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ABSTRACT

In this thesis we study the existence of global positive solutions of quasilinear
elliptic equations and systems. We first introduce some weighted spaces, by means
of which we obtain a priori estimates for second order elliptic operators. We then use
fixed point theorems to obtain the existence of solutions bounded above and below
by positive constants. Together with a spectral procedure and sub-supersolution
method, the weighted space-a priori estimate—fixed point theorem approach is fur-
ther modified to give criteria for the existence of decaying positive solutions. In this
way we are able to answer a recent open question for the mixed sublincar-superlinear
problem. Appropriate adaptations are then made in order to study degenerate equa-
tions and higher order elliptic systems. The existence of bounded positive solutions
is shown for both cases. Because of the nonvariational and nonradially symmetric
nature of our approach, we can deal with those problems which are not amenable

to variational methods nor to procedures involving ordinary differential equations.
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Clmpfer 1
INTRODUCTION
The study of quasilinear elliptic equations has a long history. At the beginﬁing
of the twentieth century Hilbert prophetically raised, along with other questions,
his twentieth problem: the solvability of boundary value problems, see Serrin [74].
From then on, the study was carried out in an encyclopedic way and divided into
many branches, among which the existence of positive solutions of the quasilinear

cquation:

~ZDj(a;j(z,u)Diu) + Tbi(z)Diu + cu = f(z,u, Vu) (1.1)

is of importance. It was observed that problems originating from a variety of prac-
tical considerations resulted in equations which were special forms of (1.1). The
Emden-Fowler equation: —Au = f(x)u®, arising from the study of the equilib-
rium configuration of the mass of spherical clouds of gases, received extensive in-
vestigation along with its extensions, see ‘Wong [78]. In particular, for f(z) =
(1+|z]*)~!, A > 1, this is the Matukuma type equation describing the dynamics
of a globular cluster of stars, see Ni and Yotsutani [NY]. A similar mathematical
problem also arose in studies of the thermal ignition of a chemically active mixture
of gases, in considerations of the equilibrium state in a fluid with spherical distri-
bution of density and under mutual attraction of its particles, and in the boundary
layer theory of viscous fluids, see Kusano and Swanson [49]. More recently, the
Emden-Fowler equation also appears in the theory of nonlinear diffusion generated
by nonlinear sources, in membrane buckling, in relativistic mechanics and in nuclear

physics.
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In the setu"ch for some special kinds of solitary waves in nohlitieur equations

of Klein-Gordon or Schrodinger type, we are also led io some noniiﬁcur second
order elliptic equations similar to (1.1). In fact, for the Klein-Gordon equution{
01 — Ap + a®¢ = f(y), looking for stationary wave of the form ¢(z,t) = e™'u(z)

leads to the study of
—Au+(a® —whlu=fu) if f(e) =e’flp),
while the steady wave of the Schrodinger equation:
ior— Ap = f(¢) of theform ¢ = e~™'u(z)

also gives rise to the same type of equation, cf. Berestycki and Lions [11]. One also
comes across similar problems in the study of statistical mechanics, constructive
field theory, false vacuum in cosmology, nonlinear optics and laser propagation.

In recent years, the study of population dynamics has been widely undertaken.
In his book [66], Okubo describes three types of biological diffusion that appcar in
the theory of population dynamics. In terms of differential equations, all of them
are of the type:

Ou

5 ~ EDi(aij(z,u)Dju) = f(z,t,u),

of which the standard heat equation:

% A= flu)

is a particular case. Positive solutions of these equations have a practical meaning

and are what we are after for.
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From the point of view of mathematics, some geometﬁc broblems_ also give rise
to similar problems, see Kenig and Ni [KN1] and Ni [58] for more det#ils.

Because of its importance in the theoretical, as well as in the practical fields,
mentioned above, the study of problem (1.1) on both bo{mded and unbounded
domains has attracted much attention. We only mention the articles by Donato
and Giachetti [22,23], Noussair and Swanson [61,62,63], Kuzdan and Kramer [42],
Brezis and Turner (15}, Boccardo, Murat and Puel [14], Pohozaév (69], Hess [33,34],
Céc [16,17), Serrin [78,74], Berestycki and Lions [11], Ni [58,59], Ni and Serrin [60],
Gidas and Spruck (28], Joseph and Lundg;en [35], Kusano and Swa.nson [49,50,52],
Ding and Ni [DN], Kenig and Ni [KN1, KN2], Li and Ni [LN], Ni and Yotsutani [NY]
and Allegretto [3]. See also the expository—survey paper of Ni [N]. More defailed
references will be given in each chapter. However, much of the study is either
through the “weak” approach, i.e., weak solutions are obtained (we remark that for
most cases, u = 0 is always a weak solution), through variational techniques, or is
restricted to the study of radially symmet:ic cases, i.e., the coefficients and functions
involved are assumed to be radially symmetric, and an ordinary differential equation
approach is most often used. For the nonradially symmetric case, we are not aware
of such powerful techniques, especially when trying to deal with the problem of the
existence of global positive solutions of quasilinear equations.

Over the years, more and more efforts have been put into the study of quasi-
linear equations. We mention the classical study of Serrin [73] as a major contri-
bution. While coasidering only bounded domains, Kazdan and Kramer [42], using

sub-supersolution technique, proved some existence theorems for general equations
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of the form —Ea.,D.D,u + Eb; Dvu = f (=, usVu), Whlle Brezxs and ’I‘umer [15)"

obtaaned existence results through a priori estlmates and fixed pomt theorem ar-
guments. For general unbounded domains, the situation is considerably more corﬁ-
plicated. Some of the difficulties arise from the lack of the compact embedding
theorems which hold for bounded domains. Another difficulty is due to the fail-
ure of Poincare type inequalities in W3'?(Q) for general unbounded dumain .
Some authors overcame those difficulties by using weighted Sobolev spaces (see,
eg. [10,12,17]) and/or by using the weak solution approach with the help of sub-
supersolution techniques (see, eg. [16,22,23,33]). However, in the first place it is
often very difficult to construct ordered pairs of sub-supersolutions, and, secondly,
we are interested in finding global positive solutions with specific (decaying) behav-
ior at infinity. Observe that positive solutions bounded away from zero (along with
some decaying solutions) are not in any of the usual Sobolev spaces defined on R".

In this thesis we obtain criteria for the existence of global positive solutions
with specific behavior at infinity for quasilinear second order elliptic equations with-
out any assumptions of radial symmetry nor of variational structures. Our main
tools will be classical a priori estimates, weighted Sobolev spaces, Schauder fixed
point theorem arguments and sub-supersolution methods. QOur study differs from
previous ones in the following aspects: First, we are mainly interested in those
nonsymmetric quasilinear problems containing highly nonradial terms, and hence
the usual ordinary differential equation arguments and/or variational methods are
not applicable. Secondly we obtain bounded global positive solutions which are

bounded away from zero. Thirdly, we also obtain some results about the asymp-

P
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totic behavior of the solutions, in particular we can employ our results to derive the
existence of sonic decaying positive solutions. Fourthly, the relevant a priori con-
stants can be estimated explicitly. This is crucial in our application to the mixed
sublinear-superlinear equation, and it enables us to answer, for the nonradial case,
an open question posed in Kusano and Trench [53). Finally the same methods are
extended to obtain global positive solutions for higher order systems and some spe-
cific degenerate equations. These degenerate equations arise in applications which
include biological models with dispersion to avoid crowding.

This thesis is arranged as follows: In Chapter 2, we introduce some terminol-
ogy and notations which we need in the sequel. In particular, we introduce some
special weighted norms and prove their basic properties. In Chapter 3 we start our
estimation of a priori constants, and weighted norms are used to derive a priori esti-
mates for the solutions .. some generic second order elliptic equations. The details
of the estimation are postponed to Appendix A at the end of this thesis, for they
are tedious and lengthy. In Chapter 4 we state and prove our basic existence the-
orem. In particular, criteria for the existence of positive solutions bounded above
and below by positive counstants will be obtained by using the Schauder fixed point
theorem. Next, in Chapter 5, we adopt the theoretical ideas of Chapter 4, combined
with the sub-supersolution method and spectral procedures, to obtain the existence
of decaying solutions. We extend our methods to degenerate equations and higher
order systems in Chapters 6 and 7 respectively. In each of Chapters 4, 5, 6 and 7,
we give applications and make comparison with previously known results. Finally,

Chapter 8 concludes the thesis with some remarks and open questions.



Chapfﬁr 2
BACKGROUND MATERIAL

The purpose of this chapter is to set up the notational framework for our
study. First we will introduce some notations and terminology, in principle following
Allegretto [3]. After defining some special weighted norms, we prove that the two
norms we introduce in this chapter are not equivalent. Thus appropriate choice of
weight functions for actual problems will result in sharper conclusions, as we will
see in the sequel.

For a given function 0 < t € C*°(R"), we denote by L}(D) the associated |
weighted L? space in a domain D in R" with norm ”9"“'1’,{'( D)= /D t:|p|Pdz. For

any = € R", we define the ball Bi(z) ={y | |z — y| < i} and

N(p,p,i, D) = sup [llellLr(pi)]-
z€D

Due to the Hardy inequality in R*, n > 3, employed in Chapter 3, we will fix from
now on the weight function ¢ = 1+ |z|2. We assume that the other weight function
A we introduce in the sequel, is smooth and 0 < A~! € L™?(R"™). The explicit
choices of A will depend on the problem under consideration, as we shall sce later.
Now we can form two weighted spaces L3(R") and L}(R"). Note that L2 c L?
if we choose a A radial, which increases fast enough at infinity. For nonradially

symmetric A, we have in general the following
THEOREM 2.1. L%(R") and L?(R™) are two different spaces.
Proof. Obviously, t~! = (1 + |z[?)~! ¢ L™?(R"™). Let
() =+, then [ s(la) = oo,

6



Dcfine
;'If’ r n-— ﬁ%
(p1) ™ = st/ (14 [ v sterag) ™.

We claim that ¢ € L}, but ¢ ¢ L. Observe that

R n—1 R

/ r S(T)dr "_I% - (n + 2)[(1 +/ rn—-ls(r)dr)n—-h _ 1]’
(14 emrs(erde)” ’

which tends to infinity as R — oo, thus

A _ s(r)dz __
/" ’ R (1 +fy §n—1s(6)d€) W

—w, ./°° r*=lg(r)dr oo,
O (14 emse)ae)

where wy, is the surface area of the unit ball in R™.

For A, 0 < A~! e L™?(R"), we have

o0 = Son-;-‘z . /\nz'o‘ ./\—nnz
Rn

2

() ¥y ([ oy

~ (=L

Thus we conclude that / ¢*\ =00, i.e, ¢ ¢ LA(R"), ¢ is independent of . On

n

the other hand, observe that

Pt=[ +lP) L0
/Rn /Rn (1+f0’§"—ls(§)d§)_:—

o
(14 fy emrs(e)de) T
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that is, ¢ € L}(R"). Thus we proved that L3 does not contain L?. To prove the
other half of the theorem, let us choose A(x) = Ay(x1)Ag(xa,...,2n) With Az to be

chosen below. Choose
M(z) = 1+ )" ™2 + |z1]), then / AT, < co.
We also choose a ¢ such that
e(z) = pr(e1)pa(z2y ..y 20) .
with ¢, to be determined along with A; below. We set
#h(21) = AT (4 Joa )7 I R (24 o)
=1+l TR (2 4 ).
Observe that
/0m¢%(1 + |z1/?)dzy > c- /000(1 + 21 "% InT TR (2 4 [z )y = oo,

o o] [o"e]
/ oPhyday = / (1+ o)~ In~ "3 (2 + 21 )z < oo,
0 0

Thus, we conclude that with suitable choices of Ay with A;* € L™? and ¢, such
that ¢, € L?\2 NL?, where the function spaces are defined on R™~!, we have p € L3,
but ¢ ¢ L2.

We have proved that L2 and L? are two different weighted spaces and the proof
is complete.

For ¢ > n, fixed in the sequel, consider the space S C L] (R™) with the norm

llslls = N(s,q,2, R"),
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and s € S if ||s|ls < oo, then {S,| - ||s} is a Banach space. We further define

Ly = L? N S equipped with norm
e, = llullzzcany + llulls
and £, = L3 N S with norm
lulle, = ellullzzcrmy + llulls,

where e is a positive constant, to be chosen explicitly in Theorem 3.4 below. By

Theorem 2.1, £; and £, are two different spaces. Next consider
P = {(uy,u2) | uy € Ly, us € L3}

and define on P the relation ~ given by: (uy,u2) ~ (us,uq) iff uy + uy = uz + ug,
a.e. It is easily checked that ~ is an equivalence relation. Let H be the quotient

space H = P/ ~ and define on H the norm
(w1, uz)lle = inf{lloalle, + llvallc, | (u1,u2) ~ (v1,2)}.

We further define a map J : H — L] (R™) by J((u1,u2)) = u; + uz. Obviously J

is well defined and 1-1 by construction. We have

THEOREM 2.2. J is linear and has the following order property: if f € Range(J)

and |g| £ |f|, a.e., then g € Range(J).

Proof. Obviously J is linear.

If f = J((f1, f2)), we define

g =glhal/(lAl+ 1D, g =gRl/(Al+]f]), i |fil+]f2l#0,
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while g1 = g2 = 0if |fi] + |f2| = 0. Then we have g = J((g1,92)), hence g €
Range(J). This ends the proof. V

On Range(J) we define a norm M(-) by
M) = 1T ()lln.

Observe that if |g| < |f| then M(g) < M(f) while if f = fi + fo with f; € L,
f2 € L, then M(f) < ”f1||cl + || f2ll,-

We note that the norm M(-) and its modifications will be used throughout this
thesis, and play an important role in our applications.

Finally, W,?(Q) denotes the.usual Sobolev space on @ C R", bounded or

unbounded, and n > 3.



Chapter 3

A PRIORI ESTIMATES

3.1. Introduction.
Our objective of this chapter is to introduce some a priori estimates, upon
which much of the thesis is based. More precisely, for a generic second order elliptic

operator

lu = —-EDj(a;j(z)D;u) + Lb;D;u + cu

with appropriate a;;, b; and ¢, we will present some inequalities that the solutions

u of the equation

bu=5EDi(fi)+9

will satisfy, that is, some inequalities of the form

lullcoB(zoy) < CLN(fis9), (3.0.1)

VullcoB(zo)y < C2N(fi9), (3.0.2)

where Cy, C; depend on n (dimension of the space) and the operator £, but are
independent of u, N is some “norm” of f; and g, to be explicitly given beiow.
The existence of inequalities (3.0.1) and (3.0.2) and the estimation for the
constants C) and C; are long known, see Allegretto [3], Ladyzhenskaya and Uralt-
seva [55] and Gilbarg and Trudinger [29]. The idea of a priori estimates has been
proved to be fundamental. Here we are not presenting a “brand new” estimation,
but rather we are interested in obtaining some explicit bounds on C; and C}, which

as we will see are crucial to us.

11



Due to the global nature of our problem, the estimaﬁes are easie; to ébtt;in in the
sense that &e only need interior estimates. Thus we do not consider the boundary
behavior of u and Vu, as was done in Brezis and Turner [15), de Figueiredo, Lions
and Nussbaum [24]. Also, we take a more classical approach, thus the estimation
does not rely on the nonlinear structure nor on the symmetry of the elliptic operator,
the latter playing an important part in the estimates of [24]. However, because of
the global nature of the present problerﬁ, we observe that the classical cdmpuctness
theorems and their extensions are no longer valid for general unbounded domains,
and neither is the Poincare inequality. A Poincare-type inequality will however be
established by using weighted function spaces. This idea was employed in Berger
and Schechter [12], Benci and Fortunato [10], Céc [17] and Allegretto [3] to obtain
the desired results in different situations. Here we adopt the choice and utilization
of weighted inequalities of {3], and our choice of the weighted “norms” on f; and ¢
will reflect and at the same time justify the above ideas.

In Section 3.2, we will use the classical approach to obtain an L° a priori
estimate for u in some norm of f; and g, as was done in Gilbarg and Trudinger [29]
and Ladyzhenskaya and Uraltseva [55]. Qur intention is to obtain the explicit bound
for C}, and as we mentioned earlier, only the linear part of the elliptic operator
contributes in our estimation, since it can be estimated explicitly with a reasonahle
amount of effort. Thus the bound is not as sharp, but serves our purpose. We then
combine the weighted space idea and the estimate we obtained and eventually reach

our goal: an L™ a priori bound for Vu. The explicit bounds for u and Vu will then
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be employed in the subsequent development. Since the proofs for these estimates

are somewhat lengthy, we postpone them to Appendix A.

