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ABSTRACT

In this thesis, we classify the modular invariants of the affine algebra (A2y  © 

A2,p )^  where p' and p are coprime. The importance to conformal field theory of 

classifying modular invariants for aflame algebras goes back to Witten. The first 

modular invariant classification for an affine algebra was done by Cappelli-Itzykson- 

Zuber in 1986 for A ^  in [4]. An almost identical problem to the (A2 © clas­

sification, and the motivation for the work done in this thesis, is the classification 

of the (nonunitary) minimal W3 models. To date, only one nonunitary conformal 

field theory classification exists; namely, for (the Virasoro minimal models). We 

include a review of Gannon’s A ^  classification [11] as a demonstration of our ap­

proach.

K ey W ords: modular invariants, affine algebras, conformal field theory
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Chapter 1

Introduction

The impact of rational conformal field theory on mathematics has been profound 

(e.g. knot invariants, the definition of vertex operator algebras and quantum groups). 

Conformal field theory arises naturally in physics, most notably in the area of string 

theory, which attempts to describe all forces of nature within a single theory and 

thus resolve the conflict between general relativity and quantum mechanics [17]. 

The relationship between conformal field theory and string theory is described for 

instance in [20]. Another relationship between conformal field theory and physics 

involves statistical systems at criticality.

Roughly speaking, a conformal field theory is a quantum field theory in 2- 

dimensional space-time, whose symmetries include the conformal transformations. 

The rational theories obey in addition a certain finiteness condition. In the case of 

string theory, this space-time is the surface (“world sheet”) traced out as the strings 

collide and separate through time.

A special class of rational conformal field theories, namely the Wess-Zumino 

Witten models [16], has symmetries given by affine Kac-Moody algebras. Their 

physical importance lies primarily in the fact that large classes of other models 

can be constructed from them by the Goddard-Kent-Olive coset construction. For 

example, the so-called Wn  models are constructed using A^ _ 1 models.
Classifying rational conformal field theories is essentially the same as classify­

ing their modular invariant partition functions. In particular, much work has been 

done on the classification of the modular invariant partition functions of affine alge­

bras. The classifications of the W n  minimal models are very similar to the modular

1
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invariant classifications of the affine Ajv- i © Ajv- i algebras.
The ultimate purpose of the research done in this thesis is to obtain the clas­

sification of the nonunitary W3 minimal models. The unitary ones were classified 

in [14]. A simpler but almost identical problem is the classification of the mod­

ular invariants of (A 2  © ^ 2) ^ ,  which is the problem solved in this thesis. The 

difference between the two classifications will be discussed more in the Concluding 

Remarks (§7.1). The author plans to complete and publish the W3 classification in 

the near future. One reason the nonunitary classification is interesting, is that there 

is only one classification of nonunitary models that has ever been done, namely the 

“minimal Virasoro models” =  “IT2 minimal models”. It is known that typically 

[12], nonunitary classifications will look very different than unitary ones, so this W3  

minimal nonunitary classification should generate interest for that reason alone.

The history of the problem of classifying modular invariant partition functions of 

an affine algebra began when A. Cappelli, C. Itzykson, and J.B. Zuber achieved the 

first modular invariant classification, for the affine algebra [4]. This problem 

is simple to state: for any affine algebra X ^  of rank r, we can write its modular 
invariant partition function as

(1 -1 ) Z =  Y ,  M ^ x x x l ,
A  , n£ P Z + { X r )

where P++(Xr) is the set of highest weights of X ^  of height n; the x ’s are the 

characters associated to the corresponding representations of X ^ ,  and * denotes the 

complex conjugate. Equation (1.1) defines the one-to-one correspondence between a 

modular invariant partition function Z  and its coefficient matrix M, and we do not 

distinguish between them. M  is called a modular invariant if the following three 

conditions hold:

(1.2a) Mpp =  1 (uniqueness of vacuum),

(1.2b) M\p E Z > o  VA, p E P ”+ (Xr ) (integrality and positivity),

(1.2c) S M  — MS, T M  = M T  (modular invariance),

where p is the vacuum, and S  and T  are the X ^  modular data.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Remark: In many articles, M  is called a modular invariant if only (1.2c) holds, 

and if all of equations (1.2) hold, then M  is called a physical invariant or a positive 

physical invariant. However, in this thesis, we refer to any M  satisfying all of 

equations (1 .2 ) as a modular invariant.

Cappelli-Itzykson-Zuber’s result [4] led to the problem of trying to find a com­

plete classification for all affine algebras X ^ .  Much work has been done since that 

first classification1. For example, Gannon followed up with the classification 

for any level, and the classification for at level 2 and 3 and any rank r, and 

the work of Degiovanni and Gannon yielded the classification for all simple affine 

algebras at level 1. Gannon also worked on the first semi-simple classification, for 

(Ai ® • • • © Ai)^1); he found a solution for any level k = (k \ , . . .  ,k s), such that 

gcd(ki,kj) < 3 whenever i A j ,  and of (A\ © Ai)W at any level k =  (k\, kfi). A main 

feature of the (A\ © • • • © Ai)W classification was that its methods could be (and 

were intended to be) generalized to other affine algebras, something which was not 

found to be true of [4]. In [11], Gannon found a new proof of Cappelli-Itzykson- 

Zuber’s result, applying the “generalizable” method to the affine A ^  algebra. We 

include a review of this proof in Chapter 2. The method can be outlined as follows: 

for a given affine algebra we first find the automorphism invariants (these 

correspond to those M  whose vacuum column is 0 except at Mpp =  1); next, find 

the simple-current extensions, which are built up in a natural way from symmetries 

of the extended X ^  Dynkin diagram; and finally, to find all exceptional invariants 

- those modular invariants that are not of the first two types. The completed clas­

sifications seemed to suggest that the exceptional invariants occur only for “small” 

levels, and in fact, the following was found by Gannon and Ocneanu [13, 19]:

Theorem 1.1. All possible modular invariants appearing in RCFT (or the subfactor 

interpretation), corresponding to any fixed choice of simple affine algebra Xrl \  and 

all sufficiently high levels, are known.

The “known” modular invariants referred to in Theorem 1.1 are of the “extended 
Dynkin diagram”-type, plus some exceptionals that have already been found. By 

“simple affine algebra”, we mean the affinization of a simple Lie algebra.

1For more on the classification of modular invariant partition functions, and references, see for 

exam ple [10].

3
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The result of this thesis is the classification of the modular invariants of the 

semi-simple affine algebra ( given in Theorem 2.1. Our proof follows as 

closely as possible the work done in [9] and [14]. In Chapter 2, we set up our problem 

specifically for (.d.2© ^ ) ^ .  We also include, as an illustration, a section on Gannon’s 

classification, which is the most concise modular invariant classification, due 

to the fact that is the least complicated affine algebra. In Chapter 3, we find 

the automorphism invariants2. In Chapter 4, we use T -invariance and a Galois 

symmetry to find out where a nonzero entry on the vacuum row or column could 

appear. The possibilities for these happen to be very limited, and for all but a few 

exceptional levels, they turn out to be just a simple current orbit of the vacuum. 

In Chapter 5, we find the modular invariants at the non-exceptional heights, and in 

Chapter 6 , we find the exceptional invariants by considering each exceptional height 

separately.

We include one table: Table 3.1 lists all of the simple-current

invariants.

2these were found by Gannon for any A,ri © • • • ® A Tl in [8]

4
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Chapter 2

The Problem

The classification of the modular invariants of (A% © ^ 2 ) ^  will follow closely that 

of A 2  in [9]. In §2.1, we define the problem of the classification for Aq © A 2 , and 

in §2 .2 , we review the “modern” classification for A\ [11]: this is a model for our 

approach.

2.1 Basic Definitions and Calculations

The (A 2  © ^ 2 )^ 1  data is built up from the data in the natural way, so in this 

section, we will generally introduce a concept for A ^  first and then write down the 

(.A2 © A2)!1) version. The nontwisted affine X r algebra is denoted by however, 

in this thesis, we will usually leave off the superscript (1), since we are dealing only 

with nontwisted affine algebras.

We associate to the affine A 2  algebra a level fc; however, in many instances it 

will be more useful to work with the height n k + 3. We denote A 2 at height n by 

A 2 tH. Let Ao, Ai, A2 be the A ^  fundamental weights. We translate all A 2 ,n highest 

weights by the Weyl vector p =  Ao +  Ai +  A2 in order to make our equations easier 

to use.

We identify a highest weight A =  A0A0 +  Ai Ai +  A2A2 with its Dynkin labels: we 

say A =  (Ao, Aj, A2). We can, and generally will, omit Ao since Ao =  n — Ai — A2, and 

so A is completely determined by A* and A2 . The set of “shifted” highest weights is

P++{A2 ) =  {A — (Ai, A2) € Z2 : 0 < Ai, A2 , Ai + A2 < n},

5
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as opposed to the set P+{A2) =  {A =  (Ai, A2) G Z2 : 0 < Ai, A2 , Ai +  A2 < n  -  2} of 

(unshifted) highest weights. We use P "+ instead of P+ due to the translation of all 

weights by A0 +  Ai +  A2 . For the direct sum A 2y  © A2%p, we call (p',p) the height 

and (k,l) := (p' — 3,p — 3) the level. For our classification, we will always assume 

gcd(p',p) =  l 1. The set of (shifted) highest weights for A2tP> © A 2<p is

P++ := {(A,p) 6  Z4 : 0  < A!,A2 ,Ai +  A2 < p' and 0  < p i ,p 2 ,p x +  p 2 < p},

so (A,/i) 6  P+£ iff A G Pp+(A2) and p G P p+(A2). The highest weight (p,p) := 

((1,1), (1,1)) is called the vacuum. We will often abbreviate a highest weight (A, p) 

by A p. Let x (?/), X be the characters corresponding to the height p' and p repre­

sentations of respectively, and let x <'p',p'> be the A2y  © A2tP character. Then

(2.1) x r̂) =

Let M  be the coefficient matrix for the partition function

(2-2) Z =  Y ,

of a WZW rational conformal field theory with chiral algebra A 2yP> © A2iP. The 

characters are functions of a complex number r . For A2 © A2, Equations

(1 .2 ) become

(2.3a) MpPtPp =  1,

(2.3b) M ^ nv G Z > 0 for all Ap ,  k u  g  P+f,

(2.3c) M S(p' ’p) =  5 (p' ’p)M;

where ,S(p/’p) and are given in (2.6). Any M  satisfying (2.3) is an A2tPi © A2p

modular invariant: the goal of this thesis is to find all such M. The S  and T  matrices 
that M  commute with are called modular data, and Property (2.3c) is called modular 

invariance. A partition function corresponding to a modular invariant is called a

^ n e  reason for this is that the classification for arbitrary (p',p) would be very difficult. Another 

is that the W n  minimal model classifications have p' and p coprime, so removing the coprime 

condition would not contribute to  the W 3 case.

6
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modular invariant partition function. We will switch back and forth between using a 

modular invariant or its partition function, depending on which is more convenient 

to use at a given time.
Up to conformal equivalence, we can identify a torus with C /(Z +  tZ ), for some 

r  € C with Im(r) > 0. Moreover, the tori corresponding to r  and (ar +  b)/(cr +  d),

2 x 2  matrices with integer entries and determinant 1. This is the final redundancy, 

as far as conformal equivalence is concerned. For this reason, 51/2 (Z) is called the 

modular group of the torus.

alence class of tori. This means that Z  is a function of t , and must satisfy

where 5 L2 (Z) =  { 2 x 2  matrices with integer entries and determinant 1}. For this 

to happen, it is enough to have

because the actions r K l  +  t  and —1 /r generate all of S L 2 (Z). This is what 

we mean by modular invariance of the partition function.

The characters xa of integrable representations A € P™+ of affine Kac-Moody

for some unitary representation p of ST^Z) (see Chapter 13 of [18]). We are espe­

cially interested in the two generators

where p is a representation. For physical reasons, we know the partition function 

has the form (1 .1), and so modular invariance reduces to (1 .2 c).

G 5 L2 (Z), are also conformally equivalent. 51̂ 2 (Z) is the set of

The partition function Z  in (2.2) should be well-defined on each conformal equiv-

e sx2(z),

algebras X ^  have the remarkable property that they are also functions of r , and 
satisfy

7
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The 5  and T  matrices for A 2 at height n, denoted 5 ^  and T^n\  are

(2.4a) S[nJ  =  J 2  detujexp[-2 in
.ai(A) • p

],

(2.4b) T jJ  =  exp[27nAl +  Al Â +  A2 n-]SXjl,

where W is the Weyl group for A2. and are unitary and symmetric

(see Chapter 13 of [18]). Notice that T ^  is diagonal. Generally, we will not 

need to calculate individual entries of the 5-matrix; however, in Chapter 6 , we will 

need to use the explicit formula for sj^ , so it is worthwhile to write it here. Let 

(t,r,s) := (A0 ,Ai,A2) and (t ' ,r ' ,s ') := (/io,Mi>A*2 ) (recall that A0 =  n -  Ax -  A2). 

Then the A/i-th entry of is given by:

(2  5 ) c ~ ( 2 r r '+ 2 s s '+ r s '+ r ' s )  ^  ^ t t ' —r s ' _|_ £ t t ' - r ' s  _  ^-rr' _  £ ss ' _

where £ =  and (  = (see for instance [2 ]).

The 5  and T  matrices for (A2 © A2)W at height (p',p), are

(2.6a) =  s£>  ■

(2 .6 b) T g £  = T g > -7 & .

It follows from (2.4) that S^p' ,p̂  and T^p',p̂  are also unitary and symmetric, and

T <-pl'p) is diagonal.

The Dynkin diagram for A ^  is an equilateral triangle. Charge conjugation is 

the reflection of the triangle through the Oth node that exchanges the other two 

nodes, and a simple current is a rotation of the triangle through 27r/3 radians. We 

denote a charge conjugation for A ^  at height n by Cn and a simple current by 

An. Cn and An act on a weight A as follows: Cn(Ao, Ax, A2) =  (Ao,A2 ,Ai), and 

Ai(Ao, Ai, A2) =  (A2 ,Ao,Ai). Cn has order 2 and An has order 3, and together they 

generate the group of order 6 of all symmetries of the A ^  Dynkin diagram. This is 

the group of outer automorphisms of A ^ \  which we denote by O. Keeping in mind 

that Ao — n — Ai — A2, we can write the action of Cn and An on a weight A =  (Ai, A2) 
as

(2.7a) Cn(A1,A2) =  (A2 ,A1),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(2.7b) An(Ai, A2) =  (n — Ai — A2 , Ai).

Let OX := {C^AbX : i — 0, l , j  =  0,1,2}. Notice that if A =  (Ai, A2) has Xi =  A2, 

then OX = {A>X:j = 0 , 1 , 2 }.

For A<i © A 2 , we define the charge conjugations to be

(2 .8 ) C™ (X,fj) := Cj,C*(A,p) := (Cj,A,Cgp), 

and the simple currents

(2.9) A ™ { A,p) := 4 4 ( A , / i )  := ( l ^ A , ^ ) .

Each and has order 2 and 3 respectively. The charge conjugations and 

simple currents generate the group of outer automorphisms of (A2 © ^ 2) ^  of order 

36. A special subgroup of these is the simple currents { A ^ } ,  which we denote by 

A. The charge conjugations and simple currents for A ^  satisfy the relations (2.10) 

below, which we will use throughout Chapters 3, 4, 5 and 6 . Define f(A) =  Ai — A2 , 

called the triality of A. A simple calculation shows that

t(AaA) =  na + 1 (X) (mod 3).

We then get

(2 -lOa)

(2-lOb) =  SS '

(2-lOc) t a%,a»v =  exP ( - ^ ( “2"  -  » '(A))]Ti",:

(2.10d) s <aX ,a*ii = ^  + nab )]5 ^ .

Equations (2.10) are equations (1.6) of [9]. Another important property of the S-
An)
5A/imatrix, which we will use frequently, is the value of when p has )i,\ =  p2 , and

especially when p =  p =  (1,1)

(2 .11 ) An)
A,(a,a) V3i

■ sin 7r
n

Q,X\
n

sin 7rC1X2

n
sm  7T

a ( A i  +  A 2 )

n
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for all 1 < a < Vly "-
Putting (a, a) =  p into (2.11), we get the useful fact

(2 .12)

with equality iff A 6  Op. Equations (2.11) and (2.12) are (2.1) of [9].

We are now ready to state the result of this thesis as the following theorem.

T heorem  2.1. Let p' and p be positive coprime integers. The modular invariants 

for (A2  © A 2 ) ^  at height (p',p) are

(a) the automorphism invariants, listed in Theorem 3.1,

(b) the simple-current invariants, listed in Theorem 5.1

(c) the exceptional invariants given in equations (6.12), (6.14), (6.25), (6.27),

(6.28), (6.29).

Remark: In this section, we dealt exclusively with A 2 and A 2  © A 2 ; however, 

apart from the specifics, such as entries of the S  and T  matrices and the symmetries 

of the extended A 2 Dynkin diagram, all of the concepts from this section hold for 

general X r and their modular data.

For clarity, we will demonstrate Gannon’s classification of the Ai modular invariants 

[11]. As our A 2  © A 2  classification follows this method, we will point out the main 

ideas of the proof so that the reader can relate the corresponding steps in Chapters 

3, 4, 5 and 6 to the ones done here. The aim of this section is to prove Theorem 2.2.

{1,2, ...,n  — 1}; we write P++ for short. The vacuum is 1, and there is only one 

outer automorphism, which we call J. J  acts on P++ by Ja =  n — a (ie, Ai 1— ► 

Aq =  n — Ai). The S  and T matrices are

2.2 The classification

2.2.1 T h e P rob lem  for A ^

For the affine algebra A ^  at height n, P ”+ (Ai) =  { a e Z : 0 < a < n  — 1 }

(2.13a)

10
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S  is orthogonal and symmetric and obeys the relation

(2.14) SJa,b = (-1  )b+1 Sab,

which follows directly from the definitions of S  and J. Putting (a, 1) and (1,1) into 

(2.13a), we have

(2.15) Sai > Sn  > 0 ,

with equality i f f a G { l ,J l} .  Let
n —1

(2-16) 2  = Y 1  M *bXaX*b
a, 6=1

be a partition function for with coefficient matrix M. We call M  a modular

invariant if

(2.17a) M n =  1,

(2.17b) M ab G Z>o, Va, b G -P++,

(2.17c) M S  =  SM, M T  =  TM,

and as usual we identify M  with its partition function Z.

T heorem  2.2. The complete list of modular invariants for at height n is
n — 1

(2.18a) An - 1  = ^ 2  Ixal2) Vn > 3,
a = 1

n —1

(2.18b) D n+1 =  ^XaXja+ia, whenever |  is even,
a —1

(2.18c) D |+i =  |xi +  XjiI2 +  |X3 +  XJ3 |2 + ■ • • +  2 |x f |2, whenever \  is odd,

(2.18d) £e = |xi +  X7 |2 +  |X4 +  Xs|2 +  |X5 +  X n|2> for n = 12,

(2.18e)

^7 =  |X l+ X l7 |2 +  |X 5 + X l3 |2 + |X 7 + X l l |2 + X 9 (X 3 + X l5 )*  +  (X 3 + X l5 )X 9  + IX9|2,/07- n = 18, 

(2.18f) £s — Ixi +  X u  +  X i9  + X2 9 I2 +  |x7 +  X 13 +  X i7  +  X 2 3 12, for n =  30.

11
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2.2.2 T-invariance and the Galois selection rule

In this subsection we find that 5  satisfies a Galois symmetry (2.23), and we derive 

a simple formula (2.20) which comes from T-invariance. These are the two tools 

which will later give us the “l-couplings’; ie, those a G P++ such that M a\ ^  0 or 

M \a /  0. This subsection is the analogue to §4.1.

Since M  commutes with T  (ie, M  is T-invariant), we have
n - 1 n -1

(2.19) ^  \ M acTcb =  TacM cb,
C—1 C=1

for any a,bEP++. But T  is diagonal, so this gives us M abTbb =  TaaM ab. If M ab ?  0,
2 l2

we can cancel out the M ab, so exp[^i^}  =  exp[7ri|^], by (2.13b). This gives us the 

selection rule (what we will call the norm condition in Chapter 4)

(2.20) M ab 0 ==> a2 =  62 (mod 4n).

Our next tool is the parity rule, or Galois selection rule (2.25), which comes from 

a symmetry obeyed by the 5-matrix. Let C := {£ e Z  : 0 < £ < 2 n, and gcd(^, 2n) = 

1}. For each I  G C, we will find a permutation a \— > [£a\ of P++ and a choice of 

signs e( : P++ — > {±1} such that

(2.21) M ab = e(,{a)et{b)M[tâ  for all a, b G P++, £ G C.

Let {x} be the unique integer congruent to x (mod 2n) satisfying 0 < {a;} < 2n. 

Notice that for all £ G C and a G P++, {£a} n, so either {£a} < n or {£a} > n. 

We will define our permutation and choice of signs as follows: If {£a} < n, put 

[£a\ =  {£a} and e?(a) = +1. If {£a} > n, put [£a\ =  2n — {£a} and e((a) = —1. Then 

this permutation and choice of signs will satisfy (2 .2 1 ), as we will show.

Let £ be a primitive 2nth root of unity, and denote by <p the Euler totient 

function (p(m) =  \\{m' G Z > o  : m' < m  and gcd(m,m') =  1 }||. We know that 

[Q(£) : Q] =  <̂ (2 n); ie, Q(^) is a <p{2 n) dimensional vector space over Q with basis 

the primitive roots {(* : gcd(i,2n) =  1} [6 ]. For any £ G C, define cr (̂£) =  £e. 

Then is another primitive root, so ui G Gal(Q(£)/Q). For all a,b,c,d  G P++, 

Mab G Z c  Q(0> and SabScd G Q(£) (using the formula sin 0 = (ez6  -  e~id)/2i), so 
an can be applied to them .2 By 5-invariance and orthogonality of S , M  — SM S,  so

2We consider the product S abScd to avoid the in the definition of the S-m atrix. This way, 

we get a factor of which is rational, so is sent to itself by a t.
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vi(Mab) = M(SMS)ab)  for all a,b £ P++. But M ab 6  Z C Q, so <rf fixes all Mab. 

Therefore,
71—1

(2 .2 2 ) Mab =  ^  ot(SakSjb)Mkj-
k , j = 1

To find out what cr£(SakSjb) is, we write

_ „ 2  . (  a k \  . (  j b \  1 ( ;is i _jsafc\ / jTTjb ■ vjb\
SaiSji =  -s in  ( j r ~ )  sm ( j f - J  =  (e .  - e  .  ) (e » - e  . ) ,

SO

m  n \ 1 ( iSi&h. _ ( ilM. i \
O i { S ak S j b ) =  ~ ^ \ e  n ~ e  n )  { e  71 ~ e  n )

2  . (  la k \  [ 2  . (  Ijb— sm 7r  \ — sm 7r—
n \  n J \ n \  n

If {la} < n, then [la] = {la} = la  +  2 nm, for some m e  Z, so sin (tt— -) =

sin j  • If {la} > n, then [la] = —la  +  2 nm, for some m  £ Z, so sin (7r ^ )  =

— sin j . Either way,

. . (  la k \  . (  f̂ alA:
(2.23) sm I 7r—  ) =  e^sin I n

n J \  n

for our definition of q , and the same holds for sin • Therefore, we have shown

that

(2-24) ee(SakSjb) =  ^t{a)t£(b)S\£â kSj^£b].

In general, the S-matrix of an affine algebra obeys such a symmetry for some per­

mutation of the highest weights and choice of signs e.

With (2.24), the right-hand side of equation (2.22) now becomes

71 — 1

k , j = 1

which is etXa)ee(b)M^^hy We thus have (2.21). Since every entry of M  is non­

negative, it follows from (2 .2 1 ) and the fact that e^(a)e^(5) =  ± 1 , that M^a] > 0 

whenever M ab > 0. But then q(o,)q(6 ) =  1 , so we get the Galois selection rule

(2-25) M ab + 0 = >  ee(a) = et (b),

for all I £ C.

13
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2.2.3 The j4^ Permutation Matrices

This subsection is analogous to Chapter 3: the permutation matrices here are what 

we call the automorphism invariants in Chapter 3. Define M  to be a permutation 

matrix if M ab — 8 b,na for some permutation 7r of P++; ie, there is only one nonzero 
entry in each row or column of M, and that entry is 1. The following lemma tells 

us that all modular invariants of the form

( 1 0 0 ••• 0 \
0  * * • • ■ *

(2.26)

are of this type.

M  =

\ o * /

Lem m a 2.1. Let M  be a modular invariant, and suppose M a\ — 8 a>\. Then M  

is a permutation matrix for some permutation % of P++, and Sva^b — Sab f or aU 

a,b E P++.

Proof. We will first show that the entries of any modular invariant are bounded 

above. For any a, b £ P++,

n —1 n —1

(2.27) 1 = M U = (SM S)u  = ^  S u Ml3 S3l > S 2n  ^  M{j > S 2uM ab,
i , j = 1 i , j = 1

where the first inequality comes from (2.15) and the second from the fact that all 

Mij are nonnegative. This tells us that for any a, b € P++, Mab < Notice that
*11

multiplying modular invariants gives us at least a matrix commuting with S  and T, 

as does taking transpose. Therefore, defining N  M TM , N L (N  to the power of 

L) commutes with S  and T  for any positive integer L. The diagonal entries of N  

are
n —1 n —1

N aa =  (M TM ) aa =  £  M ^ M a  =  J ] ( M m )2 .
i=l i=l

We will show that, unless there is at most one nonzero entry in each column of M, 

and it equals 1, some (N L)aa will be unbounded as L goes to infinity.

