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Abstract

Most machine learning methods make assumptions about data. Parametric

statistics assume that the data is sampled from a distribution with fixed prop-

erties set by the algorithm or user. In contrast, non-parametric statistics do

not assume the properties of a distribution. Instead, they assume that the

data comes from a distribution and then they estimate the properties of this

distribution for each object.

Cluster analysis is a machine learning method for finding meaningful groups

in the data when there is little or no prior information available about the

data being analyzed. Clustering techniques can be broadly divided into parti-

tional algorithms, that produce unnested clusters, and hierarchical clustering,

in which there are nested clusters.

In the last decade, there has been an increased interest in developing non-

parametric clustering algorithms with increase in computation power of ma-

chines. However, so far, the literature on non-parametric clustering has fo-

cused on partitional techniques. This thesis proposes a generalization of the

hierarchical density based clustering algorithm, HDBSCAN*, that implements

arbitrary non-parametric density estimates.

For that, we first analyze the challenges faced in using kernel density es-

timates for a hierarchical clustering algorithm, and present different ways of

defining connectivity in density space. Kernel density estimates have a pa-

rameter known as the bandwidth, which determines the degree of influence

of distant objects on the density estimate of the object of interest. We do

an exhaustive search for the best bandwidth, and compare the accuracy of

the cluster assignment obtained from it with the accuracy obtained by using

heuristic bandwidth estimators found in literature.
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The evaluation of hierarchical clustering results is typically done by extract-

ing a flat partition from a hierarchy and comparing this extracted partition

with a“ground-truth” partition of the same dataset, which may come from

class labels given independently to a dataset. In order to truly evaluate the

quality of a constructed hierarchy using different density estimates, however,

one would need hierarchical ground truth. Hierarchical structures that could

be used as ground truth are only available in rare cases, and therefore, we

also develop in this thesis, a data generator that produces the hierarchical

ground truth along with the dataset to provide additional data sets for our

experimental evaluation.

We do an extensive study comparing the accuracy of the cluster assign-

ments when using different strategies for setting the bandwidth for certain

Kernels from literature, and comparing it with previous proposals for hier-

archical density based clustering based on unnormalized knn-Kernels. Based

on the experimental results, using both flat and hierarchical ground truth la-

bels, we conclude that there are connectivity methods that give good results,

however, they may be computationally expensive for some Kernels. Also,

the heuristic bandwidth estimators do not perform better, in general, than

previous proposals based on knn-Kernels. Therefore, new heuristics must be

developed for finding the bandwidth to use for clustering purposes with the

proposed connectivity methods.
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Chapter 1

Introduction and Motivation

We live in a world that thirsts for knowledge. Large amounts of data are

collected everyday, to be analyzed hoping to find answers to questions that

may be asked one day, build strategies that may be needed one day, and find

patterns that can help us understand the world better. Whether the data

comes from a hospital, represents all of the weekly transactions from a grocery

store or consists of the performance of students in a class, it must be analyzed

to be meaningful. To do so, some basic categories are required that represent

characteristics of the parts of the whole data.

One of the biggest challenges that a data scientist faces, is not knowing

how many of these categories actually exist. Cluster analysis is a tool for such

tasks where there is little or no prior information available to the scientist

about the data being analyzed. Clustering builds these categories based on

the properties of the given data, and how similar two objects are. Based on the

questions we want answered, cluster analysis may give two kinds of clusterings

of data: first, in which each object belongs only to one category and second,

where a hierarchy represents the various stages at which objects become more

and more similar to each other.

Cluster analysis is an active area of research. In the data mining com-

munity, there is no single accepted definition of a cluster. This is the reason

why a number of clustering algorithms have been proposed, each interpreting

the notion of a cluster in a different way. For example, k-means [46] exem-

plifies each cluster by using a representative object, DBSCAN [21] perceives
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clusters as regions of high density of objects while Gaussian Mixture models

[4, 22, 79] have the underlying assumption that the data is drawn from a finite

number of Gaussian distributions and hierarchical methods [12, 24, 37] define

connectivity between objects to show when they may be similar.

1.1 Density-Based Clustering

With each notion of clustering comes its own properties and parameters. Den-

sity based clustering covers numerous algorithms [2, 12, 16, 20, 21, 24] that aim

to find clusters without making any assumptions about their shape. The main

idea behind density based clustering is that data has been sampled from an un-

known probability density distribution. With no prior assumptions about the

data, these methods fall into the category of what is known as ‘non-parametric’

methods in statistics.

Density-based clustering techniques for obtaining a partition of data where

each object is assigned a single label have been widely studied. While there

has been a focus on using distance between objects to assign them to clusters

[2, 21], in the last decade, much research has been done to use kernel density

estimates (K.D.E.) for density-based clustering [3, 49].

Alternative to partitional clustering, we have hierarchical cluster analysis,

HCA, that aims at building hierarchies of clusters. It can be thought of as

building a tree like structure where the lowest level consists of all objects and

as we move higher up, these objects are merged together to form specialized

groups, based on their properties. Thus, the data can have nested properties.

Since the first hierarchical clustering algorithm proposed by Johnson in 1967

[37], numerous hierarchical clustering algorithms have been proposed including

a few density-based hierarchical clustering algorithms [2, 12, 24].

In this study, we examine hierarchical cluster analysis based on density,

not distance, in detail. HDBSCAN* [10] is one such algorithm that builds a

hierarchy based on the density structure of data. It uses the unnormalized

k-nearest neighbor (kNN) kernel. This thesis proposes a method to generalize

HDBSCAN* to use arbitrary kernel density estimates. We discuss different
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edge weight estimation methods to define connectivity between objects using

these density estimates and the analyze the effect each method has on the final

clustering result.

1.2 Contributions

Our research addresses two major areas in density-based clustering. Our main

goal is to use K.D.E. in a hierarchical density-based clustering setting. Per-

forming partitional clustering with K.D.E. has shed some light on how to use

these techniques in clustering. However, hierarchical density-based clustering

using K.D.E. has been largely untouched. We elaborate on the challenges it

has, such as defining connectivity between objects, and the possible ways to

solve it.

There is an abundance of artificial data generation programs for clustering

– generators by Handl and Knowles [27] and Pei and Zäıane [54] to mention

a few. However, no data generator has been proposed before that produces

datasets and records their hierarchical structure as well. Thus, to better test

our proposed hierarchical algorithm, we created a data generator that gener-

ates data with a genuine hierarchical clustering structure. This is the second

area we contribute towards for better testing of hierarchical clustering algo-

rithms.

We designed an extensive case study to answer the following questions:

1. For datasets with a single labeling of data (a flat partition) -

(a) Can integration of an arbitrary kernel density estimate into hierar-

chical clustering do better than the kNN approach?

(b) Does one kernel always outperform others?

(c) Is one of our edge estimation methods always better than the oth-

ers?

(d) Since we do not have ground truth in practical applications, can we

use an internal validation measure to predict the best parameter to

use?

3



(e) There are statistical methods for estimating bandwidths of kernels.

Is it feasible to use them?

2. For datasets with an underlying hierarchical structure -

(a) Are we capable of identifying the hierarchical structure of a dataset

using arbitrary kernels?

(b) How well the statistical bandwidths perform in the hierarchical set-

ting?

The contributions of this thesis can be summarized as

• We generalize the density based hierarchical algorithm, HDBSCAN*, to

use kernel density estimates other than the unnormalized kNN kernel.

• We perform an extensive study of different kernels and connectivity def-

initions in a Minimum Spanning Tree over a wide range of datasets.

• We also conduct a study of how well statistical bandwidth estimators for

the smoothing parameter in kernel density estimates perform when used

to set this parameter for hierarchical density-based clustering.

• To facilitate the evaluation of hierarchical density-based clustering al-

gorithms, we propose a hierarchical data generator which generates the

data and also outputs the hierarchy for it.

1.3 Outline

This thesis is organized as follows: In Chapter 2, we review the background ma-

terial and related works, elaborating on non-parametric statistics and density-

based clustering as a non-parametric approach. In Chapter 3, we present the

algorithm, HDBSCAN* [10] that we want to extend. In Chapter 4, we propose

the extension of HDBSCAN* to incorporate arbitrary density estimates. In

Chapter 5, we propose a novel data generation algorithm that generates clus-

tering with an underlying hierarchical ground truth. We finally present and

discuss an extensive case study using a variety of datasets and kernels on our

4



algorithm in Chapter 6. Chapter 7 concludes the thesis with ideas for future

work.
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Chapter 2

Background and Related Work

Density-based clustering methods are non-parametric approaches as they do

not make assumptions about the underlying density f of data. In this chapter,

we first explain non-parametric statistic approaches and then elaborate on

their application in density-based clustering.

2.1 Non-parametric Methods

There are both parametric and non-parametric density estimation methods

that have been used in clustering. Consider a random variable X that is

drawn from a random probability density function, F.

Parametric statistic approaches assume that F belongs to a family of dis-

tribution functions that can be described by a small number of parameters,

such as the Normal distribution. These parameters are unknown and must be

estimated. For example, assume that X ∼ N (µ = 5). All our inferences for

X would now be based on these two assumptions. However, if the data had a

mean of 10, the inferences would be quite far from reality.