3.2. The Basic Estimations,

For our purpose, we find it most beneficial to blend the ideas employed in (3],
[29], [55) and elsewhere and to work with vector and matrix functions, In what
follows we will assume that the vectors and matrices are normed by the standard

m
Hilbert space norm: for & = (vq,...,vm)¥, |7] = Y v2, etc. Furthermore, we

assume that a;; € L*°(R") and
Ml < Taij€ig; < M€

for some Ag >0, A; > 1. The main theorem of this chapter is:

THEOREM 3.1. Let @ = (uq,-...,um)T be a solution to the system
—$D;(a;j(z)D;@) + 25B% ()D&t + Cit = —SDi(f}) + § (3.1)

in a ball Ba(xo). Suppose @ € C* N W12(By(2,)), the vector § and the (m + 1) x
(m+1) matrix C belong to L9/%(By(zo)), the (m+1) x (m+1) matrices B belong

to LI(Ba(wo)), while the vectors f; are in L9(Bay(z¢)) for some g > n. Then:

'llﬁlllLN(Bx(zo)) <Ko [|l|ﬁ|IIL2(B,(zO)) + 2|“j;|2”},/432(82(20)) + ”m”Lq/z(B,(zo))]’

(3.2)
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where Ko = K1(p(B;)'/? + 1), with u(B;) the Lebesgue measure of ball By in R",

. A\ 9/(g=mn 2\ do/(g-n)y 2072
k= (@ )T) 0T T
H =T(4+C(8))
: /(g—n)
+ 2(T20(ﬂ1){|“0|”Lvl:(Ba(zo)) + IIEIB’P”L'/’(B:(IO)) + 2})0 " ’
3 16 4
1 ! 1/ 1/2 . ) )
T= m ( 5T (1n+ z )) n( - ﬁ 2) is the optimum embedding cqnstant

from Wy *(Q) to L'_-?-"_?(Q).

Next we are concerned with a priori estimates of the form (3.0.2), i.e., an
estimate for gradient. We can derive this kind of a priori estimate from the previous

one. Let u € Wy'*(|z| < tm) be a solution of
Lou = -XD;(a;j(x)Dju) + 2Lbi(z)Diu + c(z)u = g, (3.3)

where ¢ € LI(|z] < tp), tm is some positive number. Then Diu satisfies the

following:
Lo(Dyu) + 28D b;Diu + Dicu
bt ED,-(Dka,-j)Dju — EDka,-J-D,-D,-u = Dkg. (3.4)

By introducing the following vector notations:
€i: (n+ 1) vector with 1 in the i-th component and zero in the remaining compo-

nents;
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C: (n+1) x (n + 1) matrix with entry:
cij =2Di(b;) = Y Di(Diay;), i-j>0,
k

Coo = ¢, Coi = ¢, cip = Die, fori#0,

B*: (n+1) x (n + 1) matrix with entry:
b¥, = 1D b;, i-7>0
i = —5Diak) +bj, i-5>0,
b, = by, b,‘J =0 for the other entries,
i=(9,0,...,0T, fi=g&,i=1,...,n,and ¥ = (u, Vu)T, we may write (3.4) as
~D;(a;; D) + 25B*Dyit + C - it = §+ SDi(f3). (3.5)
Using Theorem 3.1, we have the following:

THEOREM 3.2. Let u € Wy'*(|z| < tm) be a solution to (3.3) and g € Li(|z| < ty)
for some q > n. Let a;;, B*, C, §, and f; be as above and let the condi-

tions of Theorem 3.1 hold. Assume that C € LY/ >(R"), B € L{ .(R™) and

loc

sup |
zeR"

there exists a é > 0 such that (op,¢) 2> 6(—Ay, ) for any ¢ € C{°(R™). Then

ICI”L,,,,(B:(z)) < 0o, zseu}t)” |||B"|2”Lq,,(83(z)) < o0o. Assume further that

max{ sup |uf, sup |Vu|} < E (|lg||L3(Rn)+ max ||g||L,(Bz(z))), (3.6)
[z]<tm |z} <t =2 |z|<tm

where Ey = Ko max (ﬂf_—zj(l + Tu(By)Y/™), n + ,4(132)1/9), and Ky is given in
Theorem 3.1, with ”ICI”L,,,(Bz(zO» and HEIBkP”LvN(B,(zo)) replaced by
k|2 .
Sup. ”lC”lLV/’(Bz(z)) and Sup |=1B¥| ”L«/?(B,(z)) respectively.
We introduce the following Hardy inequality which will be used in the proof of

Theorem 3.2 and in Sections 4.3 and 5.3 (compare with Lemma 1 of Allegretto [3)]):
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LEMMA 3.3. Let ¢ € C°(R"), zo € R". Then there exists a constant ¢ > 0,

independent of zy and ¢ such that
o
(-app)ze[ —f—d, (3.7)
R

n || - |z = o
—9)3
and for zo = 0, c=(nj—gL.

Now we can state the final estimate of this chapter.

THEOREM 3.4. Let u € Wa(|z] < tm), %o, g, q as given in Theorem 3.2.
Assume g has a decomposition g = g, + g, with gy € LYN L%, g, € LIN L3, for

some 0 < A~ € L™*(R™). Then

sup |u| < E1M(g), (3.8)
|z|<tm
sup |Vu| < EyM(g), (3.9)

where M(g) < |lg:||L3rm) + sup lg1llLemaceyy + ellgzll Lz (mmy + Sup 92/l Leas(an
and e = 9—5—2- T1/2||/\“II|2/,,"’,,(R,,), as given in Chapter 2, E, is as given in Theo-
rem 3.2.

We explicitly remark that if a;;(x) and b;(z) are not constants, the expression

for E, contains some special norms of a;; and b;, as given in Theorems 3.1 and 3.2.

Some explicit estimates for E; will be given in Appendix A.



Chanter 4 |
EXISTENCE THEORY I: BOUNDED SOLUTIONS

4.1. Introduction,

In this chapter we will state and prove our basic existence theorems for bounded
positive solutions. Applications of these results will continue in the later chapters.
The techniques we will employ use weighted Sobolev spaces and the Schauder fixed
point theorem which is applicable, thanks to the L* a priori estimates we obtained
in the last chapter. The results we seek use conditions which guarantee the exis-
tence of global positive solutions which are bounded above and below by constants
and tend to positive constants at infinity. In contrast to previous works, we are
mainly interested in those quasilinear problems containing highly nonradial terms
and gradient terms. These are cases where ordinary differential equation arguments
and/or variational methods do not fit in well. Due to the nonradial and nonlinear
nature of our problems, we do not expect to obtain radial solutions, nor do we ex-
pect to get sharper results than those known if our problems reduce to those cases
upon which these special techniques are applicable.

The typical problem of the form
-Au = p(z)u”

was studied by many authors. While variational methods are used, radial argu-
ments (i.e., ordinary differential_ equation) and the sub-supersolution method play
an important role in those investigations and the statements of the theorems ob-
tained. The existence of infinitely many positive solutions was established for

17
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o)) S c/lel, ¢ > 2 by Ni [58), for [p(o)] < (le) with [ ro(r)dr < co by
Kawano [37], see also kuséno and Oharu [46] Theré have been mahy sﬁﬁdiés fo
gua.rﬁntee the existence of bositiVe solutions for semilinear equations, we mention,
in addition to [58], [37] and [46],vLions [56], Berestycki and Lions [11], Ding and
Ni [DN], Kenig and Ni {KNI] and more recently, Dalmasso [19], Kawaﬁo, Satsuma
and Yotsutani [41], Li and Ni [LN] and Ni and Yotsutani [NY].
Tt seems that there are considerably fewer results along these lines for quasi-

linear equations. If the function f has radial majorants of the form

|f(z,u, O < e(lz]) F (v, &)

with F(u,§) either sublinear or superlinear in both u and ¢ and /0 wrsp(r)dr <
o0, Kusano and Oharu [47] were able to obtain the existence of infinitely many
positive solutions which are bounded above and below by positive constants and
_tend to positive constants at infinity. Usami [76] relaxed the restriction on ¢(r)
somewhat. More details will be given in Section 4.4. For the mixed sublinear-
superlinear equation

~Au + ¢(lz)u? + P(lz])u* =0,

Kusano and Trench [53] studied the radial case while Furusho [27] obtained criteria
for positive solutions under restrictions on the radial majorants of ¢ and 1. If no
radial majorants are allowable, the problem was given as an open question.

In this chapter we establish a general existence theorem for positive entire |
solutions which are bounded above and below by positive constants and tend to

positive constants at infinity. We have no restrictions on the growih of f as a
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function of u and Vu in the formulation of the existence theorem. The applications
of this cxistence theorem thus cover the cases we mentioned above, especially for
the cases where there are no radial majorants which satisfy the integral criteria
presented by the previous authors. We also obtain solutions for mixed sublinear-
superlinear quasilinear equations, and thus answer the open question mentioned
ahove.

The material in this chapter is arranged as follows: in Section 4.2 we give the
cxistence theorem and its proof. This is the core of this chapter. In Section 4.3,
we study the asymptotic behavior of solutions given by the methods of Section 4.2.
Then in Section 4.4 several applications are considered and explicit comparisons are

made between our results and what was previously known.

4.2, Existence Theorem.

We consider the following problem
bou = —ED;(aij(z)Dju) + 25bi(x)Diu = f(z,u, Vu) (4.1)
in R". We assume that a;; € L°(R") and D?a;; € L] (R") with N(D%a;j,¢,2,R"™) <
co and (a;;) is symmetric,
Molél? < Baijbig; < Mgl (4.2)

for some Ao, A; > 0, and b;, Vb; € L{ (R") such that N(Vb;,q,2,R") < oo.

We also nced the following structure assumption in order to employ the a priori

estimates obtained in Chapter 3:

38>0, (bop, ¢) 2 6(—Ap, ¢), Vo€ C3°(R"). (4.3)
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Furthermore, we assume that f satisfies Caratheodory’s conditions, that is: f is
measurable with res;;ect to « for all (v,€) € R x R", and continuous with resﬁect
to (u,€) for almost all z € R™. Note that we do not impose any growth restriction
on f and the above conditions on a;; and b; are required in Chapter 3.

We state the main theorem of this chapter.

THEOREM 4.1. Let

F(z,a,b) = JSup |f(zyu, &)l (4.4)

—bT<ELHT

satisfy M(F(z,a,b)) < co for any positive constants a,b. Then for any positive

constant triple (a,b,c), with o < 1, satisfying

E\M(F(z,0,5)) < min (b, - 5= o), (4.5)

there exists a solution u € C'(R"™) to (4.1) such that
ca<u<a, |Vu| < b, (4.6)

where M and E are given in Chapter 2 and Chapter 3 respectively.

Proof. We will first prove the existence locally and use standard diagonal
arguments to extend the local solution to all of R*. Let {t,}, {¢m} denote a

sequence of positive numbers and C§°(R"™) functions respectively such that
P 0 P

tm T 400, t; >4, 0<¢m <1,

om € C°(lz] < tm — 3), em=1lin (Jz] < tm —4).
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For any chosen m, set
B=C'(Jz} < tw) NCY(|2] <t - 3)

and norm B witlt

1

-0 a
[ulls = max (Ilullcouzlstm), < 3 I|VUIIC°(|=|stm-s))» (4.7)

where a, b, o satisfy (4.5).
We claim that
(i) {B,||- |ls} is a Banach space and
(ii)) B — Range(J) is continuous, where J is given in Chapter 2.
Obviously, if {u,} is a Cauchy sequence in B, then by the standard Arzela-
Ascoli theorem, there is a 1o € B such that u, — ug in B. Secondly, for any u € B

define u = 0 outside (|z{ < t,,), then we have

N(u) q, zan) S ”u”B ' H(Bz)l/q,

lsan = [ @+lfnl <hull [ (+lePde,
[z]<tm |z

<tm

3 ey < lully / Mz (mote: 0< Al e LM2(RM).

[z]<tm
Recall that Range(J) = {uy + uz | uy,up € L{ (R"), |lulle, = N(u1,¢.2,R") +
lwsllz2(mmy) < 00, and |uzfle, = N(uz,q,2,R") + ||u2]| L2 (rm) < o0} and the norm
in Range(J) is given by inf{||v1]|¢, + [|vzll¢, | v1 +v2 = us +uz}, we conclude that

the embedding is continuous.
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Let £5' denote the Dirichlet inverse of £y in (2] < tm), more precisely, if u
solves fou = g in (Jz| < tm), u = 0 on |z| = ¢y, then €;'(g) = u. Then, by

Theorem 3.4 of Chapter 3, £;' : Range(J) — B and for g € Range(J):

€5 (Dllco(ieigtm) < E1M(g),
(4.8)

1905 @)lleoizigtm- < E1M(g),
where E, is independent of m. Now let X' denote the ball in 8 centered at a(1+¢)/2

with radius a(1 — ¢)/2 and define an operator P on K by:

P(w) = 20 4 1 (1o, pm ),

Since u € K, then |f(z,u,9nVu)| < F(z,a,b), while M(F(z,a,b)) < co, whence

f(z,u,omVu) € Range(J) and
M(f(z,u,pmVu)) < M(F(z,a,b)).

We claim the following:
(i) P: K - K.

In fact, for v € K,

a(l+ o)

“P(u) -—— = 165" (f(z, %y 0mVu))| co(jz]<tm)

Co(lz|<tm)

S EyM(f(z,u,omVu))

by (4.8) and (4.5), we have

l-0
a.

E\M(f(z,u,omVu)) < EyM(F(z,a,b)) <
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Similarly,

a(l+ a))

”V(P(u) -5 < E\M(F(z,a,b)) < b.

Co(lz|Stm ~3)

Hence P(u) € K.
(ii) P is a compact continuous operator.
By Theorem 15.1 of [55, p. 203], &5} (f(=, u,meu)) € CV*(|z| £ tm) where
a = 1 —n/q, and Theorem 1.31 of [1] ensures that C**(|z| < tp) — C*(Jz| <
tm) is compact. Thus P : K — K is compact, and for u, — u in K, by
Caratheodory’s conditions we see f(,un,omVu,) = f(z,u,onVu) in LI(Jz] <
tm) by the Lebesgue Convergence Theorem, hence P is a compact continuous map.
From the Schauder fixed point theorem, we conclude that there exists a u,, € K

such that P(up) = um. Equivalently, in (Jz| < tn),

by (um - a(_l;lr_)) = f(z,Um,YmVunm),

with ao < u;y < @, |Vug| <b.

Next we will show using diagonal arguments that a subsequence of the sequence
{um} we just generated will converge in W12 locally to a solution w.

Let o € C°(R"), 0< 9 <1, ¢ =1in (Jz] < t;n) for some m > 0. We observe

that
(lo(pv), pv) = /R [v|?(Zai;jDiyp - Djp + 2b;Dip - ) + (Lov, 9*v) (4.9)

holds for v € Wltf(R"). Setting v = up, and ¢ = ¢p, in (4.9) and combining with
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(4.3) we obtain
BV (pmum)liLs < (bo(Pmttm), Pmtim)
= / |um|*(Zaij DigmDjpm + 2b;Djom * Pm)
+/¢p3n(um-f(:v,um,gpmVum)). | ' (4.10)

Teking into consideration that 0a < um < a, [Vum| < b, |f| < Fand M (F) < 00,

we conclude from (4.10) that
“V(¢m“m)”%3 <e

where ¢ depends on a;j, b;, f, but not on m. Hence {¢mtm} is bounded in W*? and
has a subsequence which converges in L?. Letting m — oo and using the standard
diagonal argument, we conclude that there are a u € LY, and a subsequence {um'}

such that [[um: —u||L2(gg) — 0, for any R > 0. Setting v = umpm —un in (4.9) yields
5IIV(¢(un' = um1))llF2 < / |tnr = ume[*(Zai; DipDjp + 2b;Dipip)
+ / 02 (Um — Un! ) (F(Ty Uty Pt Vi) = F(Ty Uty ot Vi)
< C’”un' — Um! ”L’(supw)

for some ¢’ > 0 depending on ¢, a;j, b;, f,but not on m’,n’. Thus we conclude
that {um} converges in W12 locally. Then u is the desired solution and by the
regularity theorem, cf. Theorem 15.1 of [55, p. 203] v € C*(R") and the proof is
complete.