Suppose that there is an entry in the ath column of M  that is greater than 

1. Then, it must be at least 2, since all the entries of M  are integers. So N aa = 

1̂ 17=1 (M a ) 2  > 22 =  4. On the other hand, suppose there are two entries in the

14
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ath column of M  that equal 1 (or more). Then Naa = Y l - \ { M ia ) 2 > l 2 +  l 2 =  2 . 

Either way, Naa > 2 > 1.

Next we will use induction to show that (N L)aa > (Naa)L• Since Naa > 2, then 

this will imply N^a > 2l . For L = 1, we have (N L)aa = (JVx)aa =  Naa =  (N aa)x = 

(-Naa)i . Now suppose that (N L)aa > (Naa)L, and consider (N L+l)aa:

(N L+1)aa = (N x N l )aa
n —1

= Y 'N a i N t
i=l

n —1

= NaaN ^ +  Y ,  No,iNia 

n —1

> Naa(Naa)L + Y  Na-i N ia

Because all of the entries of M  are nonnegative, all of the entries of N  must be 

nonnegative as well, so the last summation is nonnegative. Therefore, (N L+1)aa > 

Naa{Naa)L + 0 =  (iVaa)L+1, and so we have shown that (N L)aa > 2L for that 

a € P++. But now, N n  =  = Mil by hypothesis, so N u  =  1 . A simple

induction argument shows that =  1 for all L, so by (2.27), the entries of N L are 

bounded above. In particular, N^a < for all L. This contradicts (N L)aa > 2l . 

Therefore each column can have at most one nonzero entry, and that entry is 1.

By S-invariance, (M S)u  = (S M ) n , so Yn=i M u s n = YaZi s u M i\ =  •S'li, 

since Mu = 5hi. This gives us 5 U + Ya = 2  M u s n = Sih  s« E i= 2  M n s n  =
(2.15), Su > 0  for all i. so we must have Mu — 0 for all i > 2 ; ie, M u  =  <5̂ 1.

Now letting N ' := M M T, a similar argument shows that N 'L —> oo as L -» oo 

unless there is at most one nonzero entry in each row of M, and that entry is 1. To 

show that there is a 1 in each row of M, we calculate (M S )ai =  (S M )ai , so

n —1 n —1

Y  MaiSn = Y  SaiMil = Sai > 0.
%—1 i=X

The left-hand side is positive iff Maa> ^  0 for some a' € P++. Similarly, evaluating 

(MS)a, — (SM)ib , we must have M^b 7  ̂ 0 for some V G P++- Therefore, there is 
at least one nonzero entry in each row and column of M, so we have shown that

15
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Mab = a for some permutation 7r of P++- S„a,nb =  Sab comes from S'-invariance; 

ie,

n - 1 n —1

'y  ^ M g j S i b  =  ^  ^ S g j M i b  >  r ' M g ^ g S ^ g f i  =  Sg,ir~ 1 b M f t - 1 bjb

i = 1 i=l
'> ' '  Swa,b =  ‘S 'o ,7 r_ 1 h )  ^  ^  -f’+ + ‘ ^

With this lemma, we can now find all modular invariants M  such that the entries 

in the first row and column are all zero except for M u  =  1 .

Suppose that Ma\ ^  0 or M \a p  0 =>• a = 1. By Lemma 2.1, Mab =  5b,na, so 

we need to find which permutations 1r define a modular invariant. Since M \\  = 1, 

we already know that 7rl — 1. To see what 7r2 is, the last part of Lemma 2.1 gives 

US S 12 =  SV 1,71-2 =  <Sl,7r2) s o

. / 7T\ . /m7T\
smU =smhr)’

where m  7t2 . The only m eP++  that can satisfy this are m  =  2 and m = <72.

If m  — J2, then by (2.20), 22 =  (n — 2) 2 (mod 4n), which implies 4 | n. Therefore,

n / 2  is even, so in this case P^+i is the permutation matrix defined by Pa = a when

a is odd and Pa = n — a when a is even. Inverses and products of permutation

matrices are permutation matrices, so if 7t2 =  <72, we can let M ' T>P, M, and
2 ~*~L

then M '  will be a permutation matrix satisfying 7r2 =  2. Therefore, we may assume 

that 7t2 =  2, replacing M  with M ' when necessary.

Now let a G P++ and let b = na. Then S\a = S\a =  Sib, and S-2 a = S^b, so we 
have sin ( ^ )  =  sin ( ^ )  and sin =  sin (^p ). Therefore,

=  s i n ( ^ )  =  2 sin (^)cos(^f) =  cos(^) 
s in ( ^ )  2 s in (^ )c o s (^ ) c o s (£ )’

so cos ( ^ )  =  cos (^-). But 0 < a, b < n — 1, and this implies b =  a; ie 7ra =  a for 

all a G P++. Therefore, either M  or M ' is the identity, so M  can be the identity 

A rj- i , or the permutation matrix D | +1 when 4 | n.

2.2 .4  T he 1-couplings

The goal of this subsection is to find all places on the first row and column of M  

that could contain a nonzero entry; ie, those a for which M aj /  0 or Mla p  0. It 

turns out that there is usually only one possibility for such an a, other than a =  1 .

16
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Proposition 2.1. Suppose M a\ ^  0 or M \a ^  0. Then a E {1, J l}  for all n ^  

12,18,30.

Proof. Suppose that Mai ^  0 or M \a /  0. Putting (a, 1) into (2.20) gives us

(2.28) (a +  l)(a — 1) = 0  (mod 4n).

By (2.25), e^(a) =  q(1), so by definition of ei, {la} < n {1} < n. Therefore, 

sgn(s in ( ^ ) )  =  sgn (sin(^)), which is equivalent to s in (^ L) s in (^ ) > 0. Using 

the formula sin a  sin/3 =  |(cos(a — /?) — cos(o; +  /?)), we have

. , ( l (a  — l ) i r \  / l ( a  + l)n
(2.29) cos -4-------------> cos 1 y ’

n j  \  n

Our strategy will be to show that there are no solutions a $  {1, J l}  to (2.28) and

(2.29), other than at the exceptional heights n =  12,18,30.

Notice that a2 = 1 (mod 4n) implies a is odd, so a +  1 and a — 1 are even. 

Putting I  +  n into (2.29), we get:

/  a — 1 \  (  . a +  1 \cos I tt(1 +  n )  I > cos I tt(1 +  n )   1

cos ( irl-— -  + 7r(a — 1) ) > cos ( ■- + nr(o +  1 )

iff
COS (  7TI-

\  n J \  n
But 7r (a — 1) and 7r(a +  1) are multiples of 2ir, since a — 1, a +  1 are even, so we 

have the above inequality iff cos(irl~~) > cos(nl~^-). Therefore, I  obeys (2.29) iff 

£ + n does, so that we can take I  in (2.29) to be coprime to n, rather than to 2n.

Let £  := {£ : gcd (£,n) =  1}. Defined := gcd(a —l,2n), and d! gcd(a +  l,2n). 

Since they are both even, a — 1 and a +  1 have a factor of 2 in common. However, 

they cannot have any other factor in common because their difference is 2 ; ie, 

gcd(d,d') = 2. Next we try to find out what dd! is. Let n =  r j 1 r f2 .. ■ r f l, where 

the r js  are distinct primes. By (2.28), (a — l)(a +  1) =  4nk, for some k E Z+ , 

so (a — l)(a +  1 ) =  4r j ' r f 2 . . .  rffpf'-p* 2 ■ ■ where prime power

decomposition for k. Therefore, a — 1 =  2r{ 1 r}2 .. .  r j f 'p ^p ^ 2 ■ ■ ■ p ^ f , and a +  1 =  

2 rJ,1̂ 1 . . .  r j l (renaming the primes if necessary, and to keep the pfs

17
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and r ,’s distinct, 7 ' > 7 * for all* =  1 ,... ,£). Now, 

d =  gcd(a — l , 2n)
„'fy „ai „a2

g c d ( 2 r J V ^ 2 . . .  r / p ^ p f  . . .  p ® ? ' ,  2 r J V ^ 4 . . .  r j ' )

2r i 1 • • • r t* ' ’

and

_  oyvU9 t-7<:'+1 T.7fT1Q!m'+1 n“i» i r7i r72 r7n  _  2r7*/+1 r7<!a — gca{zre + 1  . . . r £ pm , + 1  . . .p m ,J.r1 r2  — tr ( l + 1  . . . r e ,

and now it is easy to see that dd' =  4n. gcd(d, d') =  2 implies d =  2 s, and d' =  2 s', 

for some s, s' with gcd(s, s') =  1 .

We now look at what happens if one of d and d' is less than 6 . Say d =  2 or 4 

(d is even). If d =  2, then dd' =  2d' =  4s' =  4n, so s' =  n. So 2n =  gcd(a +  1,2n), 

which means that a + 1  is a multiple of 2n, a contradiction since a G -P++- If d =  4, 

then dd' =  4d' =  4n, so d' =  n. Therefore n =  gcd(a +  l,2n), which implies that 

a +  1 =  mn  for some m  G Z>o- But the only m  that could possibly work here is 

m  — 1. In that case, a — n — 1 =  J l ,  which is a contradiction because we assumed 

a 7̂  1, J l .  Therefore, d > 6 , and a similar argument shows that d! > 6 as well (we 

would get in one case a = 1, and in the other case, a £  P++). So d, d' > 6 .

Since gcd(a +  1,2n) =  d', and a + 1 is even, a +  1 =  a'd', for some a' with 

gcd(a', 2n) =  1. Therefore, a' has an inverse mod 2n. Let I  G L be such that la' = 1 

(mod 2n). If £ < n, then let £' := £, and we have l'(a +  1) =  I'a'd! =  d' (mod 2n). 

If I  > n, then let I' = I — n, and we have: £'(a +  1) =  (I — n)a'd' =  £a'd' — na'd' =  

la'd' — n(a +  1) =  la'd' = d' (mod 2n). Therefore, we can choose I' G £  so that 

I'(a +  1) =  d' (mod 2n). Next choose 4  £ T' so that

(2.30) ^q(o - 1 ) = <
n — d, if 5 is odd and |  is even, 

n — 2 d, if ^ is odd and § is odd, (mod 2 n),
^ VlAVTTTion in i fn — otherwise, ie if y  is odd

and define 4  =  ^ + £ 0- Then£j(a-1) =  ( ^ + £ 0) ( a - l )  = ^ ( a - l ) + 4 ( a - l ) ,  but 
d | a  —l , s o ^ p  GZ. Therefore, 2m is a multiple of 2n, so 7 ^ ( 0  — l)+ £ 0(a — 1) = 
lo(a — 1) (mod 2n).

Now we will show that for all i such that 0 < i < 5, the numbers £,(a +  1) will 

all be distinct. Let =: m. Then £, =  m; + 10. Suppose that 4 (a +  1) =  4 '  (a +1)

18
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(mod 2n), so (A;m -  k'm){a +  1) =  0 (mod 2n), or m(fc -  fc')(a +  1) =  0 (mod 2n). 

Therefore, m(/c—fc')(a+l) =  2ns =  mds , for some s G Z, and so (fc —fe')(a+l) =  ds, 

ie, (k -  k')(a +  1) is a multiple of d. But a +  1 =  d'm', for some m' € Z>0, and 

gcd(d,d') =  2. We also know that d,d' > 6 , so a +  1 cannot be a multiple of d. 

However, a +  1 is even, so k — k' must be a multiple of This is a contradiction: if 

0 < k, k' < their difference cannot be |  or greater. The only multiple of f  that 

works is 0. But then k — k1 = 0, and so Ik = Ik’ •
Now we must show that there are precisely <p(|) numbers i with 0 < i < f , such 

that £i G L', where <p is the Euler totient function.

(2.31) i U ' <

2 d, if |  is odd and ^ is even, 

4d, if |  is odd and |  is odd, 

d, otherwise

Putting 1 = 1' into (2.29), we get c o s ^ '^ l )  > cos(7r£'^±i), so cos(7r£,r^ )  > 

cos(7rrf' +̂ nfc), for some integers m  and k, and gcd(t?',n) =  1. Therefore cos(n£ '^)  > 

c o s { ^ ) .  Since d! > d, < 1, so dividing both sides of (2.29) by d!, we obtain:

(2.32) ^  ) -  ! <
^  < 2 , if 5 is odd and |  is even, 

^  < 4, if f  is odd and |  is odd, 

J- < 1 , otherwise

We can use (2.32) to solve for d in cases:

Case 1 : <p(d/2) < 3. In this case, <p(d/2) =  2. If d/2 is a prime p, then 

<p{d/2) =  (p{p) =  p — 1 =  2, so p = 3, which implies d = 6 .

If d/2  is a product of two primes p and q, then (p{d/2) =  <p(pq) =  p{p)(p{q) = 

(p — 1)(<7 — 1) =  2, and so p =  3, q =  2 (or vice-versa). Therefore d/2 = 6 . 

But we cannot have this because d/2 should be odd. d/2 cannot be a product 

of 3 or more distinct primes, so we try a prime power. Let d/2 =  p2. Then 

<p(d/2) = pip2) = pip — 1) =  2. The only choice for p here is p =  2. But then 
d/2 = 22 =  4, which is even. There are no other possibilities for |  (they would give 

too many factors for 2 ), so in this case, d = 6 .

We can now solve for d! and n. We know that dd' =  4n, so 6 d' =  4n. But n is a 

multiple of 4, so n =  4m for some m G Z > q . Therefore 6d' =  16m, or d' = 16m/6.
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So 16m/6 must be an integer greater than 6 . For this to happen, m must be a 

multiple of 3. If m =  3, we get d' =  ^ =  8 , and n =  4m =  12. But now, notice 

that we need (<p{d/2) -  1 )d' < 2d, ie, (2 -  1 )d! < 2 x 6 =  12, so d! < 12. If we take 

m to be larger than 3, then d' will be too big (the next lowest choice for m is 6 , 

which is already too large). Therefore we get d — 6 , d' = 8 , and n — 12.

Case 2: ip(d/2) < 5. In this case, p{d/2) can equal 2, 3, or 4. If <f(d/2) =  2, we 

get the same possibilities as above, except that now n / 2 is odd, so n is not a multiple 

of 4, and (p(d/2) — 1 )d' < Ad. As above, d = 6 , so now dd' = 6 d' = An — 8m, for 

some odd integer m. 6 d' =  8 m implies d' — ^p, so again m will have to be a multiple 

of 3. m =  3 gives us d! =  4 which is too small. The next odd multiple of 3 is 9, which 

gives us d' - 12, and n = 2m =  18. Here, (tp(d/2) — 1 )d! =  d' =  12 < 24 =  Ad. The 

next odd multiple of 3, 15, gives us d =  20 < 24, and n = 2m =  30. p{dj2) =  3 is 

not a possibility since 3 is odd, so let us consider the case p(d/2) =  4. If d/2 =  p, a 

prime, then p(d/2) = ip(p) =  p — 1 =  4 implies p =  5, so d =  10. Now, d! =  8m/10, 

where m is odd. If m =  5, then d! — 4, which is too small. If m  =  15, then d! =  12, 

and n =  2m =  30. In this case, (p(d/2) — 1 )d' = 3d' = 36 < 40 =  Ad. If m =  25, 

then d! =  20, and 3d' =  60 ^  40. So the only possibility we get here is d = 10, 

d' = 12, and n = 30.

If d/2 =  pq, where p and q are distinct primes, then <p(d/2) = p(pq) = p(p)p(q) = 

(p — l)(q — 1) =  4. There are 2 choices here: p = q — 3 (but then they are not dis­

tinct), and p =  5, q = 2 (but then d/2 is even), so there are actually no possibilities 

here, d/ 2  cannot be the product of three distinct primes either, so we try d/ 2  =  p2. 
Then p(d /2) =  p(p — 1) =  4, which has no solutions. Therefore, we have only the 

following four possibilities for (d,d',n):

(d,d',n) G {(6,8,12), (6,12,18), (6,20,30), (10,12,30)} These three n, n = 

12,18,30 will be our exceptional heights.

We now know all possible first rows and columns of M  at the non-exceptional 

heights. In the next subsection, we extend this to all rows and columns of M.

2.2 .5  T he J-exten sion s

In §§2.2.3, we found all M  such that M a\ =  M \a =  Therefore, for this subsec­

tion, we will assume M a\ ^  0 or M \a ^  0 = »  a = 1 and a =  J l .  We begin with

2 0
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some simple calculations that will give us important information about M.

By 5-invariance,

— ^ 2  Sjii aMabSbjii — {— Si aM ai)(—l /  + ^ Sib,
a, 6=1 a, 6=1

so applying the Triangle Inequality, we get

n —1

\ M j n M  < E  l ( - l ) (o+1,i||S l.l|W «.ll(-l)<6+1Wl|Su,!,
a,6=1

so < Y2~b=\ SiaM abSib =  M u =  1. Again, using the fact that Mab G

{ 0 ,1 ,2 ,...} , this implies that M Ji1 Jj 1 must be 0 or 1.

Suppose = 1. Then £ ^ i ( - l ) (a+1)iSiaMa6 ( - l ) (6+1)̂ 5ii, =  1 =  Mn  =
T ,Z = iS iaM abS lb, so (-l)M *(-l)(& + ib - =  l, (if M ab ±  0); ie, (_i)(a+i)i+(6+i)i = 

1. Therefore, (a +  1 )i + (b +  1 )j is even, so we get the selection rule:

(2.33) (a +  1)* =  (6 +  l) j  (mod 2 ) whenever Mab 7  ̂0.

Applying a similar calculation to any a,b G P++, we have

n — 1

M jia,jib — X / Sjia,kMkiSltj j b 
k,i=1 

n —1

= £  ( - l ) (fc+1)̂ afcMfei( - l ) ( /+ 1 ) j^ 6
fc,Z=1

=  £  ( - l ) (*+1)<+(/+1)iSa*MWS<6.
fc,Z=l

But whenever M m 7  ̂ 0, (A: +  l)i + (/ +  1)} =  0 (mod 2) by the selection rule. 

Therefore, the above sum is just Sak^klSib =  Mab, so

(2.34) M j 'a, Jib Mab Va,b€ P++.

Equation(2.34) is the analogue of Lemma 4.3(c) in Chapter 4.

When n is even, there is an a G P++ such that Ja = a, namely a = n j 2. We 

call such an a a fixed point of J. The following lemma determines all Mab with 
a,b 7  ̂n / 2 .
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Lemma 2.2. Let M  be a modular invariant, and suppose M aX /  0 only for a — I 

and a = J l ,  and similarly for M \a, ie, the first row and column of M  are all zeroes 

except for =  1. Then the ath row (or column) of M  will be identically 0 iff

a is even. Moreover, let a, b € P++, both different from n / 2 , and suppose M ab 0. 

Then,

{ 1, if c = b or c =  Jb
,

0 , otherwise

and a similar formula holds for

Proof. The proof is similar to the proof of Lemma 2.1. We know that M aX =  

Maj \  = M Xa =  1, and by the selection rule (2.33), M j\yj\ = M n  = 1 also. All 

other entries in the first and last rows and columns of M  are zeroes, so M  looks like

/  1 0  . . .  0  1 \

0 * ... * 0

0  * . . .  * 0

v  1 0 . . .  0 I  J

We first need to show that the even rows and columns of M  are identically 0. 

Suppose M ai, ^  0. Then M ja^  ^  0 either, because Ma& =  M ja$ by the selection 

rule (2.33). Letting i =  1 and j  — 0, we get the congruence a + 1 =  0 (mod 

2), or a =  —1 =  1 (mod 2), which means a must be odd. But if a is odd, then 

(a +  1 )i = (b + 1 )j implies 0 =  (b + 1 )j (mod 2). But this must be true whether 

j  — 0 or 1, so 6 +  1 =  0 (mod 2), or b =  1 (mod 2), so b is odd as well. Therefore, 

if M ab 0 , then both a and b are odd, so the even rows and columns must be 
identically 0 .

For the second part of the lemma, write

(  Bi
B 2

\

Bn /
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where the BiS  are the indecomposable submatrices of M  as in equation (4.13), and 

all other enties of M  are 0. Put B \  — B (  1,2) (see (4.17)); ie, B \  is the block 

containing and We will show that each non-trivial Bi

that does not involve n j 2 is of the form 5(1,2). Let B  be some B i  ^  (0) which 

does not contain any entries of M  involving n/2, and write

/

B  =

x n x l m
\

/y  x m l  ' ' ‘ ®

Since the even rows and columns of M  are identically 0, the M ab s contained in B  

must have both a and b odd. Also, each odd row of M  has at least one nonzero 

entry, and since M j i a j j b =  M ab for all i , j  — 0,1, each row of B  must have at least 

two nonzero entries (otherwise, we would get a block of zeros inside 5 , and so B  

would not be indecomposable). Now consider N  : =  M T M .  Then the zth block of 

M t M  not involving n/2 is

(

B t B  =

yn yim \

y  V m l  ' ' ' U mm  y

where yab — x cax cb- I n  particular, the diagonal entries of B r B  are given by

(2.35) Vaa $ > 2a-
C = 1

But we know that there at least two nonzero entries in the cth row of B ;  ie, x ca > 0 

for at least two choices of c. Therefore, yaa > 2.

As in the proof of Lemma 2.1, N^a > (Naa)L, so let N l  be the matrix defined 

by ( N L ) ab =  ( N ab) L . Then

(  2 l  2l  
2l  2 l

N l

\

V i i  • ■■ V i m

n.L n.L
Vm l V m m
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Again, as in the proof of Lemma 2.1, the entries of must be bounded above. But 

this means ^  < 1, so yaa e  {0,1,2}. But yaa > 2. Now going back to (2.35), we 

see that we must have xca =  1 for c G { d , Jc'} for some c', and xca = 0 for all other 

c. Therefore, B  = B( 1,2). □

Now suppose that we have the hypothesis of Lemma 2.2; ie, M ji^ jn  ^  0 for 

all i , j  = 0,1. By (2.20), l 2 =  ( J l ) 2 (mod 4n), ie 1 =  (n — l ) 2 (mod 4n). If n/2 

is even, then n /2  =  2k, for some k € Z, so n =  4k. But then 1 =  (4k — l )2 = 

16&2 — 8 k +  1 =  4(4k)k — 2(4A:) +  1 =  4nA; — 2n +  1 =  —2n + 1 (mod 4n). This 

implies that 0 =  — 2n =  2n (mod 4n), which cannot be true. So n/2 must be odd. 

The first such n is n =  6 . Then, by Lemma 2.2,

/

M  =

1 0 0 0 1 \

0  0  0  0  0

0  0 * 0 0  

0  0  0  0  0

1 0  0  0  1 J

so the only unknown entry is M33.

Evaluating M S  at (1,3) gives:

( M S )  13 =  M n S i s  +  M 12S 23 +  M 13S 33 +  M u S az +  M 155 53 

=  S 1 3  +  S 5 3 ,

and (SM) 13 =  S13M33 so, by S'-invariance, 5 i3 +  £53 =  5 i3M33, which implies 

S53 =  S\z(Mzz -  1), and so sin(i | 2t) =  s in (^)(M 33 -  1). Solving this for M33, we 

see that M33 =  2. Therefore, we have M  if n =  6 , so we now look at n > 10 (n =  8 

gives us n / 2  even). We know that the even rows and columns are identically 0, and 

there are two l ’s in each odd row and column, except we do not know what happens 

in the | t h  position. Consider the third row and column of M. Just as we assumed 

M22 =  1 above, we will assume M33 = M ji3 Jj 3 = 1 here. Otherwise, since there is 

a 1 in the third and J3rd rows and columns, we can permute the rows and columns 
of M  so that this is the case and replace M with this matrix.

Now we look at what happens at M3>| .  If M3)n /  0, then M 3>a = 0 unless 

a =  § or J§  = and M33 =  1 ^  0, so Ma,3 =  0 unless a -  3 or a = J3. 

Evaluating M S  = S M  at (3,1), we get M 3 j^ S ^ ;3 =  S33  + SVn-3- Therefore we
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have M3 a sin(7r|^) =  s in (^ ) +  sin((3nn^-~), which implies s in (^ )M 3ia =  s in (^ ) +  

s in (^ ) =  2 s in (^ ), so M3)f =  2 s i n ( - f ) =  2 s in ( - ^  +  ^ )  =  2 s in (^ ). We need 

2 s in (^ ) to be a positive integer, so s in (^ ) =  for some k G Z+. But because we 

need A: to be positive, k must equal 1. So s in (^ ) =  5 , which implies that yf =  f  

or f  =  g implies n =  18 (which is an exceptional level), and 1  =  1 implies 

n = ™ ^  Z>o- Therefore, n =  18 is the only possibility for M3 a ^  0.

Suppose that M3j« =  M« =  0. By Lemma 2.2, there is one 1 in the third row to 

the left of the ^th  column, say at M3m. Then also M3ij m =  M jz ,m =  M j z j m  — 1.

Evaluating M S  =  S M  at (3,1) gives 2 sin(7r^ )  =  2 sin(7r |) ,  so m  =  3 or J3. But 

m <  | ,  som  =  3.

Let a be any odd element of P++ such that a ^  n / 2 , and suppose M ^ a /  0 . 

