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ABSTRACT

In this thesis, we classify the modular invariants of the affine algebra (A &

A ,)() where p' and p are coprime. The importance to conformal field theory of
classifying modular invariants for affine algebras goes back to Witten. The first
modular invariant classification for an affine algebra was done by Cappelli-Itzykson-
Zuber in 1986 for Agl) in [4]. An almost identical problem to the (Ay @ A3)() clas-
sification, and the motivation for the work done in this thesis, is the classification
of the (nonunitary) minimal W3 models. To date, only one nonunitary conformal
field theory classification exists; namely, for Wy (the Virasoro minimal models). We
include a review of Gannon’s A(ll) classification [11] as a demonstration of our ap-

proach.

Key Words: modular invariants, affine algebras, conformal field theory
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Chapter 1

Introduction

The impact of rational conformal field theory on mathematics has been profound
(e.g. knot invariants, the definition of vertex operator algebras and quantum groups).
Conformal field theory arises naturally in physics, most notably in the area of string
theory, which attempts to describe all forces of nature within a single theory and
thus resolve the conflict between general relativity and quantum mechanics [17].
The relationship between conformal field theory and string theory is described for
instance in [20]. Another relationship between conformal field theory and physics
involves statistical systems at criticality.

Roughly speaking, a conformal field theory is a quantum field theory in 2-
dimensional space-time, whose symmetries include the conformal transformations.
The rational theories obey in addition a certain finiteness condition. In the case of
string theory, this space-time is the surface (“world sheet”) traced out as the strings
collide and separate through time.

A special class of rational conformal field theories, namely the Wess-Zumino
Witten models [16], has symmetries given by affine Kac-Moody algebras. Their
physical importance lies primarily in the fact that large classes of other models
can be constructed from them by the Goddard-Kent-Olive coset construction. For
example, the so-called W models are constructed using Ag\l,)_ , models.

Classifying rational conformal field theories is essentially the same as classify-
ing their modular invariant partition functions. In particular, much work has been
done on the classification of the modular invariant partition functions of affine alge-

bras. The classifications of the W minimal models are very similar to the modular
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invariant classifications of the affine Ay_; & An—1 algebras.

The ultimate purpose of the research done in this thesis is to obtain the clas-
sification of the nonunitary W3 minimal models. The unitary ones were classified
in [14]. A simpler but almost identical problem is the classification of the mod-
ular invariants of (A; & Ag)(l), which is the problem solved in this thesis. The
difference between the two classifications will be discussed more in the Concluding
Remarks (§7.1). The author plans to complete and publish the W3 classification in
the near future. One reason the nonunitary classification is interesting, is that there
is only one classification of nonunitary models that has ever been done, namely the
“minimal Virasoro models” = “W, minimal models”. It is known that typically
[12], nonunitary classifications will look very different than unitary ones, so this Ws
minimal nonunitary classification should generate interest for that reason alone.

The history of the problem of classifying modular invariant partition functions of
an affine algebra began when A. Cappelli, C. Itzykson, and J.B. Zuber achieved the
first modular invariant classification, for the affine algebra Agl) [4]. This problem
is simple to state: for any affine algebra, Xr(l) of rank r, we can write its modular

invariant partition function as

(11) Z= ) Muwoxs

AueP?  (Xr)
where PT, (X,) is the set of highest weights of x® of height n; the x’s are the
characters associated to the corresponding representations of X,gl), and * denotes the
complex conjugate. Equation (1.1) defines the one-to-one correspondence between a
modular invariant partition function Z and its coefficient matrix M, and we do not
distinguish between them. M is called a modular invariant if the following three

conditions hold:

(1.2a) My, =1 (uniqueness of vacuum),
(1.2b) My, € Zyo VA, u € P} (X;) (integrality and positivity),
(1.2¢) SM =MS, TM = MT (modular invariance),

where p is the vacuum, and S and T are the X,(l) modular data.
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Remark: In many articles, M is called a modular invariant if only (1.2¢) holds,
and if all of equations (1.2) hold, then M is called a physical invariant or a positive
physical invariant. However, in this thesis, we refer to any M satisfying all of
equations (1.2) as a modular invariant.

Cappelli-Itzykson-Zuber’s result [4] led to the problem of trying to find a com-
plete classification for all affine algebras Xr(l). Much work has been done since that

1. For example, Gannon followed up with the Agl) classification

(1)

for any level, and the classification for Ay~ at level 2 and 3 and any rank r, and

first classification

the work of Degiovanni and Gannon yielded the classification for all simple affine
algebras at level 1. Gannon also worked on the first semi-simple classification, for
(A1 & -+ ® A;); he found a solution for any level k = (ki,...,ks), such that
ged(k;, k;) < 3 whenever i # 7, and of (A; ® A;)(") at any level k = (k1, k). A main
feature of the (A; & --- @ Al)(l) classification was that its methods could be (and
were intended to be) generalized to other affine algebras, something which was not
found to be true of [4]. In [11], Gannon found a new proof of Cappelli-Itzykson-
Zuber’s result, applying the “generalizable” method to the affine Agl) algebra. We
include a review of this proof in Chapter 2. The method can be outlined as follows:
for a given affine algebra Xr(l), we first find the automorphism invariants (these
correspond to those M whose vacuum column is 0 except at M,, = 1); next, find
the simple-current extensions, which are built up in a natural way from symmetries
of the extended X,gl) Dynkin diagram; and finally, to find all exceptional invariants
- those modular invariants that are not of the first two types. The completed clas-
sifications seemed to suggest that the exceptional invariants occur only for “small”

levels, and in fact, the following was found by Gannon and Ocneanu [13, 19]:

Theorem 1.1. All possible modular invariants appearing in RCFT (or the subfactor
interpretation), corresponding to any fized choice of simple affine algebra Xr(l), and

all sufficiently high levels, are known.

The “known” modular invariants referred to in Theorem 1.1 are of the “extended
Dynkin diagram”-type, plus some exceptionals that have already been found. By

“simple affine algebra”, we mean the affinization of a simple Lie algebra.

For more on the classification of modular invariant partition functions, and references, see for

example [10].
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The result of this thesis is the classification of the modular invariants of the
semi-simple affine algebra (As @ A2)(Y, given in Theorem 2.1. Our proof follows as
closely as possible the work done in [9] and [14]. In Chapter 2, we set up our problem
specifically for (A @AQ)(I). We also include, as an illustration, a section on Gannon’s
Agl) classification, which is the most concise modular invariant classification, due
to the fact that A(ll) is the least complicated affine algebra. In Chapter 3, we find
the automorphism invariants?. In Chapter 4, we use T-invariance and a Galois
symmetry to find out where a nonzero entry on the vacuum row or column could
appear. The possibilities for these happen to be very limited, and for all but a few
exceptional levels, they turn out to be just a simple current orbit of the vacuum.
In Chapter 5, we find the modular invariants at the non-exceptional heights, and in
Chapter 6, we find the exceptional invariants by considering each exceptional height
separately.

We include one table: Table 3.1 lists all of the (A @ A)(V) simple-current

invariants.

*these were found by Gannon for any A,, @ -+ @ A, in [8]
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Chapter 2

The Problem

The classification of the modular invariants of (A @ A2)(V will follow closely that
of Ay in [9]. In §2.1, we define the problem of the classification for Ay @ Ag, and
in §2.2, we review the “modern” classification for A; [11]: this is a model for our

approach.

2.1 Basic Definitions and Calculations

The (As ® A2)1) data is built up from the Ag) data in the natural way, so in this
section, we will generally introduce a concept for Agl) first and then write down the
(As® Az)(l) version. The nontwisted affine X, algebra is denoted by Xr(l); however,
in this thesis, we will usually leave off the superscript (1), since we are dealing only
with nontwisted affine algebras.

We associate to the affine A algebra a level k; however, in many instances it
will be more useful to work with the height n := k+ 3. We denote Aj at height n by
Ay pn. Let Ag, Aq, Ay be the Agl) fundamental weights. We translate all A, , highest
weights by the Weyl vector p = Ag + A1 + A2 in order to make our equations easier
to use.

We identify a highest weight A = AgAg + A1 A1 + A2 Ao with its Dynkin labels: we
say A = (Ag, A1, Az). We can, and generally will, omit \g since \g = n— A1 — Ao, and

$0 A is completely determined by A; and Ao. The set of “shifted” highest weights is

P++ (A2) ={A=(\1,N) € Z2:0< AL, A2, AL + A2 < n},
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as opposed to the set PT(A) = {A = (A, Ag) € Z2: 0 < A, A, A1 + Ao <n —2} of
(unshifted) highest weights. We use P?, instead of P} due to the translation of all
weights by Ag + A1 + As. For the direct sum Ay @ Asp, we call (p',p) the height
and (k,1) := (p' — 3,p — 3) the level. For our classification, we will always assume

ged(p', p) = 11, The set of (shifted) highest weights for As » ® Ay, is
PPP = {(\,p) €Z*: 0 < Ay, Ao, A + Ao <p' and 0 < gy, pa, p1 + p2 < p},

so (A p) € PPP iff A € PP (A;) and u € PP (As). The highest weight (p,p) =
((1,1),(1,1)) is called the vacuum. We will often abbreviate a highest weight (A, u)
by Au. Let x), x®) be the characters corresponding to the height p' and p repre-
sentations of Agl) respectively, and let x®'?) be the Aoy @ Asp character. Then

(2.1) XEP = 5P xp).

Let M be the coeflicient matrix for the partition function

(2.2) 2= Y MuexSPxE
/\u,nuePff

of a WZW rational conformal field theory with chiral algebra Ay, @ Agjp. The

characters XE\’Z”’ ) are functions of a complex number 7. For As & Ay, Equations

(1.2) become

(2.3a) Mpp,pp =1,
(2.3b) M)y kv € Zxo for all A, kv € P_{f,
(2.3¢) MS®p) = g@e)pr, pTP'P) = TP

where S®') and T(*'P) are given in (2.6). Any M satisfying (2.3) is an Ary ® Az yp
modular invariant: the goal of this thesis is to find all such M. The S and T matrices
that M commute with are called modular data, and Property (2.3c) is called modular

invariance. A partition function corresponding to a modular invariant is called a

! One reason for this is that the classification for arbitrary (p, p) would be very difficult. Another
is that the Wx minimal model classifications have p' and p coprime, so removing the coprime

condition would not contribute to the W3 case.
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modular invariant partition function. We will switch back and forth between using a
modular invariant or its partition function, depending on which is more convenient
to use at a given time.

Up to conformal equivalence, we can identify a torus with C/(Z + 7Z), for some
7 € C with Im(7) > 0. Moreover, the tori corresponding to 7 and (a7 +b)/(c7 +d),

b
for any ¢ J € SLy(Z), are also conformally equivalent. SLo(Z) is the set of
c

2 x 2 matrices with integer entries and determinant 1. This is the final redundancy,
as far as conformal equivalence is concerned. For this reason, SLs(Z) is called the
modular group of the torus.

The partition function Z in (2.2) should be well-defined on each conformal equiv-

alence class of tori. This means that Z is a function of 7, and must satisfy

at +b
cT+d

a b
Zny=2 ( ) , for all P € SLy(Z),

c
where SLo(Z) = {2 x 2 matrices with integer entries and determinant 1}. For this
to happen, it is enough to have

Z(r) = Z(r +1) andZ(r) = Z (_—1) ,

T

because the actions 7+ 1 + 7 and 7+ —1/7 generate all of SLy(Z). This is what
we mean by modular invariance of the partition function.

The characters x of integrable representations A € P, of affine Kac-Moody
algebras X,gl) have the remarkable property that they are also functions of 7, and

satisfy

ar+b a b
X <cr+d)—— Z p Xu(7)

Mep_vll._i_ C d
for some unitary representation p of SLy(Z) (see Chapter 13 of [18]). We are espe-

cially interested in the two generators

0 -1 11
S=p and T =p ,
1 0 01

where p is a representation. For physical reasons, we know the partition function

has the form (1.1), and so modular invariance reduces to (1.2c).
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The S and T matrices for Ay at height n, denoted S™ and 7™ are

(n) —1 w()‘) U
(2.4a) S\, = —F= Z detw exp[—2mi———},

g \/gn weEW n

(n) _)\%+)\1)\2+)\%—n
(2.4b) TA# = exp|2mi 3 165,

where W is the Weyl group for As. S and T(™ are unitary and symmetric
(see Chapter 13 of [18]). Notice that T(™) is diagonal. Generally, we will not
need to calculate individual entries of the S-matrix; however, in Chapter 6, we will
need to use the explicit formula for Sg:?, so it is worthwhile to write it here. Let
(t,7,8) := (Mo, A1, A2) and (¥,7,8") := (po, p1, p2) (recall that Ao = n — Ay — Ag).
Then the Au-th entry of S is given by:

() _ —t —(2rr'+2ss' 15’ +1's) tt'—rs’ t—r's _ srrt _ rss !
(25) S = —x¢ (1 ¢ gt - g )

where ¢ = e5r and ¢ = e% (see for instance [2]).

The S and T matrices for (As & Az)(l) at height (p’,p), are

(2.62) som) =585,
(2.6b) TE? =T . T

It follows from (2.4) that S®P) and T®WP) are also unitary and symmetric, and

T®'P) is diagonal.

)

The Dynkin diagram for Agl is an equilateral triangle. Charge conjugation is

the reflection of the triangle through the Oth node that exchanges the other two

nodes, and a simple current is a rotation of the triangle through 27/3 radians. We

denote a charge conjugation for Ag) at height n by C, and a simple current by

Ap. Cp and A, act on a weight A as follows: Cp,(Ag, A1, A2) = (Mg, A2, A1), and

An(Ao, A1, Az) = (A2, Mgy A1). €y has order 2 and A, has order 3, and together they

generate the group of order 6 of all symmetries of the Agl)

the group of outer automorphisms of Agl), which we denote by O. Keeping in mind

Dynkin diagram. This is

that Ap = n— A1 — A9, we can write the action of C,, and A, on a weight A = (A1, \g)

as

(2.7a) Cn(A1,A2) = (A2, A1),
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(2.7b) An()\l, Ag) = (n— A1 — Ag, )\1).

Let O\ = {C}'LA%A :i=0,1,5 = 0,1,2}. Notice that if A = (A1, Ag) has A; = A,
then O\ = {A7):j =0,1,2}
For Ay @ As, we define the charge conjugations to be

(2.8) CUD (X, p) == CLCI(A, 1) = (CLN, Cp),
and the simple currents
(2.9) AGD(, ) o= AL AT (N p) == (AL X, Alp).

Each C9) and A(9) has order 2 and 3 respectively. The charge conjugations and
simple currents generate the group of outer automorphisms of (A @ A3)(!) of order
36. A special subgroup of these is the simple currents {A®7)}, which we denote by
A. The charge conjugations and simple currents for Agl) satisfy the relations (2.10)
below, which we will use throughout Chapters 3, 4, 5 and 6. Define ¢(A) = Ay — Ao,
called the triality of A. A simple calculation shows that

t(A%X) = na + t(\) (mod 3).

We then get

(2.10a) Toneu = Th

(2.10b) S8 =80, =50,

(2.100) TG pop = xp[ 5 (0% — at ()]
(2.10d) ST o = exP[ng(bt(A) + at(u) + nab)}s{.

Equations (2.10) are equations (1.6) of [9]. Another important property of the S-
matrix, which we will use frequently, is the value of SE\Z) when p has py = po, and

especially when u = p = (1,1)

(2.11) st

:—-—8 sin Tra—)\—l— sin WE&Z sin 7r~——~—a()\1+)\2)
Ma,a) \/gn n n n ’

9
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foralllgag%‘—l.

Putting (a,a) = p into (2.11), we get the useful fact

(2.12) S > 5m > o,

with equality iff A € Op. Equations (2.11) and (2.12) are (2.1) of [9].

We are now ready to state the result of this thesis as the following theorem.

Theorem 2.1. Let p’ and p be positive coprime integers. The modular invariants
for (Ay ® A2)V) at height (p',p) are

(a) the automorphism invariants, listed in Theorem 3.1,

(b) the simple-current invariants, listed in Theorem 5.1

(c) the exceptional invariants given in equations (6.12), (6.14), (6.25), (6.27),
(6.28), (6.29).

Remark: In this section, we dealt exclusively with A2 and As & Ay; however,
apart from the specifics, such as entries of the S and T' matrices and the symmetries
of the extended As Dynkin diagram, all of the concepts from this section hold for

general X, and their modular data.

2.2 The Agl) classification

For clarity, we will demonstrate Gannon’s classification of the A; modular invariants
[11]. As our Ay @ Ay classification follows this method, we will point out the main
ideas of the proof so that the reader can relate the corresponding steps in Chapters

3,4, 5 and 6 to the ones done here. The aim of this section is to prove Theorem 2.2.

2.2.1 The Problem for Agl)

For the affine algebra Agl) at height n, P}, (A1) ={a €Z:0<a<n-1} =
{1,2,...,n — 1}; we write P,y for short. The vacuum is 1, and there is only one
outer automorphism, which we call J. J acts on P, by Ja = n —a (ie, \; —

Ao =n —A1). The S and T matrices are

(213&) Sab = \/zSin (T‘-a_b> 3
n n
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iy _a?
(2.13b) Ty = exp[— Z] exp{mi 5;1—]5,,,,,.

S is orthogonal and symmetric and obeys the relation

(2.14) Srap = (—1)"*" Sap,

which follows directly from the definitions of S and J. Putting (a,1) and (1,1) into
(2.13a), we have

(2.15) Sa1 > 511 >0,

with equality iff a € {1, J1}. Let
n—1

(2.16) Z= Z MabXaX;
a,b=1

be a partition function for Agl) with coefficient matrix M. We call M a modular

invariant if

(2.17a) My =1,
(2.17b) Mo € Zso, Ya,b € Py,
(2.17¢) MS = SM,MT =TM,

and as usual we identify M with its partition function Z.

Theorem 2.2. The complete list of modular invariants for A(ll) at height n is

n—1
(218&) A'n,—l = Z iXaF, Vn Z 31
a=1
n—1
(2.18b) Doy = ZXﬂX}a+1a’ whenever 2 is even,
a=1

(2.18¢)  Dayr=lxa+xsl* +Ix3 + x> + - + 2|xz |, whenever } is odd,

(2.184d) E6 = |x1+ x7> + Ixa + x82 + x5 + x11l%, for n =12,
(2.18e)
Er = |xa+xar)P+xs+xasl?+xr+xan | xe (xa+xs)* + O +xas) x5 +xol?, for n = 18,

(2.18f) Es = |x1 + x11 + X109 + X20/% + |x7 + X13 + X17 + x23/%, for n = 30.

11
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2.2.2 T-invariance and the Galois selection rule

In this subsection we find that S satisfies a Galois symmetry (2.23), and we derive
a, simple formula (2.20) which comes from T-invariance. These are the two tools
which will later give us the “l-couplings’; ie, those a € Py such that M,; # 0 or
M, # 0. This subsection is the analogue to §4.1.

Since M commutes with T (ie, M is T-invariant), we have

n—1 n—1
(2-19) Z Mo Tep = Z TacMcb,
c=1 c=1

for any a,b € Py.. But T is diagonal, so this gives us MupThy = ToqMgp. If Mgy # 0,
we can cancel out the My, so exp|mi %%] = exp|mi g—:;], by (2.13b). This gives us the

selection rule (what we will call the norm condition in Chapter 4)
(2.20) Mgy #0 => a? = b? (mod 4n).

Our next tool is the parity rule, or Galois selection rule (2.25), which comes from
a symmetry obeyed by the S-matrix. Let £L:={£ € Z:0 < £ < 2n,and gcd(¢,2n) =
1}. For each £ € £, we will find a permutation a — [¢a] of P, and a choice of

signs €y : P4y — {£1} such that
(2.21) My, = Ee(a)ee(b)M[ga]’[gb] foralla,be Py, L€ L.

Let {z} be the unique integer congruent to z (mod 2n) satisfying 0 < {z} < 2n.
Notice that for all £ € £ and a € P4, {fa} # n, so either {fa} < n or {fa} > n.
We will define our permutation and choice of signs as follows: If {fa} < n, put
[la] = {¢a} and €(a) = +1. If {fa} > n, put [fa] = 2n—{la} and €;(a) = —1. Then
this permutation and choice of signs will satisfy (2.21), as we will show.

Let £ be a primitive 2nth root of unity, and denote by ¢ the Euler totient
function p(m) = ||[{m' € Zso : m' < m and ged(m,m') = 1}|. We know that
[Q(¢) : Q] = ¢(2n); ie, Q(£) is a (2n) dimensional vector space over Q with basis
the primitive roots {¢ : ged(s,2n) = 1} [6]. For any £ € L, define o,(¢) = ¢
Then £¢ is another primitive root, so a; € Gal(Q(¢)/Q). For all a,b,c,d € P,
My, € Z C Q(€), and SgpSca € Q(€) (using the formula sinf = (e — =) /24), so
oy can be applied to them.? By S-invariance and orthogonality of S, M = SM S, so

*We consider the product S,5S.4 to avoid the \/_n—2j in the definition of the S-matrix. This way,

we get a factor of %, which is rational, so is sent to itself by oy.

12
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oo(Map) = 0¢((SMS)gp) for all a,b € Pyi. But My, € Z C Q, so oy fixes all Mgy,

Therefore,
n-—1

(2.22) Map =Y 0e(SakS;p) Mij-
k,j=1

To find out what o4(SerS;s) is, we write

2 k) . b 1 swak _.mak swjb _;xib
SakSjp = ;sin (w%) sin (ﬂ'%) =5 (el n —e 'n ) (e"‘r’»‘ —e 1_711_> ,

SO

1 - mlak _;mlak wljb _imlb
Ug(Saijb) = ——(67' n —e tn )(ez " o—~e 'n )

\/5_<eak) 2,<£jb)
= —sm\fint—— —Ssm{rT—— .
n n n n

If {fa} < n, then [la] = {fa} = fa + 2nm, for some m € Z, so sin (wé%’g) =

sin (WE%]E). If {¢a} > n, then [la] = —fa + 2nm, for some m € Z, so sin (W“Tk) =

falk
n

(2.23) sin (vr%lg—> = € sin <WM) ;

n

—gin (7r ) Either way,

for our definition of ¢y, and the same holds for sin (7r ‘%’3) Therefore, we have shown
that

(2.24) oe(SakSjp) = €s(a)ee(b) Siea kS jet)-

In general, the S-matrix of an affine algebra obeys such a symmetry for some per-
mutation of the highest weights and choice of signs e.
With (2.24), the right-hand side of equation (2.22) now becomes

n—1

eo(a)eg(b) Z Siea) kM S; [b)s

k,j=1
which is €,(a)eg(b) Mg, ;5. We thus have (2.21). Since every entry of M is non-
negative, it follows from (2.21) and the fact that e,(a)es(b) = +1, that M) s > 0

whenever My, > 0. But then es(a)e(b) = 1, so we get the Galois selection rule
(2.25) My #0 = €(a) = €(b),

forallle L.

