constraint. Since data transmission is suspended when

γV
t < γc, there is a probability of outage (corresponding to the event of no transmission)

given by

Pout = Pr(γV
t < γc) (3.49c)

which is evaluated using (3.12) where γth = γc and ΨX(·) is given by (3.5) with s replaced

by−jw. Note that the capacity COPR is achieved when the source adapts both its power and

rate according to channel condition [72]. In this scheme, the power at the source is adapted

as [73, eq. (4.12)]

P0OPR =

{ (
1
γc
− 1

γV
t

)
P0, γV

t ≥ γc

0, γV
t < γc.

(3.50)

In order to evaluate (3.49a) and (3.49b) for an AF multi-hop transmission system, we

use the change of variable γ = 1
x , and the Fourier-transform relation between the CHF of

X , ΨX(w), and the PDF of X , fX(x), given by [73, eq. (B.11)]

fX(x) =
1
2π

∫ ∞

−∞
ΨX(w) exp (−jwx) dw. (3.51)

In addition, the following Lemma gives an expression for evaluation of the infinite-range

integrals involved in our capacity analysis.

Lemma 3.5: Let U(w) denote an arbitrary complex function having the form

U(w) = ΨX(w)
∫ a2

a1

g(x) exp (−jwx) dx (3.52)

where g(x) denotes an arbitrary real function and the integral limits, a1 and a2, can be any

real numbers. Then, one has
∫ ∞

−∞
U(w)dw = 2

∫ ∞

0
< (U (w)) dw = 2

∫ π

2

0
< (U (tan(θ)))sec2(θ)dθ (3.53)

where <(·) denotes the real part of its argument.

Proof: A proof of Lemma 3.5 is given in Appendix A.5.

Then, we have

COPR =
1
K

∫ 1
γc

0
log2

(
1

γcx

)
fXV(x)dx

=
1

2πK

∫ ∞

−∞
ΨXV(w)

[∫ 1
γc

0
log2

(
1

γcx

)
exp (−jwx) dx

]
dw

=
1

2πK ln 2

∫ ∞

−∞
ΨXV(w)

ν + ln(jw)− ln(γc) + E1

(
jw
γc

)

jw
dw

=
1

πK ln 2

∫ π

2

0

<
(

ΨXV(tan(θ))
ν+ln(j tan(θ))−ln(γc)+E1

(
j tan(θ)

γc

)
j tan(θ)

)

cos2(θ)
dθ (3.54a)
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where ν is the Euler’s constant [90, p. xxxii].The average power condition in (3.49b) can

be rewritten as
∫ 1

γc

0

(
1
γc
− x

)
fXV(x)dx

=
1
2π

∫ ∞

−∞
ΨXV(w)

[∫ 1
γc

0

(
1
γc
− x

)
exp (−jwx) dx

]
dw

=
1
2π

∫ ∞

−∞
ΨXV(w)

γc − jw − γc exp
(
− jw

γc

)

w2γc
dw

=
1
π

∫ π

2

0
<


ΨXV(tan(θ))

γc − j tan(θ)− γc exp
(
− j tan(θ)

γc

)

tan2(θ)γc


 sec2(θ)dθ = 1 (3.54b)

that can be numerically solved to obtain γc.

3.3.2.2 Optimal Rate Adaptation With Constant Transmit Power

The channel capacity under optimal rate adaptation with constant transmit power is given

by [72, eq. (29)]

CORA =
1
K

∫ ∞

0
log2 (1 + γ) fγV

t
(γ)dγ (3.55)

that, in fact, represents the capacity of the channel without adaptation [72]. Recall that

this capacity was previously evaluated using upper bounds as well as an infinite-series

expression in Section 3.3.1. In addition, while the transmitter in a system with a rate-

adaptive technique is more complex compared to that in a fixed-rate system, the receiver

has a relatively simple structure [73]. Thus, in this case, the hardware constraints in the

system determine whether employment of adaptive technique is preferred or not.

For an AF multi-hop transmission system, CORA is obtained as

CORA =
1
K

∫ ∞

0
log2

(
1 +

1
x

)
fXV(x)dx

=
1

2πK

∫ ∞

−∞
ΨXV(w)

[∫ ∞

0
log2

(
1 +

1
x

)
exp (−jwx) dx

]
dw

=
1

2πK ln 2

∫ ∞

−∞
ΨXV(w)

ln(jw) + exp(jw)E1(jw) + ν

jw
dw

=
1

πK ln 2

∫ π

2

0
<

(
ΨXV(tan(θ)) (ln(j tan(θ)) + exp(j tan(θ))E1(j tan(θ)) + ν)

j cos2(θ) tan(θ)

)
dθ

(3.56)

using the change of variable γ = 1
x , and eqs. (3.51) and (3.53).
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3.3.2.3 Channel Inversion With Fixed Rate

In channel inversion with the fixed rate adaptive technique, the source only adapts its power

to keep a constant SNR at the destination. The channel capacity of a multi-hop relaying

system employing this adaptive technique is given by [72, eq. (46)]

CCIFR =
1
K

log2

(
1 +

1∫∞
0

1
γ fγV

t
(γ)

)
. (3.57a)

For example, CCIFR in Nakagami-m fading of an AF multi-hop transmission system is ob-

tained as

CCIFR =





0, any mk ≤ 1
1
K log2

(
1 +

(∑K
k=1

mk

(mk−1)Γk−1,k

)−1
)

, all mk > 1.
(3.57b)

However, since the transmitter power must compensate deep channel fades, this adap-

tive technique results in a large capacity loss. A modified approach, termed truncated

channel inversion is proposed in [72] that halts data transmission when the received SNR

is below a cutoff level βc. The channel capacity with this modified adaptive technique is

given by [72, eq. (47)]

CTCIFR =
1
K

log2

(
1 +

1∫∞
βc

1
γ fγV

t
(γ)dγ

)
Pr(γV

t ≥ βc) (3.58a)

where Pr(γV
t ≥ βc) and

∫∞
βc

1
γ fγV

t
(γ)dγ for an AF multi-hop transmission system are

obtained as

Pr(γV
t ≥ βc) =

1
π

∫ π

2

0
<


ΨXV(tan(θ))

1− exp
(
− j tan(θ)

βc

)

j tan(θ)


 sec2(θ)dθ (3.58b)

using (3.12), and
∫ ∞

βc

1
γ

fγV
t
(γ)dγ =

∫ 1
βc

0
xfXV(x)dx

=
1
2π

∫ ∞

−∞
ΨXV(w)

[∫ 1
βc

0
x exp (−jwx) dx

]
dw

=
1
2π

∫ ∞

−∞
ΨXV(w)

(jw + βc) exp
(
− jw

βc

)
− βc

βcw2
dw

=
1
π

∫ π

2

0
<


ΨXV(tan(θ))

(j tan(θ) + βc) exp
(
− j tan(θ)

βc

)
− βc

βc sin2(θ)


 dθ

(3.58c)

in which we have used the change of variable γ = 1
x , and eqs. (3.51) and (3.53). The

cutoff level βc can be chosen such that either a certain probability of outage is achieved
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Figure 3.16. Channel capacity versus βc of different multi-hop transmission systems employing the

truncated channel inversion adaptive technique.

or the channel capacity (3.58a) is maximized. Figure 3.16 shows the channel capacities,

CTCIFR, versus βc of different multi-hop transmission systems. In Figure 3.16, we assume

Nakagami-m fading where mk = 1 and Γk−1.k = Γ0,1 for the case of i.i.d. links, and

mk = k
2 and Γk−1,k = 1

kΓ0,1, k = 1, . . . , K for the case of non i.d. links. It is seen that

there is a cutoff level at which CTCIFR is maximized. This maximizing cutoff level can be

numerically obtained by solving ∂CTCIFR/∂βc = 0, which is equivalent to solving

Pr(γV
t ≥ βc)

βc
∫∞
βc

1
γ fγV

t
(γ)dγ

(
1 +

∫∞
βc

1
γ fγV

t
(γ)dγ

) − ln

(
1 +

(∫ ∞

βc

1
γ

fγV
t
(γ)dγ

)−1
)

= 0 (3.59)

where Pr(γV
t ≥ βc) and

∫∞
βc

1
γ fγV

t
(γ)dγ are, respectively, replaced by (3.12) and (3.58c).

Note that the power at the source employing this technique is adapted as [73, eq. (4.19)]

P0TCIFR =





P0

γV
t

∫∞
βc

1
γ
fγV

t
(γ)dγ

, γV
t ≥ βc

0, γV
t < βc

(3.60)

where
∫∞
βc

1
γ fγV

t
(γ)dγ is given in (3.58c).

3.3.2.4 Numerical Results and Discussion

In this section, we present some numerical examples for the capacity and outage probability

of AF multi-hop relaying systems employing source-adaptive transmission techniques. We
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Table 3.5. Values of γc and βc for different multi-hop systems with i.i.d. links where Γk−1,k = Γ0,1

and mk = 1, k = 1, . . . ,K

Γ0,1 (dB) γc|K=2 βc|K=2 γc|K=3 βc|K=3

0 0.23705 0.3667 0.16648 0.23500

5 0.41485 0.7779 0.31743 0.5196

10 0.62161 1.5825 0.52144 1.0885

15 0.7975 3.182 0.72395 2.2101

20 0.90775 6.59 0.8677 4.526

Table 3.6. Values of γc and βc for different multi-hop systems with non i.d. links where Γk−1,k =
1
kΓ0,1 and mk = k

2 , k = 1, . . . , K

Γ0,1 (dB) γc|K=2 βc|K=2 γc|K=3 βc|K=3

0 0.17486 0.2699 0.104276 0.13947

5 0.31162 0.5701 0.21224 0.31799

10 0.48615 1.1505 0.37947 0.6847

15 0.66105 2.271 0.57865 1.4068

20 0.79885 4.525 0.75285 2.8443

consider dual-hop and triple-hop transmission systems in Nakagami-m fading both with

i.i.d. links where mk = 1 and Γk−1.k = Γ0,1, and with non i.d. links where mk = k
2 and

Γk−1,k = 1
kΓ0,1, k = 1, . . . , K. Recall that the data transmission in systems under optimal

rate and power adaptation and truncated channel inversion with fixed rate is suspended

when the received SNR is below the cut-off levels γc and βc, respectively. The optimal

cutoff level γc and the maximizing cutoff level βc are numerically obtained using (3.54b)

and (3.59), respectively. Tables 3.5 and 3.6 show values for the cutoff levels γc and βc for

different multi-hop systems with i.i.d. and non i.d. links, respectively.

Figures 3.17 and 3.18 show channel capacities and of outage probabilities of different

source-adaptive multi-hop relaying systems, respectively. In Figure 3.17, the exact expres-

sions for the channel capacity derived in (3.54), (3.56), and (3.58) are plotted as well as

Monte Carlo simulation results. The outage probabilities shown in Figure 3.18 denote the

probabilities of no data transmissions in systems under optimal rate and power adaptation

and truncated channel inversion techniques given by Pr(γV
t < γc) and Pr(γV

t < βc), re-

spectively. In Figure 3.18, we have plotted theoretical outage probabilities obtained using
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Figure 3.17. Channel capacity of various multi-hop transmission systems employing different adap-

tation policies.

(3.12) along with results obtained from Monte Carlo simulation. It is clearly seen from

Figures 3.17 and 3.18 that the theoretical results exactly match the simulation results.

It is seen from Figure 3.17 that the optimal power and rate adaptation technique achieves

the best performance compared to the other adaptive techniques, as expected. However, as

seen from Figure 3.17, the gap between the capacities of optimal rate and power adaptive

technique, and rate adaptation with constant power diminishes with increasing SNR. This

is due to the fact the optimal rate and power adaptive technique allocates more power to

the source for good channel conditions (see eq. (3.50)). That is, the source is very likely

to transmit with a constant power (almost P0) in large SNR regimes. Thus, at large values

of SNR, the optimal rate and power adaptation yields a slightly small increase in capacity

over the rate adaptation technique with constant power, as seen in Figure 3.17. In addition,

note that since the optimal rate adaptation with constant power only adapts its rate, it has

less complexity than the optimal rate and power adaptive technique.

In addition, as seen in Tables 3.5 and 3.6, γc is within the range [0, 1], whereas βc > γc

and can be greater than 1 (also see Figure 3.16). This implies that a system with the optimal

rate and power adaptation achieves higher capacity and better probability of outage than

a system with the truncated channel inversion, as seen in Figures 3.17 and 3.18. It is
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Figure 3.18. Outage probability of different multi-hop transmission systems employing either opti-

mal power and rate adaptation or the truncated channel inversion adaptive scheme.

also seen from Figure 3.17 that the truncated channel inversion with fixed rate adaptive

technique outperforms the rate adaptation technique with constant power at small values

of SNR. In addition, the channel inversion with fixed rate adaptive technique is the least

complex scheme because the source only adjusts its power. However, recall that the data

transmission is suspended in the truncated channel inversion with fixed rate technique when

the received SNR is below a cut-off level, βc. This cut-off level is determined such that the

capacity in eq. (3.58a) is maximized (e.g. see Figure 3.16). However, this maximization in

the capacity is at the cost of increased probability of outage, as seen in Figure 3.18.
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Chapter 4

Optimal Power Allocation for AF

Multi-Hop Relaying Systems

Relayed transmission has been proposed as a viable option to improve reliability and to

extend wireless network coverage. On the other hand, emerging wireless applications,

e.g. sensor networks, give an increasing demand for small devices having limited battery

lifetimes. As mentioned in Section 2.3.3, optimal power allocation schemes have been

developed for a variety of cooperative system configurations (e.g. see [31], [44]–[53],

[55]–[58]). However, there is no optimal power allocation scheme obtained for AF multi-

hop relaying systems with an arbitrary number of hops. In this section, we obtain optimal

power allocation schemes that maximize the instantaneous received SNR in an AF multi-

hop transmission system for two kinds of power constraints, namely, the short-term (ST)

and long-term (LT) power constraints. We then derive expressions for evaluation of the

outage probabilities in Rayleigh fading of AF multi-hop transmission systems employing

the proposed optimal power allocation schemes. The asymptotic outage probabilities of the

power-optimized AF multi-hop transmission systems are also obtained.

4.1 System Model and Problem Formulation

Consider an AF K-hop wireless transmission system in which a source terminal commu-

nicates with a destination terminal via K − 1 relay terminals over orthogonal time slots.

Each relay amplifies the signal received from its immediate preceding terminal and then

forwards to the next terminal in the next time slot. The amplification gain at the kth relay

A version of this chapter has been accepted for publication in IEEE Transactions on Wireless Communications.

62



is adapted based on the instantaneous fading amplitude over the channel between terminals

Tk−1 and Tk, αk, to result in a power Pk at the relay output and hence is given by (3.2).

It is assumed that the total available power is PT . In a K-hop transmission system with

uniform power allocation scheme, equal portions of the total power PT are assigned to each

transmitting terminal, i.e. Pk = P = 1
K PT , k = 0, . . . , K − 1. In general, the allocated

power to the kth terminal, Pk, in a K-hop transmission system can be written as

Pk = βkP (4.1a)

where βk ≥ 0, and either

K−1∑

k=0

βk = K, Short-term power constraint (4.1b)

or

E

(
K−1∑

k=0

βk

)
= K, Long-term power constraint (4.1c)

where the expectation is taken over fading gains. Our goal is to find coefficients βk such that

the instantaneous received SNR, γV
t , in an AF multi-hop transmission system is maximized.

4.2 Optimal Power Allocation Under ST Power Constraint

4.2.1 Mechanism

The optimal power allocation problem under ST power constraint can be formulated as

max γV
t

subject to
K−1∑

k=0

βk = K (4.2a)

where γV
t is given in (3.4a) and can be rewritten as

γV
t =

(
K∏

k=1

(
1 +

1
βk−1γk

)
− 1

)−1

(4.2b)

where γk , P
N0
|αk−1,k|2. Note that since the objective function in (4.2a) is concave and

the constraint is linear, the optimization problem in (4.2a) is a convex problem and hence

has a unique optimal solution [97].

Using the Lagrange multiplier method [97], one has

L =

(
K∏

k=1

(
1 +

1
βk−1γk

)
− 1

)−1

− λ

(
K−1∑

k=0

βk −K

)
(4.3)
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where L is the Lagrangean function and λ is a Lagrange multiplier. Then, taking the

derivative of L with respect to βk, k = 0, 1, . . . ,K − 1, yields a relation between βk and

βj , k 6= j, as

β2
kγk+1

(
1 +

1
βkγk+1

)
= β2

j γj+1

(
1 +

1
βjγj+1

)
(4.4)

and thus

βj =
−1 +

√
1 + 4γj+1βk (βkγk+1 + 1)

2γj+1
. (4.5)

Using the equity constraint in (4.2a), βk, k = 0, . . . , K − 1, is the real positive solution

(less than K) of

βk


1 +

K−1∑
j=0

j 6=k

−1 +
√

1 + 4γj+1βk (βkγk+1 + 1)

2γj+1


 = K. (4.6)

In principle, (4.6) can be solved numerically. Note that the obtained coefficients, βk,

k = 0, . . . , K − 1, depend on the global knowledge of the instantaneous SNR over each

hop and thus can be implemented in a centralized manner. The destination collects the

channel amplitudes over each link and consequently γk, solves the corresponding equation

according to (4.6) to obtain the optimal coefficients βk, calculates the optimal power values

Pk = βkP , and then assigns them to the corresponding terminals along the multi-hop path

through feedback channels. Thus, the proposed power-optimized multi-hop transmission

system is especially applicable for the uplink of a cellular network.

It should be mentioned that the ST power constraint in (4.1b) imposes a maximum

power constraint PT for each individual terminal [98]. In this thesis, we assume that each

transmitting terminal along the multi-hop path is able to provide the maximum power PT .

Since βk ≥ 0, k = 0, . . . , K − 1, and their sum is equal to K, the obtained optimal power

coefficients βk are less than (at most equal to) K. This ensures that the optimum allocated

power to each terminal does not exceed the maximum allowed power PT .

4.2.2 Outage Probability Analysis

In this section, the outage probability in Rayleigh fading of the proposed power-optimized

AF multi-hop transmission system under ST power constraint is evaluated. As mentioned

earlier, the outage probability is defined as the probability that the instantaneous received

SNR falls bellow a certain threshold, γth. However, note that the coefficients βk, k =

0, . . . , K − 1, for K-hop transmission systems that are the solution of eq. (4.6) may not
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be known in closed-form in general. Hence, finding a closed-form expression for the in-

stantaneous received SNR in a power-optimized multi-hop transmission system under ST

power constraint becomes mathematically very involved, if not impossible, even for the

simple case of K = 2. This makes the evaluation of the outage probability theoretically

intractable. On the other hand, as shown in [28], the instantaneous received SNR in (4.2b)

can be well approximated as

γV
t
∼=

(
K∑

k=1

1
βk−1γk

)−1

(4.7)

especially for sufficiently large values of SNR. In this case, the Lagrangean function is

given by

L =

(
K−1∑

k=0

1
βkγk+1

)−1

− λ

(
K−1∑

k=0

βk −K

)
. (4.8)

Then, taking the derivative of L with respect to βk, k = 0, 1, . . . , K − 1, and solving the

obtained set of equations as well as eq. (4.1b) yields a closed-form solution for the power

coefficients under ST power constraint, βST
k , as

βST
k =

K
√

γk+1
∑K−1

j=0
1√
γj+1

. (4.9)

Therefore, the instantaneous received SNR in a power-optimized AF multi-hop relaying

system under ST power constraint is obtained as

γST
t

∼= K

(
K∑

k=1

1√
γk

)−2

(4.10)

where γk has an exponential distribution with average Γk = P
N0

Ωk−1,k in Rayleigh fading.

For the special case of a power-optimized AF dual-hop transmission system, the outage

probability is obtained as

PST
out2-hop

= Pr


2

(
1√
γ1

+
1√
γ2

)−2

≤ γth




=
∫ ∞

0
Pr

(
1√
γ1

+
1√
γ2
≥

√
2

γth
| γ2

)
f(γ2)dγ2

=
∫ ∞

0
Pr


γ1 ≤

(√
2

γth
−

√
1
γ2

)−2

| γ2


 f(γ2)dγ2

= 1−
∫ ∞

γth
2

1
Γ2

exp


− γ2

Γ2
− 1

Γ1

(√
2

γth
−

√
1
γ2

)2


 dγ2 (4.11)
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that can be simply evaluated in MAPLE. In general, the outage probability of a power-

optimized AF multi-hop transmission system under ST power constraint with an arbitrary

number of hops is obtained as

PST
out = Pr

(
γST

t ≤ γth

)
= Pr

(
Y ≥

√
K

γth

)

= 1− FY

(√
K

γth

)
(4.12a)

where Y , ∑K
k=1

1√
γk

and FY (·) denotes the CDF of Y . Since Y is the sum of K

independent random variables, the CDF of Y can be found using the PDF or CHF of Y .

The PDF of Y is the convolution of the PDF of its summands and sometimes finding a

closed-form expression for the PDF is very involved or intractable. On the other hand, the

CHF of Y , ΨY (ω), is obtained as

ΨY (w) =
K∏

k=1

Ψ 1√
γk

(w) =
K∏

k=1

1√
π

G3,0
0,3

(
−w2

4Γk

∣∣∣∣
−

1, 1
2 ,0

)
. (4.12b)

Then, the CDF of Y is given by

FY (y) =
1
2

+ 2
∫ π

2

0
<

(
exp (−jy tan(θ))ΨY (tan(θ))

2πj tan(θ)

)
sec2(θ)dθ (4.12c)

using (3.12). However, a closed-form solution for the integral in (4.12c) is unknown. In

addition, numerical evaluation of an integral involving the product of a number of Meijer

G-functions (K product terms in a K-hop system) is very involved, if not impossible. Thus,

we utilize the infinite series approach presented in [74] for evaluating the CDF of Y . Then,

we have

FY (y)

∣∣∣∣∣∣y=
√

K

γth

=
1
2
−

∞∑
n=1

n odd

2=
(
exp

(
− jnω0

√
K√

γth

)
ΨY (nω0)

)

nπ
(4.12d)

where =(·) denotes the imaginary part of its argument and ω0 is a parameter that controls

accuracy [74].

4.2.3 Asymptotic Outage Probability Behavior

The following Lemma gives an expression for the asymptotic outage probability of a power-

optimized AF multi-hop transmission system under ST power constraint for large values of

SNR.

Lemma 4.1: The asymptotic outage probability for sufficiently large values of SNR

in Rayleigh fading of a power-optimized AF K-hop transmission system under ST power
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constraint is given by

PST
out →

γth

K

K∑

k=1

1
Γk

. (4.13)

Proof: A proof of Lemma 4.1 is given in Appendix A.6.

