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Abstract

Numerical methods are developed to model the propagation of small-amplitude 

two-dimensional internal gravity waves through non-rotating inviscid fluids in 

the Boussinesq and anelastic approximations. Using these techniques, trans­

mission coefficients for internal waves in fluids with varying stratification and 

background shear are found. The transmission and reflection of internal waves 

incident upon a stratified layer in stationary fluid is analyzed, focusing upon 

the opposing limits of piecewise-linear theory and heuristic applications of 

WKB theory. Transmission across critical layers is possible when the Richard­

son number is less than 1 /4. Furthermore, internal waves can partially trans­

mit across mixed regions resulting from the evolution of unstable shear layers. 

Using the anelastic approximation, it is found that decreasing the density scale 

height reduces the frequency and wavenumber range over which internal waves 

may propagate. Finally, internal waves generated by flow over Jan Mayen is­

land are modelled; these waves are found to tunnel into the stratosphere.
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Chapter 1 

Introduction

Due to the restoring forces of buoyancy, internal waves propagate through 

fluids having decreasing background density with height, p (z). Internal waves 

vertically transport energy in such stably stratified fluids leading to drag and 

mixing at levels where they break. Previous studies by Polzin et al. (1997) and 

Ledwell et al. (2000) have shown that internal waves have a significant effect 

on ocean mixing. In particular, the ‘zonal countercurrents’, jets with velocity 

as large as 25cm/s observed at depths between 500 m and 3000 m within 2° of 

the equator (Firing, 1987), are believed to be driven by internal gravity wave 

breaking. It has been hypothesized that the waves originate at the base of the 

surface mixed layer (Dillon et al., 1989; Hebert et al., 1991; Skyllingstad and 

Denbo, 1994) or are generated by shear instability of the upper flank of the 

equatorial undercurrent (Sutherland, 1996). It is not well understood how the 

waves propagate through the background shear and stratification particularly 

when the background variations are manifest on short scales compared with 

the vertical wavelength of the waves. Shear instability also results in localized 

mixing in the ocean. Internal waves may still cross a mixed patch in the 

presence of a critical layer in shear, but the problem has not been well studied.

Similarly, atmospheric internal waves propagate upward through varying

1
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stratification and shear. Internal waves significantly affect the general circula­

tion of the atmosphere (Palmer et al., 1986; McFarlane, 1987). But how they 

do so depends on how they propagate and where they break. In a particular 

study near Darwin, Australia internal waves were observed in the ionosphere, 

where they are visualized by infrared airglow emission from OH molecules, pre­

sumably originating from a convective storm beneath (Yamada et al., 2001). 

Alexander et al. (2004) performed ray tracing studies that linked internal 

wave observations at higher altitudes to convective sources in the troposphere. 

These waves propagated through the mesosphere where they became evanes­

cent. Snively and Pasko (2003) proposed that nonlinear wave-wave interac­

tions excited longer-period non-evanescent waves that propagated through the 

mesosphere and broke in the ionosphere. Walterscheid et al. (2001) performed 

numerical simulations using observed background stratification to show that 

without changing their frequency wavepackets were able to penetrate partially 

through the evanescent region to reach the ionosphere. Generally it is not well 

understood how internal waves transmit and reflect from the mesosphere when 

the vertical scale of the waves is comparable to the scale of the background 

variations.

Eckermann et al. (2006) examined waves generated by wind flowing over the 

mountain island of Jan Mayen in the North Atlantic. Using Fourier ray tracing 

models they were able to characterize the internal waves near the surface. 

However, due to an evanescent region near the tropopause their model breaks 

down as it does not allow waves to propagate effectively past this region. Fully 

nonlineax num erical s im u lations confirm  th a t waves should  p artia lly  p rop agate  

past the tropopause into the stratosphere. They suggest that a mechanism 

for tunnelling of trapped waves through an evanescent layer is required in

2
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their ray tracing model. Using a Lipps-Hemler model forecast on atmospheric 

profiles taken on the same day as the Jan Mayen experiment, Eckermann et al. 

(2006) observed tunnelling of topographically generated internal waves into the 

stratosphere over northern Scandinavia.

The purpose of this study is to provide a means with which to predict the 

transmission and reflection of internal waves through arbitrary background 

states. In the work presented here, we first restrict ourselves to the study 

of small-amplitude waves in Boussinesq fluid. The Boussinesq approximation 

is well suited to internal waves in the ocean which propagate over distances 

much smaller than a density scale height. In later sections the Boussinesq 

approximation is dropped and anelastic waves considered. In describing these 

background states for the atmosphere it is necessary to establish a scale over 

which the background density changes significantly. This is the density scale 

height, Hp, which represents the ‘e-folding depth’ of exponentially decreasing 

density with height. Explicitly,

H„ =  ^  (1-1)
dz

where p ( z ) is the background vertical density profile. In the atmosphere, 

typically Hp rsj 8 km. Atmospheric internal waves may traverse distances 

much larger than the density scale height, so that the anelastic approximation 

must be used.

In either the Boussinesq or anelastic approximations, for waves to propa­

gate vertically the Doppler-shifted frequency,

n { z ) = u - k U { z ) ,  (1.2)

must be less than the buoyancy frequency, N.  Where Q > N  the waves are

said to be evanescent. Here u  is the absolute frequency, k is the horizontal

3
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wavenumber and U (z) is the background horizontal flow. For a Boussinesq 

liquid, the squared buoyancy frequency,

Jv2 =  (1.3)
Poo dz

is defined in terms of the gravitational acceleration, g , characteristic liquid 

density, poo, and background density profile, p(z).  The buoyancy frequency is 

the natural frequency of vertical oscillations in the fluid. For a gas, stratifi­

cation is conveyed through the potential temperature, 0(z),  which is defined 

as the temperature gas at altitude z would acquire if moved adiabatically to 

ground level. When considering anelastic internal waves, the squared buoyancy 

frequency is defined in terms of background potential temperature, 6 (z):

N> =  I t  (1-4)

For Boussinesq gases, the equivalent squared buoyancy frequency is

" 2 "  I t  ™

where 0OO is the characteristic potential temperature of the gas.

The calculation of energy and momentum transport for propagating in­

ternal waves in media with relatively long vertical variations compared with 

the vertical wavelength is typically performed using ‘ray tracing’, which ap­

plies WKB theory (Lighthill, 1978; Broutman et al., 2004). In the WKB

approximation it is assumed that wavefunctions vary rapidly in the vertical 

with respect to slowly varying background fields U (z) and N  (z). Heuristic 

arguments suggest that small amplitude waves will reflect from a level where 

Cl = N  and will asymptotically approach a critical level where Cl =  0 .

Applying WKB theory, Lindzen and Barker (1985) examined the propaga­

tion of internal waves across a critical layer in uniform shear. In their setup
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waves were generated in a region of high buoyancy frequency, large enough to 

allow the wavelike propagation, and then propagated through a region of low 

buoyancy frequency where the waves encountered a critical layer. Beyond this 

region the buoyancy frequency again became large. They found that the re­

flected waves could have larger amplitude than the incident waves, suggesting 

‘over-reflection’. This study specifically examined waves that resonated with 

unstable modes and was restricted to hydrostatic waves.

Broutman et al. (2004) discuss several ray tracing techniques and the lim­

itations introduced by caustics, which occur when rays intersect each other, 

typically near a reflection level. Caustics may be avoided by making a uni­

form approximation using Airy functions. Other more advanced techniques 

involve switching between spatial and wavenumber formulations near a caus­

tic to ‘step over’ the singularity. Although both these techniques can produce 

valid solutions, they are limited by the WKB approximations.

Resonant energy transfer by internal waves between two localized regions 

of enhanced stratification representative of the main and seasonal thermocline 

was described by Eckart (1961). As opposed to theory that invokes the WKB 

approximation, this study was limited to the examination of modes with ver­

tical wavelength comparable to the characteristic height of the ducts and the 

separation distance between them. Similarly, resonant energy transfer in the 

atmosphere between the stratosphere and ionosphere was considered by Fritts 

and Yuan (1989). This study included anelastic effects and background shear. 

In both cases the modes periodically transferred energy back and forth between 

th e  tw o ducts.

Our study poses no such restrictions: the vertical wavelength of the incident 

and transmitted waves is arbitrary and we focus upon the one-way transport

5
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of energy across an arbitrarily specified background stratification and mean 

flow.

This work extends the results of Sutherland and Yewchuk (2004), who 

derived formulae that predicted the one-way transport of energy by waves 

across a weakly stratified layer. They termed this phenomena ‘internal wave 

tunnelling’. In their study they generated waves in a stationary flow with 

uniform stratification surrounding a finite-depth region of lower or zero buoy­

ancy frequency, a structure they termed an ‘iV2-barrier’. Heuristic arguments 

from WKB theory suggest that waves would completely reflect upon reaching 

the iV2-barrier. However, this was not the case -  significant amounts of wave 

energy could penetrate the barrier so long as the barrier depth was sufficiently 

small compared to the horizontal wavelength of the internal waves.

These results were extended further by Brown and Sutherland (2007) who 

considered the transmission of waves across a critical layer in a piecewise-linear 

shear flow embedded within a locally unstratified layer. They found that for 

relatively strong shear it was possible for internal waves to propagate through 

critical levels.

Eltayeb and McKenzie (1975) also examined the transmission of waves 

across a critical layer in piecewise-linear shear. However, they introduced a 

hydrostatic approximation to obtain their analytic solution.

In special circumstances, analytic solutions exist for non-piecewise linear 

background density and flow profiles. Using hypergeometric functions and 

neglecting the curvature of the background flow, Duin and Kelder (1981) con­

sidered  th e  transm ission  o f w aves across a hyperbolic  tan gen t shear layer w ith  

constant buoyancy frequency for large Richardson number. Their physical pro­

files are examined in Section 3.4 of this paper and transmission characteristics

6
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found using the complete linear wave equation for small Richardson number 

flows.

In the current study, we extend the result of Brown and Sutherland to in­

clude transmission across a critical layer where the gradient Richardson num­

ber is non-zero. Furthermore, by dropping the Boussinesq approximation, we 

extend their results to systems where the density scale height is small relative 

to the length of the domain. As such, anelastic effects are introduced into 

the system and the significance of density scale height measured. We develop 

numerical techniques to compute the transmission and reflection of internal 

waves in arbitrary background buoyancy frequency and velocity profiles in 

both the Boussinesq and anelastic approximations.

1.1 Thesis Overview

This report is divided into two parts characterized by simplifying assump­

tions: in Chapters 2 and 3 the Boussinesq approximation is invoked whereas 

in Chapters 4 and 5 a fully anelastic system is considered.

In Chapter 2, the theoretical background and numerical methods used to 

compute internal wave propagation, transmission, and reflection in the Boussi­

nesq approximation are discussed. Chapter 3 presents results obtained from 

the application of the numerical method to several background buoyancy fre­

quency and velocity profiles. Specifically, in Section 3.3 the code is applied to 

a continuously varying stratification where waves propagate from a strongly 

stratified to weakly stratified region and we compare the results with pre­

dictions of WKB and piecewise-linear theory. In Section 3.4 the effects of a 

continuously varying background shear in uniformly stratified flow are exam­

ined. In Section 3.5 the unstable background flow considered in Section 3.4 is

7
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allowed to evolve nonlinearly to a quasi-steady state consisting of a broader 

shear profile and locally reduced stratification resulting from mixing and the 

resulting profiles analyzed.1

Chapter 4 presents the theoretical background and numerical methods used 

to model internal waves in an anelastic fluid. In Chapter 5 the numerical 

methods are applied to a series of background buoyancy frequency and shear 

profiles. In Section 5.2 the piecewise linear shear profiles considered by Brown 

and Sutherland (2007) are examined and the effects of manipulating density 

scale height analyzed. Section 5.3 examines atmospheric profiles observed over 

the island of Jan Mayen in the North Atlantic. Mountain generated internal 

waves are modelled ass they propagate upwards through the tropopause into 

the stratosphere.2

Comparison between the Boussinesq and anelastic methods, along with 

a summary of the significant findings, appears in Chapter 6 . Appendix A 

outlines the method of Frobenius and its application to the Taylor-Goldstein 

equation and its anelastic analog. In Appendix B the thermodynamic tools 

necessary to convert atmospheric data into buoyancy frequency and density 

scale height profiles are discussed and the algorithms used to perform the 

conversions presented.