13
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2.2.3 The A(ll) Permutation Matrices

This subsection is analogous to Chapter 3: the permutation matrices here are what
we call the automorphism invariants in Chapter 3. Define M to be a permutation
matriz if Mgy = 0p ro for some permutation 7 of P, ; ie, there is only one nonzero
entry in each row or column of M, and that entry is 1. The following lemma tells

us that all modular invariants of the form

100 .-+ 0

0 % *x -+ %
(2.26) M=

0 * =* *

are of this type.

Lemma 2.1. Let M be a modular invariant, and suppose My = 041. Then M
is a permutation matriz for some permutation m of Pry, and Spexp = Sep for all

G,b€P++.

Proof. We will first show that the entries of any modular invariant are bounded

above. For any a,b € Py,

n—1 n—1
(2.27) 1= My =(SMS)u = Y SuMySj > Sh > Myj > S3 My,
i,j=1 i,j=1

where the first inequality comes from (2.15) and the second from the fact that all
M;; are nonnegative. This tells us that for any a,b € P, Mg, < §l1r1 Notice that
multiplying modular invariants gives us at least a matrix commuting with S and T,
as does taking transpose. Therefore, defining N := MTM, NL (N to the power of

L) commutes with S and T for any positive integer L. The diagonal entries of N

are
n—1 n—1
Naa = (MTM)aa = ZMZ;MM = Z(Mia)2-
i=1 =1

We will show that, unless there is at most one nonzero entry in each column of M,
and it equals 1, some (N¥),, will be unbounded as L goes to infinity.

Suppose that there is an entry in the ath column of M that is greater than
1. Then, it must be at least 2, since all the entries of M are integers. So Ny, =

Z:f(Mm)Q > 22 = 4. On the other hand, suppose there are two entries in the

14
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ath column of M that equal 1 (or more). Then Ny = Y0 (Mig)? > 12+ 12 =2.
Either way, Ny > 2 > 1.

Next we will use induction to show that (NL)g, > (Nae)®. Since Nyg > 2, then
this will imply NL > 2L. For L = 1, we have (NL)g = (N1)gq = Nog = (Nao)' =
(N,o)E. Now suppose that (NX),4 > (N,q), and consider (NLF1),,:

(NL+1)aa - (NXNL)aa

n—1

L

= E : NaiNia
i=1

n—1
= NuwNL+ 3 NuNE
i=l,i#a
n—1
> Naa(Naa)"+ > NuNE
i=l,i#a
Because all of the entries of M are nonnegative, all of the entries of N must be
nonnegative as well, so the last summation is nonnegative. Therefore, (NL+1),, >
Noo(Nog)¥ + 0 = (Nga)L*!, and so we have shown that (NL),, > 2F for that
a € P,,. But now, Ny; = Z?__fll Mf = M3 by hypothesis, so N1; = 1. A simple
induction argument shows that N = 1 for all L, so by (2.27), the entries of N are
bounded above. In particular, N2, < §1%: for all L. This contradicts (N%),q > 2F.
Therefore each column can have at most one nonzero entry, and that entry is 1.
By S-invariance, (MS)11 = (SM)11, so Yoo MyiSay = S0 S1iMyy = Sy,
since Mj; = 61;. This gives us Sy; + Y277, M1;Si; = Si1, s0 Z;‘;; My;S;1 = 0. By
(2.15), S;1 > 0 for all 4, so we must have My; = 0 for all i > 2; ie, My; = &;1.
Now letting N' := MMT7, a similar argument shows that N'* — 0o as L — oo
unless there is at most one nonzero entry in each row of M, and that entry is 1. To
show that there is a 1 in each row of M, we calculate (M S),; = (SM)gy, so

n—1 n—1

D MyiSii =) SaiMi = Sa1 > 0.
i=1

i=1
The left-hand side is positive iff M,, # 0 for some o' € P, . Similarly, evaluating
(MS)1p = (SM)1p, we must have My, # 0 for some b’ € P, .. Therefore, there is

at least one nonzero entry in each row and column of M, so we have shown that

15
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M,y = 8 g for some permutation 7 of Pyy. Spqnp = Sap comes from S-invariance;
ie,

n-1 n—1
> MauSp =Y SuMp = MogaSrap = Som-16Mr-1p
i=1 i=1
— Sﬂ—a’b = Sa,w‘lb’ Va, be P_|_+. O
With this lemma, we can now find all modular invariants M such that the entries
in the first row and column are all zero except for My; = 1.
Suppose that My # 0 or My, #0 = a = 1. By Lemma 2.1, My = 0p nq, SO
we need to find which permutations 7 define a modular invariant. Since M;; = 1,

we already know that w1 = 1. To see what 72 is, the last part of Lemma 2.1 gives

. (T mm
sin { —} = sin ,
n n

where m := 72. The only m € Py, that can satisfy this are m = 2 and m = J2.
If m = J2, then by (2.20), 22 = (n — 2)? (mod 4n), which implies 4 | n. Therefore,

n/2 is even, so in this case D%+1 is the permutation matrix defined by n'a = a when

us S12 = Sr1,x2 = S1,42, 50

a is odd and 7’a = n — a when a is even. Inverses and products of permutation
matrices are permutation matrices, so if 72 = J2, we can let M’ := D;LM , and
then M’ will be a permutation matrix satisfying 72 = 2. Therefore, we nzlay assume
that 72 = 2, replacing M with M’ when necessary.

Now let a € Py, and let b = wa. Then S, = S14 = S1p, and Sy, = Sop, S0 we

have sin (22) = sin (22) and sin (2£2) = sin (2%2). Therefore,

in(4) cos(4X)  cos(4X)

Jeos(®X)  cos(%E) ’

=~
e

sin(2x) - 2sin(3L

s0 cos (4) = cos (&). But 0 < a,b < n — 1, and this implies b = q; ie 7a = a for

all @ € Pyy. Therefore, either M or M’ is the identity, so M can be the identity

Ap—1, or the permutation matrix Dz, when 4 | n.

2.2.4 The 1-couplings

The goal of this subsection is to find all places on the first row and column of M
that could contain a nonzero entry; ie, those a for which My, # 0 or My, # 0. It

turns out that there is usually only one possibility for such an a, other than a = 1.

16
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Proposition 2.1. Suppose My # 0 or My, # 0. Then a € {1,J1} for all n #
12,18, 30.

Proof. Suppose that My # 0 or My, # 0. Putting (a,1) into (2.20) gives us

(2.28) (@ +1)(a —1) =0 (mod 4n).

By (2.25), es(a) = €(1), so by definition of €, {fa} < n <= {£} < n. Therefore,

sgn (sin(#4%)) = sgn (sin(%)), which is equivalent to sin(eaT")sin(%) > 0. Using

the formula sinasin 8 = 3(cos(a — B) — cos(a + f)), we have

(2.29) cos <M> > cos <Z(_a_—2_l)_z) .

n

Our strategy will be to show that there are no solutions a ¢ {1, J1} to (2.28) and
(2.29), other than at the exceptional heights n = 12,18, 30.
Notice that > = 1 (mod 4n) implies a is odd, so a + 1 and a — 1 are even.

Putting £ + n into (2.29), we get:

cos (w(@ + n)an;l) > cos <7r(£ + n)a : 1)

a+1
n

cos (Wf% + m(a - 1)) > cos (7r£ +m(a + 1)) .

But 7(a — 1) and n(a + 1) are multiples of 27, since a — 1, a + 1 are even, so we
have the above inequality iff cos(m¢%1) > cos(rf%tl). Therefore, £ obeys (2.29) iff
£+ n does, so that we can take £ in (2.29) to be coprime to n, rather than to 2n.
Let £’ := {£: ged(¢,n) = 1}. Define d := ged(a—1,2n), and d' := ged(a+1,2n).
Since they are both even, a — 1 and a + 1 have a factor of 2 in common. However,
they cannot have any other factor in common because their difference is 2; 1ie,
ged(d,d’) = 2. Next we try to find out what dd’ is. Let n = r]'r)®...r]", where
the r;’s are distinct primes. By (2.28), (a — 1)(a + 1) = 4nk, for some k € Z.,

so (a—1)(a+1) =4r"r)? . r]p{ps? ... p2m, where [T, pS is the prime power

.. P Vo o, o Ay —

declomposm(’)n for k. Therefore, a —1 = 2r*ry® ... 7,/ p{'p3®...p, 7, and a + 1 =
Yy Q! . . .

2r, r) Doy -+ P (renaming the primes if necessary, and to keep the p;’s

17
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and r;’s distinct, } > v; for all i = 1,...,£). Now,

d = ged(a-—1,2n)

'
Yot 1, 02

M, Om! .71 ,.72 Ve
= ged(2rytry® .. .or,tppg? o, 2r gt Lyt
= Tt ..t

1 g

and

" _ Vo 41 Ve Om? +1 o M 72 Yey — 9, e +1 Ve
d = ged(2r,A 5 orptp P 2r g ) = 2y

and now it is easy to see that dd' = 4n. ged(d,d’) = 2 implies d = 2s, and d' = 2¢’,
for some s, s’ with ged(s, s') = 1.

We now look at what happens if one of d and d’ is less than 6. Say d = 2 or 4
(d is even). If d = 2, then dd' = 2d' = 4s' = 4n, so s’ = n. So 2n = ged(a + 1,2n),
which means that ¢+ 1 is a multiple of 2n, a contradiction since a € P, ,. If d =4,
then dd’ = 4d’ = 4n, so d’ = n. Therefore n = ged(a + 1,2n), which implies that
a+ 1 = mn for some m € Zxo. But the only m that could possibly work here is
m = 1. In that case, a = n — 1 = J1, which is a contradiction because we assumed
a # 1,J1. Therefore, d > 6, and a similar argument shows that d' > 6 as well (we
would get in one case a = 1, and in the other case, a &€ Pyy). Sod,d > 6.

Since ged(a + 1,2n) = d’, and a + 1 is even, a + 1 = o'd’, for some o' with
ged(a,2n) = 1. Therefore, a’ has an inverse mod 2n. Let £ € L be such that 4o’ =
(mod 2n). If £ < n, then let ¢' := ¢, and we have £'(a + 1) = £'a’d’ = d’' (mod 2n).
If £ > n, then let ¢/ = £ —n, and we have: £'(a+1) = ({ —n)d'd = la'd — nd'd' =
ta'd — n{a+1) = la/d = d’' (mod 2n). Therefore, we can choose ¢ € L' so that
¢(a+1) =d (mod 2n). Next choose £y € L' so that

n—d, if% is odd and % is even,
(2.30) lo(a—1)={ n~2d, if ¢is odd and 2 is odd, (mod 2n),

. o !,
n— %, otherwise, ie if 42— is odd

and define £; = 28+ ¢y, Then £;(a—1) = (B4 45)(a—1) = 2 (g—1)+4o(a—1), but
d|a—1,s0 25% € Z. Therefore, 2ni%5L is a multiple of 2n, so M(g—1)+Lo(a—1) =
£3(a — 1) (mod 2n).

Now we will show that for all ¢ such that 0 <7 < %, the numbers £;(a + 1) will
all be distinct. Let 27" =: m. Then ¢; = m; +1y. Suppose that {x(a+1) =l (a+1)

18
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(mod 2n), so (km — k'm)(a + 1) = 0 (mod 2n), or m(k — k')(a + 1) = 0 (mod 2n).
Therefore, m(k—k&')(a+1) = 2ns = mds, for some s € Z, and so (k—k')(a+1) = ds,
ie, (k — k')(a + 1) is a multiple of d. But a +1 = d'm’, for some m' € Z3¢, and
ged(d,d’) = 2. We also know that d,d’ > 6, so a + 1 cannot be a multiple of d.
However, a + 1 is even, so k — k' must be a multiple of %. This is a contradiction: if
0< kK < %, their difference cannot be % or greater. The only multiple of % that
works is 0. But then k — k' =0, and so £ = {y.

Now we must show that there are precisely @(g) numbers ¢ with 0 <7 < %, such

that £; € L', where ¢ is the Euler totient function.

2d, if‘2—l is odd and % is even,
d
(2.31) (go (5) - 1) d << 4d, if % is odd and % is odd,

d, otherwise

Putting £ = £ into (2.29), we get cos(mf'%1) > cos(rf'%L), so cos(wé’mnﬁ) >

cos(w“#), for some integers m and k, and ged(¢',n) = 1. Therefore cos(m¢'22) >

cos(’—r;f—'). Since d' > d, % < 1, so dividing both sides of (2.29) by d', we obtain:

p fi—‘,i <2, if-g— is odd and 7 is even,
(2.32) @ (-) ~1<q 4 <4, if £isodd and % is odd,

% < 1, otherwise
We can use (2.32) to solve for d in cases:

Case 1: ¢(d/2) < 3. In this case, ¢(d/2) = 2. If d/2 is a prime p, then
w(d/2) = p(p) =p—1 =2, so p=3, which implies d = 6.

If d/2 is a product of two primes p and g, then p(d/2) = p(pq) = p(p)p(q) =
(p—1){g—1) =2, and so p = 3, ¢ = 2 (or vice-versa). Therefore d/2 = 6.
But we cannot have this because d/2 should be odd. d/2 cannot be a product
of 3 or more distinct primes, so we try a prime power. Let d/2 = p2. Then
©(d/2) = p(p?) = p(p — 1) = 2. The only choice for p here is p = 2. But then
d/2 = 22 = 4, which is even. There are no other possibilities for g (they would give
too many factors for 2), so in this case, d = 6.

We can now solve for d’ and n. We know that dd’' = 4n, so 6d’ = 4n. But n is a

multiple of 4, so n = 4m for some m € Zxq. Therefore 6d' = 16m, or d’' = 16m/6.
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So 16m/6 must be an integer greater than 6. For this to happen, m must be a
multiple of 3. If m = 3, we get d' = —8—% = 8, and n = 4m = 12. But now, notice
that we need (p(d/2) — 1)d’' < 2d, ie, (2—1)d' < 2 x 6 =12, so d’ < 12. If we take
m to be larger than 3, then d’ will be too big (the next lowest choice for m is 6,

which is already too large). Therefore we get d =6, d' =8, and n = 12.

Case 2: ¢(d/2) < 5. In this case, ©(d/2) can equal 2, 3, or 4. If p(d/2) = 2, we
get the same possibilities as above, except that now n/2 is odd, so n is not a multiple
of 4, and (p(d/2) — 1)d’' < 4d. As above, d = 6, so now dd' = 6d’ = 4n = 8m, for
some odd integer m. 6d' = 8m implies d' = 82, so again m will have to be a multiple
of 3. m = 3 gives us d’ = 4 which is too small. The next odd multiple of 3 is 9, which
gives us d' = 12, and n = 2m = 18. Here, (p(d/2) — 1)d' =d' =12 < 24 = 4d. The
next odd multiple of 3, 15, gives us d = 20 < 24, and n = 2m = 30. ¢(d/2) =3 is
not a possibility since 3 is odd, so let us consider the case p(d/2) = 4. If d/2 =p, a
prime, then ¢(d/2) = ¢(p) =p —1 =4 implies p = 5, so d = 10. Now, d' = 8m/10,
where m is odd. If m = 5, then d' = 4, which is too small. If m = 15, then d’' = 12,
and n = 2m = 30. In this case, (p(d/2) — 1)d' = 3d' = 36 < 40 = 4d. If m = 25,
then d' = 20, and 3d' = 60 £ 40. So the only possibility we get here is d = 10,
d =12, and n = 30.

If d/2 = pq, where p and ¢ are distinct primes, then ¢(d/2) = p(pq) = p(p)p(q) =
(p — 1)(g — 1) = 4. There are 2 choices here: p = ¢ = 3 (but then they are not dis-
tinct), and p = 5, ¢ = 2 (but then d/2 is even), so there are actually no possibilities
here. d/2 cannot be the product of three distinct primes either, so we try d/2 = p.
Then ¢(d/2) = p(p — 1) = 4, which has no solutions. Therefore, we have only the
following four possibilities for (d,d’,n):

(d,d',n) € {(6,8,12), (6,12,18), (6,20,30), (10,12,30)} These three n, n =
12,18, 30 will be our exceptional heights.

We now know all possible first rows and columns of M at the non-exceptional

heights. In the next subsection, we extend this to all rows and columns of M.

2.2.5 The J-extensions
In §§2.2.3, we found all M such that M,; = M;, = 81 4. Therefore, for this subsec-

tion, we will assume M,; # 0 or M1, #0 == a =1 and a = J1. We begin with
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some simple calculations that will give us important information about M.

By S-invariance,

n-l n—1
MJil,le = Z SJil,a,MabSb,le = z (_1)(a+1)’LSlaMab(__1)(b+1)g Slb,
a,b=1 a,b=1

so applying the Triangle Inequality, we get

n—1

My gt € D 1DVl Map (1) S,

ab=1

80 Myiy ji; < ZZ,“bil S1aMapS1y = My = 1. Again, using the fact that M,, €
{0,1,2,...}, this implies that M:; ;;; must be 0 or 1.
Suppose Myiy si; = 1. Then 3070, (1)@ My (—1)0HDISy, = 1 = My =
Snie1 S1aMapSip, s0 (—1)EHDH(—1)0HNT = 1, (if Mgy # 0); e, (—1)(@FVHOHII =
1. Therefore, (a + 1)i + (b+ 1)j is even, so we get the selection rule:

(2.33) (a+1)i = (b+1);7 (mod 2) whenever My, # 0.

Applying a similar calculation to any a,b € P, , we have

n—1

Myiagis = Y SriapMuSy i
k=1
n—1
= Y (-1)Eig, My (1)),
k=1
n—1

— Z (_]-)(k+1)i+(l+1)jsakMlelb-
k=1

But whenever My # 0, (k+ 1)i+ (I +1)j = 0 (mod 2) by the selection rule.
Therefore, the above sum is just 22,7:11 S My Sy = Mg, so

(234) MJia,,Jjb = Mab ‘v’a, be P++.

Equation(2.34) is the analogue of Lemma 4.3(c) in Chapter 4.
When n is even, there is an a € Py, such that Ja = @, namely a = n/2. We

call such an a a fized point of J. The following lemma determines all M,, with
a,b#n/2.
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Lemma 2.2. Let M be a modular invariant, and suppose My # 0 only for a =1
and a = J1, and similarly for Mi,, ie, the first row and column of M are all zeroes
except for M i1z, = 1. Then the ath row (or column) of M will be identically 0 iff
a is even. Moreover, let a, b € Py, both different from n/2, and suppose Mgy # 0.

Then,

1, ifec=borc=Jb
M, = . )
0, otherwise

and a similar formula holds for M.

Proof. The proof is similar to the proof of Lemma 2.1. We know that M,; =
M, 1 = My, = 1, and by the selection rule (2.33), My 1 = M1 = 1 also. All

other entries in the first and last rows and columns of M are zeroes, so M looks like

0 ... 01
0 = ... = 0
0 = ... x 0

\'1 0 0 1)

We first need to show that the even rows and columns of M are identically 0.
Suppose Mgy, # 0. Then Mj,p # 0 either, because My, = My, by the selection
rule (2.33). Letting ¢« = 1 and j = 0, we get the congruence a + 1 = 0 (mod
2), or a = —1 = 1 (mod 2), which means a must be odd. But if a is odd, then
(a+1)i = (b+1)j implies 0 = (b + 1)j (mod 2). But this must be true whether
j=0o0r1l,s0b+1=0 (mod2),or b=1 (mod 2), so bis odd as well. Therefore,
if Mg, # 0, then both a and b are odd, so the even rows and columns must be
identically 0.

For the second part of the lemma, write
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where the B;’s are the indecomposable submatrices of M as in equation (4.13), and
all other enties of M are 0. Put B; = B(1,2) (see (4.17)); ie, B; is the block
containing Myy, My11, My 1, and My ;. We will show that each non-trivial B;
that does not involve n/2 is of the form B(1,2). Let B be some B; # (0) which

does not contain any entries of M involving n/2, and write

11 . Tim

Iml *** Tmm

Since the even rows and columns of M are identically 0, the M,;’s contained in B
must have both a and b odd. Also, each odd row of M has at least one nonzero
entry, and since M i, i, = Mg for all ¢,j = 0,1, each row of B must have at least
two nonzero entries (otherwise, we would get a block of zeros inside B, and so B
would not be indecomposable). Now consider N := MTM. Then the ith block of
MT M not involving n/2 is

Y1 0 Yim
BTB = :
Yml ° Ymm

where ygp = Y ot | TeaZep. In particular, the diagonal entries of BT B are given by

m
(235) Yaa = Z:Eza'
c=1

But we know that there at least two nonzero entries in the cth row of B; ie, £, > 0
for at least two choices of ¢. Therefore, y,, > 2.

As in the proof of Lemma 2.1, NZ > (N,,)E, so let Ny be the matrix defined
by (Nz)ab = (Nap)*. Then

oL 9oL
oL oL
. v ok
Ymi " Yom
23
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Again, as in the proof of Lemma 2.1, the entries of %9 must be bounded above. But
this means %5# < 1, 50 Yao € {0,1,2}. But y,q > 2. Now going back to (2.35), we
see that we must have 2., = 1 for ¢ € {c/, J¢'} for some ¢/, and ., = 0 for all other
c. Therefore, B = B(1,2). O

Now suppose that we have the hypothesis of Lemma 2.2; ie, My ji; # 0 for
all i, = 0,1. By (2.20), 12 = (J1)? (mod 4n), ie 1 = (n — 1)? (mod 4n). If n/2
is even, then n/2 = 2k, for some k € Z, so n = 4k. But then 1 = (4k — 1)2 =
16k? — 8k + 1 = 4(4k)k — 2(4k) + 1 = 4nk —2n+1 = —2n + 1 (mod 4n). This
implies that 0 = —2n = 2n (mod 4n), which cannot be true. So n/2 must be odd.
The first such n is n = 6. Then, by Lemma 2.2,

1
0
M=10
0
1

o O O o o
S *
o O O o o

\

so the only unknown entry is Mss.

Evaluating M S at (1,3) gives:

(MSy3 = Mi1S13 + Mi2S23 + Mi3S33 + M14Ss3 + M15S53
= 513+ Ss3,

and (SM)13 = S13M33 so, by S-invariance, Si3 + Ss3 = S13M33, which implies
Ss3 = S13(M33 — 1), and so sin(K’T’r) = sin(—3—6’1)(M33 —1). Solving this for Mss, we
see that M33 = 2. Therefore, we have M if n = 6, so we now look at n > 10 (n = 8
gives us n/2 even). We know that the even rows and columns are identically 0, and
there are two 1’s in each odd row and column, except we do not know what happens
in the $th position. Consider the third row and column of M. Just as we assumed
M,y =1 above, we will assume M33 = M3 55 = 1 here. Otherwise, since there is
a 1 in the third and J3rd rows and columns, we can permute the rows and columns
of M so that this is the case and replace M with this matrix.

Now we look at what happens at Mg’%. If M3’% # 0, then M3, = 0 unless
a=3%orJy =2 and Ms3 =1 %# 0,50 My3 =0 unlessa = 3 or a = J3.