Note that the asymptotic outage probability of an AF K-hop transmission system em-

ploying uniform power allocation scheme is given by

Poutuniform → γth

K∑

k=1

1
Γk

(4.14)

using eqs. (3.21) and (3.24) in Rayleigh fading. Comparing (4.14) with (4.13) shows that

for sufficiently large values of SNR, a power-optimized AF K-hop transmission system un-

der ST power constraint offers K times better outage performance than the corresponding

system employing uniform power allocation.

4.2.4 Average Optimal Per-Hop Power Portion

In a multi-hop transmission system with i.i.d. links, the average per-hop power portions

are the same (due to symmetry). Since the total power portions is K (see eq. (4.1b)), the

average power portions per hop is equal to 1, i.e. E(Pk) = P . In the sequel, we obtain

the average power portions utilized at each hop, E (βk), k = 0, 1, . . . ,K − 1, in multi-hop

transmission systems with non i.d. links. For the special case of a dual-hop system, the

average power portions utilized per hop is obtained as

E(βk) = E


 2

1 +
√

γk+1

γj+1


 =

2
π

G3,3
3,3

(
Γj+1

Γk+1

∣∣∣∣
0, 1

2
,1

1,1, 1
2

)
j, k ∈ {0, 1} , j 6= k. (4.15)

In general, the average power portions per hop in a multi-hop transmission system with K

number of hops can be obtained as

E(βk) =
∫ ∞

0
M 1

βk

(s)ds (4.16a)

using eq. (3.15) where M 1
βk

(s) denotes the MGF of 1
βk

. Let Zk , √
γk+1

∑K−1
j=0

1√
γj+1

.

Then, 1
βk

= 1
K (Zk + 1) and its MGF, M 1

βk

(s), is given by

M 1
βk

(s) = exp
(
− s

K

)
MZk

(
s

K

)
(4.16b)

where

MZk
(s) =

∫ ∞

0

K−1∏

j=0

1√
π

G3,0
0,3

(
γk+1s

2

4Γj+1

∣∣∣∣ −
1, 1

2
,0

)
exp

(
− γk+1

Γk+1

)

Γk+1
dγk+1 (4.16c)
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using (4.12b). Note that (4.16c) has no closed-form solution, and hence exact calculation

of the average power portion given in (4.16a) requires numerical evaluation of a double

integral. However, as mentioned earlier, numerical evaluation of an integral involving the

product of a number of Meijer G-function (K−1 product terms in a K-hop system) is very

involved, if not impossible. On the other hand, the integral in (4.16c) can be efficiently

computed using numerical integration method given in [91] as

MZk
(s) ≈

Np∑

m=1

ξm

K−1∏

j=0

1√
π

G3,0
0,3

(
ζmΓk+1s

2

4Γj+1

∣∣∣∣ −
1, 1

2
,0

)
(4.17)

where ξn and ζn, n = 1, . . . , NP , are the weights and zeros of the Laguerre polynomial of

order Np [91, Table 25.9], respectively. Then, the average power portion per each hop can

be similarly evaluated as

E(βk) = K

∫ ∞

0
exp(−s)MZk

(s)ds

≈ K

Np∑

n=1

ξnMZk
(ζn) (4.18)

where MZk
(·) is calculated using (4.17).

4.2.5 Impact of Individual Per-Hop Power Constraints

In this thesis, we assume that each terminal is able to provide the maximum power PT in

order to determine the best possible performance achievable in AF multi-hop systems under

the total ST power constraint (4.1b). However, each terminal may be subject to a maximum

power constraint as Pk ≤ Pmax = β̃maxP , where P < Pmax < PT [47]. Since these

individual per-hop power constraints are linear, they do not change the convex property

of the optimization problem in (4.2a). Therefore, the optimal power coefficients can be

first obtained by solving (4.6) neglecting the individual per-hop power constraints. Let set

Cv denote a set of terminals whose optimal power coefficients obtained from (4.6) violate

the maximum per terminal power constraint, i.e. βk > β̃max, ∀Tk ∈ Cv. The allocated

power for these violating terminals can be clipped to the maximum allowed power, i.e.

Pk = Pmax, ∀Tk ∈ Cv. Clipping the power means that the individual power constraints

corresponding to the violating terminals are satisfied with equity. Then re-optimization will

be done over the set of remaining terminals Tk /∈ Cv with the modified ST constraint as
∑

Tk /∈C βk = K −NCv
β̃max where NCv

denotes the cardinality of set Cv.

Since Cv is a random set, the outage probability can be evaluated using the theorem of

total probability by averaging the conditional outage probability given Cv over all possible
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cases for Cv. For instance, for an AF dual-hop system, there are three different cases for

the set Cv as

Cv1 = {} , β0 ≤ β̃max, β1 ≤ β̃max

Cv2 = {T0} , β0 > β̃max, β1 ≤ β̃max

Cv3 = {T1} , β0 ≤ β̃max, β1 > β̃max (4.19)

where β0 and β1 are given by using (4.9) with K = 2. Note that since β0 + β1 = 2 and

Pmax > P (i.e. β̃max > 1), β0 and β1 cannot be greater than β̃max at the same time. The

instantaneous received SNR at the destination corresponding to each set is given by

γt1 = γST
t

γt2 =

(
1

β̃maxγ1

+
1

(2− β̃max)γ2

)−1

γt3 =

(
1

(2− β̃max)γ1

+
1

β̃maxγ2

)−1

. (4.20)

The outage probability is then obtained as

Pout =
3∑

i=1

Pr (γti
≤ γth) Pr (Cvi

) (4.21a)

where Pr (γt1 ≤ γth) is given by (4.11), Pr (γt2 ≤ γth) is given by [19, eq. (27)] where

Γ1 and Γ2 are replaced by β̃maxΓ1 and (2− β̃max)Γ2, and similarly Pr (γt3 ≤ γth) is given

by [19, eq. (27)] where Γ1 and Γ2 are replaced by (2− β̃max)Γ1 and β̃maxΓ2, respectively.

The probability of each case for set Cv is given by

Pr (Cv1) = Pr
(
β0 ≤ β̃max, β1 ≤ β̃max

)

= Pr
(
2− β̃max ≤ β0 ≤ β̃max

)
= Fβ0(β̃max)− Fβ0(2− β̃max) (4.21b)

Pr (Cv2) = Pr
(
β0 > β̃max, β1 ≤ β̃max

)

= Pr
(
β0 > β̃max

)
= 1− Fβ0(β̃max) (4.21c)

Pr (Cv3) = Pr
(
β0 ≤ β̃max, β1 > β̃max

)

= Pr
(
β0 < 2− β̃max

)
= Fβ0(2− β̃max) (4.21d)

where Fβ0(β) denotes the CDF of β0 and for 0 ≤ β ≤ 2 is given by

Fβ0(β) = Pr


 2

1 +
√

γ1

γ2

≤ β



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=
∫ ∞

0

1
Γ2

exp


−

γ2

(
2
β − 1

)2

Γ1
− γ2

Γ2


 dγ2 =

1
Γ2




(
2
β − 1

)2

Γ1
+

1
Γ2




−1

.

(4.21e)

Note that the number of possible cases for the random set Cv increases dramatically

as the number of hops increases. In addition, depending on the maximum allowed power

per terminal, clipping of the power for the violating terminals and re-optimization may be

required more than once. Furthermore, the instantaneous received SNR at the destination

corresponding to each case will not be a well-defined function of the individual per-hop

instantaneous SNRs, in general, making calculation of the conditional outage probabili-

ties almost intractable. Thus, evaluation of the outage probability of a general multi-hop

transmission system employing the optimal power allocation policy subject to both total

and individual ST power constraints is very involved, especially when the number of hops

increases. The outage probability expression in (4.12) is basically a lower bound on the

performance of a power-optimized multi-hop transmission system under both total and in-

dividual ST power constraints. This lower bound gets very tight for the cases where the

maximum allowed power per each hop is close to PT . However, if the maximum allowed

power per terminal is very close to P , employment of the uniform power allocation makes

more sense due to its ease of implementation. Clipping the power at the violating terminals

severely limits the performance of the optimal power allocation scheme in this case result-

ing in almost the same (slightly better) outage probability as a system with uniform power

allocation policy.

4.3 Optimal Power Allocation Under LT Power Constraint

4.3.1 Mechanism

The optimal power allocation problem under LT power constraint is formulated as

max γV
t

subject to E

(
K−1∑

k=0

βk

)
= K. (4.22)

The optimization problem in (4.22) is a convex problem and hence has a unique optimal

solution. Using the Lagrange multiplier method, one gets a relation between power co-

efficients, βk and βj , k, j = 0, 1, . . . , K − 1, j 6= k, as given in (A.19). Now, suppose
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that each power coefficient is a function of the instantaneous received SNR of its next im-

mediate hop, i.e. βk = U(γk+1) where U(·) is an arbitrary function. Then according to

(A.19),

β2
kγk+1

(
1 +

1
βkγk+1

)
= η (4.23)

where η is a constant. Therefore, βk is obtained as

βk =
−1 +

√
1 + 4ηγk+1

2γk+1
(4.24a)

where the constant η is determined such that the LT power constraint in (4.22) is satisfied.

Thus, η is obtained by numerical solving of

E

(
K−1∑

k=0

−1 +
√

1 + 4ηγk+1

2γk+1

)
= K. (4.24b)

In principle, the constant η is a function of all average SNRs, Γk, k = 1, . . . ,K. Therefore,

the obtained power coefficient βk in (4.24a) depends on the instantaneous SNR of the im-

mediate following terminal, γk+1, as well as the average SNRs of all links. Note that each

terminal, Tk, can acquire the instantaneous channel information of its next immediate hop,

γk+1, utilizing the clear to send (CTS) frame send from terminal Tk+1 to Tk. Furthermore,

the destination can compute the constant η at the initialization stage before the communi-

cation begins and then feed it back to the terminals. Note that η remains almost constant

during the entire communication. Thus, the optimal power allocation scheme under LT

power constraint in (4.22) can be implemented in a decentralized manner.

Similar to Section 4.2.2, one can get a closed-form solution for the power coefficients

βk, k = 0, 1, . . . ,K − 1, by maximizing the approximate expression for γV
t given in (4.7).

In addition, maximizing γV
t is equivalent to minimizing its inverse. Thus, in this case the

Lagrangean function is given by

L =

(
K−1∑

k=0

1
βkγk+1

)
+ λLT1

(
E

(
K−1∑

k=0

βk

)
−K

)
(4.25)

where λLT1 is the Lagrange multiplier. Taking the derivative of L with respect to βk yields

a closed-form solution for power coefficients under total LT power constraint in (4.22) as

βLT1
k =

1√
λLT1γk+1

, k = 0, 1, . . . , K − 1 (4.26a)

where λLT1 is obtained using the LT power constraint in (4.22) as

λLT1 =
π

K2

(
K∑

k=1

1√
Γk

)2

. (4.26b)
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It can be readily shown that for sufficiently large values of SNR, βk in (4.24a) tends to

βLT1
k where η is replaced by 1

λLT1 .

The average per-hop power portion in a power-optimized system under total LT power

constraint in (4.22) is given by

E
(
βLT1

k

)
= E


 1√

λLT1γk+1


 =

√
π

λLT1Γk+1
=

K
∑K−1

j=0

√
Γk+1

Γj+1

. (4.27)

Note that since
∑K−1

k=0 E(βk) = K, the average power portions per each hop, βLT1
k , k =

0, 1, . . . , K − 1, has a real value between 0 and K. This implies that each terminal should

be able to provide the maximum average power PT . It is more practical, however, to limit

the individual per-hop average powers as E(Pk) = P which is equivalent to E(βk) = 1.

These individual LT power constraints also ensure that the average total power is equal to

PT . The optimization problem under individual LT power constraints can be written as

min
1
γt

∼=
K−1∑

k=0

1
βkγk+1

subject to E (βk) = 1, k = 0, 1, . . . ,K − 1. (4.28)

Then, using the Lagrange multiplier method [97], one has

L =
1
γt

+
K−1∑

k=0

λLT2
k (E (βk)− 1) . (4.29)

Taking the derivative of L with respect to βk, k = 0, 1, . . . ,K − 1, one obtains

βLT2
k =

1√
λLT2

k γk+1

(4.30a)

for power coefficients subject to individual LT power constraints where the Lagrange mul-

tiplier, λLT2
k , is obtained as

λLT2
k =

(
E

(
1√
γk+1

))2

=
π

Γk+1
(4.30b)

using the individual LT power constraint in (4.28).

Note that the obtained power coefficients under individual LT power constraints, βLT2
k ,

k = 0, . . . ,K−1, only depend on the instantaneous and average SNR of immediate forward

channel. Thus, this power allocation strategy can be implemented in a fully distributed

manner, making it attractive for application in ad hoc wireless networks.
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4.3.2 Outage Probability Analysis

The instantaneous received SNR in the power-optimized AF multi-hop transmission system

under total LT power constraint is given by

γLT1
t =




K∑

k=1

√
λLT1

γk



−1

(4.31a)

and can be written in terms of γST
t given in (4.10) as

γLT1
t =

√
γST

t

λLT1K
. (4.31b)

Therefore, the outage probability for a power-optimized AF multi-hop transmission system

under total LT power constraint is obtained as

PLT1
out = Pr

(
γLT1

t < γth

)
= Pr

(
γST

t < λLT1Kγ2
th

)

= PST
out

∣∣∣γth→λLT1Kγ2
th

(4.32)

where PST
out is given in (4.11) for a dual-hop system and in (4.12) for a multi-hop system

with an arbitrary number of hops.

The instantaneous received SNR in the power-optimized AF multi-hop transmission

system under individual LT power constraints is given by

γLT2
t =

(
K∑

k=1

√
λk

γk

)−1

(4.33a)

and can be written in terms of of γST
t as

γLT2
t =

√
γST

t

K

∣∣∣∣γk→ γk

λLT2
k

. (4.33b)

Therefore, the outage probability in this case is obtained as

PLT2
out = Pr

(
γLT2

t < γth

)
= Pr

(
γST

t < Kγ2
th

) ∣∣∣∣γk→ γk

λLT2
k

= PST
out

∣∣∣∣∣∣∣∣
γth→Kγ2

th

Γk→ Γk

λLT2
k

. (4.34)

4.3.3 Asymptotic Outage Probability Behavior

The outage probabilities of power-optimized AF multi-hop transmission systems under

total and individual LT power constraints can be evaluated in terms of the outage probabil-

ity of the corresponding system under ST power constraint as given in (4.32) and (4.34),
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respectively. Thus, the asymptotic outage behaviors for large values of SNR can be deter-

mined using Lemma 4.1 as

PLT1
out → λLT1γ2

th

K∑

k=1

1
Γk

=
γ2

thπ

K

(
K∑

k=1

1√
Γk

)2 K∑

k=1

1
Γk

(4.35)

and

PLT2
out → γ2

th

K∑

k=1

λLT2
k

Γk

= γ2
thπ

K∑

k=1

1
Γ2

k

(4.36)

for power-optimized AF multi-hop transmission systems under total and individual LT

power constraints, respectively. Eqs. (4.35) and (4.36) show that the power-optimized

AF multi-hop transmission systems under either total or individual LT power constraints

can provide a substantial performance gain by achieving diversity gain 2.

4.4 Numerical Results

In the numerical examples, we consider different multi-hop transmission systems both with

balanced and unbalanced links in which the terminals are located in a straight line of length

d0 meters between the source and destination, as described in examples 1 and 2 of Section

3.2.5.1. Recall that in systems with balanced links, terminals are located in equi-distant

points from each other1, while in systems with unbalanced links, it is assumed that the

kth terminal, k = 1, . . . , K is located in distance dk = 2k
K(K+1)d0 from its previous ter-

minal, Tk−1. Assuming that a K-hop system uses a total power PT = KP , using the

Friss propagation formula [94], one has Γk = Kε−1Γ0, k = 1, . . . , K in K-hop sys-

tems with balanced links where Γ0 denotes the average SNR in a single-hop system and

Γk = 1
K

(
(K+1)K

2k

)ε
Γ0, k = 1, . . . , K in K-hop systems with unbalanced links. In the

numerical examples, we assume ε = 4, and γth = 1.

Figures 4.1 and 4.2 show the outage probabilities for different dual-hop and triple-hop

transmission systems, respectively. Simulation results in both figures were obtained using

a Monte Carlo method with as many as 5× 106 samples. The theoretical outage probabil-

ities in Figure 4.1 were obtained using the closed-form expression given in [19, eq. (27)]
1It is shown in [14] that this is the optimal relay configuration in the sense of minimizing the error probability when

uniform power allocation is employed.
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Figure 4.1. Outage probabilities for different AF dual-hop transmission systems. The acronyms ST,

LT1, and LT2, respectively, stand for power-optimized systems under ST power constraint, total LT

power constraint, and individual LT power constraints.
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for systems with uniform power allocation, and using (4.11) for power-optimized systems

under ST power constraint. The theoretical results in Figure 4.2 for power-optimized triple-

hop systems under ST power constraints were obtained using (4.12) where we assumed

ω0 = 0.92 and used as few as 50 terms for small values of SNR and as many as 300 terms

for large values of SNR in evaluation of the series (4.12d). In Figures 4.1 and 4.2, we have

also plotted the expressions obtained for the outage probabilities of the power-optimized

systems under total and individual LT power constraints given in (4.32) and (4.34), respec-

tively. The theoretical results in Figure 4.2 for systems with uniform power allocation were

obtained using (3.12) where ΨX(·) is given by (3.5) with s = −jw and the individual

product terms replaced by (3.6) with mi = 1, i = 1, . . . , K.

It is seen from Figures 4.1 and 4.2 that the theoretical results match precisely the sim-

ulation results. The asymptotic outage probabilities are also in good agreement with the

simulation results for moderate to large values of SNR. It is seen that the power-optimized

AF multi-hop transmission systems achieve better outage probabilities than those of sys-

tems with uniform power allocation. As shown in Section 4.2.3 and seen from Figures

4.1 and 4.2, at sufficiently large values of SNR, power-optimized dual-hop and triple-hop

transmission systems under ST power constraint perform, respectively, two and three times

better than the corresponding systems with uniform power allocation. For instance, at

20 dB, power-optimized dual-hop and triple-hop transmission systems with balanced links

achieve outage probabilities 0.0013 and 3.9×10−4, respectively, compared to the respective

outage probabilities 0.0025 and 1.15 × 10−3 achieved in the corresponding systems with

uniform power allocation. Furthermore, as seen in Figures 4.1 and 4.2, power-optimized

systems under LT power constraints offer superior performance gain achieving diversity

gain 2. For instance, an AF dual-hop system with balanced links employing the optimal

power allocation scheme under either total or individual LT power constraint2 achieves al-

most 14 dB gain comparing to the corresponding system with uniform power allocation

at an outage probability of 10−3. The total LT power constraint is a more relaxed con-

straint than the individual LT power constraints. Thus, as seen in Figures 4.1 and 4.2, a

system (with unbalanced links) employing the optimal power allocation policy under total

LT power constraint outperforms the system employing the one under individual LT power

constraints.

Figures 4.3 and 4.4 show the average power portions utilized per hop in different dual-
2Note that in systems with balanced links, the optimal power coefficients under total and individual LT power constraints

are the same.
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hop and triple-hop systems, respectively. In Figures 4.3 and 4.4, we have considered sys-

tems where the kth relay is located at distance kρ from its previous terminal in a straight

line where 0 ≤ ρ ≤ 1 in dual-hop systems and 0 ≤ ρ ≤ 1
3 in triple-hop systems. We

have also assumed that all systems use equal total power. The noise powers at all terminals

are assumed to be the same, as well. Therefore, according to the Friss propagation for-

mula [94], one has Γ1 = 1
2ρε Γ0, and Γ2 = 1

2(1−ρ)ε Γ0 in dual-hop systems; and Γ1 = 1
3ρε Γ0,

Γ2 = 1
3(2ρ)ε Γ0, and Γ3 = 1

3(1−3ρ)ε Γ0 in triple-hop systems. Simulation results shown in

Figures 4.3 and 4.4 were obtained using a Monte Carlo method with as many as 106 points.

Any value assumed for Γ0 in the simulation set-up results in the same average per-hop

power portion as long as the link SNR ratios are kept constant. In fact, as seen in eqs.

(4.15), (4.17) and (4.18), and (4.27), the average per-hop power portions in all power-

optimized systems evaluated in Sections 4.2 and 4.3 depend on the ratio of the link SNRs

and not on their absolute values. The theoretical average power portions utilized per hop

in the power-optimized systems under ST power constraint were obtained using (4.15) in

Figure 4.3, and using (4.17) and (4.18) in Figure 4.4 assuming Np = 15. In Figures 4.3 and

4.4, we have also plotted the expression derived in (4.27) for the average per-hop power

portions utilized in power-optimized systems under total LT power constraint. It is seen

from both Figures 4.3 and 4.4 that the analytical results are in precise agreement with the

simulation results. As discussed earlier in Sections 4.2 and 4.3, it is seen that the average

optimal power portions per hop under ST and total LT power constraints swap the range of

values between 0 and K depending on the location of the relays. In addition, as seen from

eqs. (4.9) and (4.26a), the power allocated to the kth terminal, k = 0, . . . ,K − 1, is pro-

portional to the inverse of the square root of the SNR over the next immediate hop, γk+1.

Thus, as seen in Figures 4.3 and 4.4, power allocation policies both under ST and total LT

power constraints distribute the total power relatively in the same fashion to the terminals

(on the average) along the multi-hop path and devote larger average power portions to the

weaker links. For instance, in the dual-hop systems shown in Figure 4.3, more power is

allocated to the source as the relay gets closer to the destination.
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Chapter 5

AF Multi-Relay Cooperative Systems

In this chapter, low complexity receivers for AF multi-relay cooperative systems are

developed. An AF multi-relay system with repetition based scheduling employing MRC

at the destination is first studied in Section 5.1. Recall that MRC of the signals received at

the destination from the source and the relays is an ML detector, and hence its performance

provides a benchmark for performance evaluation of other receivers developed here. In

Section 5.2 low complexity coherent receivers that only require phase information in a

distributed manner are introduced and evaluated. In Section 5.3 employment of a detection

scheme in a noncoherent AF system based on square-law envelope (energy) detection [89]

at the destination is proposed. The proposed scheme achieves full spatial diversity while

requiring neither instantaneous nor statistics knowledge of the fading channel information.