1This work has been published by Nault and Sutherland (2007) 
2This work is in preparation for submission to J. Atmos. Sci.

8
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Chapter 2 

Boussinesq Numerical M ethods

2.1 Introduction

This section develops the theoretical and numerical tools necessary to model 

the propagation of small-amplitude two-dimensional internal gravity waves 

through a non-rotating, inviscid Boussinesq fluid. In the Boussinesq approxi­

mation density variations are assumed to be sufficiently small that they may 

be ignored in non-buoyancy terms. This approximation is therefore well suited 

to fluids with densities that do not change significantly over the extent of their 

domain, such as water in the ocean or air in the atmosphere over distances less 

than 8 km, a characteristic scale height. In Chapter 4 the Boussinesq approx­

imation will be dropped and fluids that undergo significant density changes 

over their domain, such as air in the atmosphere over distances larger than 

8 km, will be considered.

In section 2.2 the Taylor-Goldstein equation, which describes Boussinesq 

internal waves, is derived from the Navier-Stokes equations. The numerical 

tools required to solve the Taylor-Goldstein equation are then developed in 

section 2.3.1. A technique that determines the appropriate initial conditions 

and measures the relative transmission of the internal waves given specific

9
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background profiles is presented in section 2.3.2.

2.2 Governing Equation

In the inviscid, Boussinesq approximation the equations of motion are

where v  =  (w, v, w) is the velocity field, p is the local pressure in the fluid, p 

is the local density of the fluid, and poo is a characteristic fluid density.

In this study it is assumed that the waves are two dimensional and that 

there is no mean vertical flow. As such, the velocity field may be decomposed 

into a time-independent background, denoted by a bar over the 2-dependent 

variable, and time-dependent perturbed component, denoted by a tilde over 

the variable:

Likewise, the density may be decomposed into a sum of background and per­

turbed contributions:

Substituting decompositions (2.2) and (2.3) into the momentum equation

(2.1a)

(2.1b)

(2.1c)V • v = 0

u (x, y, z, t)  = U (z) + u (x, z, t ), 

v (x ,y , z , t )  = 0 , 

w (x , y , z , t )  = 0 +  w (x , z, t ).

(2.2a)

(2.2b)

(2.2c)

P (x, y, z, t) = p(z) + p { x , z , t ) . (2.3)

(2.1a) and eliminating; nonlinear terms (as these are assumed to be small am-

10
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plitude waves), a coupled linear system of equations is found:

(dt + Udx) u  + U'w = (2.4a)
Poo

(dt + Udx) w  = - —  - g — , (2.4b)
Poo Poo

where subscripts t, x, and z indicate partial differentiation with respect to the 

corresponding indices and primes indicate differentiation with respect to 2 .

As v — 0 everywhere in the flow, it is possible to define the streamfunction 

ip (x , z) as
(dtp dip\(„, ro) = ^ - - - j  (2.5)

so that equation (2.1c) is satisfied. Substituting the streamfunction into equa­

tion (2.4), the perturbed velocities are eliminated:

(dt +  Udx) iPz -  U'ipx = (2.6a)
Poo

-  (dt +  Udx) ^  -  p — • (2.6b)
Poo Poo

Applying the variable decompositions to equation (2.1b), it is required that

(dt + Udx) p  = tl>xft. (2.7)

The pressure terms may be eliminated from (2.6) by taking the partial deriva­

tive with respect to z of equation (2 .6a) and subtracting from it the partial 

derivative with respect to x  of equation (2.6b):

(dt +  Udx) (xPxx  +  rl>gz) -  U"i/)X =  - g ^ - .  ( 2 .8 )
Poo

Operating on this equation with (dt + Udx), then substituting in the partial 

derivative w ith  respect to  x  o f eq u ation  (2 .7) th e  perturbed  d en sity  is elim i­

nated:

(dt + Udx) 2 (ipxx +  tpzz) -  (dt +  Udx) U"ipx = - g — ipxx. (2.9)
Poo

11
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It is assumed the waves are horizontally periodic with fixed absolute fre­

quency, so that the streamfunction may be decomposed into a periodic com­

ponent multiplied by a 2-dependent amplitude envelope, 4>{z)\

ip(x ,z ,t )  = 4>{z)ei{kx- ut\  (2 .10)

where it is understood that the real valued component of the streamfunction 

is used when calculating physical properties of the flow. Introducing this 

decomposition into equation (2.9) the governing equation is found:

Q2 ( - k 2(j> +  </>") + tot7"k(j) -  k2g-^—(j) = 0 (2 .11)
Poo

where the Doppler shifted frequency, f2, is defined as in equation (1.2). In­

troducing the squared buoyancy frequency, N 2, as defined in equation (1.3), 

equation (2.11) is further simplified:

/  N 2 TJ" \
<2'12)

This is the Taylor-Goldstein equation (Drazin and Reid, 1981). Given val­

ues of (f) and 4>' at some fixed vertical location z0, it is possible to integrate 

equation (2.12) and so determine 4> everywhere. In the following discussion 

Zq is considered the lower boundary of the domain and numerical integration 

propagates <p solutions upwards. For systems where physical waves propagate 

downwards z0 may be considered the top of the domain -  the two systems are 

equivalent in the Boussinesq approximation.

For fluid with uniform background flow U (z) =  Uo and constant buoyancy

frequency N  (z) = N 0 the Taylor-Goldstein equation has solutions of the form

</)(z) = e±imz, (2.13)

in which the dispersion relation for Boussinesq internal waves,

f i o  =  ( 2 ' 1 4 )

12
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implicitly defines m  in terms of Doppler shifted frequency — u  — kUo, N 0 

and k. The vertical wavenumber, m, is real only if &o < N0. By convention m  

is defined to be positive and the ±  sign in equation (2.13) establishes whether 

the waves propagate upwards or downwards.

2.3 Numerical Tools Overview

In this section the numerical tools required to solve equation (2.12) along 

with the techniques needed to determine the appropriate initial conditions 

are developed. A discussion of the appropriate measure of transmitted wave 

amplitude is also presented.

2.3 .1  N u m erica l Solver

Numerical integration, of the Taylor-Goldstein equation is performed using 

Stoermer’s rule (Press et al., 1993) wherever O is sufficiently large. Near a 

critical layer Q is close to zero and the Stoermer method fails, the method 

of Frobenius is applied in these regions. Indeed, if the gradient Richardson 

number,
N 2 (z)

Rig (z) =  K (2.15)
(E /'M )

exceeds 1/4 at the critical level, ray theory suggests the waves asymptoti­

cally approach the level, neither reflecting nor transmitting across it (Lighthill, 

1978). Although a more rigorous treatment of linear theory allows for transmis­

sion across a critical layer with Rig > 1 / 4 ,  waves near the singularity develop 

rapid vertical oscillations which lead to efficient wave dissipation. Thus when 

a critical layer is encountered solutions are found only in circumstances for 

which Rig is locally less than 1/4.

13
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Whenever the coefficient in parenthesis that precedes the <f> term in equa­

tion (2.12) is greater in magnitude than 104 the numerical solver jumps over 

the singularities using the approximate analytic solution found by the method 

of Frobenius (see Appendix A). The solver then continues integrating using 

the Stoermer method.

An explicit iterative solver is developed using Stoermer’s rule on the Taylor- 

Goldstein equation. The vertical domain is discretized into N  +  1 points as

in which n  G 0, . . . ,  N, 4>n =  <fi (zn) and bn is found from the background 

buoyancy frequency and horizontal shear profiles at z =  zn:

Z =  Z0 , z  1 , . . . ,  ZN . (2.16)

The Taylor-Goldstein equation rewritten in discrete form is

f i n  +  b n f i n  ~  0 , (2.17)

(2.18)

Applying Stoermer’s rule, <f>n is found as

(2.19)

where

An -  An_x - (2 .20)

for n  € 1, . . . ,  N  with hn =  zn — zn_ A t  the first gridpoint

(2 .21 )

so that if 4> (zq), <j)' (zq) and bn are known 4>n may be iteratively computed.
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2.3 .2  S o lu tion  D river

Using the iterative methods described above, initial <f> and (j)' values may be in­

tegrated over a vertical domain. However, appropriate choices of these bound­

ary conditions remain to be found. By characterizing the streamfunction solu­

tions at the top and bottom of the domains as a superposition of upward and 

downward propagating waves, physical arguments may be applied making the 

calculation of appropriate boundary conditions possible.

Over small regions at the boundaries of the domain the buoyancy frequency 

and shear profiles are artificially extended such that their values remain con­

stant. This is equivalent to the assumption that the incident and reflected 

streamfunctions represent monochromatic plane waves and does not affect the 

behaviour of the internal waves. As such, at the bottom of the domain there 

is a finite region over which the Taylor-Goldstein equation has constant coef­

ficients:

0" +  b0(t> =  0 . (2 .22)

Similarly, at the top of the domain there is a region where

(j)" +  bN(j) = 0. (2.23)

Equations (2.22) and (2.23) have analytic solutions

(z) = C+eimkZ + C^e~imkZ, (2.24)

where k =  0, N  represents solutions at the bottom and top of the domains, 

respectively, and are unknown wave amplitudes, and m k =  \ fbl  are 

vertical wavenumbers. As the wavelike solutions at the beginning and end

of the vertical domain is a requirement for the numerical solver, the vertical

wavenumbers must be real valued, thus it is required that

bk > 0 (2.25)
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for both k =  0 and k =  N.

Near the bottom of the domain the streamfunction is written explicitly as

(f>0 (z) =  +  A - e - imoz. . (2.26)
incident reflected

Physically, this is the superposition of an upward-propagating incident wave 

and a downward-propagating reflected wave. Given the (generally complex) 

wave amplitudes A + and A- , may be calculated directly using equa­

tion (2.26). Furthermore, (f>'0 may be calculated as:

=  A +im0eiTnoZo -  A - i m 0e - imozo. (2.27)

Thus, using equations (2.26) and (2.27), the initial conditions required for the 

numerical solver are determined. The problem of finding the initial conditions 

has been reduced to the problem of finding appropriate incident and reflected 

wave amplitudes.

At the top of the domain the streamfunction solution may be written as

(j)N (z) = +  B -e ~ irnNZ,  (2.28)
outgoing re tu rn ing

where B + is the outgoing wave amplitude and B~ is the returning wave am­

plitude. Physically, the outgoing wave represents wave energy that escapes 

through the top of the domain whereas the returning wave represents wave 

energy originating from beyond the top of the domain and propagating down­

wards. By causality the returning wave is unphysical. It is through the elimina­

tion of the returning wave that proper incident and reflected wave coefficients, 

and thus initial conditions, are selected.

Differentiating equation (2.28), <t>'N is found in terms of the outgoing and 

reflected wave amplitudes

<j)'N = B +im NeimNZN -  B - i m Ne- imNZN. (2.29)
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As and <j>'N are known and unknowns B + and B~ are required to determine 

appropriate initial conditions, equations (2.28) and (2.29) must be used to find 

the desired quantities. Defining 5 =  cos (rn^z^)  and 7  =  sin (m^^jv), wave 

amplitudes B + and B~  are calculated from the final streamfunction values:

R e { B +}' m ^S rriNl 7 8 ’Re {(f>N}
Im { B +} 1 -rriN'y mN$ —S —7 Im {0jv}
R e { £ -} 2m x m ^S —mv7 —7  — 8 Re W n }
Im { £ -} .  rriN'y mN& S —7

So, given incident and reflected wave amplitudes A + and A ~, respectively, 

outgoing and returning wave amplitudes B + and B~,  respectively, may be 

calculated.

As discussed above, the appropriate choice of incident and reflected wave 

amplitudes will result in only outgoing, and not returning, waves at the top 

of the domain. Thus a choice of A + and A~ is sought that, upon integration, 

yields B~ = 0. To find A + and A~ such that B~ — 0 two sets of unique 

‘guesses’ for the incident and reflected wave amplitudes are made and the sub­

sequent outgoing and returning wave amplitudes are found and then superim­

posed to find a solution with B~  =  0. This process is illustrated schematically 

in Figure 2.1. An initial guess for the incident (labelled A f ) and reflected 

(labelled A{)  wave amplitudes is made. The system is then integrated and 

outgoing (labelled B f ) and returning (labelled B f ) wave amplitudes are found. 