Evaluating M'S = SM at (3,1), we get M3 2Sn 3 = S33 + S3,_3. Therefore we

2 27
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have Mj » sin(m3) = sin(X )+sm(M) which implies sin(3f)Mj, n = = sin(¥) +
sin(¥L) = 2sin(2T), so Ms, 2= 2sin(—2) = 2s1n(——-9nl + 21y = 2sin(3T). We need
2 sm( ™) to be a positive integer, so sm(3”) g, for some k € Z,. But because we

need k to be positive, £ must equal 1. So s1n(3“) = %, which implies that 37” =%

or %”. 3 = 1 implies n = 18 (which is an exceptional level), and % = % implies
=18 ¢ Z3y. Therefore, n = 18 is the only possibility for Mg,% # 0.

Suppose that M3,% =M 1= 0. By Lemma 2.2, there is one 1 in the third row to
the left of the Zth column, say at Mzy,. Then also M3 jm = My3m = M3 gm = 1.
Evaluating MS = SM at (3,1) gives 2sin(r2) = 2sin(r2), so m = 3 or J3. But
m< %,s0m=3.

Let a be any odd element of P, such that a # n/2, and suppose M%,a # 0.
Then evaluating MS = SM at (1,a) and (3,a) gives us

3
2sin («3) — M= ,, and 2sin (7r—-9-> = —Mn,
n 2 n 2

respectively. This implies that sin(r2) = —31n(7r3—“) = s1n(—~7r§‘i), which cannot

happen, so M%,a = 0. Then, by Lemma 2.2, we have a unique b < % such that
My # 0 (because a is odd, we get one 1 above the 2th row). Evaluating SM = MS

at (b,a), we get
a? b?
sin (7!‘—) = §in (71'—) ,
n n

so a? = b2, and so a@ = b. Therefore we have a matrix whose diagonal odd entries
are 1, and the corresponding M ji, ;i, entries are 1. As in the case n = 6, we can

evaluate SM = MS at (1,73) to obtain Mz » = 2. Therefore,

= |x1+xs)? + Ixs +xss)+ -+ 2|X%|2 =Dz,
whenever 2 is odd.
This completes the proof of Theorem 1 when n # 12,18,30. These three n — the
exceptional heights ~ must each be evaluated separately, and they will give us the

remaining modular invariants of Theorem 1.

2.2.6 The Exceptionals

By the proof of Proposition 2.1, we already have some information about M at the

exceptional heights. S-invariance and the Galois selection rule were used here to

25
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complete the A; classification: n = 12 corresponds to &; n = 18 corresponds to &7,

and n = 30 gives us the exceptional &s.

26
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Chapter 3

The Automorphism Invariants

of Ay ® Ay at Height (p',p)

In this chapter, we classify the automorphism invariants of Ay ;v @ As p, which is the
first step of the classification of all modular invariants. We call M an automorphism
invariant if M is a modular invariant and My, x, = 0k 0(2y), fOr some permutation
o of Pf:lf . In other words, M has only one nonzero entry in each row or column,
and that entry is 1. The condition that M,,,, = 1 ensures o(pp) = pp for any

permutation o that defines an automorphism invariant.

Remark: We will often refer to the permutation o that defines an automorphism
invariant as an automorphism invariant.
3.1 Preliminary Calculations

Let o be a permutation of Pf_’f such that o defines an automorphism invariant.
Then

( MS@ ,p)) arr = (@' M)y v

(»'p) _ (' .p)
Aand Z M/\u,aﬂ Saﬁ,m/ - Z S)\,u.,aﬂMaﬁa'W
af

aB
(' .p) _ ’
- MAN’U()\N)SO'IEAZ),HU - S/(\I:A,g)‘l(nu)M‘T—l(ﬂV):ﬂV
{p'.p) _  o'p)
- SO”ZZAM),(K,I/) - S/\I:L,g—l(nu)’
27
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and a similar calculation holds for 7®?). Thus a permutation o of Pﬁ 4+ is an

automorphism invariant iff o satisfies the conditions

(®'.p) _ al@'p),
(3.12) So i) = S
(p ,p) _ (@ p)

Equations (3.1) tell us that inverses and compositions of automorphism invariants
are also automorphism invariants.

The charge conjugations are automofphism invariants. Let u = (u1, u2), where
u1,uz € {0,1}, and let C* = C;'Cp? (see (2.8)). Then each C* is a charge conju-
gation (and hence a permutation) and has order 2. By (2.10d),

#'0) _ o) v @ o) (#'9)
Sty o) = SCetr xS cran = Siidur ypnSibuntn = Sk

and by (2.10c),

#',p) (@ (p) (") (' p)
Tcu(,\u) Cv(Ap) = Tcul,\,C“u\TCuzu Cray = =Ty, T;(LZ) T)\u,Au

We call the automorphism invariants defined by the charge conjugations €I, I¢,

and €I€, corresponding to u = (1,0),(0,1) and (1,1) respectively. A useful fact

about €IC is that it commutes with any modular invariant M. This is because M
commutes with S®?) and hence with (S®?))2. Then, for u = (1,1), (2.10d) tells
us that

(S(p ,p))iﬂalﬂj = Z S/\u,aﬂ g}i’zu
(p".p) olo'.p)*
Z S)\,u gﬁsa% zC)'“ (kv)

CcyC (v, ;
I stigﬂsf(x%ﬁ)u

CrC
= I 5m/,/\u
O, L1 ()

by unitarity of S®'P), so we have shown that (S®")2 =C C,
We can define another automorphism invariant out of the simple currents, as in

[8]. Let a := (a11,a21, 612, ag2) be a quadruple of integers such that
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(3.2a) 204 + ka?, + las = 3ka;; + 3la;z (mod 6),

(3.2b) aij + aji + kapaj +lagaj =0 (mod 3),

for all 4,7 € {1,2}, and where k =p’ — 3,! = p — 3. Define

(3.3) - Pf_l_f R Pf_’f, O ) - (A;‘ut(z\)—kant(#)/\’A;12t(>\)+a22t(ll')’ul).

We can take the integers {a;;} such that a;; € {0,%1} since the simple currents
have order 3. Taking the composition oy 0 o, (where a and b satisfy (3.2)), we see
that o} 0 0, has the form o, with ¢;; = a;; + bi; + ka;1bi; + lasgby; as in (3.3). If we
let b;; = aji, we then get ¢;; = a;j + aj; + kazia;1 + lagaje, which is 0 (mod 3) by
(3.2b). Therefore o, is a permutation, and o, ! = o,/, where @' = (a11, 12, a21, a22).
Now using (3.2), straightforward calculations show that o, satisfies (3.1), and so is
an automorphism invariant. We will denote the automorphism invariant defined by
o, as T4

We will use the following lemma in the next section to find out what happens
at the small weights (p, (1,2)), ((1,2), p), (0, (2,1)) and ((2,1), p) under o. The in-
formation about the pairs (2,2), (1,4) and (4, 1) will be needed in Chapter 5.

Lemma 3.1. Let A € Py (Ag,n), forn # 12. Then (a) ng) = S'((?)?) O S&’;) =
S, = A€ 0(1,2), (b) For (a,b) € {(2,2),(1,4), (4, 1)}, ST = 50, =
A € Ofa,b).

Proof. (a) was done in [9]. The proof of (b) will be along the same lines. Since
S(CZ)AM’/) = SX:)A,C% = Sﬁg)}\’p = e%bt(”)Sg) = ng), we see that for any M € OX =
{(A1,A2), (A2, A1), (A, = A1 —A2), (A2, n—A1—A2), (n—A1—A2, A1), (Rn—A1 =g, A2) },
S/@ = S/(\Z). Therefore, choosing the proper representative of O\, we may suppose
without loss of generality, that A1 < Ay < n — A1 — A9. We cannot have more than
two of A1, A9, or n — A; — Ag greater than or equal to n/2, because then at least one
of the weights A’ € OX would have A| + A, > n. Therefore, A\; < Ay < n/2. Define

s(w) := sin (¥Z). Then S’/(\T;) = S((?A)’p gives us

(3.4) s(z)s(y)s(z) = s(1)s(4)s(5),
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where £ = A1, ¥y = Ag, and z = Ay + g or n — A\; — Ag, by (2.11) and the fact that
s(n—2z) = s(z) for 0 < z < n. Now, one of A\;+X3 and n—X; —Xg is less than or equal
to n/2, so choosing that one to be z, we may assume that 0 < z <y < 2 < n/2, and
either z = z +y, or £ +y > n/2. Choosing n > 10 for now (we will check the cases
n=4,5,6,7,8,9 later), we then have all arguments ¢ 4% 20 X 27T 4 and 5" in the
first quadrant of the unit circle, and so s(w) > s(w') <= w > w' with equahty iff
w=w'.

A direct comparison of (z,y, z) with (1,4,5) immediately gives us the left-hand
side of (3.4) greater than or less than the right-hand side for all but the following
triples: (i)(1, 4, 5), (ii)(2, 2, 2), (iii)(2, 3, z), (v)(2, 4, 4), (v)(3, 3, 2), or (vi)(4, 4,
4). Notice that (ii) has z = 4 for n > 8, (iii) has z = 5 for n > 10, and (v) has 2 = 6
unless n = 11 (in which case z = 5), or n = 10 (in which case z = 4). We would like
to eliminate all of the above cases except for (i). For (ii), (iv), (v) and (vi), we will

show that

(3.5) s(a)s(b) < s(a')s(d),

whenever a +b=a'+b anda<d < <b.

Consider the function f(t) defined by ¢t — s(a +t)s(b—t). Then f'(t) = Zs(b—
a—2t) >0iff z < (b—a)/2 < n/2 + z. But this is true whenever ¢ > 0, since
then 0 < b—a <b+a <n,s00< (b—a)/2 < n/2 <n/2+t Therefore,
f'(t) > 0 when 0 <t < (b—a)/2, so f is increasing there. Notice that we have
0<d —a=b-V < (b—a)/2 s0 f(0) < f(a' —a) = f(b—1b). Evaluating this
immediately gives us (3.5).

Now comparing s(2)s(3)s(5), s(2)s(4)s(4), and s(3)s(3)s(4) with the right-hand
side of (3.4), we see that we cannot have (ii) with z = 4 (unless n = 12), (iii) with
z =5, or (v) with z = 4, because in each case the left-hand side is greater than
the right-hand side. This also eliminates (v) when z = 6 and (vi), because now
comparing s(3)s(3)s(6) and s(4)s(4)s(4) with s(3)s(3)s(5), we see that these triples
will also give us the left-hand side of (3.4) greater than the right-hand side.

At n =10 and 11, (2,2, z) does not solve (3.4); however, it does at n = 12. At
n = 4 and 5, (1,4) € P}, (A2), so there is nothing to check, and at the heights

n=6,7,8 and 9, we find that S(n) s => X € Op. The above argument

(14),p
also applies to (a,b) = (4,1) as S((4 )l)p = ng()l 0,0 Sg?)‘l) Sé?l) by (2.10b).
30
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For (a,b) = (2,2), we need to solve the equation
(3.6) s(z)s(y)s(z) = s2(2)s(4).

In this case we let n > 8 so that all arguments are in the first quadrant, and we can
assume z < y<z<n/2 forz=z+yorz=n-z-y We get the following
choices for (z,y,2) : (1)(2,2,4), (ii)(1,y, 2), (iii)(2,3,3), and (iv)(3,3,3).

(iii) and (iv) imply n = 8 and n = 9 respectively, and evaluating (3.6) at both
of these, we find that S/(\Z) # Sgl’ )2)’ p (ii) is the most difficult case. Suppose n > 12.
Then from the argument for (3.4), we know that s(1)s(5) > s2(2). Choosing any
(1,y,2) with 4 < y < z < n/2 then gives us s(1)s(y)s(z) > s(1)s(4)s(5) > s%(2)s(4),
so for n > 12 and y > 4, (1,y,2) is not a solution to (3.6). For n = 8,9,10,11,
there are no solutions of the form (1, y, z), but as in (ii) above, (3.6) has the solution
(1,4,5) if n = 12. Ify < 4, then the only possible (1,y, 2) has y = 3, and since n > 8,
z = 4. But s(1)s(3)s(4) = s%(2)s(4) iff cos(%”) = 1, which cannot happen since
n > 4. Therefore, for n > 8, the only solution to (3.6) is (i)(2,2,4), so A € 0(2,2).

It remains to check the heights n = 4,5,6 and 7. If n = 4, (2,2) ¢ P}, (A2),

and if n = 5,6 or 7, we have A € O(2,2) whenever Sf\z) = S((;L’)Q) " a

By the Weyl-Kac character formula [18], we can write ratios of the Ay, S-matrix

in terms of the Weyl characters as

S(")
(3.7) L

) =chA_p(—2m—:—),

pK

where chg is the Weyl character of the irreducible Ag-module L(S) with highest
weight 8. The “A—p” is used instead of A because the Weyl characters are written in
terms of the unshifted highest weights in P}. Formula (3.7) will be used frequently
throughout this thesis. When x = p, we refer to the S-ratio in (3.7) as the g¢-

dimension (or quantum dimension) of \; we write

S(n)
(3.8) QM) = 5.
o0
The g-dimensions for A, @ Ay are
(3.9) QPP () = QPINQP () = ST7 /st ).
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By (2.12), we see that Q') (Au) € RVAu € Pff, and QP (\p) > 1 with equality
iff X € Op, p € Op. We also have QP')(X' ') = Q®'P)(\u) whenever N € OX and
p' € Ou. We have defined g-dimensions in terms of weights A = (A1, A2) where Ay
and Ay are positive integers; however, in [7], g-dimensions were extended to have
domain {(A1,A2) : A1, A2 € R}. The proof of Lemma 3.2 below treats g-dimensions
as functions of real vectors.

The following lemma will be used in the next section to find out what happens
to the small weights (p, (1,2)), ((1,2), p), (p, (2,1)) and ((2,1), p) under an automor-
phism invariant ¢. The information about the pairs (2,2),(1,4) and (4,1) will be
needed in Chapter 5.

Lemma 3.2. (a) The smallest g-dimension Q™ ()\) such that X # p is QM™(1,2),
and Q™ (p) < Q™(1,2);

(b) Let n > 12. The smallest g-dimensions QM ()\) such that X\ # p and t(\) =
0 (mod 3), are QM (2,2) and Q™ (1,4), and Q™ (p) < Q™ (2,2) < QM™(1,4) with
equality iff n = 12.

Proof. (a) was done for all AW in [8]. We will use the same idea to prove
(b). Let A = (Aq,)s), and suppose that both A;, Ay > 4. We will first show
that Q™ (3,3) < QM (A1, A2). Define p(t) := (A, Ao) + (—t,t) = (A1 — &, Ag + 2),
where t € [3 — Az, A\ — 3]. Notice that since A1, A2 > 4, 0 € [3 — X2, \; — 3], and
1(0) = (A1, A2). Define a function f(t) := Q™ (u(t)). Our strategy will be to show
that f has no minimum value on (3— A2, \; —3), and so will take its minimum at one
of the endpoints of the interval (a minimum must exist because f is differentiable
everywhere and is non-constant). Either of the endpoints gives us a weight where
one of the Dynkin labels is 3, so f(endpoint) < £(0) tells us Q(™(3,5) < QM (N),

for some b. By the definition of Q™, we have

n

8 sin (=81 gin (Q2407) iy (Gutdalr)

o= V3nsin? (3) sin (%)
(3.10)
4sin (9—1—%\327—() (A1 — g —2t)w (AL + A2)
- il (=)o (22
32
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(3.11)

8 sin (g——’\lz)‘z)q
2

o (DX =20
PO = st (%) sim () ° ( )

n

: A1tAg)w
(3.12) () = — 167 sin (( & ) cos ((/\1 + g — 2t)7r>
. "~ /3n3sin? (&) sin () n ‘

Suppose that f has a minimum at tg, for some ¢, € (3 — A2, A\; — 3). Then, since
f is differentiable everywhere, we must have f'(ty) = 0 and f”(f) > 0. But
putting to into (3.11) and (3.12), we see that these two conditions can be satis-
fied iff cos (g’\lw‘;—_%)ﬂ) = —1. Putting this into (3.10), we get

flto) = Q‘”’(u(t(o)) )
T G AL+ da)
N V3nsin? (Z) sin (2) <—1—cos( 1 n 2 ))
< 0,

since A1 + Ao < n. But this is a contradiction, because S,(f,ﬁ) > S,(,;,L) > 0 for all
k € P7,(Ag), so we see by (3.10) that f(t) must be positive for our choice of .
Therefore, the minimum value of f occurs at 3 — Ay or A; — 3, either of which gives
us a weight with one Dynkin label equalling 3. Since Q(® is constant along simple
current orbits; ie, Q™ (k') = QM(k) for all ' € Ok, we can assume the first Dynkin
label is 3. Therefore, for any A = (A1, A9) with A\;, As > 4, there exists a b such that
Q™ (3,6) < QM(N).

A similar argument with f(t) = Q™) (3,t) shows that among those (3,b) with
b > 3, the minimum value of Q™ (3,b) occurs at b =3 (or b = n—6, but (3,n—6) €
O(3,3), so Q™ has the same value either way). Therefore Q™ (3,3) < Q™ () for
all A with Aj, Ay > 3. This tells us that the weights « with smallest q-dimension
must have one of their Dynkin labels equal to 1 or 2. Among those s of the form
(1,b), b = 4 gives the smallest Q™ (1,b) such that ¢(x) = 0 (mod 3), and since
QM (1,b) = Q™ (1,n — b — 1), we can define Q™ on the interval to be [4,n — 5]
without losing any information. Setting f'(to) = 0 and f"(tg) > 0 gives us a
contradiction as before, so Q™ (1,b) is smallest at one of b = 4 or b = n — 5.

But Q™ (1,4) = QW (1,n — 5), so we can take b = 4, and this will also ensure
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t(1,b) = 0 (mod 3). In this way, we also get (2,2) as the smallest weight of the
form (2,b) with £(2,b) = 0 (mod 3). By the proof of Lemma 3.1, we know that
Q™ (2,2) < QM(1,4) for n > 12, and QU2(2,2) = Q¥ (1,4) We will now show
that

(3.13) Q™ (p) < QM(2,2) < QM(1,4) < QM(2,3) < Q(3,3).

This will be enough, because then Q(")(l, 4) is smaller than the g-dimension of all
t(\) =3 0 weights with one Dynkin label equal to 1 or 2, other than A = (2,2), and
Q™) (2,2) is smaller than the g-dimension of all #(\) =3 0 weights with one Dynkin
label equalling 1 or 2.

If n > 12, then sxn(2”) sm(?’”) sm(5”) < sm(37r) sm(3”) sin (6"), so this
gives us Q™ (2,3) < Q™ (3,3). To show that Q™ (1,4) < Q™ (2,3), we need
sin (Z) sin (4%) sin (22) < sin (22)sin (32) sin (3£). But this holds iff cos (3) —
cos (37) < cos (Z) — cos (22) , iff cos (3%) < cos (Z), which is true for all n > 6, so
(3.13) holds. The fact that Q™ (p) is the smallest g-dimension follows from (2.12).
O

3.2 The Automorphism Invariant Classification

The goal of this section is to show that all automorphism invariants are defined by

compositions of charge conjugations and o,’s as in the following theorem:

Theorem 3.1. Let M be an automorphism invariant of Ay py @ Agp, where p’ and

p are coprime. Then M is one of

(3.14a) Ay p = Z X&IL,P X&Z’p) :
z\uGP_ﬁ’_p
(3.14b) D;(;'l,)p = Z X,\,jp @' Au)’ where g, is given in Table 3.1,
AMEPP P

or their conjugations.

We begin by seeing how ¢ acts on the weights (p, (1,2)) and ((1,2), p), and then

in Proposition 3.1, we will extend o to all weights xv € Pf:’f
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Claim 3.1. Let o be an automorphism invariant. Then
0(/’7 (1, 2)) = (Cg’ ;;ipa CzAZ(]-a 2))7
and
o((1,2),p) = (C5.AL(1,2), CAzp),
for some a,b,c,d € {0,1}, w,z,y,z € {0,1,2}.

Proof. By (3.1a), o is a symmetry of S®'), and since o(pp) = pp, we have

(') (p’xp))
' A 5 !
QWP (\, ) = 58 = 0P = QUM (o(A, )
Spo,00 Spp.op

for all Ay € Pf_’f. Therefore, letting (o', (1,2)") := a(p, (1,2)), we get

Q¥ (p)  QP(1,2)
(3.15) QW)  QP)(1,2)

Since S,(\’Z; ) > Sf,’,’,l) >0, VA e P_€I+(A2), the left-hand side of (3.15) is less than or
equal to 1, and so Q)(1,2)’ < Q)(1,2). By Lemma 3.2, we then have Q) (1,2) =
Q®)(p) or QP(1,2)" = QP)(1,2).

Suppose for a contradiction that Q®)(1,2)" = Q®(p). Then S((f’)Q),, ,= ,(,1;,), and
by (2.12), thisis true iff (1,2)' € Op = {(1,1), (p—2,1), (1,p—2)}. But the decoupled
norm condition (4.3) tells us this can happen only if p | 4, so since p > 4, p=4is
the only possibility for (1,2)' € Op. Therefore, for p # 4, Q®)(1,2)" = Q¥)(1,2).
Now, Lemma 3.1a gives us (1,2)' € O(1,2). If p =4, Op = O(1,2), so in any case
(1,2) € O(1,2). Going back to (3.15), we get Q®)(p) = Q¥)(p'), and by (2.12),
o € Op.

Therefore,

o(p,(1,2) = (CYALp, CLAZ(1,2))

for some a,b € {0,1},w,z € {0,1,2}, and by the same argument, we get that
o((1,2), p) = (C5 A%(1,2), CgAfp), for some c,d € {0,1} and y,z € {0,1,2}. O
Since Cp = p, we may assume that a = ¢ and b = d in Claim 3.1, and now,
letting u = (¢, b), so that C* = C’;Cg, we see that C®oo(p, (1,2)) = (47 p, A5(1,2))
and C%o0((1,2),p) = (Ag,(1,2),A§p). Putting ¢’ := C¥ 00, o' is an automorphism

invariant that fixes (p, (1,2)) and ((1,2), p) up to simple current orbits.
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Our next step is to define " := o, 1og’, for some 0, as in (3.3) that will be found
later, and show that o” acts as the identity on the weights (p, (1,2)) and ((1,2), p).
Since ¢, and ¢’ are automorphism invariants, we will then have an automorphism
invariant ¢” fixing the small weights, and the final step is to show that any such o”
is in fact the identity on Pﬁl_’f.

Since o’(p, (1,2)) = (A%p, A5(1,2)) and o'((1,2),p) = (A3/(1,2), A7p), we can

evaluate
{p'p) — qlP'p)
S(p,(l,?)),(p,(1,2)) - Sol(p’(1a2))’al (p,(1,2))°
S(P' P) — S(P' )
((1,2).0),((1,2).p) a'((1,2),0),0' ((1,2),p)°
gt@'p) — si#w»
(0,(1,2)),((1,2),0) o'(p,(1,2)),0" ((1,2),p)°

and using (2.10d), we get the following relations that (w,z,y, z) must satisfy.

kw? +1z>+z = 0 (mod 3);
(3.16) ky?+1224+y = 0 (mod 3);

kwy +lzz—w—2z = 0 (mod 3),
where (k,!) is the level. All solutions to (3.16) are listed in Table 3.1.