We have the following immediate consequence:
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COROLLARY 4.2. Under the assumptions of Theorem 4.1, with (4.5) replaced by

lim M < l El-l’ B = 0+’ or + oo. (451)
a—f a 2

Then (4.1) has infinitely many positive solutions which are bounded above and

below by positive constants.

Proof. Set A = 0%. Since (4.5') implies that (4.5) holds for small a = b with
some o < 1, we find a solution u such that ea < u < a, |Vu| < a. Replacing a
by ca and oa by o2a respectively, Awe find another solution % with o%a < i < oa,
|Vii| £ oa, and so on. Repeating this procedure generates infinitely many solutions.

For f = 400, (4.5') implies that (4.5) holds for large a = b with some o < 1.
This gives a solution u with ca < u < a, |Vu| < a. Replacing oa by a and
repeating the procedure give another solution # with @ € @ < afe, |Vi| < a/o
and so on. The corollary is proved.

From the above results we can see that the explicit bound on E; is important,
and we will return to this in the applications. However, for two special cases we do

not need any knowledge of E, that is,

lin}9 MEE—%’—C}L)) =0, for B=0%or + 0. (4.5")

COROLLARY 4.3. If (4.5") holds, then the conclusion of Corollary 4.2 holds.

Remark. (4.5") essentially says that if f is either sublinear or superlinear in
u as well as in Vu, then we have infinitely many positive solutions bounded above

and below by positive constants.
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From (4.5') we can also see that some balancing betweén the powers of u and
Vu will result in the existence of a solution, and it is this observation that endblés
us to deal with mixed sublinear-superlinear cases. The details will be discussed in

Section 4.4.

4.3. Asymptotic Behavior.

We have seen in the last section that under the assumptiox;s of Theorem 4.1,
solutions to (4.1) are found in the ordered interval [ca,a]. It is natural to ask if u -
will eventually approach some constant. This is the problem we are going to study

in this section. Lemma 3.3 will he used.

We state the following:
THEOREM 4.4. Under the same assumptions of Theorem 4.1, if further |b;] <
co/(1 + |z|) and F = J([Fy, Fz]) with

|:l|iinoo W F1llLoBo(z)) = |zlli3‘oo |1 F2ll Lo(ma(ay) = 0,

then the solution u given by Theorem 4.1 approaches some positive constant ¢ as

Proof. Choose @ > 0 and a function h € C? such that h(z) = |z|~ for |z| > 2,
|h(z)| < D(a) (constant) for |z| < 2, and |D;h/k| < ¢(a)/(1 + |z|), with ¢(a) — 0

as @ — 0, h(0) = 1. For a fixed generic point zo € R", let ho(z) = h(z — o),




Bi = Diho/ho, w=1thy, i =u—-2 1t9) For ¢ € C§°(R"), consider

(bo(iho), ¢) = (Xaij Di(ho), Djp) + 2(Zb; Di(izho), )
= (Ea;;Diii, ho Djp) + (Zaij(Diho)i, Djp)
+ 2(Tb; D;ii, hop) + 2(h;uD;ho, )
= (Loti, ho) — (Ea;; Diii, ¢ Djho) + aij(Diho)a, Djp)
+ 2(Lb;uDiho, p).
We observe that
(aijDihoti, Djp) = (ai;Biw, Djep),
(aijDiuDjho, p) = (a;; Ditho B, )
= (ai;j Di(ho)Bj, ¢) — (asjﬂho ' —D;;?-oﬂj,SO)
= (aijDiwBj, ) — (aijwB;B;, ¢),
thus we have
(bo(itho), ) = (fho,¢) — (EDj(aijBiw), @) + (a:jwBib, ¢)
— (@i Diwpi, ) + 2(EbiBiw, p).

Now, define a new operator

fw = bow + EDj(a;jﬂgw) - Ea,‘jﬂ;ﬂjw + Ya;; B; Diw — 2Lb; B;w,
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and we have, for w = iihg
(Zw! w) = (bow, w) —- (Eaiiﬂiﬂjwv w) - 2(Zh; Biw, w),

and fw = fhy.

Note that since |§;| < - +cza_ — and |b;] < ﬁc."]?;[' Lemma 3.3 implies that

(Zai38i510, )|+ 2{(EbiBo, )| S 5(~dw,w)

by proper choice of a small enough, and since (fyw,w) > 6(—Aw,w), we thus
conclude that

(Ew, w) 2 g(—Aw, w),

i.e., ¢ satisfies the same conditions as £; and hence the proof of Theorem 3.2 implies

that there is a constant X' independent of z¢ such that

u(zo) — ﬂl; )

< K'l[|Fiholle, + 1 Fahollc,].
By our assumption
IFshollLo(Ba(z0)) S D(@)|FillLe(Batzoyy = 0 as  |zo| — oo,

for 2 = 1,2. On the other hand,

2 2 ¢ 2
1F2bollzzcrny < B2y, 20ty + W"Fl Iz2(rmy-

From this we conclude || Fy ho||¢, — 0as |zo] — co. Similarly we conclude ||Fyhol|z, —

0 as |z¢| — oo. This ends the proof.

= ~'28 .
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Observe that the convergence of u to a constant at infinity can be estimated

in terms of the properties of Fy, F;.

4.4, Applications,

In this section we discuss the applications of our results and compare them with
results previously obtained by other authors using radial arguments and weighted
spaces.

The existence theorems in Benci and Fortunato [10] are quite general. In
fact, in an unbounded domain Q, they proved that, for weight function p(z) > 0
satisfying p(z) — oo as || — o0, and Yr € R, a = (ay,...,a,) € N*, 3Ic€ Ry,

|Dp"(z)] < e(p())", if
1f(z, 9, 2)| < b(e) + (p(2))1y1* + (p(2))7|2I7,

wherchGLp,m), q € [2,n—2'l2], e>0,a<), 1$ﬂ<%—'_‘_\'—%, ¥ <0,
1<6< E—,'il'——, then —Au + Au = f(z,u, Vu) always has solutions in W;?(Q).
However, if we consider our problem in R" and seek positive solutions, these
conditions seem not to suffice for our purpose, and the conditions we give will be
more restrictive.
We will assume the positivity of the functions involved in the following exam-

ples.
Example 1. Consider the following typical problem

—%D;(a;;Dju) + 2T Diu = a(z)u® + p(z)|Vu|” (4.10)

II2
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‘m R", n 2 3, with exther 0 <46 v<l,orl <y, aud k> 0 where (a.,)
is a symmetric constant matrix and satisfies (4.2). It is easy to check thut (4.3)
holds provided -él G‘A}Q—)' Then by Corollary 4.3, th@ problem has mﬁmtely
many positive solutions bounded above and beldw by positive constants provided

M(q(z)), M(p(z)) < oo. In a simplified version, we need only to require that:
forEp@ <o, [ atihi@es @
Kenig and Ni [KN1] treated the similar problem
=Y " Di(ai;Dju) + k(z)u = K(z)u?

with p > 1 in R". Similar existence results were obtained for certain classes of k
and X. The same conclusion was obtained by Kusano and Oharu [46,47) under the
condition that for ¢(r) = rnax(p(a:),q(m)), jo mrgp(r)dr < oo with the left hand
side of (4.10) replaced by —Au. Usami [76] was able to weaken the condition ta the

foliowing;
let  p(r)= maxp(fv) ti(")='1;1|*g§fI(w),

/ ri(r)dr < oo, / r1=7§(r)dr < co.
0 0

Thus, it is clear that if one could find radial majorants p and § for p and ¢ respec-
tively, this includes the case that p and ¢ are both radially symmetric, our result
is not as sharp. However, there exist functions ¢ with M(p) < oo which do not
satisfy the radial integral test, that is, under some circumstances our result is ap-
plicable but the radial argument test fails. We will illustrate this with the following

example.
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Example 2. Define
‘ e=loyl
le |2 . elv;l’-c' * . l$2|2 < e"lzl'

07 |$2|2 ..>. e“l’ll

e1(Z1,79) = {

l .
where ¢ is chosen such that / c(1+ Imlz)c#-'fda: =1
We further define ¢%(zy,%2,73) = @1(z1,23) - e~1%3l. It is easy to see that
(= o]
@(r) = ITIE): @(®1,23,23) = k-r?, k some positive constant, and hence / ré(r)dr =
= 0

0.

However, we claim that / (1 + |2]*)p*(z)dz < 0o. Obviously,
R3
Aa(l + 1) (a)de = As(l +lef® + lza|? + |$3|2)¢1(‘”1,$2)e~lzald‘”

0o [ ] +co
_<_/ (1+ |z3]*)e~1*slday / (1+ |w1|2)/ (1 + |z2[*)epa (21, 22)de2das.
o0 [s o} -0

Now, we observe that for 0 < a <1

/a e(l+ |:c|2)e?%-2—a’dw < /a c(l + (Z)z)e(_f—)%—:‘_d(ﬁ) ‘a=a.

-a —~a a

Thus

+o00
/ (1 + |$2|2)¢’1($1,$2)dw2 S |$1|2 . e_%lzll’

-0
and since

+o0
/ 1+ ]xllz)lxllze"%'”"da:l < 00,

bae ]

+oo
/ (1 + |z3)?)e1*3ldz; < oo,

-0

we conclude that / (1 + |2[)¢*(z)dz < co.
RS



Exa.mple 3. Again consider proi)iem (4.10). If b($) =0 6 ;é 0, a.nd 6 < i,
under the condition (4.11), the same coﬁclusipn hoidﬁ.I In this case we élluw § to
be negative and hehce we include the singular case. We note that Dalmasso {19)

 studied the singular equations, —Au = f (a:)u"‘f, A > 0, under the condition that

/Iml“("")f(m) < .
His result guarantees that the solution u € M™/"~?(R") and Au € L}(R"), where
M™"=3(R") is the Marcinkiewicz space with norm

[l sgnsn-z = inf {c € [0,+c0) | / lulde < c- (u(K)™?, K mea,sumble‘}.
K

Our criterion does not involve the singular index A but we do not get the solution u
with Au € L*(R"™), though the bounded solutions are always in the Marcinkiewicz
space. We remark that Kusano and Swanson [49] studied the existence of decaying
solutions for singular equations.

For computational simplicity, we will only consider other examples for a;; = §;;

and b; = 0.
Example 4. Consider the mixed sublinear-superlinear problem
—Au = p(z)ub +g(z)u” (4.12)

inR" n>3 0<§<1<qv Let P= M), Q=Mg(e) Obviously,
M(p(z)a® + g(x)a”) < M(p(z))a® + M(q(z))a” = Pa® + Qa”. We look for the

minimum of the following function

f(z) = Pz*~! + Qz71.
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We observe that

f'(z) = (6~ 1)P*~% + (v - 1)@z,

| 1/v-6
thus zo = (%E—‘% 5) is a critical point and

n

f(zo) = PQ:L':‘}Q%% [(H)H + (-}7—:%) _1:%}]

is the minimum.

Hence from Theorem 4.1, if n < %El‘ !, there exists a positive solution u to

(4.12) such that 0 < (1 —2nEl)(__I}/:5 5)*‘1“ <u< (%:5 5)?‘::

We note that Kusano and Trench [53] also studied the mixed sublinear-superlinear

problem and obtained some results about decaying solutions.

Example 5. Consider
—Au = p(z)u’ + g(z)u” + h(z)|Vul® + g(z)|Vu|? (4.13)
in B*, n2>3,with0<é<1<4. Let H=M(h(z)), G=M(g(z)), then if

e B (2T (29 <o

there is a bounded positive solution u such that

1-6 P+ H\v5 1-6§ P+H\7
-2 oL T <u< . .
0<( 7rEl)('y—-l Q+G) _u—('y—l Q+G)
Consider also
~Au = p(z)u’ + g(z)u?|Vul* (4.14)

in ", n > 3. Kusano and Oharu [47] proved the existence of infinitely many positive

solutions which are bounded above and below by constants for the following cases:
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0spu<2 (i)6>1, > (i1))0<6<], 720, 74—u<1; (iii)&sb, 74—;¢5b.
We could recover these results here without any restriction on y. Moreover, oﬁr
existence theorem also enables us to establish the following result, which is new.

Let 0<é<1<vy+4+p,let

o= PR st (L) (25)

]

then if ¢ < fbf’ this problem has a positive solution which is bounded above and
below by constants and approaches some positive constant as |¢| — oo.

We note that the results we presented here are extensions of the results reported
in Kusano and Oharu [46,47], Kusano and Swanson [49], Usami [76}, Kusano and
Trench [53] and Dalmasso [19]. Example 4 of Section 5.3 studies the existence of

decaying solutions.
Example 6. We consider

—Au = K(z)e*" (4.15)

~Au = K(z)e %" (4.16)

in R*, n >3, K(z)> 0. Applying Theorem 4.1, we conclude that if M(K(z))-
Q-;i < 2—%-1- for some positive constant a, then (4.15) has a bounded positive solution
bounded away from zero. We note that (4.15) was studied by Ni [59], Kusano and
Oharu [46], and Cheng and Lin [18]. Ni [59] proved that if |[K(z)| < c/[z/?, for

§ > 2, then (4.15) has infinitely many bounded solutions in R™. Cheng and Lin [18]
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.
studied the case § = 2. In [46], assuming |K(z)| € ¢(]z]) and / te(t)dt < oo,
; 0
Kusano and Oharu obtained a bounded positive solution bounded away from zero if
' co 0o
further for some positive constants a, b, / te(t)dt < "—g-gae‘“ and / to(t)dt <
, 0 0
(n—2)(e~b - ¢2*) hold. So, essentially we obtain the same type of criteria. See also
Kusano and Oharu [47, Example 5], Kawano [37] and Ni and Yotsutani [NY]. For
n = 2, entire solutions were also considered by McOwen [M2].
Applying Corollary 4.2, we conclude that (4.16) has infinitely many bounded
positive solutions bounded away from zero, provided M(K) < co. By assuming
K € L"/?, we require essentially | K(z)dz < co. See also Example 7 below.

Rn
We remark that the more general problems

—Au = K(z)e", or — Au = K(z)e™"

with 4 > 0 can be considered accordingly, and similar results follow.
Finally we conclude this chapter by illustrating the advantage of introducing a
different weight A > 0 with A=! € L™/?(R"), though we did not exploit this feature

fully in our examples.
Example 7. Consider the simple superlinear problem
—Au = g(z)u”

in R® with 1 < 4. Assume that g(z) € L3/2 N L}(R®). We select A\~! = ¢(z),
to be the weight function, then for F(z,a) = g(z)a” = J([(v1,v2)]) with v; =0,

ve = ¢q(a), //\qz(:v) = /q(m) < oo hence M(F) < co. Because y > 1, we
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conclude that -Au = q(m)u" has mﬁmtely many posltwe solut:ons whmh tend t(;
positive constants as |z] — oo provided g(z) € Ls/ InLh. The same result thhout
the asymptotic behavior part, was given in Allegretto (3] under the ccndit_ion that
|zjg(z) € L= N L', This is an improvement since it is easy to see, for example
q(z) = T+—1|5T‘ € L3N LY, but [elg(a) ¢ L2 N LY.
We remark that, with the presence of radial majorants, slower decaying rate
for p(r) is allowed, see, e.g. Ni [68] and Naito [NA]. For ¥ = (n + 2)/(n — 2), some
results were given by Ding and Ni [DN].

Now, for Example 3, if we choose § < 0 and ¢(z) € L™/2, then we need only to

require / g(z) < co. This is an improvement over the criterion of Dalmasso [19].
R"




Chapter 8§

EXISTENCE THEORY II: DECAYING SOLUTIONS

5.1, Introduction.

We have studied the following equation
~ED;i(a;j(z)Dju) + Tbi(z)Diu = f(z,u, Vu) (5.0.1)

in the previous chapter and have obtained existence results for bounded positive
entire solutions. In this chapter we focus our attention on the study of the existence
of decaying entire solutions. This task is carried out by using the existence theorem
of the last chapter and sub-supersolution method. However, in order to construct an
ordered pair of sub- and »supersolutions, Caratheodory’s conditions no longer suffice
and new structure restraints on f have to be imposed. Thus, the results we present
in this chapter are not as general as those of the last chapter. Nevertheless we again
expect to cover cases where the usual radial arguments are violated because of the
highly nonradial symmetry of the coefficients.