Then evaluating M S  =  S M  at (1, a) and (3, a) gives us

2 sin — M a>a, and 2 sin = —

respectively. This implies that sin(7r^) =  — sin(7r ^ )  =  sin(—vr^), which cannot 

happen, so M |)(I =  0. Then, by Lemma 2.2, we have a unique b < \  such that 

Mba 7  ̂0 (because a is odd, we get one 1 above the | t h  row). Evaluating S M  = M S  

at (6 , a), we get

so a2  = b2, and so a — b. Therefore we have a matrix whose diagonal odd entries

are 1, and the corresponding M jia j ja entries are 1. As in the case n = 6 , we can

evaluate S M  — M S  at (1, §) to obtain Ms. « =  2. Therefore,
V f I  /  2 ’ 2

A f =  | x i  +  X J i l 2 +  |X3 +  X J 3 |2 +  • • • +  2 | x f  I2 =  V n  + i ,  

whenever j  is odd.

This completes the proof of Theorem 1 when n  12,18,30. These three n -  the 

exceptional heights -  must each be evaluated separately, and they will give us the 
remaining modular invariants of Theorem 1.

2.2.6 T h e E x c e p t io n a l

By the proof of Proposition 2.1, we already have some information about M  at the 

exceptional heights. 5-invariance and the Galois selection rule were used here to
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complete the A\ classification: n — 12 corresponds to £§\ n = 18 corresponds to £7 , 

and n = 30 gives us the exceptional £%•
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Chapter 3

The Autom orphism  Invariants 

of A2 © A 2 at Height (p' , p)

In this chapter, we classify the automorphism invariants of A 2 ,p> ® A 2 #, which is the 

first step of the classification of all modular invariants. We call M  an automorphism 

invariant if M  is a modular invariant and > for some permutation

a of P l f .  In other words, M has only one nonzero entry in each row or column, 

and that entry is 1. The condition that MPPiPP =  1 ensures a{pp) =  pp for any 

permutation a that defines an automorphism invariant.

Remark: We will often refer to the permutation a that defines an automorphism 

invariant as an automorphism invariant.

3.1 Preliminary Calculations

Let a  be a permutation of P++ such that a defines an automorphism invariant. 

Then

E
ap
q(pf iP) 51 jf
°\H,a~1 (kj/) 1V1 a~l (w)
q(p'<p)

A/t,cr-1  (rci/)’

27
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and a similar calculation holds for T(p'’p\  Thus a permutation a of P p| p is an 

automorphism invariant iff a satisfies the conditions

m a t  9 {p' ’p) _  o(p'.p) .
fy -i-a f <t (Xp ),<t (k v) Xp,Ku'>

/ Q  1 1 ^  rp ( P > >P)__________ __  r p { p '  , p )
l d -i D l 1 a(Xp) ,a(Xp)  ~  ^ X p ^ p '

Equations (3.1) tell us that inverses and compositions of automorphism invariants 

are also automorphism invariants.

The charge conjugations are automorphism invariants. Let u =  (u\. 1 1 2), where 

U\, U2 € {0,1}, and let Cu = Cy1 Cp2 (see (2.8)). Then each Cu is a charge conju­

gation (and hence a permutation) and has order 2. By (2.10d),

q(p'»p) _  o(p') c(p) _  c(p') c(p) _  c(p'»p)
C u (Xp) , CU (kv)  — D C u i X , C u i K J C u2 p ,C u2v —  D X (Cu i ) ^ K J p ( C u 2)2u ~  ° X p , K v ’ 

and by (2 .10c),

r p ( p ' , P ) ______________ __  r p ( p ' )  r p ( p )    rp t P ' ) rr { p ) ___  r p { p '  , p )
1 C u {Xp) ,G“{Xp) ~  C “ i A,C“ iA C u2/^,C“ 2/j, ~  1 XX 1 PP ~  Xp,Xp'

We call the automorphism invariants defined by the charge conjugations c I, I c , 

and CI C, corresponding to u = (1,0), (0,1) and (1,1) respectively. A useful fact 

about CI C is that it commutes with any modular invariant M. This is because M  

commutes with S^p' ,p\  and hence with (S ^ ' ,p))2. Then, for u =  (1 , 1), (2.10d) tells 

us that

(q(p',p)\2 — S P  c(p'>p) c(p'’P)W >Xp,Kv 2-~i Xp,a0‘Da/3,KL>
a/3

E c(p'.p) q(p'.p)*
Xp,aPJ a.(3,Cu(Kv)

a/3

?(P'.P) o(p'.p)*a/3,KV
a/3

_  C TC S P  n{p',P) a t
~  1 2 ^, aXp,otPaa

—  CTCX— 1 °KU,Xp

~  <5W,C(1.1)(A/i)>

by unitarity of . so we have shown that ( S ^ ’P) ) 2 —c I c .

We can define another automorphism invariant out of the simple currents, as in

[8]. Let a := (0 1 1 , 0 2 1 , 0 1 2 , 022) be a quadruple of integers such that

28
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(3.2a) 2an +  kah +  la?2 =  3/saji +  3Zaj2 (mod 6),

(3.2b) aij “I- o>ji k(Xi\dj\ 4- Za^a^ — b (mod 3),

for all i, j  G {1,2}, and where k = p' — 3, Z =  p — 3. Define

(3.3) aa : P |'.f  — > p £ f , (A, //) ^  ( ^ W + ^ f c * )  A> ^ t W + a ^ ) ^

We can take the integers {af/} such that aij € {0, ±1} since the simple currents 

have order 3. Taking the composition o ea (where a and b satisfy (3.2)), we see 

that ct(, o aa has the form ac with Cij =  +  bij + kdnb\j + Idi2 b2j as in (3.3). If we

let bij =  dji, we then get ĉ - =  a -̂ +  a.j% + kdndji +  Za^a^, which is 0 (mod 3) by 

(3.2b). Therefore oa is a permutation, and cr" 1 =  oa; , where d' =  (an , ai2 , 0 2 1 ,<*22)- 

Now using (3.2), straightforward calculations show that aa satisfies (3.1), and so is 

an automorphism invariant. We will denote the automorphism invariant defined by 

aa as I A.

We will use the following lemma in the next section to find out what happens

at the small weights (p, (1,2)), ((1,2),p), (p, (2,1)) and ((2, l),p) under a. The in­

formation about the pairs (2,2), (1,4) and (4,1) will be needed in Chapter 5.

Lem m a 3.1. Let A e P++(A2 ,n), for n 7  ̂ 12. Then (a) =  £(”2) p or =

S$ i U  = *  A € 0(1,2), (b) For (d,b) G {(2,2), (1,4), (4,1)}, S™ = S ^ b) p =► 
A e O ( a,b).

Proof, (a) was done in [9]. The proof of (b) will be along the same lines. Since 

S c* A » \ ,p  = SA>x,c«p =  s % ?  =  e ^ 6f(P)5Ap} =  S<\ nJ-> we see that for any A' G OA =  

{(Ai, A2), (A2 , Ai), (A i,n—Ai — A2), (A2 , n —Aj —A2 ), (n—Ai—A2 , Ai), (n—Ai—A2 , A2 )}, 

S>?1 = SxJ- Therefore, choosing the proper representative of OA, we may suppose 

without loss of generality, that Ai < A2 < n — Ax -  A2 . We cannot have more than 
two of Ai, A2 , or n — Ai — A2 greater than or equal to n/2, because then at least one 

of the weights A' G OA would have A} +  A'2 > n. Therefore, Ai < A2 < n/2. Define 

s(w) := sin (— ) ■ Then s j j  = S ^ 4)p gives us

(3.4) s(s)s(j/)s(^r) = s(l)s(4)s(5),
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where x = Ai, y — A2 , and z =  Ai +  A2 or n -  Ai -  A2 , by (2 .1 1 ) and the fact that 

s(n—z) = s(z) for 0 < z < n. Now, one of A1+A2 and n -A i-A 2 is less than or equal 

to n / 2 , so choosing that one to be z, we may assume that 0 < £ < y < z <  n / 2 , and 

either z = x + y, or x + y > n/2. Choosing n > 10 for now (we will check the cases 

n =  4 ,5 ,6 ,7 ,8 ,9 later), we then have all arguments ~  and ^  in the

first quadrant of the unit circle, and so s(w) > s(w') w > w' with equality iff 

w — w' .
A direct comparison of (x ,y , z ) with (1,4,5) immediately gives us the left-hand 

side of (3.4) greater than or less than the right-hand side for all but the following 

triples: (i)(l, 4, 5), (ii)(2, 2, z), (iii)(2, 3, z), (iv)(2, 4, 4), (v)(3, 3, z), or (vi)(4, 4, 

4). Notice that (ii) has z =  4 for n > 8 , (iii) has z =  5 for n > 10, and (v) has z =  6 

unless n =  11 (in which case z =  5), or n =  10 (in which case z =  4). We would like 

to eliminate all of the above cases except for (i). For (ii), (iv), (v) and (vi), we will 

show that

(3.5) s(a)s(b) < s(a')s(b'),

whenever a +  b = a' + b' and a < a! <b' <b.

Consider the function f( t )  defined by f 1—>• s(a + t)s(b — t). Then f '( t)  — ^ s(b — 

a — 2t) > 0 iff m < (b — a)/2 < n/2 +  x. But this is true whenever t > 0, since 

then 0 < 6  — a < b + a < n, so 0 <  (6 — a ) / 2 <  n/2 < n/2 +  t. Therefore, 

f '(t) > 0 when 0 < t < (b — a ) /2 , so /  is increasing there. Notice that we have 

0 < a' — a — b — b '<  (b — a)/2, so /(0) < /(o ' — a) =  f(b  — b1). Evaluating this 

immediately gives us (3.5).

Now comparing s(2)s(3)s(5), s(2)s(4)s(4), and s(3)s(3)s(4) with the right-hand 

side of (3.4), we see that we cannot have (ii) with z =  4 (unless n =  12), (iii) with 

z =  5, or (v) with z =  4, because in each case the left-hand side is greater than 

the right-hand side. This also eliminates (v) when z = 6  and (vi), because now 

comparing s(3)s(3)s(6) and s(4)s(4)s(4) with s(3)s(3)s(5), we see that these triples 

will also give us the left-hand side of (3.4) greater than the right-hand side.
At n =  10 and 11, (2,2, z) does not solve (3.4); however, it does at n =  12. At 

n =  4 and 5, (1,4) ^  P "+(A.2 ), so there is nothing to check, and at the heights 

n =  6 ,7 , 8  and 9, we find that = ^(i\)  P ^ e ®P- The above argument

also applies to (a, b) = (4,1) as S {̂ p = =  ^(i,4),cP =  5 (m),p by (2 T0b).
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For (a, b) = (2,2), we need to solve the equation

(3.6) s(rc)s(y)s(^) =  s2 (2)s(4).

In this case we let n > 8 so that all arguments are in the first quadrant, and we can 

assume x < y < z < n/2, ior z = x + y or z — n -  x -  y. We get the following 

choices for (x ,y , z ) : (i)(2,2,4), (ii)(l,y ,z),  (iii)(2,3,3), and (iv)(3,3,3).

(iii) and (iv) imply n =  8 and n =  9 respectively, and evaluating (3.6) at both 

of these, we find that S^p ^  5 ^ 2) p- (“ ) is ^ ie most difficult case. Suppose n > 12. 
Then from the argument for (3.4), we know that s(l)s(5) > s2 (2). Choosing any 

(1 ,y, z) with 4 < y < z < n/2 then gives us s(l)s(y)s(^) > s(l)s(4)s(5) > s2 (2)s(4), 

so for n > 12 and y > 4, (1 ,y ,z)  is not a solution to (3.6). For n =  8,9,10,11, 

there are no solutions of the form (1, y, z), but as in (ii) above, (3.6) has the solution

(1,4,5) if n =  12. If y < 4, then the only possible (1 ,y ,z)  has y — 3, and since n > 8 , 

z = 4. But s(l)s(3)s(4) =  s 2(2) s (4) iff cos(^) =  1, which cannot happen since 

n > 4. Therefore, for n > 8 , the only solution to (3.6) is (i)(2,2,4), so A G 0 (2 ,2).

It remains to check the heights n =  4,5 , 6  and 7. If n =  4, (2,2) ^  P++(A2 ), 

and if n =  5, 6  or 7, we have A G 0 (2 ,2) whenever s j ^  =  p• ^

By the Weyl-Kac character formula [18], we can write ratios of the A^n  -S-matrix 

in terms of the Weyl characters as

(3.7) S  2 x i- ) ,q(n) nJpK

where chp is the Weyl character of the irreducible ./^-module L(0) with highest 

weight /3. The “A—p” is used instead of A because the Weyl characters are written in 

terms of the unshifted highest weights in P ” . Formula (3.7) will be used frequently 

throughout this thesis. When k =  p, we refer to the 5-ratio in (3.7) as the q- 

dimension (or quantum dimension) of A; we write

g(«)
(3.8) QM(A) =

Spp

The q-dimensions for A-i © A 2 are

(3.9) Q&*)( Ap) =  Q W ( \ ) Q ^ ( y )  = S ^ p/ S ^ f p.
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By (2.12), we see that Q(p'’p\ \ p )  G R VA/t € P++, and Q^p',p\X p)  > 1 with equality 

iff A € Op, /i G Op. We also have Q(p,’p\ A'p') =  Q^p>,p\X p)  whenever A' G OA and 

p! G 0 /i. We have defined q-dimensions in terms of weights A =  (Ai,A2 ) where Ai 

and A2 are positive integers; however, in [7], q-dimensions were extended to have 

domain {(Ai, A2) : Ax, A2 € R}. The proof of Lemma 3.2 below treats q-dimensions 

as functions of real vectors.

The following lemma will be used in the next section to find out what happens 

to the small weights (p, (1 , 2 )), ((1 , 2 ), p), (p, (2 , 1 )) and ((2 , 1 ), p) under an automor­

phism invariant a. The information about the pairs (2,2), (1,4) and (4,1) will be 

needed in Chapter 5.

Lemma 3.2. (a) The smallest q-dimension Q ^ ( A) such that A /  p is QW( 1,2), 

and Q W (p )< Q ln\  1,2);
(b) Let n > 12. The smallest q-dimensions Q^n\ A) such that A ^  p and t(A) = 

0  (mod 3), are Q(**)(2 , 2 ) and Q ^ (  1,4), and Q ^ (p )  < Q(n)(2 , 2 ) < <2 ^ ( 1 ,4) with 

equality iff n = 1 2 .

Proof, (a) was done for all in [8]. We will use the same idea to prove

(b). Let A =  (Ax, A2), and suppose that both Ax,A2 > 4. We will first show 

that Q(")(3,3) < Q^(Ax,A2 ). Define p(t) := (Ax, A2 ) +  (—t,t) = (Ax — t, A2 +  <), 

where t € [3 — A2 ,Ax — 3]. Notice that since Ax,A2 > 4, 0 G [3 — A2 , Ax — 3], and 

p(0) =  (Ax, A2 ). Define a function f( t )  := Q ^(p ( t) ) .  Our strategy will be to show 

that /  has no minimum value on (3 —A2 , Ax — 3), and so will take its minimum at one 

of the endpoints of the interval (a minimum must exist because /  is differentiable 

everywhere and is non-constant). Either of the endpoints gives us a weight where 

one of the Dynkin labels is 3, so /(endpoint) <  /(0) tells us Q ^(3 ,b )  < Q^n\ A), 

for some b. By the definition of Q^nK we have

=  8 s i n ( ^ ) s m ( ^ ) s m ( i ^ )

v/3nsin2 ( ^ ) s in ( ^ )
(3.10)

4 sin ( (Ai+A2)7t\
m  V n ) f  / ( A x  -  A2 -  2 t ) n \  / ( A x  + A 2 ) 7T

V^nsin2 (^) sin ( ^ )  V V « J V n
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  „ „ „  l 6 ’r2 s in ( (>,+„Aa)'r) ( (A , 4- \ - i  - 2 i ) j r
(3.12) /  (t) -  ^  s .n2 ( i )  sill(M )cos(

Suppose that /  has a minimum at to, for some t 0 E (3 — A2 , Ai — 3). Then, since

/  is differentiable everywhere, we must have /'(to) =  0 and /"(to) > 0. But

putting to into (3.11) and (3.12), we see that these two conditions can be satis­

fied iff cos =  _ i .  Putting this into (3.10), we get

/(to) =  Q(n)(M(to))
4sin( & ± ^ )  f ( \ 1 + \ 2)ir

' —1 — cos 1 ----
\/3nsin2 (£ ) s in ( ^ )  

< 0 ,
n

since Ai +  A2 < n. But this is a contradiction, because S $  > Spp > 0 for all 

k  E P "+ (A2), so we see by (3.10) that /( t)  must be positive for our choice of A. 

Therefore, the minimum value of /  occurs at 3 — A2 or Ai — 3, either of which gives 

us a weight with one Dynkin label equalling 3. Since Q is constant along simple 

current orbits; ie, Q ^ ( k ' )  =  Q ^ ( k )  for all k '  E O k ,  we can assume the first Dynkin 

label is 3. Therefore, for any A =  (Ai, A2) with Ai, A2 > 4, there exists a b such that 
QW(3,b) < Q W (\).

A similar argument with f ( t ) =  Q^n\3 , t )  shows that among those (3,6) with 

6 > 3, the minimum value of (3,6) occurs at 6 =  3 (or 6 =  n — 6 , but (3, n — 6 ) E 

0(3,3), so has the same value either way). Therefore Q^n\ 3,3) < Q ^ ( A) for 

all A with Ai,A2 > 3. This tells us that the weights k  with smallest q-dimension 

must have one of their Dynkin labels equal to 1 or 2. Among those k  of the form

(1,6), 6 =  4 gives the smallest QW(1,6) such that t(«) =  0 (mod 3), and since 

Q(n) ( l ,6 ) =  Q (")(l,n — 6 — 1), we can define Q ^  on the interval to be [4, n — 5] 

without losing any information. Setting /'(to) =  0 and /"(to) > 0 gives us a 
contradiction as before, so Q(n) ( l ,6) is smallest at one o f 6 =  4 o r 6  =  n — 5 . 

But Q(n>.(l,4) =  Q W ( l ,n -  5), so we can take 6 =  4, and this will also ensure
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t(l,b) =  0 (mod 3). In this way, we also get (2,2) as the smallest weight of the 

form (2,6) with i(2 ,6) =  0 (mod 3). By the proof of Lemma 3.1, we know that 

Q(n)(2,2) < Q^n\  1,4) for n > 12, and Q^12\ 2,2) =  Q^12^(l,4) We will now show 

that

(3.13) Q<n>(p) < Q(n)(2,2) < Q(n)(l,4) < Qt">(2,3) < Q(n)(3,3).

This will be enough, because then Q(n)(l, 4) is smaller than the q-dimension of all 

t(A) = 3  0 weights with one Dynkin label equal to 1 or 2, other than A =  (2,2), and 

Q(n) (2,2) is smaller than the q-dimension of all t(A) = 3  0 weights with one Dynkin 

label equalling 1 or 2 .

If n > 12, then sin ( ^ )  sin ( ~ )  sin ( ^ )  < sin ( ^ )  sin ( ^ )  sin ( ^ ) ,  so this 

gives us Q(")(2,3) < <2^(3,3). To show that Q(n)(l,4) < Q ^)(2 ,3), we need 

sin (^) sin ( ^ )  sin ( ^ )  < sin ( ^ )  sin ( ^ )  sin (^f). But this holds iff c o s (^ )  — 

cos ( ^ )  < cos (^) — cos ( ^ )  , iff cos ( ^ )  < cos (^), which is true for all n > 6 , so

(3.13) holds. The fact that Q^n\p )  is the smallest q-dimension follows from (2.12). 

□

3.2 The Automorphism Invariant Classification

The goal of this section is to show that all automorphism invariants are defined by 

compositions of charge conjugations and cra’s as in the following theorem:

T heorem  3.1. Let M  be an automorphism invariant of © A 2 tP, where p' and

p are coprime. Then M  is one of

(3-14a)

Au£P++

(3.14b) V ^ p =  where aa is given m Table 3.1,

or their conjugations.

We begin by seeing how a acts on the weights (p. (1,2)) and ((1,2), p), and then 

in Proposition 3.1, we will extend a to all weights kv € P++-
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C laim  3.1. Let a be an automorphism invariant. Then

cr(P5(l>2)) =  {CpiAp,p,CpAp(l,2)),

and

CT((l)2),p) =  ( C ^ i A ^ , ( l , 2 ) , C p A p p ) ,  

for some a, b, c, d G {0,1}, w ,x ,y ,z  E { 0,1,2}.

Proof. By (3.1a), a is a symmetry of S^p',p\  and since o(pp) =  pp, we have

e ( p ' , P )  £ ( p ' - p )

Qip,’p)( A,/i) =  =  Q(p>)M A,p))
Spp’pp Sppipp

for all Xp E P++- Therefore, letting (p', (1 , 2 )') := a(p, (1,2)), we get

Q{p,)(p) Q t o ( i , 2 ) '
{ } Q(p,)(p') QW( 1 , 2 )

Since 5 ^  >  SpP  ̂ >  0, VA G P++(A2), t h e  left-hand side of (3.15) is less than or 
equal to 1, and so QhO(i, 2 )' < Q^)( 1,2). By Lemma 3.2, we then have Q ^ \  1,2)' =  
Q W ( p )  or QW(1 , 2 )' =  Q&0 (1 , 2 ).

Suppose for a contradiction that Q ^ ( l ,  2)' =  Q ^\p ) .  Then S ^ 2y p — Spp , and 

by (2.12), this is true iff (1,2)' G Op = {(1,1), (p—2,1), ( l ,p —2)}. But the decoupled 

norm condition (4.3) tells us this can happen only if p | 4, so since p > 4, p =  4 is 

the only possibility for (1,2)' G Op. Therefore, for p + 4, Q ^ ')(l,2 ) ' =  Q W (  1,2). 

Now, Lemma 3.1a gives us (1,2)' G 0(1,2). If p =  4, 0 p  =  0(1,2), so in any case

(1,2)' G 0(1,2). Going back to (3.15), we get Q^p'\p )  — Q^p'\p ') ,  and by (2.12), 

p' G Op.
Therefore,

CT(p, (1) 2)) =  (Cp,Ap,p, CpAp{l, 2))

for some a, 6 G {0, l},u>, x G {0,1,2}, and by the same argument, we get that 

a {( l , 2 ) , p )  =  (£p '^p '(l’2),0p^pP), for some c,d G {0,1} and y ,z  E {0,1,2}. □

Since Cp =  p, we may assume that a =  c and 6 =  d in Claim 3.1, and now, 

letting u =  (c, b), so that Cu = Cp,Cp, we see that Cuoa(p, (1 ,2)) =  (A™,p, A*( 1 , 2 )) 

and 0 “ o<t((1,2),p) =  (Aj(, (1,2), A*p). Putting a' := Cu °cr, a 1 is an automorphism 

invariant that fixes (p, (1 , 2 )) and ((1 , 2 ), p) up to simple current orbits.
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Our next step is to define a" := o~ 1 oal, for some oa as in (3.3) that will be found 

later, and show that a" acts as the identity on the weights (p, (1 , 2 )) and ( ( l ,2 ),p). 

Since oa and o' are automorphism invariants, we will then have an automorphism 

invariant a" fixing the small weights, and the final step is to show that any such a" 

is in fact the identity on P+f-
Since <r'(p, (1,2)) =  1,2)) and a '((l,2 ),p ) = (Aypl(l, 2), A zpp), we can

evaluate

oip'yp) — q (p '# )
* (p ,( l,2 )) ,(p ,( l,2 ))  ~  ‘V (p ,( l ,2 )) ,< r '(p 1( l ,2 ) ) ’

q(p',p) _  qiP'yP)
* ( ( l ,2 ) rf»),((l,2)Ip) -  ° f f ' ( ( l ,2 ) 1p),<7'((l,2),p)>

q(p',P) _  q(p',P)
l ,2 )),((l,2 ),p ) -  °< r '(p ,(l,2 )),a '((l,2 ),p )’

and using (2 .1 0 d), we get the following relations that (w ,x ,y ,z)  must satisfy.

kw 2 + lx 2 + x  =  0 (mod 3);

(3.16) ky 2 + lz2  + y =  0 (mod 3);

kwy + lxz — w — z = 0 (mod 3),

where (k,l) is the level. All solutions to (3.16) are listed in Table 3.1.

C laim  3.2. Suppose that a(p, (1,2)) =  (Ayp, A*( 1,2)) anda = ((l,2),p) =  (A y(l,2),A  

for some automorphism invariant a. Then there is a quadruple a = (an , U2i) ui2 ; U22) 

of integers satisfying (3.2) such that cr(p, (1,2)) =  <ja(p, (1,2)) and cr((l,2),p) =  

cra((l, 2), p), where oa is defined in (3.3).

Proof. Let a =  (a n ,a 2i ,a i 2 ,a 22). Then

a a(p,(l,2)) =  =  (A~,a21p,A“a22(l,2)),

and cra((l, 2),p) =  (A~,a u (l,2), A~ai2 p). Therefore, we can put a =  (—y, —w,

— z , —x) to get a =  CTa at (p, (1,2)) and ((l,2),p). To show that this aa is an 

automorphism invariant, we must show that the a ^ ’s satisfy (3.2), where an  =  —y, 

a2i =  —w, a i2 =  —z, and a22 =  —x. But (w ,x ,y , z ) must satisfy Equations (3.16), 

which gives us the relations ka\i +  la ^  — <122 =  O3 , ka\x +  la\ 2  — an  = 3  0 and 

fca2ia n  +  10.2 2 0 - 1 2  +  a2i +  a i2 = 3  0, and these in turn give us (3.2). Therefore, 
a =  (—y, — w, —z, —x) is our quadruple and it gives an automorphism invariant. □
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Earlier in this section, we defined a' — Cuoo, for any automorphism invariant a. 