Claim 3.2. Suppose that o(p, (1,2)) = (Ayp, A5(1,2)) and o = ((1,2),p) = (4},(1,2), A}p)
for some automorphism invariant o. Then there is a quadruple a = (a11, a21, @12, ag2)

of integers satisfying (3.2) such that o(p,(1,2)) = o04(p,(1,2)) and o((1,2),p) =
04((1,2), p), where o, is defined in (3.3).

Proof. Let a = (a11,a91, 012, a22). Then
oalp, (1,2)) = (A‘:}1t(/’)+a21t(1,2)p7 A$12t(p)+0.22t(1,2)(1, 2)) = (A;Iazlp’ A;a”(l, 2)),

and 0,((1,2),p) = (A;,a11 (1,2), A, 42p). Therefore, we can put a = (—y, —w,

— z,—z) to get 0 = o, at (p,(1,2)) and ((1,2),p). To show that this o, is an
automorphism invariant, we must show that the a;;’s satisfy (3.2), where a;; = —y,
ag) = —w, 413 = —2, and az = —z. But (w,z,y, z) must satisfy Equations (3.16),
which gives us the relations ka2, + la3, — a2 = 03, ka¥ + la}, — a1 =3 0 and
kagia11 + lasgaia + ag1 + aj2 =3 0, and these in turn give us (3.2). Therefore,

a = (-y,~w, —2,—z) is our quadruple and it gives an automorphism invariant. [
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Earlier in this section, we defined ¢’ = C%og, for any automorphism invariant o.
Now define 0" := 0,1 o¢’. Then ¢” is an automorphism invariant and so commutes
with C* for u = (1,1). Since o’ satisfies the hypothesis of Claim 3.2, we then have
0"(p,(2,1)) = 0"(Cpp,Cp(1,2)) = 0" 0 CN(p,(1,2)) = CY 0 0"(p,(1,2)) =
Cct(p,(1,2)) = (p,(2,1)), and similarly, o”((2,1), p) = ((2,1), p), so ¢” fixes all of

the small weights. It now remains to show that ¢” is the identity.

Proposition 3.1. Let o be an automorphism invariant such that o fizes the weights
(02 (1,2)), ((1,2), 9), (p, (2, 1)) and ((2,1),p). Then o(A) = A for all A € PP,

Proof. Let o(kv) = (k''). Then by (3.1a) and the fact that o sends (p, p) and

(p,(1,2)) to themselves, we have for any kv € PP P,

(») ' (») (r',p) (¥',p) / (p)
Staw _ S8 Stz _ Splanm _ Seimey _ Soet S
o R e

A similar calculation carries through for all of the small weights, so we have

(317) S((i)z))’/ — S((f,)2)1ul , S((ga)l))u — S((gy)l))’/’ :
S o sy s
Chs _ Stow Sehw _ Soiw
S sw) T os%) 8%

where (k') = o(kv).

By Theorem 1 of Chapter VI of [3], we can write the Weyl character chg for a
highest weight 3 € Pj:l as a polynomial in ch(y gy and ch(g ). Therefore, for any
weight A € P},

(3.18) chr-p(~2mi=) = Py (ch,0)(=2mi~), chio 1y (~2mi~))
Now by (3.7), we can write
S((?,)2)# —ch 9 N d ((;L,)l)p, —ch Ny
_S,(,_Z)— = ch,1)(— mﬁ), an S,(,Z) =c (1,0)(—271'1;),

S0 we have

) @) o) @) o) :
S p (S(f,z),n 5(2,1),n) _p (S(f,z),n' Sé,l),n') _ s

9\ s 585w ) T sey

1P} is the set of unshifted highest weights {\ = (A1, A2) € Z2: 0 < Ap, Ao, A1 + A2 <7 — 2}
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by (3.17), and a similar calculation applies to S,(f,’,) / S,(,ﬁ). Therefore, for any Ay, kv €

7
PY P, we have

S _sPs® S8 sp_ SL
S Ssp s) s soo,
where k'’ = o(kv). Multiplying both sides by Sg’;f,): and summing over all Ay €
PP, we get, by unitarity of S®'),
1 _ v
CaRE A

Therefore, we must have x'v' = kv; ie, o(kv) = kv. O

Since we defined 0" = o, ! o C% o o (where o is the original automorphism
invariant we started with), and ¢” satisfies the hypothesis of Proposition 3.1, we
have shown that any automorphism invariant o has the form o = C* o g,, where
C" is a charge conjugation and o, has a = (a11, @91, a12, a22), for some quadruple a
listed in Column B of Table 3.1. Therefore, the modular invariant partition function
associated to M is

2= chauchtug, o
Al
for the above a and u € {(0,0), (0,1),(1,0), (1,1)}. In terms of matrices, this means
that M is the matrix product of one of I, I, I, or €I€ with some I4 defined by

a o, from Table 3.1.
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Solutions to (3.16) and their

associated simple current invariants o,

A
k=0,l=1
(0,0,0,0)
(-1,0,-1,1)
(1,0,-1,-1)
(1,-1,-1,1)
(-1,-1,-1,-1)
(0,-1,0,0)

(0,0,0,0)
(-1,0,1,-1)
(1,0,1,-1)
(0,1,0,0)
(1,1,1,1)
(-1,1,1,-1)

k=1ll=-1
(0,0,0,0
(0,0,-1,0
(0,1,0,0
(0,1,-1,0

—_ ~— =

B

(0,0,0,0)
(1,1,-1,0)
(1,-1,1,0)
(1-1,-1,1)
(1,1,1,1)
(0,0,0,1)

(0,0,0,0)
(-1,1,-1,0)
(-1,-1,1,0)
(0,0,0,-1)
(-1,1,-1,-1)
(-1,1,1,-1)

(0,0,0,0)
(1,0,0,0)
0’0707'1)

(
(1,0,0,-1)

A

(1,-1,-1,1)
(1,,1,-1,-1)
(-1,1,-1,1)
(-1-1,-1,-1)

B

(0,0,0,0)
(1,0,0,0)
(0,0,0,1)
(1,0,0,1)
(-1-1,-1,-1)
(-1,-1,1,-1)
(-1,1,-1,-1)
(-1,1,1,-1)

(0,0,0,0)
(-1,0,0,0)
(0,0,0,-1)
(-1,0,0,-1)
(1,-1,-1,1)
(1,-1,1,1)
(1,1,-1,1)
(1,1,1,1)

A
k=11l=0
(0,0,0,0)
(0,0,-1,0)
(1,-1,0,-1)
(1,-1,-1,1)
(-1,-1,0,1)
(-1,-1,-1,-1)
k=-1,1=0
(0,0,0,0)
(0,0,1,0)
(1,1,1,1)
(-1,1,1,-1)
(1,0,0,-1)
(-1,1,0,1)

k=-11l=1
(0,0,0,0)
(0,0,1,0)

0,-1,0,0

( )
(0,-1,1,0)

(0,0,0,0)

(1,0,0,0)

(0,1,1,1)
(1,-1,-1,1)
(0,1,-1,1)
(1,1,1,1)

(0,0,0,0)
(-1,0,0,0)
(-1-1,-1,-1)
(-1,1,1,-1)
(0,-1,1,-1)
(0,1,-1,-1)

(0,0,0,0)
(-1,0,0,0)
(0,0,0,1)
(-1,0,0,1)

Column A: (w, z,y, 2) satisfying (3.16)

Column B: (a11,a91,a12,a92) = (—y, —w, ~z, —z) as in Claim 3.2

Table 3.1: Solutions to (3.16) and their corresponding simple current invariants o,

where all equivalences are taken modulo 3
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Chapter 4
The pp-Couplings

The purpose of this chapter is to find the possible pp-couplings for Ay @Az »; that
is, those Ay € Pf_’f such that My, x, # 0 or My, ,, # 0. The two main tools we
will need for this are the norm condition (4.1) (T-invariance) and the parity rule
(4.5), both of which we will “decouple” so that we can use the results from the A,
classification as much as possible (by “decoupling”, we mean to take the result for
Ag y @ Ay, and get the corresponding result for each of Ay, and Agp).

The decoupled versions of T-invariance and the parity rule; ie, (4.9b) and (4.10),
are almost the single A, versions of these, and they will give us already a very small
set of possibilities for the pp-couplings. Putting these back into (4.9a), we regain
some of the information we lost in the decoupling and narrow down the choices even
further. Finally, in §4.3, we eliminate all but the pp-orbits as possible pp-couplings,

other than at the exceptional levels.

4.1 The Norm Condition and the Parity Rule

By T-invariance, we have that (MT(®')) Ap N = (T p1) ap My forany Ap, Ny €

p'.p (r'p) _ (p',p) . Y
P.Y, so Z,w epﬁp M)\M,KVTKV’)\IMI = Zm/ ePi/J,rp T/\#,WMW,,\IMI. Since T is diagonal,

the above sums have only one nonzero term each: at kv = XNy’ and kv = A\

respectively, so we get MA;L,/\’u'T)(f;;’II,),)\W = T,{ﬁl,’,{),)‘MAu,Xu’- If My, v # 0, we can
cancel the M terms to get
TETY), = T TE),
where T,SQ and Tgl) are Ap, T-matrices, and T;(f ;)u and Tﬁgﬁ) are A, T- matrices.
40
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Define (A) := X 4+ Mo+ M = 3%2. Then, putting in the definitions for T, we

have

W 8 Wy,

' 3p 3 I

exp[2mi{

which tells us that the sum inside the braces must be an integer. Therefore, % +
%2 = (3—;‘} + % (mod 1), so we get the norm condition
(4.1)

Myuyw #0 =

2 2
Mtddo+)]  pdtmpm+pd | M NG+ p i+
4 p 4 p
(mod 3).
We can now decouple (4.1) so that we can use the results for one copy of Az from

[9]. Multiplying (4.1) by p’, we have
/ / !
(4.2) ) + 2—%’9— = () + "%“) (mod 3p'),

SO

. (1) = (w) (

Ay — (X mod 3p).

But (A} — (X') € Z, so since ged(p’, p)=1, we must have (i') — (u) = 0 (mod p).

il

Dividing (4.1) by /, we get (A} — ()} = 0 (mod p’), so we have the decoupled norm
condition

(4.3)

A HMAe+25 = AP+ XN+ AT (mod p') pf + papa + 3 = plf + i+ (mod p).

Notice that while (4.3) is a simplification of (4.1), they are not equivalent: (4.3),
while easier for us to use, is weaker than (4.1). Also, the equations (4.3) are not
exactly T-invariance for Ay at height p’ and p respectively: T-invariance for Ay at

height n is taken mod 3n (so the difference is a factor of 3 in the modulus).

We now introduce the Galois selection rule, or parity rule, for Ay ® As. As for
A1, the parity rule for Ay @ Ao comes from a Galois symmetry obeyed by the S-
matrix; however, the Ay Galois permutation is not as simple to find as for 4;, and
we will not need to use it here. (see [5] for more about Galois symmetry in rational
conformal field theory). Unlike T-invariance, the A, @ A parity rule decouples

completely for any choice of (p/,p), so it is exactly two copies of the Ay parity rule.
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Define, for any ¢ coprime to 3p'p, a function € : Pff — {£1}, as follows:
er(On) = PP (Ve (u),
where ¢PP)(¢) is a constalegn)( ) = juals +1, and

~1, if {01 }n + {Da}n > n

where {z}, is the unique integer 0 < {z}, < n, that is congruent to z (mod n).
eo(Ap) is called the parity of Ay (see [9]). The parity rule gives us, for any £ coprime
to 3p'p:

(44) My = eel(Ap)ee(5v) Migajjeu) fex)ie], Where [EX][Lu], [€s][lv] € PUP.

Equation (4.4) tells us that My, = =Mgxjeuieaiier]: If Mapew # 0, then, since
every entry of M is nonnegative, we cannot have M), x, = —Mexj[e, jex)jer]- There-
fore, if My, # 0, we must have My, = +Mpxeu),iexje]> 2nd so we get the

Galois selection rule
(4.5) Myyw 0 = e(Ap) = ekv),

for any ¢ with ged(4, 3p'p) = 1. To decouple (4.5) like we decoupled the norm
condition, we set es(Au) = e(kv), and we want to show that for any £ coprime to

3p', egpl)()\) = egpl)(n), and for any £ coprime to 3p, eﬁp)(u) = egp)(u). We have
(D) Nl (1) = 7 () (5)e (v)

by (4.5), so

(4.6) egp')()\)eﬁp) () = egp’)(n)egp)(v), for any £ coprime to 3p'p.

Let 4, and /5 be any integers such that ¢; = {2 (mod 3). Then, by the Chinese

Remainder Theorem, we can find an £ such that
(4.7) £=1{; (mod 3p'), and £ =45 (mod 3p).

We will take /; to be an integer coprime to 3p. Then £; # 0 (mod 3), so ¢; = +1
(mod 3). If ¢; = 1 (mod 3), then let o = 1, and if /1 = —1 (mod 3), then let
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{9 = —1. Putting these ¢; and ¢; into (4.7), we see that the £ we get is coprime to
3p'p, and so we can put it into (4.6).

Consider egp) (1) and egp)(u). If 45 = 1, then, since £ = ¢3 = 1 (mod p), {fu1}p +
{2}y = {Lapr}p+{Llap2}p = {p1}p+{p2}p = p1+pe < p, since p1, p2, p1+p2 < p,
and the same calculation holds for v. Therefore, in this case, we have egp ) (u) =
e&p) (v) =1

If 43 = —1, then {€u1}p + {fu2}p = {—p1}p + {—p2}p. To evaluate these, we see
that 0 < p1, po < p, 50 —p < —p1, —p2 < 0,and s0 0 < —p1+p, —po+p < p. Then,
{—p1}p +{—p2}p = (—p1 +p) + (—p2 +p) = 2p — (p1 + p2) > p. Therefore, in this
case, egp) () = egp) (v) = —1. Putting the fact that egp)(,u) = egp)(u) into (4.6), we
see that, for any #; coprime to 3p/, eg’ ’)()\) = eg ’)(n). This argument is symmetric
with respect to 4; and £9, so reversing them, we also have P (u) = eg )(1/), for any

£2
£2 coprime to 3p. We therefore have the decoupled Galois selection rule,

(4.8) My #0 = e&p )()\) = ego )(/c) and e,(_,p) () = egp)(z/),

for any £ with ged (¢, 3p’p) = 1. Equation (4.8) is equivalent to (4.5).
Now suppose that Ay is a (left) pp-coupling; ie, My, ,p # 0. We can put My = pp
into (4.1) and (4.3) to get

Mp,pp 70 =
M4+ A2 p2 4 s + 3 1 1
(4.9a) + = —+4+- (modl)
3p' 3p pop
(4.9b) A2+ Mo+ A3 =3 (mod p);  pf 4 pipe + 4 =3 (mod p).

(4.9b) is Equation (4.3) of [9], and is weaker than (4.9a).

We can put Ay and pp into (4.8), so egp’)()\) = egp/)(p), and eﬁp)(,u) = egp)(p) for
any £ coprime to 3p'p. Now, for n = p’ or p, egn)(p) = egn)(l, D={+{}n =
2{¢},. Therefore,

(n) +1, if 0 < {{}, < %
€ (p) = . .
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But e(p )()\1, o) = egp')( ) and e(p)(m,ug) = egp)(p) by (4.8), so we have

/

0< {t}y < % = {}y + {Da}y <P’

%l <{}y = {n}py + {2}y > 1';
(4.10)

0<{thy<? = {tm}p+{tualy <p

L it = {tmdo+ {tuads > p.

Equation (4.10) is (4.1b) of [9]. Equations (4.9b) and (4.10) are what we need to
get Proposition 1 of [9], which will give us Lemma 4.2, our first list of possible

pp-couplings.

4.2 Searching for the Possible pp-couplings

We now have (4.9b) and (4.10) as in (4.3) and (4.1b) of [9], so we are in a position
to write down some possible pp-couplings. We will need the following lemma, which

is Proposition 1 of [9].

Lemma 4.1. The set of all solutions X to (4.9b) and (4.10), is:
(a) for p' =41,2,3, p' #18: X € Op;

_ ) _(p=2 p'=2
(b) for p' =4 0, p' #12,24,60: X € OpU O(p"), where p" = (5=, 55=).
(c) for p' = 12,18,24, 60, respectively, \ lies in

Op U 0(3,3)U0(5,5)

Op U 0(1,4)

Op U 05,5 U077 U0O(11, 11)
Op U O(11,11) U O(19, 19) U O(29, 29),

and the set of all solutions p is the same with p instead of A and p instead of p'.

We can put these choices into (4.9a) to further narrow down the possibilities.
This is done on a case-by-case basis, but is made much simpler by a few observations.
First, we can discard many cases due to the condition that p’ and p be coprime.

Then, the symmetry of the norm condition itself means we can cut the cases in half.
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Also, for those A such that A\; = Ao, we have that (AX) = (A%)). Since the only
weight appearing in Lemma 4.1 such that A; # Xg is (4,1), this greatly reduces the
number of cases we have to check.

The result of putting all of the pairs into (4.9a) is the following lemma.

Lemma 4.2. Let p' and p be coprime. Then the only pairs Ay such that A and p
each satisfy (4.9b) and (4.10), and Ay satisfies (4.9a) are:
(a) (i) p' =12 1,7,10 and p =12 2,5,11: Au = (ALp, Abp), i =5 =0,1,2;

(11) p' =12 3,6,9, and p =19 +£1,£2,+5; p', p #18: Ay = (A;,p, p), i=0,1,2;
(b) (i) p' =12 1,5,7,11 and p =12 0; p # 12,24,60: Iu = (p, Adp), or Ay =
(o, Ap"), §=0,1,2;

(i) p' =12 1,7 and p =12 8, or p' =12 5,11 and p =15 4: Ay = (A;,p,A;p), or
A= (A5 p, App"), =0,1,2;

(iii) p' =12 3,9 and p =12 4,8: Ay = (A;,,p, p), or Ay = (A;,p, p"), i=0,1,2;
(c) (i)p =18 and p=121,7: A€ Op, u = p;

(i) p =18 and p =12 5,11: A€ Op and p = p, or A € O(1,4) and u = A;,p,
fori=1,2;
(d) (1) p' =12 and p =12 1,7: X € OpU O(5,5) and p = p, or A € O(3,3) and
W= Af,p, fori=1,2;

(i) p' =12 and p =12 5,11: A € OpU O(5,5), = p;
(e) p' =24 and p =12 1,5,7,11: A€ OpUO(5,5)UO(7,7) UO(11,11), u = p);
(f) p' =60 and p =12 1,5,7,11: XA € OpUO(11,11)U0O(19,19) U 0(29,29), 1 = p),
plus a symmetric list, where p' and p are reversed, A\ and u are reversed, and p" =

(P’;?P’;Z)
2 0 2/

Proof. Because p' and p are coprime, Lemma 4.1 gives us the following list of

choices for A\u

(4.11a) ' =41,2,3, p=41,2,3, p',p#18: X € Op,pu € Op;

(4.11b) p'=41,3, p=40, o' #18, p#£12,24,60: X € Op, € OpU Op";

(4.11c) p' =18, p=41,3: 1€ OpUO(1,4), p € Op;
(4.11d) P=12, p=,1,3: A€ OpUO(3,3) UO(5,5), u € Op;
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(411e) p' =24, p=41,3: 1€ 0pUO(5,5)U0O(7,7)UO(11,11), p € Op;

(4.11f) p' =60, p=41,3: )€ OpUO(11,11) UO(19,19) U O(29,29), p € Op.

We first test the possible Au from (4.11a): suppose p' =4 1,2,3, p =4 1,2,3, and
p', p # 18. Then (), 1) can be one of nine pairs, (A, 1) € {(p,p), (0, 4pp), (o, Agp),
(App, ), (App, App), (App, A2p), (A2 p,p), (AL p, App), (A2 p, A3p)}. Notice that
if (o) = (B), then putting « or 3 into (4.9a) will give us the same information.
Calculating (p), (Ap), and (A2p), we see that (p) = 3, (Ap) = (A2p). Therefore, we
can test in classes of pairs, as follows: (1) test (p, p); (2) test (p, App) to get the cases
(p, App) and (p, A2p); (3) test (Ayp, App) to get the cases (App, App), (App, Abp),
(Az, 0, App), (Af), 0, Azz,p), and (4) to get (Ayp, p) and (Az, p, p), notice that this case
is symmetric to (2).

(1) is trivial. For (2), we get ;L,)+ﬁ§ez = 1%+% (mod 3), or §+p+% = ;,37-!-%
(mod 3), so (p, App) satisfies (4.9a) iff p = 0 (mod 3). Therefore, if p’' =4 1,2,3,
p=41,2,3,and p=30, A = p, p € {Ayp, AZp}. But we also have (A, u) = (p,p)
from (1), so (A, ) € (p, Op). From this, we also automatically have (4), which tells
usif p=41,2,3,p =4 1,2,3 and p' =3 0, then A € Op, p = p. Testing (Ayp, App),
we see that the pairs in (3) will satisfy (4.9a) iff p’ + p = 0 (mod 3). This means
that either p’ = 1 (mod 3) and p = 2 (mod 3), or vice-versa, since p’ = p = 0 (mod
3) violates the coprime condition. Again, we add (A, ) = (p, p) because this also
satisfies (4.9a) for such p’ and p, and so we have (A, 1) = (p, p), or A, € {App, Af,p}.
Putting these congruence conditions together with p’, p =4 1,2, 3, we have Lemma
4.2(a).

Lemma 4.2(b) is the longest case, so we will do it in the most detail. Suppose
that p’ =4,1,2,3, as in (4.11b), so A € Op, u € Op U Op”. Suppose first that
both XA and p are in Op. From the proof of (a), we get Au = pp with no further
conditions, A = p, u € {App, A%p} with the added condition that p =3 0, and
A p € {App, Af,p} with the added condition that p’ + p =3 0.

If X € Opand p € Op', we need to test the following pairs: (p,p"), (p, 450"),
(App,p"), and (App, App”). For (A, p) = (p,p"), we need no further conditions on
p" and p. For (X, p) = (p, App"), we need also p =3 0, and for (A, u) = (App, "), we
must have p’ =3 0. Finally, (A, u) = (Apyp, App”) satisfies (4.9a) iff p’ + p = 0 (mod
3).
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Putting together the congruence we found with p’ =4 1,2, 3, and p =4 0, we get

the following list of choices mod 12:

(1) p' =12 £1, 43,45 and p =12 0,4,8, p # 12,24,60: (A, 1) € {(p, ), p, P"});

(2) p' =12 +1,%3,+5and p =12 0, p # 12,24,60: A = p, p € {App, A2p, App”, A2p"};
(3) p' =12 1,7,10 and p =12 8: X € {App, AL p}, p € {4App, Alp, pp" AZ0"});

(4) p’ =12 5,11 and p =19 4: same as (3);

(5) p’ =12 3,9 and p =15 0,4,8, p # 12,24,60: X € {App, i,p}, p=p"
Eliminating cases which violate ged(p’, p)=1, and putting together the overlapping
cases gives us Lemma 4.2(b).