The process is repeated for new incident wave amplitude guesses A% and A j, 

which results in outgoing wave amplitude B% and returning wave amplitude 

B 2 . As the system is linear, the two initial guesses may be superimposed to

elim in ate  B ~  and  th u s rem ove dow nw ard p rop agating  waves a t th e  to p  o f th e

domain, this is illustrated in Figure 2.1c. Explicitly, the appropriate choices
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(a) (b) (c)

A t A t  A 2

B+

A + A~

Figure 2.1: Schematic illustration of how solutions are superimposed to gen­
erate transmission coefficients, (a) Incoming and reflected wave amplitudes 
A t  and A \  are arbitrarily selected, outgoing and returning wave amplitudes 
B t  and B± are calculated. (b) Different arbitrary amplitudes A 2 and A 2 
are selected, and B 2 and B 2 are found, (c) By superimposing the first two 
solutions, correct amplitudes A + and A~ are calculated such that B~ = 0 
resulting in transmitted amplitude B + and no downward propagating wave 
incident from above.
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for A  and A + are given by

(2.31b)

(2.31a)

Using this technique the appropriate initial conditions are found and the ver­

tical structure of the internal waves completely described.

2.4 Transmission Quantification

Using the tools outlined in the previous section, for a prescribed incident 

amplitude, A +, reflected and transmitted wave amplitudes A~ and B + are 

found. To analyze effectively the magnitude of internal wave transmission 

a non-dimensional measure of the degree of wave transmission, henceforth 

referred to as the ‘transmission coefficient’, is sought. In the absence of shear, 

the transmission coefficient is defined as the ratio of squares of the transmitted 

to incident amplitude:

(Sutherland and Yewchuk, 2004). This is equivalent to the ratio of transmitted 

to incident energy density associated with the waves,

for waves with streamfunction amplitude A^. Likewise the reflection coefficient 

is defined by

By conservation of energy, T  +  R  =  1 must be satisfied.

In the presence of a mean horizontal background flow, wave energy is not 

conserved due to interactions between the Reynolds stress and the background

(2.32)

E  = (k2 + m 2) | ^ | 2 , (2.33)

(2.34)
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shear (Brown and Sutherland, 2007). For small amplitude waves, the appropri­

ate corresponding conserved quantity is wave action (Lighthill, 1978; Eliassen 

and Palm, 1961), A  = E/Cl. Equivalently, as derived using the methods of 

Hamiltonian fluid mechanics, the so-called pseudoenergy (Andrews and McIn­

tyre, 1978; Scinocca and Shepherd, 1992) of internal waves
, ,  p

S = ^=-=u>A  (2.35)
u u

is conserved. As the wave solutions are in steady state, it is required that 

pseudoenergy not build up in the domain over time. As such, the transmitted 

pseudoenergy flux

Te  =  Scgz (2.36)

must equal the sum of the pseudoenergy flux of the incident and reflected

waves. Here cgz is the vertical group velocity given by

Clm . .
Cgz ~  ~  k2 + m 2 ( }

Thus, for Boussinesq waves in general, the transmission coefficient is defined

as:
B+ 2

— . (2.38)
m0A+

The reflection coefficient is defined as in equation (2.34). In the special case 

in which m\ — mo, equation (2.38) reduces to equation (2.32).

Brown and Sutherland (2007) developed an analytic solution for inter­

nal wave propagation across a piecewise-linear shear layer coincident with a 

buoyancy frequency gap. In their analysis of wave propagation they define 

transmission and reflection coefficient as in equations (2.38) and (2.34), re­

spectively. They found that T  +  R  =  1 independent of incident frequency and 

wavenumber, confirming that pseudoenergy flux is the correct measure of wave 

transmission.
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Chapter 3 

Boussinesq Simulations

3.1 Introduction

In this section the numerical methods outlined in the previous chapter are 

applied to several physical background buoyancy frequency and shear profiles. 

In section 3.2 the numerical solver is applied to profiles for which analytic 

measures of transmission are available. Comparing the numerical results to 

the analytic results, the validity of the code is established. The numerical 

solver is then applied to a diffuse buoyancy frequency step with stationary 

background flow in section 3.3 and the resulting transmission characteristics 

compared to heuristic arguments provided by WKB theory. The background 

flow is introduced in section 3.4 and the effects of critical layers analyzed. 

Finally, in section 3.5 the transmission characteristic of a mixed shear layer 

is found for varying horizontal shear strengths. These numerically generated 

profiles closely model unstable shear layers that are common to the ocean.

3.2 Code Testing

Using the numerical methods outlined in Chapter 2 a computer code was 

developed to calculate transmission coefficients. The code was tested by com-
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paring numerically computed transmission coefficients with analytic results 

for an Ar2-barrier in stationary fluid (Sutherland and Yewchuk, 2004) and in 

piecewise-linear shear (Brown and Sutherland, 2007). Integrating over 1000 

gridpoints, a typical desktop computer requires about 1 second of computa­

tion time per gigahertz of processor clock rate to calculate the transmission 

coefficient for a single set of parameters. Examining transmission for a large 

range of u  — k space at high (300 x 300) resolution takes about a day. Typi­

cal deviations between the analytic and numerical results were negligible with 

maximum transmission coefficient discrepancy less than 1% over a broad range 

of input uj and k except when critical layers were encountered in which case 

deviations between the results were up to only 5%. The larger discrepancy 

can be explained by the approximations introduced by the method of Frobe- 

nius. The error can be improved by increasing the resolution of the numerical 

integration at the cost of computation time.

3.3 Stationary Fluid Results

The study of internal wave transmission is first restricted to a non-uniformly 

stratified but stationary fluid. The buoyancy frequency profile is

X N ?  —  N% / z \  N g  +  N ?  , sN 2 ( z ) =  ‘ 2 ° t a n h ( I j +  ° 2 (3.1)

as illustrated in Figure 3.1a. Internal waves originating from zo < 0 ,  where 

N  ~  No, and travelling upwards past the step to z  =  z\ 0, where N  «  jVi 

are considered.

WKB theory at leading order predicts perfect transmission if u> < Ni  and 

no transmission if u  > N\. The transmission coefficient is calculated for a 

range of nondimensional frequencies ui =  u / N x and nondimensional horizon­

tal wavenumbers k =  kL  in circumstances for which A =  N f  /N q = 0.5 and
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Figure 3.1: (a) Schematic illustration of the squared buoyancy frequency pro­
file used for analysis in Section 3.3. U = 0 in this case. (b) schematic il­
lustration of the background horizontal flow used for analysis in Section 3.4. 
N 2 =  N q in this case.

0.05. The corresponding computed transmission coefficients are plotted in 

Figure 3.2. The transition between the WKB and non-WKB regime is illus­

trated by lines of constant nondimensional transmitted vertical wavenumber 

rhi =  m \L  =  1 and 1/8, as determined from the dispersion relation for Boussi- 

nesq internal waves:

Consistent with the WKB approximation, near-perfect transmission is ob­

served for rhi »  1. Surprisingly, the approximation is satisfactory even for 

mi  «  1 corresponding to a transition depth, L, approximately 1/6 of the

approximation occurs for rhi ^  1/ 8-

In the limit as L  —»• 0 the smooth profile becomes a step at z = 0 and the 

transmission coefficient is found analytically using matching conditions at the

k
(3.2)

vertical wavelength of the transmitted waves. Significant departure from the
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
T ( u , k )

Figure 3.2: Transmission coefficient, T,  as a function of incoming wave fre­
quency scaled by incident buoyancy frequency, and wavenumber scaled by 
characteristic transition length for (a) =  0.5 and (b) TVj2 =  0.05. Right
plots show contours of T  for a range of u  and k. Insert shows close-up of trans­
mission for large frequency and small wavenumber. Left plots show analytic 
solution as k tends to zero.
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(Sutherland and Yewchuk, 2004; Brown and Sutherland, 2007; Drazin and 

Reid, 1981). This is plotted in the left panels of Figure 3.2. Comparing the 

analytic results to those found numerically for k «  0 excellent agreement is 

found.

Comparing the transmission contour plots for A =  0.5 and 0.05, there is 

a clear trend: decreasing A decreases the relative transmission for fixed rhi. 

As A is reduced, the contours of constant T  approach lines of constant rhi for 

sufficiently large k. For example, Figure 3.26 shows that the rhi =  1/8 contour 

closely corresponds to T  «  0.5 for a range of k > 0. Thus wave propagation 

into weakly stratified fluid is strongly dependent on the transmitted wave 

vertical wavenumber.

3.4 Shear Results

In this section the effects of background shear in the transmission of internal 

waves across a region of constant density gradient are examined. In this study 

the background shear is:

U(z) = U0t a D h ( ^ + U o ,  (3.4)

and the buoyancy frequency is constant: N 2 (z) = N q. The background shear 

profile is drawn schematically in Figure 3.16. The strength of the shear relative 

to the buoyancy frequency is described by the bulk Richardson number,

( N0L \ 2 , .
( - £ - ) .  (3-5)
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The relevant physical parameters are nondimensional frequency, Cj =  u / N 0\ 

horizontal wavenumber, k — k L / \ / Rib; vertical wavenumber, m  = m L ; depth, 

z — z/L\  background shear, U — U/U0; buoyancy frequency, N  =  N / N 0; and 

Doppler-shifted frequency, Cl = Cl/N±.

Here the focus is upon values of Rib lying in the range 0 < Rib < 1 .  In 

Section 3.5, transmission coefficients that are computed for background profiles 

resulting from the nonlinear evolution of the unstable flow are similar to those 

computed in this section. This suggests that the evolution of the shear layer 

has negligible influence upon wave propagation across the layer.

In each of the four cases considered (Rib =  0.001,0.01,0.1, and 1) the 

gap width and maximum shear strength are L = 1 and Uq = 1, respectively. 

The resulting transmission coefficients, over the range of all frequency and 

wavenumber that allow wavelike propagation, are illustrated in Figure 3.3. 

Requiring propagating waves at z0, Cj  < 1 is required. The plots are divided 

into four regions: to the left of the leftmost dashed line (where Cl (z\) =  

Cj  — 2k =  1) and to the right of the rightmost dashed line (where Cl (zi) =  —1) 

the Doppler-shifted frequency exceeds the buoyancy frequency at Zi ^>0, and 

so propagation is not possible. The region between the leftmost dashed line 

and the dashed-dotted line (where Cl (zi) = 0) corresponds to wavenumber and 

frequency pairs that do not encounter critical layers anywhere in the flow. The 

corresponding horizontal phase speed is either negative (for k < 0) or greater 

than 2Uo (for k > 0). In region to the right of the dashed-dotted line the 

frequency and wavenumber of the internal waves are such that they encounter 

a critica l layer. If R ig >  1 /4  at th e  critical level th e  waves ex h ib it a  rap id ly  

oscillating vertical structure. Consistent with the predictions of ray theory, 

it is assumed that the waves dissipate in this circumstance and so neither
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
T  (i>, k)

Figure 3.3: Transmission as a function of incoming wave frequency, scaled by 
N0, and wavenumber, scaled by the root of the bulk Richardson number, for
(a) Rib =  0 .001, (6) Rib =  0 .010, (c) Rib =  0.100, and (d) Rib =  1.000. 
To the left of the leftmost line and to the right of the rightmost dashed line 
wave propagation is not possible at large depths. The centre dashed-dotted 
line marks the boundary between waves that do not encounter a critical layer, 
to the left of the line, and waves that do encounter a critical layer, to the right 
of the line.
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transmission nor reflection occurs.

The WKB approximation applies when rh  1. The associated range of 

frequencies and wavenumbers lie in a small region above the line Cj  =  2 k ,  which 

corresponds to the dashed-dotted line in the four plots of Figure 3.3. Because 

the WKB approximation is plausible over such a small region this problem 

requires different techniques to completely describe wave propagation and is 

well-posed the numerical solver.

Figure 3.3a shows transmission coefficients for waves incident upon a highly 

unstable shear flow for which Rib =  0.001. For k < 0, despite being Doppler- 

shifted to frequencies close to N 0, transmission is strong for a wide range of 

Cj  and k .  The transmission is lowest for small Cj , corresponding to incident 

waves with vertical wavelengths that are short compared to the horizontal 

wavelength but long when compared with the gap depth. To the right of the 

dashed-dotted line, corresponding to parameters for which waves encounter a 

critical layer, there is weak but non-zero transmission over nearly the entire 

region.