Now define a" := a~l o a'. Then a” is an automorphism invariant and so commutes 

with Cu for it =  (1,1). Since a' satisfies the hypothesis of Claim 3.2, we then have 

o"(p,(2,1)) =  o"(Cpip, Cp(l, 2 )) -  o " o C ( 1«1)(p ,(l,2)) =  C W o a " ( p , ( l , 2 ) )  =

(1 , 2 )) =  (p, (2 , 1)), and similarly, a"((2 , l),p) = ((2 , l),p ), so a" fixes all of 

the small weights. It now remains to show that a" is the identity.

Proposition 3.1. Let a be an automorphism invariant such that a fixes the weights 

(p, (1,2)), ((l,2 ),p),(p , (2,1)) and ((2, l),p). Then cr(Ap) =  Ap for all Ap € P ^ f .

Proof. Let o{kv) =  (kV ). Then by (3.1a) and the fact that o sends (p,p) and 

(p, (1,2)) to themselves, we have for any kv G P+f,

^  o ( p ') c b ' .p )  qi P’P ) q(p ') q (p)
(1,2) ,** =  S PK _ l3(l,2 ),t/ _  J (p,(l,2)),ret/ _  J (p,(l,2)),reV _  b pK> _ J (l,2 )lt/
c (p ) o (p ') q(p) q(p',p) qiP',P) c(p ') o (p)
Jpi/ Opy D P,P,KV ° p p ,K 'v ’ p n ' ° p u '

A similar calculation carries through for all of the small weights, so we have

(3.17)
q(p)

(1,2),f
qiP)
a (l,2),«/

qip)
(2,1),!'

qip)_ *(2 ,1 ),* /

q(p)Opv q ip)  ’ 
° p v '

c-(p)d p v c (p )
a pv'

qip')  
(1,2),re

qiP')
* (1 ,2 ),* '

qip')
(2 ,1),k

qiP')
_  * (2 ,1 ) ,re'

o (p ')Opn c (p ') ’
pre'

o (p ')
&PK

c (p')
pre'

where ( k ' v ' )  =  a{nv).

By Theorem 1 of Chapter VI of [3], we can write the Weyl character chp for a 

highest weight f3 G P ” 1 as a polynomial in ch(10) and cfyop)- Therefore, for any 

weight A G -P++,

(3.18) chX- p { - 2 m - )  = Px (chnfi){ - 2 m - ) , c h ^ u { - 2 m - ) )  .n \ ' ’ ' n v ' n /

Now by (3.7), we can write
g ( n )  g (n )

=  ch{0:1)(-27ri^), and =  c/l(1]0)(-2 7 r^ ),coo v ' n q\'1) v ’ ' n
°PP

so we have

o(p') /  c(p') c(p') \  /  c(p') c(p') \  0 (p')
*Vre _  p { °(l,2),re (2,1),re 1 _  p / (1,2),re' (2,1),re' 1 _  * A(C/_ p  I i   p

nM _  A /-a 5 t
c (p') A o (p ') ’ o (p') A c (p') ’ c (p') c (p ') ’° p K  \  ° p K  &pK f  \  O ntc/ O nict /pK' pK' /  pK'

l P+ is the set of unshifted highest weights {A = (Ai, A2) € Z2 : 0 < Ai, A2, Ai +  A2 < n -  2}

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



by (3.17), and a similar calculation applies to S $ / S $ .  Therefore, for any A/z, k v  G 

P++i we have
c(p'-p) o(p'Mp) q(P') S {p\ S?*}  ,
J \ p , n v  _  d \ K d y y  _  j A k ' . j w ’ _  X u , k ' v '

o (p ' , p )  q (p ' ) q (p )  c ( P ' )  ’ c ( P )  c l P ' . P )  ’
Opp,KU J p K  V p v  J pKi J p u i D p p ,K 'v '

where k ' v '  =  < j ( k v ) .  Multiplying both sides by and summing over all A pi G

P++, we get, by unitarity of S^p',p\

1    &k ' v ' , k u

q (p ',p ) q (p ',p )
Opp,KU °pp,K<u'

Therefore, we must have k ' v '  =  k v ,  ie, o { k v )  —  k v .  □

Since we defined a" = a~l o Cu o a (where a is the original automorphism 

invariant we started with), and a" satisfies the hypothesis of Proposition 3.1, we 

have shown that any automorphism invariant a has the form a — Cu o oa, where 

Cu is a charge conjugation and oa has a =  (an , «2i, a i2 , <222)1 f°r some quadruple a 
listed in Column B of Table 3.1. Therefore, the modular invariant partition function 

associated to M  is

Z  = Y s ch^ chi7 *lCu cr0( A/i)’ 
A/i

for the above a and u G {(0,0), (0,1), (1,0), (1,1)}. In terms of matrices, this means 

that M  is the matrix product of one of I, c I, I c , or CI C with some I A defined by 

a aa from Table 3.1.
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Solutions to (3.16) and their 

associated simple current invariants aa

A B A B A B

III»**«a

oIII k = l = 1 k = 1 , 1  = 0

(0 ,0 ,0 ,0 ) (0 ,0 ,0 ,0 ) (0 ,0 ,0 ,0 ) (0 ,0 ,0 ,0 ) (0 ,0 ,0 ,0 ) (0 ,0 ,0 ,0 )

(-1 ,0 ,-1 ,1 ) (1 ,1 ,-1 ,0 ) (0 ,0 ,-1 ,0 ) (1 ,0 ,0 ,0 ) (0 ,0 ,-1 ,0 ) (1 ,0 ,0 ,0 )

(1 ,0 ,-1 ,-1) (1 ,-1 ,1 ,0 ) (0 ,-1 ,0 ,0 ) (0 ,0 ,0 ,1) (1 ,-1 ,0 ,-1) (0 ,1 ,1 ,1)

(1 ,-1 ,-1 ,1) (1 ,-1 ,-1 ,1 ) (0 ,-1 ,-1 ,0 ) (1 ,0 ,0 ,1) (1 ,-1 ,-1 ,1) (1 ,-1 ,-1 ,1 )
(-1 ,-1 ,-1 ,-1 ) (1 ,1 ,1 ,1) (1 ,1 ,1 ,1 ) (-1 ,-1 ,-1 ,-1 ) (-1 ,-1 ,0 ,1) (0 ,1 ,-1 ,1)

(0 ,-1 ,0 ,0 ) (0 ,0 ,0 ,1 ) (1 ,1 ,1 ,-1) (-1 ,-1 ,1 ,-1) (-1 ,-1 ,-1 ,-1 ) (1 ,1 ,1 ,1)

(-1 ,1 ,1 ,!) (-1 ,1 ,-1 ,-1)

k = 0 ,l = - 1 (-1 ,1 ,1 ,-!) (-1 ,1 ,1 ,-!) k = - 1 , 1  = 0

(0 ,0 ,0 ,0 ) (0 ,0 ,0 ,0 ) (0 ,0 ,0 ,0 ) (0 ,0 ,0 ,0 )

(-1 ,0 ,1 ,-1) (-1 ,1 ,-1 ,0 ) k = l = - 1 (0 ,0 ,1 ,0 ) (-1 ,0 ,0 ,0 )

(1 ,0 ,1 ,-1 ) (-1 ,-1 ,1 ,0 ) (0 ,0 ,0 ,0 ) (0 ,0 ,0 ,0 ) (1 ,1 ,1 ,1 ) (-1 ,-1 ,-1 ,-1)

(0 ,1 ,0 ,0 ) (0 ,0 ,0 ,-1) (0 ,0 ,1 ,0 ) (-1 ,0 ,0 ,0 ) (-1 ,1 ,1 ,-!) (-1 ,1 ,1 ,-!)

(1 ,1 ,1 ,1 ) (-1 ,-1 ,-1 ,-1 ) (0 ,1 ,0 ,0 ) (0 ,0 ,0 ,-1) (1 ,0 ,0 ,-1 ) (0 ,-1 ,1 ,-1 )

(-1 ,1 ,1 ,-!) (-1 ,1 ,1 ,-!) (0 ,1 ,1 ,0 ) (-1 ,0 ,0 ,-1) (-1 ,1 ,0 ,1) (0 ,1 ,-1 ,-1 )

(1 ,-1 ,-1 ,1 ) (1 ,-1 ,-1 ,1)
k = 1 , 1  = - 1 (1 ,-1 ,-1 ,-1) (1 ,-1 ,1 ,1) k = - 1 , 1  =  1

(0 ,0 ,0 ,0 ) (0 ,0 ,0 ,0 ) (-1 ,-1 ,-1 ,1) (1 ,1 ,-1 ,1) (0 ,0 ,0 ,0 ) (0 ,0 ,0 ,0 )
(0 ,0 ,-1,0 ) (1 ,0 ,0 ,0 ) (-1 ,-1 ,-1 ,-1) (1 ,1 ,1 ,1 ) (0 ,0 ,1 ,0 ) (-1 ,0 ,0 ,0 )
(0 ,1 ,0 ,0 ) (0 ,0 ,0 ,-1 ) (0 ,-1 ,0 ,0 ) (0 ,0 ,0 ,1)
(0 ,1 ,-1,0 ) (1 ,0 ,0 ,-1 ) (0 ,-1 ,1 ,0 ) (-1 ,0 ,0 ,!)

Column A: (w , x ,y ,z )  satisfying (3.16)

Column B: (an , o2i, <*12,^ 22) =  { - y , - w , - -z , —x ) as in Claim 3.2

Table 3.1: Solutions to (3.16) and their corresponding simple current invariants aa, 
where all equivalences are taken modulo 3
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Chapter 4

The p p -Couplings

The purpose of this chapter is to find the possible pp-couplings for A2y® A 2)P; that 

is, those Ap € P+_f such that MpPtXll /  0 or M XP)PP /  0. The two main tools we 

will need for this are the norm condition (4.1) (T-invariance) and the parity rule

(4.5), both of which we will “decouple” so that we can use the results from the A 2  

classification as much as possible (by “decoupling”, we mean to take the result for 

A 2 ,p' © A ‘2 ,p and get the corresponding result for each of A2̂  and A.2,p).

The decoupled versions of T-invariance and the parity rule; ie, (4.9b) and (4.10), 

are almost the single A 2 versions of these, and they will give us already a very small 

set of possibilities for the pp-couplings. Putting these back into (4.9a), we regain 

some of the information we lost in the decoupling and narrow down the choices even 

further. Finally, in §4.3, we eliminate all but the pp-orbits as possible pp-couplings, 

other than at the exceptional levels.

4.1 The Norm Condition and the Parity Rule

By T-invariance, we have that ( M T ^ ^ jA ^ y  =  (T^p' M )  XfltAy f°r any Ap, X'p' e
i(p'.p) Y'1 rp{ff,p) ;

: ++ ku,\'p 2- , Kl/
\! .J

P + + ,  SO GpP'+P M Xp)KUT KM X,fi, =  J 2 K l/eP^ p T (x Since T is diagonal, 
the above sums have only one nonzero term each: at k v  — A'p' and k v  = Ap 
respectively, so we get MA/iiAVT ^ f } v  =  T ^ ^ M Ap)Â -. If M Xp,yp/ ^  0, we can 

cancel the M  terms to get

rp{p')rp(p) _ rp(P')lT'(p)
-‘A'A'-VV _  AA ’ 

where T^fj and are A2<p> T-matrices, and T ^ ,  and T $  are A 2,p T- matrices.
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Define (A) := A? +  A1A2 +  A2 =  3^-. Then, putting in the definitions for T, we 

have
ro ■/ W  x  ^  W  M  W 1 eXp[2 „ { — + = 1 ,

(Xf)which tells us that the sum inside the braces must be an integer. Therefore, + 

^  =  3^ + 3̂  (mod 1 ), so we get the norm condition

(4.1)

a v  ^  0  =*•

A2 +  AxA2 H- A2 Mi +  M1M2 +  M2 _  A^2 +  a ; a ^  +  A22 ^  p [2 +  Mi M2 d- M^2
p' p p' p

(mod 3).

We can now decouple (4.1) so that we can use the results for one copy of A 2  from

[9]. Multiplying (4.1) by p', we have

(4.2) (A) +  s  (V) + ? M  (mod 3„').
P P

SO

(A) -  (A') =  p '^ L L l M -  (mod 3p')- 
P

But (A) — (A') E Z, so since gcd(p',p)=l, we must have (p1) -  (p) =  0 (modp). 

Dividing (4.1) by p', we get (A) — (A') =  0 (mod p'), so we have the decoupled norm 

condition

(4.3)

A2 +  A1A2 +  A2 =  A' 2 +  A(lA(> +  A' 2 (mod p1) p2 +  M1M2 +  M2 = P? Mi M2 4“ M? (niod p).

Notice that while (4.3) is a simplification of (4.1), they are not equivalent: (4.3), 

while easier for us to use, is weaker than (4.1). Also, the equations (4.3) are not 

exactly T-invariance for A2 at height p' and p respectively: T-invariance for A2 at 

height n  is taken mod 3n (so the difference is a factor of 3 in the modulus).

We now introduce the Galois selection rule, or parity rule, for A2 © A-}. As for 

A \ , the parity rule for A2 0  A2 comes from a Galois symmetry obeyed by the S- 

matrix; however, the A% Galois permutation is not as simple to find as for Ax, and 

we will not need to use it here, (see [5] for more about Galois symmetry in rational 

conformal field theory). Unlike T-invariance, the A2 0  A2 parity rule decouples 

completely for any choice of (p',p), so it is exactly two copies of the A2 parity rule.
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Define, for any £ coprime to 3p'p, a function e i : P++ -» {±1}, as follows:

where e(p'p\ l )  is a constant, which equals ± 1 , and

+ 1 , if +  { ^ 2}n < n,

- 1 , if { £ \ \ } n  + {^A2}n > n

where {x}n is the unique integer 0  < {x}n < n, that is congruent to x  (mod n). 

et{\n) is called the parity of A/i (see [9]). The parity rule gives us, for any £ coprime

(4.4) =  e^(A/i)e/( K u ) M [n]^  [t l / ], where [£\}[£p], [ £ k \ [ £ v \  E P ^ f .

Equation (4.4) tells us that M \^ KU = ±M[eX][tfl],[tK][tu]- If ^  0 , then, since
every entry of M  is nonnegative, we cannot have M \^ KU = — ,[&,][&,]. There­

fore, if M \h,kv + 0 , we must have M \^ KU = j, and so we get the

Galois selection rule

(4.5) M x p ,k u  ±  0 = >  e e ( X p )  =  e t { K v ) ,

for any £ with gcd(£, 3p'p) = 1. To decouple (4.5) like we decoupled the norm 

condition, we set ê (A//) =  ei{nv), and we want to show that for any £ coprime to 

ip ', (̂A) =  e f  \ k), and for any £ coprime to 3p, e^f\p) =  e f \ v ) .  We have

Let £\ and £ 2  be any integers such that £\ =  £ 2  (mod 3). Then, by the Chinese 

Remainder Theorem, we can find an £ such that

We will take £\ to be an integer coprime to 3p. Then (mod 3), so t \  =  ±1

(mod 3). If £\ =  1 (mod 3), then let £ 2  = 1 , and if €1 =  -1  (mod 3), then let

to 3p'p:

ep,p(£)e{f )(A)ef)(/i) =  epp'(£)e{f '( k ^ J V )

by (4.5), so

(4.6) ^(A)e^(/i) =  e f  \K ) e f \ v ) ,  for any £ coprime to 3p'p.

(4.7) £ = £\ (mod 3^'), and I  =  £ 2  (mod 3p).
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i 2  — —1. Putting these l\  and 12 into (4.7), we see that the I we get is coprime to

3p'p, and so we can put it into (4.6).

Consider e f \ p )  and e^(z'). If £2 — 1, then, since £ = l 2 =  1 (mod p), {£pi}p + 

{ ^ 2}p =  {^2 P\}p + {hP 2 }p =  {a*i}p + {^2 >p =  M1 +  M2 <P, since p i, p2, M1 +M2 < P>
and the same calculation holds for z/. Therefore, in this case, we have e f \ p )  =

4 * V ) =  L
If £2 =  — 1, then { l p i } p + {lp.2}p =  {—Ml}? +  {—M2V  To evaluate these, we see 

that 0 < p i ,  p2 < P, so —p  < - p i ,  —M2 < 0, and so 0 < —p i+ p , - p 2 + p  < p.  Then, 

{-Mi}? +  {-M2}? =  (-Mi +P) +  ( M2 + p )  = 2p -  (mi +M2) > P• Therefore, in this 
case, e f \ p )  =  =  — T Putting the fact that e f \ p )  =  e f \ u )  into (4.6), we
see that, for any £\ coprime to 3p' , e^(A ) =  e f j { n ) .  This argument is symmetric 

with respect to l \  and £2, so reversing them, we also have e f f ( p )  = e f f ( u ) ,  for any 

12  coprime to 3p. We therefore have the decoupled Galois selection rule,

(4.8) + 0 =*> e f  \ \ )  = e f  \ k) and e f \ p )  = e f \ v ) ,

for any I  with gcd(£, 3p'p) =  1. Equation (4.8) is equivalent to (4.5).

Now suppose that Ap is a (left) pp-coupling; ie, /  0. We can put X'p'  = pp

into (4.1) and (4.3) to get

^\p,pp 7̂  0 — V

(4.9a) Aj +  AtA2 + ^  +  +  PiW + A  s  1 1  (m
op' op p p

(4.9b) A? +  AiA2 + \ 2  = 3 (mod p')\ p i  +  p ip 2 -f p\  =  3 (mod p).

(4.9b) is Equation (4.3) of [9], and is weaker than (4.9a).

We can put Ap and pp into (4.8), so e f  \ \ )  =  e f  \p ) ,  and e f \ p )  = e f \ p )  for 

any £ coprime to 3p'p. Now, for n =  p' or p, e f \ p )  =  e ^ ( l ,  1) =  {£}n +  {£}n =  

2{£}n. Therefore,

e f \ p ) = [  +1> l f 0 <
[ -1 , if f  < {£}n < n
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But e^/)(Ai,A2) =  e f \ p )  and e(f \ p i , p 2 ) =  e f \ p )  by (4.8), so we have 

0 < {£}P' < {^Ax}p' +  {/Aa}„ < ^
n'
— < {£}p' ==> {^Ai}p/ +  {^A2}p' > p;;

(4.10)
0 <  { £ } p <  |  = >  { f y » i } p +  { ^ 2 } p  <  p  

— <  {^ }p  — v  {£pi }p  +  { ^ 2 }p  >  P-

Equation (4.10) is (4.1b) of [9]. Equations (4.9b) and (4.10) are what we need to 

get Proposition 1 of [9], which will give us Lemma 4.2, our first list of possible 

pp-couplings.

4.2 Searching for the Possible pp-couplings

We now have (4.9b) and (4.10) as in (4.3) and (4.1b) of [9], so we are in a position 

to write down some possible pp-couplings. We will need the following lemma, which 

is Proposition 1 of [9].

Lem m a 4.1. The set of all solutions A to (4-9b) and (4-10), is:

(a) for p' = 4  1,2,3, p' ^  18: A 6  Op;

(b) for p' = 4  0, p' ^  12,24,60: A € Op U 0(p"), where p" =  (2-j^, 2-j^).

(c) for p' =  12,18,24,60, respectively, A lies in

Op U 0(3,3) U 0(5,5)

Op U 0(1,4)

Op U 0(5,5) U 0(7,7) U 0(11,11)

Op U 0(11,11) U 0(19,19) U 0(29,29),

and the set of all solutions p is the same with p instead of X and p instead of p'.

We can put these choices into (4.9a) to further narrow down the possibilities. 

This is done on a case-by-case basis, but is made much simpler by a few observations. 

First, we can discard many cases due to the condition that p' and p be coprime. 

Then, the symmetry of the norm condition itself means we can cut the cases in half.
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Also, for those A such that Ai =  A2 , we have that (AX) = (A2 A). Since the only 

weight appearing in Lemma 4.1 such that Ai A  A2 is (4,1), this greatly reduces the 

number of cases we have to check.

The result of putting all of the pairs into (4.9a) is the following lemma.

Lem m a 4.2. Let p' and p be coprime. Then the only pairs A/i such that A and p

each satisfy (4-9b) and (4-10), and A/i satisfies (4-9a) are:

(a) (i) p' = 1 2  1,7,10 and p = 12 2,5,11: A/i =  (Alp,p, Aj,p), i = ± j  = 0,1,2;

(ii) p' = 1 2  3,6,9, and p = 1 2  ± 1 ,± 2 ,± 5 ; p', p /  18; A/i =  (Alp,p,p), i = 0,1,2;

(b) (i) p' = 1 2  1,5,7,11 and p = 1 2  0; p ^  12,24,60: A/i =  (p,A?pp), or A/i = 

(,p,A?pp"), j  =  0,1,2;

(ii) p' =i2 1,7 and p = 1 2  8 , or p' = 1 2  5,11 and p = 1 2  4: A/i =  (Alplp ,A lpp), or 

A/i =  (Ajp,p,A)pp"), i = 0,1,2;

(in) p' = 1 2  3,9 and p = 1 2  4 ,8 : A/i =  (Alp,p, p), or A/i = (A^p, p"), i = 0,1,2;

(c) (i) p' — 18 and p = 1 2  1, 7: A G Op, p — p;
(ii) p' = 18 and p = 1 2  5,11: A G Op and p =  p, or A G 0(1,4) and p =  App, 

for i = 1 , 2 ;

(d) (i) p' =  12 and p = 1 2  1,7: A G Op 1)0(5 ,5) and p = p, or A G 0(3,3) and

P = ApP> f° r * =  2;
fu) p' =  12 and p =i2 5,11: A G Op U 0(5,5), p =  p;

(e) p' = 24 and p =n  1,5,7,11: A G 0 p  U 0(5,5) U 0(7,7) U 0(11,11), p = p);

(f)p ' = 60 a n d p = X2 1,5,7,11: A G 0pU  0(11,11) U 0(19,19) U 0(29,29), p = p),

plus a symmetric list, where p' and p are reversed, A and p are reversed, and p" =
, £ = 2  £_-_2 \
\ 2 ’ 2 >■

Proof. Because p' and p are coprime, Lemma 4.1 gives us the following list of 
choices for A p

(4.11a) p' = 4 1,2,3, p = 4  1,2,3, p',p + 18 : A G Op, p G 0p;

(4.11b) p ' = 4  1,3, p = 4  0, p V  18, p ^  12,24,60 : A G Op, / iG 0 p U 0 p " ;

(4.11c) p' = 18, p = 4  1,3 : A G Op U 0(1,4), p G 0p;

(4.11d) p' = 12, p = 4  1,3 : A G Op U 0(3,3) U 0(5,5), p G Op;
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(4.lie ) p' =  24, p = 4  1,3 : A G Op U 0(5,5) U 0(7,7) U 0(11,11), M G Op;

(4.I lf) p' =  60, p = 4 1,3 : A G 0 p  U 0(11,11) U 0(19,19) U  0(29,29), p G Op.

We first test the possible Ap from (4.11a): suppose p' = 4  1,2,3, p = 4  1,2,3, and 

p', p /  18. Then (A,p) can be one of nine pairs, (A,p) G {(p,p), (p, App), (p, A2p), 

(Ap'p, p), (Ap,p,App), (Ap,p,A2p), (A2,p, p), (A2,p, App), (A2,p, A2p)}. Notice that 

if (a) =  (/3), then putting a  0 1  j3 into (4.9a) will give us the same information. 

Calculating (p), (Ap), and (A2p), we see that (p) =  3, (Ap) =  (A2p). Therefore, we 

can test in classes of pairs, as follows: (1) test (p,p); (2) test (p, App) to get the cases 

(p, App) and (p,A2p); (3) test (Ap>p,App) to get the cases (Ap<p, App), (Ayp, A2p), 

(A2,p, App), (A2,p,A2p), and (4) to get (Ap/p,p) and (A2,p,p), notice that this case 

is symmetric to (2 ).

(1) is trivial. For (2), we get ^  7  +  § (mod 3)’ or |  + P  +  f  =  +  f
(mod 3), so (p, App) satisfies (4.9a) iff p =  0 (mod 3). Therefore, if p' = 4  1,2,3, 

p = 4  1,2,3, and p = 3  0, A = p, p € {Ap/p, A2p}. But we also have (A, p) =  (p, p) 

from (1), so (A,p) G (p, Op). From this, we also automatically have (4), which tells 

us if p = 4  1,2,3, p' = 4  1,2,3 and p' = 3  0, then A G Op, p =  p. Testing (Ap>p, APp), 

we see that the pairs in (3) will satisfy (4.9a) iff p' + p  =  0 (mod 3). This means 

that either p' = 1 (mod 3) and p =  2 (mod 3), or vice-versa, since p' = p = 0 (mod 

3) violates the coprime condition. Again, we add (A, p) =  (p, p) because this also 

satisfies (4.9a) for such p' and p, and so we have (A, p) =  (p, p), or A, p G {Ap/p, A2p}. 