In Lemma 4.2(c),(d),(e),(f), p' = 0 (mod 3), so by the coprime condition, we
can eliminate any cases which require p = 0 (mod 3) (which is about half of the
remaining cases). From the proof of (a), we know that this would eliminate any
(A, 1) with A € Op and u € {Ap, A%p}. Therefore, for all of (c)-(f), we have only
the possibility that A € Op, u = p, for A\, u € Op. All that remains now is to check
the special cases not involving Op.

Putting (4.11c) into (4.9a), we find that the additional condition p = 2 (mod 3)
gives us the choices A € O(1,4) and p € {App, A2p}; (4.11d) gives us X € O(5,5)
and g = p, and if p = 1 (mod 3), X € O(3,3) and p € {App, A2p}; (4.11e) gives
us A € OpuU O(5,5) UO(7,7) UO(11,11) and p = p with no further restrictions on
p, and (4.11f) gives A € Op U O(11,11) U 0O(19,19) U O(29,29) and p = p with no

further restrictions on p’ and p. O

4.3 The pp-couplings

We now use Lemma 4.2 to further narrow down the possible pp-couplings. Through-
out this section (and also in the next chapter), we will use Lemma, 4.3 below, which
is Lemma 4 of [14].

Define Pr(p',p) = {d\u € Pf_f’ : Myyru # 0, for some kv € P_’{'ﬁ }, and Jr =
{A;,A{; t Myipnippe 7 0} Pr(p',p) and Jr are defined similarly. We will often
write Pr, Pr, Jr, Jr. for short.

Lemma 4.3. (a) For each Ay € P_’fﬂl_’f, definesp(\ p) =3, M,w,p,,S&'L’g,)j, sr(\p) =

> kv Mpp’,ng’l’;,’ﬁ)u. Then sp (A, p),sr(A 1) 20, and sp(\, 1) > 0 iff \u € Pr, and
sr(Ap) > 0 iff \u € Pgr;
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(b) M gapp0,,p = 1, for all Ag,Ag € Ji, and My, geppa, =1, for all A;,Ag € Jr;

(c) For all a,b,c,d such that Mgape, acpadp = 1, Mparaby acnady = Mipyw,
for all Ay, kv € Pﬁl_’f. In particular, Maayaby e = Myusy = My, pecady, forall
AL AL € T, AS A € Tk

(d) Ay Ab € Ji < at()) + bt(u) =0 (mod 3), for all \p € Pr, and Az,Ag €
Jr < ct(k) + dt(v) =0 (mod 3), for all kv € Pg;

(e) Suppose that My, ,p # 0 <= A € Jr(pp) and My, # 0 & Kv €
Tr(pp). Then P = {Mu € PEP : at(N) + bt(y) =3 0, VAL AL € Jp} and Pg =
{kv € PP ct(k) + di(v) =3 0, VAS Al € T}

Proof. (a) We evaluate MS®'?) = SO'PIM at (A, pp), so

> My SER =3 St Maspp-
KV

714

The left-hand side is nonnegative since S’,(w,pg > 0 for all kv € Pﬁf and My, ., €

Z>0, and the right-hand side is sz,(A, ). M)y 5 > 0 for some xv € Pf iff \p € Py,
so we get sy (A, p) > 0 with strict inequality iff \u € Pr. Evaluating MS®'P) =
S@P)M at (pp, Apu) gives the result for sp(\, p).

(b) By unitarity of S®'?), S-invariance is equivalent to M = S®»)" pr5®'»),
By the positivity of M, Equations (2.10d), and the triangle inequality,

Muapavppp = |MA“pA”p,pp|
= | 3 SO M ST
A, KV
21r7.
- | Z e (at(N) +bt(u))S(P o) M/\H, S,(ffjfgl
ALKV
< Z | _2_1u(at()\)+bt(p,))l 'S(P p)* M)‘#, S,(fz’;fg|
A KY
= 3 Sl My SEE)
ALKV

= (S(pl’p)*MS(pl’p))pp,pp = Mpp,pp = 1.

Therefore, Mya,a5,,, € {0,1}. But Myappe,,, # 0 <= Ag,Ag € Ji, so
MA"’pAbp,pp =1 < Aa Ab € J1. But MAapAbp,pp =] MA"pAbp,pp = Mpp’pp,
o we must have e~ % (“t()‘)+bt(“)) = 1 whenever M), ., # 0 for some xkv € Pfﬂlf
This gives us (), and that A;,Ag € Ji iff at(A) + bt(u) = 0 (mod 3) Vau € Py,
which is (d).
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(c) Let A% A € J. Then

(' p)* (#'.p)
MAG/\Ab/,L,m/ = Z SA“)\Ab;L,aﬁ aﬂ,fyéS 8,k
a6
27 *
= Z (at(a)+bt(ﬂ))S(p $p) aﬁ ’YJS’(YI(; ;:’3
aB,yl

But by the proof of (b), at(a) + bt(8) = 0 (mod 3) whenever Mg .5 # 0, so the
exponential term is just a “1” whenever there is a nonzero term in the sum, and so
we have (c).

(d) This was done in the proof of (b).

(e) By S-invariance, (MS®'P))y, o = (S®PIM)y, 5, for all Au € PJ’:+ , SO

ZM/\M,aﬂ B = Y S Mg
af

_ (v'.p)
- Z S/\u AapAby M papabp,p

a,b:Ae Abe Ty,

_ @ p)

- Z S)\;L,AapAbp’
a,b: A Ab eJL

by (b). By (2.10d), this is equal to Y , ;. 0 gvc s, € 5 (at<*>+bt(“>)s( ’p) , S0 we have

; 27 (ot (A\)+b '\p)
(4.12) ZMAM pSEm = Y, e g,
ab:A“AbGJL

If A € Pr, then since S(p ’p ) > 0 for all af, the left-hand side of (4.12) is nonzero

iff at(A) + bt(p) = 0 (mod 3) VAZ,A;’, € Jr (otherwise, we get the sum of the third
roots of unity, which is 0). Therefore, Ay € Pr, <= at(A) + bt(u) =0 (mod 3). O

Corollary 4.1. Jg and J;, are abelian groups.

Proof. The set of all simple currents is a finite group A under composition,
with identity AS, AJ. Suppose that A% AL, A A2 € Ji. Then (A% AD)(AS AD) €
Ji, because A% AgA; Al = A“+°A”+d, SO Mpatepartippp = Maa(acp) av(adyppp =
Mucpadp pp = Mpp,pp, by 4.3(c), and the same argument applies to Jr. Therefore,
Jr and Jg are closed under composition, and hence are subgroups of A. They are

abelian because A“+cAb+d Ac+“Ad+b O

We will need to use some properties of the Perron-Frobenius eigenvalue, which

is described in the following theorem.
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Theorem 4.1. (Perron-Frobenius Theorem) [15] Let B be a square matriz with non-
negative real entries. Then there is an eigenvalue r(B), called the Perron-Frobenius
eigenvalue, such that r(B) is real and nonnegative, and for any other eigenvalue s
of B, r(B) > |s|.

For any square matrix M, we can simultaneously permute the rows and columns

to write M as a direct sum of indecomposable submatrices as

By 0 0
_e .
0 B :
(4.13) M~PB=| ,
=1 . .'-
0 By

where by A ~ B, we mean that A is some permutation of the rows and columns
of B. By an indecomposable submatrix B, we mean that we cannot further write

B = By & By. As an example, take

1010 1)
0 20 300
(4.14) M=]106 01
0 4050
10101
We can then write
1110 0)
161 00
(4.15) M~ 11100,
000 2 3
0 00 45
1 1 1
soM~B® By, where | 1 6 1 |,and By =
4 5
1 11
50
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Of course, the order in which the B;’s appear in (4.13) is not unique. For M
a modular invariant, we will always take B; to be the block containing M), sp.
Since each B; is a submatrix of M, each B; has nonnegative real entries, and so
by Theorem 4.1 has a Perron-Frobenius eigenvalue r(B;). Let B be any B; as in
(4.13), and suppose B is also symmetric (which we will find later is always the case
for an indecomposable submatrix of a modular invariant). Then we further have

the properties:

(4.16a) mainz By <7(B) < maax; Bop;
b

(4.16b) max Byq < 1(B).

Define B(m,£) to be the £ x £ matrix

(4.17) B(m,f) =

m . m

We will find later that for any modular invariant M, most of its submatrices B; will
of the form B(1,£). With these properties of the Perron-Frobenius eigenvalue, we

get the following two lemmas:

Lemma 4.4. [9] Let M be a modular invariant. Then Rr = {(p,p)} iff Rr =

{(o,p)} iff M is an automorphism invariant.

A consequence of Lemma, 4.4 is that it means we have already found all modular
invariants M having pp as the only the pp-coupling, and so we do not need to

consider that case in Chapter 5. The following lemma, is the basis for much of
Chapter 5.

Lemma 4.5. [9] (a) Suppose M has My = B(1,m) for some m. Then for each

i, either M; = (0) or r(M;) = m. Also, for each (\,u) € PV, ¥, M3, ., <
m? /|| T (X, )l

(b) Now suppose Ry, = Jr(pp) and Rr = Jr(pp), and suppose that M, c, # 0.
Then

Tzl
M KV S .
Mo =TT oW Ta ()l
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If, in addition, (X, 1) is not a fized point of Jy, (ie, J € J1,J # AY A, implies
J(An) # (M), and also (k,v) is not a fized point of Jr, then My, ., = 1. More-
over, My, op 7 0 iff (aB) € Tr(kv), and Map c, # 0 iff (@B) € Jr(Ap).

Lemmas 4.4 and 4.5 are the Ay @® A, versions of Lemmas 2.1 and 2.2, respectively.

We are now ready to state the pp-couplings as the following theorem.

Theorem 4.2. Let Rg = {Au € PPP : Myyy, # 0} and Ry, = {du € PP .
Myppp # 0}, and define p’ := (7%2,?;—2) Then My, ,, € {0,1}, and the choices
for Rr and Ry are

(a)(i) p' =12 1,7,10 and p =12 2,5,11:

Rr=Rr={(p,p)},

Rr = Re = {(p, p); (Ap p, App), (A5 p, A3p)},

Rr =Ry = {(p,p), (App, A3p), (A} 0, App)},

Rr = {(p,p); (Ap pApp), (A2ip, AZp)} and Ry = {(p,p), (Ap p, App), (A2:p, App)},

Rr = {(00), (App, AZp), (A2 p, App)} and Ry = {(p, p), (Ap 0, App), (AZip, Ajp)};

(i1) p' =12 3,6,9 and p =19 £1,22,£5,p" # 18: Rr = Ry = {(p,p)}, or
Rr =Rer = {(p,0), (App, p), (Ayp, p)};

(b) (i) p' =12 1,5,7,11 and p =12 0,p # 12,24,60: Rrp = R = {(p,p)}, or
Rr =R = {(p,p), (0, 4pp), (0, A7) };

(i) p) =10 1,7 and p =128, p # 8, or p' =12 5,7,11 and p =12 4: the same

choices for Rp and Ry, as in (a)(1);
(#13) p' =12 3,9 and p =12 4,8, p # 8: the same choices for Rr and R as in
(a)(dt);

(c)p' =12 and p =12 1,7: Rr = Re = {(p,p)}, Rr = R = {(A}p,p) : i =
0,1,2}, or Rr = R = {(4%p,p), (A% p",p) : i =0,1,2}

(d) p = 24 and p =12 1,5,7,11: Rp = Ry = {(0,p)}, or Rp = Ry =

{(Ayp,0), (450, p), (ALip", ), (ALip",p) : i = 0,1,2}, where o = (5,5), p" =
(7,7).

(e) (i)p' =12 1,7 and p = 8: the same choices for Rr and Ry as in (b)(ii), or
Rr=Rr = {(p,p), (p,0")}, or any combination of Rr and Ry, such that :
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RR,L = {(pa p)a (Ap’pa App)a (A?)’pv A?)p), (P, p”)v (Ap'P, App”)7 (A /Py A2 ”)}’

or
RR,L = {(P, P), (Ap’p7 Agz)p)a (Agzz’pa Ap )3 (pa ,0 ) (Ap "0 A2 ”) (A?)/p, App”)}'

(4i) p' =12 3,9 and p = 8: the same choices for R and Ry as in (a)(ii), or
Rr =Re = {(p,p), (p,p")}, or

Rr=Rr = {(p, P), (Ap’pa p)a (A,Z,'P» p)a (pa p”)v (Ap’P7 p”)a (Ajz)’pa P”)},
plus a symmetric list as in Lemma 4.2.

We will prove (a), (b), and (e) here, and prove the remainder in Chapter 6.

Proof of (a), (b) and (e). First, let us suppose that p’ = 3,9 (mod 12),
and p = 4,8 (mod 12), as in Lemma 4.2(b)(#4). Then Jz, Jr = {AO A%}, or
{Ag Ag, A}, Ag, A2, Ag}7 by Corollary 4.1.

Define

2 2

— § : LI § :
my = MAapp’pp, and my = MAapp”,pp-

a=0 a=0

(mpg, m'y are defined similarly). Suppose that mj # 0 (so m} > 1), and put
A= (p,(2,2)) and Ap = (p, (1,4)) into Lemma 4.3(a). Since Sff}a = S(p) for all
a=10,1,2, we get that

sr(p,(2,2)) = Zan,ppS Sg)z)u

- (Z M papp, pp> )S((g 2)p (Z Macop, pp) S( )S((g)2)p”

a=0

= 8580, (m1 — my),

since S((S?Q)p,, = —S((g’)) But S/(\’;), S(p) > 0, VYAu, so we must have my —m} > 0,
or my, > m). But by Lemma 4.3(b), Maeypr pp = My, for all a such that
A;,Ag € Jr, so this means (since My, ,, > 1), that if m} # 0, then m} > my.

Therefore, we must have my = m/.
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Putting A\u = (p, (1,4)) into Lemma. 4.3(a) gives us

(4.18) s1(p(1,4)) = (8P, + 5%y ) SEImE, > 0.

T

But S(1 0y = \%p sin (%) sm(47’)sm(?") = I/sz (sin(%l) + sin(%) - sin(wT")) ,

and 5, , = — & cos(Z) sin(42) cos(%) = - (—sin(%’r) +sin(Z) — sin(lgz)) ,
0 (4.18) is true iff sin( 2p ) — sin( 10") > 0. This is a contradiction for p > 20, so for
those p, m}, =0, and so Rg = {(p,p)} or {(4}p,p) :i=0,1,2}.

We check the cases p = 4,8, 16 separately. If p = 4, then p" = (4—5—, ——52) =
(1,1) = p, so there is nothing to check, and p = 16 implies that sin(g) > s1n(587r )s
which is false. However, p = 8 gives us sin(%) > sin(3F), which is true. Therefore,
we have that for p # 8, p’ = 3,9 (mod 12), and p = 4,8 (mod 12), Rr = {(p,p)} or
Rr = {(A;,p,p) :4=0,1,2}.

Since M commutes with S®'?), we evaluate (MS®P),, ., = (S®PI M), ,p

to get Y., Mpp,m,S,(;’,’,,’,?p Yokw S f,f,,}?ng, pp- Since S(p ;f)/)lbp op Sl(f; :ZZ pad, for all
a,b,c,d € Z, we get S (g,fp) Ea 0 Mpp,A9pp = ,‘,’,’,,;?,3 22_0 Maapp,pp) OX MR = My,
Lemma 4.3(b) tells us that Myapaep,p = My, scpad, = Mpppp = 1, so for all
AZ,A;,’, € Jr, A;,Ag € Jr, IRR| = |RLll, and we have Theorem 4.2(b)(%) and
(g) ().

Next we consider Lemma, 4.2(b)(7). Corollary 4.1 tells us that J;, = {Ag,Ag}

or {AO A9 Ag A,%,,A0 AZ}. Here, we define mp := S Mpaap pp, and m) =

2 —0 Mpaepr po- sL(p,(2,2)) > 0 and Lemma 4.3(b) again tell us that if m} # 0,

then mr, = mf, and as above, sp(p, (1,4)) > 0 iff sm(T’r) > sin(=* 10") This is clearly
true for p > 20, and since p # 12, we get Theorem 4.2(b)(3).

For (b) (4), we again apply Corollary 4.1 to Lemma 4.2(b)(4) to get Jr =
{Ag,Ag}, {Ag AS, A}) AL, A2 A2}, or {AO A9 A}, AZ, A2 Al}. Therefore, if A\p € Ry,
then Ay € Jr(pp), for one of the above choices of Jr, and Ay could also be in the
set {(p, "), (App, App"), (A2ip, A2p"), (Ap p, AZ0"), (A% p, App”)}.

We define myp, := 2220 M saph0p,pp, My = ZZ:O Mpapp-appp My =
S o Maspaap ppyand mfy := 32 Mya,p-an ,,. First suppose that J;, = {AD AD}
or {AO A0 A; A},,A2 AQ} Then, as usual, if m} # 0, m} > my, by Lemma 4.3(b). If
Jr = {AY AL, Ay Ay, AL ATY, (App, AZp") and (A2 p, App") cannot be pp-couplings.
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For example, if My,p2, p # 0, then Lemma 4.3(b) tells us that Myzpyr 5, # 0
either, which is false Lemma (4.2(b)(ii)), so we do not need to consider mj.

We calculate sz.(p, (2,2)) and sz(p, (1,4)) as above, which gives us that m}, =0
unless p = 8. For Jy, = {Ag AS, AL A?,,AZ AL}, we use my and mj, and find that
mj = 0 unless p = 8.

If Jr, = {A) A}}, then the usual argument gives us contradictions for all p # 8.

When p = 8, we still must have my = m/ (or my; = mj}), so we cannot have
Re = {(p, ), (0, 0")s (A p, App"), (A% 0, App")} ox {(p, 0), (ps "), (Ap pALP"),
(A 0, App”)}.  This gives us Theorem 4.2(b)(ii) and 4.2(g)(é). The fact that
M,\u,p,, € {0,1} follows from Lemma 4.5(b) for (a) and (b). For (e), we have
my = mf, (or my = mj) whenever m} # 0. If m = 1, then m} = 1 gives us
My .pp = 1, and if m} = my = 3, then at least for one J € JL, My (,pm,pp # 0- But
now by Lemma 4.3(c), My(yp1),0p # 0 for all J € Jp, so they must all be 1. O
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Chapter 5

The Simple-Current Extensions

In this chapter we complete the Ay @ Ay, classification for the non-exceptional
heights; that is, where neither of the heights p’ or p is 8, 12, 18, 24, or 60. By the
previous chapter, we know the pp row and column of M. We will use Lemma 4.3 to
extend this knowledge to all weights A\u € PL(p',p), kv € Pr(p'p). The strategy is
the same in all cases: we see what happens to M at the “small” weights and build
up to all weights Ap from there. The weights we will use as the small weights differ
from those in Chapter 3. In §5.2, they are (p, (2,2)), (p, (1,4)), (p, (4,1)), ((2,2), p),
((1,4),p), ((4,1),p), and in §5.3, they are ((2,2), p), ((1,4),p) and ((4,1), p).

In each case of Theorem 4.2(a) and (b), My, # 0 <= Au = Ag,pAgp for
some AZ,A?, € Jr,and Mpy o #0 = kv = A;,pAgp for some A;,Ag € Jr, so by
Lemma, 4.3(e), we have P, = {\p € Pjﬁ’f tat(A) +bt(p) = 0 (mod 3) VA;,A;’, € Ju}
and Pr = {kv € P{¥ : ct(s) + dt(v) = 0 (mod 3) VAS A% € Jr}. We also have
|Toll = |Trll =1 or 3. If | TL]| = |Trll =1, then M is an automorphism invariant
by Lemma 4.4, and so has already been done in Chapter 3. Therefore, for all of
this chapter, we will assume that || J.|| = ||Jrl| = 3. The goal of this chapter is the

following theorem:

Theorem 5.1. Let M be a modular invariant, and suppose that M hasRg = Jr(pp)
and Ry = Jr(pp) for some Jr and Ji; ie, the pp-couplings of M are just simple
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currents of pp. Then M is one of the following:
1 ! 3, 3. *
D=3 2 67 e, + xR )0+

)\“epp' P
(5.12) BN+ =50

Ok, + X0 *fi,ﬁl,) (for p',p #5 0),
1 ! Y *
(5.1b) v uepz+
where ¢ = (p'/3,p'/3) (for p' =5 0,p #3 0),

up to multiplication by an automorphism invariant.

5.1 J-orbits

In light of Lemma 4.3, it will be useful in this chapter to work with J-—orbits of
weights, rather than the weights themselves. For Au € Pr, we define (Au)y, to be the
Jr—orbit {J(Ap) : J € Ji}, and for kv € Pr, (kv)g := {J'(kv) : J' € Jr}. We will
usually drop the subscripts L and R when it is clear to which we are referring, or our
comments can apply to either. We denote the set of all J;—orbits (Au) by Pr/(),
and the set of all Jp—orbits by Pr/(). By Lemma 4.3(c), My, = M)y . for

all My’ € Jp, 6'v' € Jr, so we write M¥ (i) () 10 mean any representative My o/

N

such that XNy’ € Jr.(\u), &'v' € Jr(kv). We also define

hoagy = Z X(p ,p)_

N €(Ap)
With this definition, we see that
Z = Z M)\;L,n Xg\i,p)x(ej’p)*
ALKy
= Z M {Ap){kv) Z X ,?)X,(:I?V,IP)
() {kv) Ml €{ap)
KV E{kr)
= Y Miye | > xbr > X
() {KV) DUTEIONTY KV (k)
so the partition function associated to M can be written as
(5.2) Z= 3 Mupuhinychla.
(Ah (wv)
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5.2 The classification when J has no fixed points

We begin with Theorem 4.2(2)(i). Here, Jr, and Jr are either {AJ, A9, AL AL,

A2 A2} or {AY A9, ALAZ A2 AL}, and PL,Pr = {\s € PUF : t()) + t(u) =
0 (mod 3)}, where the plus or minus sign depends on which Jr, we choose. When
we deal with M (eAu> (v however, we may suppose that t(A) = 0 (mod 3), so in either
case we can assume that t(\) = t(u) = 0 (mod 3), whenever M&u><w> # 0 for some
(kv). We can do this because t(A;,)\) = 1p' + t()\), and since 31 p/, p' = £1 (mod
3). This means that exactly one of the representatives A7, A of the J—orbit (Apu)
will have (A%, A) = 0 (mod 3), and so |PL/()| = [Pr/()ll = [{dn € PLP : t()) =
t(u) = O(mod 3)}|.