In Figure 3.36, the transmission coefficient is plotted for Rib =  0.01. Al­

though the bulk Richardson number has increased by an order of magnitude, 

Nq is two orders of magnitude smaller than Uq/L s o  that shear effects still 

dominate. As such, the transmission is largely unchanged in the non-critical 

region. The most significant differences are apparent near Cj  — 0, where the 

transition from poor transmission to strong transmission occurs over a shorter 

range of Cj , and also to the left of the dashed-dotted line that separates the re­

gion  b etw een  critica l and non-critica l transm ission , w here th e  tra n sitio n  from  

weak transmission to strong transmission occurs over a smaller range of k. 

In the critical region the effect of increasing Rib is more significant. There
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is a smaller region of Co and k which have Rig < 1/4 at the critical layer so 

that the parameter range over which transmission occurs is smaller. However, 

because Cl approaches zero at a critical layer, the N 2/C l2 term dominates the 

Taylor-Goldstein equation. As such, increasing N 0 by an order of magnitude 

significantly affects the transmission in the region that encounters a critical 

layer. Compared with the case where Rig — 0.001, there is a large increase 

(typically over 500%) in the transmission coefficients in the critical region.

Figure 3.3c plots the transmission coefficient for Rib =  0.1. In this case 

N0 is the same order of magnitude as U/L,  so the buoyancy frequency has 

significant influence on the transmission characteristics. Comparing the non- 

critical transmission region to that in Figures 3.3a and 3.35, it is apparent 

that the transition from relatively weak to strong transmission near Co = 0 and 

the Cl (z) =  0 line occurs over a smaller range of frequencies -  transmission 

coefficients are larger than 0.5 over nearly the entire domain. In the critical 

region transmission is even stronger. For smaller Co and k the transmission 

coefficient is consistently as large as 0.3 and above 0.15 over most of the range 

of parameters with waves that encounter a critical level.

In Figure 3.3d transmission is plotted for relatively stable flow with Rib — 1. 

In this case N0 is the same order of magnitude as U/L  and the shear has less 

impact upon the wave propagation. In the limit as Rib approaches infinity 

perfect transmission is expected throughout the non-critical region and no 

transmission is possible in the critical region. With Rib =  1 the transmission is 

already approaching this limit with transmission greater than 0.95 over nearly

th e  entire range o f paxam eters th a t allow  w ave propagation . In th e  critica l 

region, to the right of the dashed dotted line, transmission is not possible. 

This is because Rig > 1 / 4  over the entire critical region so that waves may not
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propagate across the critical layer.

3.5 M ixed Layer Results

The background profiles examined in the previous section are unstable for 

Rig < 1 / 4 .  In this section wave transmission across a mixed layer resulting 

from taking the initial conditions given by equations (3.4) and (3.5) and solving 

the equations of motion so as to evolve the system until it reaches a quasi­

steady state is considered. Explicitly, the horizontally averaged background N 2 

and U profiles are determined at time t = 100L/U0. The code used to perform 

this calculation is described in detail by Sutherland and Peltier (1992).

Background shear and buoyancy frequency profiles, as well as the gradient 

Richardson number in the central mixed region, are plotted in the left panels 

of Figure 3.4 for Rib =  0.001,0.01 and 0.1. The circumstance with Rib =  

1, studied in Section 3.4, is omitted as the flow is stable in this case. The 

evolution of the flow involves the development of Kelvin-Helmholtz billows 

that mix the region about z — 0 both broadening the shear layer and locally 

reducing N.  The resulting mean flow and horizontal averaged N 2 profiles are 

similar to the piecewise-linear profile across which transmission was considered 

using an analytic formula by Brown and Sutherland (2007). Not only do 

incident waves encounter a shear layer, but they also encounter a localized 

region of reduced N 2 where the waves may be evanescent. If this region is 

sufficiently narrow, it is nonetheless possible for waves to tunnel through. 

The corresponding transmission coefficients are given in the right panels of 

Figure 3.4a, b, c. These are analogous to Figures 3.3a, b, and c respectively.

When the shear is relatively weak compared to the strength of the buoy­

ancy frequency the resulting transmission is similar to that of the non-evolved
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(a) Rib =  0.001

(b ) Rib =  0.010

(c) Rib =  0.100

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
T (u>, k)

Figure 3.4: Background buoyancy frequency, shear, and gradient Richardson
num ber profiles (left panels) for an  evo lv in g  shear flow a t t  =  lOOL/f/y and
corresponding transmission contour plots (right panels) for (a) Rib =  0 .001,
(b) Rib =  0.010, and (c) Rib =  0 .100. The contour range and bounding lines 
correspond to those in Figures 3.3a, b, and c.
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profiles in the non-critical region. As in Section 3.3 it is found that although 

there is a reflection level near z = 0 where N 2 =  0, almost perfect transmission 

occurs for a wide range of Cj  and k .  The similarities between the transmis­

sion contours for the evolved and original profiles suggests that internal waves 

transmit across the mixed region throughout the mixing process.

In the region of the plot where a critical layer is encountered (to the right 

of the dashed-dotted line) there are more significant differences between the 

transmission contours for the original and evolved profiles. The mixing induces 

opposing effects in the gradient Richardson number: the broadening of the 

shear layer acts to reduce U', thus increasing Rig, while the mixing reduces N,  

thus decreasing Rig. Although the effects are comparable in magnitude, Rig is 

typically larger after the fluid has mixed suggesting that the mixing in the gap 

is dominated by the broadening of the shear layer. As such, wave transmission 

is possible for a smaller range of Cj  and k  and indeed the transmission coefficient 

is non-negligible over a smaller parameter range.

For Rib =  0.001 the shear and buoyancy frequency profiles are symmetric 

about z = 0. This results from the fine-scale convective instability which 

occurs when KH billows transport dense fluid over light. In the mixed region 

Rig < 1/4 for \z\ < 2.81 and in this range 0.05 < U < 1.95. As such, 

transmission is possible in the critical region for a very broad range of Cj  and k . 

In comparing transmission for the evolved and non-evolved profiles of Figures 

3.4a and 3.3a, respectively, it is clear that in the critical region transmission 

occurs over a comparable range of Cj  and k  and that transmission is poor in

b o th  cases - th e  differences b etw een  th e  tw o p lo ts are a lm ost ind istin gu ish ab le.

For Rib =  0.01 the differences between the original and evolved profiles 

are more apparent. Comparing Figures 3.36 and 3.46 it is clear that there
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is generally stronger transmission of waves that do not encounter a critical 

level, particularly for low frequency waves. A transmission ‘valley’ occurs for 

0 <  Co <  0.1 and —0.5 < k < 0 when 0.1 <  u / k  <  0.5. For these profiles, 

Rig < 1/4 in the mixed region for \z\ < 2.11 over which range 0.18 < U <  1.82. 

In the critical region slightly stronger transmission occurs compared to that 

computed for the original profiles, although non-negligible transmission occurs 

over a smaller range of parameter space for the evolved profiles.

For Rib =  0.1, comparing the transmission contours in Figures 3.3c and 

3.4c it is again clear that, in the non-critical region, transmission is generally 

stronger for the evolved plots and that a transmission ‘valley’ (though weak) 

occurs for 0.5 <  &/k <  2.3 if Cj < 0.3. In the critical region there is significant 

deviation from the transmission contours obtained from the original profiles. 

There are two small bands of (relatively weak) transmission for the evolved 

profiles whereas transmission was possible over a large range of parameters for 

the original profiles. The lower frequency transmission band coincides with 

waves encountering a critical level with Rig < 1 / 4  where —2.34 < z < —2.19 

for which 0.42 < U < 0.47. There is a maximum in shear gradient at this level. 

The higher transmission band occurs for waves encountering a critical level 

where 1.02 < z < 1.56 for which 1.11 < U < 1.31. This is coincident with a 

minimum in buoyancy frequency. For the original profiles critical transmission 

was at its greatest in this case.
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Chapter 4 

Anelastic Num erical M ethods

4.1 Introduction

In this section, the Boussinesq approximation made in previous sections is 

relaxed and the propagation of anelastic internal waves considered. In a liquid, 

the density does not change significantly over the depth so the Boussinesq 

approximation is valid. The Boussinesq approximation is therefore effectively 

applied when analyzing internal gravity waves in the ocean. In the atmosphere 

the density may change significantly over a vertical domain extending over 

tens of kilometres. In particular, the density decreases by approximately three 

orders of magnitude from the surface to the top of the stratosphere, at altitude 

z  «  50 km, so the Boussinesq approximation is no longer valid.

The anelastic approximation is an extension of the Boussinesq approxi­

mation because it can effectively model internal waves in domains where the 

background density decreases significantly in the vertical. As internal waves 

propagate upwards, the background density decreases and the amplitude con­

versely must increase in order to conserve momentum. This characteristic in­

crease in wave amplitude with altitude is referred to as ‘anelastic growth’. In 

the derivation of the Taylor-Goldstein equation, a characteristic density, p0Q,
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rather than the background density, p , was used in the continuity equation 

(2.1c) and preceding the time derivatives in the momentum equations (2.4). 

As such, the physical effects of significant density change were neglected in the 

Boussinesq approximation.

An anelastic equivalent to the Taylor-Goldstein equation is derived by mak­

ing simplifying approximations to the Navier-Stokes equations for an anelastic 

fluid. In the anelastic approximation it is assumed that background potential 

temperature varies slowly in the vertical (Lipps and Hemler, 1982). By consid­

ering only the background density in the continuity equation, the fastest time 

scale upon which fluid motions occur is set by internal gravity waves (Ogura 

and Phillips, 1962). In this sense, the anelastic approximation effectively fil­

ters sound waves from the full equations of motion. The resulting equations 

are examined and the numerical tools developed in Chapter 2 are modified to 

incorporate the exponential wave envelopes associated with anelastic waves. 

The numerical model developed in this section is then applied to the piecewise- 

linear shear and density profiles considered by Brown and Sutherland (2007) 

and atmospheric profiles observed over Jan Mayen, as considered by Ecker- 

mann et al. (2006).

4.2 Governing Equation

Scinocca and Shepherd (1992) present the most general form of the equations 

of motion in the anelastic approximation as developed by Batchelor (1953)
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and Lipps and Hemler (1982):

~  +  (v ■ V) v  = —cp6V (tt) -  (4.1a)

f)0 HO
_  +  („ . V ) «  +  « s  =  0, (4.1b)

V- (pv)  =  0. (4.1c)

In addition to the velocity and density fields, v  and p, the anelastic equa­

tions include the potential temperature, 9, and Exner pressure, it. The Exner 

pressure is a measure of pressure scaled by the ground level pressure p0o:

(4-2)
\PooJ

where

* =  -  »  I  (4-3)
Cp t

for gas constant R  = OL28705 kJ/K  • kg and heat capacity at constant pressure 

cp =  1.0057 kJ/K  • kg for dry air.

The potential temperature is the equilibrium temperature a parcel of air 

would attain if moved adiabatically to ground level. Using the Exner pressure 

it is defined as

B = 7 ’ (4‘4)7r

for air at temperature T. In equations (4.1a) — (4.1c) the thermodynamic fields 

have been decomposed into background and perturbed parts:

7T (x, Z, t) =  7T (z) + 7T (x, Z, t) , (4.5a)

9 (x ,z , t )  = 9(z) + 9(x ,z ,  t ) , (4.5b)

p{x , z , t )  = p(z) + p { x , z , t ) . (4.5c)

Wilhelmson and Ogura (1972) showed that if 8 is allowed to vary in the

vertical, then the system prescribed by equations (4.1a) — (4.1c) may not
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conserve energy. Lipps and Hemler (1982) suggest that equation (4.1a) may 

be replaced by

~  + (v • V) v  =  V (cp9tt) -  cp^ z , (4.6)

without introducing greater approximation if 9 varies slowly in the vertical, 

a condition already required in the initial approximations used to derive the 

system. Using equations (4.6), (4.1b), and (4.1c) to model the system, an 

anelastic equivalent to the Taylor-Goldstein equation is found.

As in the derivation of the Taylor-Goldstein equation, it is assumed that 

there is no mean vertical flow and the waves are two dimensional. As such, 

the velocity field may be expressed as:

v  — (U (z) + u (x , z, t ) , 0, w (x , z, f)) . (4.7)

Furthermore, only small amplitude waves are considered so all nonlinear terms 

may be neglected. Expanding into component form, applying equation (4.7), 

and linearizing, equation (4.6) becomes

(dt + Udx) u  + U'w = —cp9ttx, (4.8a)

(dt + Udx) w =  - c p ( o'tt +  9ttz +  w'Oj , (4.8b)

where subscripts t, x  and z  indicate partial differentiation with respect to the 

corresponding indices and primes indicate differentiation with respect to z. 