Putting these congruence conditions together with p', p = 4  1,2,3, we have Lemma 

4.2(a).

Lemma, 4.2(b) is the longest case, so we will do it in the most detail. Suppose 

that p' = 4 , 1 , 2 ,3, as in (4.11b), so A G Op, p G Op U Op". Suppose first that 

both A and p are in Op. From the proof of (a), we get Ap =  pp with no further 

conditions, A =  p, p G {Ap<p,App} with the added condition that p = 3  0, and 

A, p G (Ap/p, App} with the added condition that p' +  p = 3  0.

If A G Op and p G Op', we need to test the following pairs: (p, p"), (p, App"), 
(Ap/p,p"), and (Aptp,App"). For (A, p) — (p.p"), we need no further conditions on 

p' and p. For (A, p) =  (p, App"), we need also p = 3  0, and for (A, p) =  (App, p"), we 

must have p' = 3  0. Finally, (A,p) =  (Apip,App") satisfies (4.9a) iff p' + p  =  0 (mod 
3).
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Putting together the congruence we found with p' = 4  1,2,3, and p = 4  0, we get 

the following list of choices mod 1 2 :

(1) p' = 12 ±1, ±3, ±5 and p = 1 2  0 ,4 ,8 , p ^  12,24,60: (A, p) E {(p, p), p, p"});

(2) p' = 1 2  ±1, ±3, ±5 and p = 1 2  0, p 7  ̂ 12,24,60: A =  p, p E {App, A2p, App", A2p"};

(3) p' = 1 2  1,7,10 and p ee12 8 : A E {Ap/p, A2,p}, p E {App, A2p, App", A2p"});

(4) p' = 1 2  5,11 and p = 1 2  4: same as (3);
(5) p ' = 1 2  3,9 and p = 12 0,4,8, p /  12,24,60: A E {Ap/p,A2,p}, p =  p".

Eliminating cases which violate gcd(p',p)=l, and putting together the overlapping 

cases gives us Lemma 4.2(b).

In Lemma 4.2(c),(d),(e),(f), p' =  0 (mod 3), so by the coprime condition, we 

can eliminate any cases which require p =  0 (mod 3) (which is about half of the 

remaining cases). From the proof of (a), we know that this would eliminate any 

(A,p) with A E Op and p E {Ap, A2p}. Therefore, for all of (c)-(f), we have only 

the possibility that A E dp, p =  p, for A, p E Op. All that remains now is to check 

the special cases not involving Op.

Putting (4.11c) into (4.9a), we find that the additional condition p =  2 (mod 3) 

gives us the choices A E 0(1,4) and p E {App, A2p}; (4.11d) gives us A E 0(5,5) 
and p =  p, and if p =  1 (mod 3), A E 0(3,3) and p E {App, A2p); (4.11e) gives 

us A E Op U 0(5,5) U 0(7,7) U 0(11,11) and p =  p with no further restrictions on 

p, and (4.11f) gives A E Op U 0(11,11) U 0(19,19) U 0(29,29) and p =  p with no 

further restrictions on p' and p. □

4.3 The pp-couplings

We now use Lemma 4.2 to further narrow down the possible pp-couplings. Through­

out this section (and also in the next chapter), we will use Lemma 4.3 below, which 

is Lemma 4 of [14].

Define V r { p ' ,p )  =  {Ap E P++ : M Ki,iAp /  0, for some k u  E P + + }, and J r  =  

{ApiAp . M ^ 1  pjp ppp /  0}. V l ( p ' , p )  and ^  are defined similarly. We will often 
write V r ,  V r ,  J r , JT for short.

Lem m a 4.3. faj For each Ap E P+ + , de/me sL(A, p) =  M KVtPp S ^ l ;  sR(A, p) = 

m pp,^s \h ’kI- Then S i(A ,p),sK(A,p) > 0 , and aL(X,p) > 0 iff \ p  <E VL and 
sR(Xp) > 0 iff Ap E P r ;
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(b) M AapAtp pp — 1, for oil A p/ Ap  E J l ,  and M p p AcpAdp 1> f op all A pi A p ^ J r ,

(c) For oil a, b, c, d such thot ITAapAbp,AcpAdp ^^Aa\ Abp,AcKAdv AIxp^ ,̂/, 

for all A/i, ki/ E P++- In particular, M AaXAbptKU ~  M\p.,nv = M\p,AcKAdu> forall 
A ap,A hp 6  J l ,  Apl Adv E J r .

(d )  AplAp E J l  at(X) +  bt(p) = 0 (mod 3), for all A/i E V l ,  a n d  Ap,Ap E 

J r  •<=>• c t( K )  + d t ( v )  = 0 (mod 3), for all k v  E V r ;

(e) Suppose that M\ptPp ^  0 A/i E Jl(pp) and MpPtKll ^  0 k v  E

Jr (PP) .  Then VL = {Xp E : at(X) + bt(p) = 3 0, VA£A* E J L} and V r  = 

{ k v  E P+_f : c t(K )  + d t ( v )  = 3 0, VAplAp E J l} -

Proof, (a) We evaluate MS^P',P̂ = S ^ ' ^ M  at (A/i,pp), so

E ju. o ( p »  _  W  c(p',p) jifM\p,,KvdKl,,pp — 2 ^  °\p,Kl,1VJW,PP-
KV KV

The left-hand side is nonnegative since S^'pp > 0 for all k v  E P+_|? and M \ptK„ E 

Z>o, and the right-hand side is sl(X, p). M \p^ v > 0 for some k v  E P + f  iff A/i E V l,  
so we get s l (X, /j,) >  0 with strict inequality iff A/i E  V l - Evaluating MS^P ,P  ̂ =  

S J 'P  'M at (pp, A/i) gives the result for s r ( X , p) .

(b) By unitarity of S^p',p\  5-invariance is equivalent to M  = S^p',p̂ * MS^p',p\  

By the positivity of M, Equations (2.10d), and the triangle inequality,

A^AapAbp,pp \AIAa pAb p,pp\

= i E
\p.,KV

= i E ^ s v S}\
\p,KV

< \q(v',vY yr q(p',p)\
Xp,KI/

— s(pl’p')*M\ <?(p»~  Z j  PpAp lvl^P^^K,v,pp
\p,KU

= (SV-pYMSV^)pp,pp = Mpp,pp = 1 .

Therefore, M AapAbptpP E {0,1}. But MAapAbptpp ±  0 <=*• T* E J L, so

MAapAbp,pp — 1 ^ ^  Ap,Ap E v7l- But M AapAbp pp =  1 <—> AIAapAbp pp — MpPtPp, 
so we must have =  1 whenever M\p,KU J  0  for some k v  e P++.
This gives us (6 ), and that Aap,Abp E J l iff at(A) +  6t(/i) =  0 (mod 3) VA/i E P l, 
which is (d).
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(c) Let A “,A bp e J l-  Then

M A aXAbp,Ku =  ^ 2  S % 'x A bp ,a ftM ot^ ^ s S % ^ l
aft^S

= E e " “ '“*,“>+W(',»sX ,5 M„<,,75s ^ >
a0,-y5

But by the proof of (b), at(a) +  bt(0) = 0 (mod 3) whenever Ma/g)7(5 0  0, so the 

exponential term is just a “1” whenever there is a nonzero term in the sum, and so 

we have (c).

(d) This was done in the proof of (b).

(e) By 5-invariance, (MS^p',p))\p,pp =  (S(-p'’r iM ) \^ pp, for all Ap, G P++, so

^  M Xp,aftS^a'PJn =
aft aft

— \  '  q(p' iP) iu[ ,
2 ^  \n ,A a pAb p A a pA b P,PP

a,b:AaAbeJL

E q(p',P)
X p,AapAbp’>

a,b:AaAbeJL

by (b). By (2.10d), this is equal to Yab- so we have

(4.12) E E
a/3 a,b:AaAbeJL

If Ap G "Pt, then since S^ft’̂ p > f ° r  ah af f  the left-hand side of (4.12) is nonzero 
iff at(A) +  bt(fi) = 0 (mod 3) VA“, Ap G J l (otherwise, we get the sum of the third 

roots of unity, which is 0). Therefore, Ap G Vl <=$■ at(X) + bt(fi) =  0 (mod 3). □

C orollary 4.1. J r and J l are abelian groups.

Proof. The set of all simple currents is a finite group A under composition, 

with identity A Qp,A®. Suppose that AaplAbp, Acp,Adp G J l -  Then {A0p,Abp)(AcplAd) e  

J L, because A ap,AbpA cp,Adp = Aapt cAbp+d, so M Aa+c p A b+dp >pp  =  M A a { A c p ) A b { A d ) p > p p  = 

M AcpAdp,pp — Mpp,pp, by 4.3(c), and the same argument applies to J r .  Therefore, 
J l  and J r  are closed under composition, and hence are subgroups of A. They are 
abelian because Apf cAp+d =  Apt aAp+b. □

We will need to use some properties of the Perron-Frobenius eigenvalue, which 
is described in the following theorem.
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T heorem  4.1. (Perron-Frobenius Theorem) [15] Let B  be a square matrix with non­

negative real entries. Then there is an eigenvalue r(B), called the Perron-Frobenius 

eigenvalue, such that r(B) is real and nonnegative, and for any other eigenvalue s 

of B, r(B) > |<s|.

For any square matrix M, we can simultaneously permute the rows and columns 

to write M  as a direct sum of indecomposable submatrices as

where by A  ~  B, we mean that A  is some permutation of the rows and columns 

of B. By an indecomposable submatrix B , we mean that we cannot further write 

B  = B\ (& B'2 - As an example, take

Bi  0  0  \

(4 .1 3 )

0  ••• Be

I  1 0  1 0  1 \

(4.14)
0 2 0 3 0 

M =  1 0  6 0 1

0 4 0 5 0

We can then write

(4.15)
1 6  1 0  0 

M ~  1 1 1 0  0

0 0 0 2 3

/  i 1 l \
so M  ~  B\ © B-i, where 1 6  1 , and j92 =

\ i i i )
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Of course, the order in which the B f  s appear in (4.13) is not unique. For M  

a modular invariant, we will always take B\ to be the block containing MPPsPP. 

Since each Bi is a submatrix of M, each B{ has nonnegative real entries, and so 

by Theorem 4.1 has a Perron-Frobenius eigenvalue r(Bi). Let B  be any Bi as in

(4.13), and suppose B  is also symmetric (which we will find later is always the case 

for an indecomposable submatrix of a modular invariant). Then we further have 

the properties:

(4.16a) m in y ^  B ^  < r(B) < m a x ^  B at,;
a a 11b b

(4.16b) max B aa < r(B).
a

Define B(m,£) to be the I x I  matrix

(4.17) B ( m , £ )

y m  ••• m  j

We will find later that for any modular invariant M ,  most of its submatrices Bi will 

of the form B (  1 ,1 ) .  With these properties of the Perron-Frobenius eigenvalue, we 

get the following two lemmas:

Lem m a 4.4. [9] L e t  M  be a m o d u la r  in v a r ia n t .  T h e n  H r  =  { (p ,  p ) }  i f f  H r  =  

{(p, p)} i f f  M  is  a n  a u to m o r p h i s m  in v a r ia n t .

A consequence of Lemma 4.4 is that it means we have already found all modular 

invariants M  having p p  as the only the pp-coupling, and so we do not need to 

consider that case in Chapter 5. The following lemma is the basis for much of 
Chapter 5.

Lem m a 4.5. [9] (a )  S u p p o s e  M  h as  M \  =  B ( l , m )  f o r  s o m e  m .  T h e n  f o r  each  

i ,  e i th e r  Mi =  (0) o r  r(M*) =  m .  A lso ,  f o r  each  (A,p) € P++, ^

m 2 /\ \JL{X,p)\\.
(b) N o w  su p p o se  H l  =  J l {p p ) a n d  H r  =  J r (p p ) ,  a n d  su p p o se  th a t  M \ ^ KV ^  0. 

T h e n
WJl WM\n kv 5:

V W J l M W  W J r M W '
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If, in addition, (A,/i) is not a fixed point of J l (ie, J  6  J l , J  /  Ap,Ap implies 

J{Xp) {Xp)), and also {k, v) is not a fixed point of J r , then M \^ KV — 1. More­

over, M \^ ap /  0 iff {a/3) S J r {kv), and MaptKU ^  0 iff {a/3) G J L{Xp).

Lemmas 4.4 and 4.5 are the A2 ©j42 versions of Lemmas 2.1 and 2.2, respectively. 

We are now ready to state the pp-couplings as the following theorem.

T heorem  4.2. Let H r =  {Ap € P + f : Mp p ^  0} and 7Zl = {Ap € P + f ■ 

Mx^pp #  0}, and define p" := Then Mxp,,pp € {0 , 1 }, and the choices

for H r and Hl are

(a)(i) p' = 1 2  1,7,10 and p = 1 2  2,5,11:

H r  = H l  =  { ( p , p ) } ,

H r  = H l  = { { p , p ) ,  (Ap-p,App), {A2p,p,A 2pp)},

H r  =  H l  =  {(p,p), {Ap>p,Alp), (.A2p,p,Avp)},

P-R = {(/>, p), (Ap,pApp), [A2p,p, A 2 p)} and H h = {{p, p), (Ap,p, A 2pp), (.A2p,p, App)},

K r  =  {{pp), {Ap>p,Ajp), {A2p,p,Avp)} and HL = {{p,p), {Ap>p,App), {A2p,p ,A 2pp)};

(ii) p' = 12 3,6,9 and p = 12 ± l,± 2 ,± 5 ,p ' ^  18: H r  =  H L -  {{p,p)}, or 

P-r = H l  = {(p,p), {Ap'p,p), {A2p,p,p)};

(b) (i) p' = 12 1,5,7,11 and p = 12 0,p #  12,24,60: H r  = H L = {{p,p)}> or 

P-r = H l  = {{p, p), {p, App), {p, A 2 p)};

(ii) p' = i2 1,7 and p = 1 2  8 , p ^  8 , or p' = i2 5,7,11 and p = i2 4: the same

choices for H r  and H l as in {&)(!);

(Hi) p' = 1 2  3,9 and p = i2 4,8, p ^  8 : the same choices for H r and H l as in

(a )(**);

(c) p' =  12  and p = 1 2  1,7: H r  = H L =  {(p,p)}, H r  = H L =  {{Alp,p,p) : i = 
0,1,2}, or H r  =  H l  =  {{Alp,p,p), {Alp,p",p) : i =  0 , 1 , 2 }

(d) p' =  24 and p = 12 1,5,7,11: H r = H L = {{p,p)}, or H r =  H L —
{(A lplp,p),{Alplpl,p),{A%p,p",p),{A%plp'",p) : i =  0,1,2}, where p' = (5,5), p'" = 

(7, 7).

(e) (i)p' = 1 2  1,7 and p = 8 : the same choices for H r and H l as in (b)(ii), or 

H r — H l =  {{p, p), {p,p")}, or any combination of H r and H l such that :
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H r l̂ — {(p> P)i {Ap'p, App), (Ap/p, App),  (p, p ), (Apip ,App ), (Ap,p, App  )},

o r

T^r,l — {(p> p)> {Ap1 p, App), (Apip, App), (p, p ), (Ap'p ,App ),(Apip,App )}.

( i i )  p '  = 1 2  3,9 a n d  p  =  8 : th e  s a m e  cho ices  f o r  H r  a n d  H l  as  i n  ( a ) ( i i ) ,  o r  

H r  =  H l  =  {(p ,p ), ( p , p " ) } ,  or

LZ-r =  H l =  {(P; p)i {Ap/p, p), (Ap/p, p), (p, p ), (Ap?p,p ),(Apip,p )},

p lu s  a s y m m e t r i c  l is t  as  in  L e m m a  4-2.

We will prove (a), (b), and (e) here, and prove the remainder in Chapter 6 .

P r o o f  o f  (a ) ,  (b) a n d  (e). First, let us suppose that p '  =  3,9 (mod 12), 

and p  = 4, 8  (mod 12), as in Lemma 4.2(b)(m). Then J l , J r  =  {A®,A®}, or

{4 ip,j4p'ip,4 j4p}’by Corollary 4-L
Define

2 2

tul := ^  ^-^Aapp,pp-, and tul -=  ^  J^-Aapp",pp-
a=0 a=0

(mR,m'R are defined similarly). Suppose that m'L ^  0 (so m'L > 1 ), and put 

Ap =  (p, (2,2)) and Ap =  (p, (1,4)) into Lemma 4.3(a). Since S ^ J ap — for all 

a =  0 , 1 , 2 , we get that

&l (p , (2 , 2)) =  ^  M Kv,ppS ^ S ^ 2ju
KV

s f f l s k  i

since 5(2,2)p" = — 2)p' ^  VAp, so we must have tul — m'L > 0,
or rriL > m'L . But by Lemma 4.3(b), Ma°-pp",pp =  M ppn pp for all a such that 
Ap,Ap E J l ,  so  this means (since M ppn pp > 1 ), that if rn'L ^  0, then m'L > m£. 

Therefore, we must have tu l = rn'L.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Putting Ap =  (p, (1,4)) into Lemma 4.3(a) gives us

(4.18) S1 (p(l, 4)) =  (S“  +  s f t V l S g M  > 0.

8?r\ , „•„/ 2 n \  ___
P f )

a n d  ^ ( i , 4 ) p "  =  ~ W p  c o s ( f )  s i n ( f )  c o s ( y )  =  7Tp  ( ~  s i n ( ^ )  +  s i n ( ¥ )  “ s i n ’

But 5 (M)p =  ^ sin ( ? ) sin( f  ) sin( ? )  =  ^  (sin( y )  + s in (^ )  -  sin(— ^

so (4.18) is true iff s in (y ) -  sin(—ZL) > 0. This is a contradiction for p > 20, so for 

those p, m'L =  0, and so 7Zr  = {(p, p)} or {(A^p, p) : i  — 0,1,2}.

We check the cases p = 4,8,16 separately. If p — 4, then p/; =  (^ p , ^ p )  = 

(1 , 1) =  p, so there is nothing to check, and p = 16 implies that s in (|)  > sin(^r), 

which is false. However, p =  8 gives us s in (|)  > sin(^L), which is true. Therefore, 

we have that for p ^  8 , p' =  3,9 (mod 12), and p = 4 ,8 (mod 12), H r =  {(p, p)} or 

H R = { (^ plp,p) :i  =  0,1,2}.
Since M  commutes with S^p>’p\  we evaluate (M S ^ ' ,p̂ )pp>pp — (S(-P' ^ M ) PP)PP 

to get Y h w  M pp,KVSw$p =  Y h n v  S% ’kI m ki/>pp. Since S^a’̂ bppp — S^p 'AlpAdp for all 

a , b , c , d  G Z, we get S% fp Y ? a=u MPP,AaPP -  S p p ’pp E L o  m a « Pp,pp> or m R  = m L- 

Lemma 4.3(b) tells us that M AapAbp^p =  Mpp AcpAdp = MpPiPp =  1, so for all 

A ap,Ahp G J l ,  Acp,A^ € Jh , ||7£fl|| =  \\Hl\\,  and we have Theorem 4.2(b)(m) and

(g)(*0-
Next we consider Lemma 4.2(b)(?). Corollary 4.1 tells us that J l =  {A^A^}  

or { A ^ A ^ A ^ A ^ A ^ A j } .  Here, we define mL := E L o  m PA“P)PP, and m'L := 

Eo=o AtpAap",pp- $l {p , (2 , 2 )) > 0  and Lemma 4.3(b) again tell us that if m'L ^  0 , 

then mL =  m'L, and as above, sl(p , (1,4)) > 0 iff s in (^ ) > s in (l^ ) . This is clearly 

true for p > 20, and since p /  12, we get Theorem 4.2(b)(«).

For (b) ( i i ) ,  we again apply Corollary 4.1 to Lemma 4.2(b)(u) to get J l  =  

{AQp,AQp}, {AQp,AQp,A lplA l ,A 2plA l),  or (A®, A®, AplAp, A^A^}. Therefore, if Ap G H L, 

then Ap G J l ( p p ) ,  for one of the above choices of J l ,  and Ap could also be in the 

set {(p, p"), (Ap>p, App"), (Aptp, App"), (Ap/p, Alp"), (Afyp, App")}.

We define m L := E L o  MA«pA°p,pp, m e := Y ? a= 0 M AapA-aptPp, m 'L :=

Ea=o M A“pA«p",pp, and rn'f := X)Lo M a* PA~a P" ,PP- First suppose that J L = {A^A^}  
or {A^A^, A^, Ap, Ap, Ap}. Then, as usual, if m 'L ^  0, m 'L > mL by Lemma 4.3(b). If 

J l  — {ApiAp, AplAp, Ap,Ap}, (Apip, App") and (Aplp,App") cannot be pp-couplings.
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For example, if M ApA2pn pp ^  0, then Lemma 4.3(b) tells us that M A2pp„ pp ^  0 

either, which is false Lemma (4.2(b)(«)), so we do not need to consider m't

We calculate s l (p, (2,2)) and s l {p, (1,4)) as above, which gives us that m'L =  0 

unless p = 8 . For J l = {A°pl Ap, Ap,A2. Ap, Ap}, we use me and m't and find that 

m'e = 0  unless p = 8 .
If J l = {Apl A°}, then the usual argument gives us contradictions for all p ^  8 . 

When p = 8 , we still must have =  m'L (or me — m'e), so we cannot have

K l  =  {(P,P), (P,P"), (Ap/p,App"), (A2plp,Alp")} or {(p,p), (p,p"), (^P'P^pP")> 
(Ap,p,App")}. This gives us Theorem 4.2(b)(n) and 4.2(g)(i). The fact that 

M \p,pp £ {0,1} follows from Lemma 4.5(b) for (a) and (b). For (e), we have 

mL = m'L (or me = m'e) whenever m'L ^ 0 .  If mL =  1, then rn'L =  1 gives us 

Mpp",pp = 1, and if m'L =  mL =  3, then at least for one J  £ J l ,  M j(p(>»)^p ^  0. But 

now by Lemma 4.3(c), Mj^ppir̂  pp ^  0 for all J  € Jl-, so  they must all be 1. □

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5

The Simple-Current Extensions

In this chapter we complete the A2iP'© A2>p classification for the non-exceptional 

heights; that is, where neither of the heights p '  or p  is 8 , 12, 18, 24, or 60. By the 

previous chapter, we know the p p  row and column of M. We will use Lemma 4.3 to 

extend this knowledge to all weights X p  E V l (p ' , p ), k v  E V r (p 'p ). The strategy is 

the same in all cases: we see what happens to M  at the “small” weights and build 

up to all weights Ap from there. The weights we will use as the small weights differ 

from those in Chapter 3. In §5.2, they are (p, (2,2)), (p, (1,4)), (p, (4,1)), ((2,2), p), 

((M ),p ), ((4,1), p), and in §5.3, they are ((2,2),p), ((l,4),p) and ((4, l),p).

In each case of Theorem 4.2(a) and (b), M \PtPp /  0 Ap =  AplpApp for

some A®,Abp £ J L, and Mpp̂ u ±  0 «=>• k v  = A ^pA jp  for some Acp,Adp £ J R, so by 

Lemma 4.3(e), we have V l  =  {Ap  £ P + f  : at(X) + b t ( p )  = 0 (mod 3) \/Ap,Ap E J l }  
and V r  — { k v  E P ^ f  : c t( K ) +  d t ( v )  = 0 (mod 3) \/Ap,Ap E J r }.  We also have 

IIJlII =  \ \ J r \\ =  1 or 3. If || J l | |  =  \ \ J r \\ =  1, then M  is an automorphism invariant 

by Lemma 4.4, and so has already been done in Chapter 3. Therefore, for all of 

this chapter, we will assume that \\Jl\\ =  ||v7r || = 3. The goal of this chapter is the 
following theorem:

Theorem 5.1. L e t  M  be a m o d u la r  in v a r ia n t ,  a n d  su p p o se  th a t  M  h a s V R =  J r ( p p )  

a n d  TZl = J l ( p p )  f o r  s o m e  J r  a n d  J l ;  ie, th e  p p -c o u p l in g s  o f  M  are j u s t  s im p le
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currents of pp. Then M  is one of the following:

T)(2) _ I  V '  4- i J p1 ,P) \ (  (p ',p )* ,

(5  i a\ x̂ p̂ 4?
 ̂ ' t(A)+t(#i)=30

+ Xa ^ Ia^ v)  U°r P'iP &  °)>

3 E Ix?;p)+xX?+x2 £i2 + 3  x; x t ’p)x t ,pr
(5-lb)

w here  <j> =  ( p ' / 3 , p ' / 3 )  { fo r  p '  = 3 0,p ^ 3 0), 

u p  to  m u l t ip l i c a t io n  by a n  a u to m o r p h i s m  i n v a r i a n t .