Both of the above possibilities for J;, and Jr have no fixed points: suppose
A;,Aﬁ;()\u) = (M), where i = £j # 0. Then, in particular, A;,)\ = A. But this
implies t(\) = t(A;,)\); ie, ip’ + t(X) = t(A) (mod 3). Since i # 0, this means that
p' = 0 (mod 3), which is a contradiction (for Theorem 4.9b(a)(i)). Therefore, we may
use Lemma 4.5(b), and it applies to every weight in Pﬁl_’f. Suppose My, ., # 0. By
Lemma 4.3(c), My xvr = Mapew YN ' € Jr(Aw), 'V € Jr(kv) and by Lemma
4.5(b), these equal 1, and M'y/ € Jp(\u) are the only weights that can couple to
k'V' € Jr(kv) (and vice-versa).

Therefore, we can define a permutation o : {Jr — orbits} — {Jr — orbits}
such that My ) #0 < (kV)r = oAy, and M(e)w)’a()\#) = 1. Notice that,
since o takes an orbit to an orbit, if o(\u) = (kv), we may take kv to be any
representative of (kv)p = {J'(kv) : J' € Jr(kv)}. Equation (5.2) tells us that the

partition function associated to M in this case is
(5.3) 2= chpuch
(A}
where Ay € Pr. To describe M, we must now describe o, and find which permuta-

tions o will give us a modular invariant. We already know what happens to pp under

o. By Lemma 4.3(b), My(pp),7(sp) = Mpp,pp ¥J € T, J' € TR, s0 a{pp) = {pp).
Let Au € Pr, kv € Pr. Then by Lemma 4.5,

(MSEP) 5 = Zﬂ MyasSigh, = 3, U,
[¢7

N € (M)
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But o{Au) is a Jg—orbit, so the above sum is equal to

(#'.p) _ i (et(k)+dt(v)) o(P'0)  _ 9o(0'p)
Z SAC)\’Adu’,nu - Z es (et} e ))SA’u’,nu = 35/\’;1,’,;«;1/’
c,d:AcAde Jg ¢, d
because A°A% € Jr and kv € Pg, so by Lemma 4.3(d), ct(k) + dt(v) = 0 (mod 3).

Similarly, (S®PYM)y, 0 = 35PP)  for any K'v' € o~ !{kv). S-invariance then

Ap,k!'nu’?
s _ g'p)

N ! v A3 OF equivalently,

gives us

for Ay any representative of (Au) € Pr/( ), kv any representative of (kv) € Pr/(),
any My’ € o(Dp) and any &'V € o{kv).
We are now ready to check what happens to the small weights under o, using

the following claim.

Claim 5.1. 0(p,(2,2)) = (p,(2,2)) and o{p,(1,4)) = {p,C;(1,4)), for some a €
{0,1}.

Proof. Let o(p,(2,2)) = (¢',(2,2)) (and similarly for (p,(1,4)). By (5.4),
Q¥ P(p, (2,2)) = Q¥2)(,(2,2)'), s0 since Q') = QIIQW),

QW) (p) _ QW (2,2
(5 QW) ~ QP(a,2)

Since Sff,’;) > S,(f;,l),
L S _ Q%) _ QP2
= Sfff’;,) QW) (o) QW(2,2)°
so Q)(2,2)" < Q) (2,2). By Lemma 3.2, we then have Q®(2,2)' = Q®)(2,2) or
Q) (p) when p > 12.

Suppose that Q®)(2,2) = Q®)(p). Then, by Lemma 3.1, (2,2)" € Op. Because
a(p,(2,2)) = (0,(2,2)'), we are assuming M52 y(2,2y # 0, s0 (2,2) and (2,2)’
must satisfy the decoupled norm (4.3). This implies 3 = 12 (mod p). But then p | 9
which is a contradiction since 3 { p and p > 4, so QP (2,2) = QWP (2,2). Now by
Lemma 3.1, (2,2) € 0(2,2).

Equation (5.5) now tells us that

Q) (p)

< Py o) - olP)
QD) 15 ie, S50 = 8,7,
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and this can happen iff p’ € Op. Therefore, o(p, (2,2)) = (A;,p, Ag,(2,2)) for some
i,j € {0,1,2}. But we can assume t(A;,,p) = t(A%(2,2)) = 0 (mod 3), so we put
i = j = 0. In this case, we did not need to consider the charge conjugations, because
Cyp=pand Cp(2,2) = (2,2).

Replacing (2,2) in (5.5) with (1,4), we get Q®)(1,4)' < Q)(1,4), and by Lemma
3.2, QP)(1,4) € {QP)(p), QP (2,2), Q") (1,4) = Q¥)(4,1)} for p > 12. By Lemma
3.1, (1,4) € {0p,0(2,2),0(1,4)}. If (1,4) € Op, then (4.3) tells us that p | 18,
which implies p = 1 or 2, contradicting p > 4. If (1,4) € O(2,2), then we again
have 3 | p. Therefore, (1,4) € O(1,4), and choosing ¢((1,4)') = 0 (mod 3), we have
that (1,4)" = (1,4) or (4,1), and so a{p, (1,4)) = {p, C5(1,4)).

Checking each of p = 4,...,11 separately, we find that we also have (2,2)' €
0(2,2) and (1,4)" € O(1,4) at those heights. [

The proof of Claim 5.1 also applies to the weights ((2,2),p0) and ((1,4), p),
so we have ¢((2,2),p) = ((2,2),p) and o{(1,4),p) = (Cg,(l,él),p) for some b €
{0,1}. As in Chapter 3, letting o' := C®% o g, we have o'(af) = (af) for
af € {(p, (2,2)), (p,(1,4)),((2,2), p), ((1,4),p)}. Since (1,4) = C(4,1) and o' com-
mutes with C(11) | we also have o' {p, (4,1)) = {p, (4,1)) and o’ {(4,1), p) = {(4,1), p).
In matrix terms, this amounts to multiplying our modular invariant M by one of
the charge conjugations I, ¢I€, I€. Multiplying a modular invariant by an auto-
morphism invariant gives another modular invariant, so the product M’ defined by
o' is a modular invariant. As in Chapter 3, we will show that any o fixing the small
weights is the identity.

Let Ay € Pr. Then by (5.4) and Claim 5.1,

(p) () o) (?',p) (r':p) @) ofp) (p)
Seaw _ Sp’ Seow _ e _ Seeavw  Sod Seaw _ Seaw

(») ) ® — op T w7 olp) ® = o
Seu S pA Seu Spp,)\u S pp, N 1! pN S ou! S oy

and a similar calculation holds for all of the other small weights. We therefore have
equations (5.6) below.

Choose any Ay, sv € Pr. Let Nu' € o(Au) and £’ € o(kv). Then

(®") (®") (®") (") (") (@)
(5.6a) S(1,4)>\ _ 5(1,4),\'_ 8(4,1)/\ _ 5(1,4),\', 5(5,2» _ S(g,m/_
N ( /) - ( /) ’ ( /) - ( ! 3 / - ] ’
S p];\ S pz;\' S /5\ Sp{)\’) S’,(f)" ) S/(f\’)
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(») (p) (r) (v) (p) (»)
(5.6D) St _ St Sunw _ Savw Sem _ Seaw
s@ - s® T sy sh s 5D

Recall that in the proof of Proposition 3.1, we wrote a Weyl character chg as
a polynomial in ch gy and ch(g ;). When B has ¢(8) =3 0, we do this with chy 1),
ch(,3), and ch(s gy as well; ie,
chg = Pg(ch(1,1), chs,0): ch(o,3))s
provided ¢(8) = 0 (mod 3) [3]. Therefore, (3.7) gives us
(n) (n) (n)
Sha _ b [ 520 Sina Seye
gm ~ P ’ '
pa

(5.7) ,
s 7 ogm 7 gln

Now let A, kv € Pr, where kv is any representative of (kv) and t()\) = t(u) =

0 (mod 3). Then for any 't € o(kv), equations (5.7) and (5.6) give us

Shm _ S8 s
see  se) s
@) o) ) ) o )
(58) - P, S(2,2)n S(1,4)n S(4,1)/c 'Pu S(2,2)I/ S(1,4)V S(4,1)V
s&) s sW s® sy sY

s&) " 57 " s s® 7 s 5%

(") (") (r") (p) (p) (p)
_ 5(5,2) K S(fA)n’ S(Z,l)n’ 8(5,2)1/’ S(f,4)u' S(Z,l)u’
Py <P,

_ S sh sEsh s,
T o) o) T Q@) T @)
S pr' S pv' S oK' S oV’ Spp,n'v’

Now we can apply the fact that S®'?) is unitary by multiplying (5.8) by Zi:o S/(\z: ’zz; Atay,

and summing over all Ay € Py, so

Sg\p’,p) 2 ) S/(\p’,p) 2 'p)
iyt '.p)" _ KV ")
(59) Z W ( SAM,A“KAiaV) - Z S(;:I’p) (Z SAZ,Z“K,A:EG;;) 3

MEPL PPk \a=0 AEPL Mpp'v’ \a=0
where by Formulas (2.10d),

ZZ:O S/(\ZZL,’Z)anAial/
= SIS 4 O S B SO 4 (BN 90 ) g

= {14 FENEW) 4 HFENEW)Y Sg’; o)
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If t(A\) & t(u) = 0 (mod 3) (the plus or minus sign depends on whether we are

taking J, to be {A, A9, A, A}, A% A%} or {45, A7, AL A2, A2 AL}), then the sum in
the brackets is 3; otherwise we get the sum of the third roots of unity, which is 0.

Therefore, Z S/(\’; ’Z)an A%a,, = 0 unless Ay € Py, so (5.9) becomes

3 (@) olr'p)* _ ,p) (p'.p)*
Z Snu,)\uS)\u,nu - ,p) Z Sn’u’ Al )\u Ky

giw'p
PP»'W AL pp KV A

/
where the sum is taken over all Ay € PYP.

Because S is unitary, the left- hand side of this equation is just 3/S ,(,’,’, ;f,},
whereas the right-hand side is 3d, ,i/,,// op, ;f,) . As the left-hand side is nonzero,

we must have '’/ = kv. But we chose 't/ to be any weight in o(kv), and xv any
weight in (kv), so this means (k'v') = (kv); ie, o(kv) = (kv).

What we have just shown is that o' = C(®b) o ¢ is the identity on Pz /(); ie,
o'(Apyr = (Ap)r. Putting back the charge conjugations, we see that the partition

function associated to M is

(5.10) Z =" chpuchbup,
(M)

where u € {(0,0), (0,1),(1,0),(1,1)}. The above argument also carries through for
Theorem 4.2(b)(71), because 3 { p', p there either.

5.3 The classification when 7 has a fixed point

In this section, we consider M), ., when one of the weights Ay, kv may be a fixed
point of 7 or Jg. This occurs in Theorem 4.2 (a)(it), (s2i), and (b)(z),(711). Notice
that in all of these cases, Jr, = Jr. We will do Theorem 4.2(a)(4i). Here we have

JL = Jr = {Ap Ay, Ay Ap, A ALY,
and by Lemma 4.3(e),
P =Pr={ € PLF 1 ¢()) =5 0},

so we put J = Jr = Jg and P := Pr, = Pgr. Let ¢ = (3,%,) Then we have
a fixed point of J at (¢u), for any p € Py (As,p). Let K? := {aB € P : a #
¢ and Myg 4, # 0}, so K¢ is the set of nonfixed points that couple to a fixed point.
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We can define a permutation o, as before, on all the J—orbits of nonfixed points
that are not in K%, so for all Ay & K%, X # &, M&m,(m,) #0 M(e)‘u),(w) =
1 and (kv) = a(Ap).

We would like to apply Claim 5.1 to the weights ((2, 2), p), ((1,4), p) and ((4, 1), p);
however, we must first show that these weights are neither fixed points nor couple
to a fixed point so that we can apply o to them. We will need a few results before
we can do this. First we show that the J—orbit {(py) is more or less mapped to

itself by o.

Claim 5.2. The weights pu are not fized points of J = {Ag,Ag, A}),Ag, Ag,Af,} and
pp & K®. Define M‘(f;), =14f My, 50 = 1 and 0 for all other entries of M®), Then

M®) is an automorphism invariant of Agp.

Proof. The weight pu is a fixed point of J iff p'—2 = 1. But p’ > 4, so this cannot
happen. Now, suppose that M, 4, # 0. Then, by Lemma 4.1, ¢ € OpU Op"!. But
¢ & Opsince p) > 4, ¢ € O = % = l’i;—2 < p' = 6, in which case
¢ = (2,2). Putting p and (2,2) into the decoupled norm condition (4.9b) gives us a
contradiction, so M, 4, = 0 at every non-exceptional height (p',p), and so we are
done the first part.

We may now apply o to pu. Let o{pp) = (pu) = (o'v) = {(o't), (App', 1),
(Af,,p',u’)}, so that we have M, v # 0. Again by Lemma 4.1, we have o' €
Op U Op". Suppose that p' € Op”. We may assume that p' = p”. Putting ppu = Ap
and pp = kv into (5.4) and using o{pp) = (pp) and o{op) = (p"u’), we have
S,(f,’,,) / Sl(,’f,’g = S’fﬂ/ S,S’;,). By the definition of $®) and using the identity sind =
(e — &) /2i, we have

(®") i —if il il
Sep _ e —e Pler —e V]

(p') e ol ol e A(p/1/+pl2/)ﬂ_ .(’,/11_'_‘,/2/)1r 9
Sp”p [ —e "' —e i € 7 —e* &

b

2

which is a polynomial over Q in {y = e#" . Similarly, .S’,(]Z), / Sﬁ(,ﬁ) is a polynomial over

Qin &. But ged(p',p) =1 = Q&) N Q&) = Q [21], so

s _ s
(5.11) o = = €U&)NQG) =Q,
Sp”p Sp/"

!Since we are actually doing Theorem 4.2(a)(ii), Lemma 4.1(a) gives us just ¢ € Op, but we want
the proof to apply to all the non-exceptional levels with fixed points, so we may as well consider

the case ¢ € Op" now.
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but by the proof of Claim 3 in [14], Sf,’,’,’) /Sf}’,,g € Qiff p <6. Now 3 | p' and
p' > 4 leave only the possibility p’ = 6, so we must have p’ € Op. Putting (Ap) =
{pp), {kv) = (pv) into (5.4), we then have

(5.12) 8% = S%),, where o(pp) = (o), 7o) = (o).

w

Let m : PY (A2) — PY, (A) be defined by npu = p!, where o(pu) = (py').
Notice that u’ does not change with the J—orbit (pu') = {(Afg,p, p'):1=0,1,2},
so 7 is well-defined. We know that pu € P for all u € P?_ (A,), since t(p) = 0, so
for any p € P} (Ag), p = wp', where (pu) = o{pp’), and  is one-to-one since o is.
Therefore 7 is a permutation on Py (As,p), and Ml(f&) = Oa,ny- Since o{pp) = {pp),
we know that 7p = p, so Mg) = 1. By (5.12), Sf},’,) = S,(,’L),m,. But this is true iff S®)
commutes with M(®) (this is similar to the derivation of (5.4) in §5.1). We also know
that M® commutes with T since Mp,pw #0 = p and p' satisfy T-invariance

for Ay p. O

It is known that the only automorphism invariants of Az, are Ap, Dp?, or their
conjugations [9], so M®) must be one of these. Therefore A, ® M) is an automor-
phism invariant of Ag , ®Az,%. Let M' := M(Ay®M (P))~1, for any modular invari-
ant M. Then M’ is a modular invariant and has M<' oy 0 = (kv) = (pu).
Therefore, replacing M with M’, we may assume that o{pu) = (pu).

Claim 5.3. Let A, xv € P and suppose that My, ., #0. Then p=wv.

Proof. Let Ay € P. By S-invariance, (SM)peay = (MS)pen, for any weight
k€ PR, (A4s), s0

(6.13) Z Sf,ﬁ:ﬁ%Maﬁ,)\u = Z Mpﬂ,aﬁsc(ngﬁl‘
af af

To evaluate the right-hand sum, notice that by the Claim 5.2, M, .3 # 0 =

af € (ps) = {(pr), (App, K), (Ag,p, )}, so the right-hand side of (5.13) is equal to

M g®p) | Mo pn Sff;’p) + M A2 sPP)  But Sﬁﬁl,;i),xu = F N gl'p) _

! P, Ky Af A2pr pr AL T
Sl()i"fi because t(A) = 0 (mod 3). Since both (p, fj?) and (A;,p, k) are not fixed points,
My, i = 1, 50 the right-hand side is just 35% 7).

A=Y, X';Xi* and Dp =3, x’j‘xf’;mu, for p not divisible by 3
3 A ®D, corresponds to (0,0, 0,) in Column B of Table 3.1, and these appear for all b € {0,1,2}.
Ay ® Ay is the identity.
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Multiplying both sides of (5.13) by S,g’,)* and summing over s gives

SN SEISHSE Magpy = 355D SBSE)
Kk aff 5
Z S,(;Z)Maﬁ,w Z S(I;)e) SS;I;/)*
af K
= 3883 ss®
K
= 35@)5,,,
by unitarity of S (#), Switching the summation signs on the left-hand side, we have
LHS = Y3 SESDSE Mo,
aff Kk
= Y S%) Maprudp
af
= Z S,(;I;)Mau,)\u
«
by unitarity of S, Therefore, equating LHS = RHS, we have

3 88 Moy = 355 8,0

o7

Since every entry of M is nonnegative, and S,(,ﬂ, ) >0 Va, the left-hand sum can
be zero iff My, », = 0 for all a. Therefore, if there is at least one o for which
Moy pu # 0, we must have 35;’;’)5“,, #0;ie, u=v. 0O

Remark: Because of Claim 5.3, we will write My, . as M), «, for the rest of

this chapter.

Claim 5.4. Recall that ¢ = (?31, %’) Suppose My, 4, 7 0 for some nonfized point
¢ (ie, ¢' # @) and any p. Then My, x, = Sxg for any .

Proof. Suppose My, 4,0 # 0. Then by Lemma 4.5,

1]
5.14 My '
(514 ot S I Te @l 1G]

We have J, = Jg = J, so0 || Tl = | T|| = 3, and (¢u) is fixed by J, so || Tr(u)ll =
Tl = 1. Now ||J(¢'p)|| = 1 or 3 by Lemma 4.3(c). But by hypothesis, ¢’y is not
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fixed by J, so ||J(¢'u)|| = 3. Therefore (5.14) gives us My, g < \/%—1 =3 <2,
and since My ¢y 7 0, Mgy g = 1.

Now suppose that My, x, 7 0 for some k # ¢. Then the facts that ¢’y and ku
are both not fixed points of J and My, 4, # 0 imply su € J(¢p), by Lemma 4.5.
But this implies K = ¢. U

Claim 5.4 says that if ¢’y is any weight that can couple to a fixed point ¢pu,
then My, 4, = 1. It also says that if a weight ¢/u couples to a fixed point, it
cannot couple to any other weight. With this, we are now in a position to show that
((2,2),p), ((1,4),p) and ((4,1), p) are not in X?; ie, they do not couple to a fixed
point.

Let kv € P. Then by Claim 5.4 and S-invariance,

S(pl 7p)

o = 1. S(P P _ M¢,u’¢u3(P P) Z M¢’u,aﬁs(p P)

¢ﬂvn’/ ¢/—L$K’V aﬂ"ﬂ/
af

= (MS)¢’u,fw = (SM)¢’u,mu = Zs(el;fzﬂMaﬁ,nu-
ap

If kv is not a fixed point and kv & K%, we know that Mugry # 0 iff Myg e =1
and af € 0! (kv). Let &'V be any representative of 0~ (kv). Then the last sum is
equal to

2

(v’ .p) (¥’ .p) @ .p) (»'.p)

S I.ua"‘:’VIMK'IU”KU + S IIL,A/‘?’V' MAK”U”"CV + S¢’IJ’,AZI€’V’MA2’€’VI7'€V = Z S¢,“7AD'K‘,V’,
. a=0

which is 3S%'?) | when #(/) = 0 (mod 3). Therefore we have

& v

(5.15) sep) =350,

whenever k # ¢, kv € K, 'V € o~ {kv), and t(v') =3 0.

Suppose for a contradiction that ((2,2),p) € K%. We know that (p,p) & K%, so
putting ((2,2), p) = ¢'u and pp = kv into (5.15), and choosing s'v' = pp, we get
sw'p) _ 350 p) (»)

5p.0p (2,2)p,0p Factoring out the 555, we have Sg;) = 35((5’%),), so by (2.11),

8 sin? (E)sin 2—” —3——8——sin2 2—7T sin 4—71
V3p' 3 3) V3 4 )’

which is true iff

(5.16) sin? (2—7) sin (4—7) = g

b p
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For p' > 8, i—? and ‘;—7[ are in the first quadrant (so siné increases with #), and
we see that the left-hand side of (5.16) decreases as p’ increases. Therefore, there
can be only one value of p' > 8 so that equality holds in (5.16). At p’ = 6 we do not
get equality, and writing ? =(31)% -‘—;3 = sin®(%) sin(%), we see by inspection that

p’ = 12 is this value, which is an exceptional case. Putting ((1,4), p) and ((4, 1), p)

(7N . [4n\ | (57 V3
sin{— Jsin{ — }sin| — | = —,
o P 2 8
which is true iff

. (87 . [ 27 . 107 V3
(5.17) sin (—I;,—) + sin (-1;)—,—) — sin (—p—,—> =5

This has only one solution p’ > 10, which we can see by inspection to be p’ = 12. For
p’ < 10, we find that p’ = 6 is also a solution to (5.17), but if p’ = 6, then ¢ = (2,2),
and (1,4) and (2,2) do not satisfy decoupled T-invariance (4.3). Therefore, for
P #12, ((2,2),p), ((1,4),0), ((4,1),0) & K?.

Now that we know that these small weights do not couple to a fixed point, we

into (5.15) gives us

can put them and (p, p) into (5.15) (as xkv) to obtain

@) _ aa®). o) _aa®) . o) _ac) . o@) _ o)
Sep” =354, Sy = 35225 See) = 3% 1,4 Spa1) = 3S¢(4,1)

SO
@) @) o) W) @) o)
See _ Seaw. Swae _ Saae . Sune _ Suy
@) @) @) @) ) @)
5 o9 Sp¢’ 5 po Sp¢’ Sp¢ 5 e

Therefore, for any ¢' € K%, ¢’ # ¢, and any A with t(A) =3 0, we have

@) @) o) o)
S3g P, <5(2,2)¢ 50,46 5(4,1)¢)

(") () ’ () * @)

SP¢ Sp¢ Sp¢ Sp¢
(") @) ") ')
(5.18) = P, (5(2,2)@ S(1,4)¢r 5(4,1)45,) _ SA¢'
| W) W) g | T gt
Sp¢, Sp¢, Sp¢, 5p¢,

Equation (5.18) then gives us

g®'p) o) 5) S,g’;,) S,(/’ZL) g(P':p)

(5 19) K‘”v‘bﬂ — K’¢ . vy o . —_ KU,¢’#
) (r',p) @) o) o) ole) T o)’
Spp,w S p¢ Shi Sp¢’ Spu Spp,¢’u

for any kv € P and ¢' € K?, ¢' # ¢.
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Let k = (K1, k2). Then

@y _ 8 . rmm\ . (kemy (k1 +Ko)m
Sn¢ —\/gplsm( 3 )sm( 3 )s1n(———3 ,

which is 0 if k; = —k2 (mod 3). In other words, if ¢(x) =0 (mod 3), then S

Ky
0, which tells us kv ¢ P = Sg’,',ﬁ; = 0. Therefore, multiplying both sid:s of
(5.19) by S,(f,’,l’ﬁ* and summing over kv € P is equivalent to multiplying by S,(g”ﬂ*
and summing over all kv € Pf:’f. Unitarity of S®'?) then gives us
1 O _
ST s =

since ¢' # ¢. But this implies 0 # LHS = 0. Therefore, we must have My, 4, =0
for all ¢’ # ¢.