Similarly applying the velocity field expansion to equation (4. lb) and lineariz­

ing gives

(dt + Udx) 9 + w6' =  0. (4.9)

As the waves are two dimensional, from the continuity equation (4.1c) it 

is possible to define the mass flux streamfunction ^  (x, z) such that

( I d ^ i  1 dij)\ . s\\
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is satisfied. As waves propagate vertically upwards the ambient background 

density decreases so that wave induced velocities typically increase. This is 

required for momentum conservation: as density decreases velocity must in­

crease. Applying the mass flux streamfunction definition to equations (4.8a), 

(4.8b), and (4.9) the system becomes:

1 U'
-  (dt +  Udx) ipz — - ipx = - c p07Tx, (4.11a)
P P

* (dt +  Udx) 4>x = cp (d'n +  9ttz + if'0 \ , (4.11b)
P

(dt +  Udx) 0 -  - J p j  =  0 . (4.11c)

The pressure terms are eliminated from the system by adding the partial 

derivative with respect to 2 of equation (4.11a) to the partial derivative with 

respect to x  of equation (4.11b):

(dt + Udx) (xpzz +  -  ( j j -  + U'^j i>x =  cppn'ex, (4.12)

where Hp is defined by (1.1). The potential temperature variation term may 

then be eliminated by operating with (dt + Udx) on equation (4.12), then sub­

stituting the partial derivative with respect to x  of equation (4.11c) multiplied 

by cppir':

(a + USX)2 ((/>.. + + vv*) - (a + 0 d x) tk- + /?") V, =  Cpjr’O'y! .̂

(4.13)

Solutions are sought that are periodic both in time, having frequency u>, 

and in the horizontal space, having horizontal wavenumber k. The mass flux 

streamfunction is thus decomposed into a periodic component multiplied by a 

2-dependent amplitude envelope, <f> (z)\

ip (x, z , t )  = 0 (2) . (4.14)
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Again, it is understood that the real valued component of the streamfunction 

is considered when calculating the physical properties of the flow. Substi­

tuting this definition into equation (4.13) a second-order ordinary differential 

equation is found:

i f ' + ~ k2q* ) + ^ k ( J r ^ ' + ^ = °> (4-15)

where the Doppler shifted frequency is defined by equation (1.2).

Background hydrostatic balance requires

t §  -  - r ,  (4.16)

in which T =  g/cp is the dry adiabatic lapse rate, so that equation (4.15) may 

be simplified further:

where 7V| is the potential temperature-based squared buoyancy frequency de­

fined as in (1.4). A discussion of the relationship between potential tem­

perature and background density scale height along with the thermodynamic 

tools required to convert between the two is presented in Appendix B. Equa­

tion (4.17) is the anelastic extension of the Taylor-Goldstein equation and will 

be referred to hereafter as the ‘anelastic Taylor-Goldstein equation’.

For fluid with uniform background flow U (z) = U0 and exponentially de­

creasing density with scale height, HP) the background buoyancy frequency is 

constant Ng = N0 and the anelastic Taylor-Goldstein equation has solutions

o f the form

(j) (Z) = e- z/™Pe±imz (4 1g)

where vertical wavenumber, m, is defined implicitly by the dispersion relation

39

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



for anelastic internal waves,

Q = N0 -------k-= = -  (4-19)
y jk2 + m 2 +

In the Boussinesq limit the anelastic Taylor-Goldstein equation reduces to 

the Taylor-Goldstein equation. Explicitly, the Boussinesq limit is characterized

by vertically varying density that does not change significantly over the length

of the domain, Ld, requiring

«C Poo- ( 4 .2 0 )

Substituting this requirement into the Boussinesq squared buoyancy frequency 

definition (1.3), the requirement becomes

Ld <  Hp (4.21)

so that terms in equation (4.17) involving H ~l may be negated in the Boussi­

nesq limit. As such, the anelastic Taylor-Goldstein equation reduces to

which is the form Taylor-Goldstein equation given by (2.12).

4.3 Numerical Tools Overview

In this section an overview of the numerical tools used to model anelastic in­

ternal waves is presented. The results of section 2.3 are extended to include 

non-zero <j)' coefficients, which arise in the anelastic system and introduce ex­

ponential decay in streamfunction magnitude in regions of constant buoyancy 

frequency and shear. In addition to the tools required to model anelastic 

internal waves, thermodynamic principles are needed to convert atmospheric 

profiles into buoyancy frequency and density scale height profiles. A discussion 

of this process is presented in Appendix B.

4 0

Ld
dp
dz
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4.3 .1  N u m erica l Solver

Stoermer’s rule was used to solve the Taylor-Goldstein equation (2.12) but 

this method cannot be applied in the anelastic case due to the presence of 

the (j>' term in (4.17). A more sophisticated and numerically intensive or­

dinary differential equation solver must be used to model anelastic internal 

wave propagation. Due to its relative simplicity, the Heun method (Press 

et al., 1993) is used to integrate over non-critical points in the domain. Near 

critical points, where the coefficient of the (j) term becomes large, the method 

of Frobenius is again implemented (see Appendix A). As in the Boussinesq 

case, the Frobenius solver is implemented whenever the magnitude of the <p 

coefficient, scaled by the square of local discretization step size, is larger than 

104.

The domain is discretized into N  + 1 points as in equation (2.16). Then 

the anelastic Taylor-Goldstein equation is rewritten in discrete form:

4>n +  an4>n +  bn(j)n — 0, (4.23)

in which n E 0, . . . ,  N , 4>n = (j) {zn) and the coefficients an and bn are found

from the background N$, Hp, and U profiles at z = zn:

1— ~TT (4.24a)
“pn

b _  S *  _ e  k j L _  (424W
K ~  n $ +  f t ,  (4'24b)

The second-order differential equation is then converted into a system of two 

first-order differential equations:

s'n tn
A

= f ( z n , r n).  (4.25)

Equation (4.23) is recovered by setting sn = <pn and tn = Using this 

discrete formulation, the Heun method is applied to advance the equation
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iteratively:

r n+1 = r n + hn+1 ( /  (zn, r n) +  f  (zn+1, r n + hn+i f  (zn, r n))), (4.26)

where the not necessarily uniform step size hn+1 =  (zn+1 — zn) /2  has been 

introduced. Expanding equation (4.26), explicit formulae in terms of known 

quantities are found for the numerical integration

4 .3 .2  S o lu tion  D river

As in the Boussinesq case, appropriate initial conditions are found through the 

superposition of two incorrect initial wave amplitude ‘guesses’. However, the 

anelastic problem is complicated by the introduction of anelastic growth: in 

regions of constant buoyancy frequency and uniform flow, the streamfunction 

magnitude decays exponentially with height whereas in the Boussinesq case it 

remains constant.

To establish wave amplitudes, which are required to determine the appro­

priate initial conditions, a small region over which the coefficients of equa­

tion (4.23) remain constant is required at the bottom and top of the vertical 

domain. To this end, the numerical solver artificially extends the profiles at the 

boundaries of the domain holding the coefficients constant. This does not af­

fect the transmission coefficient as the waves propagate freely in these regions. 

In a region about the beginning of the domain the anelastic Taylor-Goldstein 

equation has constant coefficients:

Sn+l — Sn d" 2/ln+ifnbn h n^ S n (4.27a)

tn+1 = tn hn-\-1 (Clntn -j- bnsn) (tn hn+\ {p"ntn T r̂a^n))

bn+ lAn+1 (^n 4” ^n+l^n) • (4.27b)

4>" +  o,Q(f/ +  bQ(p — 0 , (4.28)
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where a0 and bo are given by the discretization presented in equation (4.24). 

Likewise, in a region about the top of the profile, equation (4.17) is rewritten 

as

(j)" +  aN<f>' +  bN(j) = 0. (4.29)

For a second-order differential equation with constant coefficients in the 

form of equations (4.28) and (4.29), solutions are given by

h ( z ) = c t e " i + c : < r ; ,  (4.30)

for yet-to-be-determined wave amplitudes and where k = 0, N  represent 

the solutions at the bottom and top of the domain, respectively, and r£ and 

r found as the roots to the indicial equation

r\  +  akrk +  bk = 0, (4.31)

so that explicitly

4- , .
r ‘ = “ T  +  MM (4.32a)

_

rk - - y M- (4.32b)

Solutions of (4.30) describe propagating waves whenever r£ and rj~ have an 

imaginary component. Requiring wavelike behaviour at the extremities of the 

vertical domain restricts the study to incident and transmitted waves having 

u) and k specified such that

bk > |  (4.33)

for both k =  0 and k = N.  Comparing this condition for wavelike behaviour 

to the Boussinesq equivalent, given by equation (2.25), it is clear that in the 

anelastic case the condition for wavelike solutions is more restrictive. In the 

Boussinesq case bk need only be larger than zero for wavelike solutions whereas
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now it must be larger than of./4 > 0. As the coefficient a*, appears only in 

the anelastic Taylor-Goldstein equation and typically becomes larger as scale 

height is reduced, the range of frequency and horizontal wavenumber over 

which transmission is possible is typically reduced as the flow becomes more 

anelastic.

The smaller range of valid frequency and wavenumber combinations that 

allow wavelike solutions may be explained by differences between the Boussi- 

nesq dispersion relation, (2.14), and the anelastic dispersion relation, (4.19). 

At the threshold between vertically propagating waves and non-wavelike solu­

tions m  = 0 , so that for wavelike solutions in the anelastic case the dispersion 

relation requires

%  < k  ■ (4.34)
\ j k2 + JBJ

In the Boussinesq case, for wavelike solutions it is required that

Q, 1
N  < jjfcf <4-35>

So as the flow becomes more anelastic, and Hp is decreased, the condition for 

wavelike solutions in the anelastic case becomes more restrictive and the range 

of frequency and wavenumber combinations that permit wavelike solutions 

reduced.

Near the bottom of the domain the streamfunction solution may be written

as

d) o (z) = A +e-aoZeimo* + A ~ e - (roZe- imoZ, (4.36)
incident reflected

where a0 — clq/2 and mo =  yjbo — Oq/A. Physically, equation (4.36) describes 

the superposition of an incident and reflected wave, each in an exponentially 

decreasing wave envelope. The incident wave amplitude A + is a measure of 

the strength of the waves generated at the source, where z = 0. The reflected
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wave amplitude, A~, measures the strength of the internal waves returning 

to the point of generation due to interactions between the waves and the 

atmosphere. Given the (generally complex) wave amplitudes A + and A~ it is 

then possible to calculate 0O =  0 (zo) directly. Furthermore, 0'o — 0' (z0) may 

also be calculated directly:

0' (z) = A + ( - ( t 0  +  imo) e~a°zeim°z -  A~ (a0 +  imo) (4.37)

Using equations (4.36) and (4.37), lower boundary conditions 0o and 0q are 

found, a combination of the Heun method and the method of Frobenius may 

then be used to calculate 0 over the entire domain. All that remains to be 

found is an appropriate choice for incident and reflected wave amplitudes A + 

and A~.