5.1 Systems Employing MRC at Destination

5.1.1 System Model

Consider a multi-relay cooperative system as shown in Figure 2.2 where the source, T0,

communicates with the destination, TN+1, with the help of N half-duplex relays, T1, . . . ,

TN . The source transmits the signal x0 in the first time slot. The signals received at the

relays and the destination from the source, T0, are given by

yT0
i = α0,ix0 + ni, i = 1, . . . , N + 1. (5.1)

A version of this chapter has been submitted in part to IEEE Transactions on Communications, and has been published

in part in IEEE Transactions on Wireless Communications, 7:1851-1856 (2008) and 7:4462-4467 (2008), and in Proceedings

of IEEE International Conference on Communications (ICC), 1:3730-3735 (2008) and 1:4300-4305 (2008).
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The signal at each relay is then amplified and forwarded to the destination in a predeter-

mined time slot (i.e. repetition-based scheduling [4]). The signal received at the destination

through the ith relay, i = 1, . . . , N , is given by

yTi

N+1 = Âiy
T0
i + nTi

N+1 = Âiα0,iαi,N+1x0 + Âiαi,N+1n
T0
i + nTi

N+1. (5.2a)

where n
Tj

i , i = 1, . . . , N + 1, j 6= i = 0, 1, . . . , N + 1 denotes the received noise at

terminal Ti in the time slot corresponding to the transmission from terminal Tj and Âi is

the amplification gain at the ith relay. The relay amplification gain at the ith relay in a

multi-relay system with variable-gain relays, AV
i , is chosen as [3]

ÂV
i =

√√√√ Pi

N0

γ0,i + 1
. (5.2b)

The relay amplification gain at the ith relay in a system with fixed-gain relays, ÂF
i , can take

any arbitrary value, in general [20]. In practice, it is mostly chosen such that an average

power constraint at the relay is satisfied [41]- [43], i.e.

ÂF
i =

√√√√ Pi

N0

Γ0,i + 1
. (5.2c)

The signals received at the destination, yTi

N+1, i = 0, . . . , N , are combined using MRC

diversity. Note that the combination of repetition-based scheduling at the relays and MRC

diversity at the destination is referred to as R-MRC scheme in this thesis. Thus, the instan-

taneous total received SNR at the destination, γR-MRC
t , is given by [14]

γR-MRC
t = γ0,N+1 +

N∑

i=1

P0α
2
0,iα

2
i,N+1

N0

(
α2

i,N+1 + 1
Â2

i

)

= γ0,N+1 +
N∑

i=1

γTi
(5.3a)

where γTi
denotes the instantaneous received SNR at the destination through the ith relay

and is given by [29]

γV
Ti

=
γ0,iγi,N+1

γi,N+1 + γ0,i + 1
(5.3b)

and [22]

γF
Ti

=
γ0,iγi,N+1

γi,N+1 + Ĉi

(5.3c)

in systems with variable-gain relays and fixed-gain relays, respectively, where Ĉi , Pi

N0(ÂF
i )2

.
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5.1.2 Performance Analysis

5.1.2.1 Error Probability Analysis

Error probability of an AF cooperative system employing MRC at the destination can be

evaluated using the MGF-based approach [89] for a variety of modulation schemes. Note

that the MGF of γR-MRC
t given in (5.3) can be obtained as the product of the MGFs of its

summands, which are known and given in [19] and [20] for systems with variable-gain

relays and fixed-gain relays, respectively. Exact calculation of the error probabilities using

the MGF-based method involves single integrals that generally have no closed-form solu-

tions and should be numerically evaluated. However, one can obtain simple closed-form

expression for the symbol error probability in an AF cooperative system for sufficiently

large values of SNR using eq. (3.23). Note that according to [14, Proposition 2], the first

N − 1 derivatives of the PDF of the instantaneous received SNR, γR-MRC
t given in (5.3)

at the origin are zero and its N th order derivative at zero is given by the product of the

values of the PDF of its summands at the origin. In systems with variable-gain relays, one

has [14, eq. (31)]

∂N

∂γN
fγR-MRC

tV

(0) = fγ0,N+1(0)
N∏

i=1

(
fγ0,i

(0) + fγi,N+1(0)
)

=
rN+1

Γ0,N+1

N∏

i=1

(
1

Γ0,i
+

1
Γi,N+1

)
(5.4)

where r is given in Table 3.4 for different types of fading. In systems with fixed-gain relays,

the N th order derivative of the PDF of instantaneous received SNR is bounded by

∂N

∂γN
fγR-MRC

tF

(0) > fγ0,N+1(0)
N∏

i=1

(
fγ0,i

(0)

(
1 +

Ĉi

Γi,N+1

)
+ fγi,N+1(0)

Ĉi

Γ0,i

)

=
r2

Γ0,N+1

N∏

i=1

(
1

Γ0,i
+

2Ĉi

Γ0,iΓi,N+1

)
(5.5)

using Lemma 3.2 with M = 2. Asymptotic expressions for the symbol error probability

are then obtained using (3.23) with t = N and ∂N

∂γN fγt
(0) replaced by (5.4) and (5.5) for

systems with variable-gain relays and fixed-gain relays, respectively. Eqs. (5.4) and (5.5)

indicate that AF cooperative systems with both variable-gain relays and fixed-gain relays

employing MRC diversity at the destination achieve full spatial diversity.

The accuracy of the asymptotic symbol error probability of AF multi-relay cooperative

systems with variable-gain relays has been shown in [14]. Figure 5.1 shows bit error proba-

bilities for different BPSK multi-relay cooperative systems with fixed-gain relays with i.i.d.

81



0 10 20 305 15 25
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Γ
s,d

 (dB)

B
it 

er
ro

r 
pr

ob
ab

ili
ty

 

 

Analysis 
Simulation (i.i.d. case)
Simulation (non i.d. case)

 N=1

 N=2

 N=3

Figure 5.1. Bit error probabilities for different multi-relay systems with fixed-gain relays employing

R-MRC.

links where Γ0,i = Γi,N+1 = Γs,d and non i.d. links where Γ0,i = Γi,N+1 = Γs,d

i where

Γs,d denotes the average SNR over the source-destination link. It is assumed that Ĉi = 1.7

for all relay terminals. It is seen that the analytically obtained error probabilities are in good

agreement with the simulation results for sufficiently large values of SNR in both cases of

i.i.d. and non i.d. average link SNRs. It is also seen that increasing the number of relays

improves the performance by achieving diversity gain equal to N + 1, as expected.

5.1.2.2 Capacity Analysis

In this section, the ergodic capacity of AF multi-relay systems employing R-MRC scheme

is evaluated assuming that CSI is only known to the receivers. The signals received at the

destination in an AF cooperative system can be written in a vector format as

yN+1 = h̃x0 + ñ (5.6a)

where

yd =


yT0

N+1√
N0

yT1
N+1√

Â2
1α

2
1,N+1N0 + N0

. . .
yTN

N+1√
Â2

Nα2
N,N+1N0 + N0




T

(5.6b)
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and

h̃ =


α0,N+1√

N0

Â1α0,1α1,N+1√
Â2

1α
2
1,N+1N0 + N0

. . .
ÂNα0,NαN,N+1√

Â2
Nα2

N,N+1N0 + N0




T

(5.6c)

and ñ is a vector of N + 1 zero-mean complex Gaussian random variables with unit vari-

ances. The ergodic capacity is then obtained as [71]

ER-MRC =
1

N + 1
E

(
log

(
1 + P0h̃H h̃

))

=
1

N + 1
E

(
log

(
1 + γR-MRC

t

))
. (5.7)

Analytical evaluation of this expectation is facilitated by having a closed-form expression

for the PDF of the total received SNR at the destination, γR-MRC
t . However, such expression

for the PDF of γR-MRC
t in systems both with variable-gain relays and fixed-gain relays is

still unknown. A closed-form upper bound on the ergodic capacity can be obtained utilizing

Jensen’s inequality [96] as

ER-MRC < ER-MRC
UB =

1
N + 1

log
(
1 + ΓR-MRC

t

)
(5.8a)

where ΓR-MRC
t is the the expected value of the instantaneous total received SNR at the

destination given by

ΓR-MRC
t = Γ0,N+1 +

{ ∑N
i=1 ΓV

Ti
, Variable-gain relays∑N

i=1 ΓF
Ti

, Fixed-gain relays
(5.8b)

where ΓV
Ti

and ΓF
Ti

denote the average received SNR at the destination through the ith relay

in systems with variable-gain and fixed-gain relays, respectively, and are given by

ΓV
Ti

=
16
√

π

3.3233Γ0,iΓi,N+1

(
1√
Γ0,i

+ 1√
Γi,N+1

)6


2F1


3, 0.5; 3.5;

(
1√
Γ0,i

− 1√
Γi,N+1

)2

(
1√
Γ0,i

+ 1√
Γi,N+1

)2




+
3

(
1

Γ0,i
+ 1

Γi,N+1

)

(
1√
Γ0,i

+ 1√
Γi,N+1

)2 2F1


4, 1.5; 3.5;

(
1√
Γ0,i

− 1√
Γi,N+1

)2

(
1√
Γ0,i

+ 1√
Γi,N+1

)2





 (5.8c)

in Rayleigh fading using the PDF of γV
Ti

given in [19, eq. (19)] and [90, eq. (6.621.3)]

where 2F1 (·, ·; ·; ·) denotes the Gauss hypergeometric function [90, eq. (9.100)]; and

ΓF
Ti

= Γ0,iE

(
γi,N+1

γi,N+1 + Ĉi

)

= Γ0,i

(
1− Ĉi

Γi,N+1
exp

(
Ĉi

Γi,N+1

)
E1

(
Ĉi

Γi,N+1

))
(5.8d)
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Figure 5.2. Ergodic capacities of different AF systems employing R-MRC with variable-gain relays

chosen according to (5.2b).

in Rayleigh fading using [90, eq. (3.353.5)].

Figures 5.2 and 5.3, respectively, show ergodic capacities of different AF cooperative

systems employing R-MRC with variable-gain relays and fixed-gain relays. In these fig-

ures, it is assumed that Γ0,i = Γi,N+1 = Γs,d in systems with i.i.d. links and Γ0,i =

Γi,N+1 = Γs,d

i+1 in systems with non i.d. links. Note that the amplification gain in systems

with fixed-gain relays is chosen according to (5.2c) to ensure the average power constraint

at the ith relay is satisfied. Thus, Ĉi = Γ0,i + 1, i = 1, . . . , N in Figure 5.3. These fig-

ures clearly indicate the tightness of the upper bound obtained for the ergodic capacities in

Rayleigh fading of different AF cooperative systems with variable-gain relays and fixed-

gain relays for both i.i.d. and non i.d. cases. For example, the inaccuracies of the upper

bound in the double-relay system with variable-gain relays for the i.i.d. and the non i.d.

cases are about 6% and 10% at 5 dB, respectively. It is also seen in Figures 5.2 and 5.3 that

systems with fixed-gain relays with the amplification gain chosen as (5.2c) perform almost

the same as systems with variable-gain relays.

In addition, since the relays transmit in orthogonal time slots (repetition-based schedul-

ing), increasing the number of relays degrades the ergodic capacity, as seen in Figures 5.2

and 5.3.
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Figure 5.3. Ergodic capacities of different AF systems employing R-MRC with fixed-gain relays

chosen according to (5.2c).

5.2 Low Complexity Coherent Receivers

In this section, we develop low complexity coherent receivers for AF multi-relay cooper-

ative systems that, first, do not require any instantaneous channel amplitude information

for their operations and, second, can acquire the required channel phase information in a

distributed manner. System models are described in Section 5.2.1. Performance of the pro-

posed schemes is evaluated in Section 5.2.2 in terms of error probability, average output

SNR, and ergodic capacity. Numerical results are given in Section 5.2.3.

5.2.1 System Models

Consider a multi-relay cooperative system as shown in Figure 2.2 where the source, T0,

communicates with the destination, TN+1, with the help of N half-duplex relays, T1, . . . ,

TN . The fading gain of the channel between terminals Ti and Tj , αi,j , is modeled as a

zero-mean complex Gaussian random variable with variance σ2
i,j . Thus, the fading channel

amplitude, α̃i,j = |αi,j |, has a Rayleigh distribution with power σ2
i,j and the fading channel

phase, θi,j , has a uniform distribution over the range 0 to 2π. The instantaneous SNR of

the channel between terminals Ti and Tj defined as γi,j , Pi

N0
α̃2

i,j is an exponential random
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variable with average Γi,j = Pi

N0
σ2

i,j .

It is assumed that the channel amplitudes are not known at the relays and the destination.

In the sequel, we consider different scenarios for the availability of fading channel phase

information in the system and develop low complexity detection schemes for each case.

5.2.1.1 Immediate Preceding Channel Phase Information Available

In this case, it is assumed that the nth relay, n = 1, . . . , N , has knowledge of θ0,n and the

destination has knowledge of θn,N+1, n = 0, 1, . . . , N . This channel phase information can

be acquired using the request-to-send (RTS) packet received at the relays and destination

transmitted from their preceding terminals, or by conventional methods1.

The source transmits the signal x0 in the first time slot. The signals received at the

relays and the destination from the source, T0, are given by (5.1). The signal at each

relay is then amplified and forwarded to the destination in a predetermined time slot (i.e.

repetition-based scheduling). It is assumed that the total transmit power allocated for relay

transmissions is PR =
∑N

i=1 Pi. Then, each relay utilizes 1
N of the total power PR for its

transmission, Pi = PR

N , i = 1, . . . , N . Thus, the amplification gain at the ith relay is given

by

β̂i = ÂF
i exp (−jθ0,i) (5.9)

where ÂF
i is given by (5.2c) ensuring that the long-term power constraint at the relay is sat-

isfied [41]- [43]. The signal received at the destination through the ith relay, i = 1, . . . , N ,

is then given by

yTi

N+1 = β̂iy
T0
i + nTi

N+1 = ÂF
i α̃0,iαi,N+1x0 + β̂iαi,N+1n

T0
i + nTi

N+1. (5.10)

In the proposed scheme, the signals received at the destination, yTi

N+1, i = 0, 1, . . . , N ,

in N + 1 orthogonal time slots are co-phased2 and then added together. Thus, it is referred

to as repetition-based DEGC (R-DEGC) relaying. The combiner output is then given by

yR-DEGC
o =

N∑

i=0

exp (−jθi,N+1) yTi

N+1

=

(
α̃0,N+1 +

N∑

i=1

ÂF
i α̃0,iα̃i,N+1

)
x0

1Note that the assumption being made in this case is that the receiver recovers the channel phase. This is done by any

single channel coherent receiver, and techniques for phase estimation are well known [78, Ch. 6].
2Recall that the phases of the fading channels between the source and each relay are compensated by using complex relay

amplification gains.
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+
N∑

i=1

β̂iα̃i,N+1n
T0
i +

N∑

i=0

exp (−jθi,N+1) nTi

N+1. (5.11)

The instantaneous received SNR is given by

γR-DEGC
t =

(
α̃0,N+1 +

∑N
i=1 Âiα̃0,iα̃i,N+1

)2
P0

(N + 1)N0 +
∑N

i=1 Â2
i α̃

2
i,N+1N0

=

(√
γ0,N+1 +

∑N
i=1

√
γ0,iγi,N+1

Ĉi

)2

N + 1 +
∑N

i=1
γi,N+1

Ĉi

. (5.12)

It is seen from eq. (5.12) that the instantaneous received SNR of an N -relay AF cooperative

system employing the R-DEGC scheme is not equivalent to the result given in [77, eq. (4)].

5.2.1.2 Distributed Phase Information at the Relays

In this case, it is assumed that the nth relay, n = 1, . . . , N , has phase information of the

fading channel between itself and the destination, θn,N+1, as well as phase information

θ0,n. Note that the nth relay can acquire the phase information of its forward channel,

θn,N+1, using the CTS packet received from the destination. It is also assumed that only

the destination has (or exploits) phase information θ0,N+1.

The source initiates the transmission by sending the signal x0. The signals received at

the destination and the relays in the first time slot are given in (5.1). In the second time slot,

all relays forward their signals to the destination (i.e. a spectral-efficient scheduling). Note

that the total available power for relay transmissions in the second time slot is PR and each

relay utilizes Pi = 1
N PR for its transmission. The ith relay amplifies its signal by the gain

β̃i = ÂF
i exp (−j (θ0,i + θi,N+1)) . (5.13)

The signal received at the destination in the second time slot is given by

yT1,...,TN

N+1 =

(
N∑

i=1

ÂF
i α̃0,iα̃i,N+1

)
x0 +

N∑

i=1

β̃iαi,N+1n
T0
i + nT1,...,TN

N+1 . (5.14)

The destination co-phases the signal received from the source and then adds it to the signal

received in the second time slot, yT1,...,TN

N+1 . Hence, it is referred to as spectral-efficient

DEGC (S-DEGC) relaying. The combiner output is given by

yS-DEGC
o = yT0

N+1 exp (−jθ0,N+1) + yT1,...,TN

N+1

=

(
α̃0,N+1 +

N∑

i=1

ÂF
i α̃0,iα̃i,N+1

)
x0 +

N∑

i=1

β̃iαi,N+1n
T0
i

+ exp (−jθ0,N+1)nT0
N+1 + nT1,...,TN

N+1 (5.15)
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and the instantaneous received SNR is given by

γS-DEGC
t =

(
α̃0,N+1 +

∑N
i=1 ÂF

i α̃0,iα̃i,N+1

)2
P0

2N0 +
∑N

i=1 A2
i α̃

2
i,N+1N0

=

(√
γ0,N+1 +

∑N
i=1

√
γ0,iγi,N+1

Ĉi

)2

2 +
∑N

i=1
γi,N+1

Ĉi

. (5.16)

5.2.2 Performance Analysis of DEGC Schemes

The instantaneous received SNR in an AF system employing either the R-DEGC scheme

or the S-DEGC scheme can be written as

γDEGC
t =

(√
γ0,N+1 +

∑N
i=1

√
γ0,iγi,N+1

Ĉi

)2

L+
∑N

i=1
γi,N+1

Ĉi

(5.17a)

where

L =
{

N + 1, R-DEGC scheme
2, S-DEGC scheme .

(5.17b)

Note that the instantaneous received SNRs in single-relay AF systems employing R-DEGC

and S-DEGC schemes are the same and hence they offer the same performance. However,

it is clearly seen from (5.17) that the S-DEGC scheme achieves larger instantaneous SNR

and hence performance superior to the R-DEGC scheme as the number of relays increases.

This is due to the fact that the relays in the S-DEGC scheme transmit simultaneously in the

second time slot which in turn reduces the total noise power corrupting the signal received

at the destination.

5.2.2.1 Error Probability Analysis

The instantaneous received SNR expression in an AF cooperative system employing either

the R-DEGC scheme or the S-DEGC scheme given in (5.17a) can be rewritten as

γDEGC
t =

(
N∑

i=0

Xi

)2

(5.18a)

where

Xi , 1√
L+

∑N
l=1

γl,N+1

Ĉl

{ √
γ0,N+1, i = 0√
γ0,iγi,N+1

Ĉi

, i = 1, . . . , N.
(5.18b)

LetγγγN+1 denote vector of instantaneous SNRs over the relay-destination links, i.e. γγγN+1 =

[γ1,N+1, . . . , γN,N+1]. Note that Xi, i = 0, . . . , N , conditioned on γγγN+1 are independent
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random variables. Hence, the CHF of Z =
∑N

i=0 Xi given γγγN+1 is obtained as

ΨZ|γγγN+1
(w) =

N∏

i=0

ΨXi|γγγN+1
(w) (5.19a)

where

ΨX0|γγγN+1
(w) = Ψ√

γ0,N+1


w

√√√√ 1
L+

∑N
l=1

γl,N+1

Ĉl


 (5.19b)

ΨXi|γγγN+1
(w) = Ψ√

γ0,i


w

√√√√√
γi,N+1

Ĉi

L+
∑N

l=1
γl,N+1

Ĉl


 , i = 1, . . . , N (5.19c)

where Ψ√
γ0,i

(·), i = 0, 1, . . . , N , denotes the CHF of √γ0,i which is obtained using [90,

eqs. (3.462.1) and (9.254.2)] as

Ψ√
γ0,i

(w) = 1 + jw
√

πΓ0,i exp
(
−1

4
w2Γ0,i

) (
1−Q

(
1
2
jw

√
2Γ0,i

))
(5.19d)

in Rayleigh fading. Then, the CHF of Z is obtained as

ΨZ(w) =
∫ ∞

0
. . .

∫ ∞

0︸ ︷︷ ︸
N−fold

ΨZ|γγγN+1
(w)

N∏

i=1

fγi,N+1 (γi,N+1) dγi,N+1 (5.20a)

where fγi,N+1(·) denotes the PDF of an exponential random variable. Note that the N -fold

integral in (5.20a) can be evaluated using the numerical integration method given in [91, eq.

(25.4.45)] as

ΨZ(w) ≈
Np∑

n1=1

. . .

Np∑

nN=1︸ ︷︷ ︸
N

N∏

i=1

ξni
ΨZ|γγγN+1

(w)

∣∣∣∣∣γi,N+1=ζni
Γi,N+1

i=1,...,N
(5.20b)

where ξn and ζn, n = 1, . . . , NP , are the weights and zeros of the Laguerre polynomial of

order Np [91, Table 25.9], respectively. The symbol error probability is then obtained as

P DEGC
s = E (Q(τ0Z))

=
1
π

∫ π

2

0
< [G(tan (φ))ΨZ(tan (φ))] sec2 (φ) dφ (5.21a)

using [99, eq. (7)] where τ0 depends on the type of modulation (e.g. τ0 =
√

2 for BPSK)

[89] and G(·) is the Fourier transform of Q(τ0z) given by

G(w) =
j

2w

(√
π exp

(
− w2

2τ2
0

)
Γ

(
1
2
,− w2

2τ2
0

)
− 1

)
(5.21b)

using [99, Table III]. The integral in (5.21a) is numerically evaluated.