Under the premise of the existence of ordered pairs of sub-supersolutions,
Amann and Crandall [6] gave some multiplesolution results. Hess [34], Deuel and
Hess [20] and Boccardo, Murat and Puél [13,14] presented the existence of weak
solutions under different growth conditions for f upon Vu. Pohozaev [69] gave an
unimprovable growth condition on Vu for very general f. While dealing with tl;e
unbounded domain case, Hess [33], Cac [16] obtained the existence of weak solu-
tions for f depending on Vu subquadratically, and Donato and Giachetti [22,23]

37
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successfully ;'aised ihe dépendence of f on Vu fo squt;ré. ﬁowever, ﬁxis wéak so-
lution plus sub-sﬁpersolution approach can harcﬁy suppl& any informugion about
the positivity of solutions since for most cases u = 0 is always a weak sol;xﬁion.
Further, decaying solutions are not usually found in the standard Sobolev spaces
on R". On the other hand, Berger and Schechter [12] studied quasilinear problems
in divergence form within the framework of weighted spaces. Benci and Fortunato
[10] studied the boundary value problem in weighted spaces with f depending on
Vu subquadratically, and Céc [16] considered the weak solutions for a different type
of weighted spaces for exterior domains, through the assumption of the existence of
sub-supersolutions.

For semilinear equations of the form
—Au = f(z,u),

the existence of decaying positive solutions was obtained by many authors, see, c.g.
Gidas and Spruck [28], Berestycki and Lions [11], Ni [58] and others. More recently,
Noussair and Swanson [62,63,64] and Kawano, Satsuma and Yotsutani [41], proved
the existence of decaying solutions for f depénding on u sublinearly or superlinearly.
Kusano and Swanson [49)] studied the existence of decaying solutions for the singular
case. Kusano and Trench [53] and Furusho [27] considered decaying solutions for the
mixed sublinear-superlinear cases. Recently, Li and Ni [LN], Ni and Yotsutani [NY]
studied the Matukuma type equation and presented precise asymptotes of decaying
solutions. A delicate nonexistence theorem was proved in [LN]. However, as far as

quasilinear problems are concerned, few results have been obtained in this direction.
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We mention the work of Kusano and Swanson [51], in which the decaying solutions
were obtained for f depending on u and Vu sublinearly. Again, radial ideas and
strong sub-supersolution methods were extensively used.
Our method is based on the following simple observation: if we can find 0 <
z € C* such that u solves (5.0.1) if and only if v = ¥ solves a problem to which
Théoretn 4.1 can be applied, then as v tends to some positive constant as indicated
by Theorem 4.4, u tends to a constant multiple of z. However, instead of trying
to find a function z such that u solves (5.0.1), it is easier to find z such that u
is a supersoluton of (5.0.1). We then employ a spectral procedure to construct a
suitable subsolution and the existence theorem will follow. In Section 5.2 we present
the arguments. Applications to various situations and comparison will be presented

in Section 5.3.

5.2. Existence Theorems.

We consider the existence of decaying solutions of
lou = —EDj(a;j(z)Dju) + 28b;Diu = f(z,u, Vu) (5.1)

inR", n>3.

A function v € W,,?(R") is a weak supersolution of (5.1) if

/ Yaij(z)DjvDip + 2Lb; Divep 2/ f(z,v, Vo)
Rn R»

for any ¢ € C§°(R"), ¢ > 0. A weak subsolution is defined accordingly. We

assume a;; = aj; € Cot *(R™) N W2I(R™) with N(D%a;j,4,2, R®) < 00, Aol¢]? <

loc

Taij€i€; < M|€)?, for some Mg, Ay > 0, b; € CI?,C(R")HW'I:,’C"(R") with N(Vb;,¢,2,R™) <



oco. We note that we can relax the smoothness assuinption somewhat !f eitther. we
consider only weak solutions or the function f in (5.1) does ﬁot depeﬁd on Vu,
Assume also that f satisfies the follbwing Nagumo type condition: for (z,u,é) €
R" x R x R*,

[f(2yu, )] < B(lul)(h(z) + k(z)I€]*) (5.2)

with b : R — R* nondecreasing, b€ L°°(R+), and k,h € L*®(R"). We remark
that a Nagumo type condition is needed here because sub-supersolution methods
are used. However, it is reasonable since, by the nonexistence results of Serrin [73]
(see also [74, pp. 512-513)), if a Nagumo type condition does not hold, then for any
given smooth domain, there are smooth data for which the Dirichlet problem has
no solutions. Concerning the restrictions on b, h, and k, Pohozaev [69] proved the

following result: if

|f(z,u,€)| < bz, u)(1 + [€]*)

with f satisfying Caratheodory’s conditions and for any given £ > 0
sup b(-, [ul) € L*(2), p>n,
[uj<e

where 2 C R" with C? boundary, then g = 2 — % cannot be improved, i.e., generic
‘a priori estimates will not hold for 2> u > 2 — % Thus, taking into account the
above results, our conditions on f, b, h and k are rather reasonable.

We first state an existence theorem under the assumption of the existence of

sub-supersolutions.
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TliEOREM 5.1. Let f satisfy (5.2) and be IocéJIy Hb’lder continuous with exéonent
HE (O, 1). Let a;j, b; be as stated above. Assume that w,v € ‘/l",f,’,:"o n L°°(R") are
an ordered pair of weak sub-supersolutions uﬁ'th w < vand w £ 0 < v near co.

Then (5.1) has a solution u € C*(R™) withw < u < v.

Proof. The existence part of this theorem is contained in Theorem 5.3 of [23].
We will use standard bootstrap arguments to establish the regularity. Let B, be
a ball in R" centered at 0 with radius r. Then w,v are an ordered pair of weak
sub-supersolutions for (5.1) on B,. Denote the solution by u,. By the regularity

theory, see, eg. Theorem 12.1 of [55, p. 195], or Theorem 3.1 of [55, p. 266] we have

lurllcrm,-1) < Klllurllcos,) + | Fllcecsals

where K is some constant independent of r. Since w,v € L®(R"), |lur|co(gn) £
Cy, C) independent of r. Further, by the conditions on f, we obtain || f||co(gn) <
C;. Then f(-,u,Vu) € L*, thus u € C*** and then, since f € C* and u € C?, we
have f(,u,Vu) € C*, thus llurllc2(s,) < Cs independent of r. Hence u € C*(R™).
The proof is complete.

From now on we assume that f satisfies the conditions of Theorem 5.1. Further
restrictions on f will be introduced below.

As we mentioned in the introduction, we need to find a function z such that
v = ¥ solves a problem to which Theorem 4.1 can be applied. We introduce a
function z such that

(i) z € C'NnW2(R™),

(11) eoz Z 0,



(i) z,Vz € LP(RM),
(1v) 2 = 0 as 2] — oo,
(v) (ZO¢—2EB-aa-£ ¢) > 6(~Ayp, ) for some 6 > 0 and € C”(R”) he
gz, ¥) 2 P p) and any ¢ € C§ , Where
Bi = }J:a.-,-ag;(ln z) is assumed in L*(R").
THEOREM 5.2. Let

F(a:,a, b) -~ sup lf(m)fza Evz + Z‘?)I (5.3)
0<é<a 2 ‘
—bTSPLHT

- satisfy M(F(x,a,b)) < oo for any positive a,b. If for some positive constants a, b,

o with o < 1, we have

B\ M(F(z,a,1) < min (5, =22 a), (5.4)

where E, is given by Theorem 3.2, then (5.1) has a positive weak supersolution
v € W'l})::O(Rn) such that v ~ z at co. Furthermore, if |b;|, |Bi] < 1 +c|a:| and
F= J([Fl,Fz]) with

1 = lin =0
aim 1Billzegaeen = Yim 1 Fallzecaey =0,
then v/z — ¢, some positive constant, as || — oo.

Proof. Letting u = 42, we have
Yo(iz) = =X Dj(aijDj(iz)) + 25b; Di(iz)
= -—ED,-(agj(D,-ﬁ)z) — £ D;(aij(D;jz)i) + 25by( D)z + 28bi(D;z)i
= —EDj(a;jDji)z + 28b;i(D;t)z — La;jDjiD;z
— ED;i(aijDjz)t + 28bi(D;z)it — Xa;jDiuDjz

= {o(@)z + Lo(2)d — 2La;;DjiuD;=.
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- Hence (5.1) is reduced to

+ lo(ui) — 288; Dy + Zoiz) i = f(z,dz, uVz + 2Vi)/z (5.1)

Since ¢y(z) 2 0, the existence of a positive solution to
by (1) = o(0) — 226; Diie = f(x, 02,2V +1idVz2)/z (5.5)

implies the existence of a positive supersolution to (5.1'). It is readily seen that
Theorems 4.1 and 4.4 imply the desired result.

We go on to construct a subsolution to (5.1). We assume that

im LE%E8 _ (5.6)
u—0t+ u

uniformly in a neighborhood @ of zero in R* x Rt x R".

We remark that (5.6) holds if in @, f(=,0,€) > 0 or f(z,u,€) > p(z)u”, with
v < 1 and p(x) > &0 > 0. We also note that (5.6) contains the condition (6) given
in [4]. Observe that (5.6) ensures that f is not globally nonpositive — a situation
explicitly férbidden by the maximum principle, since we cannot have a solution with

an interior maximum if f < U. Finally, we assume globally that
f(zyu, &) > g(z,u,§) (5.7)

for some g € C'(R" x R x R"), ¢(z,0,0) > 0.

We have the following existence result:
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THEOREM 5. 3 Assume tlmt f satxsﬁes the cond:tmns o! Tbeorems 51 lmd 52
and thaf (5.6), (5 7) hold. Then (5.1) has a class:cad posxtwe solutmn u such that

0<u<czat oo

Proof. Let us first construct a subsolution, Let B,(0) CC @' where Q’ is the
projection of @} onto its first n components and let u1 be a positive eigenfunction
of the Dirichlet problem: £o(uy) = Au; in B(0). By (5.6) we could choose €; small
enough such that €y(e1uy) < f(=,€1u1, V(e1uy)) and €4y < v in B,(0), where v is
the supersolution given by Theorem 5.2. Now, we extend u; to R" by setting u; =0
in R" - B,(0) and observe w = gyu; < v globally. Integrating by parts shows that
w is a weak subsolution of (5.1) in R"®. Then Theorem 5.1 implies the existence
of a nonnega,tivé solution u € C%. We have to show u is positive. If not, assume
u(zo) = 0 at some zo € R'f. Then z¢ is a minimum of » and hence Vu(zg) = 0.
Since f(z,u,Vu) 2 g(z,u,Vu) and g € C?, ¢(z,0,0) = 0, we also ohserve that for
T near o,

1 d
g(z,u, Vu) _>_/0 o lg(z,tu,tVu)]dt
n
=Y %i(z)Diu + tho(a)u
i=1
for some ¢; € L*, i =0,1,...,n. We conclude that
| n
bo(u) = Y vi(z)Diu — o(z)u 2 0
i=1
and u > 0 near zo. But by e.g. [29, p. 194], |[ullLr(Bsn(zo)) < € lnf u =0 for

Bp(zo)

some R, p. Thus we conclude that u = 0 near zo and that the sct § = {z | u(z) = 0}




4

is open. Oﬁ the éther hami S is closed since u s éontinuéﬁs. Tﬁen S =R" or 0
But since u > w and w # 0, we must ﬁave S =0. This completés thé proof. |

Remark. The assumption' z — 0 in condition (iv) is not necessary if we do not

want decaying solutions. In fact, instead of (iv), we can put different asymptotic

behavior condition there and obtain solutions with different behaviors at infinity.

We will see this in the next section.

5.3. Applications.

From the results of the last section we can see that the behavior of the (decay-
ing) solution is determined by that of z. One may generate a very large number
of results by different choices of z. We first consider an example which will give us

very nonradially symmetric solutions by special choice of z.
Example 1. Consider the problem
~Au + mPu = g(z,u, Vu) (5.8)

in R", n>3and m > 0. We have the following

k
THEOREM 5.4. Let p; € R" with |pi|l =m, i=1,...,k, andlet z = Y c;e?®

i=1

k
withe; 20, Y ¢; > 0. Let

=1

G(z,a)= sup |g(z,€2,Vz + 27)/z|
0<E<a
—aT<7<al '

satisfy G(r,a) < oo for any positive a. If for somea >0, 0 <o <1, E1G(z,a) <

,1___;_2 a, then (5.8) has a solution u such that acz <u < za. In particular,
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u—socoinUlelz pi>elzl}, un0inNe{z-p < —¢lo|}, andu € L® in-
1 ' . 3 . - . N ‘

Mo lz-pi=0}.

]

We only note that by our choice z satisfies

~Az+m?z=0. , (5.8")

- (- Se) + (T

< (-mPp,p) + (mPp,p) 0.

We conclude that ((=A + m?)p, ) — (2-‘—?— ch,cp) > ((-A + m¥)y,¢). Thus
Theorem 5.3 can be applied to deduce the above result.

We note that the same semilinear problem was studied by Kusané and Swan-
son [50] and Fukagai»[25]}for f depending on u sublinearly or superlinearly, and
unbounded positive solutions were obtained. We point out that our result is.an
immediate extension, since we cover the guasilinear case and we obtain unbounded
as well as decaying positive solutions. We also remark that this ex21aple reveals the
perturbation nature of our method: if the perturbation term g(z,u, Vu; is “small”
enough the perturbed solutions are “close” to the unperturbed ones.

As we have seen, by choosing different z, we could obtain entirely “wild” solu-
tions.

To be specific, in the following examples, we always assume the functions p(z),

g(z), h(z), g(z) 2 0 are nontrivial and in C*°(R™), and a;; = §;;, b; = 0. We note
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that even though we could choose z from a large class of functions, radial or not,
we select a very simple one in order to illustrate the idea. Specifically, we set

2|, lz| > 1
2= (5.9)
1+ § -z, 0< 2| <1,

"« > 0 to be determined. We observe that

—ale]™ %2, [|z|>1
Vz=
—-az, 0<|z|<1

and
—a(n—a-2)z|7*2, |z|>1
Az =
—amn, 0<|z| <L 1.

Set & < n— 2, then we have z € C}(R*) NW23(R™), —Az >0, 2,Vz € L®(R"),
z— 0 as |z| = oo.
Next, we choose a such that (v) is satisfied as follows: for ¢ € C§°(R"), since

(__2 _Vz_Z.V(p,(p) = (div %, ‘Pz)’ '

(=27 vee)| = |(av o)

F4

< / div V2. 42,
Jrn 4
We observe that
a(2 - n)lz|7?, 2l >1
o, [l o
div —= Com a2|a:12 . g
(1+a/2—a/2[2])  (1+a/2-a/2z])? 0<|z[ <1,
a(n —2 _2’ >1
. Vz ( Izl ||
’dlv —

<
|-a2—an|591’|"—+,ﬂl, 0< |z <1

z|
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- Lerns (2=2Y [ 1 2 ¢ [ Vol hes ing 0 < .
By Lemma 33, { *5—= . =P ¢ < V], hence by setting 0 € o <
) n R'l
%(\/(n - 2)2 4+ n* —n) we conclude that (v) holds:

Vz

¥4

(n-2)° 2

(—Aga—2 - Ve, cp) > (—4——0 —an)(—/-\% )

for ¢ € C§°(R").
Now, with z chosen, we will go on to illustrate our results by examining some

examples.
Example 2. Consider
~Au = p(z)ub + ¢(z)|Vu|" (5.10)

in R*, n >3, with 0 < é,v < 1. We observe first that for a,b > 0, (a +b)Y <

27(aY + b7) for 4 > 0. Note that since

M (p(w) fiz‘-‘i + q(2)a”|z + vzn/z)

' ¥
< M(p(2)z°~Va® +a'M (q(ar:)(z""1 + I_V_:z_l_) 2")
< M(p(2)z°")a’ + M{q(2)2""1)27a™ + (2a)"M(g(2)|V2|"27"),
we conclude that if M(p(z)2®~!) = P < 0o, M(q(z)z"™!) = Q < o0, and

M(q(z)|Vz]"271) = Q; < 0, (5.10) has a positive solution u such that 0 < u < ¢-2.

The conditions we give essentially require the following:

O [ P+ +aD) 20 < oo,

@) [ A+ + a0 < o,



"
(ii) /,, (@)1 + [af)(1 4 fal)H+DTH < oo,

If g € L™?, we need only to require (i) and
G [ o)+ el < o,

(iii)" /u" a(z)(1 + |$|)—2(a+1)"{+20 < 0o.
Sce Example 7 in Section 4.4 for comparison.

The decaying solutions for (5.10) were studied by many authors in the semilin-

ear case using radial arguments and/or variational methods. For example, Noussair
‘a.ud Swanson [62,63,64] studied the problem —Au = p(|z])u”. They obtained de-
caying solutions for

(1) p(r) < (147272, ae(0,2], 2EES2 < 5 < 2EF ([63], [64]),

(2) ¥ <1, p(r) bounded ([62]).