We have now shown that My, ¢, = 0 for all Ay # ¢pu, so to determine the fixed
point behaviour of M, we must find the value of My, 4,. We will use Lemma 4.5(a).
Since ||Jrll = |Jrll = 3, and by Lemma 4.3(b), M4i,, 4i,p = 1, Vi,j € {0,1,2},
By = B(1,3). Let By be the block containing My, 4,,. Then By is the 1 x 1 matrix
(Mgp,¢). Lemma 4.5(a) now tells us that, since By # (0), r(Bg) = 3, and so
Mgy sp = 3. Therefore My, 4, = 30xu,6u-

It now remains to determine the values of M at the nonfixed points of 7. This
will be similar to what we have already done in §5.2: the proof carries through with
some minor adjustments. The difference in this case, is that 3 | p, and ¢(A) and ¢(u)
are not necessarily congruent to 0 (mod 3) for some Ay € (Au).

For (m,n) € {(2,2),(1,4),(4,1)}, a similar argument to that in Claim 5.1 now
tells us only that o((m,n),p) = (C;Ag,(m,n),CgAgp) where a,c € {0,1}, b €
{0,1,2}. By Claim 5.3, we know that ¢ = d = 0, and multiplying our modular
invariant by one of the charge conjugations (see §3.1), we may assume that a =
0. Since ((m,n),p) runs through all (4*(m,n),p), i = 0,1,2, we can put b = 0.
Therefore, letting M"” := M'C, where C is one of the charge conjugations €I, €T
or I€, M" satisfies 0((2,2), p) = ((2,2), p) and o((1,4),p) = ((1,4), p). Because o
commutes with C(1) | we also have o((4,1), p) = ((4,1), p).

For (m,n) € {(2,2),(1,4),(4,1)}, (5.4) gives us

() (") (®'p) (r'p) () () (")
S(m,n)/\ n S(m,n)A . ;(;Z) _ S(m,n)p,)\u _ S(m,n)p,)\’p.' _ S(m,n))\’ ) Spﬁ,' _ S(m,n))\’
) o) ® ®p) (#':p) ) o S
Sp/\ SpA Spii SPI;){)# S pp,/s 7 Spg’ 5 ;(;Z)' S/SI:\’)
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so we have equations (5.6a).
Now let Ay, kv € P. Then t(X) =3 t(x) =3 0, so by (5.6a) and (5.7),

SE‘Z ,’ﬁz)/ ~ s )
S,(,f, ;53 S(p) S(p)

5@ g @)
P, (S(p 2 Sha S(Zm) S

S(P) Sg p)’ S(P) S(Z’)

' (p")
- P (3(22)5’ S((ii)n’ S(Z,l)n’) S(P)
A

s®) 7 s#) 7 gt S,‘,’é)
A
N (p) (p) (®'p)
sy) sy srn

and so
Sf\p’,p) 2 - Sf\p’,p) 2 5
S Ap kv v ,p)* - u,k' V! p',p)*
(5-20) Z (p P) ( . SA“A[,L,K,V) - Z (p/,p) (Z SA“)\[.L,KV) 3
a=

Apt(A)=30 Spp,m/ Aust(A)=30 Spp,n'u’ a=0

for any Ap € (\u), and kv € (kv). But by (2.10d),

>t = (e ) s

which is 0 if £(A) # 0 (mod 3), because in that case, we get the sum of the third
roots of unity. If ¢(\) = 0 (mod 3), we get 331(&’51), , 80 summing over all Ay with
t(A) =0 (mod 3) will give us the same result as summing over all Ay € Pf_li. Now
as usual, summing over all Ay gives us o{kv) = (k'v) = (kv), by unitarity of S ),

We have shown that when J has a fixed point ¢u, My, 4, = 3, and My, ., =
Mepou = 0, for all ku € P with & # ¢. We have also shown that at the nonfixed
points Ay of J, o(Au) = (\u) up to multiplication by an automorphism invariant.
We can define o on all of P by letting o(¢u) = ($u) (keeping in mind that the
J —orbit is used here only for consistency of notation, since (fu) = {du}), so that
the partition function for a modular invariant with o{\u) = (Au), such as our M”,

can be written as

(5.21) 2= Z ch<)\u>ch2‘/\“> +3 Z ch<¢#>chz‘¢u>.
(x\p)/:\t;Ang:;O BEPY | (A3)
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Our M" has this form. But we defined M" = M'C = M(A;, ® MP)~1C, where
M®) is an automorphism invariant of A p. Therefore, for any modular invariant
M, M = M"C(Ay ® M®)), where M" is defined by (5.21).

All of §5.3 applies to Theorem 4.2(b)(iii) and, reversing p’ and p, we also have
the modular invariants for Theorem 4.9b(b)(i), so other than at the exceptional

levels, we know the modular invariants for Ay v ® Ag .
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Chapter 6

The Exceptional Heights

In this chapter, we consider the exceptional heights (p',p) = (12,p),(24,p) and
(p',8) (it turns out that (18,p) and (60,p) have already been done in Chapter 5).
We have Lemma 4.3, Lemma 4.5(a) and (b), S-invariance and T-invariance (the
norm condition), and the Galois condition. Also, throughout this chapter, we use
Maple! to check which weights satisfy certain inequalities or congruences. Lemma
6.1 below is a special case of the Ay Galois condition, and will apply to all of our
exceptional heights other than when p = 8 and 3 | p’. Because of this, the height
(p', 8) where 3 | p’ will be the most difficult case, and we will use the general Galois
condition to solve it. The A, Galois condition was completely solved by Aoki for all
but 33 relatively small heights [1].

Lemma 6.1. [9] Suppose p' is coprime to 6. Then X\ and k satisfy the decoupled
parity rule (4.8); ie, My #0 = egp’)()\) = egpl)(n) for all € with ged(,3p') =

1iff k € OX, and a similar statement holds for p, pu,v when p is coprime to 6.

6.1 The Exceptional pp-couplings

We will first finish the proof of Theorem 4.2.
Proof of Theorem 4.2(c), (d), (e). First suppose that p' = 18 and p =5 5, 11,
as in Lemma 4.2(c)(ii). If A € O(1,4) and u = A'p, i = 1,2, then evaluat-

'Maple is accurate to nine significant figures, which is acceptable enough for these calculations.
A potential inaccuracy can occur when Maple returns a 0 value; for example, it could be possible

that an expression could have a value of —107%° but Maple has rounded it up to 0.
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ing s7,((8,8),p) > 0 leads to a contradiction whether m = 1 or 3 (recall m =
Z?:o M 4i 55, 50)- Therefore, if p’ = 18 and p =12 1,5,7,11, Rr = Ry = {(4 ,p, p) :
i =0,1,2} and so is covered by Theorem 4.2(a)(ii).

Next suppose p' = 12 and p =12 1,5,7,11, as in Lemma 4.2(d). Let m :=
>oi M yipp pp and m!” := 37 Myi . Applying the parity rule with £ = —1 (mod 3p)
and £ = (mod 3p'), we get M(33)45,00 = M(3:3)42p,pp» a0d My(33)4p = Ma(s3)425 =
Ma2(33)4p = Ma2(33)42, As in Chapter 4, Lemma 4.3(c) tells us either m” > m,
or m" = 0. Let b := M33)4p,0p V' = My(33)4p,pp» a0nd B := Z,_o M 4i(3,3) 43 p,pp>
so B =2b+4b. Thenb=0o0r 2b > 2, and ' = 0 or 40’ > 4. We will show that
B=0.

If m" = 0, then s1((3,3),p) > 0 implies B < m, so if m = 3, then B < 3
implies ¥ = 0. Therefore the only choice with m =3 has b < 3,s0b=0or 1. If
m = 1, then B < 1, a contradiction unless B = 0. We thus have the possibility
m =3, m" =0, and B = 2b = 2. But this cannot happen because m = 3
implies M gi(3.3)4ip,0p = M(3,3)45p,0p for all i € {0,1,2}, which implies ¥’ # 0, a
contradiction.

Therefore, suppose m” # 0. Then s5((2,2),p) > 0 implies m" < m. But

m" > m as usual, so m" = m. Now evaluating s1.((3,3), p) > 0 gives
(6.1) B < 2m.

If m = 3, then s1((2,1), p) > 0 implies & > b, and s1((3,2),p) > 0 implies ' > b so
b =1b'. Together with (6.1), this gives us the possibility

(6.2) m=m"=3,b=b=1 B=2+4§ =6.

If m = 1, then by (6.1), B < 2, which rules out &' # 0. Therefore, for B # 0, we
must have b # 0, so b =1 and B = 2. We then get the possibility

(6.3) m=m"=1,b=1 B=2b=2.

The next step is to eliminate the choices in (6.2) and (6.3). Suppose we have
m = = 3 and B = 2b+ 4V = 6, as in (6.2). Then s.((3,3),p) > 0, so
((3, 3),p) € Pr. But then by T-invariance, M(33), ., # 0 = kv = (435(3,3), p),
for some 7 € {0,1,2}. But now, evaluating MS12P) = SU2P) M1 at (pp, (3,3)p)
implies M3 3),, 4i(3,3), = 0 for all i = 0, 1,2, contradicting ((3, 3), p) € Py.
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To eliminate the possibility in (6.3), we find that in that case, sr((2,3),p) is
negative, so we cannot have (6.3). Therefore B = 0, so now we just have to consider
A€ O0pUOp".

If m" =0, then R = Ry = {(A%yp,p) : i =0,1,2}. By Lemma 4.3(a), we must
have sp,(M\ p) =Y., M,W,,,pS'(m’p) > 0. Letting x = (2,2) and v = p, we have

A kY

5(2:p) g(12:p)
s0((2,2),p) = z MA’pp 0P (2 2)p,Aipp + Z MA’p”p pp (2 2)p,Aip"p

2 12
{mS(21 2))9 + m”SgZZ))p”}

v
o

But by (2.11),

12 _ 2 (L0 (8T =8 o (2w o (AT s(2)
5(2,2),,"—\/—“ ( )sm(12> —~—\/§n sin B sin )= S(2’2)p,

so factoring out S((z 2)) , we get that the above inequality iff S(p )S((2122)) (m-m")>0

iff m > m" (since S(p)S((;QQ))p > 0). Therefore, either m” = 0, or m" = m. By

Lemma 4.3(b), either M, 5p = 1 and My, pp = 0 VAu # pp, or M iy, 5p = Mpppp =
1Vi=0,1,2, so m =1 or 3. Therefore, if m” # 0, then m" =m =1 or 3.

Suppose m"” = m = 1. Then there exists exactly one £ for which M 4
Consider s1((1,2),p). For sp((1,2),p) > 0, we must have 58,22))!, + 58,22)),48,," > 0.
But if £ = 0, we can calculate the left-hand side using (2.11), and we find that it is

o piop = Oirt-

negative. If £ # 0, then the left-hand side is non-real by (2.5). Therefore, we cannot
have m” = m = 1, so we have Theorem 4.2(c).

Now suppose we have p’ = 24 and p =19 1,5,7,11 as in Lemma 4.2(e). Let
m =37, Myigpppr M" = Z?:o M gign y 5y Where p' = (5,5) and p" = (7,7)
(0" = (11,11) here). Lemma 4.3(c) again tells us m' = 0 or m' > m; m" =0

" " "

or m" > m, and m" = 0 or m" > m. The case m' = m" = m" = 0 was
covered by Theorem 4.2(a)(ii), so we will assume m',m”, or m" > 0. Evaluating

51((2,2), p),s1((3,3), p), and sp((4,4), p) gives us the following equations

(6.4a) m—m"—m'+m" >0

(6.4b) m-—m"+m'—m" >0

(6.4c) m+m"—m'—m" >0.
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Adding (6.4a) and (6.4b) gives us m > m"; (6.4b) + (6.4c) gives us m > m",
and (6.4a) + (6.4c) gives us m > m/. Therefore, whenever one of m/,m”, or m" is
nonzero, that one must equal m, which is 1 or 3. Putting all possibilities into Maple,
we find that every choice of m,m’,m" and m" violates one of equations (6.4), or
one of s1((2,2),p),55((3,3),p) > 0 except for m = m"” = 3 and m' = m" = 0;
m=m=m"=m"=1lLom=m=m"=m"=3 Butm=m'"=3
and m' = m" = 0 violates s.((1,4),p) > 0. f m = m' = m" = m" = 1,
then there exist j,k,£ € {0,1,2} such that Maiy, o0 = 8545 Maipry pp

M iy 5p = 0si- But any choice of j,k and £ gives either s1((3,2), p) negative or

= 6k,ia and

non-real. Therefore, we have only the choices m =m/ =m”" =m/' =3,orm =1
or 3 and m' = m” = m" = 0, which is covered by Theorem 4.2(a)(ii).

Finally, suppose p' = 60 and p =12 1,5,7,11 (Lemma 4.2(f)), and put p' =
(11,11), 0" = (19,19). The details are similar to the p’ = 24 argument: here
s1((3,3),p),s.((6,6), p) and s1,((10,10), p) > 0 yield equations (6.4) which imply
m=m'=m"=m" =1or 3, unless m' = m”" =m" =0. But bothm =m' =
m” =m" =1 and 3 imply s1((2,5),p) < 0. Therefore, the case p’ = 60 is covered
by Theorem 4.2(a)(ii). O

6.2 The Exceptional Invariants at (p/,8)

6.2.1 The Exceptionals at p = 8 when p' =5, 1,7 and Rr = R =
{po", pp}

We begin with (p',p) = (p, 8) as in Theorem 4.2(e)(i), so p’ =12 1,7. We will do this
case in the most detail. Suppose first that Rp = R = {pp, pp"} (0" = (3,3) here).
Then My pp" = Mppt,pp = Mpp,pp = 1, and Mpppu = M0 = 0 YAu & {pp, pp"}.
Suppose My, ., # 0. Then X and x must satisfy the decoupled parity rule,
so by Lemma 6.1, k € O\, and since p = 8, there are very few possibilities for
p. Putting these possibilities into 4.3(a) (using Maple), we get sp(\,u) > 0 for
any A € PP u e OpUO(3,3)UO(1,3), 50 P = PP, x OpU O(3,3) U O(1,3).
Now putting all possible ;1 and v into the decoupled norm condition (4.3), we have

Myypw #0 = p,v € OpU0O(3,3) or p,v € O(1,3).
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Consider Mapap 4pap- Evaluating S®®M = MS®'® at (AypAsp, pp), we get

2
SEHY" Mapap acpnrpSp + Z Mapapaconion Syt = SH(S) + S50).
a,b=0 ¢,d=0

But Sp )/ S o = =3-2V2, 50 S(S) and S'( 2, are linearly independent over Q. There-
fore, equating coefficients, we find that My,4, 4e,40, = 1 for exactly one choice of
a and b. By the norm condition (4.1), we must have either a = b = 0, or both a and
b nonzero; however, (Ay p, Agp) is not a pp-coupling, so we cannot have a = b = 0.
Therefore (A%p, Abp) € {(Ayp, Asp), (AL p, Asp), (App, A3p), (AL p, Ap)}.  No-
tice that these are all conjugations of each other, so multiplying by the appro-
priate conjugation matrix if necessary, we may assume that ¢ = 2 and b = 1;
ie, Mypap.42p4p = 1. Then by Lemma 4.3 (c), Marau 4264y = Myyp, for all
A, KV € PL_ , and

(6.5) t(A) + t(p) = —t(k) + t(v) (mod 3)

whenever M), ., # 0.

Evaluating S®8M = MS®'® at (pp, pAsp), we get that M, Ap,Aspab, = 1 for
exactly one choice of @ and b. By (6.5), we get a+2b = 2 (mod 3), and this together
with the norm condition (4.1) tells us ¢ = 0 and b = 1. By Lemma 4.3(c), we

therefore have

(6.6) t(p) = t(v) (mod 3)
whenever M), ., # 0. Now by (6.5) and (6.6), we also have
(6.7) t(A\) = ~t(k) (mod 3)

whenever M), ., # 0.

Suppose My, # 0, where p € Op U Op”. Then v € Op U Op" as well,
and by Lemma 6.1, K € OA. For now take u = A%p for some fixed a € {0,1,2}
(the argument for u € Op” will be similar). Then Mypeppr # 0 = (k,v) =
(Ag,CI‘j,/\,Agp) or (Ag’,C;:A,Agp”), since kK € OX and t(v) = —t(Agp) (mod 3) by
(6.7). Evaluating S®'8)M = MS®'8) at (AA%p, pp), we get

M/\Aap,Ach)\Aap = M,\A‘lp,Ab'CC/)\A"’p” =1
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for exactly one choice of b, c and V', . Putting ((), Agp), (Af,, CaA, Agp)) into (6.5),
we get b =3 b' =3 t()\) and ¢ =3 ¢’ =3 0. Therefore, Mypepp, = 1 for (k,v) =
(X, Agp) and (k,v) = (X', A2p"), where N, \" € {), AXV\}.
Now evaluating MS®'® = SN at ((2,1)u,kv) for any k € PY_, and any
u,v € OpU 0P, we get

! 8 @)y _ o) 8 () (8)
(6.8) SEN (SR +85)) = ST S + SE Sy

where &/, k" € {n,A;(,”) k}. The reason for finding equation (6.8) is to get an S

symmetry, analogous to (3.17). If ¥' = k", then (6.8) becomes S((g:i)n = S((g:%)m,.

Now suppose they are not necessarily equal: put s’ = k and " = A;(f“)n. The

right-hand side of (6.8) then becomes Sgg)nSﬁ(,?,) + e%t(”)S((g:i)nSf,iz,, so equating

LHS = RHS, we must have ¢’5 (%) = 0. But this can be true iff t(k) =0 (mod 3),
in which case, " = Ag,h) = k = k' anyway. Choosing k' = A:,(,'c)n and " = k also

gives us k" = k' = K, s0 in any case, we at least have s’ = k" and Sg’l))n = S((g:]))n,.
() _ olr')

Since k' € Ok, we also know that Sp’ = S

ox! 1 SO We have

S(P') S(P’) S(P') S(PI)

(6.9) (2,1)I€= (2,1)" (1,2)n: (1,2)s’
s s®) s s%)

where the second equation uses Cp(2,1) = (1,2) and the fact that {Cyx'} =
{(Cyk)'} (where by {\'}, we mean the set {)\,A;(,’\))\}). The fact that the sets
are equal follows from calculating each set. By (3.18), we therefore have

s _ s

S,(,% ) S(P )

pr’

for all A € Pf—w and where k' € {x, A;gn)m}. As usual, unitarity of S®') now gives
us &' = & (see the proof of Proposition 3.1). Therefore, what we have shown is that

whenever u,v € OpU Op”,
Myyry #0 <> My, =1 and sv € {Ap, A"},

If Mxpapr ky # 0 for some fixed a, the same steps apply, so we have the following
when y,v € OpU Op”:

(6.10) Mypyry #0 <= My, =1 and sv € {Mp, 2" }.
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Finally, suppose My13).s # 0. Then v € O(1,3), and by (6.6), v = (1,3)
or (4,3). As above, T-invariance and (6.5) give us £ € {}, A;(,)‘))\}. Evaluating
MS®'8) = @B at (\(1,3), pp) yields

(6.11) My 313 + Maas)aas) =2,
so at most two and at least one of the above M terms is nonzero. Without loss
of generality, suppose My 3) 1,3 # 0. Then evaluating MSW8) = st'8) 4
(A(1,3),p(1,2)) implies
M S8 M s
ML3),A(1,3) P A(1 (1,3),0(1,2) A(1,3),A(4,3) ,\(4 3),0(1,2) —

because (p, (1,2)) € P, 50 Myg 41,2) = 0 for all o € Pﬁf. Therefore

(") 8 (8) _
S/\I:: {Mz\(l,3),/\(1,3)S((1,)3)(1,2) + MA(1,3),A(4,3)5(4,3),(1,2)} =0.

But using (2.5), we see that

(8) —1 Tmi Llmi

— — _qo®
Suann = g% 7 727 = “Supay
80 M(1,3),0(1,3) = Mx(1,3),1(4,3)- Together with (6.11), we get M1 3)A(1,3) = Ma@1,3),0(4,3)
= 1. A similar argument holds for any p € O(1, 3), so we actually have the following:

M)\u,)\p, = M)\u,)\l/ =1,

where (i, v) can be one of the pairs ((1,3), (4,3)),((3,1), (3,4)), or ((4,1),(1,4)), or
vice-versa.
We therefore get the exceptional invariants
1) — (r',8) (v'.8) 2 (»',8) (r'8) 12 ('8 8
> Xa X3zl |X,\(1 5t Xl + |X,\123,1)) + X,\Izs 4)) &

AeP}‘;Jr
(6.12) @8 | W82, 08 8 R '8

+ v T Xt + Xxe) + X,\p2 3))[2 + IX,\% 6)) + X(Azzé,gﬂQ

(fOI' p’ fi—B 07p = 8)a

up to multiplication by an automorphism invariant.

6.2.2 The Exceptionals at p = 8 when p' =, 1,7 and Rr = Jr(pp) U
JTr(pp") and Ry = Jr(pp) U JL(pp")

The second type of exceptional when p = 8 is given in Theorem 4.2(e)(i). There are

several choices, all of which are done similarly. We will do the case R := R = Rp =
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{(Al,p, Abp), (AL p, Ahp") : i = 0,1,2}. Put J := {4} A3, A, A;, A% A3}, Then
My 3600) = My(pp),pp = 1 ¥J € J, and by Lemma 4.3(c), (d), Mygiyaipy diniv =
My o0 YA, KV € Pﬁlf, and () +t(p) = t(k) +t(v) (mod 3) whenever M), ., # 0.

Evaluating s.(p, (2,2)) > 0, we find that Mgi i 5p < 1. But Myipgipn pp > 0
since A%, pAgp" is a pp-coupling, 50 Myipaipr pp = 1 Vi =0,1,2. Similarly, evaluating
sr(p, (2,2)) > 0, we get M, gipair = 1. By Lemma 4.3(a), we can find P by
evaluating sz, (A, i) > 0, which reduces to finding all 4 with S( )+ S(S) >0 (S( P) i
factored out, which is always positive, so A can be anything in Pf +). We find that
p € OpUOp"UO(1,3). Therefore, P :=Pr =P ={ € Pff s t(A) + t(u) =3
0and 4 € OpU Op" UO(1,3)}. We can use J—orbits here as we did in Chapter
5 (ie, let (Au) = {(A;,)\,Agu) : 4 =0,1,2}). Since 3 { p', can always choose a
representative of (Au), such that t()\) =3 t(u) =3 t(x) =3 t(v) whenever My, (x) #
0. Putting all weights Au € P into T-invariance, we find that M,y # 0 =
w,v € OpUQOp”, or u,v e O,3).