89



5.2.2.2 Achievable Diversity Gain

The achievable diversity gain of a wireless communication system can be determined from

the large SNR behavior of its error probability. Let the parameter SNR , PT

N0
denote

the instantaneous SNR (without fading). Obtaining an asymptotic expression for the er-

ror probability given in (5.21) when SNR → ∞ is very involved. On the other hand, the

achievable diversity gain can be determined using lower and upper bounds on the error

probability. Recall that the MRC of the signals received at the destination in a TDMA-

based AF cooperative system maximizes the instantaneous received SNR and hence results

in the minimal error probability. Thus, the error performance of an AF cooperative system

employing the R-DEGC scheme is lower bounded by the error performance of the corre-

sponding system with MRC (referred to here as R-MRC). In addition, it can be readily

shown that (see [75]) the instantaneous received SNR in an AF cooperative system where

all relays transmit simultaneously in the second time slot, is maximized if the ith relay gain

is chosen as

β̌i = wi

√
PR/N0

Γ0,i + 1
(5.22a)

where

w∗ =

(
I + HH†

)−1
h

‖
(

I + HH†
)−1

h‖2

(5.22b)

where w and h are column vectors whose ith elements are wi and
√

NÂF
i α0,iαi,N+1,

respectively, H is a diagonal matrix whose ith diagonal element is
√

NÂF
i αi,N+1, and

(·)† and ‖·‖2 denote the Hermitian and the 2-norm operations, respectively. Note that
∑N

i=1 w2
i = 1 and the total power used by the relays is equal to PR. It can be shown

that the instantaneous received SNR in this case is obtained as (5.3a) where γTi
is given

by (5.3c) with Ĉi replaced by Ĉi

N . This optimal spectral-efficient scheme is referred to as

S-MRC in this thesis. Therefore, the error probability of an AF cooperative system with

S-MRC is a lower bound on the error probability of the corresponding system employing

the S-DEGC scheme. Recall that the error probability in an AF system with MRC with

fixed-gain relays decays as 1
SNRN+1 when SNR →∞.

Now note that the instantaneous received SNR in (5.17a) can be lower-bounded as

γDEGC
t ≥ γLB

t =
γ0,N+1 +

∑N
i=1

γ0,iγi,N+1

Ĉi

L+
∑N

i=1
γi,N+1

Ĉi

. (5.23)
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The MGF of γLB
t conditioned on γγγN+1 is given by

MγLB
t |γγγN+1

(s) =


1− s

Γ0,N+1

L+
∑N

i=1
γi,N+1

Ĉi



−1

N∏

i=1


1− s

Γ0,i
γi,N+1

Ĉi

L+
∑N

l=1
γl,N+1

Ĉl



−1

(5.24)

in Rayleigh fading. Then, the MGF of γLB
t is obtained as

MγLB
t

(s) =
∫ ∞

0
. . .

∫ ∞

0︸ ︷︷ ︸
N−fold

MγLB
t |γγγN+1

(s)
N∏

i=1

fγi,N+1(γi,N+1)dγi,N+1

≈
Np∑

n1=1

. . .

Np∑

nN=1︸ ︷︷ ︸
N

N∏

i=1

ξni
MγLB

t |γγγN+1
(s)

∣∣∣∣∣γi,N+1=ζni
Γi,N+1

i=1,...,N
. (5.25)

An upper bound on the symbol error probability is given by

P DEGC
s ≤ P UB

s = E

(
Q

(
τ0

√
γLB

t

))
(5.26a)

which can be evaluated using the MGF of γLB
t as [89, eq. (5.3)]

P UB
s =

1
π

∫ π

2

0
MγLB

t

(
− τ2

0

2 sin2 φ

)
dφ. (5.26b)

Let SDEGC (n1, . . . , nN ) denote the summand term in (5.25). Note that Γi,j can be

rewritten as SNR σ̃2
i,j where σ̃2

i,j , σ2
i,j

Pi

PT
. Then, we have

lim
SNR→∞

SDEGC (n1, . . . , nN ) → 1
SNRN+1sN+1

KDEGC (n1, . . . , nN ) (5.27)

where KDEGC (n1, . . . , nN ) has a constant value for all channel and system parameters

given by

KDEGC (n1, . . . , nN ) =
L+

∑N
k=1

ζnk
σ̃2

k,N+1

σ̃2
0,k

σ̃2
0,N+1

N∏

i=1





ξni

ζni

L+
∑N

l=1 ζnl

σ̃2
l,N+1

σ̃2
0,l

σ̃2
i,N+1





. (5.28)

Thus, using (5.26b), the upper bound on the error probability tends to

lim
SNR→∞

P UB
e → 1

SNRN+1





1
π

∫ π

2

0

(
2
τ2
0

sin2 φ

)N+1

dφ

Np∑

n1=1

. . .

Np∑

nN=1

KDEGC (n1, . . . , nN )





=
1

SNRN+1

2N

√
πτ

2(N+1)
0

Γ
(
N + 3

2

)

Γ (N + 2)

Np∑

n1=1

. . .

Np∑

nN=1

KDEGC (n1, . . . , nN )

(5.29)

using [90, eq. (3.621.3)].

Since both the lower and upper bounds on the error probability decay as 1
SNRN+1 , an N -

relay AF cooperative system employing either R-DEGC or S-DEGC achieves full diversity,

N + 1.
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5.2.2.3 Average Output SNR

The average output SNR for the special case of a single-relay system is obtained in closed-

form as

ΓDEGC
t |N=1 =

π

2Γ1,2

√
Ĉ1Γ0,1Γ0,2




√
πΓ1,2 − 2π

√
LĈ1 exp

(
LĈ1

Γ1,2

)
Q




√√√√2LĈ1

Γ1,2







+
Ĉ1

Γ1,2
G

(
1,
LĈ1

Γ1,2

)
(Γ0,2 − LΓ0,1) + Γ0,1 (5.30)

where the function G(n, ·) is defined as G(·) , exp(·)En(·) where En(·) is the generalized

exponential integral function defined as En(x) =
∫∞
1

exp(−xt)
tn dt [91, eq. (5.1.4)].

The average output SNR in a general AF system with an arbitrary number of relays

(N > 1) employing either R-DEGC or S-DEGC can be evaluated by expanding the instan-

taneous received SNR in (5.17a) as

γDEGC
t =

4∑

k=1

φk (5.31a)

where

φk =
1

L+
∑N

i=1
γi,N+1

Ĉi





γ0,N+1, k = 1∑N
l=1

γ0,lγl,N+1

Ĉl

, k = 2

2√γ0,N+1
∑N

l=1

√
γ0,lγl,N+1

Ĉl

, k = 3

2
∑N

h=1

∑N
l>h

√
γ0,hγ0,lγh,N+1γl,N+1

ĈhĈl

, k = 4.

(5.31b)

Note that the denominator of φk involves weighted sums of independent random variables.

It can be shown that the PDF of such sums for the general case of non identical links

can be written in terms of sums of weighted exponential functions using the MGF and

partial fraction expansion. Note that a sum of i.i.d. exponential random variables is a

gamma random variable. Then, utilizing
∫∞
0

xn−1

A+x exp(−µx) = (n−1)!
µn−1 G (n, µA) (obtained

using [90, eq. (3.353.5)]), the average output SNR, ΓDEGC
t , is obtained as

ΓDEGC
t =

4∑

k=1

E (φk) (5.32a)

where E (φk), k = 1, . . . , 4, for the non i.d. links and the i.i.d. links (where Γi,j = Γ, ∀i, j
and Ĉi = C = Γ + 1), are given by

E (φ1) |non i.d. case = Γ0,N+1

N∑

i=1

aiG
(

1,
LĈi

Γi,N+1

)

E (φ1) | i.i.d. case =
CN

Γ
G

(
N,
LNC

Γ

)
(5.32b)
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E (φ2) |non i.d. case =
N∑

l=1

N∑

i=1i6=l

bl,iΓ0,l

∫ ∞

0

γl,N+1

Ĉl

g (γl,N+1) fγl,N+1 (γl,N+1) dγl,N+1

E (φ2) |i.i.d. case = N(N − 1)2
∫ ∞

0
γ

exp
(− γ

Γ

)

Γ
G

(
N − 1, (N − 1)

(
LC

Γ
+

γ

Γ

))
dγ

(5.32c)

E (φ3) |non i.d. case =
π

2

N∑

l=1

N∑
i=1
i6=l

bl,i

∫ ∞

0

√√√√γl,N+1g2 (γl,N+1)
Ĉl/ (Γ0,lΓ0,N+1)

fγl,N+1 (γl,N+1) dγl,N+1

E (φ3) | i.i.d. case =
π

2
N(N − 1)2

∫ ∞

0

√
CγG

(
N − 1, (N − 1)

(
LC
Γ + γ

Γ

))
exp

(− γ
Γ

)

Γ
dγ

(5.32d)

and

E (φ4) |N=2 =
π

2

√
Γ0,1Γ0,2

∫ ∞

0
[−π

√
L+

γ1,3

Ĉ1

exp


 Ĉ2

(
L + γ1,3

Ĉ1

)

Γ2,3





Q




√√√√2Ĉ2

(
L+ γ1,3

Ĉ1

)

Γ2,3





 +

√
πΓ2,3]

√
γ1,3

Ĉ1Ĉ2

Ĉ2

Γ2,3
fγ1,3 (γ1,3) dγ1,3

E (φ4) | N>2
non i.d. case

=
π

2

N∑

m=1

N∑

k>m

N∑
i=1

i6=k 6=m

∫ ∞

0

∫ ∞

0
b̃k,m,i

√
Γ0,mΓ0,kγm,N+1γk,N+1

ĈkĈm

g̃ (γm,N+1, γk,N+1) fγm,N+1 (γm,N+1) fγk,N+1 (γk,N+1) dγmN+1dγk,N+1

E (φ4) | N>2
i.i.d. case

=
π

12Γ2
N(N2 − 1)(N − 2)

∫ ∞

0

∫ ∞

0

√
γ1γ2

G
(

N − 2, (N − 2)
(
LC

Γ
+

γ1

Γ
+

γ2

Γ

))
exp

(
−γ1 + γ2

Γ

)
dγ1dγ2 (5.32e)

where

g (γl,N+1) = G
(

1,
Ĉi

Γi,N+1

(
L+

γl,N+1

Cl

))
(5.32f)

g̃ (γm,N+1, γk,N+1) = G
(

1,

(
L+

γm,N+1

Ĉm

+
γk,N+1

Ĉk

)
Ĉi

Γi,N+1

)
(5.32g)

and

ai =

(
Γi,N+1

Ĉi

)N−2

∏N
i=1
i 6=k

Γi,N+1

Ĉi

− Γk,N+1

Ĉk

(5.32h)

bl,i =
aiĈi

(
Γi,N+1

Ĉi

− Γl,N+1

Ĉl

)

Γi,N+1
(5.32i)

b̃k,m,i =
aiĈ

2
i

(
Γi,N+1

Ĉi

− Γm,N+1

Cm

) (
Γi,N+1

Ĉi

− Γk,N+1

Ĉk

)

Γ2
i,N+1

. (5.32j)
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Similar to (5.20a), the single and double integrals in (5.32c)-(5.32e) can be readily evalu-

ated using the numerical integration given in [91, eq. (25.4.45)].

5.2.2.4 Ergodic Capacity Analysis

The input-output relations in AF cooperative systems employing R-DEGC and S-DEGC

relaying are given in (5.11) and (5.15), respectively. Suppose that the transmitted signal

from the source is chosen from an i.i.d. Gaussian codebook in which the codewords are

long enough to capture the ergodic nature of the fading channels. Then, using [71, Theorem

1], the ergodic capacity of AF systems employing DEGC schemes is obtained as

EDEGC =
1
L
E

{
log

(
1 + γDEGC

t

)}
=

1
L
E

{
log

(
1 + Z2

)}
(5.33)

where γDEGC
t and L are given in (5.17a) and (5.17b), respectively. The factor 1

L
reflects the

fact that the information is transmitted over N + 1 orthogonal time slots in the R-DEGC

scheme and over two time slots in the S-DEGC scheme. In addition, recall that the S-DEGC

scheme achieves larger instantaneous received SNR than does the R-DEGC scheme. Thus,

it is expected that a system employing S-DEGC offers higher ergodic capacity than the

corresponding system with R-DEGC.

Note that although the CHF of Z is known and is given in (5.20), a closed-form expres-

sion for the PDF of Z which facilitates exact evaluation of the ergodic capacity in (5.33)

cannot be obtained, even for the spacial case of a single-relay system. Hence, in the sequel,

we derive upper and lower bounds on the ergodic capacity. An upper bound on the ergodic

capacity is obtained using Jensen’s inequality [96] as

EDEGC < EDEGC
UP =

1
L

log
(
1 + ΓDEGC

t

)
(5.34)

where ΓDEGC
t is given in (5.30) for the single-relay system and in (5.32) for AF cooperative

systems with an arbitrary number of relays.

Now note that log(1 + γDEGC
t ) can be lower-bounded as

log
(
1 + γDEGC

t

)
≥ log(γDEGC

t ) = 2 log(Z) (5.35)

which is very tight for γDEGC
t >> 1. Thus, a lower-bound on the ergodic capacity in (5.33)

is obtained as

EDEGC > EDEGC
LB =

2
L
E (log (Z)) . (5.36)

For evaluation of the lower bound given in (5.36), we will first find an integral represen-

tation for the logarithm function. Recall the infinite series representation of ln(z) given
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by [90, eq. (1.512.2)]

ln(z) = 2
∞∑

n=1

1
2n− 1

(
z − 1
z + 1

)2n−1

, ∀z > 0. (5.37a)

Note that other series for ln(z) given in [90, eqs. (1.512.1) and (1.512.3)] cannot be used

here because in both cases the radius of convergence is not from 0 to infinity. The series in

(5.37a) can be rewritten as

ln(z) = 2
∞∑

n=1

1
2n− 1

∫ ∞

0

t2n−2

Γ(2n− 1)
exp

(
−t

(
x + 1
x− 1

))
dt (5.37b)

=
∫ ∞

0

1
t

(1− exp (−2t)) exp
(
− 2t

x− 1

)
(5.37c)

=
∫ ∞

0

1
v

(exp (−2v)− exp (−2vz)) dv (5.37d)

where we have used the integral
∫∞
0

tn−1 exp
(
− t

µ

)
Γ(n) dt = µn [90, eq. (3.381.4)], the MacLau-

rin series for the hyperbolic sine function given in [90, eq. (1.411.2)], and the change of

variable v = t
z−1 in eqs. (5.37b)-(5.37d), respectively. The lower bound on the ergodic

capacity is then obtained as

EDEGC
LB =

2
L

∫ ∞

0

1
v

(exp (−2v)−ΨZ (2jv)) dv

=
4
L

∫ π

2

0

1
sin(2θ)

[exp (−2 tan(θ))−ΨZ (2j tan(θ))] dθ (5.38)

where ΨZ(·) is given in (5.20).

5.2.3 Numerical Results and Discussion

In this section, we present numerical examples for the performance of AF cooperative

systems employing the R-DEGC and S-DEGC schemes. In the numerical examples, it is

assumed that the average link SNRs follow an exponentially decaying power delay profile,

i.e. Γ0,i = Γi,N+1 = Γs,d exp (−δi), i = 1, . . . , N , where δ is the power decay factor.

Theoretical results in all examples are obtained assuming Np = 15.

5.2.3.1 Performance Analysis Results

Figures 5.4 and 5.5, respectively, show the bit error probabilities and the average output

SNR versus Γs,d of different AF cooperative systems. It is seen from both figures that

the theoretical results are in precise agreement with the simulation results. It is seen from

Figure 5.4 that the systems with R-DEGC or S-DEGC achieve full diversity. Figures 5.6

and 5.7 show the ergodic capacities of double-relay systems with i.i.d. links (δ = 0) and
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Figure 5.4. Bit error probabilities of different BPSK AF multi-relay systems in Rayleigh fading with

different power decay factors.

0 5 10 15 20

1

5

10

15

20

Γ
s,d

 (dB)

A
ve

ra
ge

 o
ut

pu
t S

N
R

, Γ
t (

dB
)

 

 

R−DEGC (analysis) 
S−DEGC (analysis) 
R−DEGC (simulation) 
S−DEGC (simulation) 
R−MRC 
S−MRC

δ=8 

δ=1
δ=1

δ=8 
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Figure 5.6. Ergodic capacities of AF double-relay systems in Rayleigh fading with i.i.d. links

(δ = 0).

non i.d. links (δ = 1), respectively. It is seen from both Figures 5.6 and 5.7 that the upper

bound on the ergodic capacity is tight in small SNR regions. For example, the inaccuracies

of the upper bound in the system employing S-DEGC with i.i.d. and non i.d. links are about

9% and 12% at 5 dB, respectively. The lower bound on the ergodic capacity, on the other

hand, gets very tight as SNR increases. This is because the inequality in (5.35) approaches

equality with increasing SNR.

In Figures 5.4-5.7, we have also plotted the bit error probabilities, the average output

SNRs, and ergodic capacities3 (obtained using Monte Carlo simulation) of AF systems with

R-MRC and S-MRC. It is seen from these figures that the gap between performances of

systems employing R-DEGC/S-DEGC and systems employing R-MRC/S-MRC increases

as the parameter δ increases. For instance, the gap between the double-relay systems with

R-DEGC and R-MRC at error probability 10−3 is about 1 dB and 1.2 dB for δ = 0 and

δ = 1, respectively. Also, the SNR loss between the double-relay system with S-DEGC

and the corresponding system with S-MRC at ergodic capacity 2 Bit/Sec/Hz is about 0.7 dB

for the i.i.d. case (δ = 0) and 1.5 dB for the non i.d. case (δ = 1). This performance loss

is a reasonable trade-off considering the low complexity and distributed implementation of
3The ergodic capacity of a system employing S-MRC can be obtained using (5.33) in whichL = 2 and γDEGC

t is replaced

by the corresponding instantaneous received SNR in an S-MRC system.
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Figure 5.7. Ergodic capacities of AF double-relay systems in Rayleigh fading with non i.d. links

(δ = 1).

the DEGC schemes.

In addition, using eq. (5.3), it can be readily shown that the instantaneous received SNRs

in systems with R-MRC and S-MRC get larger as the number of relays increases. Thus, as

seen in Figure 5.4, these systems offer better performances with increasing the number of

relays and achieve full diversity gains, as shown in Sections 5.1.2.1 and 5.2.2.2. Further-

more, note that in systems with R-MRC or R-DEGC, the destination should combine N +1

signals received from the source and N relays in N + 1 orthogonal time slots. However,

in systems with S-MRC or S-DEGC, the relays transmit simultaneously and hence the des-

tination combines two signals, the one received from the source in the fist time slot with

the signals received from the relays in the second time slot. Combining more signals at

the destination in systems with R-MRC or R-DEGC increases the total noise power at the

combiner output (e.g. see eq. (5.17)). Thus, as seen from Figure 5.4, systems with S-MRC

or S-DEGC achieve better performance gains than the corresponding systems with R-MRC

or R-DEGC, especially by increasing the number of relays. For instance, the performance

gaps between double-relay S-MRC and R-MRC systems with i.i.d. links (δ = 0), and be-

tween double-relay S-DEGC and S-MRC systems with i.i.d. links are, respectively, about

1 dB and 1.7 dB at error probability 10−4. These SNR gaps increase, respectively, about

1.3 dB and 0.8 dB in the corresponding triple-relay systems.

98



1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

Number of relays

E
rg

od
ic

 c
ap

ac
ity

 (
B

it/
S

ec
/H

z)

 

 

R−DEGC
S−DEGC
R−MRC
S−MRC

Γ
s,d

 =15 dB

Γ
s,d

 =10 dB

Figure 5.8. Ergodic capacities versus number of relays of different AF multi-relay systems operating

over Rayleigh fading channels with δ = 0.

Figure 5.8 compares the simulated ergodic capacities versus the number of relays of

different AF multi-relay systems. Recall that the information in systems with R-MRC and

R-DEGC is transmitted over N + 1 time slots. Thus, as seen from Figure 5.8, increasing

the number of relays degrades the ergodic capacity of these systems. However, in systems

with S-MRC and S-DEGC the relays transmit simultaneously in the second time slot. In

addition, using eqs. (5.3) and (5.17), it can be readily shown that systems with S-MRC and

S-DEGC achieve larger instantaneous received SNR at the destination than the correspond-

ing systems with R-MRC and R-DEGC, especially with increasing the number of relays.

Thus, as seen from Figure 5.8, systems with S-MRC and S-DEGC significantly outperform

those with R-MRC and R-DEGC, especially for larger numbers of relays.

Furthermore, using eq. (5.3) with Ĉi replaced by Ĉi/N , it can be readily shown that the

instantaneous received SNR in systems with S-MRC always become larger by increasing

the number of relays. Thus, in contrast to the systems employing R-MRC, the ergodic

capacity of systems with S-MRC improves by increasing the number of relays, as seen from

Figure 5.8. It is also seen that S-DEGC systems considered in Figure 5.8 achieve higher

ergodic capacities for larger numbers of relays. However, as discussed later in Section

5.2.3.2, increasing the number of relays does not necessarily improve the performance of a

99



system employing S-DEGC in small to moderate SNR regions.

5.2.3.2 Impact of Combining Loss

The proposed DEGC schemes achieve full diversity order while they are simpler to im-

plement than MRC because they do not require channel amplitude estimation. However,

adding more relays will not necessarily improve the performance for small to moderate

values of SNR. This is because the signals received at the destination are added together

with equal weights and hence those in a deep fade may degrade the performance. It is im-

portant to determine how much performance may be given up by adding relays in the low

complexity AF cooperative systems employing R-DEGC and S-DEGC. This issue, referred

to as combining loss [89], is examined in Figures 5.9-5.11.

Figures 5.9-5.11, respectively, show the bit error probabilities, average output SNRs,

and ergodic capacities versus number of relays for different AF cooperative systems. It

is seen that the systems with S-DEGC significantly outperform systems with R-DEGC

especially when the number of relays increases, as expected. In particular, as seen in Figure

5.11, the ergodic capacity of a system employing R-DEGC significantly deteriorates by

increasing the number of relays. This is mainly due to the repetition-based scheduling

protocol used in this system. It is also seen from Figure 5.11 that the upper bound on the

ergodic capacity in systems employing R-DEGC is tighter than in systems with S-DEGC

schemes especially for larger numbers of relays.

It is seen from Figures 5.9 and 5.10 that when the number of relays increases, the perfor-

mance does not necessarily improve. In fact, there is an optimum number of relays which

either maximizes the average output SNR, Nmax, or minimizes the error probability, Nmin.

As mentioned earlier, this is due to the combining of signals received at the destination with

equal weights. Note that the upper bound on the ergodic capacity in systems employing

S-DEGC follows the same behavior as the simulated ergodic capacity, as seen in Figure

5.11. Since the upper bound is a logarithm function of the average output SNR and and the

logarithm function is monotonically increasing with respect to its argument, Nmax in sys-

tems employing S-DEGC also denotes the optimum number of relays that maximizes the

ergodic capacity in these systems. Table 5.1 presents the optimum number of relays Nmax

and Nmin for R-DEGC and S-DEGC schemes under different sets of channel conditions.

It is seen from Table 5.1, Figure 5.9 and Figure 5.10 that the R-DEGC scheme is more

sensitive to the combining loss than the S-DEGC scheme. This is due to the repetition-

based scheduling protocol employed in the R-DEGC scheme, which requires combination
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Figure 5.9. Bit error probabilities versus number of relays of different BPSK AF multi-relay systems

operating over Rayleigh fading channels with δ = 0.5.
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operating over Rayleigh fading channels with δ = 0.5.