At the top of the domain the streamfunction is characterized as

0  (z) = ]B+e~ITr*zeimNZ, + B~e~(TNZe~iTnNZj, (4.38)
outgoing re tu rn ing

where — a ^ / 2 and = yjbs — o?N/A and B + and B~ are outgoing and 

returning wave amplitudes, respectively. Physically, the outgoing wave repre­

sents wave energy that escapes through the top of the domain. The returning 

wave is unphysical because it breaks causality: it suggests wave energy is en­

tering the system from the top of the domain and moving downwards. In 

selecting the correct boundary conditions, this wave must be eliminated. As 

in equations (4.36) and (4.37), a relationship between and 4>'N, and B + and 

B~ is found

0' (z) = B + { -a N +  imN) e-°"*eimNZ -  B~ (crN +  imN) ( 4  3 9 )

Unlike at the bottom of the domain, the streamfunction values are known 

and the amplitudes remain to be found. Defining 3 =  cos (ttinZn ) e°N'ZN/2 m,N
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and 7  =  sin (rn^z^)  elTjvZjv/2m^y, wave amplitudes B + and B  are found from 

calculated streamfunction values at the top of the domain:

'Re {B+Y — <7tv7 crjv  ̂+  rajv 7 —7  8 Re{(j>N}
Im { B +} —a^8 — m N j m ^ 8  — cr/v7  —5 —7 Im {<j)N}
R e { £ -} m ^S  — crv7 —(Tn 8 — m,N 7  —7  —8 Re {<ffN}
Im{B~} _ ctn 5 + m N'y 171^8 — gnI  8 —7 Im

Given incident and reflected wave amplitudes, the outgoing and returning wave 

amplitudes may be found. As such, the initial condition driver discussed in 

section 2.3.2 may be applied to find the appropriate choice of A + and A~ that, 

upon integration, B~  =  0. With the initial conditions properly selected and 

the streamfunction amplitudes known, the strength of the wave reflection, R, 

is then calculated as in equation (2.34).
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Chapter 5 

A nelastic Simulations

5.1 Introduction

Using the numerical techniques developed in the previous chapter, a computer 

code is developed to model anelastic internal gravity waves. This code is ap­

plied to the piecewise-linear shear profiles considered by Brown and Sutherland 

(2007). In the limit of large density scale height, Hp, the numerical results are 

compared to their analytic results as a test. The density scale height is then 

reduced, allowing the anelastic effects to dominate. In section 5.3 the propa­

gation of internal waves generated over Jan Mayen island in the lee of Mount 

Beerenberg is considered. Atmospheric background profiles observed near the 

region when internal waves were present are input into the code and resulting 

transmission characteristics found.

5.2 Piecewise-linear Shear

The analytic results of Brown and Sutherland (2007), which apply in the limit

as d en sity  sca le h eight b ecom es large, are p resented  in sec tion  5 .2 .1 . T he  

effects of finite density scale height are considered in section 5.2.2 and the 

transmission characteristics are found using the numerical code outlined in
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chapter 4.

5.2 .1  A n a ly tic  R esu lts

Brown and Sutherland (2007) consider the propagation of internal waves 

through a uniformly increasing shear coincident with a buoyancy frequency 

gap. Their study was restricted to small-amplitude two-dimensional distur­

bances in a non-rotating, inviscid, Boussinesq fluid. Explicitly, the background 

shear and squared buoyancy frequency profiles they considered are

U(z)
0 for z < L

z - L ) for L < z < 2L (5.1)
Uq for z > 2 L

and
N q for z < L 

N ( a O = < 0  for L < 2 <  2L , (5.2)
Nq for z > 2L

respectively. The shea,r profile is plotted schematically in Figure 5.1a and the 

squared buoyancy frequency profile is shown in Figure 5.16.

In characterizing the background profiles described by equations (5.1) and 

(5.2), the strength of the maximum shear relative to the maximum buoyancy

frequency is relevant. This parameter is described by the bulk Richardson

number as defined in equation (3.5). For large bulk Richardson number the 

shear is weak. In the limit as it approaches infinity the background is station­

ary. When Rib ss 1 the shear is strong relative to the buoyancy frequency and 

significantly affects the propagation of internal waves.

Using these profiles, in each of the three regions z < L, L < z < 2L and 

z > 2L the coefficients to the Taylor-Goldstein equation (2.12) are constant. 

As such, streamfunction solutions may be found in each region as discussed 

in section 2.3.2. Using appropriate matching conditions at the boundaries
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Figure 5.1: (a) Background horizontal shear and (b) Boussinesq buoyancy 
frequency profiles.

between the three regions, Brown and Sutherland (2007) were able to find the 

streamfunction amplitude everywhere in the domain and thus characterize the 

internal wave transmission. Using the explicit transmission formula found in 

their paper, the transmission characteristic is plotted for Rib =  100, 10, and 

1 in the first row of Figure 5.3. In this plot, the incident wave frequency has 

been nondimensionalized by the background buoyancy frequency at z = 0 as

and the horizontal wavenumber nondimensionalized by the gap width

Comparison of the density scale height, Hp, at ground level to the domain 

length, 3L, provides a measure of the anelastic effects. For Hp/ L  «  1 the 

density scale height is large relative to the gap width and anelastic effects 

dominate, when Hp/ L  is large the flow is more Boussinesq. As discussed

k = kL. (5.4)
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in section 4.2, the Boussinesq approximation is equivalent to the anelastic 

approximation in the limit as density scale height approaches infinity. As 

such, the analytic Boussinesq results are presented in Figure 5.3 as anelastic 

results in the limit, as Hp/ L  =  oo.

5 .2 .2  N u m erica l R esu lts

Using the numerical techniques outlined in chapter 4, the results of Brown and 

Sutherland (2007) are extended to consider the effects of finite density scale 

height upon tunnelling. As the equations are now fully anelastic, the buoy­

ancy frequency profiles are found in terms of prescribed potential temperature 

profile
9q exp ( -g- J for z <  L

0oe x p ( ^ M  for L < z < 2L , (5.5)

0o exp f°r z > 2 L

as plotted schematically in Figure 5.2a. The potential temperature-based scale 

height,

He = jL - ,  (5.6)

is the length scale over which the background potential temperature changes 

by a factor of e.

Applying equation (1.4) to the potential temperature profile given above, 

the resulting potential temperature defined squared buoyancy frequency is

( K  for z < L  
N$ (z) = 0 for L < z < 2L , (5.7)

(iVfo for z > 2L

as plotted in Figure 5.26. Applying equation (B.8) to the potential temperature

9{z) =
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H0

Figure 5.2: (a) Background potential temperature, (b) potential temperature 
defined squared buoyancy frequency and (c) density scale height profiles. Den­
sity scale height profile is presented for Hp/ L  =  1 case.

K  + i

profiles, the density scale height profile is found

+He

(f> -  He) e M  + He + L -

( f

( z - 2 L \

-  He +  (2He -  L) e w w

q h r 1 (z) =

for z < L  

for L < z < 2L

- l
for z > 2L

In the limit as He becomes large, this reduces to

f  ̂  f  [ M " '  i o*z <L
gHJ 1 (2) = {  J [(& +  £ _  *)1 1 for L < z  <  2L

W  +  for z > 2L

For typ ica l atm ospheric profiles T L  <C 6 q and ^  <C N q so  th a t

g H ; 1 (z)
K for z < L
0 for L

VINVI

K for z V to t-i
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when He is large and the anelastic buoyancy frequency profiles reduce to the 

equivalent Boussinesq profiles considered by Brown and Sutherland (2007). 

Furthermore, the background shear profiles used in the numerical simulations 

are those prescribed by equation (5.1), so the problem considered here is the 

anelastic extension of their Boussinesq result.

Using the profiles prescribed by equations (5.5) and (5.1) as input to the 

anelastic code, transmission characteristics are found for Rib =  100, 10, and 

1 when ground-level Hp/ L  =  100, 10, and 1. The transmission characteristics 

are plotted in Figure 5.3. In each of the plots in the figure the superimposed 

broken white lines delineate significant boundaries in a) — k space. The dashed 

lines mark the boundary between regions where solutions are wavelike at both 

the top and bottom of the domain and where they are not wavelike for the 

equivalent Boussinesq system. The dashed-dotted lines mark the boundary 

between regions where waves encounter a critical layer somewhere in the flow 

and where critical layers are not encountered.

The Frobenius solver is used in the region to the right of the dashed- 

dotted line. Here specific frequency and wavenumber combinations may result 

in numerical errors that prevent calculation of transmission coefficient. These 

errors are a consequence of the cut-off condition used to invoke the Frobenius 

solver. If the region over which the Frobenius solver is required is too large 

then the code may not be able to accurately determine polynomial fits for 

the anelastic Taylor-Goldstein equation, in which case transmission cannot be 

calculated. In Figure 5.3 a filter is applied to suppress this spurious data. At 

p o in ts w here th e  tran sm ission  coefficient can n ot b e com pu ted  it  is tak en  as 

the average of the value at the four nearest gridpoints.

In the left column of Figure 5.3 transmission is considered for Rib =  100.
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Rib =  100 Rib =  10 Rib — 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
T  (u, k)

Figure 5.3: Transmission is plotted as a function of nondimensional inci­
dent wave frequency and horizontal wavenumber calculated for piecewise-linear 
shear profiles. Bulk Richardson number is constant over vertical columns and 
relative scale height Hp/ L  constant over horizontal rows. Hp/ L  — oo plots 
are computed from analytic formula found by Brown and Sutherland (2007), 
finite Hp/ L  plots are computed using the numerical solver.
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For large bulk Richardson number, the shear flow is less significant than the 

buoyancy frequency in determining the internal wave propagation. As ex­

pected, the transmission characteristics in the upper-left panel, which corre­

sponds to the Boussinesq approximation, is nearly identical to that found by 

Sutherland and Yewchuk (2004) who considered similar profiles with Uq =  0.

Moving down the Rib =  100 column in the figure, the potential temperature 

scale height is reduced relative to the gap width thus making anelastic effects 

more significant. The Hp/L  = 100 row is presented essentially as a diagnostic 

test on the solver. As the density scale height is two orders of magnitude 

larger than the gap width the anelastic effects are not significant. As such, 

the transmission characteristics are nearly identical to those of the Boussinesq 

case, demonstrating the efficacy of the code. For Hp/L  — 10 the anelastic 

effects begin to become significant. Examining the third panel from the top 

on the left, it is clear that the region about k  — 0 where wave transmission 

cannot be calculated is expanding. Transmission calculation is not possible 

in this region because the solutions to the anelastic Taylor-Goldstein equation 

are not wavelike. A discussion of why solutions are wavelike over a smaller 

region of Cj  — k  space is presented in section 4.3.2 (see equation (4.34)). This 

effect is even more predominant for Hp/L  =  1 as the flow becomes highly 

anelastic. As the central region where transmission cannot be computed grows, 

the transmission limit is moved outwards in fc-space. Examining the bottom 

left plot in the figure, it is clear that transmission is greater for larger horizontal 

wavenumber than in cases with larger density scale height. Aside from this

sh ift, th e  transm ission  p lo ts  share sim ilar chaxacteristics. For each  p lo t there

is strong transmission in a central region that decreases as the wavenumber 

magnitude increases and peaks near Cj  =  0.7. This behaviour is reproduced as
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the bulk Richardson number decreases.

In the middle column of the figure shear strength is increased so that 

Rib =  10. In the region of the plots left of the dashed-dotted line, where a 

critical layer is not encountered anywhere in the flow, the increased shear acts 

to deform but not significantly alter the transmission characteristics. There 

is still strong transmission for small k  but the transition to relatively low 

transmission occurs over a shorter range relative to the Rib =  100 case. In 

the region to the right of the dashed-dotted line a critical layer is encountered 

somewhere in the flow. As in the Rib =  100 case transmission is very low 

throughout this region of the plot, however it has increased slightly. For smaller 

density scale height, the central region where transmission cannot be computed 

is wider: the transmission characteristics expand outwards in k -space. At 

the boundaries of this region transmission is found to be larger for greater 

horizontal wavenumbers.

In the rightmost column of the figure transmission characteristics are plot­

ted for Rib =  1. In this case the effects of the horizontal flow are clearly 

manifest. In the region of the plot to the left of the dashed-dotted line, where 

waves do not encounter critical layers, the transmission characteristics are 

further restricted to a smaller range of k  and Cj , but still maintain proper­

ties similar to the lower shear cases. Transmission is high near k  =  0 and 

gradually decreases as the magnitude of the horizontal wavenumber becomes 

larger. Significant differences from the lower shear cases appear in the region 

to the right of the dashed-dotted line, where waves encounter a critical layer 

som ew here in th e  flow. N ear perfect transm ission  is now  p ossib le  w hen  a  crit­

ical layer is encountered for extreme values of frequency and wavenumber in 

the Boussinesq limit. This result is reproduced in both the Hp/L  =  100 and
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Hp/L  = 10 cases. However, for Hp/L  =  1 the reduced range of frequency and 

wavenumber over which transmission is possible becomes significant. The re­

gion over which transmission is possible in the non-critical regime is very small 

and the transmission peak values are only about 0.5. In the region where a 

critical layer is encountered maximum transmission of about 0.7 is possible. 

For large k  and u), where transmission was nearly unity in the greater density 

scale height cases, transmission is not possible due to non-wavelike solutions.

Anelastic effects have reduced the transmission coefficient over the domain. 