++

5.1 J —orbits

In light of Lemma 4.3, it will be useful in this chapter to work with J —orbits of 

weights, rather than the weights themselves. For Xp 6  V l ,  we define (Ap ) l  to be the 

J l ~ orbit {J ( \p )  : J  € J l } ,  and for k v  G V r ,  ( k v ) r  := { J ' { k v ) : J' 6 J r } .  We will 

usually drop the subscripts L and R  when it is clear to which we are referring, or our 

comments can apply to either. We denote the set of all J l —orbits (A/i) by P l / ( ) ,  

and the set of all J^ -o rb its  by V r / {  ). By Lemma 4.3(c), M,yM')Kv  =  M \^ KV for 

all X'p1 e  J l ,  k 'v '  e J r ,  so we write to mean any representative M /y iSv
such that X'p1 e J l ( X p ) ,  k 'v '  € J r { k v ) .  We also define

chM  := E Xav}-
AVe(A/i>

With this definition, we see that

z  = Y ,

/  > J-VJ-{ \ ij,){ku) /  J X a'/x ' X/cV'
<A h),{kv) x'Pe{Xn)

k'v'£{kv)

= E { E x t j )  (  E x w )  •
(Xij.),{ki/) \A'/i'e<A/i> J \ k'v'€.{kv) J

so the partition function associated to M  can be written as

<6-2) z= E
(A /i) ,{«!/>
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5.2 The classification when J  has no fixed points

We begin with Theorem 4.2(a)(«). Here, J l  and J r  are either {A^,Ap, Ap,Ap, 
A ^ A j}  or {A°plA°p, A\,A% A 2p,A lp), and V l , V r  = {Xp G p £ f  : t(X) ±  t(p) = 

0 (mod 3)}, where the plus or minus sign depends on which J l  we choose. When 

we deal with Mfx^Kv) however, we may suppose that t(A) =  0 (mod 3), so in either 

case we can assume that t(A) =  t(p) = 0 (mod 3), whenever /  0 for some

(nv). We can do this because t(AlplA) =  ip' + t(A), and since 3 { p', p' — ±1 (mod 

3). This means that exactly one of the representatives Alp, \  of the J l —orbit (A/i) 

will have t(A%̂A) =  0  (mod 3), and so \ \Pl K  )|| =  \ \V r / (  )ll =  ||{A/i € P++ : t(A) ee 

t(p) =  0(mod 3)}||.

Both of the above possibilities for J l  and J r  have no fixed points: suppose 

Ap,Ap(A/i) =  (A/i), where i = ± j  ^  0. Then, in particular, Alp,A =  A. But this 

implies t(A) =  t(Ap,X)] ie, ip1 + t(A) =  t(A) (mod 3). Since i /  0, this means that 

p' = 0 (mod 3), which is a contradiction (for Theorem 4.9b(a)(i)). Therefore, we may 

use Lemma 4.5(b), and it applies to every weight in P+_|f. Suppose M \pKV ^  0. By 

Lemma 4.3(c), M v ^ v  =  M \ P,KU VA' p! G J l ( A/i), k 'v '  E J r ( k v )  and by Lemma 
4.5(b), these equal 1, and X'p' E J l ( X p )  are the only weights that can couple to 

k 'v '  G J r ( k v )  (and vice-versa).

Therefore, we can define a permutation a  : { J l  — orbits} — > { J r  — orbits} 

such that /  0 <=> ( k v ) r  = a(Xp)L, and =  1 . Notice that,

since a takes an orbit to an orbit, if a(Xp) = (k v ), we may take k v  to be any 

representative of ( k v ) r  — { J ' ( k v ) : J '  G J r ( k v ) } .  Equation (5.2) tells us that the 

partition function associated to M  in this case is

(5-3) 2  =  E c'‘(V > < (a„>.
<A/b

where Ap E V l -  T o describe M ,  we must now describe ex, and find which permuta­

tions a  will give us a modular invariant. We already know what happens to p p  under 

a .  By Lemma 4.3(b), M J{pp)j , {pp) -  M PPtPP VJ G J L, J' 6  J r ,  so  a ( p p )  = (pp) .

Let Ap  E V l ,  k v  E V r .  Then by Lemma 4.5,

a/3 W r,'&a(Xp)
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But cr(Ap) is a J # —orbit, so the above sum is equal to

E q(p \p )  ^ (c t (K )+ d t{ u ) )q (p ' ,p )  _ q o ( P ' - P )
A cX'AdHl ,KU 2 - J  \'n',KV

c,d:AcAde J R  c,d

because A cAd E J r  and k v  E Vr,  so by Lemma 4.3(d), ci(«) +  dt(v) =  0 (mod 3). 

Similarly, (S^P' ^ M ) \ ^ KV =  3 5 ^  ̂ nu, , for any k ' v '  E <j ~ 1 ( k v ) .  S-invariance then 

gives us S {$ f  KU = S (̂ l r ,  or equivalently,

(x c(p'-p) _  c (p »DXh,KV ~  °X'tl',KtL'̂

for Ap any representative of (A/i) G V l / ( ), k v  any representative of ( k v ) E V l / ( ) ,  

any A' p' € cr(Ap) and any k ' v '  E o ( k v ) .

We are now ready to check what happens to the small weights under a, using 
the following claim.

C laim  5.1. cr(p, (2,2)) =  (p, (2,2)) and a(p, (1,4)) =  (p, Cp(l,4)), for some a E 

{0, 1}.

Proof. Let a(p, (2,2)) =  (p',(2,2)) (and similarly for (p, (1,4)). By (5.4), 

QW*Hp, (2 , 2 )) =  QW*){pt, (2 , 2 )'), so since QW*) = q W q W ,

Q i p , ) ( P )  =  Q i p ) ( W
Q(p')(p') Q(p)( 2,2)'

Since > S^p\

= Q{p'\p) _  QW(2,2)'
~ SPp Q(p)(2 , 2 ) ’

so Q(j>\ 2,2)' < Q(p)(2,2). By Lemma 3.2, we then have Q̂ p\ 2,2)' =  Q^p\ 2,2) or 
(p) when p > 1 2 .

Suppose that Q ^ ( 2,2)' =  Q ^(p ) .  Then, by Lemma 3.1, (2,2)' E Op. Because 

a (P>(2>2)) =  (/o', (2,2)'), we are assuming M/,(2)2),/J'(2,2)' 7  ̂ 0, so (2,2) and (2,2)' 
must satisfy the decoupled norm (4.3). This implies 3 =  12 (mod p). But then p | 9 

which is a contradiction since 3 fp  and p > 4, so Q ^ (  2,2)' = Q ^ (  2,2). Now by 
Lemma 3.1, (2,2)' E 0(2,2).

Equation (5.5) now tells us that

Q{P']^  -  p  ie g(p') -  g(P')
Q (p ')(p ')  ’ 6 ’ ° pp ~  Spp' ’
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and this can happen iff p' G Op. Therefore, cr(p, (2,2)) = (A%plp,A?p(2,2)) for some 

i , j  G {0,1,2}. But we can assume t(Aplp) =  t(AJp(2,2)) =  0 (mod 3), so we put 

% =  j  — 0 . In this case, we did not need to consider the charge conjugations, because 

Cpip =  p and Cp{2,2) =  (2 , 2 ).

Replacing (2,2) in (5.5) with (1,4), we get Q ^ (l> 4)' < Q ^(l»  4)> and Ly Lemma 
3.2, Q(p)(M ) ' € { Q ^ (p ) ,Q ^ (2 ,2 ) ,Q ^ ( l ,A )  =  Q(p>(4,l)} for p  > 12. By Lemma 

3.1, (1,4)' G {Op, 0 (2 ,2), 0 (1 ,4)}. If (1,4)' G Op, then (4.3) tells us that p  | 18, 

which implies p  =  1 or 2, contradicting p  > 4. If (1,4)' G 0(2,2), then we again 

have 3 | p .  Therefore, (1,4)' G 0(1,4), and choosing t((l,4 )') =  0 (mod 3), we have 

that (1,4)' =  (1,4) or (4,1), and so a(p,( 1,4)) =  (p ,0 “(l,4)).

Checking each of p  =  4 , . . . ,  11 separately, we find that we also have (2,2)' G 

0(2,2) and (1,4)' G 0(1,4) at those heights. □

The proof of Claim 5.1 also applies to the weights ((2,2), p) and ((1 ,4). p),

so we have a((2,2),p) — ((2,2),p) and cr((l,4),p) =  (Cp,(l,A),p) for some b G

{0,1}. As in Chapter 3, letting a' := 0 (6’a) o a, we have a'(a/3) — (ap) for 

ap  G {(p, (2,2)), (p, (1,4)), ((2,2), p), ((1,4), p)}. Since (1,4) =  0(4,1) and a' com­

mutes with C^1,1), we also have cr'(p, (4,1)) =  (p, (4,1)) and cr'((4, l),p) =  ((4, l),p). 

In matrix terms, this amounts to multiplying our modular invariant M  by one of 

the charge conjugations CI, CI C, I c . Multiplying a modular invariant by an auto­

morphism invariant gives another modular invariant, so the product M ' defined by 

a' is a modular invariant. As in Chapter 3, we will show that any a fixing the small 

weights is the identity.
Let Ap GV l - Then by (5.4) and Claim 5.1,

q(p )  o (p ' )  q(p)  q(p ',p)  q { p \p )  a (p ')  q & )  q (P )
J (2,2)n _  pA J (2,2)p _  ° p ( 2,2),Ap _  D p(2,2),A'p' _  *pA' 0 (2,2)p' _  0 (2,2)/x'

q(.P) q (p ')  q(p)  q (p ' ,p)  q(p',P) q{P') r-(p) q (p ) ’
D PP ° p \  S PP s pp, Xp S pp,\'p. ' p \ '  b pp> b pp>

and a similar calculation holds for all of the other small weights. We therefore have 

equations (5.6) below.

Choose any Ap ,nv  G V l -  Let X'p' G cr(Xp) and k ' v 1 G <j (k v ). Then

(5.6a)
q(p') q(p') q(p') qip') q(p') c(p')

(1,4)A _  (1,4)A' . (4,1)A _  (1,4)A' . J (2,2)A _  °(2,2)A'
qip1) q(p') ’ q(p‘) q(p') ’ q(p') ~  q(p')
b p\ p\' pX pX1 bpX pX'
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Recall that in the proof of Proposition 3.1, we wrote a Weyl character chp as 

a polynomial in cfy1)0) and c/i(0;1). When (3 has t ( / 3 )  = 3 0, we do this with ch(1)1), 

ch(0,3), and c/i(30) as well; ie,

chf) =  P p ic h ^ iy c h ^ Q ^ c h ^ ) ) ,  

provided t(/3) =  0 (mod 3) [3]. Therefore, (3.7) gives us

r « ( n )  /  o M  o ( n )  c ( n )
*/3a D / (2,2) a *(1,4) a *(4,1) a

( 5 . 7 )
o(n ) P I g M  ’ c (« ) ’ o (n )\ ^pa & po. ^pa

Now let A/x, k v  G "Pl, where kv is any representative of (kv) and t(A) =  f(/x) = 

0 (mod 3). Then for any k ' v '  G c t ( k v ) ,  equations (5.7) and (5.6) give us 

s (j>',p) q(P>) q(P)
A/i KV _

q ( p ' , p )  ~  c ( P ' )  c ( p )Opp̂ KV OpK &pV
' o ( p ' )  q ( p ' )  o ( p ' )

fK o\ _  d  I (2,2) K (l,4)re (4,1)/c , n
(o .o )  -  r x | ,pl) , ,pl) , , | •

P\

GYP ! GYP > GYOpK Opu OpK

o(p') o(p') o(p')
(2,2) k' (1,4)k' °(4,1)«'
c(p') ’ o(p') ’ c(P')
°PK' pn' pn'

r-(p) £ (P) S (P) \
(2,2)!/ ^(1,4)!/ '*(4,1)!/ 1
<?(P) ’&pv <j(p) ’&pv o(p) 1Opv j

f s (p) s (p) S^p)
(2,2)i/' d (l,4)«.'' *(4,l)i
g(p)

, ppr
’ <y(p) 

pur
’ c(p)

*PI/'
g(p') q(p') c ( p )  q ( p ' , p )

_  j Ak' °pu' _  D\p,K'u'
o ( p ' )  q ( p )  ~ ~  c ( p ' ) c ( p )  _  o(P'-P)
°/)k' °pi/ ° pk' °pu’ Dpp,K'v'

Now we can apply the fact that S^p',p̂  is unitary by multiplying (5.8) by X^a=o ^ ’̂ kA±, 
and summing over all A/x G V l , so

o (p »  /  2 \  o(p',P) /  2 \
, r q\ Y" | V '  q(p'>p)* 1 -  V ' ap>*v  [ Y^ q(p'-p)* 1

’ 2__/ q(p/iP) I ■4—'  \p,AaKA±av J /  j o(p',p) 1 / / \p,AaKA±au I ’
\per>L aPP,Kf \a =0 /  A/ie7>t  ^pp^'V Va=0 /

where by Formulas (2.10d), 

v-'2 o(p',p)’
Z^a=0 \p,,AaK,A±av

Sx k *S$* +
{ 1  +  e - 2 = i ( t ( A ) ± t ( / * ) )  +  “ ( W ) ) } ^ ^

6 1
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If t(A) ±  f(/z) = 0 (mod 3) (the plus or minus sign depends on whether we are 

taking J L to be {z4j,A°, A$A \}  or { A ^ A ^ A ^ A ^ A ^ A ^ } ) ,  then the sum in

the brackets is 3; otherwise we get the sum of the third roots of unity, which is 0. 

Therefore, S\ ^ % ka^ v = 0  unless Xfi e 'P l ' so (5'9) becomes

3 C(P',P) q(p',P)* = 3 V -  C(P',P) o(P'.P)*
o(p',p) L  Kl'.V V q{p',p) Z -/ «V,A/i Xfl.KV ’
^PP,kv Xn app,K’u' Xp,

where the sum is taken over all Âz € P + f ■

Because S ^ ' 'P is unitary, the left-hand side of this equation is just 3 

whereas the right-hand side is 3 As the left-hand side is nonzero, 

we must have k ' v ' = k v . But we chose k ' v ' to be any weight in o { k v ) ,  and k v  any 

weight in { k v ) ,  so this means { k ' v ' )  = { k v ) \  ie, o { k v ) — { k v ) .

What we have just shown is that o' =  o a is the identity on P l / ( ) ;  ie,
<r'(A/z)l =  {X(j,)r . Putting back the charge conjugations, we see that the partition

function associated to M  is

(5.10) Z  = ^  ch^xp)cKj^{Xp)^
{X p.)

where u € {(0,0), (0,1), (1,0), (1,1)}. The above argument also carries through for 

Theorem 4.2(b)(zz), because 3 \p ' ,p  there either.

5.3 The classification when J  has a fixed point

In this section, we consider M \^ KV when one of the weights A/z, k v  may be a fixed

point of J i  or J r .  This occurs in Theorem 4.2 (a) { i i ) ,  ( i n ) ,  and (b)(*),(m). Notice 

that in all of these cases, J i  — J r .  We will do Theorem 4.2(a)(n). Here we have

J l  =  J r  =  {A°plA 0p,A lp,A 0p,A 2plA0p},

and by Lemma 4.3(e),

P l  =  V r  =  {A/z G : t ( A) = 3 0 } ,

so we put J  := J i  = J r  and V  := V l  =  V r . Let <f> (^-, ^-). Then we have

a fixed point of J  at (0/z), for any /z € P++(A2 ,p). Let K? := {a/3 e V : a ^  

4 > and Ma6^  /  0 }, so KJ is the set of nonfixed points that couple to a fixed point.
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We can define a permutation cr, as before, on all the J -o rb its  of nonfixed points

1 and { k v )  — a { \ p ) .

We would like to apply Claim 5.1 to the weights ((2,2), p), ((1,4), p) and ((4,1), p); 

however, we must first show that these weights are neither fixed points nor couple 

to a fixed point so that we can apply cr to them. We will need a few results before 

we can do this. First we show that the J —orbit {pp) is more or less mapped to 

itself by cr.

C laim  5.2. The weights pp are not fixed points of J  — {A®p, A®p, A lp, A®p, Ap Ap} and 

pp 0  K&. Define M ^ ,  = 1 */ MpfX)Pp  =  1 and 0 for all other entries of M(p). Then 

AfW is an automorphism invariant of A^^,.

Proof. The weight pp is a fixed point of J  iff p ' —2 =  1. But p' > 4, so this cannot 

happen. Now, suppose that ^  0. Then, by Lemma 4.1, <f> G OpUOp"1. But

4> Op since p' >  4, <f> G Op" 4= ^ -  4= t>  p' — 6 , in which case

4> =  (2,2). Putting p and (2,2) into the decoupled norm condition (4.9b) gives us a 

contradiction, so =  0  at every non-exceptional height (p',p), and so we are

done the first part.

We may now apply cr to pp. Let a{pp) — {pp) =  {p'p') =  {{p'p'), (A pp ',p '),

p',p')}, so that we have Mp̂ p p  ^  0. Again by Lemma 4.1, we have p' G 

Op U Op". Suppose that p' G Op". We may assume that p' = p". Putting pp — Ap 

and pp =  k v  into (5.4) and using u{pp) = {pp) and cr{pp) —  {p"p'), we have

Spp^/Sp'l =  S^)pIS$p. By the definition of S^')  and using the identity sin6* =  
(e%9 — e~t0 ) / 2 i, we have

1 Since we are actually doing Theorem 4.2(a)(ii), Lemma 4.1(a) gives us just (j) G Op, but we want 
the proof to apply to all the non-exceptional levels with fixed points, so we may as well consider 
the case cj> G Op” now.

that are not in K,^, so for all Xp 0 , A /  f>, ^

which is a polynomial over Q in fp  =  e"P“. Similarly, S^j,/  S$. is a polynomial over

Q in £p. But gcd{p',p) = 1 Q(^p') CQ(^p) =  <Q> [2 1 ], so

(5.11) e Q M n < Q (£ P) = q ,
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but by the proof of Claim 3 in [14], S ^ / S ^  6  Q iff p' < 6 . Now 3 | p' and 

p' > 4 leave only the possibility p' =  6 , so we must have p' E Op. Putting (Xp) = 

{pp), { k v )  =  {pv) into (5.4), we then have

(5.12) Sj# =  S ^ l ,  where a{pp) =  (pp'), cr(pi') =  (p*A

Let 7r : P£+(A2) —> P++(A2) be defined by i rp  = p', where cr(pp) =  (pp'). 

Notice that p' does not change with the J —orbit {pp') =  {(A*,p, p') : i =  0,1,2}, 

so 7r is well-defined. We know that pp E V  for all p E P++(A2), since t(p) =  0, so 

for any p E P++ (A2), p = n p ' ,  where (pp) =  cr(pp'), and 7r is one-to-one since cr is. 

Therefore 7r is a permutation on P++(A2 ,p), and Since cr(pp) =  (pp),

we know that np =  p, so =  1. By (5.12), SjfJ =  5 ^ i7r„. But this is true iff 5 ^  

commutes with (this is similar to the derivation of (5.4) in §5.1). We also know 

that M commutes with T  since Mpp,pp,i ^  0 p and p' satisfy T-invariance 

for A2,p. □

It is known that the only automorphism invariants of A2iP are Ap, P p2, or their 

conjugations [9], so must be one of these. Therefore A P>®M^  is an automor­

phism invariant of A2y  ©A2jP3. Let M ' := M (A P> ® M ^)^1, for any modular invari­

ant M. Then M ' is a modular invariant and has ^  ^  0 (ki/) =  (pp).

Therefore, replacing M with M', we may assume that cr(pp) =  (pp).

C laim  5.3. Let Ap, k v  e V  and suppose that M \p%KU ^  0. Then p = v.

Proof. Let Ap E V. By 5-invariance, {SM)pKi\ p =  (M S)pK<\ p for any weight 

k  6  P++ (A2), so

(5-13) E  =  E
ap a/3

To evaluate the right-hand sum, notice that by the Claim 5.2, MpK̂ap /  0 = >  

a(3 E { p k )  — {(ptc), (Ap/p, re), (A2,p, «;)}, so  the right-hand side of (5.13) is equal to

v  But =
because f(A) =  0 (mod 3). Since both (p, k )  and {Alp,p, k )  are not fixed points, 

MpK AipK =  1 ) so right-hand side is just 3 5 ^ ’j^.

2AP =  E a  XaXa and Vp =  E a X\X^Pt(x)x, for p not divisible by 3
3 Apt <S)T>P corresponds to (0,0,0,6) in Column B of Table 3.1, and these appear for all b e  {0,1, 2}. 

Api <8> Ap is the identity.
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Multiplying both sides of (5.13) by S $  and summing over k gives

' . s g s t y s H H ' M ^  =  3 $ ' ) E 4 ? 4 ' /
K q/3 K

= E s f f M« A v E 4 p> “ '
aP k

— 3 9 ^  V s 9 ^  9^*— pA Z-/ w
K

= 3 S ^ V .

by unitarity of . Switching the summation signs on the left-hand side, we have

LiJS1 = EE S^pc) &K[j Ŝ kv ^ a P ,\p
a/3 k

=  y . s % )m « ^ 5pv
a/3

= Y , S % ]Mau,Xp
a

by unitarity of Therefore, equating L H S  =  RH S,  we have

E s ^ )m“ ' ^  =  3 Sm )v
a

( v f )Since every entry of M  is nonnegative, and Spo > 0 Va, the left-hand sum can 

be zero iff Mnv \̂p =  0 for all a. Therefore, if there is at least one a  for which 

Mav_xlx 7  ̂0 , we must have 3 0 ;  ie, p — v. D

Remark: Because of Claim 5.3, we will write M \p^ u as M \p Ktl for the rest of 

this chapter.

C laim  5.4. Recall that (j) =  (y , ^ ) . Suppose /  0 for some nonfixed point

4> (ie, 4>‘ ^  4>) and any p. Then M^^xpt =  <5^0 for any A.

Proof. Suppose ^  0. Then by Lemma 4.5,

WJl W
x/\\M<t>'p)\\ \\Jr (M \ \ '

We have J L = J R = J ,  so || J L \\ =  \\J\\ = 3, and ((f>p) is fixed by J ,  so =

||i7|| =  1. Now \\J{4>'p)\\ = 1 or 3 by Lemma 4.3(c). But by hypothesis, <ff p is not

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5007



fixed by J ,  so \\J(fin)\\ = 3. Therefore (5.14) gives us =  \/Z < 2 ,

and since 0 , = 1 .
Now suppose that ^  0 for some k  ±  </>. Then the facts that f in  and Kji

are both not fixed points of J  and ^  0 imply k/j, G J(<f)n), by Lemma 4.5.

But this implies k  =  <j>. □

Claim 5.4 says that if f in  is any weight that can couple to a fixed point 0/j., 

then =  1. It also says that if a weight f in  couples to a fixed point, it

cannot couple to any other weight. With this, we are now in a position to show that 

((2,2),p), ((1,4), p) and ((4, l),p ) are not in ie, they do not couple to a fixed 

point.
Let k v  G V. Then by Claim 5.4 and 5-invariance,

whenever k  ^  <f>, k v  $ K$, k ' v ' € g ~ 1 ( k v ) ,  and t ( v ') = 3  0 .

Suppose for a contradiction that ((2,2), p) G Kfi. We know that (p,p) $ JĈ , so 

putting ((2,2), p) = f i n  and pp = k v  into (5.15), and choosing k ' v '  = pp, we get

If k v  is not a fixed point and k v  Kfi, we know that MaptKU /  0 iff =  1

and a(3 G g ~ 1 ( k v ) .  Let k ' v ' be any representative of o ~ 1 ( k v ) .  Then the last sum is 

equal to

2

which is 3 5 ^ ’̂ /,/ when t(v') =  0 (mod 3). Therefore we have

(5.15) q(p'.p) _  oqfp'.p)

Factoring out the Spp , we have 5(

\ /3p'
8

which is true iff

(5.16)

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For p' > 8 , y- and y  are in the first quadrant (so sin# increases with 0), and 

we see that the left-hand side of (5.16) decreases as p' increases. Therefore, there 

can be only one value of p' > 8 so that equality holds in (5.16). At p' =  6 we do not 

get equality, and writing ^  =  ( | ) 2 • ^  =  sin2( |)  s in (|), we see by inspection that 

p' =  12 is this value, which is an exceptional case. Putting ((l,4),p) and ((4,1), p) 

into (5.15) gives us

• ( •  / 47r\ . /5 tt\  \/3smy sin(7 )sml7 ) = T'
which is true iff

, . . / 8 tA  . /  2 n \  . /IO tA  \/3(5.17) =  _

This has only one solution p' > 10, which we can see by inspection to be p' = 12. For 

p' < 10, we find that p' =  6 is also a solution to (5.17), but if p1 =  6 , then <f> = (2,2), 

and (1,4) and (2,2) do not satisfy decoupled T-invariance (4.3). Therefore, for 

j / #  12, ((2,2), p), ((1,4),p), ((4,l),p) £K*.
Now that we know that these small weights do not couple to a fixed point, we 

can put them and (p, p) into (5.15) (as kv) to obtain

q(Pr)   oqiP1). q(p')___ oq(p') . qiP1)  oq(p') . q(p')  o q(p')
°0p ^ 'V p ’ 0(2,2) ~  ’}'V ( 2,2)’ °<l>( 1,4) _  •S‘V(1,4)> *̂ 0(4,1) _  0'(4,1)’

so
q(p') q(p') q(p') q(p') q(p') o(p')

(2,2)0 (2,2)0' . a (l,4)0 (1,4)0' . O(4,l)0 ^(4,1)0'
o(p') qiP1) ’ qiP1) q(P') ’ o(P') q(p')
°P0 °P0' DP0 DP0' P0 “W

Therefore, for any f t  e  /C ,̂ qb' /  <f>, and any A with f(A) = 3  0, we have

=  P\
q(.P')

0
o (p ')

P0

(5.18) =

Equation (5.18) then gives us

s (p') giP') 5 (P') >
(2,2)0 (1,4)0 (4,1)0 1
o (p ') ’
*p0

q(p') ’ 
P0

c(P') ,
p4> J

s (p0 qiP')
(2,2)0' *(1,4)0' (4,1)0'
o (p ')

P ’P'
’ o(p0 

P0'
’ o(P') 

P0'

o (p ')
A0'

o (p ') ‘

o(p',p) c(p') c (p) o(p') c (p) o(p',p)
/ c  i n '!  <t^,0p _  « 0  _ ‘-’ p p  _  k0 ' "-Vp _  J / t t / ,0 'p

q(p'-p) ~~ q(p') c(p) ~~ q(p') q(p) ~  c(p'.p) ’
PP,0P P0 w  P0' W  PP,0V

for any k v  £ V  and f t  € /C ,̂ f t  7  ̂<f>.
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Let k =  («i,K2 )- Then

which is 0 if Ki =  - « 2  (mod 3). In other words, if t(/c) =  0 (mod 3), then =

0, which tells us k v  $ V => = 0. Therefore, multiplying both sides of

(5.19) by S t t  an^ summing over kv £ V is equivalent to multiplying by 

and summing over all k v  G P++- Unitarity of S (-p ' ’p '1 then gives us

1 _  <̂Pp,<j>p
o(p'>P) q(P'.P)

pp,<t>» pp ,4>'p

=  0 ,

since <p' ^  4>. But this implies 0 ± L H S  =  0. Therefore, we must have =  0

for all (■/)' 7  ̂ (f).