101



1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of relays 

E
rg

od
ic

 c
ap

ac
ity

 (
B

it/
S

ec
/H

z)

 

 

R−DEGC (simulation) 
S−DEGC (simulation)
R−DEGC (upper bound) 
S−DEGC (upper bound) 

Γ
s,d

 = 10 dB 

Γ
s,d

 = 5 dB 

Figure 5.11. Ergodic capacities versus number of relays of different AF multi-relay systems operat-

ing over Rayleigh fading channels with δ = 0.5.

of N + 1 branches at the destination. Combining more branches in small SNR regions will

more probably contribute to the noise rather than signal enhancement and consequently

degrades the performance. Therefore, specifying the optimum number of relays is partic-

ularly important for the R-DEGC scheme since adding more relays not only degrades the

performance but also requires more time slots and hence degrades the spectral efficiency

(as seen in Figure 5.11) as well as requiring higher complexity. In addition, it is seen from

Table 5.1 and Figures 5.9 and 5.10 that the impact of combining loss on the average output

SNR is more severe than on the bit error probability. Note that the expression given in

(5.32) for the average output SNR has less computational complexity than the error proba-

bility expression given in (5.21), especially as the number of relays increases. Thus, using

the expression in (5.32), one can get an estimate for the best number of relays to be used

in an AF system employing the proposed DEGC schemes. Note that upon determining the

optimal number of relays, a selection algorithm can be employed to select the best relays

(based on a given set of criteria) among a pool of potential terminals for cooperating with

the source. For example, an algorithmic relay selection method is proposed in [77] which

selects the best relays based on the first- and second-order statistics of the individual link

SNRs.
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Table 5.1. Optimum number of relays for different AF multi-relay systems employing the proposed

R-DEGC and S-DEGC schemes

Γs,d (dB) δ NR-DEGC
max NR-DEGC

min NS-DEGC
max NS-DEGC

min

1 0.25 1 1 7 8

1 0.3 1 1 6 7

1 0.5 1 1 3 4

5 0.25 1 2 8 9

5 0.3 1 2 7 8

5 0.5 1 1 4 5

10 0.3 1 2 8 10

10 0.4 1 1 6 7

10 0.5 1 1 5 6

15 0.4 1 3 6 9

5.3 Low Complexity Noncoherent Receiver

As mentioned earlier, the general noncoherent ML detection of an AF multi-relay coopera-

tive system is too complex for implementation. In addition, the suboptimal noncoherent re-

ceivers proposed for AF cooperative systems either have high complexity or do not achieve

full spatial diversity. In this section, we propose employment of a detection scheme in a

noncoherent AF system based on square-law envelope (energy) detection [89] at the des-

tination. Note that the relays must re-transmit their received signals over orthogonal time

slots4. Then, a selection scheme examines the outputs at the square-law detector obtained

in all time slots and selects the maximum one for detection. Thus, this scheme is referred

to as maximum energy selection (MES). We obtain an expression for evaluation of the sym-

bol error probability of the MES scheme when employed in a noncoherent multi-relay AF

cooperative system with M -ary FSK signaling. It is also shown that an AF cooperative

system employing the MES scheme achieves full spatial diversity.

5.3.1 System Model

Consider a multi-relay cooperative system shown in Figure 2.2. It is assumed that the

source transmits the signal x0 chosen from an M -ary FSK constellation in which all wave-
4It can be shown that if the relays transmit simultaneously, only second-order diversity can be achieved regardless of the

number of relays.
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forms during the symbol interval are equiprobable and have the same energy Es
5.

The source broadcasts the signal x0 in the first time slot. The relays and the destination

receive the signal yT0
i , i = 1, . . . , N +1, given in (5.1). The signal received at the ith relay,

yT0
i , i = 1, . . . , N , is amplified by a gain ÂF

i and then forwarded to the destination in a

predetermined time slot. The amplification at the ith relay is given by (5.2c) ensuring that

a long-term power constraint at the relay is satisfied [41]- [43]. The signal received at the

destination through the ith relay is given by .

yTi

N+1 = ÂF
i αi,N+1y

T0
i + nTi

N+1 = ÂF
i α0,iαi,N+1x0 + ÂF

i αi,N+1n
T0
i + nTi

N+1. (5.39)

The destination employs a square-law detector at each branch. Without loss of generality,

we can assume that the first symbol from the signal constellation is sent. The square-law

detector output for the ith branch is given by

Vi,m =





∣∣∣2α0,N+1Es + UT0
N+11

∣∣∣
2
, i = 0 and m = 1∣∣∣2Aiα0,iαi,N+1Es + Aiαi,N+1Ui1 + UTi

N+11

∣∣∣
2
, i = 1, . . . , N and m = 1∣∣∣UT0

N+1m

∣∣∣
2
, i = 0 and m = 2, . . . , M∣∣∣Aiαi,N+1Uim

+ UTi

N+1m

∣∣∣
2
, i = 1, . . . , N and m = 2, . . . ,M

(5.40)

where the random variables Ukh
, k = 1, 2, . . . , N + 1, h = 1, 2, . . . ,M are independent

complex Gaussian random variables with zero mean and variance 4EsN0 [100].

At the destination, an MES scheme is employed which selects the maximum output

from all branches. The destination decision rule is then given by

[
î, m̂

]
= arg max

i=0,...,N

m=1,...,M

{Vi,m} (5.41)

where î is the selected branch and m̂ is the detected symbol.

5.3.2 Performance Analysis of Noncoherent MES Scheme

5.3.2.1 Error Probability Analysis

The MES scheme in an AF N -relay system selects the maximum outputs of the square-

law detector obtained in N + 1 time slots. Assuming the first symbol from the signal

constellation is sent, then Vi,1, i = 0, . . . , N , contains both signal and noise terms, whereas

Vi,m, i = 0, . . . , N , m = 2, . . . , M , consists of noise only. Thus, a symbol error occurs

if a Vi,m, m 6= 1, i = 0, . . . , N , is greater than all Vi,1, i = 0, . . . , N . Therefore, the
5Assuming each transmission has a unit duration, the symbol energy can be considered as the transmit power [73].
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symbol error probability in a noncoherent M -FSK AF multi-relay system employing the

MES scheme is given by

P MES
s = Pr


 max

i=0,...,N
{Vi,1} < max

i=0,...,N

m=2,...,M

{Vi,m}

 . (5.42)

Note that V0,m and Vi,m|γi,N+1, i = 1, . . . , N , and m = 1, . . . , M are exponential random

variables with mean λi,m given by

λi,m =





4EsN0 (1 + Γ0,N+1) , i = 0 and m = 1
4EsN0, i = 0 and m = 2, . . . ,M
4EsN0 (γi,N+1 + 1) , i = 1, . . . , N and m = 1
4EsN0

(
γi,N+1

Ĉi

+ 1
)

, i = 1, . . . , N and m = 2, . . . , M.

(5.43)

Now, let W = maxi=0,...,N {Vi,1} and U = max i=0,...,N

m=2,...,M
{Vi,m}. Then, the symbol

error probability in (5.42) can be written as

P MES
s = Pr (W < U)

=
∫ ∞

0
· · ·

∫ ∞

0︸ ︷︷ ︸
N−fold

{∫ ∞

0
Pr (W < u|U = u,γγγN+1) fU |γγγN+1

(u)du

}

︸ ︷︷ ︸
P MES

e|γγγN+1

fγγγN+1

(
γγγN+1

)
dγγγN+1

(5.44a)

where γγγN+1 = [γ1,N+1, γ2,N+1, . . . , γN,N+1] is vector of instantaneous received SNRs

over the relay-destination links,

Pr (W < u|U = u,γγγN+1) = FV0,1(u)
N∏

i=1

FVi,1|γi,N+1
(u)

=
N∏

i=0

(
1− exp

(
− u

λi,1

))

= 1 +
N∑

k=1

N∑

i1=1

N∑

i2>i1

. . .
N∑

ik>ik−1

(−1)k exp

(
−u

k∑

m=1

1
λim,1

)

(5.44b)

in which FVi,j
(·) denotes CDF of an exponential random variable, and

fU |γγγN+1
(u) =

M∑

k=2

fV0,k
(u)

M∏
l=2
l 6=k

FV0,l
(u)

N∏

i=1

M∏

m=2

FVi,m|γi,N+1
(u)

+
M∑

k=2

N∑

i=1

fVi,k|γi,N+1
(u)

M∏

m=2

FV0,m
(u)

M∏
h=2
h6=k

N∏
l=1
l 6=i

FVl,h|γl,N+1
(u). (5.44c)

The expression in (5.44c) can be simplified because fU |γγγN+1
(u) can be written as a weighted

sum of exponential functions as [101, eqs. (8.16) and (8.21)]

fU |γγγN+1
(u) =

1
4EsN0

∑
v

Wv

(
λ̃λλ

)
exp

(
− u

4EsN0
Pv

(
λ̃λλ

))
(5.44d)
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where λ̃λλ denotes the vector of λ̃i,m , λi,m

4EsN0
, i = 0 . . . , N , m = 2, . . . , M , and Wv (·) and

Pv (·), v = 1, 2, . . . are simple functions in terms of sum of 1
λ̃i,m

, i ∈ {0, 1, . . . , N}, m ∈
{2, 3, . . . ,M}. The funcations Wv (·) and Pv (·) can be readily obtained by expanding eq.

(5.44c). For instance, for the case of a BFSK single-relay system, one hasW1 = P1 = 1
λ̃0,2

,

W2 = P2 = 1
λ̃1,2

, and W3 = P3 = 1
λ̃0,2

+ 1
λ̃1,2

. Using (5.44b) and (5.44d), the conditional

probability of symbol error given γγγN+1 is obtained as

P MES
s|γγγN+1

(γγγN+1) = 1 +
∑
v

N∑

k=1

N∑

i1=1

N∑

i2>i1

. . .
N∑

ik>ik−1

(−1)k
Wv

(
λ̃λλ

)

Pv

(
λ̃λλ

)
+

∑k
m=1

1
λ̃im,1

.

(5.44e)

The symbol error probability in (5.44) can be evaluated using the numerical integration

method given in [91, eq. (25.4.45)] as

P MES
s ≈

Np∑

n1=1

. . .

Np∑

nN=1

N∏

i=1

ξni
P MES

e|γγγN+1
(γγγN+1)

∣∣∣∣∣γi,N+1=ζni
Γi,N+1

i=1,...,N
. (5.45)

5.3.2.2 Achievable Diversity Gain

Achievable diversity gain in a noncoherent AF cooperative system employing the proposed

MES scheme can be determined from the large SNR behavior of the symbol error probabil-

ity given in (5.44). The asymptotic symbol error probability for sufficiently large values of

SNR can be examined by considering the value of the first nonzero order derivative of the

pdf of the random variable W |γγγN+1 at the origin. Note that W is the maximum of N + 1

independent random variables, Vi,1, i = 0, 1, . . . , N . Thus, according to [102], the first

N − 1 order derivatives of the PDF of W at the origin are zero and its N th order derivative

at zero is given by [102, eq. (14)]

∂NfW

∂wN
(0) = (N + 1)!

N∏

i=0

fVi,1(0). (5.46)

Thus, using (3.21), we have

Pr (W < u|U = u,γγγN+1) → uN+1

(4EsN0)
N+1

N∏

i=0

1
λ̃i,1

(5.47)

for large values of SNR. Then, by taking the average of (5.47) with respect to the ran-

dom variable U |γγγN+1 having the PDF given in (5.44d), an asymptotic expression for the

conditional symbol error probability, P MES
s|γγγN+1

, is obtained as

P MES
s|γγγN+1

→ (N + 1)!
N∏

i=0

1
λ̃i,1

∑
v

Wv

(
λ̃λλ

)
Pv

(
λ̃λλ

)−(N+2)
(5.48)
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using
∫∞
0 xn exp (−µx) dx = n!µ−n−1 [90, eq. (3.351.3)]. Let SMES (n1, . . . , nM ) denote

the summand term in the symbol error expression given in eq. (5.45). Note that

lim
SNR→∞

λ̃0,1 = SNRσ̃2
0,N+1

lim
SNR→∞

λ̃i,1|γi,N+1=ζni
Γi,N+1 = SNRζni

σ̃2
i,N+1, i = 1, . . . , N (5.49)

and since

lim
SNR→∞

λ̃0,m = 1, m = 2, . . . ,M

lim
SNR→∞

λ̃i,m|γi,N+1=ζni
Γi,N+1 =

ζni
σ̃2

i,N+1

σ̃2
0,i

, i = 1, . . . , N, m = 2, . . . , M (5.50)

then

lim
SNR→∞

∑
v

Wv

(
λ̃λλ

)
Pv

(
λ̃λλ

)−(N+2)
∣∣∣∣∣γi,N+1=ζni

Γi,N+1
i=1,...,N

→ KMES (n1, . . . , nM ) (5.51)

where KMES (n1, . . . , nM ) has a constant value depending on the channel and system pa-

rameters. Thus,

lim
SNR→∞

P MES
s → 1

SNRN+1

(N + 1)!
σ̃2

0,N+1

Np∑

n1=1

. . .

Np∑

nN=1

N∏

i=1

ξni

ζni
σ̃2

i,N+1

KMES (n1, . . . , nM )

(5.52)

which indicates that a noncoherent system with MES scheme achieves full spatial diversity.

5.3.3 Numerical Results

In this section, numerical examples for the performance of different noncoherent AF coop-

erative systems are presented. We consider systems in Rayleigh fading with both i.i.d links

(Γ0,i = Γi,N+1 = Γs,d) and non i.d. links assuming Γ0,i = Γi,N+1 = i
16Γs,d where Γs,d

is the average SNR over the direct link. Figures 5.12 and 5.13, respectively, show bit error

probabilities for single-relay and double-relay noncoherent BFSK AF cooperative systems

employing the proposed MES scheme. Theoretical results were obtained using (5.45) as-

suming Np = 15. It is clearly seen from both figures that the theoretical results precisely

match the simulation results. It is also clearly seen that the slopes of the bit error proba-

bility curves steepen from the single-relay systems to the double-relay systems, indicating

higher diversity gains achieved in systems with larger numbers of relays, as expected.

For comparison purposes, in Figures 5.12 and 5.13, we have also plotted the bit error

probabilities (obtained from Monte Carlo simulation) of the corresponding coherent BFSK

AF cooperative systems employing R-MRC or SC [15] as well as noncoherent BFSK sys-

tems with SC.

107



0 10 205 15 25
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Γ
s,d

 (dB)

B
it 

er
ro

r 
pr

ob
ab

ili
ty

 

 

 

MES (analysis)
MES (simulation)
Noncoherent SC
Coherent SC
R−MRC 

i.i.d. links

non i.d. links

Figure 5.12. Bit error probabilities for different coherent and noncoherent BFSK AF single-relay

systems.
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Figure 5.13. Bit error probabilities for different coherent and noncoherent BFSK AF double-relay

systems.
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It is seen from both figures that the proposed MES scheme performs slightly inferior

to the noncoherent SC scheme in small SNR regions and/or in more faded systems, but

achieves nearly the same and even slightly better performance as SNR increases. This is

because in small SNR regions or in a more faded channel, the branch energy is more likely

dominated by the noise term. However, by increasing SNR, the gap between performance

of MES and SC decreases. This results can be justified by the fact that the MES scheme

selects the branch with the maximum energy taking into account the signs of the real and

imaginary components of the noise term. Since the real part of the noise term which is

relevant to detection tends to decrease the branch energy [103], the MES scheme is more

likely to select the branch with a small real noise component. On the other hand, the SC

scheme does not take advantage of the statistical nature of the noise for its operation and

selects the branch with the maximum signal to noise power ratio. Therefore, as seen in

Figures 5.12 and 5.13, at sufficiently large values of SNR, the MES scheme performs very

closely to (or even better than) the SC scheme. Also recall that the conventional SC scheme

requires instantaneous amplitude information of all links available at the destination [15].

Thus, the proposed MES scheme is preferred in practice because it offers almost the same

performance as the noncoherent SC while requiring no CSI.

It is also seen that the coherent AF systems employing either R-MRC or SC outperform

noncoherent systems employing MES, as expected. For instance, the SNR losses in the

single-relay system with i.i.d. links employing the MES scheme at the bit error probabil-

ity 10−3 are about 2.2 dB and 3.5 dB comparing to the corresponding coherent systems

employing SC and R-MRC, respectively.
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Chapter 6

Multi-Hop Diversity Systems

In this chapter we examine performance of multi-hop diversity transmission systems

employing either a DF or an AF relaying. While the superior performance of multi-hop

diversity transmission systems over multi-hop systems without diversity has been shown

in [26], the outage and error probabilities have not been accurately evaluated. Closed-form

expressions for evaluation of the outage and bit error probabilities of multi-hop diversity

transmission systems employing fixed AF and DF relaying protocols are derived. In ad-

dition, as mentioned earlier and as the analysis shows, a multi-hop diversity transmission

system with fixed DF relaying does not achieve diversity gain. A selective relaying scheme

for multi-hop diversity transmission, which adapts transmissions based on threshold tests

on the received SNR at each relay, is proposed and evaluated. It is shown that a multi-hop

diversity transmission system employing the proposed selective DF or AF relaying protocol

achieves diversity gain equal to the number of hops.

In Section 6.1, system models for various AF and DF multi-hop diversity transmis-

sion systems employing either the fixed relaying or the proposed selective relaying are

described. Section 6.2 and Section 6.3, respectively, present the outage probability and bit

error rate analyses for multi-hop diversity transmission systems employing different types

of relaying protocols. Numerical results and discussions are given in Section 6.4.

A version of this chapter has been accepted for publication in IEEE Transactions on Communications and has been

published in part in Proceedings of IEEE Global Communications Conference (GLOBECOM), 1:4385-4390 (2007) and

Proceedings of IEEE International Conference on Communications (ICC), 1:3748-3754 (2008) .
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6.1 System Models

Consider a K-hop diversity transmission system as shown in Figure 2.3 operating over in-

dependent, not necessarily identical Rayleigh fading channels. The MAC model considered

here divides the available bandwidth into orthogonal channels across frequency and these

channels are allocated to each source terminal. In addition, due to a half-duplex constraint,

each relay node must transmit on separate channels. Hence, the MAC protocol achieves

orthogonal relaying by division of each channel into orthogonal subchannels across time

(using a time-division scheme) [4]. We also assume that the CSI is only known at the re-

ceiving terminals. Thus, the total available power, PT , is uniformly allocated among the

transmitting terminals1.

In the following subsections, we describe the channel models for two relaying protocols,

namely fixed relaying and selective relaying, that can be employed in multi-hop diversity

transmission systems. In systems with a fixed relaying scheme, all relays participate in the

transmission, while in systems with the proposed selective relaying, particular relays will

be selected and then cooperate in the transmission.

6.1.1 Systems With Fixed Relaying

In the first time slot, the source terminal initiates transmission by broadcasting its signal.

In general, in the (k + 1)th time slot, k = 0, 1, . . . ,K − 1, the terminal Tk transmits signal

xk and consequently its following terminals, Tk+1, Tk+2, . . . , TK , receive the signal

y
(Tk)
i = αk,ixk + ni, i = k + 1, . . . , K (6.1)

where yTk

i denotes the signal received at the ith terminal through the kth terminal. The

signals received at the ith terminal through its preceding terminals, yT0
i , yT1

i , . . . , y
Ti−1

i , are

combined using MRC diversity [26] and then the combiner output is either decoded and

re-encoded (in systems with DF relaying) or amplified (in systems with AF relaying) to

generate the signal xk for re-transmission at the (k + 1)th time slot. In systems employing
1Uniform power allocation policy is employed here due to its simplicity. In practice, more power may be required when

the number of combining branches increases (e.g. for relays close to the destination). For example, in [26] approximate

optimal power allocations for multi-hop diversity transmissions systems employing fixed DF or AF relaying schemes are

given for the case where the noise powers at all terminals are equal. The optimal power corresponding to each terminal

obtained in [26] is a portion of the total available power and depends on the inter-terminal distances. Thus, more power is

allocated to the terminals closer to the destination. Note that for the case where the terminals are fixed, the optimal powers

will be constant portions of the total available power, and hence the analysis presented here is extendable to performance

evaluation of such systems.
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DF relaying, we focus on the simplest DF relaying protocol, i.e. the un-coded DF [34], in

which each relay demodulates its combiner output, re-modulates it and then forwards. In

addition, note that the combining scheme at a terminal in DF multi-hop diversity systems

requires only the knowledge of CSI of its preceding links. As mentioned in Section 5.2.1.1,

this information can be obtained in a decentralized manner using the RTS packet received

at a terminal from its preceding terminals. Thus, a multi-hop diversity transmission system

with DF relaying is a suitable candidate for application in ad hoc wireless networks.

In systems with AF relaying, the amplification gain used at each relay is the quotient of

the transmitted power and the received power at that relay [26]. In addition, the weight fac-

tors of the MRC combiner at a terminal in an AF multi-hop diversity system are obtained

assuming that the noise components of the signals received at that terminal are uncorre-

lated [26]2. Note that the combining scheme at a terminal in systems with an AF relaying

requires the knowledge of CSI of all links between that terminal and all its preceding termi-

nals involved in the cooperation. This implies that there should be a centralized mechanism

to provide the required CSI for combining operation at each terminal. Thus, multi-hop di-

versity transmission systems with AF relaying are suitable for applications in the uplink of

cellular multi-hop networks.

6.1.2 Systems With Selective Relaying

The performance of multi-hop diversity transmission systems employing fixed DF relaying

strategy is limited by the direct transmission between the source and the first relay terminal

[26]. However, the relay terminals can have knowledge of the fading coefficients (e.g. the

transmission of RTS packets from the source at the beginning of its transmission allows for

the estimation of α0,k at the kth relay terminal). Thus, the relay terminals can decide to

cooperate or not with the source terminal in its transmission, based on the quality of their

received signals. If the total instantaneous received SNR at the kth, k = 1, · · · ,K−1, relay

terminal is above a certain threshold, that relay will cooperate in the transmission. However,

if the received instantaneous SNR at the kth relay falls below the threshold, the source

terminal repeats its signal at the (k + 1)th time slot. Note that the selective DF relaying

scheme for dual-hop diversity transmission as proposed in [4] requires either a channel
2Note that the propagated noise terms received at a terminal from its preceding terminals are not independent, in general

[26]. Obtaining the optimal combining scheme that incorporates this correlation is beyond the scope of this thesis. However,

the output SNR in an AF multi-hop diversity system employing the combining scheme considered here is a lower bound on

the output SNR of the optimal combiner [26].
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measurement at the source (e.g. by utilizing the CTS packet received from the relay) or

a standard carrier sense scheme to adapt source transmission based on the quality of the

received signal at the relay. In our proposed scheme, we assume that a carrier sense scheme

is utilized to identify the status of the channel at each time slot and the source adapts its

transmission accordingly (i.e. if the channel was sensed idle, the source repeats its signal).