In each case considered here, reducing scale height introduced a central region 

where wave transmission was not possible. As this central region grew the 

transmission characteristics expanded outward in fc-space so that transmission 

was larger for greater horizontal wavenumbers. The outward expansion of 

the transmission characteristics was less significant than the expansion of the 

region where transmission could not be computed, in that the overall effect of 

reducing scale height is to decrease transmission throughout the domain.

5.3 Jan Mayen

Atmospheric internal waves are generated principally through two different 

phenomena: storms cause disturbances that launch internal waves into the 

stratosphere, and surface flow over rough topography generates internal waves 

tha t propagate upwards in the troposphere. Eckermann et al. (2006) model 

the propagation of topographically generated internal waves over Jan Mayen 

island (71°N, 8.4°W). Jan Mayen is an ideal candidate for internal wave gen­

eration studies due to its relative isolation in the North Atlantic Ocean and 

its significant surface elevation. Mount Beerenberg, with peak elevation of 

approximately 2.3 km and diameter 15 km, dominates the island topography.
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Previous studies by Gjevik and Marthinsen (1978) and Simard and Peltier 

(1982) associate cloud banding near Jan Mayen with trapped lee waves gen­

erated by flow over Mount Beerenberg.

5.3 .1  B ackground

Using background buoyancy frequency and shear profiles gathered from ra­

diosonde data collected at 1200 UTC on 25 January 2000, a period when wave­

like cloud banding was observed downstream of the island by satellite imagery, 

Eckermann et al. (2006) attem pt to ‘hindcast’ observed wave patterns using a 

three-dimensional Fourier-ray model. The observed buoyancy frequency and 

shear data used are plotted in Figure 5.4. Although the recorded wind data is 

available as both a north- and east-ward horizontal component, in the figure 

these components are added in quadrature to determine horizontal velocity 

magnitude. The direction of the flow is height dependent but deviates little 

from approximately 36° north of east throughout the domain. The horizontal 

shear magnitude is considered so that a two-dimensional approximation may 

be invoked. The relatively low resolution (one sample per 500 m of vertical 

traverse) profiles are upsampled to much higher resolution as is required for 

the Fourier-ray solver.

Through analysis of Scorer parameters (a measure of vertical trapping of 

linear waves) found from these physical profiles, Eckermann et al. (2006) devel­

oped heuristic arguments for wave reflection downstream of Mount Beerenberg. 

Using atmospheric data gathered from two different sources and applying three 

different definitions of Scorer parameter they determined that, for a typical 

horizontal wavelength of 30 km there was a ‘reflection level’ somewhere be­

tween 5 and 8 km altitude. Furthermore, due to a stable surface boundary

57

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



0 0.01 0.02 0 10 20 30 40 50 60 70 80
N e [s 2] U [m/s]

Figure 5.4: Buoyancy frequency and mean horizontal wind observed over Jan 
Mayen at 1200 UTC on 25 January 2000. [Adapted from Eckermann et al. 
(2006)]
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layer and strong surface flow, waves incident upon the surface would not be 

absorbed and instead reflect back upwards. As such, they concluded that the 

prevailing atmospheric conditions gave rise to a waveguide that would verti­

cally trap internal waves allowing them to propagate well downstream of their 

generation point.

Eckermann et al. (2006) apply their ad hoc three-dimensional Fourier-ray 

method to model non-hydrostatic mountain-wave fields over Jan Mayen. In 

Figure 5.5a, a reproduction of their Figure 9, a vertical cross section of the ver­

tical velocity field, taken along a path coincident with the wind, is presented. 

In this plot a large amplitude wave, with vertical velocities of approximately 

4 m /s and horizontal wavelength k = 0.14 km-1, is trapped in a horizontal 

waveguide with bottom near ground level and top at approximately 10 km, 

coincident with the peak in background horizontal flow. Vertical velocities re­

main large and have horizontal periodicity as far as 200 km beyond the point of 

generation in the waveguide. Above the waveguide there is comparatively little 

wave induced vertical flow. Furthermore, the wave amplitude decreases sig­

nificantly along the horizontal domain -  about 150 km downstream of Mount 

Beerenberg the vertical flow has nearly dissipated.

When they performed the same simulations using a considerably more com­

putationally expensive nonlinear numerical model significantly different ver­

tical velocity profiles were observed. Examining Figure 5.5b, it is clear that 

the downstream vertical velocity does not remain large well beyond the gen­

eration point and there is significant wave energy in the stratosphere. It is 

apparent th a t w ave energy ‘tra p p ed ’ in th e  w aveguide can  escap e th rou gh  

the evanescent region upwards in the vertical domain. In fact, Eckermann 

et al. (2006) go so far as to suggest that the ‘leakiness’ of the waveguide is
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Figure 5.5: “Vertical cross sections of vertical velocity in m s-1 (see grayscale 
bars) at t — 4 h along the line indicated in Fig. 8. (a) Fourier-ray solution. 
M inim um  value is —7.8  m  s -1  and  m axim um  value is —6.1 m  s - 1 . (b) N on lin ­
ear numerical model solution. Minimum value is —8.7 m s” 1 and maximum 
value is —5.8 m s-1 .” [Adapted from Figure 9 from Eckermann et al. (2006). 
Reproduced with permission from the American Meteorological Society.]
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due to tunnelling of the internal waves through an evanescent region near the 

tropopause into the stratosphere. This tunnelling is a physical phenomenon 

that their Fourier-ray model cannot reproduce. The techniques we developed 

in chapter 4 can be applied to such a tunnelling problem without significantly 

increasing computation time.

5.3 .2  N u m erica l R esu lts

The Jan Mayen background profiles, as plotted in Figure 5.4, are input into 

the anelastic numerical solver and the resulting transmission characteristics are 

found. The transmission coefficient is plotted for the entire range of incident 

frequency and horizontal wavenumber over which wavelike solutions exist at 

the bottom and top of the domain in Figure 5.6.

As in previous transmission characteristic plots, regions plotted in black 

correspond to regions in which transmission could not be computed. In the 

the areas on the far left and right sides of the plot, frequency and horizon­

tal wavenumber combinations are such that solutions to the anelastic Taylor- 

Goldstein equation are not wavelike at either the bottom or top of the do­

main, so propagating wave solutions are not possible. The lower of the two 

dashed-dotted white lines corresponds to incident frequency and wavenumber 

combinations with resulting wave velocity equal to the minimum background 

horizontal flow speed. Likewise, the upper white line denotes frequency and 

wavenumber combinations with wave speeds equal to the maximum horizontal 

flow velocity. As the horizontal flow speed is continuous, in the region between 

these two lines the incident wave speed matches that of the background flow 

somewhere in the vertical domain. For frequency and wavenumber combina­

tions outside this region the waves do not encounter a critical layer anywhere
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Figure 5.6: Transmission as a function of incident wave frequency and
wavenumber for atmospheric conditions observed over Jan Mayen (as plot­
ted in Figure 5.4). White circle highlights frequency, as predicted by Aguilar 
and Sutherland (2006), and horizontal wavenumber of trapped waves in Figure 
5.5a.
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in the vertical domain, for parameters inside this region the waves encounter 

at least one critical layer. As the atmospheric profiles are very stable, any 

atmospheric instability would overturn quickly and evolve into a stable state, 

the gradient Richardson number is larger than 1/4 everywhere in the flow. As 

such, transmission calculation is not possible when a critical layer is present.

In the region to the right of the dashed-dotted line in Figure 5.6, where 

waves move slower than the minimum horizontal flow in the background pro­

files, transmission is relatively weak. At lower frequencies there are three bands 

of higher transmission due to a resonance between waves and vertical profiles 

that results in greater transmission, as discussed in Sutherland and Yewchuk 

(2004). For forward propagating waves moving more quickly than the max­

imum horizontal flow speed, transmission is relatively high over nearly the 

entire region. Transmission decreases at larger frequencies but remains larger 

than 0.5 for nearly all wavenumbers in the region when u> < 1.3. Again there 

are bands of stronger transmission suggesting resonant interactions with the 

profiles. For negative horizontal wavenumbers, which may be interpreted phys­

ically as downward travelling waves, transmission is weak outside of a narrow 

band of relatively large transmission. Only relatively low frequency waves are 

possible in this regime.

To apply the numerical solver to waves observed over Mount Beerenberg 

the temporal frequency of wave generation is estimated. In characterizing wave 

generation by flow over topography it is useful to define the Froude number

=  < 5 1 1 >

where Uq and N q are the flow speed and buoyancy frequency near the point 

of generation, respectively, and L  is the horizontal scale of of the topography. 

For the flow over mount Beerenberg considered here Fr ~  1.
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Aguilar and Sutherland (2006) performed laboratory experiments examin­

ing the generation of internal waves by stratified flow over topography. They 

found that lee waves generated by flows with Froude number near unity had 

c j  s s  Q.72Nq. A s  such, for the atmospheric profiles observed over Jan Mayen, 

lee waves will have frequency u) ~  0.012 s-1. From the vertical velocity field 

plotted in Figure 5.5a, it is clear that in the solution produced by the Fourier- 

ray solver a large amplitude wave with horizontal wavelength A: =  0.14 km-1 

is trapped in the troposphere. Using these parameters the streamfunction is 

calculated numerically for the Jan Mayen atmospheric profiles, the transmis­

sion coefficient is 0.69. The resulting streamfunction magnitude and phase are 

plotted in Figure 5.7.

In a region beginning at altitude 9.26 km and ending at z =  10.12 km the 

coefficients of the anelastic Taylor-Goldstein equations are such that the waves 

become evanescent. In the evanescent region the streamfunction phase de­

creases sharply and the streamfunction magnitude halves. Beyond the evanes­

cent region wavelike propagation is again possible and the streamfunction mag­

nitude does not fall any further. This suggests that, contrary to the Fourier- 

ray results of Eckermann et al. (2006), significant amounts of wave energy can 

penetrate through the tropopause into the stratosphere.

Using the transmission coefficient calculated for trapped waves simulated 

by Eckermann et al. (2006) an estimate for how much wave energy escapes 

the duct as the wave propagates horizontally is found. Transmission coeffi­

cient is a measure of energy flux for periodic, monochromatic plane waves.

T rapped w aves are essen tia lly  period ic w aves th a t propagate to  th e  to p  o f

their waveguide and then reflect back to the bottom of the waveguide where 

they are again reflected back upwards. As such, the transmission coefficient
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Figure 5.7: Streamfunction magnitude (solid line) and phase (dashed line) 
calculated for waves with horizontal wavenumber k = 0.14 km-1 and frequency 
u  =  0.012 s_1 using Jan Mayen background profiles presented in Figure 5.4. 
A region near z — 10 km where the waves are evanescent is highlighted.
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is a measure of how much energy, E, escapes the waveguide each horizontal 

wavelength, A =  27r//c,

1 dE T !«, 19^
~E~dx =  “ I ’ (512)

so that energy remaining in the waveguide decays as

E (x )  <xe-Tx/x. (5.13)

Over the length of the horizontal domain considered in the Fourier-ray solu­

tions the trapped wave traverses approximately five horizontal wavelengths. 

Using the computed transmission coefficient, approximately 0.2% of the wave 

energy will remain in the waveguide at the far right bound of the domain. As 

energy is related to the square of velocity, it is expected that vertical velocities

near the end of the domain are approximately 5% of those at the beginning

of the waveguide. These results are consistent with the nonlinear numerical 

results plotted in Figure 5.55.
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Chapter 6 

Summary and Conclusions

We developed numerical techniques to model the propagation of small- 

amplitude two-dimensional internal gravity waves through non-rotating in- 

viscid fluids in the Boussinesq and anelastic approximations. Using these 

techniques, computer codes were written to compute transmission coefficients 

for internal gravity wave transmission given arbitrary background horizon­

tal flow and buoyancy frequency profiles and specified wave frequencies and 

horizontal wavenumbers.

In the Boussinesq approximation, which applies when the density changes 

little over the vertical extent of the domain, internal wave propagation is de­

scribed by the Taylor-Goldstein equation. Numerical integration is possible 

when the wave speed is not that of the background flow anywhere in the do­

main. If the wave speed does match that of the background horizontal flow, 

then a critical layer is encountered. Integration across a critical layer is pos­

sible using the method of Frobenius, however it may only be applied if the 

local gradient Richardson is less than 1/4. If Rig > 1 / 4  waves develop rapid 

oscillations near the singularity, leading to efficient wave dissipation.