Non-parametric statistics, on the other hand, make few assumptions about

the data: F can be a function that satisfies the definition of a cumulative

density function (c.d.f.). Thus, instead of estimating parameters, we estimate

functions. As Silverman stated in 1986 [66], “. . . the data are allowed to speak

for themselves in determining the estimate”. Non-parametric statistics have a

vast application in estimating and testing aspects of F, estimating the density

of X, calculating regression functions, and so on. Detailed information about
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each of these techniques have been presented by Wasserman [76], Simonoff

[67] and Silverman [66]. For this thesis, we concentrate on the estimation

of density. Silverman [66] and Scott [64] are well known references on non-

parametric density estimation.

2.1.1 Non-parametric Density estimation

Given a set of examples, non-parametric statistics model the density function

of the data without making any assumptions about the form of the distribution.

2.1.1.1 Histograms

The simplest form of such a density estimation is the histogram in which we

divide the sample space into some fixed number of bins. The density at the

center of each bin is approximated as the fraction of points that fall into the

corresponding bin. Thus, the number of data points and variance of estimator

varies from bin to bin. For an object x in a N size data sample, its density in

a histogram is given by:

PH(x) =
1

N

number of objects in same bin as x

width of the bin constaining x

For histograms, we must specify the size of a bin (length of the interval)

and the starting position of the first bin. Though histograms are a great

tool for visualizing one or two dimensional data, they cannot be used for

high dimensions. Further,the density estimate is highly dependent upon the

starting point of the bins, and the number of bins.

2.1.1.2 Kernel Density Estimation

Kernel density estimation (K.D.E.) or Parzen Rosenblatt window method, was

invented by Rosenblatt [59] and Parzen [53]. The bandwidth is a smoothing

parameter, similar to the bin width in histograms, that controls the trade off

between bias and variance. It determines how much a distant point should

influence the density estimate. Unlike histograms, K.D.E. is smooth. Kernel

density estimation involves placing a kernel – a non-negative function that

integrates to one and has mean 0 – at each point in the data space and summing
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(a) Histogram for the data
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(b) Kernel density estimate for the same
data

Figure 2.1: Figure shows the (a) histogram and (b) kernel density estimate for one
dimensional data at x=0.71, 0.03, 0.27, 0.05, 0.10, 2.82, 2.69, 2.32, 2.95, 2.03.

the contribution of every point in the data space to get an estimate of density.

The kernel defines the shape of the bumps while the bandwidth represents the

width of each kernel. Figure 2.1 compares the density estimates obtained by

using the histogram and the Normal kernel.

Mathematical Formulation of K.D.E.

Let X = {X1, X2, . . . , Xn} be an independent and identically distributed

sample from a random distribution F. We want to estimate the density

f(x) = F′(x). A kernel is any smooth function K with variance σ2
K satis-

fying: ∫
K(x)dx = 1,

∫
xK(x)dx = 0 and σ2

K ≡
∫
x2K(x)dx ≥ 0

Some commonly used kernels are presented in Table 2.1 and their respective

curves are plotted in Figure 2.2.

Definition 1 (Kernel Density Estimator) In the one dimensional case,

given the kernel K and a positive number h, i.e. bandwidth, the kernel density

estimator is defined to be

f̂n(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
(2.1)
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Kernel Function

Box (Uniform) K(x) = 1
2
I(x)

Normal or Gaussian K(x) = 1√
2π

exp−x
2/2

Epanechnikov K(x) = 3
4
(1− x2)I(x)

Tricube K(x) = 70
81

(1− |x|3)3I(x)

where I(x) =

{
1 if |x| ≤ 1

0 if |x| ≥ 1

Table 2.1: Common Kernel Functions
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Epanechnikov TriCube Normal Box

Figure 2.2: Plots of Common Kernels Functions
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Figure 2.3: A low value for bandwidth allows one to see a more detailed structure of
the data. However, with too much detail, the overall structure of the data is hard to
see. On the other hand, high values tend to take away the granularity in structure,
showing the major density peaks only.

This is equivalent to placing smoothed out peaks of mass of size 1
n

over each

data point Xi. At each point x, f̂n(x) is the average of the kernels centered

over the data points Xi.

If the data are d-dimensional then Xi = {Xi1, . . . , Xid}. For the multidi-

mensional case, the kernel estimator can be generalized to d dimensions using

a product kernel where hj represents the bandwidth in jth dimension.

f̂n(x) =
1

nh1...hd

n∑
i=1

{
d∏
j=1

K

(
xj −Xij

hj

)}
(2.2)

Bandwidth Selection in K.D.E.

The bandwidth is an important parameter for K.D.E., more crucial than the

choice of the kernel itself. For a small bandwidth, a rough – or not smooth

– estimate is obtained. Increasing the bandwidth leads to smoother curves.

Figure 2.3 shows the effect of the bandwidth value on a sample dataset.

Many bandwidth estimation techniques have been proposed. A review of

these techniques has been presented by Turlach et al. [73], Simonoff [67],
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Wasserman [76] and Scott [64], Jones et al. [38], Loader [44] to name a few.

The most common techniques include cross validation and plug-in formulae

such as, normal reference rule [66] and Scott’s rule [64]. For multivariate

kernels, Bowman and Azzalini’s rule [7] and adaptive kernels proposed by

Terrell and Scott [71] are some options. We summarize Silverman’s rule of

thumb or the normal reference rule and cross validation here.

• Silverman’ Rule of thumb [66]:

Given a sample of standard deviation s and interquartile range Q, for

smooth densities and a Normal kernel, the bandwidth is given by

hn =
1.06σ̂

n1/5
(2.3)

where

σ̂ = min

{
s,

Q

1.34

}

• Cross Validation: Rumedo [61] invented the cross-validation method for

histograms and kernel density estimates in 1982. There are numerous

cross validation methods ranging from biased [63] and unbiased [6, 61],

maximum likelihood [18, 25] and complete cross-validation [39]. In each

case, the Asymptotic Mean Integrated Squared Error (AMISE) is being

minimized. In Maximum Likelihood Cross Validation [18, 25], the pseudo

likelihood is maximized using the leave one out method. The optimal h

is

hmlcv = argmax
h≥0

MLCV (h) (2.4)

where

MLCV (h) =

(
n−1

n∑
i=1

log

[∑
j 6=i

K

(
Xj −Xi

h

)]
− log

[n− 1

h

])

There are many packages in R and the Statistical Toolbox in MATLAB that

allow bandwidth estimation.

K.D.E. is a computationally expensive process. Recently, there have been

developments in research to make this process faster [57, 65, 81].
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In 2010, Raykar et al. [57] proposed a technique that reduces the estima-

tion for one dimension kernels from O(mn) time to O(n + m) where n is the

number of objects for which density has to be estimated and m is the number

of objects that influence density for each object. In 2013, Zheng et al. [81]

proposed randomized and deterministic algorithms for kernel density estima-

tion on large datasets. They implemented their techniques such that it can be

used with any large scale data processing framework such as MapReduce [62].

Shaker et al. [65] demonstrated a new technique to calculate kernel density

estimates and their derivatives for linearly separable kernels, e.g. the Normal

and Epanechnikov kernels, with significant savings, especially for high dimen-

sional data and higher order derivatives. They were able to reduce the number

of multiplication and derivate calculations, while keeping the estimate value

the same as doing all multiplications and derivate calculations.

Oyegue et al. [52] developed a heuristic to estimate which kernel would

be better for given multivariate data, taking the Epanechnikov kernel as a

baseline.

In computer vision, scale-space theory [14, 15] is a non-parametric curve

estimation technique. Instead of trying to estimate a single optimal value of

bandwidth for the data, scale-space theory involves simultaneously looking at

a wide range of bandwidths. Different levels of smoothing may reveal different

useful information.

2.1.1.3 The kNN Density Estimate

The k-Nearest Neighbor density estimate is a special form of non-parametric

density estimation. By choosing a fixed value of k, the volume of data sur-

rounding the object of interest is calculated. The kNN kernel density estimate

was proposed by Loftsgaarden [45] in 1965. For a dataset X with N number

of points and dimensionality d, the kNN density estimate value at object x

due to k nearest neighbors (inclusive of the point itself) is given by :

f̂(x) = kNN(x) =
k − 1

N

1

A(k,N,X)
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V ol = πr2k

kNN(x) = k−1
nπr2k

x

Figure 2.4: Consider an n sample space in two dimensions. For k = 7, inclusive of
x, the dotted circle shows the volume of the surroundings of x with k points. The
kNN estimate value would be (k − 1)/(nπr2k).

where A(k,N,X) is the volume of the set of points in X whose distance from

x is less than rk, the distance between x and its kth nearest neighbor. In

Euclidean distance space, A(k,N,X) is a hypersphere with radius rk :

A(k,N,X) =
2rdkπ

d
2

dΓd
2

where Γ represents the Gamma function.

Thus, the kNN kernel density estimate can be written as

f̂(x) = kNN(x) =
k − 1

N

dΓd
2

2rdkπ
d
2

(2.5)

A special property of the kNN estimate is that it is multidimensional. Thus,

a product kernel is not required for multidimensional data. Figure 2.4 shows

the volume around an estimation point, x, in the two-dimensional case.