The threshold used to examine which relay in a K-hop diversity transmission system is

allowed to cooperate can correspond to a certain target rate, R, in the direct transmission

scheme transmitting in 1
K of the total transmission time, i.e., γ

(R)
th = 2KR − 1 [4].

6.2 Outage Probability Analysis

6.2.1 Systems With Fixed Relaying

6.2.1.1 DF Relaying

In a decoded relaying multi-hop diversity system, an outage event occurs when an outage

occurs at any intermediate terminal along the multi-hop path [26]3. Thus, the probability

of outage is given by [26]

Pout = 1−
K∏

k=1

(1− Poutk) (6.2a)

where Poutk denotes the probability of outage at the kth terminal. This probability is the

probability that the received SNR at the kth terminal falls below a certain threshold, γth.

The instantaneous received SNR at the kth terminal, k = 1, . . . , K, is X̃k =
∑k−1

i=0 γi,k.

Recall that γi,k is an exponential random variable with average Γi,k in Rayleigh fading.

Thus, utilizing the MGF of X̃k, MX̃k
(s), Poutk is obtained as

Poutk = Pr
(
X̃k ≤ γth

)
= L−1

(
MX̃k

(−s)
s

)
|
γth

= L−1

(
1

s
∏k−1

i=0 (1 + sΓi,k)

)
|
γth

=





1−∑k−1
i=0 âi exp

(
− γth

Γi,k

)
, Γi,k 6= Γj,k, i 6= j, i, j = 0, 1, . . . , k − 1

γ

(
k,

γth
Γi,k

)

(k−1)! , Γi,k = Γj,k, i 6= j, i, j = 0, 1, . . . , k − 1
(6.2b)

3It is assumed that the relay terminals in outage do not back off during the transmission (i.e. the link between the source

and that relay does not disconnect). For the case where a relay terminal in outage backs off, transmission can continue with

the rest of the non-outage relays that consequently may lead to a better outage probability performance. This case is outside

of the scope of this thesis and is not considered here.
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where L−1 is the inverse Laplace transform operator, γ(·, ·) denotes the lower incomplete

gamma function [90, eq. (8.350.1)], and

âi =
Γk−1

i,k∏k−1
j=0

j 6=i
Γi,k − Γj,k

. (6.2c)

6.2.1.2 AF Relaying

In an amplified relaying multi-hop diversity transmission system, the outage probability is

the probability that the instantaneous received SNR at the destination, γMHD
t , falls bellow a

threshold, γth, i.e.,

Pout = Pr
(
γMHD

t ≤ γth

)
(6.3)

where the instantaneous received SNR at the destination, γMHD
t , is given by [26]

γMHD
t = γ0,K +

K−1∑

k=1

γ̃k,K (6.4a)

where γ̃k,K is the received SNR at the destination over the branch of the diversity combiner

corresponding to the received signal from the kth relay and is given by

γ̃k,K =
γk,K γ̂k

γk,K + γ̂k + 1
(6.4b)

where

γ̂k = γ0,k +
k−1∑

j=1

γ̃j,k (6.4c)

where γ̃j,k is the received SNR at the kth terminal over the branch of the diversity combiner

corresponding to the received signal from the jth relay given by (6.4b) in which k and K

are respectively replaced by j and k.

The instantaneous received SNR at the destination, γMHD
t , is constituted of dependent

summands and the derivation of its PDF which facilitates the analytical evaluation of the

outage probability is very involved, if not impossible. Using eq. (3.21), outage probability

for sufficiently large values of SNR of an AF multi-hop diversity system can be evaluated

by having the value of the first non-zero derivative of the PDF of γMHD
t at the origin. The

following lemmas are used for obtaining the value of derivatives of the PDF of the received

SNR (up to the first non-zero one) in a K-hop diversity transmission system employing AF

relaying.

Lemma 6.1: Let V =
∑K−1

k=0 Vk where Vk, k = 0, 1, . . . ,K − 1 denotes a nonnegative

random variables. Assume that V0 is independent of Vk, ∀k ∈ {1, 2, . . . , K − 1}, but Vi
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and Vj , ∀i, j = {1, · · · , K − 1} (i 6= j) are dependent random variables. Then, the first

K−2 order derivatives of the PDF of V at the origin are zero and its K−1 order derivative

is given by
∂K−1fV

∂vK−1
(0) = fV0(0)fV1,V2,...,VK−1(0, 0, . . . , 0) (6.5)

where fV1,V2,...,VK−1(·, ·, . . . , ·) denotes the joint PDF of V1, V2, . . . , VK−1.

Proof: A proof of Lemma 6.1 is given in Appendix A.7.

It should be mentioned that for the special case that Vi is independent of Vj , ∀i, j ∈
{1, · · · ,K − 1} (i 6= j), Lemma 6.1 reduces to the Proposition 2 proved in [14].

Now, note that the instantaneous received SNR, γMHD
t , in (6.4) is the sum of K random

variables in which γ0,K is independent of γ̃k,K , k = 1, . . . , K − 1 and γ̃m,K and γ̃n,K ,

m 6= n, m, n ∈ {1, . . . , K − 1} are dependent random variables. Thus, according to

Lemma 6.1, the first K − 2 order derivatives of γMHD
t at the origin are zero and the value

of its K − 1 order derivative is given by

∂K−1fγMHD
t

∂γK−1
(0) = fγ0,K

(0)fγ̃1,K ,γ̃2,K ,...,γ̃K−1,K
(0, 0, . . . , 0). (6.6a)

However, calculation of the joint PDF of γ̃1,K , γ̃2,K , . . . , γ̃K−1,K requires analytic compu-

tation of the determinant of a K(K+1)
2 × K(K+1)

2 Jacobian matrix and then a K(K−1)
2 -fold

integration, which are very involved. However, note that the value of this joint PDF at the

origin can be evaluated as

fγ̃1,K ,γ̃2,K ,...,γ̃K−1,K
(0, 0, . . . , 0) =

Pr(γ̃1,K < ε1, γ̃2,K < ε2, . . . , γ̃K−1,K < εK−1)
ε1, . . . , εK−1

(6.6b)

where εi → 0, i = 1, . . . , K − 1. Thus, the value of each instantaneous received SNR

at the destination through the kth relay, γ̃k,K , k = 1, . . . , K − 1, must tend to zero. This

means that either γk,K → 0 or γ̂k → 0. Except for the first relay terminal, it is more likely

that γk,K → 0. Since γ̂k is the sum of k nonnegative random variables, it is less probable

that all of them are near zero, especially for large values of SNR. This implies that γ̃k,K ,

k = 2, . . . ,K − 1, near zero is more likely only a function of γk,K for sufficiently large

values of SNR. Therefore, it can be assumed, as an approximation for sufficiently large

values of SNR, that γ̃m,K and γ̃n,K near the origin, for m 6= n and m, n = 1, . . . , K − 1,

are independent, and thus the value of the K − 1 order derivative of the PDF of γMHD
t at

zero can be approximated by

∂K−1fγMHD
t

∂γK−1
(0) ≈ fγ0,K

(0)
K−1∏

k=1

fγ̃k,K
(0) (6.7a)
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where fγ0,K
(0) = 1

Γ0,K
for Rayleigh fading and fγ̃k,K

(0), k = 1, . . . , K − 1 is given by the

following lemma.

Lemma 6.2: The value of the PDF of γ̃k,K at zero is given by

fγ̃k,K
(0) = fγk,K

(0) + fγ̂k
(0) (6.7b)

where fγk,K
(0) = 1

Γk,K
and

fγ̂k
(0) =

{
1

Γ0,1
, k = 1

0, k 6= 1
(6.7c)

for Rayleigh fading.

Proof: A proof of Lemma 6.2 is given in Appendix A.8.

Note that eqs. (6.7b) and (6.7c) derived in Lemma 6.2 are consistent with our discussion

for the large-SNR approximation used in (6.7a).

Thus, the outage probability of a K-hop diversity transmission system employing fixed

AF relaying in Rayleigh fading for sufficiently large values of SNR is obtained from (3.21)

with t = K − 1 and ∂K−1fγt

∂γK−1 (0) replaced by (6.7).

6.2.2 Systems With Selective Relaying

6.2.2.1 DF Relaying

In a multi-hop diversity transmission system employing fixed DF relaying, occurrence of

an outage event at the first relay terminal limits the outage performance. In systems with

selective DF relaying, the goal is to exploit the full spatial diversity by avoiding the occur-

rence of an outage event at the relay terminals. Assuming γth ≤ γ
(R)
th guarantees that an

outage event does not occur at the intermediate participating relay terminals (if any), as the

instantaneous received SNR at each cooperating terminal is already above the threshold,

γth. Thus, in a multi-hop diversity transmission system employing selective DF relaying,

the outage event at the destination is equivalent to the event

K−1⋃

k=0

(
X̂k ≤ γth

)
(6.8a)

where X̂k denotes the instantaneous received SNR at the destination conditioned on a set

of k participating relays in the transmissions and is given by

X̂k = (K − k) γ0,K +
∑

i∈Ck

γi,K (6.8b)
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where Ck denotes the set of k specific cooperating terminals. Since the events involved in

the union in (6.8a) are mutually independent, the outage probability is obtained as

Pout =
K−1∑

k=0

Pr
(
X̂k ≤ γth

)
(6.9a)

and since the set of cooperating terminals, Ck, is a random set,

Pr
(
X̂k ≤ γth

)
=

∑

Ck

Pr


(K − k) γ0,K +

∑

i∈Ck

γi,K ≤ γth


 Pr (Ck)

=
∑

Ck


1− b̂0,k exp

(
− γth

(K − k)Γ0,k

)
−

∑

i∈Ck

b̂i,k exp

(
− γth

Γi,k

)
 Pr (Ck) (6.9b)

where

b̂0,k =
(K − k)kΓk

0,k∏
i∈Ck

((K − k)Γ0,k − Γi,k)

b̂i,k =
Γk

i,k

(Γi,k − (K − k)Γ0,k)
∏

j∈Ck

j 6=i
(Γi,k − Γj,k)

(6.9c)

and the probability that k specific relays cooperate in the transmission, Pr(Ck), is obtained

by utilizing a tree diagram illustrating all ways that relays can cooperate in a multi-hop

diversity scheme with selective relaying. The tree diagram corresponding to a K-hop di-

versity scheme consists of K stages with 2k−1 branches at the kth stage, k = 1, · · · ,K4,

and the total number of branches is 2K − 1. For example, Figure 6.1 shows the tree dia-

gram of a triple-hop diversity transmission system employing selective DF relaying. Let qk

denote the path in the tree diagram associated with a particular set of k participating relay

terminals, Ck. The probability of set Ck, Pr(Ck), can be then calculated as

K∏

j=2

ηqk,j (6.9d)

where ηqk,j denotes the probability associated with the branch in the jth stage, j = 2, . . . , K,

over the path qk in the tree diagram given by

ηqk,j = κj + (−1)κjPr




j−2∑

i=0

ζ
(qk)
i γi,j−1 < γ

(R)
th


 (6.9e)

where ζ
(qk)
i ∈ {0, 1} , i = 1, · · · , k − 2, ζ

(qk)
0 = k − 1−∑k−2

i=1 ζ
(qk)
i and

κj =
{

0, Tj−1 does not cooperate
1, Tj−1 cooperates. (6.9f)

4The kth stage represents the potential branches deployed at the kth transmission time slot.
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(k = 1)(k = 1)

Source repeats
(k = 1)(k = 1)

Second relay transmits
(k = 2)(k = 2)1,2 + 0,2

(R)
th1,2 + 0,2
(R)
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1,2 + 0,2 <
(R)
th1,2 + 0,2 <
(R)
th

2 0,2
(R)
th2 0,2
(R)
th

2 0,2 <
(R)
th2 0,2 <
(R)
th

0,1 <
(R)
th0,1 <
(R)
th

0,1
(R)
th0,1
(R)
th

Figure 6.1. Tree diagram for a triple-hop diversity transmission system employing selective DF

relaying.

For independent non-identical Rayleigh fading channels, the probability ηqk,j can be

computed as

ηqk,j = κj + (−1)κj


1−

j−2∑

i=0

ρ
(qk)
i exp

(
− γ

(R)
th

ζ
(qk)
i Γi,j−1

)
 (6.9g)

where

ρ
(qk)
i =





0, ζ
(qk)
i = 0

(
ζ
(qk)
i Γi,j−1

)N
(qk)
j−1

∏j−2
h=0,h6=i

ζ
(qk)
h

6=0

ζ
(qk)
i Γi,j−1−ζ

(qk)
h Γh,j−1

, ζ
(qk)
i 6= 0 (6.9h)

where N
(qk)
j−1 is the number of of cooperating relays preceding Tj−1 over the path qk.

6.2.2.2 AF Relaying

In a K-hop diversity transmission system employing selective AF relaying, the instanta-

neous received SNR at the destination conditioned on a set of k particular cooperating
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relays, Ck, is given by5

γMHD
t |Ck = (K − k)γ0,K +

∑

i∈Ck

˜̃γi,K (6.10a)

where

˜̃γi,K =
γi,K

ˆ̂γi

γi,K + ˆ̂γi + 1
(6.10b)

in which
ˆ̂γi = (i− ˜̃Ni)γ0,i +

i−1∑
j=1

j∈Ck

˜̃γj,i (6.10c)

where ˜̃Ni denotes the number of participating relay terminals preceding terminal Ti. The

outage probability is then given by

Pout = Pr
(
γMHD

t ≤ γth

)
=

K−1∑

k=0

∑

Ck

Pr
(
γMHD

t ≤ γth|Ck

)
Pr(Ck) (6.11a)

and since γMHD
t |Ck is the sum of k + 1 random variables in which γ0,K is independent of

˜̃γi,K , ∀i ∈ Ck, and ˜̃γg,K and ˜̃γh,K are dependent random variables for g 6= h, g, h ∈ Ck,

then according to Lemma 6.1, the first k−1 order derivatives of the PDF of γMHD
t |Ck at the

origin are zero and its k order derivative can be approximated by the product of the values

of the PDF of its summands at zero, for sufficiently large values of SNR. Thus, using eq.

(3.21) and Lemma 6.2

Pr
(
γMHD

t ≤ γth|Ck

)
≈ γk+1

th

(k + 1)!
1

(K − k)Γ0,K

∏

i∈Ck

(
1

Γi,K
+ fˆ̂γi

(0)

)
(6.11b)

for sufficiently large values of SNR where

fˆ̂γi
(0) =





1

(i− ˜̃Ni)Γ0,i

, k = 1, i = 1, . . . ,K − 1
1

Γ0,1
, k 6= i, i = 1

0, k 6= 1, i > 1

(6.11c)

and the probability of a set of k particular cooperating terminals, Pr(Ck), is given by (6.9d)

in which ηqk,j is replaced by

ηqk,j = κj + (−1)κjPr


(j − 1− ˜̃Nj−1)γ0,j−1 +

∑

h∈Ck

h<j−1

˜̃γh,j−1 ≤ γ
(R)
th




≈ κj + (−1)κj
γ

(R) ˜̃Nj−1+1
th

( ˜̃Nj−1 + 1)!

1

(j − 1− ˜̃Nj−1)Γ0,j−1

∏

h∈Ck

h<j−1

(
1

Γh,j−1
+ fˆ̂γh

(0)

)
.

(6.11d)
5Without loss of generality, we can assume that the relays in Ck are sorted in ascending order.
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(R)
th

Source repeats
(k = 1)(k = 1)

0,1 1,2

0,1+ 1,2+1
+ 0,2

(R)
th

0,1 1,2

0,1+ 1,2+1
+ 0,2

(R)
th

Second relay transmits
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Figure 6.2. Tree diagram for a triple-hop diversity transmission system employing selective AF

relaying.

Figure 6.2 shows the tree diagram of a triple-hop diversity transmission system employing

selective AF relaying.

6.3 Bit Error Probability Analysis

6.3.1 Systems With Fixed Relaying

6.3.1.1 DF relaying

A tight upper bound for the bit error probability of multi-hop diversity transmission with

the fixed DF relaying scheme is obtained in [26] by assuming that any bit error at the relay

terminals causes a bit error. For the sake of convenience, this upper bound is given here

using the present notation as [26]

Pb = 1−
K∏

k=1

(1− Pbk
) (6.12)
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where Pbk
denotes the bit error probability for MRC of k signals at the kth terminal, which

can be calculated using the MGF or PDF of X̃k =
∑k−1

i=0 γi,k for a variety of modulation

schemes [89]. For instance, for a BPSK multi-hop diversity transmission system with fixed

DF relaying operating over independent non-identical Rayleigh fading channels, Pbk
is

given by

Pbk
=

k−1∑

i=0

âi

(
1− µi

2

)
(6.13a)

using [89, eq. (9.6)] where âi is given by (6.2c) and

µi =

√
Γi,k

Γi,k + 1
. (6.13b)

Recall that the parameter SNR denotes the instantaneous SNR (without fading) defined

as PT

N0
. Note that the error probability expression given in (6.12) is simplified as

Pb =
K∑

k=1

Pbk
−

K∑
k=1
j>k

Pbk
Pbj

+ ... (6.14)

The large SNR behavior of the error probability in (6.12) is then examined by noting that

Pbk
, k = 1, . . . , K decays as 1

SNRk [89]. Therefore, the error probability when SNR →∞
is dominated by its first term, Pb1 , and hence

lim
SNR→∞

Pb → 1
SNR

(6.15)

which indicates that the multi-hop diversity transmission scheme with fixed DF relaying

does not offer diversity gain.

6.3.1.2 AF Relaying

An expression for the bit error probability of a BPSK multi-hop diversity transmission sys-

tem employing fixed AF relaying in Rayleigh fading is given in [26]. However, as shown

later in Section 6.4, this expression overestimates the bit error rate performance at moderate

and large values of SNR. In the following, we present a more accurate, simple, closed-form

approximation for calculation of the bit error probability of a multi-hop diversity transmis-

sion system employing fixed AF relaying. The bit error probability can be evaluated using

(3.13). Exact evaluation of the bit error probability is facilitated by having a closed-form

expression for the PDF or MGF of γMHD
t . However, such expressions are still unknown

due to the mathematical form of γMHD
t . Using eq. (3.22), however, the bit error proba-

bility of a K-hop diversity transmission system employing fixed AF relaying can be well
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approximated by

Pb ≈ Γ(b + t + 1)
2Γ(b)at+1(t + 1)!

∂K−1fγMHD
t

∂γK−1
(0) (6.16)

for sufficiently large values of SNR where
∂K−1f

γMHD
t

∂γK−1 (0) is given in (6.7) and the parameters

a and b depend on the type of modulation/detection scheme given in [89, Table 8.1] (e.g.

a = b = 1 for BPSK systems).

The large SNR behavior of the error probability of a K-hop diversity transmission sys-

tem with fixed AF relaying is determined by the large SNR behavior of
∂K−1f

γMHD
t

∂γK−1 (0).

According to eq. (6.7),

lim
SNR→∞

∂K−1fγMHD
t

∂γK−1
(0) → 1

SNRK
(6.17)

indicating that a K-hop diversity transmission system with fixed AF relaying achieves di-

versity order K.

6.3.2 Systems With Selective Relaying

6.3.2.1 DF Relaying

The bit error probability of a multi-hop diversity scheme employing selective DF relaying

protocol is given by

Pb =
K−1∑

k=0

∑

Ck

Pb|Ck
Pr (Ck) (6.18)

where Pr(Ck) is calculated using the tree diagram as explained in Section 6.2.2.1. Ob-

taining exact expressions for the calculation of the conditional error probabilities in (6.18)

is very involved, if not impossible. However, in the selective DF relaying, only the relay

terminals whose received SNRs are above a certain threshold will cooperate in the trans-

mission. Thus, it can be assumed, as an excellent approximation, that the received signals

at the cooperating relays are correctly decoded. Therefore, the conditional probabilities of

bit error given a number of specific cooperating relays can be approximated by the cor-

responding bit error rate at the destination. For instance, the conditional probability of bit

error at the destination given k number of cooperating relays in a BPSK multi-hop diversity

transmission system with selective DF relaying is obtained as

Pb|Ck
≈

∑

i∈{0}∪Ck

b̂i,k
1− µi,K

2
(6.19a)

where

µ0,K =

√
(K − k)Γ0,K

(K − k)Γ0,K + 1
(6.19b)
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µi,K =

√
Γi,K

Γi,K + 1
, i ∈ Ck (6.19c)

and b̂i,k, i ∈ {0}∪Ck, is given in (6.9c). Note that the conditional probabilities of bit error,

Pb|Ck
can be obtained for a variety of modulation schemes using the MGF or the PDF of

the corresponding received SNR at the destination, X̂k [89].

Note that the large SNR behavior of Pr(Ck) as SNR → ∞ is dominated by the case

that the received instantaneous SNRs at the first K − 1− k relays are below the threshold

γ
(R)
th and is given by

K−1−k∏

i=1

Pr
(
iγ0,i < γ

(R)
th

) K−1∏

j=K−k

Pr


(K − k)γ0,j +

j−1∑

h=K−k

γh,j ≥ γ
(R)
th


 (6.20)

which decays as 1
SNRK−1−k for large values of SNR. In addition, the instantaneous received

SNR at the destination conditioned on k participating relays, X̂k, is the sum of k + 1

independent exponential random variables. Thus, Pb|Ck
is proportional to

(
1

SNR

)k+1
for

large values of the SNR [89]. Therefore, the error probability of the proposed selective

relaying scheme decays as 1
SNRK as SNR →∞, achieving diversity order K.

6.3.2.2 AF Relaying

The bit error probability for a K-hop diversity transmission system employing selective

AF relaying is given by (6.18) in which Pr(Ck) is calculated using the tree diagram as

explained in Section 6.2.2.2 and the conditional probability of bit error, Pb|Ck
, is given by

Pb|Ck
≈ Γ(b + t + 1)

2Γ(b)at+1(t + 1)!
1

(K − k)Γ0,K

∏

i∈Ck

(
1

Γi,K
+ fˆ̂γi

(0)

)
(6.21)

for sufficiently large values of SNR utilizing Lemmas 6.1 and 6.2 where fˆ̂γi
(0) is given by

(6.11c).

As discussed earlier in Section 6.3.2.1, it can be readily shown that Pr(Ck) decays as
1

SNRK−1−k at large values of SNR. Furthermore, the large SNR behavior of the conditional

error probability given in (6.21) is

lim
SNR→∞

Pb|Ck
→ 1

SNRk+1
(6.22)

indicating diversity order k + 1. Thus, a K-hop diversity transmission system employing

selective AF relaying achieves diversity order K.
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Figure 6.3. Outage probabilities for different multi-hop diversity transmission systems employing

DF relaying.