The Boussinesq numerical solver was applied to three sets of background 

profiles. First, transmission across an unsheared weakly stratified fluid was
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considered. We found that WKB theory accurately predicts, within 98%, near 

perfect transmission if the vertical wavelength is smaller than the buoyancy 

frequency transition length. For longer wavelengths, the calculated transmis­

sion was lower than the WKB prediction. Transmission across a uniformly 

stratified unstable shear layer was then considered, and the effects of decreas­

ing the strength of the stratification relative to the shear examined. It was 

found that wave transmission is strong in the absence of a critical layer, and 

typically increases with shear strength. If a critical layer is present, then the 

transmission increases with increasing shear, but the range of frequency and 

wavenumber combinations for which Rig < 1 / 4  decreases. The third applica­

tion of the Boussinesq numerical solver was to a mixed shear layer developed by 

allowing the previously considered shear layers to go unstable and evolve into 

a quasi-steady state. Despite the introduction of a well mixed layer with low 

buoyancy frequency, the quantitative behaviour were similar to those found 

for the unstable shear layer.

Using Navier-Stokes equations in the anelastic approximation, an anelastic 

extension of the Taylor-Goldstein equation was found. The governing equation 

remains a second order ordinary differential equation however, in contrast to 

the Boussinesq equation, the coefficient of the first order term is non-zero. This 

introduces new dynamics in the wave propagation; in addition to oscillation, 

the streamfunction solutions in regions of constant background profiles now 

decay exponentially. Although the streamfunction amplitudes decay the wave 

induced velocities typically increase significantly with altitude. In defining

m ass flux stream fu n ction  th e  stream fu n ction  am p litud es are d iv id ed  by  loca l 

density to determine velocity. For atmospheric waves the density decrease, 

which acts to increase wave velocities, is much stronger than the streamfunc-
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tion amplitude decrease, which acts to reduce displacement velocity. As such, 

the wave-induced flow velocities grow at exponential rates with increasing alti­

tude. This exponential growth is required to conserve momentum: as upward 

propagating disturbances encounter less dense fluid amplitude must increase. 

Furthermore, as wavelike solutions are required at the top and bottom of 

the domain for transmission calculation, the range of frequency and horizon­

tal wavenumber over which transmission is possible decreases relative to the 

equivalent Boussinesq system.

The anelastic solver was applied to two sets of background profiles. The 

piecewise-linear shear profiles of Brown and Sutherland (2007) are considered 

and equivalent anelastic profiles developed. The anelastic numerical solver is 

applied to a series of profiles with decreasing density scale height, thus in­

creasing the anelastic effects. Profiles with large density scale height were 

first considered and the analytic results of Brown and Sutherland (2007) are 

reproduced. As density scale height decreases the region of the transmission 

characteristics where solutions are not wavelike grows. However, the transmis­

sion plots maintain similar characteristics independent of density scale height.

The anelastic solver was then applied to physical profiles observed over 

Jan Mayen island during a period where mountain generated internal waves 

were observed in the region. In a previous study by Eckermann et al. (2006) 

Fourier-ray tracing methods where used to model internal wave propagation 

over Jan Mayen. They found that waves were trapped in a horizontal waveg­

uide between the ground and tropopause and could not propagate into the

stratosphere. H owever, u p on  ap p lication  o f our an elastic  num erical m od el we

found that waves could tunnel through an evanescent region coincident with 

the tropopause and thus radiate wave energy into the stratosphere. This con-
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elusion is supported by both satellite observations of the wave event and fully 

nonlinear numerical simulations conducted by Eckermann et al. (2006).

In future work it may be useful to implement our numerical techniques 

into weather models to better simulate internal wave propagation. Specifi­

cally, there are many models that use Fourier-ray methods to calculate wave 

propagation. As demonstrated in chapter 5 these ray tracing techniques are 

not effective when there are regions in the flow where wave solutions become 

evanescent. In the atmosphere, the poorly stratified mesosphere is flanked 

by the strongly stratified thermosphere and stratosphere. Using our methods 

transmission may be found for waves that propagate from the stratosphere 

through the mesosphere, where they become evanescent, into the thermo­

sphere. Similarly, in the ocean, our techniques may be applied to model inter­

nal waves as they propagate from the main to seasonal thermocline, passing 

through a region where they are evanescent. In both these problems internal 

waves transport energy away from the surface. As such, accurate measure of 

how much energy is transported is very important in weather modelling.
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A ppendix A  

Frobenius M ethod

A .l Introduction

In the study of internal wave propagation in shear flows critical layers, which 

occur at levels z where Vt (z) = 0, require special numerical integration tech­

niques. Using typical numerical treatments a critical layer will generate divi­

sion by zero errors at the singularity introduced by the critical layer. As such, 

special techniques must be applied to solve both the Boussinesq and anelas­

tic Taylor Goldstein equations near critical layers. To this end, this section 

develops an approach to avoid integrating across singularities which uses the 

method of Frobenius.

A .2 The Taylor-Goldstein Equation

For internal waves encountering a critical layer at some height z*, O (z*) = 0. 

As Q appears in the denominator of the 4> coefficient in the Taylor Goldstein 

equation (2.12) this results in a singularity. The Taylor-Goldstein equation 

m ay b e rew ritten  as

-  -  = 0, (A.l)
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which, when certain criteria are met, may be solved near z — z* using the 

Frobenius method.

To do this, polynomials must first be fit to the coefficients in equation 

(A.l). A linear approximation to Q near the singularity is made at z*, so that

D (z) =  a (z — z *), (A.2)

and a parabolic fit is made to the 4> coefficient:

k2N 2 + k m "  -  k2Cl2 = b ( z -  z * f  + c ( z - z * )  + d. (A.3)

Using these definitions, equation (A.l) is approximated by the polynomial 

coefficient fit curves:

a2z2(f)" +  (bz2 +  cz +  d) (f) =  0, (A.4)

where z = z — z*. In this form the method of Frobenius may be applied.

The method of Frobenius (see Boyce and DiPrima (2005) section 5.7) as­

sumes that 0 (z) has solutions of the form
OO

4>(z) =  z ' Y / }nz-, (A.5)
n = 0

where r and f n  remain to be found. Equation (A.5) is then substituted into 

equation (A.4) and rearranged into a sum over a single index:

{(a2r (r -  1) +  d) f Q + [(a2r  (r +  1) +  d) f i  +  c /0] z}  zr
OO

+  X I  [(fl2 ( n  +  r ) ( n  +  r ~ l ) + d )  f n  +  c f n —i  +  5 /n_2] Z n  =  0. (A.6)
n =2

As this equation must hold for all z  in a region about the singularity, the 

coefficient for each term in equation (A.6) must equal zero. Considering the 

zr term, the indicial equation is

r2 -  r +  -4 =  °> (A-7)az
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As r must be real to apply the method of Frobenius, it is required that 

d /a 2 < 1/4. This is equivalent to the requirement that the gradient Richard­

son number is less than 1/4 at the critical level for wave transmission to occur. 

Equating the zr+l coefficient to zero, / i  is found in terms of / 0:

f i  = 2 ( (A-9)azr (r +  1) +  d

From the sum in equation (A.6) the remaining coefficients are then recursively 

defined:

f  _  ( A  in \
Jn a2 ( n  + r) ( n  + r — 1) + d K }

As r and all f n are now known (j) may be calculated near the singularity 

using equation (A.5). In practise, the infinite series is truncated after a finite 

number of terms, usually on the order of 20 depending on the magnitude of 

f n and the width of the region over which the Frobenius solution is required. 

Using this technique, two solutions are generated, one for each r value. A 

superposition of these two results is chosen such that the Frobenius solution 

matches the integrated solution of the regular problem a small step before the 

critical layer.

A .3 The Anelastic Taylor-Goldstein Equation

To perform the method of Frobenius, the anelastic extension of the Taylor- 

Goldstein equation (4.17) is first rewritten as:

n V ' +  _  fc20 2 +  N *k2 +  U "kti) (j) = 0. (A. 11)
Up \  kip /
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As in A.2, polynomial approximations are made to the coefficients of the 

anelastic Taylor-Goldstein equation about a singularity at z*:

Cl — a (z  — z*),  (A.12a)

=  b(z -  z* -  z i ) , (A. 12b)
tip

b f j ' Q
—— k2Q2 +  Ngk2 +  U"kQ, =  c(z  — z* — z2) (z — z* — z3) . (A. 12c)

Hp

The substitution z = z — z* is introduced so that, along with the approxima­

tions (A.12), equation (A.11) becomes:

a2z2(f)" +  a2bz2 (z — Z\) 4> +  c (z  — z2) (z — z3)0  = 0. (A.13)

To apply the method of Frobenius, (j) is expanded as in equation (A.5). 

The 4> expansion is then substituted into equation (A. 11) and rearranged so 

that like powers of z are grouped together:

0 =  [f0r (r -  1) a2 + f 0z2z3c] zr

+ [fir (r + 1) a2 -  f 0rzxa2b -  f 0 (z2 + z3) c + f i z 2z3c] zr+1
OO

+  if"  (71 + r ) ( n + r -  !) ° 2 +  f n - 2 C  ~  f n - 1 (z2 + Z3 ) C +  f n Z2Z3C
71=2

+  [ f n - 2 (n +  r  -  2) -  f n - i  (n + r - 1 )  z^  a2b] zr+n. (A. 14)

For this equation to hold independent of z the coefficient for each power of z 

must equal zero. Applying this requirement to the z° term and requiring that 

/o ^  0, the indicial equation is obtained:

r2 — r -1— = 0, (A. 15)az

this has roots
1 / 1  z2z3c . .

r  =  2 V 4 ' <A-16)
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As r  must be real for the method of Frobenius to be applicable, solutions are 

possible only when This is again equivalent to the requirement that

the gradient Richardson number is less than 1 /4  at the critical level for wave 

transmission to occur. Now that r  is known, equation (A. 14) is used to relate 

f i  to fo -

_
r (r + 1) a2 + z2z3

And using the sum in equation (A. 14), f n  is found recursively in terms of /„_ i 

and fn —2 for n > 2:

[(n + r -  1) z\a2b + (z2 + z3) c] / n_i - [ ( n  + r - 2 )  a2b + c] / n_2
fn (n +  r) (n +  r — 1) a2 +  z2z3c

(A. 18)

Finally, the calculated f n values are applied to equation (A.5) for each r value 

and a (j) solution is generated in a region about the singularity. The two 

solutions are then superimposed to match the integrated solution as in section

A.2.
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A ppendix B 

Therm odynam ic Principles

The anelastic numerical solver models internal wave propagation through mean 

horizontal shear, U (z ), density scale height, Hp (z) as defined by (1.1), and 

buoyancy frequency, Ng (z ) as defined by (1.4), profiles. Observed atmospheric 

profiles are typically prescribed in terms of the background temperature, T  (z) 

and pressure, p(z).  Here the tools needed to find Hp and Ng in terms of the 

background temperature and pressure profiles are developed.

where T is the adiabatic lapse rate, for dry air T — 9.571 K/km. Exner 

pressure is the absolute pressure scaled by a ground level pressure pQ0

where n «  2/7 for dry air. Potential temperature is defined as the ratio of 

absolute temperature to Exner pressure

B .l  Thermodynamic Equations

In terms of potential temperature, 9, hydrostatic balance requires

( B . l )

( B . 2 )

7T '

( B . 3 )
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/

The ideal gas law relates the density to the absolute pressure and temperature

p =  p RT , (B.4)

Where R  =  0.287 kJ/kg • K is the gas constant.

The absolute pressure distribution is found by integrating the statement of 

hydrostatic balance presented by equation (B.l) and using equation (B.2):

?w=p" ( i - r£ 4 ) i - ( B - 5 )

Density defined background hydrostatic balance requires

dP -  m5  =  -9P, (B.6)

where g =  9.807 m /s is gravitational acceleration. Applying equation (B.6) to 

(B.5) the density is found

Applying (1.1) directly to (B.7) the density defined squared buoyancy fre­

quency is found in terms of the potential temperature defined squared buoy­

ancy frequency

mflT)= N>(z) + J(i) (1_ri0i|j) (R8)
B.2 Numerical M ethods

Conversion from the potential temperature to density defined squared buoy­

ancy frequency profile is performed by a two step discrete method. The trape-

zoid rule is applied to the integrand in equation (B.8) and then Hp is found

directly:

I n  =  / „ - !  +  (1 +  J_) (B.9a)

=  *  [ <  + ( i - 17- ) " 1] (B.9b)
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where / 0 =  0.
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