On the other hand, Li and Ni [LN, Theorem 1.4] proved that, if K(z) = O(|z|®)
for § < =2, K € CY(R") and (n—(n—2)(p+1)/2)K(z)+z-VK(z) does not change
sign in R", then —Au = K{(z)u” has no bounded decaying positive solutions. They
also pointed out that the above hypotheses are not satisfied if p < ::i_% unless
K = 0. We note that, since p(z) = (1 + |z]?>)™! does not satisfy our criterion, the
results we present here do not apply to the Matukuma equation, thus our study
does not include those of Li and Ni [LN] and Ni and Yotsutani [NY]. Kawano,
Satsuma and Yotsutani [41] studied the case —Au = ¢(|z|)u™, m > 1or m < 1,

/ 0orso(r) < co. Kusano and Swanson [51] consider exactly (5.10) for 0 < 8, v <1

0
or 1 <é, 1<+ <2and radial p,q. Their criteria are:

/0 c’ot;;(t) < oo, / cot““'q(t) < oo.

0



50

We explicitly remark that even with (ii)’ and (iii)', our criteria are not as good.
Example 3. We consider the following mixed sublinear-superlinear problem
—Au = p(z)u’ + g(z)u” (5.11)

inR* n2>23with0<éd<l<y Let P=Mpz#?), Q=M. K
n P'E'}Q:—:% [(H) i + (}y——:—'{r) H] < é-ivl-, then (5.11) has a solution u such
that 0 < u < ¢z, ¢ is a constant (see Example 4 of Section 4.4 for the calculation).
The radially symmetric case was studied in Kusano and Trench [53]. They required,
in particular, that /o&t"'l“a(""”p(t) < 0o and /owt"““’("")q(t) < co. Here we
require p,q € L"/?, /R"P(w)(l +2[)72¢=D < o0 and /R"q(w)(l +[z]) 720D <
oo. We remark that Furusho [27] also studied the mixed sublincar-superlinear prob-
lemn for the nonradially symmetric case but with radial majorants. His statements

and results are expressed in a different manner. We also note that this example is

an open question in [53].
Example 4. Consider
—Au = p(z)u’(1 +|Vu) + ¢(z)u?(1 + |[Vul*) (5.12)

inR", n>3 0<)\ pu<2 O0<éyandé <1l Let P, =Mpz#"), P =
PM(pA+1), Py = PMp~[ValY), @y = M(gz7™), Qo = 20M(gzh+1-),
Q3 = 2*M(qz7"1|Vz|*). Direct calculation shows that if there is a positive constant

B such that

1

PB4 (P + PB4+ QBT +(Qr + Q)BT < SE,’
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then (5.12) has a decaying solution. We note that Kusano and Oharu [47] considered

the bounded solutions of —Au = p(z)u’+g(z)u?|Vu|*, see Example 5 of Section 4.4.

Example 5. Consider

-Au = K(z)e" (5.13)

and
-ADu = K(z)e™ _ (5.14)
inR*, n>3, K(z)>0. (5.13) is related to the Eddington equation in astrophysics
(see e.g. Ni and Yotsutani [NY]) and we have studied the existence of bounded
solutions to both cases in Example 6 of Section 4.4. Observe that condition (5.6)
is satisfied for both problems. By Theorem 5.3, if there exists a positive constant
a such that M (%) < ?—b]— ae™*, then (5.13) has a decaying solution u such that
0 < u £ az. The criterion requires that
() /R @)1+ [eP)(1+ [l < gl ae™®, or
QY K()eL? /R K(@)(1+ [el) < g ae~e.
For radially symmetric K, the existence of decaying solutions was proved by

Ni and Yotsutani [NY] under the condition that
«© n—2
/0 rK(r) < PRE

while nonexistence of global positive solutions was given for [rK(r) = co. We

note that we obtain similar type of criterion here for nonradially symmetric K.

For (5.14), since e™* is bounded, it is easy to see that for a > 0,

M(E(‘—T)(e")“) < M(%Q) ¢,

z



| 2
whére cisa éonstahg indéi)endent of a. Hence i)y Tliééreﬁi 5.3 and flie sublmea.r
nat\ire oi" the prébleni, wé conclude that if M(K/z) < o0, i.e.,

O [ K@a+bnO+l <o o
G K@) eI, /u K@)+ e < oo,

then (5.14) has a decaying solution.




Chapter 6
DEGENERATE EQUATIONS

6.1. Introduction.

This chapter deals with the following problem:
-EDj(aij(z,u)Diu) = f(z,u,Vu) (6.1)

in R*, n > 3, with Za;j(z,u)éié; > 0for u # 0, a;j(x,0) =0. The intention here
is to obtain global existence results for positive solutions of (6.1), by extending the
results of previous chapters.

The prototype of (6.1)

—Ap(u) = f(z,u) (6.2)

arises from a variety of physical and biological problems. Indeed, it is the stationary
case for some nonhomogeneous reaction-diffusion equations. For example, if ¢'(u) >
0 for u # 0, ¢'(0) =0, as in the case ¢(u) = |[u|™1u with m > 1, (6.2) reduces to
the porous media equation, while if ¢'(u) > 0 for u # 0, ¢'(0) = +00, as in the case
o(u) = |u[™1u ‘with 0 < m < 1, we obtain a model for a heated plasma. We refer to
Aronson {7}, Diaz [21] and Peletier [67] for more physics background, references and
rclated questions. Gurtin and MacCamy [30,31] introduced the same mathematical
model to describe the dynamics of population with dispersion to avoid crowding.
Okubo summarized all biological diffusions into three types: Fick, repulsive and
attractive, all of which can be described by equations of the form (6.2), see [66].
The existence and uniqueness of nonnegative solutions to (6.2) have been in-
vestigated by several authors. Schatzman [72] proved the existence of nonnegative

53
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solutions for ¢(u) = u™ with m > 1 and f(z,u) = f(z) ‘while Sprud; [75] b;'dve(i
the uniqueness of solutions for p(u) = u™ (m > 1) and f(=, ﬁ) = f(z): ‘U, By usiﬁg'
a shooting method, Peletier and Tesei [68] studied the bifurcation and attractivity
of 1-dimensional problems for f(z,u) = a(z)u? (p 21) @d e(w) =u™ (m> ﬁ).
In (8], Aronson, Crandall and Peletier studied the 1-dimensional equilibria stability
for f(z,u) = u(1-u)(u—a)and p(u) = u™ (m > 1). See also de Mottoni, Schiaffino
and Tesei [57]. For the case of a more general ¢ which satisfies ¢(0) = ¢/, (0) = 0,
Pozio and Tesei [70] and Bandle, Pozio and Tesej [9] investigated the support prop-
erties of solutions for (6.2) and obtained conditions for the existence of nonnegative
solﬁtions with compact support. Some generalizations were then obtained by Rako-
toson [71], who studied the problem Au + F(z,u,Vu) = 0 in a bounded domain,
where A is an operator of Leray-Lions type. The Cauchy problem for u; = Au™
with 0 < m < 1 was considered by Herrero and Pierre [32] in (0,00) x R", who
also proved the existence and uniqueness of nonnegative solutions. In [36], a sys-
tem of degenerate equations, originating from biological genetics, was studied by
Kalashnikov.

While considering the more general equation (6.1), which embraces the porous
media equations, the plasma physics equations as well as the biological equations,
we treat the problem from a different point of view and obtain results in different
directions. Instead of studying ¢(u) = u™ for m > 1 and 0 < m < 1 separately,
as has been done in most of the relevant literature, we present a unified approach
which enables us to obtain global positive solutions. This treatment relies on the

theory and methods we established and utilized in previous chapters.
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At the beginning of Section 6.2, we will o];fain the existencé of solutioﬁs
bounded ahove and below by positive constants. In order to obtain decaying solu-
tions, we have to restrict ourselves to some specific cases, on whit-:h we can apply
a variable change technique. Finally we will give three examples in Section 6.3 to

illustrate our approach.

6.2. Existence Results,

In this section we will prove the existence of positive global bounded solutions

for the following degenerate equation
tyu = ~XDj(a;j(z,u)Diu) + Ebi(z)Diu = f(z,u) (6.3)

in R", n > 3, with appropriate a;; and b;.

We define the following differential operator
6(v)u= —EDj(a.-j(:v, v)D;u) + Zbi(z)Diu (6.4)

with 0 < oa <v <a, aand 0 <1 to be determined a posteriori. We assume that
for such a v, a;; € CY(R"!) and that (a;;) is symmetric. We also assume that, for

0 <eoa<v<a,either
for m >0, Aoo™a™ €] < Bayj(z, v)éil; < Aa™ € (6.5)

or

for m <0, Xoa™ €]} < Ba;j(z, v)€i€; < Mo™a™|¢)?, (6.5")

where Mg, A; are positive constants independent of ¢, a and z. To use the a priori

estimates of Chapter 3, we require the following structure condition

8>0, (L(v)p,p) 2 6(—-Ayp,p), Ve CP(RY), (6.6)



6
where 6 depends ono and a. Furthermore, we assume that f satisfies Caratheodory's
conditions and b;(z) € LJ,.(R") such that N(b;,q,2, R®) < oo (see also Chnf)ter 4).

Now we can formulate the existence theorem:
THEOREM 6.1. Let
F(z,a) = sup |f(z,u)| (6.7)
0<u<sa

satisfy M(F(z,a)) < oo for any positive constant a. If for some poéitive constant

pair (a,0) witho < 1,

l—-0¢

E\M(F(z,a)) <

a (6.8)

holds, where E, is given in Chapter 3, depending on ¢ and a in this case,: then there

exists a solution u € C*(R") to (6.3) such that

ca<u<a,

The proof of this theorem follows along the same lines as those of the proof of
Theorem 4.1, thus we will only sketch it.

Proof. Let K denote the ball in B = C°(|z| < tm) with norm |lul|s =
llullcoiz|<tm)s centered at a(l + o)/2 with radius a(1 — ¢)/2. Define an opera-
tor P on K by

a(l + o)
2

P(u) = + o (w)(f(z,u), uweK,

where €7 '(u) is the Dirichlet inverse of & (u) in (Jz| < tm). Then condition (6.8)
and the same arguments as in the proof of Theorem 4.1 yicld the existence of a
fixed point of P, i.e., there exists a u,, € K,

a(l+o0)
2

4 (um - ) = f(z,um),




-
in (|z] < ty) with ae S upy < a.

Itétating the satr;é ﬁrocess produces a sequence of {um} and the convefgence
of {up} to the solution v of (6.3) with desired properties follows from the same
arguments as in the proof of Theorem 4.1. This ends the proof.

We note that in this particula,r.case, condition (6.8) is very complicated to
verify, since o and a are intrinsically involved in the calculation of £,. However the

following corollary provides criteria which are easy to verify:

COROLLARY 6.2. Assume for simplicity that —XD;(b;) 2 0. Assume that for

m>0
either lir(r)z+ M(F(z,a))a™™"1 =0,
. -1 _
or al{l_}_lw M(F(z,a))a™ =0,
and form <0

: : -m-=1 _
either alir_&o M(F(z,a))a =0,
or lim M(F(z,a))a™!=0.

a—0+

Then (6.3) has infinitely many positive solutions bounded above and below by

positive constants.

Proof. We only give the proof for m > 0, since the m < 0 case is analogous.

From the proof of Theorem 3.2, we conclude that, since
(GL(v)p,p) 2 @™o Ao(=Ap,0)  for ¢ € C°(R™),

— — n" — ——
Ey=c o™/ max(a~™0 "™y, c2),




e
where ey ég and c are posmve const@ts mdependent ;)f d tmd 0. Observe ;hat fér.
constant a la:ge enough max(a~™o"™ey, 05) = =3, thus 1f lun M(F(u:, a))/a =
there exist infinitely many a's such that EyM(¥F(z, a))/a < l/2. Thns unplxes
the exxstence of infinitely many bounded solutions. Smularly for consta.nt a small
enough, a~™o~™¢; majorizes max(a~™o""cy,c;) and EyM(F(z,a))/a < 1/2 if
M(F(z,a))/a™*? is small enough. Thus the proof is complete,

Next we concentrate on the existénce of decaying solutions for (6.3). We observe
that previous methods used in Chapter 5 are not directly applicable in the present
case since it is difficult to find a decaying subsolution or a decaying supersolution
for the general equation £;u = 0. We can only deal with some special cases which,
however, lead to new results.

Instead of studying (6.3), we consider the following more special equation
~ED(¢(x)b(u)Dju) = f(a,u) (6.9)

with ¢3 > p(z) > ¢; > 0, u-9¥(u) > 0for u # 0, ¥(0) = 0. The technique we
employ is a combination of variable change and the method we used in Chapter 5.

We first state an auxiliary lemma.

LEMMA 6.3. Let u € Wy'(|z| < r) be a solution to
by = f + Di(gi)’

where £ satisfies the conditions of Theorem 3.2, M(f) < oo and g; € L*(R") N

(R™), ¢ >n. Then

loc

Sup lul < Ey(M(f) + llgill 2 + N(gir4,2, ™)), (6.10)
zi<r




where E, is given in Theorem 3.2.

Proof. From (A.20) in the proof of Theorem 3.2, we have

lu(za)| € Ko(llullracas) + llgill ey + £ Locay) - #(B2)*?).

By the Sobolev embedding theorem, we obtain

L3(83) < MBI T(|VullLaa,),

[l

where T is the optimum embedding constant.

Observe that
5”V“||%=(|z|<r) < (buyu) = (f,u) + (Di(gi)y u),
and
I(Di(g:), )| = |(—gi, Diw)] < llgillze - [V,
(0] € —— 1 fllzz - IVa]
yUNS — L;" ul.
Thus we obtain
1 2
IVullzageicr < 5(lgillzzqaicn + ——51£1l2)-

Combining (6.11), (6.12) and (6.13) yields the lemma.

5

(6.11)

(6.12)

(6.13)

In the following we assume that ¢ is a continuous function in R! and fou P(s)ds

_is well defined. Note that in the case ¢(u) = u™, we require m > ~1. We introduce

a new variable as follows:



Define ‘ - } L
() = L $(s)ds and  H =p@)n(u).
Since u - h(u) > 0 for u # 0, 7Y u) éxists and u = ==Y H/p(z)). .benote

fHi(z,H) = f(z,77 (H/p(z))), then it is easily checked that
VH = o(e)(u)Vu + (VInp)H,

and

—AH = fi(z, H) - V((VIn @) H). (614)

We note that a decaying solution H of (6.14) will give a decaying solution u

of (6.9) if H/¢(x) also decays. Thus it suffices to study (6.14). We assume that f,
and ¢ satisfy the following conditions: o |

(i) Vinp e I2nLg n L (R™), IAlmpI < %ﬁ—ﬁz and M(V Ing %5) < 00,

(ii) In a neighborhood @ of zero in R™® x R,

lim ———-—f‘(Z’“) = +0o

a—0+

uniformly, and

fi(z,a) 2 g(z,u)

for some g € C?, ¢(z,0) > 0.

Then we have

THEOREM 6.4. Let z be the function given in Chapter 5 and lct

F(z,a) = max |fi(z,£2)l/2
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satisfy M(F(z,a)) < oo for any positive a. If there is a positive constant a such

that
Vz n 1
B (M(F(z,))/a+M(V1ng —;)+||Vlnso||1,z +N(Ving,q,2,R) < 5, (6.15)

then there exists a solution H to (6.14) such that 0 < H < cz, where ¢ is a positive

constant.

Proof. By substituting H = vz into (6.14) we obtain

-Av—2 vz Vv — Ve v+ (— ézi)v = hlzvz) }-V((Vlncp)vz)
2 z z z

V-4

= fi(z,v)/z = V(VIng)) — (lnp) =

Thus we conclude, by Theorem 0.2, the existence of a supersolution ¢z to (6.14).

On the other hand, (6.14) is equivalent to
—AH +(Alng)H = fi(z,H) - Ving - VH, (6.14)

—92)?
and |Alng| < %Tﬂ;L implies that the eigenvalue problem

~AH + (Alnp)H = AH, inQ
{ H =0, on 0N
has a positive solution in 2, where § is the projection of @ onto its first n compo-
nents. Observe that al_ir})1+ —f—lgzﬂl = 400 in @ ensures that the spectral procedure
we employed in Chapter 5 is applicable here and hence there exists a nonnegative

subsolution to (6.14). The rest of the proof follows along the same lines as those of

the proof of Theorem 5.3. This concludes the proof.



o

Remark We note that Vz is of the orde;' lz|~?. ’i‘hus, 1f we ignore thc wc:ght
function A, then M (V Ing %5) < oo can be replaced by Viny € L’(R"). In
particular if ¢(z) is a constant, then (6.15) becomes E;M(F(z,a)) < a/2. We
further observe that in general, ¢ = ¢+ [¢|~* with ¢ > 0, k + 1 > n satisfies the

required condition (i) preceding Theorem 6.4.