2.1.1.4 All-Points-Core-Distance kernel

The development of new kernel density estimates is an open field. One new

kernel that we know of is a parameterless kernel, recently proposed by Moulavi

et al. [51], which uses distance to estimate the density at each point, however,

does not require any user defined parameter like k. In [51], this kernel was

used for cluster validation and then later, in [50], Moulavi formalized it as a

kernel for a dataset.
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Definition 2 (All-Points-Core-Distance) The All-Points-Core-Distance

(inverse of the density) of an object o, belonging to the d dimensional dataset

X with respect to all other n− 1 objects in the dataset is defined as :

allptscoredist(o) =

(∑
oi∈X,oi 6=o

(
1

d(o,oi)

)d
n− 1

)−1/d
(2.6)

Here d(·, ·) represents the pairwise distance between a pair of objects.

Using this definition, the kernel density estimate of an object x is given by

Definition 3 (All-Points-Core-Distance kernel)

f̂(x) = allptscoredist(x) (2.7)

The kernel estimates the density of objects. To define the denisty between

objects, Moulavi [50] proposed the New Mutual Reachability Distance.

Definition 4 (New Mutual Reachability Distance) The New Mutual

Reachability Distance between two objects xp and xq in dataset X with respect

to their core distances and the distance between them is defined as

dnmreach(xp,xq) =
dcore(xp) + dcore(xq)

2
+ d(xp,xp) (2.8)

dnmreach is an improvement over the Mutual Reachability Distance defined

by Lelis and Sander [41], and used in OPTICS [2] and HDBSCAN* [10]. This

new definition is symmetric and by using the average of core distances and

adding the distance, one can differentiate whether an object with low density

is close to a dense object or the same object with low density is close to a

non-dense object.

2.2 Density-Based Clustering

To the best of our knowledge, the first attempt at clustering using the notion of

‘density’ was by Wishart in the 1960s. He proposed One Level Mode Analysis

and its hierarchical version, Hierarchical Mode Analysis – HMA [77]. For each

object in a dataset, HMA found the radius of a sphere in which the object

would have nε number of neighbors and then a hierarchy of object labels was
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built over multiple iterations by sorting the radii and maintaining the distance

of an object and its nε nearest neighbors. This radius of a sphere is precisely

the value of rk in the kNN density estimate in Equation (2.5).

The concepts proposed by Wishart [77] are extensively used in modern

day density-based clustering algorithms. For example, Wishart argued that

the modes of the underlying density function should determine the “natural”

groupings of the dataset, i.e. for a given probability distribution f and the

density level λ “. . . if f has two or more modes at the level of probability

λ, then the covering will be partitioned into two or more disjoint connected

subsets of points.”

The 1971 dissertation of Bryan [8] is one of the first works using kernel

density estimation techniques for classification and clustering. For clustering,

nearest neighbor information was used to decide the ‘modes’ in data and then

a hill climbing technique was used to assign labels to the objects.

Later in 1975, Hartigan extended Wishart’s ideas and defined the concept

of density-contour clusters and density contour tree. He stated that

Clusters may be thought of as regions of high density separated

from other such regions by regions of low density.

For example, consider this two dimensional dataset in Figure 2.5a with 4 clus-

ters, C1, C2, C3 and C4, where C3 and C4 are embedded in C1 and C2 respec-

tively. The density in each region is given by f . The clusters are separated

from each other by regions of low density. He showed in [28] that the using

the above concept, we could get a hierarchical structure of high density clus-

ters, forming a tree, as shown in Figure 2.5b. When the density level is at

least 1, all the points would exist. But as we increase the density, the re-

gions of lower density would separate the density regions, lower density points

becoming noise (shown in blue).

Hartigan’s book [28], as well as most of the related literature it is based

on, uses the concept of distance as a density estimate. There were papers

that pursued Hartigan’s concept of separability between high density clusters,

the most notable of which is by Wong and Lane [78] that uses a kNN density
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(a) Taken from [50] : Dataset with clus-
ters and density levels

(b) Cluster tree

Figure 2.5: Figure shows the (a) sample dataset with clusters and density of each
cluster, given by f and (b) the cluster tress obtained by varying the density.

estimate in their clustering procedure. The tree structure of the clusters,

however, is not examined.

Many papers in statistics and data mining have adopted methods that use

density estimates. In the area of data mining, the most notable technique that

comes close to Hartigan’s definitions is DBSCAN [21]. Using the number of

points in the vicinity of an object, the cluster structure of data is estimated.

The extension of DBSCAN to produce a hierarchical clustering is OPTICS [2].

In 1997, Roberts [58] proposed two clustering algorithms - one parametric

and the other non-parametric. The parametric approach was based on Gaus-

sian Mixture Models and the non-parametric approach performed successive

smoothing with the Gaussian kernel. He also tested his two algorithms using

a two-step framework. In the first step, model fitting was performed and in

the second, the model was validated. Roberts found that the non-parametric

approach was more robust.

With an increase in computational power, the direct use of kernel density

estimates into clustering algorithms has seen a rising popularity in the two last

decades. In its earliest version, DENCLUE [33] was a K.D.E. based approach

for clustering for multimedia datasets. K.D.E. was used to model the overall

point density, and clusters were identified by using the gradient of the den-

sity function. In its later extension, DENCLUE [32] combined hill climbing
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techniques with density estimation. Instead of using all points, a sampling

method was proposed that would sacrifice some accuracy, however, would be

faster. The bandwidth is manually tuned and two user defined parameters are

required to control the neighborhood and to define lowest density level.

Nearest neighbors have been used widely in clustering. Sometimes, the

kNN distance is employed, other times the kernel is used, and some algo-

rithms directly count the number of shared neighbors. Ertoz et al [20] defined

two objects to be similar in terms of the number of neighbors they shared,

alleviating the problems of varying density and high dimensionality.

In 2006, Tran et al [72] proposed a clustering technique that uses a combi-

nation of the kNN kernel with other kernels for high dimensional data.

In 2007, Azzalini and Torelli [3] proposed a novel clustering technique using

kernel density estimation by using connectivity from Delaunay triangulation.

They used a pre-calculated bandwidth for their experiments. Delaunay trian-

gulation, however, is limited to lower dimensions because of its computational

complexity. Recently, Menardi and Azzalini [49] proposed an advanced version

of the previous method [3], trying to overcome the shortcomings of using the

Delaunay triangulation. Any two observations in a multi-dimensional setting

are connected if the density function, evaluated along the segment joining the

two observations, does not have a local minimum, i.e. the density value does

not drop on the path. Thus, by measuring the extent of valleys of density

along the segment connecting pairs of objects, groups in data are identified.

Both of these clustering techniques give flat partitions, i.e. one single labeling

of data.

CORE [70] is a parameterless algorithm that integrates grid techniques

with density estimation. It uses an AD-tree to store the summary of kernel

density estimation of data points. The user does not have to define the kernel

or its bandwidth. ‘Core’ points are defined as objects which are robust to

small density fluctuations. Each node of the AD-Tree is a d-dimensional grid

that stores the density values at grid points. Once the core objects have been

identified, grid points are assigned to each core object. The local and global

density maximas are found using a sample of the data on the grid.
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Non-parametric mixture models for clustering have also been proposed.

Recently, Mallapragada and Jain [48] developed a novel technique that is less

sensitive to kernel bandwidth and gives a probability based assignment of data

points to different clusters.

In the statistical literature, Cuevas et al [16, 17] recently tried to address

the problem of automatically selecting the number of clusters in data using

a convolution kernel. Stuetzle at al. [68, 69] proposed a cluster tree to keep

track of the density in the dataset. The modes of density correspond to the

leaves of the cluster tree. Estimation of this cluster tree was tackled as a non-

parametric problem by a graph-based method. Excess of mass was used as a

measure for size of the each branch of the tree and could be used for pruning

the cluster tree.

As we have seen, there have been numerous algorithms that have used

K.D.E., however, the integration of nonparametric techniques into hierarchi-

cal density based clustering has been lacking. The hierarchical clustering al-

gorithms closely related to our work are HDBSCAN* [10], OPTICS [2] and

AUTO-HDS [24].

HDBSCAN* [10] can be regarded as an improvement over OPTICS [2].

It employs the concepts introduced in DBSCAN [21] and formalizes them to

produce a tree of clusters. Campello et al. [10] show that it adheres to the

model of density contour clusters that Hartigan [28] proposed. In this thesis,

we base our algorithm on HDBSCAN* and elaborate on it in detail in the next

chapter.

AUTO-HDS [24] is a hierarchical clustering algorithms for micro-array

datasets. Thus, it was proposed to handle large datasets. It aims to sim-

plify clustering hierarchies, referring back to the work of Herbin et al. [30]. As

has been shown by Campello et al. [9], the clustering hierarchy obtained from

AUTO-HDS is a subset of the one obtained by HDBSCAN*. The AUTO-HDS

framework was found to have two major limitations – first, the user-defined

parameter, rshave, had to be sufficiently low to prevent underestimation of the

stability of the clusters and/or to not miss clusters, and secondly, the stability

measure for one cluster may be affected by clusters on other branches.
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In 1971, Zahn [80] formalized the problem of detecting inherent separations

between objects in a metric space. In his seminal paper, he studied the prop-

erties of Minimum Spanning Trees (MSTs), and why they are a powerful tool

for detecting and describing structures of point clusters. Many MST-based

algorithms were proposed that were able to identify severals kinds of cluster

structures. Hartigan’s analysis of single linkage for identifying high density

clusters shows that in high dimensions, single linkage can detect modes in

data that are separated by a sufficiently deep valley [29].