6.4 Results and Discussions

In this section, we compare the performances of the different multi-hop transmission schemes

in terms of their outage and bit error probabilities. In the numerical examples, we as-

sume that the terminals are fixed and located in equi-distant points from each other in

a straight line. Recall that each transmitting terminal in a K-hop diversity transmission

system uses 1
K of the total available power, PT . Thus, using the Friss propagation for-

mula [94], the average link SNR between terminals j and h in a K-hop transmission sys-

tem is Γj,h = 1
K

(
K

h−j

)ε
Γ0, j = 0, · · · ,K − 1, h = 1, · · · ,K and h > j, where ε is

the path loss exponent and Γ0 denotes the average received SNR of the direct link of the

single-hop transmission system. In all numerical examples, we assume BPSK modulation,

ε = 3, R = 1 Bit/Sec/Hz (hence γ
(R)
th = 2K − 1), and γth = 1. Simulation results for

outage probabilities are obtained using the Monte Carlo method, and those for bit error

rates are obtained by simulation of the systems described in Section 6.2.

Figures 6.3 and 6.4, respectively, show the outage probabilities and bit error rates versus

Γ0 of various multi-hop diversity transmission systems employing DF relaying. Figure 6.3

shows exact agreement between simulation results and analytical results obtained for the

outage probabilities of multi-hop diversity transmission systems with either fixed or selec-
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Figure 6.4. Bit error probabilities for different multi-hop diversity transmission systems employing

DF relaying.

tive DF relaying. Simulation results presented in Figure 6.4 are also in excellent agreement

with the analytical results showing the accuracy of the approximation used to evaluate the

bit error rates of multi-hop diversity transmission systems employing selective DF relaying.

Although the multi-hop diversity schemes employing a fixed DF scheme perform (in terms

of outage probability and bit error rate) better than the corresponding multi-hop schemes

without diversity [26], they do not offer diversity gain, as seen in Figure 6.4. It is seen that

the system with selective DF relaying scheme significantly outperforms the system with

fixed DF relaying achieving diversity order equal to the number of hops. For example, at a

probability of bit error of 10−5, the employment of the proposed selective DF relaying in

dual-hop and triple-hop diversity systems achieves power gains of 15.72 dB and 18.09 dB,

respectively, compared to the corresponding diversity systems employing fixed DF relay-

ing.

Figures 6.5 and 6.6, respectively, show the outage probabilities and bit error rates versus

Γ0 of various multi-hop diversity transmission systems employing an AF relaying. It is

seen from these figures that the analytical results for outage probabilities and bit error

rates obtained in Sections 6.2.1.2, 6.2.2.2, 6.3.1.2, and 6.3.2.2. are in excellent agreement

with the simulation results for medium to large values of SNR. For comparison purposes,
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Figure 6.5. Outage probabilities for different multi-hop diversity transmission systems employing

AF relaying.
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Figure 6.6. Bit error probabilities for different multi-hop diversity transmission systems employing

AF relaying.
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Figure 6.7. Comparison of outage probabilities among different multi-hop diversity transmission

systems employing either DF relaying or AF relaying.

the bit error probabilities of multi-hop diversity systems with fixed AF relaying obtained

from an expression given in [26] are also included in Figure 6.6. It is clearly seen that

the bit error rate analysis in [26] underestimates the bit error rate performance of multi-

hop diversity transmission systems with fixed AF relaying at moderate to large values of

SNR. As seen in Figures 6.5 and 6.6, both systems with fixed AF and selective AF relaying

achieve diversity gain equal to the number of hops. It is also seen that systems with fixed AF

relaying perform better than the corresponding systems with selective AF relaying in terms

of outage probabilities and bit error rates, despite noise amplification at all relays. For

instance, employing fixed AF relaying in dual-hop and triple-hop diversity transmission

systems, respectively, attains power gains 1.5 dB and 3.9 dB at probability of bit error

10−5, compared to employment of selective AF relaying in these systems.

Figures 6.7 and 6.8, respectively, compare the outage probabilities and bit error rates of

various multi-hop diversity transmission systems employing different relaying protocols.

Comparing systems employing selective relaying shows that the systems with selective DF

relaying slightly outperform systems employing selective AF relaying. It is seen from Fig-

ures 6.7 and 6.8 that multi-hop diversity transmission systems employing fixed AF relaying

achieve the best outage and bit error performances compared to the corresponding systems
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Figure 6.8. Comparison of bit error probabilities among different multi-hop diversity transmission

systems employing either DF relaying or AF relaying.

employing fixed DF, selective DF or selective AF relaying protocols. The results shown

in Figures 6.7 and 6.8 indicate that the error propagation in multi-hop diversity transmis-

sion systems employing DF relaying has more severe effect on the outage probability and

bit error rate performances than that of noise amplification in the corresponding system

employing AF relaying6.

6It should be mentioned that combining DF protocols with suitable coding schemes will alleviate the error propagation

effect which in turn improves the performance.
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Chapter 7

Conclusions and Future Work

This chapter summarizes the contributions of the thesis and suggests some areas for future

research.

7.1 Concluding Remarks

In this work, we focused on performance evaluation of a variety of cooperative wireless

systems, obtaining new optimal power allocation schemes and development of efficient

low complexity receivers. A summary of our contributions is given in the following.

In Chapter 3 of this thesis, we examined performances of multi-hop relaying systems.

We first statistically characterized AF multi-hop systems both with variable-gain relays

and fixed-gain relays in terms of the MGF (or CHF) of the inverse of the instantaneous

received SNR. A closed-form expression for evaluation of the outage probability was then

presented using the CHF of the inverse of the reciprocal of the instantaneous received SNR.

In addition, we established a general framework for evaluation of the error probabilities in

general fading of a variety of modulation schemes using the MGF of the reciprocal of the

instantaneous received SNR. This framework was then utilized for performance evaluation

of AF multi-hop transmission systems both with variable-gain relays and fixed-gain relays.

Asymptotic behaviors of the outages and error probabilities for sufficiently large values of

SNR were also examined. In particular, it was shown that if the average link SNRs satisfy a

certain criterion, a multi-hop system can achieve better outage and error rate performances

than the single-hop system.

In addition, ergodic capacity in Rayleigh fading of multi-hop transmission systems em-

ploying AF and DF relaying was investigated assuming CSI is only available at the re-
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ceivers. We derived two upper bounds as well as an accurate infinite series expression for

the ergodic capacity of AF multi-hop relaying systems. Ergodic capacity of DF multi-hop

relaying systems was also obtained. Our analysis showed rigorously that a DF multi-hop

relaying system achieves higher ergodic capacity than the corresponding AF multi-hop re-

laying system.

Furthermore, we derived single integral expressions for evaluation of capacity in general

fading of various source-adaptive AF multi-hop relaying systems in terms of the CHF of

the inverse of the instantaneous received SNR. It was shown that optimal simultaneous rate

and power adaptation achieves the highest capacity, as expected. However, the optimal rate

adaption with constant power provides almost the same capacity for large values of SNR

while having less complexity. Channel inversion with fixed rate, which is the least complex

scheme, slightly outperforms optimal power rate adaptation with constant power technique

in small SNR regions but at the cost of increased probability of outage.

In Chapter 4 of this thesis, we obtained optimal power allocation schemes that maxi-

mize the instantaneous received SNR in an AF multi-hop transmission system under ST

and LT power constraints. The optimal power allocation schemes obtained under both ST

and LT power constraints allocate more powers to the terminals with weaker (immediate)

forward link. We derived theoretical expressions for evaluation of the outage probability

in Rayleigh fading of the proposed power-optimized AF multi-hop transmission systems.

In addition, we examined large SNR behavior of the outage probability of these systems.

It was shown that at sufficiently large values of SNR, an AF K-hop relaying system em-

ploying the optimal power allocation scheme under ST power constraint achieves K times

better outage performance than that of the corresponding system employing uniform power

allocation. This indicates the importance of employment of the proposed optimal power al-

location scheme in AF multi-hop transmission systems subject to a ST power constraint

when the number of hops is large. In contrast to the optimal power allocation scheme

obtained under ST power constraint that requires a centralized implementation, the opti-

mal strategies obtained under LT power constraints can be implemented in a decentralized

manner. In addition, it was shown that a system employing such optimal power allocation

schemes offer a significant performance gain by achieving diversity gain 2.

In Chapter 5, we developed low complexity coherent and noncoherent receives for AF

multi-relay cooperative systems. We first reviewed AF multi-relay systems with fixed-

gain relays employing R-MRC and S-MRC as benchmarks for performance comparisons.

It was shown that these systems offer better error rate performances for larger numbers
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of relays and achieve full diversity gain. In addition, the ergodic capacities in Rayleigh

fading of these systems were evaluated. It was shown that increasing the number of relays

significantly degrades the ergodic capacity of systems with R-MRC due to the employment

of the repetition-based scheduling protocol. However, systems with S-MRC achieve larger

instantaneous received SNR at the destination for larger numbers of relays, which in turn

result in higher ergodic capacities.

We then developed two low complexity receivers, namely, R-DEGC and S-DEGC, for

coherent AF cooperative relaying systems. In both schemes, no instantaneous channel am-

plitude information is needed and the required channel phase information can be acquired

in a distributed manner. Theoretical expressions for the evaluation of the error probabil-

ity and the average output SNR in Rayleigh fading were obtained and it was shown that

these schemes achieve full spatial diversity. We also derived upper and lower bounds on

the ergodic capacity of the proposed schemes. It was shown that the performance losses

of the proposed coherent R-DEGC and S-DEGC systems compared to corresponding sys-

tems employing the optimal R-MRC and S-MRC schemes are about 1-1.5 dB for the cases

considered. This is a reasonable performance-complexity trade-off considering distributed

implementations of the proposed R-DEGC and S-DEGC schemes without requiring fading

channel amplitude estimations. In addition, it was shown that S-DEGC scheme achieves

larger instantaneous received SNR at the destination and hence better performance than the

R-DEGC scheme, especially in terms of ergodic capacity and by increasing the number of

relays. In particular, while increasing the number of relays degrades the ergodic capacity

of R-DEGC systems, systems employing S-DEGC achieve higher ergodic capacities for

larger numbers of relays for sufficiently large values of SNR. Furthermore, it was shown

that there is an optimum number of relays that avoids the combining loss (e.g. maximizes

the ergodic capacity of a S-DEGC system for a given set of channel parameters ) in small

SNR regions. This optimum number of relays can be determined using the obtained aver-

age output SNR expression.

In the last part of Chapter 5, employment of an MES scheme for noncoherent AF co-

operative diversity systems was proposed. An expression for the evaluation of the error

probability of this scheme in systems with M -FSK signaling was derived. It was proved

that a noncoherent AF cooperative system with MES achieves full diversity. It was also

shown that the MES scheme performs slightly inferior to the noncoherent SC scheme in

small SNR regions and/or in more faded systems, but achieves almost the same (or even

slightly better) performance with increasing SNR. Furthermore, the MES scheme requires
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neither knowledge of instantaneous nor statistical fading channel gains at the destination,

making it attractive from the practical point of view, especially for application in ad hoc

wireless networks.

Chapter 6 studied multi-hop diversity transmission systems. Theoretical expressions for

the outage and bit error probabilities of these systems employing either fixed DF relaying

or fixed AF relaying were derived. A selective relaying scheme for multi-hop diversity

transmission systems was also proposed and evaluated in terms of outage and bit error

probabilities. It was shown that multi-hop diversity transmission systems with fixed DF

relaying offer no diversity gain, while those employing fixed AF, selective DF or selective

AF relaying achieve diversity order equal to the number of hops. In particular, the results

showed that multi-hop diversity transmission systems employing fixed AF relaying attain

the best outage probability and bit error rate performances, despite noise amplification at

the relays, compared to the corresponding systems employing fixed DF, selective DF or

selective AF relaying.

7.2 Directions for Future Research

In this thesis, we addressed some issues in the context of cooperative communication sys-

tems. On the other hand, the results obtained open some areas for future research.

In this work, we evaluated the capacity of AF multi-hop relaying systems under differ-

ent source-adaptive schemes. Capacity upper bounds for source-adaptive AF multi-relay

systems were recently derived in [104] over Rayleigh fading channels. Capacity of source-

adaptive DF multi-hop or multi-relay cooperative systems can be investigated as a future

research.

In addition, multi-hop diversity transmission systems have been shown to perform su-

perior to multi-hop systems in terms outage and error probabilities. However, capacity gain

of a multi-hop diversity transmission system employing either DF or AF relaying has not

been investigated and can be considered as a future research direction.

Furthermore, the results of our study shows that a multi-hop diversity transmission sys-

tem employing fixed AF relaying achieves the best performance in terms of outage and bit

error probabilities. However, the combining scheme employed at each terminal requires

a centralized implementation. In practice, it may be highly useful (preferable) to have

a combining mechanism that can be implemented by a decentralized structure. The low

complexity detection schemes developed in Chapter 5 can be extended for application in
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AF multi-hop diversity systems.

The optimal power allocation schemes presented in Chapter 4 were obtained assuming

that the source and the relays transmit over equal transmission time slots. However, it may

be possible to improve the performance by joint optimization of the transmit power and the

channel resources. This requires a new objective function and hence a new optimization

problem should be solved.

In addition, in this work as well as most published works in the area of cooperative

communications, the functionality of receivers and/or optimal power allocation schemes

depend on the prefect channel estimates. It is important to evaluate the robustness of the

receivers and optimal power allocations to the noisy estimates of the channel informa-

tion. However, there have been only a few studies on considering the impact of imperfect

channel estimation on the error rate performance of AF dual-hop systems [83], AF single-

relay systems [105] as well as on the developing optimal power allocation policies of AF

multi-relay systems [106]. Assessing the effects of imperfect channel knowledge on the

performance of the systems evaluated and developed in this thesis is an interesting topic

for future research.

133



Bibliography

[1] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity-part I: System

description,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1927–1938, Nov. 2003.

[2] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity-part II: Imple-

mentation aspects and performance analysis,” IEEE Trans. Commun., vol. 51, no. 11,

pp. 1939–1948, Nov. 2003.

[3] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless

networks: Efficient protocols and outage behavior,” IEEE Trans. Inform. Theory,

vol. 50, no. 12, pp. 3062–3080, Dec. 2004.

[4] J. N. Laneman and G. W. Wornell, “Distributed space-time coded protocols for ex-

ploiting cooperative diversity in wireless networks,” IEEE Trans. Inform. Theory,

vol. 49, no. 10, pp. 2415–2525, Oct. 2003.

[5] N. C. Beaulieu and J. Hu, “A closed-form expression for the outage probability of

decode-and-forward relaying in dissimilar Rayleigh fading channels,” IEEE Com-

mun. Lett., vol. 10, no. 12, pp. 813–815, Dec. 2006.

[6] I. H. Lee and D. Kim, “BER analysis for decode-and-forward relaying in dissimilar

Rayleigh fading channels,” IEEE Commun. Lett., vol. 11, no. 1, pp. 52–54, Jan.

2007.

[7] H. A. Suraweera, P. J. Smith, and J. Armstrong, “Outage probability of coopera-

tive relay networks in Nakagami-m fading channels,” IEEE Commun. Lett., vol. 10,

no. 12, pp. 834–836, Dec. 2006.

[8] C. K. Datsikas, N. C. Sagias, F. I. Lazarakis, and G. S. Tombras, “Outage analysis

of decode-and-forward relaying over Nakagami-m fading channels,” IEEE Signal

Process. Lett., vol. 15, pp. 41–44, Jan. 2008.

134



[9] A. Müller and J. Speidel, “Exact symbol error probability of M-PSK for multihop

transmission with regenerative relays,” IEEE Commun. Lett., vol. 11, no. 12, pp.

834–836, Dec. 2007.

[10] S. Ikki and M. H. Ahmed, “Performance of decode-and-forward cooperative diver-

sity networks over Nakagami-m fading channels,” in Proc. IEEE Global Commun.

Conf. (GLOBECOM), Washington, DC, Nov. 2007, pp. 4328–4333.

[11] Y. Lee and M.-H. Tsai, “Performance of decode-and-forward cooperative commu-

nications over Nakagami-m fading channels,” IEEE Trans. Veh. Technol., vol. 58,

no. 3, pp. 1218–1227, Mar. 2009.

[12] T. A. Tsiftsis, G. K. Karagiannidis, S. A. Kotsopoulos, and F.-N. Pavlidou, “BER

analysis of collaborative dual-hop wireless transmissions,” IEE Elect. Lett., vol. 40,

no. 11, pp. 679–681, May 2004.

[13] P. A. Anghel and M. Kaveh, “Exact symbol error probability of a cooperative net-

work in a Rayleigh-fading environment,” IEEE Trans. Wireless Commun., vol. 3,

no. 5, pp. 1416–1421, Sep. 2004.

[14] A. Riberio, K. Cai, and G. Giannakis, “Symbol error probabilities for general coop-

erative links,” IEEE Trans. Wireless Commun., vol. 4, no. 3, pp. 1264–1273, May

2005.

[15] T. A. Tsiftsis, G. K. Karagiannidis, P. T. Mathiopoulos, and S. A. Kotsopoulos,

“Nonregenerative dual-hop cooperative links with selection diversity,” EURASIP J.

Wireless Commun. and Networking, pp. 1–8, Article ID 17 862, 2006 (2006).

[16] K. G. Seddik, A. K. Sadek, W. Su, and K. J. R. Liu, “Outage analysis and optimal

power allocation for multinode relay networks,” IEEE Signal Process. Lett., vol. 14,

no. 6, pp. 377–380, Jun. 2007.

[17] A. Ikki and M. H. Ahmed, “Performance analysis of cooperative diversity wireless

networks over Nakagami-m fading channel,” IEEE Commun. Lett., vol. 11, no. 4,

pp. 334–336, Apr. 2007.

[18] L. L. Yang and H. H. Chen, “Error probability of digital communications using relay

diversity Nakagami-m fading channels,” IEEE Trans. Wireless Commun., vol. 7,

no. 5, pp. 1806–1811, May 2008.

135



[19] M. O. Hasna and M. S. Alouini, “End-to-end performance of transmission systems

with relays over Rayleigh fading channels,” IEEE Trans. Wireless Commun., vol. 2,

no. 6, pp. 1126–1131, Nov. 2003.

[20] M. O. Hasna and M. S. Alouini, “A performance study of dual-hop transmissions

with fixed gain relays,” IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 1963–

1968, Nov. 2004.

[21] T. A. Tsiftsis, G. K. Karagiannidis, and S. A. Kotsopoulos, “Dual-hop wireless com-

munications with combined gain relays (CGR),” IEE Proc. Commun., vol. 152, no. 5,

pp. 528–532, Oct. 2005.

[22] H. A. Suraweera and G. K. Karagiannidis, “Closed-form error analysis of the non-

identical Nakagami-m relay fading channel,” IEEE Commun. Lett., vol. 12, no. 4,

pp. 259–261, Apr. 2008.

[23] G. K. Karagiannidis, “Performance bounds of multihop wireless communications

with blind relays over generalized fading channels,” IEEE Trans. Wireless Commun.,

vol. 5, no. 3, pp. 498–503, Mar. 2006.

[24] G. K. Karagiannidis, T. Tsiftsis, and R. K. Mallik, “Bounds for multihop relayed

communications in Nakagami-m fading,” IEEE Trans. Commun., vol. 54, no. 1, pp.

18–22, Jan. 2006.

[25] M. Di Renzo, F. Graziosi, and F. Santucci, “On the performance of CSI-assisted

cooperative communications over generalized fading channels,” in Proc. IEEE Int.

Conf. Commun. (ICC), May 2008, pp. 1001–1007.

[26] J. Boyer, D. D. Falconer, and H. Yanikomeroglu, “Multi-hop diversity in wireless

relaying channels,” IEEE Trans. Commun., vol. 52, pp. 1820–1830, Oct. 2004.

[27] D. S. Michalopoulos and T. A. Tsiftsis, “Performance analysis of wireless multihop

diversity systems,” Int. J. Commun. Sys., vol. 21, no. 9, pp. 955–969, Sep. 2008.

[28] M. O. Hasna and M. S. Alouini, “Outage probability of multi-hop transmission over

Nakagami fading channels,” IEEE Commun. Lett., vol. 7, pp. 216–218, May 2003.

[29] M. O. Hasna and M. S. Alouini, “Harmonic mean and end-to-end performance of

transmission systems with relays,” IEEE Trans. Commun., vol. 52, no. 1, pp. 130–

135, Jan. 2004.

136



[30] A. Bletsas, A. Khisti, D. P. Reed, and A. Lippman, “A simple cooperative diversity

method based on network path selection,” IEEE J. Select. Areas Commun., vol. 24,

no. 6, pp. 659–672, Mar. 2006.

[31] Y. Zhao, R. Adve, and T. J. Lim, “Improving amplify-and-forward relay networks:

optimal power allocation versus selection,” IEEE Trans. Wireless Commun., vol. 6,

no. 8, pp. 3114–3123, Aug. 2007.

[32] A. S. Ibrahim, A. K. Sadek, W. Su, and K. J. R. Liu, “Cooperative communications

with relay-selection: When to cooperate and whom to cooperate with?” IEEE Trans.

Wireless Commun., vol. 7, no. 7, pp. 2814–2827, Jul. 2008.

[33] J. N. Laneman and G. W. Wornell, “Energy-efficient antenna sharing and relay-

ing for wireless networks,” in Proc. IEEE Wireless Commun. and Networking Conf.

(WCNC), Sep. 2000, pp. 7–12.

[34] D. Chen and J. N. Laneman, “Modulation and demodulation for cooperative diver-

sity in wireless systems,” IEEE Trans. Wireless Commun., vol. 5, no. 7, pp. 1785–

1794, Jul. 2006.

[35] T. Wang, A. Cano, G. B. Giannakis, and J. N. Laneman, “High-performance co-

operative demodulation with decode-and-forward relays,” IEEE Trans. Commun.,

vol. 55, no. 7, pp. 1427–1438, Jul. 2007.

[36] Z. Yi and I.-M. Kim, “Diversity order analysis of the decode-andforward cooperative

networks with relay selection,” IEEE Trans. Wireless Commun., vol. 7, no. 5, pp.

1792–1799, May 2008.

[37] T. Q. Duong and V. N. Q. Bao, “Performance analysis of selection decode-and-

forward relay networks,” IEE Elect. Lett., vol. 44, no. 20, pp. 1206–1207, Sep. 2008.