THEOREM 6.5. Suppose that the conditions of Theorem 6.4 hold. Assume that
0 < ¢ £ ¢(x) < c;. Then (6.9) has a positive decaying solution u such that

0 <u < cen~)(H/¢(z)), where H is given by Theorem 6.4.

Remark. The right hand side of (6.9) can depend on Vu also. We choose not
to pursue this particular case in order to avoid the complicated notations which
ensue but we will illustrate this in the next section with an example. However, we
explicitly point out that the dependence of f on Vu in (6.3) is excluded. In order
to estimate ||Vu||, we have to know ||D%a;;||, locally (see Theorems 3.1 and 3.2),
where the partial derivative is taken on all variables. The implicit expression of a;;

makes the estimation. of ||D?ai;||, extremely difficult.

6.3. Examples.

Example 1. Consider the following problem
—V(p(@)ul V) = playu® (6.16)

in R*, n > 3, with A > 0. For simplicity we assume p(z) > 0. Assume that
¢1 < ¢(z) < ¢ for two positive constants ¢; and ¢; and that M(p(z)) < oo. Then

by Corollary 6.2, (6.16) has infinitely many positive solutions which are bounded
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ahove and bhelow hy positive constants provided that, for 4 > 0, either (i) A > v +1

or (ii) A < 1, and for 4 < 0, either (i) A < v+ 1or (ii)) A > 1.
Example 2. We consider the existence of decaying solution of
—V(lu|"Vu) = p(z)u® + g(z)u’ (6.17)

in R", n >3, with p(z),q(z) 20, ¥ > -1, and o and § to be specified later. We

introduce the new variable

H =™y +1)

Then

u=((y+1)H)7,

Thus we obtain the following new equation
~AH = p(z)(y + 1)7F H¥ 4 g(z)(y + 1)77 H7, (6.17")

By Example 3 of Chapter 5, let P = M ((7 +1)7p. zﬁ'f_l), Q= M(('y +

1)#(1-:?%‘1), if

where E; and z are given in Chapters 3 and 5 respectively, and 0 < 0 < v +1 < 6,
then (6.17') has a solution H such that 0 < H < cz. Hence (6.17) has a solution u
such that 0 < u < ¢+ z7+7. This is the mixed sublinear-superlinear case. For the
case 0 < o, 8 < v+ 1, the estimate about 7 is not needed. Note that for the

following cases: (i) 0 <o, 6§ <y+1,(i1)) 0 < y+1 < 0,6, (iii) 0,6 < 1 and
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(iv) 0,6 > 1, we also obtain infinitely many bounded positive solutions bounded

away from zero.
Example 3. Consider
=V(p()|ul"Vu) = p(z)u” + q()|Vu|*u? (6.18)

inR" n2., .tnp(z)>0, ¢g(z) 20, 0<o <1+4+,and0<6<2 Following

the construction before Theorem 6.4, we define
H = p(a)u™ /(v +1).

Now we have

v ((7 +¢1)H)w‘fr

y

Vu=(y+ 1)"#(%)#—'(Vlnfl ~ V).

Thus we obtain

5§42
V| < (v + l)ﬁ% 2 (%);&(WIH H|® +|Ving)®),

whence
e _(z ~T$T o
F(z,a,0) < pla)(y + )7 (2) 77 - a7

+25(y + 1)TH(L+ [Vingl)(1 + [VIn2l*)p~ 7 g(z) - o

G(z,a).
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Theorem 6.5 implies that if for some a > 0,
Ey(M(G(z,a))/a+ M(Ving -Vinz)+||Ving|z: + N(Vine,q,2,R")) < 1/2,
then (6.18) has a solution u such that
0<u< c~(z,’gp)v—h.
Hence we obtain a decaying solution. If, in particular, ¢(z) = 1, then
a o a A=48 4
G(z,0) = (v+1)7F a7 279 p(z) + 2%(y + 1)7F (1 + [VInz|*)a ¥ g(2),
and we only require
E\M(G(z,a)) < g-

for the existence of decaying solution. If we further have ¥ +1 > max(é + A,7), o,

é + A > 0, then the following conditions will suffice for our purpose:
0 [ a+lna+ D) <o,
Ro

(i1) (14 [2[*)g*(z) < oo,
R"

) [ QP+ D) < o

where « is given in Chapter 5.



Chapter 7
HIGHER ORDER ELLIPTIC SYSTEMS
7.1. Imtroduction,

In this chapter, we are concerned with the extension of the results of previous
chapters to higher order systems. We first note that the extension to second order
systems is straightforward, see Noussair and Swanson [65] for example, and we
choose not to do so. In extending to higher order systems, we rely on the theory we
established in Chapters 3 aﬁd 4. In a general sense, this chapter can be regarded
as an application of the theory in Chapters 3 and 4. For simplicity, we focus on
fourth order systems. The same methods apply to higher even order systems, hut
the calculations become more awkward as the order gets higher.

Higher order elliptic equations have received extensive attention recently. Ku-
sano and Swanson [52] studied the biharmonic problem Au = f(|z|,u) in R,
n > 3, and obtain unbounded as well as decaying solutions (n > 5 for decaying
case). Fukagai [26] studied the semilinear equations of the form A¥ u.+A',i’! a;iA'u =

i=
f(lz],u) in R*, n > 3 and N > 1, a; constants, and solutions with specific be-
havior were obtained. For higher even order semilinear equations with f depending
on u superlinearly, Usami [77] proved the existence of infinitely many positive solu-
tions which behave like |z[2™~2 (2m = the order of the equation). Kusano, Naito
and Swanson [45] proved the existence of infinitely many positive and eventually

negative solutions in R?. Higher even order quasilinear problems were treated hy

Kusano, Naito and Swanson [44].
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This chapter represents an extension of fhe results in Allegretto and Huang 5],
where the system £,£o%% = F{(z, #) was under consideration, with ¢;, £, being second
order clliptic operators. In [5], we obtained the existence of infinitely many positive
solutions bounded above and below by positive constants with # depending on @

cither sublinearly or superlinearly. We will study here a more general problem
0,603 = F(z, @, VD) (7.0.1)

in R", n >3, and we intend to obtain the existence of bounded positive solutions

bounded away from zero. Since one may reduce (7.0.1) to the following system

boit = 7,
(7.0.1)
67 = F(z, @, Vi),

it might at first sight appear that this problem is contained in the framework of
previous chapters. However, due to the presence of the coefficient 1 on the right
hand side, which does not belong to any of the weighted spaces we introduced, this
system does not fulfill the requirements we postulated. Thus, the study of (7.0.1)
is meaningful. We remark that the reduction of (7.0.1) into (7.0.1') is however
the starting point of our process, which is basically an iteration procedure. More
precisely, we use €y = ¥’ to obtain a priori bound on # by ¥ and then use ;7 =
f(:n,z’[, Vii) to obtain another a priori bound on ¥. We combine those two steps
to obtain the required a priori bound. We note that each step is an application of
our previous theory and the final utilization of the Schauder fixed point theorem
is standard. These procedures are the main content of Section 7.2. As before, in

Section 7.3 we consider some concrete examples and present some comparisons with

previously known results.
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Howevef, we remark that, due to the stmctﬁré of fourth (or higﬁci‘) ord;ar-
problems, we are unable to adopt the techniques of Chaj)ter 5 to obtain the cxiatéﬁée
of decaying solutions, and because of the implicit formulation of weight function A,
we also leave this part aside when we define a new norm. These technical rensons

will be made clearer in the sequel.

7.2. Main Theorem.
In this section we will use the techniques of Chapters 3 and 4 to derive our
existence theorem. We will employ the same notation used in previous chapters.
Let £; = ~£D;(a¥;(z)Dju)+Tbf Diu, k =0,1, be two elliptic operators in R",
with af; = a¥;, M|E? < Zaléi€; < M€, for some positive constants ALY k=
0,1. We assume that af; € L=(R"), D%af; € L{(R") with N(D%a¥;,q,2,R") < o0

and b¥ € W,"9(R") such that N(Vb¥,q,2,R") < 00, ¢ > n, k=0,1. Toapply the

a priori estimates of Chapter 3, we assume that

(Lrp, ) = 85 (~Ap, )

for some 6* > 0 and any ¢ € C$°(R"), k =0,1. We further assume that

2
S (Tpahl) <ol SBIF <™ -SDGH 20 (71)
J

Let F satisfy Caratheodory’s conditions and since we can multiply F by a positive
constant, we may assume, without loss of generality that A\] < 1. We consider the

following problem

68oit = F(z, @, Vi) (7.2)

inR*, n2>3.

We begin with some technical lemmas.
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LEMMA 7.1. Let ¢ € C{°(R"), then for any real number a > 2 —n,

1 f -
[ ele1908 2 3@ -n-ap [ jel=2p (3)

Proof. Let Q = R" — B,(0), for € > 0. Let ¢ = |z|fy with 8 = (2 —n —a)/2,

¥ € Cs°(R™). Then we have
/ |2|%|Vo|? = / |2+ |Vy [ + / B |z| 2R3y +/ Blz|**?=2 . 5. 2. V.

Q 13 0 1]
Using Green’s formula on the last term on the right hand side, we obtain
[ Aietrnte gt == [ o8-ty - [ (a+ 28 - 2)el+8-242

n ) Q

+/ ﬂlx|a+2ﬂ-2¢,2$ -7
an
=—Bln+a+26-2) [fal 24 [ plaierisryis
Q an

where 7 is the inward unit normal of dB,(0).

Combining these equations we obtain

T2 — o+28 2
/Q 12|V /n 2] 28|V |
+ (—ﬂ2 +ﬂ(2 —_n - a))/ Im|a+2ﬂ—2¢2
Q

+ ﬂ,x|a+2ﬂ~2¢2w -3
N

We observe that

/ lz|*+28 |V > 0
Q

and

| [ Blale+ 200 < Kol ™o 50 as e 0
o
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| Thus, lettmg €— 0 we obtmn the desired mequalxty

Remark. This is Lemma 3 of Allegretto [2], where the proof is given for
¢ € C§(N), 0¢ N. We essentially adopt the proof there.

Now we introduce another weight function s = (1 + |2*)(1 + |2|*) and state

the following

LEMMA 7.2, Let € CP(R"). Assume that A} < 1, 034 < o} then

4
< .
"‘P”L;" = n%\}, ~8(n +4) ”819“143! | (7.4)

wheret =1+ |z[%, s=(1+|z>)(1 + [z]*).

Proof. For any ¢ € C§°(R"), by Lemma 7.1, we have

4
2 2< 4 2
[ el < i [ el

4
2< 2 2.
[ < aPivel

We sum these and use the ellipticity of (a};) to obtain

. 4
/ (1+|2?)? < = / (|22 + [o]*) Vo ?
R» n Rn

< ;2%\_1/ (Imlz + |$|4)2aijDi‘PDj¢ (we drop the superscript)

nz/v/ (lw‘z + |$I4)(2at1Da‘PDJ(P+ Yb;Dip - o — ZbiDjy - ).

By using the Divergence Theorem we hav»

4 1 .
/R,.(l +lel*)p® < Al /I;"[—EDJ'(l-"JI2 + |z[*)ai;Dip - ¢ - §Ebi(|$|2 + |z|*) Dip?]

4 f
MY A (—=2Dj(ai; Dig) + Eb:Dig)e - ([z]* + [=[*),
0 n



.
whence
[ a+1e) < ip [ SEDis Dol +121") + EDi(i(ef + el
+ gy [ oI+ laP).
We observe the following
£Di(aiiDi(lal? +1ol") + ED(i(lal? + I21*)
= B8z;za;; + £2(1 + 2|z[?)z;Di(a;;) + a;i2(1 + 2|z[?)
+ T2(1 + 2jz*)zib; + [2]2(1 + [2[*)EDid;
< 8N [2f? + 201 + 2lef)n + 21 + 222z - (E (ED,(a,J)) )
+2(1 + 2)z[?)|z| - (Sb?)}/?
<(8M\ +4n +8)|z)* +2n+4
< (16 +4n)|z|* + 2n + 4 < 4(n + 4)(1 + |z|?).

Note that we used (7.1) in the above process. We conclude

Sntd) 2o 2 2 2 2101410 o2
- < ——
./.. (1 ni} )(1+I *)e 2,\1 (/Rn‘#’ (1+]=| )L"(1+|m| Nzl 4y ¢] )

Hence if 8(n +4)/n? < A}; and since (1 + |z|?)|z]* < (1 + |z]*)(1 + |z|*), we obtain

L0+ < (rr—gorgs) [ @+ R+ ellaeP.

This completes the proof of Lemma 7.2.



OBserve tﬂat the pfooil of Le@a 7.2 depé;lés oﬁ Che éstirﬁate ,

SRR RUSIUUAEE / #(1 + o)
for some K > 0 and 0 < € < 1, where €} denotes the formal adjoint of ¢;. Our
technical explicit conditions on the coefficients and n are merely criteria which
ensure the validity of this inequality for £, “near” —A and n > 11. Since the
explicit forms of the weigﬁt functions are also used in the calculation, we are unable
to derive a similar inequality for an implicit weight function A. We remark that a
limit argument shows that (7.4) is valid for any function g’ € Wi¥(|z| < r) with
big = f € Li(Jz] <), q¢ > n/2. For the special case £, = —A, we have, by the
same estimate, |

lellz: < 1Al Lz
)

__4____
8(n+2
for any ¢ € C§°(R"). Observe that now n > 10 is required.

We define a new norm M;(-) in this section by

Mi(f) = I fllzrmy + N(fy 0,2, R7).

We note that M;(f) is parallel to || f||¢, in previous chapters.
We are ready to state the following lemma, which is a new formulation of

Theorem 3.2 for the present situation.

LEMMA 7.3. Let f be such that My(f) < oo, for ¢ > n. Then for &, with €,

botr € Wi (|| < 7) such that £,£oé, = f, we have

max{”fr”ﬂ(lz]«h Ilvér"CO(|z|<r—2)}

4
—8(n+4)

< Mi(f)- B Bo)'7 - max {1, v b (18)



=

where E is given by Thecrem 3.2 with § = min{#é',6?} and is indepéndeﬁi of f; r,
&

Proof. We set £y, = g and &g = f. For any zy such that By(zq) C

(Jz| < r), we have

Kr(2o)l < Ex(llglicz + llgll Lo(Baczon)s

and

|Vé(z0)l < El(”g"l:? + llgll zo(Ba(zon)-

Since ¢,g = f, we also have

la(w)l < Ex(lI£llzz + I fll zoBacay))-

Hence we conclude

/g r 1/q
gq = g s Zo _<-E f ,3+Nf) 92)Rn ’ ‘ 1 '
(o) =tolinconeon < B + N0 2 80 - ()

We observe that

IFllzz < N1z,

and by Lemma 7.2,

4 4
< e — . .
lollz < n2A} - 8(n +4) lergllzz n2A\} —8(n+4) Ifllzz

Thus we conclude

4
”g”L,’ + “g"L"(Bz(lo)) s 72\ —8(n +4) “f”Lf + N(f,4,2,R").

This proves the lemma.

We are ready to state our main theorem of this chapter.



THEOREM 7.4. Let
ﬁ(“")av b) = sup . Iﬁ'(msfyﬂ

0gé<al
-bT<PSHT

satisfy Ml(ﬁ(m,a,b)) < oo, for any positive a, b, where Iﬂ = (lfily o |7 if
f= (f1s--++ f&)¥. Assume that there exist three pasitive constants a, b, o with

o < 1 such that

EM;(F(z,0,1)) < min (3, 1 = o), (7.6)

where E = E; - u(B;)'/7 - max (1, ) Then (7.2) has a positive

4
néAg —8(n+4)
solution @ such that cal < 7 < aI, |Va| < b.