Since different density clusters are not caught by the standard Euclidean

distance MST, Wang et al [75] proposed a new edge weight measure based

on kNN distance and the distance in Euclidean Space. Their algorithm is

similar to HDBSCAN* – a MST is obtained from the new edge weights and

the longest edges are removed to form the clusters.
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Chapter 3

HDBSCAN*: Hierarchical
Density Based Clustering

Hierarchical clustering algorithms do not require any prior information about

the number of clusters and output an informative hierarchical structure that

shows how the objects can be grouped together, and that can be visualized.

HDBSCAN* or Hierarchical DBSCAN* [10] is a recent novel density-based

hierarchical clustering approach that can be seen as a conceptual and algo-

rithmic improvement over OPTICS [2]. It generates a complete density-based

clustering hierarchy that represents all DBSCAN-like solutions for all possible

density thresholds. The hierarchy can be visualized using a reachability plot,

a silhouette-like plot, a dendrogram or a compact cluster tree. Also, a simpli-

fied tree of significant clusters can be extracted from the hierarchy. In their

paper [10], Campello et al. describe not just the algorithm, HDBSCAN*, but

also present a way of extracting a non-overlapping collection of clusters from

the hierarchy. In a more detailed paper, [12], they present a novel outlier de-

tection method, “Global-Local Outlier Score from Hierarchies (GLOSH) with

HDBSCAN*.

HDBSCAN* has a single input parameter, mpts. It is a classic smoothing

factor whose role is well understood in literature. HDBSCAN* is based on a

reformulation of the algorithm DBSCAN [21], called DBSCAN*. DBSCAN*

conceptually finds clusters as the connected components of a graph in which

the objects are vertices, and every pair of vertices is adjacent if, and only

if, the corresponding objects are ε-reachable with respect to the user-defined
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parameters ε and mpts, where mpts is the number of nearest neighbors to

consider and ε is a user defined distance such that points with at least mpts

in the circle of this distance are dense. Different density levels in the resulting

density-based cluster hierarchy will then correspond to different values of the

radius ε.

In this chapter, we present HDBSCAN* as presented by the Campello et

al. [10]. We first describe DBSCAN* in Section 3.1, HDBSCAN* in Section

3.2, its hierarchy simplification, computational complexity and the technique

for extraction of flat partitioning from the hierarchy based on cluster stability

in Sections 3.3, 3.4 and 3.5 respectively.

3.1 DBSCAN*

Following the definitions used in Campello et al. [10], let X = {x1, . . . ,xn}

be a dataset of n d-dimensional objects. Let D be an n×n matrix containing

the pairwise distances, d(xp,xq) between each pair of objects xp and xq ∈ X.

Definition 5 (Core Object) An object xp is called a core object w.r.t. ε and

mpts if its ε-neighborhood contains at least mpts many objects, i.e., if |Nε(xp)| ≥

mpts, where Nε(xp) = {x ∈ X|d(x,xp) ≤ ε} and |·|denotes cardinality. An

object is noise if it is not a core object.

Figure 3.1 shows a core object, xp w.r.t. mpts = 6 and given ε.

ε
xp

Figure 3.1: xp is a core object w.r.t. mpts = 6 and given ε.

Definition 6 (ε-Reachable) Two core objects xp and xq are ε-reachable

w.r.t. ε and mpts if xp ∈ Nε(xq) and xq ∈ Nε(xp)
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xq
xp

Figure 3.2: xp and xq are ε-reachable as they are within the ε-neighborhood of each
other.

xq xr
xp

Figure 3.3: xp and xr are density-connected via Xq.

Figure 3.2 illustrates an example of two ε−reachable objects for a given ε.

Definition 7 (Density-connected) Two core objects xp and xq are density-

connected w.r.t. ε and mpts if they are directly or transitively ε-reachable.

An example of density-connected objects can be seen in Figure 3.3.

Definition 8 (Cluster) A cluster C w.r.t. ε and mpts is a non-empty max-

imal subset of X such that every pair of objects in C is density-connected.

A sample cluster is shown in Figure 3.4.

Based on these definitions, DBSCAN* (similar to DBSCAN) can be devised

that conceptually finds clusters as the connected components of a graph in

which the objects of X are vertices, and every pair of vertices is adjacent

if and only if, the corresponding objects are ε-reachable w.r.t. user-defined

parameters ε and mpts. The only difference between DBSCAN and DBSCAN*

is the presence of border objects, i.e., non-core objects that are within the ε-
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Figure 3.4: Example of a cluster.

neighborhood of a core object, are present in DBSCAN but labeled as noise

in DBSCAN* as their estimated density is below the defined threshold.

3.2 Algorithm HDBSCAN*

Following the work Lelis and Sander [41] and Campello et al. [10], the density-

based hierarchy formulation can be explained with the help of the following

definitions:

Definition 9 (Core Distance) The core distance of an object xp ∈ X w.r.t.

mpts, dcore(xp), is the distance from xp to its mpts-nearest neighbor (including

xp).

This is the minimum radius ε for which xp satisfies the conditions to be a core

object w.r.t. ε and mpts. Figure 3.5 shows an object and its core distance.

dcore(xp)

xp

mpts nearest neighbor

Figure 3.5: dcore(xp) is the core distance of xp w.r.t. mpts = 5 and given ε.
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Definition 10 (ε-Core Object) An object xp ∈ X is called an ε-core object

for every value of ε that is greater than or equal to the core distance of xp

w.r.t. mpts, i.e., if dcore(xp) ≤ ε.

Definition 11 (Mutual Reachability Distance) The mutual reachability

distance between two objects xp and xq in X w.r.t. mpts is defined as

dmreach(xp,xq) = max{dcore(xp), dcore(xq), d(xp,xq)} (3.1)

Definition 12 (Mutual Reachability Graph) This is a complete graph,

Gmpts, in which the objects of X are vertices and the weight of each edge is

the Mutual Reachability Distance (w.r.t. mpts) between the respective pair of

objects.

From definitions 4, 6 and 8, it can be inferred that the connected compo-

nents of ε-core objects in the graph obtained by removing all edges from Gmpts ,

having weights greater than ε, are the clusters according to DBSCAN* w.r.t.

mpts and ε. The remaining objects are noise. Thus, all DBSCAN* partitions

for ε ∈ [0,∞) are obtained in a nested, hierarchical way by removing edges in

decreasing order of weight from Gmpts . This is equivalent to running Single-

Linkage [37] over the transformed space of Mutual Reachability Distances and

cutting the resulting dendrogram at level ε of its scale. All resulting singleton

clusters would be labeled “noise” and the connected components would be the

“clusters”.

The MST in density space shows the connection of all objects in space

such that the path connecting any two objects is the path of minimum density

between them. Hartigan stated that regions of high density are separated by

regions of low density [28]. The MST is able to capture this change in density,

i.e., if there are two clusters in a dataset, then the edge in the MST connecting

them, is the edge with the minimum density between the two clusters. Thus,

the separation between clusters is captured.

A density-based cluster hierarchy must represent the fact, that an object

o is noise below the level l that corresponds to o’s core distance. To achieve

this, the Minimum Spanning Tree (MST) of the Mutual Reachability Graph
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Gmpts is extended to include self-loops, i.e., edges connecting each vertex to

itself, where the edge weight for each vertex o is the core distance of o. When

removing edges, these “self-edges” are also removed. The different density

levels correspond to different values of the radius ε in the hierarchy from

HDBSCAN* w.r.t. mpts.

The pseudo-code for HDBSCAN* algorithm is shown in Algorithm 1.

Algorithm 1 HDBSCAN* Main Steps

Input: Dataset X, parameter mpts

Output: HDBSCAN* hierarchy

1. Compute the core distance w.r.t. mpts for all objects in X.

2. Compute an MST of Gmpts , the Mutual Reachability Graph.

3. Extend the MST to obtain MSText, by adding for each vertex a “self
edge” with the core distance of the corresponding object as weight.

4. Extract the HDBSCAN* hierarchy as a dendrogram from MSText:

4.1 For the root of the tree assign all objects the same label (single
“cluster”).

4.2 Iteratively remove all edges from MSText in decreasing order of
weights (in case of ties, edges must be removed simultaneously):

4.2.1 Before each removal, set the dendrogram scale value of the
current hierarchical level as he weight of the edge(s) to be
removed.

4.2.2 After each removal, assign labels to the connected compo-
nent(s) that contain(s) the end vertex(-ices) of the removed
edge(s), to obtain the next hierarchical level: assign a new
cluster label to a component if it has at least one edge, else
assign it a null label (“noise”).

3.3 Hierarchical Simplification

Campello et al. [10] proposed a simplification of the HDBSCAN* hierarchy

that produces a summarized tree of only “significant” clusters extracted from

the HDBSCAN* dendrogram. It is based on Hartigan’s concept of rigid clus-

ters [28], and pertains to a fundamental observation about estimates of the

level sets of continuous-valued probability density functions(p.d.f.).

For a given p.d.f., there are three possibilities for the evolution of the
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connected components of a continuous density level set when increasing the

density level (decreasing ε in our context):

1. the component shrinks but remains connected, up to a density threshold

at which either

2. the component is divided into smaller ones, or

3. it disappears.