[38] D. S. Michalopoulos and G. K. Karagiannidis, “Distributed switch and stay combin-

ing (DSSC) with a single decode and forward relay,” IEEE Commun. Lett., vol. 11,

no. 5, pp. 408–410, May 2007.

[39] D. S. Michalopoulos and G. K. Karagiannidis, “Two-relay distributed switch and

stay combining (DSSC),” IEEE Trans. Commun., vol. 56, no. 11, pp. 1790–1794,

Nov. 2008.

137



[40] D. Chen and J. N. Laneman, “Cooperative diversity for wireless fading channels

without channel state information,” in Proc. Asilomar Conf. Signals, Systems, and

Computers, Nov. 2004, pp. 1307–1312.

[41] R. Annavajjala, P. C. Cosman, and L. B. Milstein, “On the performance of opti-

mum noncohrent amplify-and-forward reception for cooperative diversity,” in Proc.

Military Commun. Conf. (MILCOM), Oct. 2005, pp. 3280–3288, vol. 5.

[42] Y. Zhu, P.-Y. Kam, and Y. Xin, “Non-coherent detection for amplify-and-forward

relay systems in a Rayleigh fading environment,” in Proc. IEEE Global Commun.

Conf. (GLOBECOM), Washington, DC, Nov./Dec. 2007, pp. 1658–1662.

[43] M. R. Souryal, “Non-coherent amplify-and-forward generalized likelihood ratio test

receiver,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), New Orleans, LA,

Nov./Dec. 2008, pp. 1–6.

[44] Y.-W. Hong, W.-J. Huang, F.-H. Chiu, and C.-C. J. Kuo, “Cooperative commu-

nications in resource-constrained wireless networks,” IEEE Signal Process. Mag.,

vol. 24, no. 3, pp. 47–57, May 2007.

[45] Q. Zhang, J. Zhang, C. Shao, Y. Wang, P. Zhang, and R. Hu, “Power allocation for

regenerative relay channel with Rayleigh fading,” in Proc. IEEE Veh. Technol. Conf.,

May 2004, pp. 1167–1171.

[46] J. Zhang, Q. Zhang, C. Shao, Y. Wang, P. Zhang, and Z. Zhang, “Adaptive optimal

transmit power allocation for two-hop non-regenerative wireless relay system,” in

Proc. IEEE Veh. Technol. Conf., May 2004, pp. 1213–1217.

[47] M. O. Hasna and M.-S. Alouini, “Optimal power allocation for relayed transmissions

over Rayleigh-fading channels,” IEEE Trans. Wireless Commun., vol. 3, no. 6, pp.

1999–2004, Nov. 2004.

[48] A. P. T. Lau and S. Cui, “Joint power minimization in wireless relay channels,” IEEE

Trans. Wireless Commun., vol. 6, no. 8, pp. 2820–2824, Aug. 2007.

[49] I. Maric and R. Yates, “Forwarding strategies for gaussian parallel-relay networks,”

in Proc. Int. Symp. Infrom. Theory (ISIT), Jun./Jul. 2004, p. 269.

[50] Y. Liang and V. Veeravalli, “Resource allocation for wireless relay channels,” in

Proc. Asilomar Conf. Signals, Systems and Computers, vol. 2, Nov. 2004, pp. 1902–

1906.

138



[51] N. Ahmed, M. Khojastepour, A. Sabharwal, and B. Aazhang, “Outage minimization

with limited feedback for the fading relay channel,” IEEE Trans. Commun., vol. 54,

no. 4, pp. 659–669, Apr. 2006.

[52] N. Ahmed and B. Aazhang, “Throughput gains using rate and power control in co-

operative relay networks,” IEEE Trans. Commun., vol. 55, no. 4, pp. 656–660, Apr.

2007.

[53] X. Deng and A. M. Haimovich, “Power allocation for cooperative relaying in wire-

less networks,” IEEE Commun. Lett., vol. 9, no. 11, pp. 994–996, Nov. 2005.

[54] R. Nikjah and N. C. Beaulieu, “On optimal power allocation for source-orthogonal

relay-nonorthogonal amplify-and-forward relaying,” in Proc. IEEE Global Com-

mun. Conf. (GLOBECOM), Nov./Dec. 2008, pp. 1–6.

[55] R. Annavajjala, P. C. Cosman, and L. B. Milstein, “Statistical channel knowledge-

based optimum power allocation for relaying protocols in the high SNR regime,”

IEEE J. Select. Areas Commun., vol. 25, no. 2, pp. 292–305, Feb. 2007.

[56] Y. Li, B. Vucetic, Z. Zhou, and M. Dohler, “Distributed adaptive power allocation for

wireless relay networks,” IEEE Trans. Wireless Commun., vol. 6, no. 3, pp. 948–958,

Mar. 2007.

[57] J. Luo, R. S. Blum, L. J. Cimini, L. J. Greenstein, and A. M. Haimovich, “Decode-

and-forward cooperative diversity with power allocation in wireless networks,” IEEE

Trans. Wireless Commun., vol. 6, no. 3, pp. 793–799, Mar. 2007.

[58] M. Chen, S. Serbetli, and A. Yener, “Distributed power allocation strategies for par-

allel relay networks,” IEEE Trans. Wireless Commun., vol. 7, no. 2, pp. 793–799,

Feb. 2008.

[59] E. C. van der Meulen, “Three-terminal communication channels,” Adv. Appl. Prob.,

no. 3, pp. 120–154, 1971.

[60] T. M. Cover and A. A. El Gamal, “Capacity theorems for relay channels,” IEEE

Trans. Inform. Theory, vol. 25, no. 5, pp. 1463–1474, Sep. 1979.

[61] A. El Gamal and S. Zahedi, “Capacity of a class of relay channels with orthogonal

components,” IEEE Trans. Inform. Theory, vol. 51, no. 5, pp. 1815–1817, May 2005.

139



[62] L. L. Xie and P. R. Kumar, “An achievable rate for the multiple level relay channel,”

in Proc. IEEE Symp. Inform. Theory (ISIT), Jun./Jul. 2004, p. 3.

[63] A. Reznik, S. R. Kulkarni, and S. Verdu, “Degraded gaussian multirelay channel:

Capacity and optimal power allocation,” IEEE Trans. Inform. Theory, vol. 50, no. 12,

pp. 3037–3046, Dec. 2004.

[64] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and capacity theorems

for relay networks,” IEEE Trans. Inform. Theory, vol. 51, no. 9, pp. 3037–3063, Sep.

2005.

[65] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE Trans. Inform.

Theory, vol. 46, no. 2, pp. 388–404, Mar. 2000.

[66] P. Gupta and P. R. Kumar, “Toward an information theory of large networks: an

achievable rate region,” in Proc. IEEE Symp. Inform, Theory (ISIT), Jun. 2001, p.

159.

[67] M. Gastpar and M. Vetterli, “On the asymptotic capacity of Gaussian relay chan-

nels,” in Proc. IEEE Symp. Inform, Theory, Jun./Jul. 2002, p. 195.

[68] A. Høst-Madsen and J. Zhang, “Capacity bounds and power allocation for wireless

relay channels,” IEEE Trans. Inform. Theory, vol. 51, no. 6, pp. 2020–2040, Jun.

2005.

[69] B. Wang, J. Zhang, and A. Høst-Madsen, “On the capacity of MIMO relay channels,”

IEEE Trans. Inform. Theory, vol. 51, no. 1, pp. 29–43, Jan. 2005.

[70] R. U. Nabar, H. Bölcskei, and F. W. Kneubühler, “Fading relay channels: Perfor-

mance limits and space-time signal design,” IEEE J. Select. Areas Commun., vol. 22,

no. 6, pp. 1099–1109, Aug. 2004.

[71] I. E. Telatar, “Capacity of multi-antenna gaussian channels,” Eur. Trans. Telecom-

mun., vol. 10, no. 6, pp. 585–595, Nov./Dec. 1999.

[72] M. S. Alouini and A. J. Goldsmith, “Capacity of Rayleigh fading channels under

different adaptive transmission and diversity-combining techniques,” IEEE Trans.

Veh. Technol., vol. 48, no. 6, pp. 1165–1181, Jul. 1999.

[73] A. Goldsmith, Wireless Communications. New York: Cambridge University Press,

2005.

140



[74] N. C. Beaulieu, “An infinite series for the computation of the complementary prob-

ability distribution function of a sum of independent random variables and its appli-

cation to the sum of Rayleigh random variables,” IEEE Trans. Commun., vol. 38, pp.

1463–1474, Sep. 1990.

[75] Y. Zhao, R. Adve, and T. J. Lim, “Beamforming with limited feedback in amplify-

and-forward cooperative networks,” IEEE Trans. Wireless Commun., vol. 7, no. 12,

pp. 5145 – 5149, Dec. 2008.

[76] N. C. Beaulieu and J. Hu, “A noise reduction amplify-and-forward relay protocol

for distributed spatial diversity,” IEEE Commun. Lett., vol. 10, no. 11, pp. 787–789,

Nov. 2006.

[77] D. S. Michalopoulos, A. S. Lioumpas, and G. K. Karagiannidis, “Low complexity

amplify and forward relaying without channel amplitude estimation,” in Proc. IEEE

Int. Conf. Commun. (ICC), Beijing, China, May 2008, pp. 4295–4299.

[78] J. G. Proakis, Digital Communications, 4th ed. New York: McGraw-Hill, 2000.

[79] N. Ahmed, M. Khojastepour, and B. Aazhang, “Outage minimization and opti-

mal power control for the fading relay channel,” in Proc. Infrom. Theory Workshop

(ITW), Oct. 2004, pp. 458–462.

[80] A. Chakrabarti, A. de Baynast, A. Sabharwal, and B. Aazhang, “Half-duplex

estimate-and-forward relaying: Bounds and code design,” in Proc. Int. Symp. In-

from. Theory (ISIT), Jul. 2006, pp. 1239–1241.

[81] K. S. Gomadam and S. A. Jafar, “On the capacity of memoryless relay networks,” in

Proc. Int. Conf. Commun. (ICC), Jun. 2006, pp. 1580–1585.

[82] J. Boyer, D. Falconer, and H. Yanikomeroglu, “Cooperative connectivity models for

wireless relay networks,” IEEE Trans. Wireless Commun., vol. 6, no. 6, pp. 1992–

2000, Jun. 2007.
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Appendix A

Proof of Lemmas

A.1 Proof of Lemma 3.1

The proof for the asymptotic symbol error probability in (3.23) is given in [14]. In this

section, a proof for the asymptotic bit error probability in (3.22) is first given.

Let β = γt/γ̄ where γ̄ denotes the average SNR. Then, using (3.13), the bit error

probability is obtained as

Pb =
∫ ∞

0

Γ (b, aβγ̄)
2Γ(b)

fβ(β)dβ (A.1)

where fβ(β) = γ̄fγt
(βγ̄). For large values of SNR (as γ̄ → ∞), the value of Γ (b, aβγ̄)

tends to zero throughout the integration range except near the origin [91]. Furthermore, for

large SNRs, corresponding to values of β close to zero, fβ(β) is well approximated by the

first term of its MacLaurin series, i.e.

fβ(β) → 1
t!

∂tfγt

∂γt
(0)γ̄t+1βt (A.2)

where t is the order of the first nonzero derivative of the PDF of γt at γ = 0. Then, one has

Pb →
∫ ∞

0

Γ(b, aγ)
2Γ(b)

1
t!

∂tfγt

∂γt
(0)γtdγ (A.3)

and consequently, eq. (3.22) is obtained by evaluation of the integral in (A.3) using [90, eq.

(6.5.37)].

A proof for the asymptotic outage probability in (3.21) was given in [87] by taking

integral of the single polynomial term approximation of the PDF of β given in (A.2) from

0 to γth

γ̄ . An alternate proof for (3.21) is given in the following. For large values of SNR,
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as γ̄ → ∞, the CDF of β, Fβ(β), is well approximated by the first term of its MacLaurin

series given by

Fβ(β) ≈ βt+1

(t + 1)!
∂tfβ

∂βt
(0)

=
βt+1γ̄t+1

(t + 1)!
∂tfγt

∂γt
(0) (A.4)

using Fβ(0) = 0 and ∂Fβ(β)
∂β = fβ(β). Now note that

Pout = Fβ(
γth

γ̄
) (A.5)

and, consequently, eq. (3.21) is obtained using (A.4) in which β is replaced by γth

γ̄ .

A.2 Proof of Lemma 3.2

The random variable V defined in (3.25) is a multi-dimensional function of independent

random variables whose PDF is given by

fV (v) =
∫

. . .

∫

{(x1,...,xM):g(x1,...,xM)=v}

∏M
h=1 fXh

(xh)dxh

|∇g (x1, . . . , xM)| (A.6)

where fXh
(xh), h = 1, . . . ,M, denotes the PDF of Xh and |∇g (x1, . . . , xM)| is the

modulus of the gradient of g(x1, . . . , xM). The integral in (A.6) is taken over an M-

dimensional hyperplane for which g(x1, . . . , xM) = v. However, calculation of the value

of the PDF at zero is equivalent to nullifying one vector component at a time. Thus, to

evaluate fV (0), the integral in (A.6) is taken over the union ofM hyperplanes of dimension

M− 1 at which any of xm is zero. Then, one has

fV (0) =
M∑

m=1

fXm
(0)

∫
. . .

∫

︸ ︷︷ ︸
(M−1)fold

∏M
h=1

h6=m
fXh

(xh)dxh

|∇g(x1, . . . , xM) |xm=0 | . (A.7)

It can be shown that the modulus of the gradient at xm = 0, m = 1, . . . ,M, is given by

|∇g (x1, . . . , xM) |xm=0 | =




M−1∑

j=m−1

∏j
h=0 Ψh∏j+1
h=1

h6=m
Xh




−1

. (A.8)

Thus,

fV (0) =
M∑

m=1

fXm
(0)

M−1∑

j=m−1

j∏

h=0

Ψh
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∫
. . .

∫
∏M

h=1
h6=m

fXh
(xh)dxh

∏j+1
h=1

h6=m
Xh

=
M∑

m=1

fXm
(0)

M−1∑

j=m−1

j∏

h=0

ΨhE




1
∏j+1

h=1
h6=m

Xh


 . (A.9)

Note that (A.9) gives an exact expression for calculation of fV (0). An exact closed-form

formula for E

(
∏j+1

h=1
h6=m

X−1
h

)
required for the evaluation of fV (0) can not be obtained for

our cases of interest in which Xh represent powers of Rayleigh, Ricean, or Hoyt fading

envelopes. However, it can be replaced by a simple function ofE(Xh), which is known for

a variety of fading channel types to provide valuable insights for performance evaluation

of cooperative systems with fixed gain relays. Now let Uj,m =
∏j+1

h=1
h6=m

Xh, then according

to Jensen’s inequality [96]

E

(
1
Uj,m

)
≥ 1
E (Uj,m)

=
1

∏j+1
h=1

h6=m
E (Xh)

. (A.10)

Consequently, substituting the inequality (A.10) in (A.9) gives eq. (3.26) and the Lemma

is proved.

A.3 Proof of Lemma 3.3

Suppose that the series in (3.38) and (3.39) are truncated, respectively, at n = M and

n = 2M − 1. Then, the corresponding truncation errors are given by

∆1 = 2
∞∑

n=M+1

1
2n− 1

(
x

x + 2

)2n−1

(A.11)

and

∆2 =
∞∑

n=2M

1
n

(
x

x + 1

)n

(A.12)

respectively. Since,
x

x + 2
<

x

x + 1
< 1 (A.13)

and (
x

x+1

)m+1

m + 1
<

(
x

x+1

)m

m
(A.14)
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for all positive integers m, one has

∆1

(A.13)︷︸︸︷
< 2

∞∑

n=M+1

1
2n− 1

(
x

x + 1

)2n−1

(A.14)︷︸︸︷
<

∞∑

n=2M

1
n

(
x

x + 1

)n

= ∆2 (A.15)

and the Lemma is proved.

A.4 Proof of Lemma 3.4

Using (A.13) and (A.14), one has

1
2n− 1

(
x

x + 2

)2n−1

<
1
n

(
x

x + 1

)n

. (A.16)

Furthermore, recall that the series
∑∞

n=1
1
n

(
x

x+1

)n
converges to the function ln (1 + x) for

x ≥ 0. Therefore, according to the Weierstrass M -test [107], the series in (3.38) converges

uniformly for x ≥ 0.

A.5 Proof of Lemma 3.5

Recall that the function U(w) is a complex function as defined in (3.52). Now note that the

complex conjugate of the function U(w) is given by

U∗(w) = Ψ∗
X(w)

∫ a2

a1

g(x) exp(jwx)dx. (A.17)

Using the conjugation property of the Fourier transform for real functions, one has Ψ∗
X(w) =

ΨX(−w). Furthermore, since g(x) is a real function, one obtains

U∗(w) = U(−w). (A.18)

Using eq. (A.18), one has

< (U(w)) =
U(w) + U∗(w)

2
=

U(w) + U(−w)
2

(A.19)

and

= (U(w)) =
U(w)− U∗(w)

2
=

U(w)− U(−w)
2

(A.20)
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where =(·) denotes the imaginary part of its argument. Eqs. (A.19) and (A.20) show that

the real and imaginary parts of U(w) are even and odd functions, respectively. Therefore,

one obtains
∫ ∞

−∞
U(w)dw =

∫ ∞

−∞
d< (U(w)) + j= (U(w))e dw

= 2
∫ ∞

0
< (U (w)) dw = 2

∫ π

2

0
< (U (tan(θ)))sec2(θ)dθ (A.21)

using the change of variable w = tan(θ) and the Lemma is proved.

A.6 Proof of Lemma 4.1

An asymptotic expression for the outage probability for sufficiently large values of SNR

is given by (3.21). According to eq. (3.21), we only need to evaluate the first nonzero

order derivative of the PDF of γST
t , fγST

t
(γ), at the origin. Let u denote the K-dimensional

vector [γ1, γ2, . . . , γK ]. According to (4.10), γST
t can be rewritten as

γST
t

∼= Kγ̂ (A.22a)

where

γ̂ = g(u) =
∏K

k=1 γk(∑K
k=1

∏K
j=1

j 6=k

√
γj

)2 . (A.22b)

Then, using (A.7), the value of the PDF of γ̂ at the origin can be computed as

fγ̂(0) =
K∑

k=1

fγk
(0)

∫
. . .

∫

︸ ︷︷ ︸
(K−1) fold

∏K
h=1
h6=k

fγh
(γh)dγh

|∇g (u) |γk=0| . (A.23a)

It can be shown that the modulus of the gradient at γk = 0, k = 1, . . . , K, is equal to unity

and then, we have

fγ̂(0) =
K∑

k=1

fγk
(0) (A.23b)

where fγk
(0) = 1

Γk
in Rayleigh fading. Consequently one has

fγST
t

(0) =
1
K

fγ̂(0) =
1
K

K∑

k=1

1
Γk

. (A.24)

Thus, t = 0 in eq. (3.21) yielding the asymptotic outage probability as

PST
out → γthfγST

t
(0) (A.25)

and finally substituting (A.24) in (A.25) proves the Lemma.

148



A.7 Proof of Lemma 6.1

The initial value theorem of Laplace transforms is utilized for calculation of the value of

the PDF of the random variable V =
∑K−1

k=0 Vk at zero in which V0 is independent of Vk,

k = 1, . . . ,K − 1, but all other summands are dependent random variables. Now, let W be

an arbitrary vector of nonnegative random variables such that Vi be independent of Vj |W,

i 6= j, i, j ∈ {1, 2, . . . , K − 1}. Then the Laplace transform of fV (v) can be expressed as

LV (s) = LV0(s)
∫

. . .

∫

w

K−1∏

i=1

LVi|W(s)fW(w)dw (A.26)

where LV0(s) and LVi|W(s), respectively, denote the Laplace transforms of the PDFs of

V0 and Vi|W, fV0(z0) and fVi|W(zi|w), i = 1, . . . ,K − 1. According to the initial value

theorem, the value of fV (v) at zero is given by

fV (0) = lim
s→∞ sLV (s) (A.27)

which can be rewritten as a product of limits

fV (0) = lims→∞sLV0(s)
∫

. . .

∫

w

K−1∏

i=1

lims→∞LVi|W(s)fW(w)dw (A.28)

and since lims→∞ sLV0(s) = fV0(0) and lims→∞ LVi|W(s) = 0 for i = 1, . . . ,K− 1, thus

fV (0) = 0. Then, the first order derivative of fV (v) at zero is obtained as

∂fV

∂v
(0) = lims→∞sLV0(s)

∫
. . .

∫

w
lims→∞sLVi|W(s)

K−1∏

j=2

lim
s→∞LVj |W(s)fW(w)dw

(A.29)

and again since lims→∞ LVj |W(s) = 0, then ∂fV

∂v (0) = 0. Similarly, we can continue this

process until the (K − 2)nd order derivative of fV (v) at zero, i.e.,

∂kfV

∂vk
(0) = lims→∞sLV0(s)

∫
. . .

∫

w

k∏

i=1

lims→∞sLVi|W(s)

K−1∏

j=k+1

lim
s→∞LVj |W(s)fW(w)dw

= 0 (A.30)

for k = 1, . . . , K − 2, which proves the first part of Lemma 6.1. The (K − 1)st order

derivative of fV (v) at zero is then obtained as

∂K−1fV

∂vK−1
(0) = lims→∞sLV0(s)

∫
. . .

∫

w

K−1∏

i=1

lims→∞sLVi|W(s)fW(w)dw
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= fV0(0)
∫

. . .

∫

w

K−1∏

i=1

fVi|W(0)fW(w)dw

= fV0(0)
∫

. . .

∫

w
fV1,V2,...,VK−1|W(0, 0, . . . , 0)fW(w)dw

= fV0(0)fV1,V2,...,VK−1(0, 0, . . . , 0) (A.31)

proving the second part of Lemma 6.1.

A.8 Proof of Lemma 6.2

Since γk,K and γ̂k given in (6.4c) are nonnegative independent random variables, according

to Proposition 4 proved in [14], the value of the PDF of γ̃k,K at the origin is given by eq.

(6.7b) as the sum of values of the PDF of γk,K and γ̂k at zero. Now, note that γ̂1 = γ0,1 and

hence fγ̂k
(0) = fγ0,1(0) which is equal to 1

Γ0,1
in Rayleigh fading. Furthermore, γ̂k for k 6=

1, is the sum of k random variables in which γ0,k is independent of γ̃j,k, j = 1, . . . , k − 1

and γ̃g,k and γ̃h,k are dependent random variables for g 6= h, g, h ∈ {1, . . . , k − 1}. Thus,

according to the Lemma 6.1, the value of the PDF of γ̂k for k 6= 1 is zero at the origin.
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