We omit the proof since it is identical to that of Theorem 4.1, by defining
P(@) = L2 oT + 65267 (F(a, 8, pu VD). N

We can also state the following corollary:

- COROLLARY 7.5. Assume that the conditions of Theorem 7.4 are satisfied, with

(7.6) replaced by

lim My(F(z,a,a)) < 1

-0t . '
lim, - SE B=0" or +oo. (7.6")

Then problem (7.2) has infinitely many positive solutions which are bounded above

and below by positive constants.
We further have

THEOREM 7.6. Assume that conditions of Theorem 7.4 hold. If further

e 1FLoaen =0, 18IS co/(1+]al),
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then the soluton @ given by Theorem 7.4 tends to a positive constant vector.
We only remark here that the other condition required in Theorem 4.4: |b}| <
co/(1 + |z]), is valid automatically by (7.1). For completeness, we include a brief

sketch of the proof which follows the ideas of the proof of Lemma 7.3.

Proof. Choose @ > 0 and h € C! such that h(z) = |z|79, for |2| > 2,

|h(z)| < D(e) (constant) for |z| < 2, lDf;hl < lc_g_alil, with ¢(a) — 0 as a — 0,

h(0) = 1, and for any fixed zo € R", ho(z) = h(z — zo). As in the proof of

a(l+ o)z

Lemma 7.3, denote byl =g, @ = U — 1, where a and ¢ are given in (7.6).

Then by the proof of Theorem 4.4, we have

_ . a(l+o0) - .
fie0)] = |(z0) — X1 1] < K(llgholls + llgholluecpaceoy)-

Since also fg = f, in the same manner as the proof of Theorem 4.4, we define
. « . 1
an operator €4 such that €,(gho) = fhe, with (€1p,0) > %—(—Acp,ga) for any

@ € Cg°(R™). Then we obtain

lgho(¥)] < Ex(l|fhollzz + 11fPoll Lo (B2 (y))
and Lemma 7.2 yiclds

lghollz < ¢ 161(gho)llLz = ¢ || fholl 2.

We observe that
[l fhollLz < [1fholl L2
Thus we conclude that

a(l+ o)
2

i(x0) — I < K- (Ifhollzz + I fholl Lo (Baeey)-



We have
1 follLeBa(zo)) < D(@) - WfllLo(Ba(eey = 0 a8 |zo] — oo,
and
2 2 ¢
1 holly < A1 01 12ty + ml—g‘;”f”l,g

also tends to zero as |zo| — co.

Thus we conclude @(zo) — ﬂl_j"_d)_ 1. This completes the proof.

7.3. Examples,
We will briefly discuss some examples, noting that the comments made in

Chapter 4 are still true here.

Example 1. Consider the following system

A%u = p(z)u®[In(1 + )P v2[In(1 + v))?,
(7.7)
A% = g(z)u®?[In(1 + w)]Prv™ [In(1 + v))P

in R, n > 10. Assume the following: p,q are bounded funciions and
O [ QB e <o, o efale) € I 0 E(RY),
G) /R (4 [eP)(1+ o))z < oo, or fala(z) € L2 N LR,
(iii) aytaz>1, az+as>1, Bi,0,0,8s arbitrary.
Then (7.7) has infinitely many positive solutions which are bounded and bounded
away from zero.
If we replace (iii) by

(ill), o) +ap < 1, a3z + a4 < 1,



7
then the same conclusion holds.
For the single cquation A%u = p(z)u?, v # 1, Kusano and Swanson [52]
obtained:
o o
(i) For n > 3, if / 127+1p(t) < oo, then there are infinitely many unbounded
0
solutjons;
e o]
(11) For n > 5, / t3p < oo, there exist infinitely many positive solutions which
0
- are hounded above and below by positive constants;
oG
(iii) / ===y < 0o, n > 5, there exist decay solutions behaving as |z|*~".
0
We note that (ii) is very close to our result, but we require a higher space di-
mension. Usami [77] also obtained the existence of infinitely many positive solutions
behaving as |z[*™~2 for A™u = p-u?, v > 1. In [44], this result was extended to

the case v # 1.

Example 2. Consider the following system

AZu — p(m)éalu+02v,

(7.8)
A2v — q(m)eaau+a4v,

m R", n > 10. If there is a positive constant a such that
i) / 14 21+ |z 1)2 z)dr < 1 a- e“(01+02)a’
O [ Q)+ el <

(i) / (14 z]*)(1 + |z|)g*(z)dz < .-,—1Ea e~ (astase

Rn ~
then (7.8) has a solution (u,v) such that 0 < u,v < a. Note that if we write
p(x) = 6pi(2), q(z) = vq1(x) and assume |2°py(2), [zqi(z) € L N LY(R™),

then we can always choose 6, y small such that (1), (ii) hold for some a > 0.



.18
We remark that this example was also considered in Kawano and Kusano [39],

where existence criteria were given in the following form

o -9
/ tp(t)dt < z 5 = ge(mtoz)a
0 -

n—2 —(aa+aqy)a

ae

/0 mtq(t)dt <

If we assume that
(i) e +a2<0, a3 + a4 <0,
(i1) /Rn(l + |z]2)(1 + |z|*)p?(z)dz < oo, /R"(l + 1212)(1 + |z]|*)?(z)dx < oo,
then (7.8) has infinitely many positive solutions which are bounded above and below
by positive constants.
For the single equation A™u = p(z)e*, Usami [77] obtained the existence of

£

infinitely many solutions with the behavior of |z|2™~2 if / tp-ect™?
0

< oo for
some ¢ > 0, and Kusano, Naito and Swanson [44] gave existence results for infinitely
many positive as well as eventually negative solutions with A'u ~ |z[*™~%~2 under
the condition /tp ce" TV g < oo for AT = p(z)el™ ™ e,

As a conclusion, we remark that, by the same methods, we could also consider

higher order systems. For example, for the equation
ti = (A’ = F(z, @, Vi)
in R™, we can establish a weighted inequality similar to Lomma 7.2 of the form:
IVellzz < c- A% Lz,

where p = (1 + |z[2)(1 + |=]*)%.
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We can then adopt the proof of Lemma 7.3 to establish a similar inequality and
finally prove a corresponding theorem. However, in doing so, we have to restrict

ourselves to higher dimension, i.e., we require n > 21.



Clﬁéfer 8
CONCtUSibN

This last chapter briefly reviews the thesis and presents some remarks and
open problems which are related to the thesis and arc of practical and theoretical
interests.

As we mentioned before, the whole thesis is based on the successful acquisition
and application of a priori estimates for general second order clliptic operators. The
procedure of estimating the global a priori constants basically follows the classical
approach employed by Ladyzhenska;a and Uraltseva [55] and Gilbarg and Trudinger
[29], and is reduced to a reasonable length. The explicit value of the a priori con-
stant E; has been estimated and plays an essential role in some applications, as we
showed in Chapter 5. In establishing such a priori estimates, we make use of Hardy's
inequality and weighted Sobolev spaces. These techniques enable us to overcome
the difficulties due to the lack of compactness of embedding between Sobolev spaces
and the failure of Poincare type inequalities for general unbounded domains. We
leave one of the weight functions A free, so that by choosing A properly we can de-
rive sharper results. We then apply the Schauder fixed point theorem to obtain the
existence of global positive bounded solutions which are bounded away from zcro
for quasilinear equations of the form —YXD;(a;jDju) + 2Lb;Dju = f(x,u,Vu).
Under moderate conditions, we can describe the asymptotic hehavior for the above
solutions. Othe: authors obtain similar conclusions for equations with symmetyi-
coefficients through standard variational and/or ordinary differential equation ar-
guments. Our results extend those previously known and a number of examples in

80
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this thesis offer significant improvements over criteria given by othér authors, see,
c.g. Example 7 in Chapter 4.

In Chapter 5 we obtain the existence of decaying positive global soluiions. This
task is more complex as it involves sub-supersolution methods as well as spectral
procedurcs. We first obtain a decaying supersolution v through a variable change
technique. Then, by postulating some structure conditions on the coefficients and
using a spectral procedure, we are able to construct a subsolution w such that w #
0, w < v globally. The existence of a decaying positive solution immediately follows.
Applications of the above abstract existence theorem yield interesting consequences.
In particular, Example 3 in Chapter 5 answers the open question of Kusano and
Trench [53] for mixed sublincar-superlinear equations.

We further modify these basic ideas to deal with special problems. First we
study degencrate equations, and we discuss the existence of global positive solutions
bounded above and below by positive constants. In addition, the existence of decay-
ing positive global solutions is obtained for a more restricted class of such equations.
In contrast to most of the literature, the typical problem —A(|u|™ 1u) = f(z,u),
which includes the porous media equation (m > 1, slow diffusion) and the plasma
physics equation (m < 1, fast diffusion), is treated in a unified manner and the
cxistence results obtained are global. As a second application we investigate higher
order clliptic systems through a two step iteration process and obtain the existence
of giobal positive solutions.

It is clear that since we do not use variational nor ordinary differential equa-

tion arguments, the methods developed in this thesis are applicable to cases which
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are noﬁ mnenabie to convehﬁonal methods. ﬁowevef. it is not réaiistié ‘to cxp;:ct
that our methods provide comparable results to tixose ébtaiued by vuiiafi@al of
radial techniques, if such techniques are applicable. Moreover, the applicutiufl is
restricted to R™ withn > 3 sinqe Hardy’s inequality is not valid in 2. We mention
that, however, 2-dimensional problem is also treated by Kenig and Ni [KN2] and
McOwen [M1, M2]. The 1estriction on the dimension becomes more stringent when
higher order elliptic equations are considered. Furthermore, in some particular cases
our methods do not yield as much qualitative information for solutions as other
methods do. For example, for decaying solutions we prove that 0 < u(z) < Clz|™°,
but the exact asymptotic behavior of the solution is not known. In particular it is
not clear whether or not u(z) ~ |z|~%. On the other hand, the maximum allowable
decaying rate a is less than n—2, which is the rate closely associated with the radial
arguments. We observe that since the choice of a depends on the hehavior of z, a
“better” choice of z could result in a larger (better) value of @. However, how to
choose a “better” z is not obvious to us. We further note that, for a given z, the
optimum value of E; is unknown.

Next we offer some considerations about the possible extension of the meth-
ods in this thesis. A direct application of our methods covers the p-Laplacian
equations. Mcre specifically, by using the weighted spaces-Schauder fixed point
theorem approach, we can obtain at least the existence of global positive solu-
tions bounded above and below by positive constants for cquations of the form
-V(|Vu[P~2Vu) = f(z,u,Vu) in R® with 1 < p < n. We also observe that, in

our discussion, R" can be replaced by a domain 2. In fact, the extension of the
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content of Cilapter 4 in this direction is obvious. For the exiStencé of decayiﬁg
solutions, we need only modify f by continuation at the bouﬁdary of § such that
f is continuous in Q, { z € R*| d(z,0) < ¢} and f = 0 in R" \ Q.. We then
construct a supersolution in B", which is obviously also a supersolution in {3, while
the subsolution is constructed locally. Then we can repeat exactly the arguments
of Chapter 5 and derive a solution u in Wb3(Q), such that u > 0in Q, u =0 on
dQ). We note that in this procedure the estimates of E; may be different and M(f)
is likely to be replaced by other norms. A special example is the case where ) is
an exterior domain, which we can also study for n = 2.

To conclude this chapter and this thesis, we indicate some open questions
which are closely related to our study. Due to the lack of Hardy’s inequality in
R?, we are unable to invoke our methods for global problems in R?. Nevertheless,
it would be of interest to obtain global existence results in R? for equations with
nonradial coefficients. Problems of the form — Y Di(a;;Diu) + k(z)u = K(z)uP
with &(x) > 0, p > 1 were studied in R"(n > 2) by Kenig and Ni [K.Nl], it
is natural to ask whether a similar existence result still holds for the following
cquation — Y Di(a;;Diu) + Y b;Dju + k(z)u = K(z)uP. Considerable attention
has been given to the existence of radial global decaying solutions for higher order
elliptic cquations, and some interesting results have recently been given in a paper Fy
Kusano, Naito and Swanson (Can. J. Math. 40 (1988), 1281~1300). However, the
existence of nonradial decaying positive solutions remains unclear and the resolution

for this problem is of impo:rtance. Finally we point out that the existence results
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for degenerate equatlons obtamed in this thesxs are restrxctcd to some specxﬁc cnses,

and the method for dealing with more general equations is unkuown



APPENDIX A

Here we present the proofs for all the theorems and lemma in Chapter 3.

THEOREM 3.1. Let @ = (uo,...,um)7 be a solution to the system
~XD;(a;j(z)D;i) + 25B¥(z)D;it + Cit = ~EDi(f}) + § (A1)

in a ball By(z,). Suppose & € C* N W¥3(By(z0)), the vector § and the (m + 1) x
(m+1) matrix C belong to L/?(By(zo)), the (m+1) x (m + 1) matrices Bi belong

to L1(By(o)), while the vectors f; are in LI(B,(zo)) for some ¢ > n. Then:

e d N 1 ~4
Loo(By(zo)) S Ko [”lu”'“(Bz(to)) +5|1fi IzllL{'iz(Bz(zc)) +ilg |”L'/’(Bz(3o))] ’

(A.2)

i

where Ko = Ky(u(B2)'/? + 1), with u(B,) the Lebesgue measure of ball B, in R*,

= (a8 2" 7) - () )T

b

H=T4+C(4))

i 9/(g—m)
+Q(Tzc(ﬂl){”'CHIL"”(Bz(zo))+”2|B'|2||Lv/2(32(z°))+2}) g ’

16 4
BB +2)’ -2

=3+

1 n! Uns n \1/2 : . .
T= - ( (145 )) (n — 9) is the optimum embedding constant

from W(Q) to L7-3(Q).

Proof. We adopt the proof of [29] with a test function motivated by arguments

in [55]. We set: for £ >0, 8> 0 and n € C§(B2(z0)) to be chosen below,

v=|d]+k
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and

€
il
S
w
)
~

Then ¢ is a proper test function by the chain rule of differentiation (cf. [29,

p. 151}) and

D¢ = D,.avf%f + t'z'ﬂv"'l(D;v)n"’ + 217.’vﬂnD.~1], (A.3)

-f:ere
(Diﬂs ﬂ)/lﬂl’ Iﬂ" > 03
Djv =
0, i} = 0.

Multiplying ¢ on both sides of (A.1) and integrating over By(zq) (for nota-
tional convenience we drop the integration domain and denote By(xg) by B; in the

following) yield:

/[Eaij(:v)(Djﬁa Dl@ + 28(31 - Dy, 93) + (Cﬂ’ 93‘)] = /[ij:v Dt‘ﬁ) + (ﬁs@)])
where { , ) denotes the R™-inner product. Using (A.3) we have

/ [£aij(e)(D;ji, Diityo’ n? + Taij{Djid, @)vP ! A(Dsv)n?
+ 2%a;;(D;@, @)vPnDin
+25(BY - D, @)vPy? + (Ci, @)’
B / (7, @)vPn* + / [Z( i, Diityon?

+ S{fi, @)0P 1 B(Dyw)n? + 25( i, @)y nDin).
(A.4)



87
Now, using the expression of D;v, we obtain the following, by the ellipticity of the

operator and Hdlder’s inequality:
/S“u(z) (D, Diit)vPn? > ’\"/IV"Iz An?,
[ 2D, 095 8D = [ Baslile = 8D Dpo?
> Jo [ 17081 voln?,
2 [ Ba; (D, 1Din = 2 [ SasliloPyD0Din,
2 / S(BID;i, @)t < 2 / S|BY| [@] |D;vlvn?,
r 8.2 1 2 8 2 1 12,.0,.2
(i, Dyt < 5 [ (RolValPoln? + = SIfiPofn?),
2 Ap
-3 - 1 4 ’
[ =@ 8y < 3 [ (plarivopos2e2 + 1 psIfiretn?)

> 2//\0/3|Vv| |'[Z|vﬂ"1,’72+ //\ |ft| ﬂ+1772,

since [v| > |4
Substituting the above back into (A.4) yields:
/['\0 |ViZ|2vPn? + oﬂ @vf 19| Vo|? + 28a;;|@wPnDjvDin
~ 28| B7| [@| |Djv|vPn® + (Cit, @y’ )
2ﬂ2 ﬂ |JE;|2 B+1,2 £ Ban).
< [ E|ft| + o v + 25(f;, @)vFnDyn)
2Xo 200 v
+ / (7, @)vPn?. (A.5)
Using Holder’s inequality again we have

(@ awPe? < Il faiy? < 10 e



88

=

|2(f;, ®)vPnDin| < 2|fi] - |i@vPnVn] < 2 mqml

; l

(lfu n® + |V?7l2)”8+2
[(Ca,@)vfq? < |C| - li*oPr? < ICWA+2n?,
-3 ’\2
IZEa,'j]u}v quiw,—nl < (7] (|9oPoP~ e + A vﬂ+1|vn|2),
2|13 (] 1Djolon?| < 71(1Vof - o8~ ae + SoPol S| BIR).