By selecting only those hierarchical levels in which new clusters arise by a

“true” split of a cluster, or in which clusters disappear, the most significant

changes that occur in the clustering structure are captured. Other levels of the

hierarchy at which data objects are assigned null labels and become “noise”

are not individually maintained in this simplified hierarchy.

In many practical applications of clustering, to prevent the algorithms from

finding very small clusters of objects, the user defines a minimum cluster size.

Based on this well accepted practical approach, HDBSCAN* also uses a min-

imum cluster size, denoted by mclSize, for hierarchical simplification. With

mclSize ≥ 1, components with fewer than mclSize objects are disregarded, and

their disconnection from a cluster does not establish a “true” split. HDB-

SCAN* is adapted according by changing Step 4.2.2 of Algorithm 1 as shown

in Algorithm 2.

Algorithm 2 HDBSCAN* step 4.2.2 with (optional) parameter mclSize ≥ 1

4.2.2 After each removal (to obtain the next hierarchical level), process one
at a time each cluster that contained the edge(s) just removed, by
relabeling the resulting connected subcomponent(s):

• Label spurious subcomponents as noise by assigning them the null
label. If all subcomponents of a cluster are spurious, then the
cluster has disappeared.

• Else, if a single subcomponent of a cluster is not spurious, keep its
original cluster label (cluster has just shrunk).

• Else, if two or more subcomponents of a cluster are not spurious,
assign new cluster labels to each of them (“true” cluster split).

The optional parameter mclSize represents an independent control for the

smoothing of the resulting cluster tree, in addition to mpts. To simply the
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use of HDBSCAN*, mclSize = mpts, turning mpts into a single parameter that

acts as both a smoothing factor and a threshold for the cluster size. Figure

3.6 shows the dendrogram for the hierarchy of a sample dataset. The distance

to the 4th nearest neighbor is considered to calculate core distance. Since

minClSize = minPts = 4, a cluster is formed when there are at least 4

points within the density level. For all values of ε below this level, the points

are considered as noise.

3.4 Computational Complexity

When the dataset X is available, the complexity of HDBSCAN* is O(dn2)

when d is the dimensionality of the dataset. The longest time is spent on

computing the k-NN queries for each object. Detailed complexity of each step

in Algorithm 1 can be found in Campello et al. [10]. In terms of main memory

requirements, O(dn) space is needed to store the dataset, core distances, edges

of the MSText and current hierarchical level being processed.

When the distance matrix, D, is given instead of the dataset X, one can

promptly access any distance d(·, ·) from D in constant time. Thus, the com-

C5

C4

C2

C3

C1

x ∈ X

ε

ε1

ε2

Figure 3.6: Dendrogram for a sample dataset: HDBSCAN* hierarchy for a sample
dataset for minClSize = minPts = 4. Thinner dashed lines denote noise.
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putations are no longer dependent on the dimensionality, d of the dataset and

the time complexity reduces to O(n2). However, the memory requirements

increase to O(n2).

3.5 Extraction of Prominent Clusters

Often in clustering applications, the user is interested in a flat or partition-like

solution that consists of the most prominent, non-overlapping clusters. One

of the approaches to extract such a partition from a hierarchy is to perform a

horizontal cut through a dendrogram. Since this technique corresponds to a

single, global density threshold and would [10] describe a novel optimal solution

to extract clusters of varying densities by performing local cuts through the

HDBSCAN* hierarchy.

3.5.1 Cluster Stability

According to Hartigan’s model, density-contour clusters of a given density f(x)

on R at a given density level λ are the maximal connected subsets of the level

set defined as {x|f(x) ≥ λ} [28]. DBSCAN* estimates the density-contour

clusters for a density threshold λ = 1
ε

and unnormalized kNN estimate (for

k = mpts) of the density f(x), given by 1
dcore(x)

.

HDBSCAN* produces all possible DBSCAN* solutions w.r.t. a given value

of mpts, and all thresholds λ = 1
ε

in [0,∞). As the value of λ increases (i.e.,

ε decreases), clusters become smaller and smaller, until they disappear or

break into sub-clusters; more prominent clusters “survive” longer after they

appear, which is essentially the rationale behind cluster lifetime in classic

hierarchical cluster analysis [23, 35]. In a traditional dendrogram, the length

of the dendrogram scale along those hierarchical levels in which the cluster

exists is the lifetime of the cluster.

In HDBSCAN*, a cluster can shrink, disappear or split into sub-clusters. A

cluster is dissolved when it disappears by receding into singleton noise objects,

or when the number of objects in the cluster falls below mclSize, or when it

splits into two or more prominent clusters due to removal of edges. Since a
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data object belonging to a cluster can become noise at a density level which

may be different from the density level at which the cluster splits or disappears,

the stability of a cluster no longer depends on the lifetime of the cluster alone;

it takes into account the contributions of each constituent data object.

Keeping this in mind, the contribution of an object xp towards the density

of cluster Ci is given by:

λmax(xp, Ci)− λmin(Ci)

where λmax(xp, Ci) is the maximum value of threshold λ at which the object

xp is part of the cluster Ci and λmin(Ci) is the density level at which the Ci

came into existence.

For a HDBSCAN* hierarchy for a finite dataset X, cluster labels and den-

sity thresholds associated with each hierarchical level, the stability of a cluster

is defined as:

S(Ci) =
∑
xj∈Ci

(
λmax(xp,Ci)− λmin(Ci)

)

⇒ S(Ci) =
∑
xj∈Ci

(
1

εmin(xj,Cj)
− 1

εmax(Ci)

)
(3.2)

3.5.2 Cluster Extraction as an Optimization Problem

Let C2, . . . ,Ck be the collection of all clusters in the simplified cluster hi-

erarchy (tree) generated by HDBSCAN*, except the root C1, and let S(Ci)

denote the stability value of each cluster. The problem of extracting a flat,

non-overlapping clustering solution of the “most” prominent clusters (plus

possibly noise) is formulated by Campello et al. [10] as an optimization prob-

lem with the objective of maximizing the overall aggregated stabilities of the

extracted clusters, in the following way:

max
δ2,...,δk

J =
k∑
i=2

δiS(Ci) (3.3)
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subject to δi ∈ {0, 1}, i = 2, . . . , k∑
j∈Ih

δj = 1, ∀h ∈ L

where δi(i = 2, . . . , k) indicates whether cluster Ci is included in the flat

solution (δi = 1) or not (δi = 0), L = {h|Ch is a leaf cluster} is the set of

indexes of leaf clusters, and Ih = {j|j 6= 1 and Cj is ascendant of Ch(h

included)} is the set of indexes of all clusters on the path from Ch to the root

(excluded). The constraints prevent nested clusters on the same path to be

selected.

To solve Problem (3.2), every node except the root is processed, starting

from the leaves (bottom-up), deciding at each node Ci whether Ci or the

nest-so-far selection of clusters in Ci’s subtrees should be selected. To be

able to make this decision locally at Ci, the total stability of Ŝ(Ci) of clusters

selected in the subtree rooted at Ci is propagated and updated in the following,

recursive way:

Ŝ(Ci) =

{
S(Ci), if Ci is a leaf node

max{S(Ci), Ŝ(Cil) + Ŝ(Cir)}, if Ciis an internal node

where Cil and Cir are the left and right children of Ci (for the sake of sim-

plicity, Campello et al. [10] discuss the case of binary trees).

Algorithm 3 gives the pseudo-code for finding the optimal solution to Prob-

lem (3.2).

Algorithm 3 Solution to Problem (3.1)

1. Initialize δ2 = . . . = δk = 1, and, for all leaf nodes, set Ŝ(Ch) = S(Ch).

2. Starting from the deepest levels, do bottom-up (except for the root):

2.1 If S(Ci) ≤ Ŝ(Cil) + Ŝ(Cir), set S(Ci) = Ŝ(Cil) + Ŝ(Cir) and set
δi = 0.

2.2 Else: set Ŝ(Ci) = S(Ch) and set δ(·) = 0 for all clusters in Ci’s
subtrees.

Figure 3.7 illustrates a density function with cluster stabilities and excess

of mass. The root splits into two child clusters – C2 and C3. C2 has two denser

regions, C4 and C5.
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Figure 3.7: Taken from [10]: Illustration of a density function, clusters and excess
of mass.

Figure 3.8 shows the example for optimal selection of clusters from a given

cluster tree. For this tree, C4 and C5 are chosen as separate clusters instead

of their parent C2 since the sum of their stability is less than the stability of

C2. The child clusters of C5 have lower stability values and are not prominent

clusters. Similarly, the child clusters from C3 are not as stable as their parent

and as a result C3 should be extracted. Note that C3 is at a different density

level than C4 and C5.

Figure 3.8: Taken from [10]: Illustration of the optimal selection of clusters from a
given cluster tree.
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Chapter 4

HDBSCAN* with kernel
density estimates

HDBSCAN* is a hierarchical clustering algorithm based on density level sets

[10]. It follows the approach of building a Minimum Spanning Tree (MST)

in density space, and extracting the hierarchy from it, by removing edges

in decreasing order of weights, which correspond to the Mutual Reachability

Distance (MRD). The algorithm uses an unnormalized version of the k-nearest

neighbor (kNN) density estimate. The original kNN density estimate [45] gives

a density value for each object. HDBSCAN* uses the kNN distance, instead

of the density value, to give a notion about the density of the object, i.e. for

objects with lower kNN distance, the density would be high as neighboring

objects are close by.