We have now shown that =  0 for all Ap ^  <fip, so to determine the fixed

point behaviour of M, we must find the value of M^p^p. We will use Lemma 4.5(a). 

Since HJlII =  ||Jj?|| =  3, and by Lemma 4.3(b), MAippASpp =  1, \/i,j  G {0,1,2}, 
B\  =  5(1,3). Let B,), be the block containing M^p^p. Then B^  is the l x l  matrix 

j). Lemma 4.5(a) now tells us that, since B^  ^  (0), r(B(j>) =  3, and so 

— 3. Therefore M-Xp^p =  Xp.tpp•

It now remains to determine the values of M  at the nonfixed points of J . This 

will be similar to what we have already done in §5.2: the proof carries through with 

some minor adjustments. The difference in this case, is that 3 | p, and t(A) and t(p) 

are not necessarily congruent to 0 (mod 3) for some Ap G (A//).

For (m , n ) G {(2, 2), (1,4), (4,1)}, a similar argument to that in Claim 5.1 now 

tells us only that a((m,n),p) = (CplAbp,(m,n),CpA^p) where a, c G {0,1}, b G 

{0,1,2}. By Claim 5.3, we know that c =  d = 0, and multiplying our modular 

invariant by one of the charge conjugations (see §3.1), we may assume that a — 

0. Since ((m ,n) ,p ) runs through all (Al (m,n), p), i =  0,1,2, we can put 6 =  0.

Therefore, letting M"  := M'C,  where C is one of the charge conjugations CI C, ° I

or I c , M"  satisfies cr((2,2),p) =  ((2,2), p) and <r((l,4),p) =  ((l,4),p). Because a 
commutes with C^1’1), we also have cr((4,1 ),p) =  ((4, l),p).

For (m , n ) G {(2,2), (1,4), (4,1)}, (5.4) gives us 

o (p ') c (p ')  (p) o(p '.p) c-(p'.p) o(p ') Q(p) q (p ')
(m,n)A _  (m,n)A _ &pp _  (m,n)p,\p _  (m,n)p,y p' _  (m,n)A' °  pp' _  (m,n)A'
q (p ') o (p ') o (p ) _  o (p '.p ) ~~ o (p ',p ) ~  q (p ')  ’ c (p ) ~~ c (P ') ’
pA pA bPP pp,Xp PPA'P-' p\' pp' p\'
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so we have equations (5.6a).

Now let A / I ,  k v  € V. Then t(A) = 3  t(«) = 3  0, so by (5.6a) and (5.7),

c(p'.p)
Xpt,KV

c(P'.P)dpp,KV

o(p')
^ X k

qiP)d p i /

~  q(P')d p f t
qiP)
d p i /

( ŝ p'\ qiP') qiP')
( 2 , 2 ) k °(l,4)rc (4,1)k
q(P')
d p K

’ o(p') ’ o(p')
d p K  d p K

-  4
q(p')

( 2 , 2 ) k '
q(p') q(p') 
a(l,4)*' (4,1),

s ipl) ’ o(p') * o(p':
\ p K p/c' pic'

o(p') 
_  Xk!

qiP)d p i /
o(p'>P) 

_ Ap,/t'f
q(P')
S PK'

qiP)d p i / o(P'>P) ’ 
pp,K,'v

c(p)d p i /

c(p)dpi/

q(p)dpi/
c(p)d p i /

and so
q(p'»p) /  2 \  c(P'>P)

I * V fml \ «--Vic orO J Ap,/^ I ST' o(p'.p)* 1 _  ^A/i./cV I C.(P',P)*
 ̂ '  Z -r Q( p »  1 Z ^  ° A * \ t i , K U  I ~  Q(p',p) 1 0 A“A#x>KI/

Ap:i(A)=30 '-’PP.w \o=0 /  Ap:t(A)=30 '"’ p p . / t V  \a=0 J

for any A// € (A/i), and k v  €  { k v ) .  But by (2.10d),

E o(P»* _  I V%2ziat(A) \ c(P7 .P) 
AaXp.,nv ~  I I DXp,nu >

a=0 \a=0

which is 0 if f(A) ^  0 (mod 3), because in that case, we get the sum of the third 

roots of unity. If f(A) =  0 (mod 3), we get 3s j ^ ’%1 , so summing over all A/i with 

i(A) =  0 (mod 3) will give us the same result as summing over all A/i G ‘P++- Now 

as usual, summing over all A/i gives us <j {kv) =  (k'v) = {kv), by unitarity of S^p',p\  

We have shown that when J  has a fixed point 0/i, = 3, and M ^ Kli =

K̂.p,<t>p =  0, for all Kjj, € "P with k ^  <fi. We have also shown that at the nonfixed 
points A/i of J ,  a{\jj,) =  (A/i) up to multiplication by an automorphism invariant. 

We can define a on all of V  by letting <r(0/i) =  (0/i) (keeping in mind that the 

J —orbit is used here only for consistency of notation, since (0/i) =  {0/i}), so that 
the partition function for a modular invariant with c(A/i) =  (A/i), such as our M " , 

can be written as

(5.21) Z =  ^  ch^\p)ch^x^  + 3 ^  c h ^ ^ c h ^ y
( X f L ) : t ( \ ) = 3 o  p t e P l A A i )

A ĵ tp
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Our M"  has this form. But we defined M" =  M'C = M(Ak ® M ^ )  1 C, where 

M(p) is an automorphism invariant of Therefore, for any modular invariant 

M , M  = M "C(AP> ® MW), where M"  is defined by (5.21).

All of §5.3 applies to Theorem 4.2(b) (iii) and, reversing p' and p, we also have 

the modular invariants for Theorem 4.9b(b)(i), so other than at the exceptional 

levels, we know the modular invariants for A i $  © A^,v-
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Chapter 6

The Exceptional Heights

In this chapter, we consider the exceptional heights (p',p) = (12,p), (24, p) and 

(p ',8 ) (it turns out that (18,p) and (60,p) have already been done in Chapter 5). 

We have Lemma 4.3, Lemma 4.5(a) and (b), 5-invariance and T-invariance (the 

norm condition), and the Galois condition. Also, throughout this chapter, we use 

Maple1 to check which weights satisfy certain inequalities or congruences. Lemma

6.1 below is a special case of the A 2 Galois condition, and will apply to all of our 

exceptional heights other than when p =  8 and 3 | p'. Because of this, the height 

(p', 8 ) where 3 | p' will be the most difficult case, and we will use the general Galois 

condition to solve it. The A2 Galois condition was completely solved by Aoki for all 

but 33 relatively small heights [1].

Lemma 6.1. [9] Suppose p' is coprime to 6 . Then A and k  satisfy the decoupled 

parity rule (4-8); ie, M\^KV /  0 = >  e f  (̂A) =  \ k) for all £ with gcd(l,Zp') =
1 iff n £ OX, and a similar statement holds for p, p, v when p is coprime to 6 .

6.1 The Exceptional pp-couplings

We will first finish the proof of Theorem 4.2.

Proof of Theorem 4-®(c)> (d), (e). First suppose that p' =  18 and p = 1 2  5,11,
as in Lemma 4.2(c) (ii). If A € 0(1,4) and p =  A%p, i = 1,2, then evaluat-

1 Maple is accurate to nine significant figures, which is acceptable enough for these calculations. 
A potential inaccuracy can occur when Maple returns a 0 value; for example, it could be possible 
that an expression could have a value of —10“ 20 but Maple has rounded it up to 0.
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ing s i ( ( 8 , 8 ),p) > 0 leads to a contradiction whether m = 1 or 3 (recall m —

Ei=o M Aipp,pp)- Therefore, ifp ' =  18 and p = i2 1,5,7,11, U r  =  n L =  {(A*,p,p) :
i = 0,1,2} and so is covered by Theorem 4.2(a)(ii).

Next suppose p' =  12 and p = 1 2  1,5,7,11, as in Lemma 4.2(d). Let m  := 

E i  M Aipp,pp and m " :=  E ;  MAip",pp- Applying the parity rule with I  = - 1  (mod 3p) 
and I  =  (mod 3p')> we get M ^ 3)AptPp = M(3i3)a2 PtPf>, and MA{3>3)Ap = M A{3 fi)A2 p = 

M A2 (Ŝ )Ap = M A2 (3 A)A2 p. As in Chapter 4, Lemma 4.3(c) tells us either m" > m, 

or m"  =  0. Let b := M q %3)APiPP, b' := MA(s>3)Ap,pp, and B := 0 M Ai ^ 3)AjpjPp,

so B  = 2b + Ab'. Then b =  0 or 26 > 2, and 6 ' =  0 or 46' > 4. We will show that 

B  = 0.

If m" =  0, then s l ((3, 3),p) > 0 implies B  < m, so if m =  3, then B  < 3 
implies 6; =  0. Therefore the only choice with m  =  3 has b < 3, so b — 0 or 1. If 

m = 1, then B < 1, a contradiction unless 5  = 0. We thus have the possibility

m — 3, m"  =  0, and B  =  26 =  2. But this cannot happen because m =  3

implies AfA<(3 ,3 )Aip,pp =  M {3t3)AjptPp for all « G {0,1,2}, which implies 6' 7  ̂ 0, a 

contradiction.

Therefore, suppose m" 7  ̂ 0. Then .sl((2, 2),p) > 0 implies m" < m. But 

m" > m  as usual, so m" =  m. Now evaluating S£, ( (3 ,3) ,  p) > 0 gives

(6.1)  B < 2m.

If m  =  3, then sl((2, l ) , p )  > 0 implies b' > b, and S£ , ( ( 3 , 2 ) , p )  > 0 implies b' > b so 
b = b'. Together with (6.1), this gives us the possibility

(6.2)  m  =  m" =  3, b = b' = 1, B = 2b +  46' = 6.

If m =  1, then by (6.1), B < 2, which rules out b' 7  ̂ 0. Therefore, for B /  0, we 

must have b 7  ̂0, so b = 1 and 5  =  2. We then get the possibility

(6.3) m =  m" =  1, 6 = 1 , 5  =  2b = 2.

The next step is to eliminate the choices in (6.2) and (6.3). Suppose we have 

m  = m" =  3 and 5  = 26 +  46' =  6 , as in (6.2). Then s l ( ( 3 , 3 ) , p )  > 0, so 

((3,3), p) G Vl-  But then by T-invariance, M(3,3) ^  # 0  = >  ki/ =  (Aj2 (3,3),p), 

for some i G {0,1,2}. But now, evaluating M S (12,p) =  S^12’P̂ M at (pp, (3,3)p) 

implies M ^ 3)p>Aî p =  0 for all * =  0,1,2, contradicting ((3,3), p) G VL-
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To eliminate the possibility in (6.3), we find that in that case, s i ( (2,3), p) is

negative, so we cannot have (6.3). Therefore B = 0, so now we just have to consider

A G OpUOp".
If m" =  0, then H r  =  TIl  =  {(A\ 2 p, p) : i =  0,1,2}. By Lemma 4.3(a), we must 

have sL{X,p) = m ^,ppS\^k I  ^  °- Letting k =  (2,2) and v  = p, we have

2 2

sl ({2, 2), p) =  ^■Aipp,pp̂ [2,2)p,Aipp ^ A ip"p,pp^(2,2)p,Aip"p
2—0 1=0

> o.

But by (2.11),

(l£) si” (I) = ̂ S”2 (I) S“ (S) = - SP?)o’

so factoring out 5 (2 % ’ we get that the above inequality iff Spp S ^ 2̂ p(m — m") > 0 

iff m > rn" (since Sfp S ^ ^ p > 0)- Therefore, either m" =  0, or m" =  m. By 

Lemma 4.3(b), either MPP:PP = 1 and M \ p>pp = 0 VAp ±  pp, or M AipPtf)p =  MpPiPp = 

1 V* =  0,1,2, so m = 1 or 3. Therefore, if m" ^  0, then m" = m = 1 or 3.

Suppose m" — m  =  1. Then there exists exactly one I  for which M Aip,,ppp = Si^. 

Consider % ((l,2),p). For s^((l, 2),p) > 0, we must have S ^ p  +  ^fxp)Alp’’ -  °- 
But if I =  0, we can calculate the left-hand side using (2.11), and we find that it is 

negative. If I  ^  0, then the left-hand side is non-real by (2.5). Therefore, we cannot 

have rn" = m = 1, so we have Theorem 4.2(c).

Now suppose we have p' = 24 and p = 1 2  1,5,7,11 as in Lemma 4.2(e). Let 

m ' = Ei=o M Aip'p,pp> rn’" := E L o  M A'p>"p,ppi where pf = (5,5) and p'" =  (7,7) 
(p" =  (11,11) here). Lemma 4.3(c) again tells us m! = 0 or m' > m; m" =  0 

or m" > m, and m"' =  0 or m'" > m. The case rn! =  rn" =  m'" =  0 was 

covered by Theorem 4.2(a) (ii), so we will assume or m"' > 0. Evaluating

Si((2,2),p),Si((3,3),p), and S£,((4,4),p) gives us the following equations

(6.4a) m  — m" — m! +  m"' > 0

(6.4b) m — m" +  — m!" > 0

(6.4c) m +  m" — m! — m'" > 0.
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Adding (6.4a) and (6.4b) gives us m  > m"; (6.4b) +  (6.4c) gives us m > m'", 
and (6.4a) 4 - (6.4c) gives us m > m'. Therefore, whenever one of or to'" is

nonzero, that one must equal m, which is 1 or 3. Putting all possibilities into Maple, 

we find that every choice of and rn"' violates one of equations (6.4), or

one of Si((2, 2),p),sl((3 , 3),p) > 0 except for m  — m" = 3 and m 1 = m'" =  0; 

m  =  m! =  to" =  to"' =  1 , or to = rn! = to" =  to"' =  3. But m = to" =  3 

and m' =  rn!" =  0 violates sz,((l,4),p) > 0 .  If to = to' =  to" =  to'" =  1, 

then there exist j,k,d. E {0,1,2} such that M Aip,ppp =  5jtf, M Ai^ippp — 8 kp, and 

MAi pin p ,p p  — Stj. But any choice of j, k and I  gives either sl((3, 2),p) negative or 

non-real. Therefore, we have only the choices to =  to' =  to" =  to'" =  3, or to =  1 

or 3 and to' =  to" =  to'" =  0, which is covered by Theorem 4.2(a) (ii).

Finally, suppose p' = 60 and p —12 1,5,7, 11 (Lemma 4.2(f)), and put p' = 

( l l , l l ) , p ' "  = (19,19). The details are similar to the p' =  24 argument: here 

s l( (3 ,3) ,p) ,S i((6,6) ,p)  and «l((10, 10),p) > 0 yield equations (6.4) which imply 

m =  m' =  to" =  m'" =  1 or 3, unless to' =  m" =  to'" = 0. But both to =  to' = 

to" =  to'" =  1 and 3 imply s^((2,5),p) < 0. Therefore, the case p' — 60 is covered 

by Theorem 4.2(a)(ii). □

6.2 The Exceptional Invariants at (p',8)

6.2.1 The Exceptionals at p — 8  when p1 = i2 1,7 and TZr =  —

{ p p \  PP]

We begin with (p',p) =  (p', 8 ) as in Theorem 4.2(e)(i), so p' = 1 2  1,7. We will do this 

case in the most detail. Suppose first that 7Zr =  7Zl =  {pp, pp"} (p" =  (3,3) here). 

Then Mpp^pp" — Mpp",pp =  Mpp,pp =  1, and Mppt\p — M\p,pp — 0 VAp 0 {pp, PP }•
Suppose M \p KL, 7  ̂ 0. Then A and n must satisfy the decoupled parity rule, 

so by Lemma 6.1, k E OX. and since p = 8 , there are very few possibilities for 

p. Putting these possibilities into 4.3(a) (using Maple), we get s l (A,p) > 0 for 

any A G P£+, p G Op U 0(3,3) U 0(1,3), s o ?  -  P^+ x Op U 0(3,3) U 0(1,3). 
Now putting all possible p and v into the decoupled norm condition (4.3), we have 

i/~ 0 = >  p p G O p  U 0(3,3) or p, v E 0(1,3).
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Consider M apAp,ApAp• Evaluating S&'&M = M S ^ ' ^  at (Ap'pA8p,pp), we get

s % ]{ E  + E  } = s g H s ®  + S j $ ) .
a,6 = 0  c,d= 0

But Sp8J/S^J„ =  3 -  2\/2, so Spf  and sjff, are linearly independent over Q. There­

fore, equating coefficients, we find that MApApAapAbp — 1 for exactly one choice of 

a and 6 . By the norm condition (4.1), we must have either a =  b =  0, or both a and 

b nonzero; however, (Apip,A%p) is not a pp-coupling, so we cannot have a =  b =  0. 

Therefore (A%,p,Ab8 p) G {(Ap'p ,A 8 p),{Ajlp,Asp),(Ap'p,Ajp), (A^p,Alp)} .  No­

tice that these are all conjugations of each other, so multiplying by the appro­

priate conjugation matrix if necessary, we may assume that a =  2 and 6 = 1 ; 

ie, M ApApA2 pAp = 1. Then by Lemma 4.3 (c), M AXAfi>AikAv =  M XpLtKV for all 

Xp, k v  € -F++8, and

(6.5) t(A) +  t(p) =  — t{n) +  t(v) (mod 3)

whenever M X̂ KV A 0 .

Evaluating S & '^ M  =  M S ^ ' ^  at (pp,pA%p), we get that MpApAapAbp = 1 for 

exactly one choice of a and 6 . By (6.5), we get a +  26 =  2 (mod 3), and this together 

with the norm condition (4.1) tells us a = 0 and 6 =  1. By Lemma 4.3(c), we 

therefore have

(6 .6 ) t(p) =  t(v) (mod 3)

whenever M XpyKlJ A 0. Now by (6.5) and (6 .6 ), we also have

(6.7) t{A) = — f(/c) (mod 3)

whenever M Xp:K„ A 0 .

Suppose M Xp̂ v  0, where p G Op U Op". Then v £ Op U Op" as well, 
and by Lemma 6.1, k  G OX. For now take p — Aap for some fixed a G {0,1,2} 
(the argument for p G Op" will be similar). Then MXAap>KU ^  0 = >  ( k , v )  = 

(Ab,C£,X,A%p) or (AbplCp,X, A%p"), since k G OX and t(v) =  —t(A%p) (mod 3) by

(6.7). Evaluating S&'&M = M S ^ ' a t  (XAap,pp), we get

M XAap,AbCc\Aap = M XAapAb>cc' XAap" =  1
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for exactly one choice of b, c and b', c'. Putting ((A, A%p), {AbplCpiA, A%p)) into (6.5), 

we get b = 3  b' = 3  t { A) and c = 3  c' = 3  0. Therefore, M x a °-p ,kv =  1 for {k , v ) — 

(A',Agp) and ( k , v ) =  (A", Ag/o"), where A', A" € {A, A ^A } .

Now evaluating M S =  S & ' ^ M  at ((2, l)p, k v ) for any k  G P++, and any 

p , v  E O p  U O p " ,  we get

(« ca c(p') f 0 (8 ) , 0 (8 ) \ _  c(p') 0 (8 ) , o(p') 0 (8 )
V0-8! ,5 (2,1)k1'5PP +  b p”p> “  ‘5 (2,1)k',:>PP + '5 (2,1)k'',5 p"p’

where k ' , k "  G {k, A ^ k } . The reason for finding equation (6 .8 ) is to get an S  

symmetry, analogous to (3.17). If k '  =  k "  , then (6 .8 ) becomes ])K =  S ^  j)K/ • 
Now suppose they are not necessarily equal: put k ' =  k  and k "  — A ^ k . The 

right-hand side of (6 .8 ) then becomes s jp^ KSp8p + so equating

L H S  = RHS,  we must have =  0. But this can be true iff f(«;) =  0 (mod 3),

in which case, k "  — A p,K = k  — k '  anyway. Choosing k '  — A ^ k  and k "  = k  also 

gives us k "  — k '  — k , so in any case, we at least have k ' = k "  and S(2 i)« — S ^ j y .  

Since k '  G O k , we also know that 5 ^  =  SppJ , so we have

q(p') q(P') q(P') q(p')
(a a\ ° ( 2 ,1 )k _  (2 ,1 )k' . ° ( l, 2 )it _  ° ( l,2 )»t'
{ ’ q(P’) C(P') ’ q(P') qiP') ’

J PK 0 pK' J Pk s Pk'

where the second equation uses C pi ( 2,1) =  (1 , 2 ) and the fact that { C p’k! }  =  

{ ( C pi k ) ' }  (where by {A'}, we mean the set {A, A ^A }). The fact that the sets 

are equal follows from calculating each set. By (3.18), we therefore have

O(P') qiP’)
j A k'

qiP') q(P')
J PK Pk'

for all A G P p + , and where k!  G { k , Al̂ k ) .  As usual, unitarity of S1̂ ') now gives

us k ' =  k  (see the proof of Proposition 3.1). Therefore, what we have shown is that 
whenever p, v  G O p  U O p " ,

/  0 MXptKl, =  1 and kv G {Ap,Ap"},

If M x A ap",Kv A  0 for some fixed a, the same steps apply, so we have the following
when p, v  G O p  U O p ":

(6.10) M x p ,KW 7̂  0 M x p ,KU =  1 and k v  G {Ap, Ap"}.
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Finally, suppose MA(lj3)i/a, ■£ 0. Then v € 0(1,3), and by (6 .6 ), v =  (1,3) 

or (4,3). As above, T- invariance and (6.5) give us k G {A, X}. Evaluating

MS(p',8'> = S ^ ’̂ M  at (A(l,3),pp) yields

(6.11) A f\( l ,3 ) ,A ( l ,3 )  +  -Ma(1,3),A(4,3) =  %

so at most two and at least one of the above M  terms is nonzero. Without loss 

of generality, suppose ^  6 - Then evaluating M S ^ ' ^  = S(p>& at

(A(l, 3),p(l,2)) implies

^ (l,3 ),A (l 13 ) ^ i ’83 ),f ( ii2) +  MA(1,3).A(4,3)^4’3),„(1,2) =  °> 

because (p, (1,2 )) so M aj3 ^ lt2 ) =  0 for all a/3 G -P++• Therefore

SfJ ){M A(l,3),A(l,3)'5((iJ3)(1)2) +  M A(1,3),A(4,3)S((J!3)i(1|2)} =  0.

But using (2.5), we see that

0 (8) _  J l L f 2 e - W - 2 e ^ )  - - 9 (8)(1»3)(1,2) -  g^/3 ^ e ^  > ~  (4,3)(1,2))

so AfA(1>3)lA(1,3) = M A(1,3),A(4 ,3).  Together with (6 .11), we get AfA(1>3))A(1)3) =  M a(1>3)iA(4j3) 

= 1. A similar argument holds for any p G 0(1,3), so we actually have the following:

AfA/t,Â t =  MXfiM =  1,

where (p, v) can be one of the pairs ((1,3), (4,3)), ((3,1), (3,4)), or ((4,1), (1,4)), or 

vice-versa.

We therefore get the exceptional invariants

(for p’ =£3 0 ,p =  8 ),

up to multiplication by an automorphism invariant.

6.2.2 T he E xceptionals at p — 8 w hen p' = x2 1 ,7 and TZr — Jh (pp) U 

Jr(pp")  and 1 ZL = J L{pp) U J L(pp")

The second type of exceptional when p =  8 is given in Theorem 4.2(e) (i). There are 

several choices, all of which are done similarly. We will do the case 7Z := TZr = 7Zr =
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{(Ajp,p,Aip), (Ailp,Aip") : * =  0,1,2}. Put J  := {4° Then

M pp,J(pp) = m J{pp),pp =  1 VJ G J ,  and by Lemma 4.3(c), (d), M AiXAi ^ AjliAjv =
Mx^ku VA/i, kv  G and i(A) +  t(p) =  f(/c) + t(v) (mod 3) whenever M \ ^ KV ±  0.