From these estimates and (A.5) we conclude

A
[Ewapony + 2 =90

S/[E%l_z_ 2 /3+2(12‘*,\'Oﬁ) (Eivfzzl . +|V17|2) B2 4 2y ﬁ+2(|9l |C|)
+ [@] [Vo[of =2 - 2 + |@] - 0"+ |V ? + 42 - SIBIP) - ~'—1
By choosing ¢ = gé\ﬁ we obtain:
[ vapetz + 28 1 1woposiy?
S/ ﬂ+2{ Elvfzd (1_2v;_é 1)+,” [MHCHEIB’IZ xz]
+(A8ﬂ X"+1)|Vn| b (a8

Since |V#Z|? > |Vv|? we find

BT 12,2 |9 i2 . _Eif:ﬁ 2
[orvot < [os2fr - [D v io1+ mimip + HEL) 4 ()

+4 8 |
A0( ot 1t 1 Af). (A7)
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Set

i} ALY .
b=3 lﬁ:,l—+|i’l+|0|+2|3'|2,
‘ v v

w = A2

then D;w = @—-2'_—2 vP/? . D;v. Hence we have

2 2
/lvw|2ﬂ2 <t (ﬂ+2) 2 (1+ﬂ +_8_'\_ +1) /w2(1725+IVnI2)-

4 A\ 2% | Af
Now
| ﬂiz(l;ioﬂ* iﬁs“) . g(%ﬁ*%) FEet
and g—i—g < % Thus we have

913 2
[iwor < EEE Zc)- [wrarivionn, s

C(Bf) _3 8 . . »
where ‘&‘2 =3+ ) and C(p) is a decreasing function of .

From Sobolev’s embedding theorem (cf. [29, p. 155]) we have

Inwl|3n(n—gy < T / [V(nw)|? < 2T? /[772|Vw|2 + w? |Vl
Using (A.8) we obtain

B2 X Byt +[9al?)

Imoli3n a2y < 2T° /[w2|V77|2 1 ¥

= 27 / [w2|vn|2(1 (ﬂzz)s 2 cs)

L B+27 2)* A

: C(ﬂ) 0%, (A.9)
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while for any € > 0, by the interpolation inequality (7.10) of [29, p. 146],
[ < losslmolfagyo
< Bllgsz - (Ellnwllanyin-2) + €~ llnwll2)?,

where

o= (-3)/ (%)

= (%_ qz—qz)/(q;qz a n2:z2) 2q/2(gqnn) ' qfn'

By substituting the above back into (A.9) we conclude

T A2
Il < G- (6 8+2° 5 ©@) [w?lonf
i 2)3 ’\10 Py X 2 —20 2
(ﬂ +2) (B)Ibllg/2 - 2(e*lImwl|2n/(n-2) + &~ lInwll3)-
2
Choosing €? such that T%(8 + 2)* -}} C(B)e? = % leads to
0l oy < 724+ (5427 33 C(6)] [ w?1n
Y 1+o
+ (2T (842 33 CBIBlyye) Il

Thus we have

o caay < o + 1mD3
[T+ 0B + QTN ] - (427042 (31)'°.

Setting v = f+ 2, and

H(B) = {T*(4 + C(8)) + T*C(B)|1Blig/2)" " }/2,
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we obtain

A2\
Inwllanjn- < HB)- ¥+ () 7 @+ [9n])]a. (A.10)
0

We now choose the cut-off function y more specifically. Let ry,r; satisfy 1 <

ry <72 <3 andset g =1in By, 1 =0 outside B,,, and |Vy| <

2 __
S m= thus

7+ |Vn| < 4 as <1< 2 Setting ¢ = H-ll—?, from (A.10) we obtain

o —T - T — Ty
4H(B) 3(14e)( A\ F*
lwllz2e(s,,) < ;:(—;% 2t )(‘f) © o Jwllaa,,)- (A1)
Set rpp = 1+ whr, then ry — 7 = by — sl = =k 1 we |
m 2‘"&'1 m m+1 am ‘é‘,;;‘:}.‘f = omFTs ana we have
4H(B) a(14e) (A2 E(110)
lwllz2=(a,,,) < —(l—§;,;2 y2 (1t )(/\—%) NwllLzca,, - (A.12)
2

Recalling that w = v(#+2)/2 = »7/2 then we have

(/Brm v‘Yz)'tlv' < [%{%—) 7%(a+1)(:\\_§) %(1+a)]?./-r(/nrm—l v_y)l/-,,
ie.,
1\_12_)%(14-0)]2/7 .

Iollzoea., < [4HER"HD (5

vl v¢m.,,_,)- (A.13)

By setting v = 2™2 = f, +2,then ) =z-2-2 = ﬁ We use (A.13) as

iteration formula to get:

3(140) (A1) 1H072/2"2
[ollzrms1 (8,0 < [4HB)2" @I ()T [ollsam,y
“ 3 A\ 1te 1/zt . ¢/
< ZHI (4H(ﬂ1)22(1+a) : (X;) ) ZH (:1:2(1+ )2) Molln s,y
— =1

= (4H(B)230+) (:\\_:)Ho)‘; i (z%<1+a)2)¢§ i Il (A.14)
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since H(f) is a decreasing function of 8. By letting 8 = 0 in the expression for ¢

and repeating the calculation, we obtain

4H A\t
lollzvca,) € 5 2301+ )(X:_) lvll 2(82)> (A.12")

where = {12 (4 + §) + (212 § ||13||,,2)’+’}” * < H(B,). Combining (A.12')

and (A.14) and letting m — oo we conclude

[scd

A\ 1+o E o a o
supv < [4H(B,)230+o) (2L meo . (25304 \me T L ||y (A5
= [ (B1) (A ) ] ( ) Ivllz2cmy. (A.15)

0

Nk
3

Now, since z = n—’l—z > 1, we have

feam (z-1)2 4 "’
and recalling that o = q n =, we have
s A1\ 9/(g—n)n/2 n \ 3e/(g—n)y 22
supv < [4H(ﬂ1)(22 —1) ] (2. (n - 2) : ) = vl z2¢B,), (A.16)
i.c.,
supv < K - ||[v]|L2(B,)- (A.16")
By

~ b 12 . o g
But b = _¥2!|_+lg_—1+lcl+gwt|2’ and v = |i]+k. We choose k = (E|||f,| ”2/32(82)-4-

”'ﬂ”z,o/z(uz))’ then
18l Lor2(m,) < [IC1+ ZIB P asegpyy + 25

and from (A.16'), we obtain

Sgp(!ft'l + k) < Ka(l@l] 2y + k- 1(B2)'?).
1
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Thus

sup 7] < K, (u(B2)'? + V(| z2(ma) + k)
1

= K1 (u(B2)' + V) (@l s3o0) + SALI oty + 1]

L/ 2(B,))'
This concludes the proof of Theorem 3.1.

We remark that for fu = —Au + Xb;Diu + cu, é‘(‘; = 1, the proof is given in
Allegretto and Huang [4)].

Let u € W3*(|z| < tm) be a solution of
bou = —EDj(aij(x)Dju) + 28bi(z)Div +cu =g (A.17)

where g € L9(|z| < tm), tm some positive number. Denote @ = (u, Vu)7, then @

satisfies the following equation
~Di(aij(z)D;i@) + 25B* . Dt + CZ = § + £Di(f)) (A.18)

where § = (g,0,... ,O)T’ fi = géi,
€i: (n+1) vector with 1 in the ¢-th component and zero in the remaining compo-
nents,

C: (n+1) x (n + 1) matrix with entry:
cij =2Di(b;) = Y Di(Diars), -3 >0,
k
€00 =€, Coi = ¢, Cip = Djc, fori #0,
B*: (n+1) x (n + 1) matrix with entry:
b"——lD‘( )+ b; 1 >0
ij = 2 i\Okj 7 17 y

b, = by, bfj =0 for the other entries.
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THEOREM 3.2.  Let u € Wy'*(|z| < tm) be a solution to (A.17) and g € Li(lz| <
tm) for some q > n. Let a;j, B, C', g, and f; be as above and let the con-

ditions of Theorem 3.1 hold. Assume that C € L{/*(R"), B* € L{_(R") and

Sup lic Lol (Ba(z)) < O zseu}z)” ”ElBklZ”Lvlﬁ(B,(z)) < co. Assume further that

there exists a 6 > 0 such that (Lo, p) 2 6(—A¢p, @) for any ¢ € C°(R"). Then

< " .
max{,,ﬁ??.,. [u], o qul} <E (”g”L,’(R )+ max ”g”L"(Bz(z)))’ (A.19)

where E, = Ky max (ﬁ(l + Tu(Ba)Y™), n+ u(Bz)l/q), and Ky is given in
Theorem 3.1, with ”ICIHU/?(B,(zo)) and ”2|Bk|2”u/2(32(zo)) replaced by

zseullz)" ”ICIHMN(B,(;)) and zseullt)" Illekl2||L¢/2(Bz(z)) respectively.

Proof. As we pointed out, @ = (u, Vu)T satisfies (A.18) and Theorem 3.1

implies that, for By(zg) C (|z] < tm),

|ii(0)] < Ko [|||’7|H1,2(13,(;0)) + E”mP”lL/«jz(ug) + ”m”Lq/z(B,)]

<Ko [Ilﬁllm(un +(n+ u(Bz)‘/“)Ilgllu(Bz)] - (A.20)

Now we investigate ||@||;2(p,). We observe that

1/2
Uil 2 = 1!2
llullL2¢B,) (/ | l)

2

< p(B2)™ - ||ul| panyrn-2 5y
< p(B2)'™ - lull pmin-2)(je)<tm)

< IL(B2)1/n -T- ”lVUIHLzuthm): (A.21)
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by applying Holder’s inequality and the Sobolev embedding theorem, where T is the
optimum embedding constant we used in Theorem 3.1. Since byu = —ED;(ai; Dju)+

28b;Diu + cu = g and (bop, ) 2 §(—Agp, ) for all ¢ € C°(R"), we have

6|IVu||%a(|z|<tm) = &§(Vu,Vu) < (Lyu,u)
= (g,u) = /g *u

= [o+ PV (1 + o)

< ([oa+im)” ([warer)”

Note that 1 + |z|? is exactly the weight function ¢ we introduced in Chapter 2. We
have

5||Vu||%2(|z|<zm) < |]9||L3(1z|<t,,.) . ”u”Lf ,(l-”"l < ty).

Before we proceed, we prove the following technical lemma which will also be used

in Sections 4.3 and 5.3.

LEMMA 3.3. Let ¢ € C§°(R"), zo € R™. Then there exists a constant ¢ > 0,

independent of zo such that

2
(—Ap,p) 2 c/R Ay (A.22)

n |||z =20
‘ 2
and for o = 0, we have ¢ = (-’1—5—2) .
Proof. Let = R™ — B.+(zg) — B.+(0) for €* > 0 small. Note that for v > 0,
2 1
< 2, P\ = [ L om — e D)ean)2
0< /Qv E(D,(v)) | 5(Dip ~oDiv)

= /Q S(Dip)? + 5_3(-("ﬂ;D2—'tiz - % DivDi(<P2))

2

- /ﬂ S(Dip)? — /Q ED,-((%)D,-v.
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Hence we obtain
' 2
2 (% \pn.
/ﬂ S(Dip)? > /n L‘D.( - )D.v

2 2
- /Q (-a0) + /a £ 2 4s. (A.23)

Now choose v = |z]”|z — 20|f witha = _(n_Eg), B = —¢, € > 0 to be determined

later, then

ov _ _

d = alz|* *zilz — 2ol + Blr — zo|’ " (zi — woi) 2|,
T

0%v _ -

5?=a(a—2)|l‘la 2| - zo|® + alz|" 2|z - o)?
]

+2 8lz|* %z — 2o |P2zi(zi — 0i)

+B(B — 2|z — 2ol (i — 20:)?|2|* + Blz — zo|*~2|2|.

Hence
—Av 1 1
= —afo -2 — - 2))r———
2 = —afa+ (=) = BB+ (= D) —
af ci(Ti — Toi)
|zl — @0 — |z]le — 20l
_ (11—2)2 1 e(n—2—¢) (n—2)e T; Ti— To;
2 || lz =202 |zllz — 20| ~ |z] |T0 — 20l
Since

(n—-2)?% 1 +e(n-—2—e)>2n-—2 1 e(n—2-¢)

4 [z —f? ]

[V

el |z —

we conclude in Q:

ZAY 5 (= D] o — 2o [VE(m =2 =) —e].

v
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Choosing ¢ such that 0 < ¢ < 9—5—2, thus y/e(n — 2 — ¢) — e > 0, we conclude, for

some ¢ > 0,

Av> 1

— —— c. ——————
v |z[le — 2o

(A.29)
Observe also that

* = 0.

n

2 2
I/ & ﬁ d~9| SI\,l . ”‘p”oo (et)n-l —0 as
an v 3n c*
Thus letting €* — 0 and substituting (A.24) back into (A.23) gives rise to (A.22).

By setting zo = 0 in the above calculation, we obtain the following inequality

4
4 2 \?
dr < - 2
[ &< (25) e (A2
and hence
lellce_, rmy < =51Vl 12¢rn).- (A.26)

From (A.26) we conclude that

5||Vu”21,,2(|z|<1,,,) < ”9”1,,2(:1") ) ||u”l,3_,(|z|<:,,,)

2
<Mlgllezcrey - =—5 Vel L2(z)<t)-
n—2

Thus we obtain

[Vul

2
L2(jzl<tm) S mllgllbf(m)- (A.27)

Combining (A.20), (A.21) and (A.27) gives

o) < Ko (grmgs (TuCB)* + Dllglanny + v+ 1 Be) g

Im(,,,)). (A.28)

This is the conclusion of Theorem 3.2 and hence we complete the proof.
We remark that the original proof of Lemma 3.3 and the idea of Theorem 3.2
are from Allegretto [3] and were used in Allegretto and Huang [4].

We conclude the appendix with the proof of Theorem 3.4.
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THEOREM 3.4. Let u € Wi*(jz] < twm), €, ¢, q as given in Theorem 3.2.
Assume g has a decomposition g = g1 + g2 with g1 € IINL?, g € LINEE, for

some 0 < A~' € L™?(R™). Then

sup [u] < By M(g), (A.29)
’l|<¢m
sup  |Vu| < By M(g), | (A.30)
2| <tm —2

where M(g) < |lg1llL2(rmy + sup 911l 2e(Bacz)) + €llgzllz(rey + sup g2l Le(Baczy)
z n
and ¢ = o 2 Rse T2 N 1”},/"2/2(13" , as given in Chapter 2, E; as in Theorem 3.2.

Proof. Let €y(u;) = gi, ¢ = 1,2, then obviously |u;(z)] € EyM(g,) by

Theorem 3.2. Now for fo(u;) = g, we note that (A.20) still holds. In order
to obtain an inequality parallel to (A.27), we observe that, for g, € Li(R"),

0 < A~' € L™?*(R™), Sobolev’s embedding theorem yields:
2 2/n (n—2)/(2n)
2 _ [ U2 nf2 (2n)/(n-2)
oy gy = [ 5 (f 2) (a2
<A gnrz(ray - T - IVu2l3 2oy
and

1
Hvuzuiz(m) = (Vuy, Vuy) < g(ﬁoug,ug)

1
= =(g2,u2) = 5//\]/2 g2 - N2

||uZ||L2 _(Rmy ”92”L§(R")'

[=2%

Oxlt—l

Then we have

T -
”u2”L§_1(R") << ||’\ 1”L"/'~’(R")”g2”L§(R")7
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whence

T, \-
Vu2l|32(pmy < sl Hemrscny - 92l oy (A.27")

Substituting (A.27') into (A.20) gives

K -
fual < =2 (u(B2)/"T + DT 2N 500 oyl

le2(am)

+ Ko(n + p(B2)" g2l Le(B2)- (A.31)

Combining (A.28) and (A.31) and noting that the constant E; is independent of
the decomposition g = g, + g, we complete the proof.

As mentioned above, we found it cdnvenient to estimate F; by means of a
computer programme. We obtained, in this way, for a;; = §;; and b; = 0, if &« =0,

then 1/E; ~ 1.625 x 1073, while if @ = 0.5,1/E; ~ 2.069 x 1077,
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