In Chapter 3, an overview of HDBSCAN* was presented. In this chap-

ter, we will further explore HDBSCAN* to integrate other density estimates

into it. Since HDBSCAN* already uses a version of the kNN kernel, it is

a logical choice to incorporate the original kNN kernel density estimate into

HDBSCAN*. Thus, we start by using the kNN kernel density estimate instead

of its unnormalized form, kNN distance directly. We elaborate the problems

we encountered, and then, finally, describe our new approach of building a

MST in Euclidean Space. The edge weights of this MST are recalculated to

be the inverse of the density estimate values. This is because, if we were to use

density values for a spanning tree construction, we would obtain a Maximum

Spanning Tree. By adopting the inverse of density value, we are still able to
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use the concept of Minimum Spanning Tree in HDBSCAN*.

4.1 HDBSCAN* with the kNN density esti-

mate

The kNN kernel proposed by Loftsgaarden [45] is given by Equation (2.5) in

Chapter 2. For an object x, k nearest neighbors and rk as the kNN distance

between x and its kth neighbor including x, we can derive the following relation

from it

kNN(x) ∝ 1

rk

This relationship is used in HDBSCAN* to represent the density of an object

by the so called core distance of x, using the following unnormalized form of

the kNN kernel:

unnormalized kNN(x) =
1

rk
=

1

dcore(x)
(4.1)

As explained in Chapter 3, HDBSCAN* defines core distance and MRD as

1. The core distance of an object is the k-nearest neighbor distance. Thus,

the smaller the core distance, the denser the object.

2. Mutual Reachability Distance represents the connectivity between

two objects. For any point on the line segment joining two objects, if

we draw a circle of radius equal to the MRD of the two objects, the

number of points encompassed within this hypersphere are at least k.

By comparing the core distances and the distance between the objects,

MRD is able to take into account density at the objects as well as how

far apart they are.

If the MST is build by solely considering the nearest neighbor distance

or the second nearest neighbor distance, it would be the same as the Single

Linkage tree [37]. This is because the MRD, in this case, is the distance

between the objects and its nearest neighbor. For third nearest neighbors

and onwards, the MST in Mutual Reachability Space is no longer the same

as the single linkage one. The shortest path in Euclidean Space leads to a
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A

C
B

(a) Single Linkage or MST in Eu-
clidean Space

(b) Connections in MST for k=4

A

C
B

(c) The dashed line is the edge
found in MST in Mutual Reachabil-
ity space while the black edges are in
the Euclidean Space MST.

Figure 4.1: MSTs for 20 points in space, considering nearest neighbor 1 and 3,
exclusive of point itself

more weighted path w.r.t MRD. As the number of objects to consider for

calculation of core distance increases, objects farther and farther away from

object of interest are considered for core distance calculation. Thus, core

distance becomes larger than the Euclidean Distance.

Consider 20 points distributed in two dimensional space. Figure 4.1a shows

the Single Linkage MST. Using third nearest neighbor to calculate core dis-

tance, dcore, of each point and MRD, dmreach, of each edge, the MST in Mutual

Reachability Space does not have the connections (A,B) and (B,C). Instead,

we can get (A,C) and (B,C) or (A,C) and (A,B). This is because

dmreach(A,B) = max(dcore(A), dcore(B), d(A,B)) = dcore(B)

dmreach(B,C) = max(dcore(B), dcore(C), d(B,C)) = dcore(B)

dmreach(A,C) = max(dcore(A), dcore(C), d(A,C)) = dcore(A)

As dcore(A) < dcore(B), the longer edge in Euclidean Space has a lower MRD

and would be selected in the density MST. Hence, the path directly connecting

A and C is denser than going from A to C via B. Either of the edges (A,B) or

(B,C) can be chosen.
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C D

m

(a) 4 objects in a data space. Let AB
be the edge for which we are trying
to estimate the density at midpoint,
m.

A B

C D

m

(b) Arrows show the influence of ob-
jects A, B, C and D on the midpoint
m.

Figure 4.2: Defining Connectivity as density estimate at midpoint

Now, we wish to use the kNN kernel instead of its unnormalized form,

shown in Equation (4.1). This has the following challenges -

1. The value of density associated with each object is just the value of the

kNN kernel for that object; it is no longer a distance. A low density

value means that the region around the object is sparse, and a high

density value implies, that there are numerous objects around our object

of interest.

2. We have no notion of the density between two objects. The Mutual

Reachability Distance cannot be used anymore, because distance by itself

is not comparable to the inverse of density. They are on different scales.

For example, if distance between two objects is 1.5 cm, and the density

at the objects are 0.5 and 0.1 respectively, their inverse becomes 2 and

10. We cannot compare cm and inverse of density because there is no

method of converting them into the same measurement units.

Hence, for using a kernel density estimate like the kNN kernel, we must

define connectivity between two objects using something other than distance.

Let us assume that if there are two objects A and B, the density at the midpoint

of line segment joining A and B represents the density between the objects.

While building the MST, we can use this value of inverse of density (to keep

the spanning tree minimum) at midpoint. Figure 4.2 shows an illustration.

The näıve approach of using the kNN kernel would be to build the MST

in density space – the edge weights are defined as the inverse of density at

midpoint of the edge, and the self edge weights are the inverse of value of kNN

kernel at the object itself. All other steps of HDBSCAN* would remain the
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Figure 4.3: Density due to denser regions near midpoint : A third cluster influencing
the density at midpoint (in red) on an edge connecting end points of two other
clusters, resulting in an over estimation of the density connection between the two
clusters.

same. A hierarchy would be extracted from the MST based on mclSize, and an

optional flat partition could be extracted from the hierarchy based on excess

of mass and stability.

The problems with such as approach would be

1. Since the Minimum Spanning Tree is built in density space, the density

at the midpoint of every edge in the complete graph has to be estimated.

For an n point dataset, the complete graph has n(n-1)/2 edges, for each

of which density has to be calculated, each time considering all n points

to get the estimate.

2. Midpoint estimation is the simplest method for representing connectivity.

However, it has one limitation when applied to a complete graph. For

many edges, the density is very high at midpoint due to the presence of

the clusters between the end points of the edge. Hence, if there is one

or more clusters lying between the end points of the clusters we want to

connect, as shown in Figure 4.3, then the density estimated at midpoint

is very high since the points from the other clusters influence it.

If we tried following this methodology anyway to confirm its limitations,

let us investigate the results for a n = 500 points in 2 dimensional dataset

with 5 well separated clusters, as shown in Figure 4.4. To compare the results

of HDBSCAN* with this näıve approach, called kNN-HDBSCAN* hereafter,

the value for mpts in HDBSCAN*, and k in kNN kernel are set to be the same.

After building the hierarchy, a flat partition is obtained using stability, defined
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Figure 4.4: Sample dataset with 500 2D points in 5 clusters

by Campello et al. [11]. Adjusted Rand Index (ARI) [34] for the flat partitions

from HDBSCAN* and kNN-HDBSCAN* for same k are compared against the

available ground truth. The mclSize is set to 10. We test over the range of

k ∈ [2, n/mclSize], i.e. k ∈ [2, 50].

The best ARI that can be obtained from HDBSCAN* for k ∈ [2, 6] is 1.

The best ARI from kNN-HDBSCAN* is 0.46 for k = 31. In terms of time

taken, on average, HDBSCAN* could build the hierarchy and produce flat

partition within 0.03 seconds, while kNN-HDBSCAN* took 1.58 seconds. It

is evident that over the range of values tested, HDBSCAN* performs much

better than using the kNN kernel, and estimating the density connectivity

between two points A and B by the estimated density at the midpoint of the

straight line connecting A and B. Further, computationally, it takes much more

time because for each edge, the midpoint has to be found and its k nearest

neighbor has to be located to calculate the density at the midpoint. Thus, for a

complete graph, midpoints and their k nearest neighbors have to be computed

for each of the n(n− 1)/2 edges.

Figure 4.5 compares the ARI for each value of nearest neighbor. The ARI

value from kNN kernel with midpoint density estimation is consistently less

than the ARI value obtained from HDBSCAN* for the same value of k. To

better understand the difference between the original HDBSCAN* and its

version with the kNN kernel, for the same of k = 4, we compare the Minimum

Spanning Trees obtained from HDBSCAN* and kNN-HDBSCAN*. These are
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Figure 4.5: ARI values over the range of k nearest neighbors to consider: This
figure shows the variation in ARI as we change the value of nearest neighbors to
consider. The red line represents the result from kNN-HDBSCAN* and blue shows
HDBSCAN*.

Scale: The bright light blue color represents
dense edges whereas magenta shades indicate
less dense edges.

(a) MST for k=4 using HDBSCAN*
(b) MST for k=4 using kNN kernel in
HDBSCAN* and midpoint density esti-
mation.

Figure 4.6: Minimum Spanning Trees for sample dataset (Figure 4.4) and k = 4.

shown in Figure 4.6a and 4.6b, respectively. As expected, for the kNN kernel

MST, in Figure 4.6b, there are many edges connecting points of one cluster

to another. Edges within the cluster are few. Also, these edges that connect

points of different clusters are dense, the light blue edges are the ones with

the highest values of edge weights. This can be explained as follows: when we

estimate the density at the midpoint of an edge, it is affected by other points

in space which may be closer to the midpoint and not close to the end points

themselves.