Suppose My, (x) # 0, where u,v € OpU Op" Evaluating MS®8) = g8 pp
at (Au, pp) and choosing ¢(\) =3 t(u), we get

DU My icinae)SE) + (3 My, aicirargn)SCon} = 3580 (S8 + 58,
1,7,k 2,9,k

where ¢,k = 0,...,2 and 5 = 0,...,1. But since we can choose t(A;,C’g,)\) =3
(A’gp) =3 0, we can assume = k = 0. Therefore, by the linear independence of

5(8 and Sf,i?, over Q, we have

1 1
3 Z M/\p,Cj)\p =3 Z M/\p’CjApl/ = 3,
§=0 j=0

50 Mixpy(cenpy = Mnppctrpry = 1 for some choice of a and b. Multiplying by a
charge conjugation if necessary, we may assume a = b.
Notice that Sf,%)p + Sf,%),),, = ﬁf,) + S,(,i?,, so for any choice of u € Op U Op" we
have
Moipywy 70 <= My = 1 and (sv) € {(Ap), (A"},
whenever u € OpU Op”.
Now suppose My ,y(x) # 0, where p,v € O(1,3). First let u = (1,4) so that we
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have t(u) =3 0. Evaluating MS®8) =SB at (A(1,3), pp), we get

(6.13) Y Moy oiacie) =2
1,3=0

Evaluating MS®8) = S®'8) M at (A(1,4), p(5,2)), we get

() ®)
Z M aycirxa)Saaee) T Z M@ ayeixaySunee) = 0
1=0

since (p, (5,2)) & P. Using (2.5) to calculate the S® values and equating the real

and imaginary parts of this equation, we have

Mxa,)cax1,4)) = Maa,4)(Cer4,)-

Therefore, together with (6.13), we have

M a4 = Moaaayceaa) = 1

giving us the invariants

2 2
(,(P8) 4 P8 YN (o' ,8)* )
S ',8) NN )
+ Z ,«qu:m 1,4) T Xairai(a,1 )Z(X:u\ +i(],4) + XA%\Aﬂ"(ti 1))
(6.14) 2

(»'.8) (»',8 (r'.8)" (' ,8)*
+ Z Xairaxing) T X Al)\Ail 4,1) Z Xaidaxi(1,a) T Xairazi(an))

(fOI‘ p ?_é3 0,p= 8))

up to multiplication by an automorphism invariant.

6.2.3 The Exceptionals at (p/,8) when 3 | p'

In the case of Theorem 4.2(e)(ii), we do not have p’ coprime to 6, but we can still use
Galois [1]. There are 33 heights at which the Galois condition has not been solved;
of those, the ones that affect us are p’ = 9,15,21,39. Therefore, we will have to
consider the heights (9, 8), (15, 8), (21, 8), and (39, 8) separately. The exceptionals at
(9, 8) were found in [14]. For the remaining three heights, we do not work them out
here, but we expect to also find & (,)8 (6.12) and &y (3 ) 3 (6.25) as the only exceptional
invariants. They are finite and can be found by a computer search, and by some of

the methods used in this chapter.
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For general p/, the Galois condition tells us that there are two choices of orbits
for X when M)« # 0, namely A € Ok U Ok for some «'. Our strategy is to show
that we cannot have any of the Ok’ cases, so A must be in Oxk. At that point, the
argument can be worked out as for the other cases.

We have here R = Ry = {pp, 00"} or Rr = R = {(A}p,p), (A p,0") : i =
0,1,2}. The arguments for them are similar; we will do the first one. As before,
P = Pf;:r x OpU Op" U O(1,3), and M)y, x, # 0 implies either u,v € OpU Op", or

u, v € O(1,3). Similar calculations as in the previous cases give us
(6.15) t(A) = t(k) (mod 3),

whenever M), ., # 0.

First, consider x with t(x) # 0(mod 3). Due to the choices of weights p, v when-
ever M), ., # 0, p and v cancel out of full T-invariance (4.1), leaving
(6.16) 355
whenever M), ., # 0. Then of the 12 possible weights in O(k) U O(x') at most 2
will satisfy (6.15) and (6.16). By (2.10c) and T-invariance, the weight in the x orbit

(mod 3),

will be &, and we will call the weight in the other orbit x'.

Applying MS®8) = SE'3) M at (p(2,5), kp) and ((2,1)(2,5), kp), we get

(6.173,) 0= S/(g)(Mrcp,np - an”,np) + Sf,ﬁ/)(Mn’p,np - Mn’p”,np)y
(6-17b) 0= S((g,z),i(an,fcp - an”,np) + S((g,z),i: (MK’/),KP - Mn'p”,np),

where the left-hand sides are 0 because (), (2,5)) € P for any .
Let Ag := Muprp — Muyr np and Ay := My p — My o Then equations
(6.17) become

(6.182) SWA. = -5 Ay
( 7 _ !
(6.18b) SEN B = =8 A

We see from (6.18a) that A, and A, must be both 0 or both nonzero. If A, A, # 0,
then dividing equations (6.18), we get

(2) 2
(6.19) S(P') S(P'I) ’
pK
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and the usual argument implies x = «’. Therefore we can take A, = A, = 0. This
means

M;cp,np = an”,np and Mn’p,np M,“, Kp

Then evaluating MS®8) = SE'B) M at (pp, kp), we get
SE{SE) + 551 = SEV(SE) + 8 ) Mepep + SLN(SE) + S0 My p

and a similar equation from M S®'® = @8 M at ((2,1)p, kp). Dividing both sides
by Sf,?,) then gives us

(620)  (4—2V2)SE) = SE) My p(d — 2v2) + S8 My p(4 — 2V2),
(6.200) (4 -2v2)SE)), = ST My rp(d —2V2) + SE)) My o4 — 2V2),
because S,(,,, / ,, = 3 — 21/2. Equations (6.20) reduce to

(6.21a) SEV(L ~ Mprp) = SE) My p o

(6.21b) S((g %)n( an,ls‘,p) S((g z)m &' pkp-

Therefore, if My, # 0, Meprxp = 0. Dividing these, we get S /Sp (p ) =

(2,1)x
S((g %)E, /,S'(p ,), again implying ' = k. Therefore, what we have shown) is that if
t(k) #3 0, M)y v # 0 iff A = k. The analysis for the weights 4 and v is the same
as in §6.2.1.
Now suppose t(k) = 0 (mod 3). This is more difficult, because then any weight
in Ok U Ok’ can potentially couple to . We will proceed as above.

Evaluating MS®'8) = S8 M at (pp, kp), we get

S‘(,ﬂ' {5(8) + S(SH} S(p){ Z S(g)Map Kkp T+ Z S(g” ap”,rcp}

€Ok a€O0k
S;()Z'){ Z S Mopp + Z S o1 Mop p}s
acOxr! acOx!
and dividing by S/()?,, we have
(6.22) S®)(4-2v2) = SE)(Z, + (3 -2V2)T u)+s (z’ +(3-2v2)T),
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where 2, := Zae@;c Moppy Ypr = Zaé@n Moy kps 2:) = Zaeonl Moy k' py and
o =3 con Map' wp- Evaluating MS®8) = W8 M at (p(2,2), kp), we get

(6.23) 0= (2, - Zp) + (Z, — ).
Subtracting (6.22) and (6.23) gives us
(6.24) SE (1~ Sp) = S5l

If we knew that S’,(,p ) = S(p l,), then we would be done, because then we would be in
the situation of the ¢(k) =3 0 case. Without loss of generality, suppose S,,, r) < S( P)
If £/, # 0, then by (6.24), ,» = 0 and £/, = 1, which implies 50 = f,’;,). So

take Y # 0. Then ¥, = 1 and E;,,, = 0, which implies ¥, = 1,5, = 0, and
a.gain S(P) — S(P)

P which is what we needed to show, because now the argument

reduces to the t(k) #3 0 case, and we get A € Ok whenever M), ., # 0. We get the
)

exceptionals & (, 3> and

2
8 _ (®',8) (»'.p) (p',8) ()"

€y =3 Z Z Xaihp + Xair,3) Z(XAZAp +XAix.3)

A€P£+ =0 =0

(6.25) 2
(r',8) (»'8)* (p 8)*

+ Z (Xairaa T XAz,\(4 1) )DL (Xa A T X))

i=0 =0

(for p' =3 0,p = 8),

up to multiplication by an automorphism invariant.

6.3 The Exceptionals at (12,p)

6.3.1 The Exceptionals at p’ = 12 when Rr =R, = J(pp)

We will do the case Rg = Ry = {(A%p0,p0) : i = 0,1,2}. Here, J := Jp = T =
{A, A9, AL, A2, A%, AT}, and we have a fixed point of J at ((4,4),4) =: ¢u, for any
p€ Py Wehave My, 00 = My 5000 = 1forall J € J,and My, pp = My, 0, =0
for all Ay & J(pp). Therefore, By = B(1,3), and by Lemma 4.3 (d), (c),

(6.26) t(A) = t(k) =0 (mod 3),

whenever M),y # 0 and M iy, aig, = Mayew VAU, 5V € Pj_%;p. By Lemma 4.3(a),
P={\uce Pﬁ;p : sp.(A, 1) > 0}, so using Maple to calculate sy (A, ) for all Ay
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with £(X) =3 0, we get that P = {\u € P[2? : ¢(X) =3 0 and S.VS% > 0}.
But S{5%) > 0 for all A, p, so we have P = Op U 0(2,2) U O(3,3) U O(4,4) U
O(5,5) UO(1,4) x P} . Putting these possibilities into T-invariance, we get that
My, . # 0 implies either A, s € OpUOp", A,k € 0(2,2)U{(4,4)}, A, 5 € O(3,3), or
M\ k € O(1,4). Therefore, by Lemma 4.5(b), we have a permutation o of J—orbits
(M) whenever A & O(2,2) U {¢}, as in Chapter 5, where ¢ = (4,4).

Evaluating MS(29) = SO2P) M1 at (pA,p, pp) gives us 3 oy M,appaip = 1, 80
Mpappaep = 1 for exactly one choice of a. By T-invariance (4.1), we cannot have
a =0, s0 a =1 or 2. Therefore, o{p, App) = {p, C’,’:(AQp)) for some b € {0,1}.

Now consider o{(1,4),u), and let o((1,4),p) = {(1,4)',4'). By Lemma 6.1,
§' € Op, so evaluating MS(12P) = SU2P) M at ((1,4)p, pp), we get

> Muayucigaascy =1,
Y

and 50 My 4y,,c0(1,4)4ccey = 1 for exactly one choice of a,¢,d. Therefore we have
o{(1,4),p) = 0(0{‘2(1,4),AgCgu), as well as a(pA,p) = (p, C]I;(Azp)) from before.
Multiplying by the appropriate conjugation matrix (and adjusting ¢ and d accord-
ingly), we may suppose a = b = 0; ie, o{p, App) = (p, A2p) and o{(1,4),p) =
((1,4),A§C’gu), for some ¢ € {0,1,2},d € {0,1}, and similarly, o((4,1),s) =
((4,1),4"). By Lemma 4.3(b), Mpap,oap =1 = t(u) =3 2t(v) whenever My, .,
so evaluating t(u) =3 2t(Cz’,“Af,,u.)? we find that & = 0 and £ = pt(u).

Now suppose My, . # 0. Then k € O(2,2)U{¢}. For x € O(2,2), we can choose
k = (2,2) without loss of generality. Notice that Myu 2,20 # 0 it Mig9y,4, # 0,
by Lemma 4.5(b). As in the previous case, we know that v € {u,A,’;t(“ )u}, and
multiplying by a simple current invariant if necessary, we can take v = p. Then
evaluating MS(12P) = SU2P) M1 at ((2,2)u, pp) gives us

Mooy + Meo)uen =1

so one of the above terms is 1, and the other one is zero. If Mooy, 22) = 1 and
M 9)p.eu = 0, then ((2,2), ) does not couple to a fixed point, so 0((2,2),u) =
((2,2)p). We then find that My, 4, = 3 (see the proof that My, 4, = 3 in Chapter
5). This gives us the modular invariants M = Dis ® A, and D12 ® D,, both
of which have already been found in Chapter 5. Therefore we can assume that

M(‘Z,Z);/,,(Q,Q)M =0 and M(Q,Q) =1.

wyPp
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We now need to determine the value of My, ¢,. As usual, we use S-invariance,
t (¢u, pp), which gives us My, ¢y + My, 29y, = 3. But we just showed that
M¢ll' (2,2)p = 1 SO M¢IL¢I‘ = 2.

It remains to find o(p,p), ¢((3,3),u), and o{(5,5),). But S-invariance at

(o1, pP), ((3,3)1s, pp), and ((5, 5)u, pp) give us o{p, u) = (p, u), 7{(3,3), u) = ((3,3), u),
and o((5,5), u) = ((5,5), u). Therefore, M is one of the invariants

1) _ 12, (127 ) (127 ) (12, ) (127p) (127 ) 2
Ep= 2 ISP+ Xoh),  X(1oy + (s T Xiza + Xa(oyl
(6.27) HEPY,

+20x5 30 + Xigam + Xigel?s (for p' = 12,p 25 0),

up to multiplication by an automorphism invariant.

6.3.2 The Exceptionals at p’ =12 when Rr =R = J(pp) U T (")

The second exceptional case when p' =12 is Rg = R, = {(Alyp, p).(A'0l5,p) : i =
0,1,2}. Let J := {449, A1, A, A}, AJ}. Here, we have My(,p) 00 = Mpy 5(5p) =
My 10p) = Myppypp = 1 VJ € J, and by Lemma 4.3(d), (c), t(A) =3 t(x)
whenever My, xy # 0, and Myiy, aiwy = Mopew V46,5 € {0,1,2}. We can use
Lemma, 6.1 again since p is coprime to 6, s0 My, #0 => v € Op.

To find P, we check for which Ay € PJrJr is s1,(A, u) > 0. We find these to be all
Ap with X € OpU Op" UO(3,3); ie, P = OpU Op” UO(3,3) x P} . Putting these
into T-invariance gives My, o, # 0 <= A\,6 € OpUOp", or A,k € 0(3,3). Asin
the previous cases, we also have t(u) =3 2¢(v) whenever M), ., # 0 (conjugating if
necessary), so v € {y, Agt(” Ju}. As usual, multiplying by a simple current invariant,
we can take v = p. Suppose M, ) # 0. Evaluating MS(12p) = §O2p) pr ot
(ow, pp), we get (kv) = (pp) and (kv) = (p"p) (and the value of M at these weights
is 1), and similarly, M,y #0 => (kv) = (pp) and (kv) = (p"p). Therefore,
(op) and (p”p) each have two couplings, both of which give an M value of 1, so we

have the following:

Moy #0 <= My = 1 and (kv) € {(pp), (0" 1)},

for any Ap with A € Op U Op”, and where p' € {4, Agt(“)u}.
Finally, suppose M((3 3),)(xv) # 0. Evaluating MS(2p) = U2D) M a4 ((3,3) 1, pp)
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gives us M(33)u)((3,3)u) = 2- Therefore, M is given by

(6.28)
2 X 12, (12,p) |2 (12,p) (12,p) (12,p) 2
£2)p }: |X(12 P+ XElo 1:[3# + X 15),;' + x5 3];# + X, 3?,; Xaou
Py,

(12, 120) | (120012 , 1 (120) , _(129) , (12p)p2
|X(5 o Xao + Xaanl” + X T Xr0m + Xl

(12,p) + X(12,p) (12,17) |2 + 2|X (12,p) 12

Xayu X1, X107 (44)
12, 12, 12, ) (12, )* (12, ) (12, )* (12, )* (12, )*
+ (XE f) + XES 21)7;)» +X§2 sy X(ad T X(aauXzy T Xsayn T Xy )

(for p' = 12,p #3 0),

up to multiplication by an automorphism invariant.

6.4 The Exceptional Invariants at (24, p)

There is only one case to consider here; we have
RR = RL = {(A;AP, :0)’ (A§4p"7 p), (A1é4(5a 5)7 p)a ( 34(7’ 7)a ,0) t= 03 15 2}

Let R := Rr = Ry. Then My, pp = Mpony = 1VAu € R, and M), 5, = My, 5, =
0VAn € R. Lemma 4.3(b) gives us t()) =3 t(x) =3 0 whenever My, ., # 0. Also, as
usual, evaluating MS4P) = S(24P) M at (pApp, pp) (and conjugating if necessary),
we get that ¢(u) = 2¢(v) (mod 3) whenever M), ., # 0.

Using Maple to calculate sy (X, u) for all Ay € Pfip , we find that P = (Op U
O(5,5)U0(7,7)UO(11,11) UO(1,7) U O(5,8)) x PL . S-invariance at ((5,5)p, pp)
gives us M(5’5)p,(5,5)A;p = M(s,s)p,(7,7)A§;p = M(5,5)p?(11,11)A';7;p = 1 for exactly one
choice of 4,7, k. But now —t(p) = t(ALp) = t(A)p) = t(AFp) (mod 3) implies
i =j =k =0. Similarly, we can evaluate SZ4P)M = MSE4P) at ((7,7)p, pp)
and ((11,11)p,pp) to get My, # 0 = My, = 1 and Mg, kv € R; e,
M, = B(1,12).

Multiplying by a simple current invariant if necessary, S-invariance at (Au, pp)
gives us My yvpy = 1 for all A, N € OpU O(5,5) UO(7,7) UO(11,11).

Finally, suppose M), ., # 0, where A € O(1,7) U O(5,8). S-invariance at
(A, pp) gives us

Mouya,muy + Mow,om + Mowe.aw T Moy s = 4
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for any A € O(1,7) U O(5,8). In particular, put A = (5,8). Now evaluating
MS@4P) = S@4P) M at ((5,8)p, (1,4)p) and ((5,8), (2,5)p), we have M(s.8).)((5,8)u) =

M5 )y (850m0 = Mi(s8)uy1,mm) = Mi(s.8)u)(7.1)m)> and similarly for () = (1, 7)p).
Therefore, we have found the exceptional invariants

(6.29)

24, (24, (24,p) (24,p) (24,p) (24,p) (24,p)
Eaup = Z X ? + xs, 5])Du + X(r T X T X(zu T X2 + X145y

(24, ) L L24p) L (249) |, (24p) | (24p)
+ X(5, 143 + Xén o X T Xomu T X(r.i00l”
)

(24,p) (24,p) (24,p) (24,p) (24, (24,p)
+ X116y T X(600 T X(a10u T X118 T XG5, 10u T X115

+ Xou + Xisah X0+ XL (for o =249 %5 0),

{24,p) (24,p)
"+ Ix 16€)u+x(7,lg)u

up to multiplication by an automorphism invariant.
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Chapter 7

Concluding Remarks

In this thesis, we found the Ay ® Ay modular invariants'. We used some powerful
tools, among them the Galois symmetry for the S-matrix, and the Weyl character
formula. These are not unique to Ay @ Aj; they hold for any affine algebra X.,.
In future work we will apply these methods to the W3 classification. We include
in this chapter a brief discussion of the minimal W3 model classification and some

suggestions of further work in the area.

7.1 The Nonunitary W3 Minimal Models

This thesis sets the stage for the classification of the nonunitary W3 minimal models.
As with Ay @ Ay, we associate to W3 a pair (p, p) with ged(p’,p) = 1. In the case of
all minimal Wy models, the difference between a unitary theory and a nonunitary
one is that a unitary theory has p = p’ + 1. The unitary W3 minimal models were
classified in [14]. The W3 minimal model problem can be stated in much the same
way as for the Ay ® A, classification: find all M satisfying (2.3). The difference
in this case is that the S and T matrices are given in (7.1). As in the Ay & Ay

classification, we have a set
P-f,f ={(\p) €Z*:0 < A, do, A + X < p and 0 < g, o, p1 + pa < p},

that will index our modular invariant M. An element \y € Pfﬂlf is called a primary.

! Although not explored in this thesis, it is interesting to note here that there is a mysterious
connection between the A; modular invariant classification and the ADE pattern [11], and between

the A classification and Fermat curves [9]
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The S and T matrices for the W3 classification are slightly different than for
Ay @ Ay. They are given by

t{A)t t(u)t / ,
(7.1a) Sy = iy p expl—2i ) (”); (W)U, 56019 502,
(PN —pp)?
(1.1 Ty = By p ol 2 2L

p'p

where oy , and By p, are constants, and S ®'/p) i just the usual S matrix evaluated
at the fractional height n = p'/p.

Recall that (A\) = )\% + M+ A2 = %)\2. The norm condition for W3 is given by

P p

(12) Mysyw £0 = SO0 +§;(u>+t(/\)t(ﬂ) =3 () + f—

The most significant difference between the Ao@ A, classification and the nonuni-

(') +t(N)t(u).

tary minimal W3 model classification (and in general between unitary and nonuni-
tary theories), is that we do not have the vacuum column of S strictly positive (see
(2.12)). However, there is a unique primary called the minimal primary and denoted
o, such that Sy, , > 0 for all Ap € Pff. The Sy, column will play the role in the
nonunitary Ws classification that the vacuum column S(I,’ ;;f’) did for A; ® A,. In the
case of any Wy, the minimal primary also obeys the property that M,, = 1. This
is important because it bounds the entries of M (the proof is similar to the proof of
(2.27)) and thus proves that for any Wy minimal model, and in particular for our
classification, there are finitely many choices for M.

In some rational conformal field theories, we can relate the minimal primary and
the vacuum in a relatively simple way, via the Galois shuffle, which is a composition
of a simple current? and a Galois automorphism (see §§2.2.2).

We say that a rational conformal field theory has the GS property if there is a
simple current J, and a Galois automorphism o, (these are not necessarily unique)
such that

o = J,00(p, p).

Not all rational conformal field theories possess the GS property; however all Wy

minimal models do. In fact, in the case of W3, J, is trivial [12].

2A simple current is defined as a primary Ap such that Sy, o = Spp.0
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Our approach to the W3 minimal models will follow the same three steps as we
did for A5 @ A, in this thesis; namely, find the automorphism invariants, then the

simple-current extensions, and finally, find the exceptional invariants.

7.2 Reflections and Further Work

Working on this thesis was most interesting and enjoyable, and in particular, we plan
to continue with the W3 classification. Understanding the proofs of the previous
classifications presented the biggest challenge; however, once the problem was well-
understood, most of the proof went as expected.

In addition to the classification of the minimal W3 models described above,
some further work on this problem could be to remove the ged(p’,p) = 1 condition.
For example, we should be able to assume that ged(p',p) < 3, as was done for
A1 ®--- DA,
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