Evaluating s l ( p ,  (2,2)) > 0, we find that M A i p A i p n >pp < 1. But M A i p A i p »  pp > 0

since Alp,pA\p" is a pp-coupling, so MAipAipn)Pp =  1 V* =  0,1,2. Similarly, evaluating

s r ( p , ( 2,2)) > 0, we get M p p > A i p A i p n  = 1. By Lemma 4.3(a), we can find V  by

evaluating s l (A, p) > 0, which reduces to finding all p with sjfj  +  SpJ„ > 0 ( S ^  is
/

factored out, which is always positive, so A can be anything in P++). We find that 

p  G Op U Op" U 0(1 ,3). Therefore, V  := VR =  VL = (Ap G P£j_8 : i(A) +  f(p) = 3 

0 and p G Op U Op" U 0(1,3)}. We can use J"—orbits here as we did in Chapter 

5 (ie, let (Ap) =  {(Ap, \ ,  A\p)  : i =  0,1,2}). Since 3 { p', can always choose a 

representative of (A/i), such that t(A) = 3  i(p) = 3  t(n) = 3  f(zi) whenever M^xp){kv) /  

0. Putting all weights A/i G P  into T-invariance, we find that M^xn){Kv) 7  ̂ 0 = >  

p ,v  G 0pU  0p", or /i, ii G 0(1,3).

Suppose M^xh)(kv) 7  ̂ 0, where p, v G Op U 0p" Evaluating M S ^ * 8 )  = S ^ P ' ’^ M  

at (Ap, pp) and choosing f(A) = 3  f(p), we get

< k ( £ M A(vt,ciA/tv)sM + ( E MV,.w;wV')sS'> = + s$'>>
z,j,k

where *, fc =  0 , . . . , 2  and y =  0, . . . ,1 .  But since we can choose t(Alp,Cp, A) = 3  

i(^sP) = 3  0, we can assume i =  k =  0. Therefore, by the linear independence of 
,Sp8̂  and P^8), over Q, we have

1 1

3 ^ 2  MXp C j \ p  = 3 ^  M X p f i i \ p "  = 3, 
j = o  j = 0

so M(xp)(ca\p) =  M(Xp)(Cb\p") =  1 for some choice of a and b. Multiplying by a 
charge conjugation if necessary, we may assume a = b.

Notice that S^)p +  S'py/ =  S $  +  Sppl , so for any choice of p 6  Op U Op" we 
have

M(xp.)(kv) 7~ 0 <*=»• M {Xp){Ku) =  1 and («i/) G {(Ap), (Ap")},

whenever p € Op U 0p".

Now suppose M {Xix)(Kv) /  0, where p, 1/ G 0(1,3). First let p =  (1,4) so that we

7 8
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have t{p) = 3  0. Evaluating M S (p'’&) =  S&'&M  at (A(l,3),pp), we get

1

(6.13)
i , j = 0

Evaluating M S ^  =  S(p'-8)M at (A(l,4),p(5,2)), we get

1 1

since (p, (5,2)) $ V. Using (2.5) to calculate the values and equating the real

and imaginary parts of this equation, we have

^<A(l,4))(C“A(l,4)> =  Af<A(l,4))(C“A(4,l)>- 

Therefore, together with (6.13), we have

Af<A(l,4))(C«A(l,4)> =  M ( A ( M ) > ( C a A ( 4 > 1 ) )  =  1 ,

giving us the invariants

up to multiplication by an automorphism invariant.

6 .2 .3  T h e  E x ce p tio n a ls  a t  (p;, 8 ) w h en  3 | p'

In the case of Theorem 4.2(e) (ii), we do not have p' coprime to 6 , but we can still use

of those, the ones that affect us are p' = 9,15,21,39. Therefore, we will have to 

consider the heights (9,8 ), (15,8), (21,8 ), and (39,8 ) separately. The exceptionals at
(9,8 ) were found in [14]. For the remaining three heights, we do not work them out

invariants. They are finite and can be found by a computer search, and by some of 
the methods used in this chapter.

(6.14)
I (p'>8) I (p'>8 ) ( p ' . 8 )* I (p'.8 )* \

+  2 _ ^ (X J4iAj4 ± i( l i4) + Z _/(X yiiAy i± i( i)4) +  X y4«Ai4±«(4)i ) )

2 2

i—0 i = 0

(for  p' ^3 0 , p  =  8),

Galois [1]. There are 33 heights at which the Galois condition has not been solved;

here, but we expect to also find (6.12) and (6.25) as the only exceptional
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For general p', the Galois condition tells us that there are two choices of orbits 

for A when M \ PtKU ^  0, namely A G O k  U O k ' for some k! . Our strategy is to show 

that we cannot have any of the O k ' cases, so A must be in O k . At that point, the 

argument can be worked out as for the other cases.

We have here 7ZR = n L -  {pp-.pp"} or K r  = U L =  {{A^p^p), (Alp,p,p") : i =  

0,1,2}. The arguments for them are similar; we will do the first one. As before, 

V  = P++ x Op U Op" U 0 (1 ,3), and /  0 implies either p,u  e O p  U Op", or

p, v 6  0(1,3). Similar calculations as in the previous cases give us

(6.15) f(A) =  t(K) (mod 3),

whenever Mxp,KI/ ^  0 .
First, consider k  with f(«) ^  0(mod 3). Due to the choices of weights p ,  v  when­

ever „ 7  ̂0, p and v  cancel out of full T-invariance (4.1), leaving

whenever M ^k,, A 0. Then of the 12 possible weights in O ( k ) U O ( k ') at most 2 

will satisfy (6.15) and (6.16). By (2.10c) and T-invariance, the weight in the k  orbit 

will be k , and we will call the weight in the other orbit k '.

Applying MS^P'’8̂  — S&'&M  at (p(2,5), Kp)  and ((2,1)(2,5), Kp) ,  we get

We see from (6.18a) that AK and A*/ must be both 0 or both nonzero. If AB, Are/ A 0, 
then dividing equations (6.18), we get

(6.16)

where the left-hand sides are 0 because (A, (2,5)) A V  for any A.

Let A k := M KPtKp -  MKp«>Kp and A := Mrj Pyfip -  MK>pn^p. Then equations
(6.17) become

K 1 P ‘

(6.18b)

(6.18a)

(6.19)
q(p') q(p')
J (2,l)« _  (2,l)<c'
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and the usual argument implies k  — k '.  Therefore we can take AK =  A — 0. This 

means
MKp,Kp ~  M Kp"Kp and =  Mki p" yKp.

Then evaluating M S = S & '^ M  at (p p , K p ), we get

s£'>{s£» +  $> ,}  =  s « ( s £ >  +  s $ , ) M m  +  s ^ '( s g )  +

and a similar equation from MS(p'’̂  = S&'&M  at ((2,1 ) p ,  Kp ) .  Dividing both sides 

by Sp8p then gives us

(6.20a) (4 -  2 /2 )5 '; ' ' -- S%>MKf„ ( 4 -  2 /2 )  +  S%)m k,w (4 -  2 /2 ),

(6.20b) (4 -  2 /2 )s £ > )is =  S ^ M V ,V (4 -  2 /2 )  +  S « ).,M sV,«p(4 -  2 /2 ) ,

because Spp /S^),  =  3 — 2\/2. Equations (6.20) reduce to 

(6.21a) S g ) ( l  -  M KPtKp) = S%)MK,p>Kp

( 6 . 2 1 b )  ' ' ’ ( 2 , i ) / C( l  M Kp.Kp)  —  S ^ i ) Ki M KipiKp.

A p ') /q (p ')Therefore, if MK<PyKp ^  0, MKPyKp -  0. Dividing these, we get S ^ [ y / S pK 

S(2 \ )K ’ l ^ p J - >  again implying n '  —  k . Therefore, what we have shown is that if 
£(«) ^ 3  0, M \ p yKV ^  0 iff A =  k .  The analysis for the weights p  and u is the same 

as in §6 .2 .1 .

Now suppose tin) =  0 (mod 3). This is more difficult, because then any weight 

in O k  U O k ' can potentially couple to k . We will proceed as above.

Evaluating M S — S ^ ' ^ M  at (pp. Kp) ,  we get

E s£,jv»(W+ E
o€Ok ol̂ Ok

+ S%>{ E S2)Mw.V+ E
a £ O K f a £ O K f

( &)and dividing by SpJ„, we have

(6 .2 2 ) S f f ( 4 -  2 V 2 ) = S % \V p  + (3 -  2 ^ 2 )2 ^ )  +  S%)(Z'p +  (3  -  2v/2)E;„),
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where Ep Yaeo* M ap,*pi Ep» YoigOkMoiP1 ,*pi ^p '■— Ya^o*'Map , * 1 pi an<l 
s p" :=: E a e o*> Map",K'p- Evaluating M S (p' ^  = S {p' ^ M  at (p(2,2),Kp), we get

(6.23) 0 =  (E p — E p») +  (Ep — Ep//).

Subtracting (6.22) and (6.23) gives us

(6.24) S X )( 1 - S ^ )  = S % % , .

If we knew that = S ^ J , then we would be done, because then we would be in

the situation of the t (n)  = 3  0  case. Without loss of generality, suppose Sp’J  < S ^ J .

If Ep„ 7  ̂ 0, then by (6.24), Ep» =  0 and E^„ =  1, which implies SpPJ  — S ^ J . So 

take S pn 7  ̂ 0. Then Ep =  1 and Ep„ =  0, which implies Ep =  l,E j, =  0, and 

again = S ^ J , which is what we needed to show, because now the argument 
reduces to the t (n)  7^3 0 case, and we get A £ O k whenever M \ ^ KV 7  ̂0. We get the 

exceptionals £$}\, andV

£(8) = I  V  V f y (?/’8) +  y (p> ) )  V f y (p,’8)* +  y (p' )P)* )P',8 3 Z_> Z ^ A ' A p  T  A-A‘A (3 ,3 )' ^  * > 1 ^ ( 3 ,3 ) '

Aep :+ j=0

(6.25)
+  V ( > ' . 8) + y ^ ’8) ) Y V P' ’8)* + y (p' ’8)* )T  Z-A*A»A(1,4) ~  /*-A!A(4,l)' Z _ /'/'-A1A(l,4) ^  -*-A»A(4,l)b

j= 0  j= 0

(for p' = 3 0 ,p =  8 ), 

up to multiplication by an automorphism invariant.

6.3 The Exceptionals at (12, p)

6.3.1 T h e  E x ce p tio n a ls  a t  p' =  1 2  w h en  H R =  K L =  J (p p )

We will do the case 7?.# = UL = {(A\ 2 p,p) : i =  0,1,2}. Here, J  := J R = J L = 

{A\ 2 Ap, A \ 2 A^, A \ 2 Ap}, and we have a fixed point of J  at ((4,4),p) =: <£p, for any 

p G T|__|_. We have ^Pj(pp)^pp pp,j(pp) 1 for all J  6  , and M\^^p  =  Mpp^\^ =  0
for all Ap £ J{pp)- Therefore, Hi =  H(l, 3), and by Lemma 4.3 (d), (c),

(6.26) f(A) =  f(/«) =  0 (mod 3),

whenever MAjtl)Ki, f  0 and M a,x^ a , km =  MA(U>K!, VAp, /«/ £ P+2/ .  By Lemma 4.3(a), 

P  =  {Ap £ P+_f : s l (A,p) > 0}, so using Maple to calculate sp(A, p) for all Ap
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with t(A) = 3  0, we get that V  =  {Xp G P{2+ : f(A) = 3  0 and S $  > 0}. 

But > 0 for all X,p, so we have V = Op U 0(2,2) U 0(3,3) U 0(4,4) U

0(5,5) U 0(1,4) x P++. Putting these possibilities into T-invariance, we get that 

v ^  0 implies either A, k G OpUOp", A, k G 0(2,2)U {(4,4)}, A, k£ 0(3,3), or 

A, k G 0(1,4). Therefore, by Lemma 4.5(b), we have a permutation a of J —orbits 

(Xp) whenever A £ 0(2,2) U {$}, as in Chapter 5, where (j) =  (4,4).

Evaluating M S = S ^ 2̂ M  at (pApp,pp) gives us Yp-o^pApM'p  ~  so 
MpAp,pAap — 1 for exactly one choice of a. By T-invariance (4.1), we cannot have 
a =  0, so a — 1 or 2. Therefore, cr(p, App) =  {p, Cp(A2 p)) for some b G {0,1}.

Now consider a((l,4 ),/i), and let cr((l,A),p) =  ((1 ,4)',//). By Lemma 6.1, 

p! G Op, so evaluating M S (12’p) =  S^12,P̂ M at ((1,4)p,pp), we get

M-{lA)p,CJ(lA)AkClp ~
i ,k , i

and so 4^ jca(iA)AcCdp = 1 for exactly one choice of a,c,d. Therefore we have 

a((l,A),p)  =  <t(C'“2 (1,4), A^Cpp), as well as a(pApp) =  (p,Cp(A2p)) from before. 

Multiplying by the appropriate conjugation matrix (and adjusting c and d accord­

ingly), we may suppose a =  b =  0; ie, a(p,App) = (p ,A2p) and a((l ,4),p)  =  

((1,4), ApCpp), for some c G {0, l,2} ,d  G {0,1}, and similarly, a((4,l),p)  = 

((4, 1  ),p'). By Lemma 4.3(b), MpAp,pAp = 1 t(p) = 3  2t(v) whenever M Xp,Kl/, 
so evaluating t(p) = 3  2 t(CpApp), we find that k = 0 and t  — pt(p).

Now suppose M^p^v 0. Then k G 0 (2 ,2)U{</>}. For k g 0 ( 2 ,2), we can choose 

k =  (2,2) without loss of generality. Notice that M^p^p)^  7̂  0 iff M(2,2 )u,<j>p A  0,
by Lemma 4.5(b). As in the previous case, we know that v G {p, A ^ ^ p } ,  and

multiplying by a simple current invariant if necessary, we can take v = p. Then 
evaluating M S (12,p) =  S ^ ’̂ M  at ((2,2)p,pp) gives us

M {2 ,2 )p.,(2 ,2 )p + M { 2,2)p,4>p = ^

so one of the above terms is 1 , and the other one is zero. If M(2 ,2 )p,(2 ,2 )p — 1 and 

A4 (2,2)p,4>p =  0 , then ((2 , 2 ), p) does not couple to a fixed point, so o((2 , 2 ),p) = 
((2, 2 )p). We then find that M^p^p = 3 (see the proof that =  3 in Chapter

5). This gives us the modular invariants M  =  V 12 <S> Ap and V \ 2 <§) Vp, both

of which have already been found in Chapter 5. Therefore we can assume that 

M (2 ' 2)p,(2 ,2 )p = 0  and M(2 ,2 )p,<j>p =  1-
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We now need to determine the value of As usual, we use 5-invariance,

at (4>p,pp), which gives us =  3. But we just showed that

■^0 ^,(2 ,2 )/i =  1 ) so =  2 .
It remains to find cr(p,p), cr((3,3),p), and ct((5, 5),p). But 5-invariance at

(pp,pp), ((3,3)p, pp), and ((5,5)p, pp) give us <r(p, p) =  (p,p), cr((3,3),p) =  ((3,3),p),

and <t((5, 5), p) =  ((5,5),p). Therefore, M  is one of the invariants

£
(6.27) ^ pl+

+ 2IX(S)i + *($)i + ̂ (S£l2’ (for P' =  12’P &  °)»
up to multiplication by an automorphism invariant.

6.3.2 T he E xceptionals at p ' =  12 w hen 7Zr  =  1Zl  =  J ( p p ) U J(p"p)

The second exceptional case when p' =  12 is 7Zr =  1Zl =  {(A\2 p, p).(Al p'[2, p) : i = 

0,1,2}. Let J  := {A\ 2 A®, A \ 2 A®, A \ 2 A®}. Here, we have M J{pp)yPp = MpPyJ{pp) = 

Mpp,j(p"p) =  M j ^ lp)ypp =  1 VJ £ J ,  and by Lemma 4.3(d), (c), t(A) = 3 t(n) 
whenever M XpLyKV + 0, and M AiXflyAjltu =  M Xp,yKV V*,j E {0,1,2}. We can use 

Lemma 6.1 again since p is coprime to 6 , so M XflyKv ^  0 =$■ v G Op.

To find V, we check for which Ap G P+2+ is s l (A, p) > 0. We find these to be all 

Ap with A e O p U  Op" U 0(3,3); ie, V  = Op U Op" U 0(3,3) x P£+. Putting these 

into T-invariance gives M XilyKV ±  0 «=» A, k  G Op U Op", or A, k  G 0(3,3). As in 

the previous cases, we also have t(p) = 3  2t(v) whenever MXliyKU /  0 (conjugating if 

necessary), so v € {p, A j f ^ p } .  As usual, multiplying by a simple current invariant, 

we can take v — p. Suppose M(pp\/iKU\ /  0. Evaluating MS^12'^ = S^12,P̂ M at 

(pp,pp), we get ( k v )  = (pp) and ( k v )  = (p"p) (and the value of M  at these weights 

is 1), and similarly, 0 =G> ( k v )  — (pp) and ( k v )  = (p"p). Therefore,

(pp) and (p"p) each have two couplings, both of which give an M  value of 1, so we 

have the following:

M ( Xp) ( KV) ±  0  M {Xp){kv) =  1 a n d  (k v ) G { ( p p ) ,  ( p " p ) } ,

for any Ap with A G Op U Op", and where p!  G {p, App ^  p}.

Finally, suppose M ^3yZ)p){Ku) ±  0. Evaluating MS^12̂  =  S ^ ' ^ M  at ((3,3)p,pp)
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gives us M((3,3)//)((3,3)m) =  2- Therefore, M  is given by

(6 .28)

(for p' =  1 2 , p 0 ),

up to multiplication by an automorphism invariant.

6.4 The Exceptional Invariants at (24, p)

There is only one case to consider here; we have

n R = n L = { ( 4 4M ,  (Aap",p), (4 4 (5 , 5 ),p), ( 4 4(7,7),p) : * = o, 1 , 2 }.

Let 77 := 77R = n L. Then MXp,pp =  MpPtx̂ , = 1 VAp 6  77., and MxPtPP = MpPiXp, =
0 VA/i ^  77. Lemma 4.3(b) gives us t(A) = 3  i(/«) = 3  0 whenever MA#tjKv 7  ̂0. Also, as 

usual, evaluating M S (24,p) =  S ^ ’̂ M  at (pApp, pp) (and conjugating if necessary), 

we get that t(p) =  2t(u) (mod 3) whenever M \ ^  0.

Using Maple to calculate s l ( A,/t) for all Xp, G P ^ p, we find that P  = {Op U 

0(5,5) U 0(7,7) U 0(11,11) U 0(1,7) U 0 (5 ,8 )) x P p+. 5-invariance at ((5,5)p,  pp)

gives us ^ [ ^ ) p , {1 1 ,1 1)A^p =  1 ôr exactly one
choice of i, j,  k. But now —t(p) = t(A%pp) =  t(App) = t(App) (mod 3) implies

1 = j  = k = 0. Similarly, we can evaluate S ^ ’̂ M  = M5^24,p̂  at ((7,7)p, pp) 

and ((11, ll)p ,pp) to get ^  0 <=> Mxp,KI/ = 1 and Ap,nu  G 77; ie,
Mi  =  P ( l ,  12).

Multiplying by a simple current invariant if necessary, 5-invariance at (Ap, pp) 

gives us M(Xp,)(\'p) =  1 for all A, A' G Op U 0(5,5) U 0(7,7) U 0(11,11).
Finally, suppose Mxp,KV 7  ̂ 0, where A G 0(1,7) U 0(5,8). 5-invariance at 

(Ap,pp) gives us

M(Xp)pip)p) +  M(xp,)((7p)p) +  M(v){(5i8)m> +  M(xm)((8,5)ij,) = 4,
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for any A E 0 ( 1 ,7) U 0 (5 , 8 ). In particular, put A = (5,8). Now evaluating 
M S (24,p) _  5(24,p)M  at ((5,8 )n, (1,4)p) and ((5,8 )/x, (2,5)p), we have

5,8W <(8 ,5)^) =  M((5!8)m>{(1i7)m) =  Af((5>8)AI><(7>1)#i>, and similarly for (Ap) -  ((l,7)p) 

Therefore, we have found the exceptional invariants

(6.29)
c _  !Y(24,p) , (24,p) (24,p) (24,p) (24,p) (24,p) (24,p)
24,p — \Xpp -r X (5 ^)^ ■+■ a.(7,7)^ ̂  * ( 1 1 ,1 1 )^ +  A(2 2 ,l)p * (l,2 2 )p A-(14,5)p

^eP++
+  V(2 4 ’P) . v (2 4 -p) . y (2 4 >p) , y (2 4 >p) , y (2 4 -P) 12 , I y (2 4 >p) , (24,p)
^  *(5,14)/i ^  *(ll,2)/n ̂  *(2,11)p ^  *(10,7)p ^  *(7,10)/J ̂  l*(16,7)p ^  *(7,16)p
, (24,p) , (24, p) (24, p) . (24, p) . (24,p) . (24, p)

+  *(l,16)p +  *(16,l)p +  *(8,ll)p +  *(ll,8)p +  *(5,ll)p +  *(ll,5)p

+  A'% %  +  X ^ i  +  +  X ^ l 2 (for P ' =  24>P ^  0),

up to multiplication by an automorphism invariant.
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Chapter 7

Concluding Remarks

In this thesis, we found the A 2  © A 2 modular invariants1. We used some powerful 

tools, among them the Galois symmetry for the S'-matrix, and the Weyl character 

formula. These are not unique to A 2 © A 2 ; they hold for any affine algebra X r. 

In future work we will apply these methods to the W 3  classification. We include 

in this chapter a brief discussion of the minimal W 3  model classification and some 

suggestions of further work in the area.

7.1 The Nonunitary W% Minimal M odels

This thesis sets the stage for the classification of the nonunitary W 3  minimal models. 

As with A 2  © A 2 , we associate to W 3  a pair (p',p) with gcd {p',p) = 1. In the case of 

all minimal Wn  models, the difference between a unitary theory and a nonunitary 

one is that a unitary theory has p =  p1 +  1. The unitary W 3  minimal models were 

classified in [14]. The W 3  minimal model problem can be stated in much the same 

way as for the A 2 ffi A 2 classification: find all M  satisfying (2.3). The difference 

in this case is that the S  and T  matrices are given in (7.1). As in the A 2 ffi A 2 

classification, we have a set

P++ =  {(^> /i) 6  Z4 : 0  < Ai, A2 , Ai +  A2 < p> and 0  < p\, 1 1 2 , Pi + p.2  < p},

that will index our modular invariant M.  An element Xp £ is called a primary.

1 Although not explored in this thesis, it is interesting to note here that there is a mysterious
connection between the Ai modular invariant classification and the ADE pattern [11], and between
the Ai classification and Fermat curves [9]
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The S  and T matrices for the W3 classification are slightly different than for 

Ai  © Ai.  They are given by

(7.1a) -  a y ,,ex p [-2 a i ^ M ± M M ]S?;M SW ) ,

(7.1b) Txpw = Ppi exp[iri —  ̂ ],

where cy  iP and j3p̂ p are constants, and S(p,/p) is just the usual matrix evaluated 

at the fractional height n =  p1 /p.

Recall that (A) =  A2 +  A1A2 +  A2 =  §A2. The norm condition for W 3 is given by

(7.2) Mxp a v  +  ^(A4) + =3 —(A') +  ^(/Z) +  t(X')t(p,').p  pi ?  pi

The most significant difference between the ^ 2 0 ^ 2  classification and the nonuni­

tary minimal W 3 model classification (and in general between unitary and nonuni­

tary theories), is that we do not have the vacuum column of S  strictly positive (see 

(2.12)). However, there is a unique primary called the minimal primary and denoted 

o, such that S \Pt0 > 0 for all A/i € P++- The S^0 column will play the role in the 
nonunitary W 3 classification that the vacuum column did for Ai  © Ai.  In the

case of any Wjy, the minimal primary also obeys the property that M 0 0  = 1. This 

is important because it bounds the entries of M  (the proof is similar to the proof of

(2.27)) and thus proves that for any Wn  minimal model, and in particular for our 

classification, there are finitely many choices for M.

In some rational conformal field theories, we can relate the minimal primary and 

the vacuum in a relatively simple way, via the Galois shuffle, which is a composition 

of a simple current2 and a Galois automorphism (see §§2 .2 .2 ).

We say that a rational conformal field theory has the GS property if there is a 

simple current J0  and a Galois automorphism a0 (these are not necessarily unique) 
such that

O =  J 0cr0(p ,p ).

Not all rational conformal field theories possess the GS  property; however all Wn  

minimal models do. In fact, in the case of W$, J 0 is trivial [12].

2A simple current is defined as a primary Ap such that Sam,o =  5PP,0
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Our approach to the W$ minimal models will follow the same three steps as we 

did for A 2 ® A 2  in this thesis; namely, find the automorphism invariants, then the 

simple-current extensions, and finally, find the exceptional invariants.

7.2 Reflections and Further Work

Working on this thesis was most interesting and enjoyable, and in particular, we plan 

to continue with the W3 classification. Understanding the proofs of the previous 

classifications presented the biggest challenge; however, once the problem was well- 

understood, most of the proof went as expected.

In addition to the classification of the minimal W3 models described above, 

some further work on this problem could be to remove the gcd(p',p) ~  1 condition. 

For example, we should be able to assume that gcd(p', p) < 3, as was done for 

A i  ©  • • • ©  A \ .
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