Our comparison of the näıve approach with the original, theoretically, and
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experimentally, confirms our doubts that building the Minimum Spanning Tree

over the complete graph in density space using the kNN density estimate is

time consuming and gives poor results. Thus, to generalize HDBSCAN* to

use arbitrary kernels, our approach has to change.

4.2 HDBSCANk: the generalized approach

To avoid the problems discussed in the previous section, we propose the follow-

ing solution: We build the Minimum Spanning Tree in Euclidean Space and

then transform the edge weights to the inverse of density. Zahn [80] enlists

the properties of MST for cluster analysis and Hartigan [29] studied the con-

sistency of single linkage for high dimensional data. The advantages of using

a MST in Euclidean Space are:

1. An MST in Euclidean Space is built by considering nearest neighbor

distance. It follows the data itself, the placement of objects in terms of

vicinity, as we connect close by objects. In two dimensions, the connec-

tions can be visualized using a plot.

2. It is easy to compute since it only requires a distance matrix.

3. Most importantly, the weights of the edges in the MST can be easily

given values in density space. For a N object dataset, only (N-1) such

calculations are required instead of the N(N-1)/2 edges that have to be

processed in the complete graph.

4. The MST is general enough that it can be used for any kernel density

estimate, i.e. once the spanning tree is built, any kernel density function

can be applied to the edges. We do not have to recompute the tree if

a different estimate is used. Such a property is highly useful when a

comparative study with different kernels has to be conducted.

Thus, in our new approach, known as HDBSCAN kernel or HDBSCANk, we

first compute the MST in Euclidean Space using Prim’s [55]. Then, we recal-

culate the edge weights, such that they represent the inverse of the minimum
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density along the edge. The connection between two objects stays in the tree;

however, based on the value of density, the weight of the edge becomes higher

or lower.

The parameter method would define the manner in which this representa-

tive of minimum density along the edge is calculated. The parameter kernel

dictates the kernel density estimate to use. bandwidth represents the value of

k for the kNN kernel and the smoothing parameter for other kernel density es-

timates, as elaborated upon in Chapter 2. Algorithm 4 shows the pseudo-code.

Algorithm 4 HDBSCANk Main Steps

Input: Dataset X, parameters kernel,method, bandwidth
Output: HDBSCANk hierarchy, (optional) Flat Partition

1. Compute the value of kernel denisty estimate for each object using
given kernel and bandwidth.

2. Construct MST in Euclidean Space, EMST .

3. Update edge weights using given bandwidth for kernel and method
and take the inverse of the estimate.

4. Extend the MST to obtain EMSText, by adding for each vertex a
“self edge” with inverse of kernel density estimate at the corresponding
object as weight.

5. Extract the HDBSCANk hierarchy as a dendrogram from MSText:

4.1 For the root of the tree assign all objects the same label (single
“cluster”).

4.2 Iteratively remove all edges from MSText in decreasing order of
weights (in case of ties, edges must be removed simultaneously):

4.2.1 Before each removal, set the dendrogram scale value of the
current hierarchical level as he weight of the edge(s) to be
removed.

4.2.2 After each removal, assign labels to the connected compo-
nent(s) that contain(s) the end vertex(-ices) of the removed
edge(s), to obtain the next hierarchical level: assign a new
cluster label to a component if it has at least one edge, else
assign it a null label (“noise”).

Optional Extract a flat partition from the HDBSCANk hierarchy using stability.

To evaluate the new approach to HDBSCAN* by computing an MST in
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Euclidean Space first, we compare the following variants of HDBSCAN* using

four two dimensional datasets summarized thereafter.

1. HDBSCAN*, the original algorithm,

2. MST-HDBSCAN*, HDBSCANk with unnormalized the kNN kernel and

MRD, and

3. HDBSCANk with kNN kernel and the connectivity between objects still

defined by the density at the midpoint of the edge connecting the points,

but now restricted to edges in the Euclidean MST. Our method can, thus,

be called ‘Midpoint Estimation’.

4.2.1 Experimental Results

Datasets

For these experiments, we report the performance of this algorithm on four

artificially generated two dimensional datasets. Dataset 1, 5gaussians, has

500 two dimensional points, divided evenly into 5 Gaussian shaped clusters.

Dataset 2, 2spirals, has 2 well separated spirals. It has 1000 points. Dataset

3, r15, has 15 Gaussian clusters, 7 of them are well separated and the other 8,

form a flower like structure in the middle. Dataset 4, 2gaussians, is another

artificially generated dataset with 200 2-dimensional points, well separated

into 2 clusters. Datasets 2 and 3 were downloaded from the website, Joensuu

Clustering Datasets [1] while the others were self-generated. Figure 4.7 shows

the scatter plots and available ground truth for them.

Algorithmic Settings

After building the hierarchy, a flat partition is obtained using stability. The

Adjusted Rand Index (ARI) for the flat partitions from HDBSCAN*, MST-

HDBSCAN* and HDBSCANk with kNN kernel and Midpoint Estimation, for

same k are compared against the available ground truth shown in Figure 4.7.

The minimum cluster size (mclSize) is set to 10. We test over the range of

k ∈ [2, n/mclSize], where n is the number of objects in the dataset. A tabular

summary of the datasets and the range of k tested is presented in Table 4.1.
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Figure 4.7: Two Dimensional Datasets

Dataset No. of points Dimension No. of Clusters k

5gaussians 500 2 5 [2,50]
2spirals 1000 2 2 [2,100]

r15 600 2 15 [2,60]
2gaussians 200 2 2 [2,20]

Table 4.1: Dataset summary and the range of k tested
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Dataset
ARI k

HDBSCAN* MST-HDBSCAN* HDBSCAN* MST-HDBSCAN*

5gaussians 1 1 [2,6] [2,6]
2spirals 1 1 [5,30] [5,30]

r15 0.98 0.98 [2] [2]
2gaussians 1 1 [2,20] [2,20]

Table 4.2: Best Adjusted Rand Index and value for k for HDBSCAN* and MST-
HDBSCAN*

Dataset HDBSCAN* MST-HDBSCAN*

5gaussians 0.03 0.03
2spirals 0.07 0.07

r15 0.03 0.03
2gaussians 0.01 0.01

Table 4.3: Computation times (in seconds) for the experiments in table 4.2 averaged
over the range of k tested: This table shows the time taken in seconds for building
the MST, extracting a hierarchy and a flat partition from it, averaged over the
number of values for k, the number of nearest neighbors, considered.

Comparison between HDBSCAN* and MST-HDBSCAN*

Table 4.2 shows the best ARI and the corresponding value(s) of k obtained

for each dataset using HDBSCAN* and MST-HDBSCAN*. Table 4.3 shows

the average time taken to run the algorithms per value of nearest neighbors.

We find that building the Minimum Spanning Tree in Euclidean space, or in

the density space first does not affect HDBSCAN*. We still obtain the same

value for ARI, for the same range of k, in the same average time. Thus, using

core distance and MRD is a robust approach.

Comparison of all 3 versions of HDBSCAN*

Table 4.4 shows the maximum ARI obtained from HDBSCANk, the value of

k for which it was obtained and the average time taken to do all computations

per value of k. The accuracy is close to what HDBSCAN* gets, as shown in

Table 4.2.

In Figure 4.8, we show the change in the ARI values with change in

value of k for all 3 versions. Irrespective of dataset, HDBSCAN* and MST-
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Dataset ARI k Average Time (seconds)

5gaussians 1 [2,3] 0.03
2spirals 0.99 [22] 0.05

r15 0.98 [6,7] 0.03
2gaussians 1 [2,20] 0.01

Table 4.4: Results for HDBSCANk with kNN kernel and Midpoint Estimation :
For each dataset, the best ARI that was achieved for the range of k tested, the
corresponding value(s) of k for which this ARI was obtained and the average time
taken per run of HDBSCANk is listed.

HDBSCAN* exhibit similar behavior. For a well separated dataset like 2gaus-

sians, HDBSCANk with kNN kernel and Midpoint estimation, has the same

variation of ARI with k. For r15, this combination of kernel and method is

consistent in behavior with the other two versions, only the first drop in ARI

happens much later for a higher value of k. 2spiral exhibits a special shape

that HDBSCAN* can identify for a wide range of k. MST-HDBSCAN* can

also get the same result for a smaller range of k. The kNN kernel can identify

this special structure for two values of k. The value of ARI obtained from

stability partition of the hierarchy for this dataset changes frequently with

the change in value of k. On using HDBSCANk, on the 5gaussians dataset,

we observe that the ARI value changes from one value of k to another but

the ground truth structure of the dataset is still identified by HDBSCANk for

some values of k. From this analysis we conclude that the kNN kernel with

Midpoint Estimation is not a robust method.

By using our new approach of building the MST in Euclidean Space, and

then recalculating the edge weights to be the inverse of density, we are able

to come close to, if not replicate, the best results of HDBSCAN*, with both

the unnormalized and original kNN kernel in HDBSCANk, as shown in Tables

4.2 and 4.4. The runtime in Tables 4.3, 4.4 is the same in most cases. This

suggests that HDBSCANk is as fast as HDBSCAN*, at least for these datasets.

44



k

5 10 15 20 25 30 35 40 45 50

A
R

I

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) 5gaussians

k

10 20 30 40 50 60 70 80 90 100

A
R

I

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) 2spirals

k

10 20 30 40 50 60

A
R

I

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) r15

k

2 4 6 8 10 12 14 16 18 20

A
R

I

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) 2gaussians

Figure 4.8: ARI values over the range of k nearest neighbors to consider for HDB-
SCAN*, MST-HDBSCAN* and HDBSCANk.
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4.3 Defining Connectivity between Objects:

Edge Weight Estimation Methods

Hartigan defined a density-contour cluster as a subset C ⊂ R at density level

λ, such that: (a) every object x ∈ C satisfies f(x) ≥ λ, (b) C is connected, and

(c) C is maximal, f(x) being the density function defined for each x as a value

proportional to the number of points per unit volume at x [28]. Hartigans

model has two essential components: (a) density f defined at each object,

and (b) density f defined along each path between the objects in the space.

HDBSCAN* is based on Hartigans concept of density-based clustering, and

accommodates these two components as (a) density f defined at each object,

which is at least 1/ε, and (b) density f defined on a path between the objects

in the space, which essentially depends on the density between pairs of objects

and which is equal to 1/dmreach.

As Hartigan noted in his paper on single linkage consistency [29], for deter-

mining density contours, one not only needs the objects which are connected

but also the density on this connection. As we observed, there is no straight-

forward way of defining the connectivity when using general kernel density

estimates. In this section, we suggest and discuss some possible connectivity

methods.

1. Midpoint Estimation For the midpoint of each edge, in the MST

in Euclidean Space, the kernel density estimate is calculated using all

objects in the dataset.

2. Midpoint Estimation using top contributors of density at ver-

tices In this approach, the density at the midpoint of each edge is cal-

culated using a subset of the dataset. Consider an edge between A and

B.

• For a continuous kernel like the Normal kernel, the objects whose

contribution make up approximately 85% of the density at A and

B are identified. This percentage can vary with kernel. Then, these

objects are used to calculate the density at the midpoint. For the
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Figure 4.9: Contribution to density of 2-sigma region of a Normal distribution: The
points within the one and two sigma regions of a Normal distribution with mean 0
and standard deviation 1, contribute to 0.0539*100/0.3989 = 13.5% density of at
the mean. Thus, all points in the 2-sigma region contribute to most of the density
of the object.

Normal kernel, if we observe the bell curve in one dimensional space,

the two sigma region contributes almost 85% (86.5% to be exact) of

density of the curve, as shown in Figure 4.9. Thus, instead of using

all objects in space, only the most concentrated ones are considered.

• Kernels like the kNN and Epanechnikov kernels, have a property

that objects beyond a certain distance (eg the kNN distance for the

kNN kernel) do not have any influence on the density of an object

of interest. Since the kernel is already truncated, all objects that

have a non-zero contribution to density on A and B form the top

contributors, and are used to evaluate the density at the midpoint.

The contribution of a distant object to density of a point is very low. By

identifying the most influential points, we are able to get an approximate

density estimate at midpoint which would not change much if all objects

in space were considered, as in the case of Midpoint Estimation. Figure

4.10 shows the top contributors for an object in a data space.
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x

Figure 4.10: Top Contributors for an object, x : all objects within the circle con-
tribute to 85% of the density of x for a continuous kernel. Alternatively, for trun-
cated kernels, objects outside this circle have zero influence on density and need not
be consider.

3. Torque Rule Estimation Given an edge connecting A and B, the

length of line segment AB, and the density values at A and at B, if we

assume a linear interpolation of density, there would be a point on the

edge, such that the influence from A is same as the influence of B. If we

think of density as a force, the forces exerted from A and B would be in

balance at that point on AB. This point is known as the torque point,

based on the equilibrium problems in Physics. The edge weight of the

connection AB is then defined as the density on the torque point. As

an illustration in one dimension (see Figure 4.11), consider two objects

A and B that have associated density a and b respectively. They are d

distance apart. To find the position d1 from A, on the line joining AB

where the density influence due to A is equal to that from B, calculate

ad1 = b(d− d1)

d1 =
bd

a+ b

Thus, the density estimated at point A+d1 is the required density for

the edge at the Torque point.

4. Torque Rule Estimation using top contributors of density at

vertices Similar to Midpoint Estimation using the top contributors, in
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this method, connectivity between two objects is defined as the density

at the torque point due to the top contributors.

5. Golden Search using top contributors of density Golden Search,

also known as the Golden Section Search [40], is used to find the max-

imum or minimum of a unimodal function. A unimodal function con-

tains only one minimum or maximum on the interval [a, b]. For an edge

AB, the coordinates of A and B form the interval, and the function we

minimize is the value of the kernel density estimate due to the top con-

tributors of A and B. We assume that, there would be only one point of

minimum density for each edge.

4.4 Complexity of HDBSCANk

The time complexity of HDBSCANk depends heavily on the kernel and the

edge weight estimation method that defines the connectivity between the ob-

jects. We first, summarize the complexity of steps that are invariant with

respect to these two parameters, and then explain in detail, the complexity

for each connectivity representative method and kernel, where necessary.

The main steps of HDBSCANk have been listed in Algorithm 4. For an d

dimensional dataset with n objects:

• The kernel density estimate for an object is calculated in O(dn) time

because of d dimensions and n objects considered that contribute to the

density. For the whole dataset, this is calculated in O(dn2) time.

• In Step 2, the Minimum Spanning Tree in Euclidean Space would be

constructed from a complete graph. It would take O(dn2) time to com-

pute all nearest neighbor distances, and then O(n2) to build the MST. If

A Bx
d

Figure 4.11: Locating the Torque Point: Consider two points A and B, d distance
apart. We can find the point x on AB where influence of total density from A is
balanced w.r.t influence from B.
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Prim’s algorithm [55] is used based on an ordinary list search, we could

construct the MST in O(n2 + m) time where m = n(n − 1)/2 edges in

the complete graph, so Step 2 runs in O(dn2) time.

• In Step 3, we update the edge weights.

– Using Midpoint Estimation or Torque Rule Estimation, for each

edge in the MST, constant time is spent on calculating the coordi-

nates of midpoint or torque point and O(dn) time to compute the

K.D.E. value. Since this process is repeated n − 1 times, once for

each edge, it would take O(dn2) time to perform updates to the

edge weights by these two methods.

For methods that use top contributors of the vertices, these must be

found first. In case of kernels like the Gaussian kernel, these can be

computed while the density is calculated for each vertex in Step 1, by

sorting the influence of each object on the vertex in descending order,

and choosing the ones whose contribution sums upto 86.5% of the total

density at the vertex object, i.e. those within two sigma region of the

kernel. Computing this for every vertex takesO(n2 log n) time for sorting

all influences, and O(n) comparisons to locate the contributors in the

sorted list. In case of kernels like Epanechnikov and kNN kernel, no

sorting is required and we can find all contributors by a linear search in

O(n2) time for all edges. Thus, depending on the kernel, top contributors

can be found in O(n2 log n+ n2) = O(n2 log n) for continuous kernels or

O(n2) time for truncated kernels.

– Midpoint Estimation and Torque Rule estimation using top con-

tributors: Similar to the corresponding methods that use the whole

dataset, for each edge, constant time is spent to calculate the mid-

point or torque point, and then O(dn) time to compute K.D.E. at

that point in the worst case, where subset of data is the dataset

itself. Thus, these connectivity methods can take O(dn2) to com-

pute density of each edge, and O(n2) or O(n2 log n) to find the top
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contributors.

– The time complexity of using Golden Search is O(log 1
ε
) iterations

of the function being minimized or maximized, converging to a ε-

accurate solution. Since ε is a constant, in the worst case when

all objects in the dataset are the top contributors, it would take

O(dn2) time to compute the density of all edges and O(n2) using

golden search and O(n2 log n) to find the top contributors.

• In Step 4, the MST is extended by adding self edges and this can be

done in O(n) time. Before extracting the hierarchy, the 2n− 1 edges in

the MST have to be sorted and this can be accomplished in O(n log n)

time.

• Extracting the hierarchy from the MST is the same as how the hierarchy

is extracted in HDBSCAN*, in Step 5, and would take at most O(n2)

time, if every object has to be relabeled after an edge removal.

If we integrated a kernel like All-Points-Core-Distance kernel [50], the in-

verse of density of each object, given by allptscoredist, is computed in O(dn2)

time in worst case. The formula is shown in Equation (2.7). The time for

building the MST in Euclidean space remains the same. Updating the edge

weights of the MST using the density of an edge, given by dnmreach (Equa-

tion (2.8)), takes O(dn2) time. The time for rest of the steps also remains

unchanged.

We conclude the total time complexity of HDBSCANk is O(dn2 +n2 log n)

when edge weight estimation methods with top contributors are used. Oth-

erwise, it is O(dn2) with arbitrary kernels, which is the same as the time

complexity of HDBSCAN*. Table 4.5 summarizes the total time complexity

of HDBSCANk.

In terms of space complexity, O(dn) space is required to store the dataset.

In Steps 1 and 2, to compute the MST from a complete graph, requires O(n2)

space to store the distance matrix. The MST can be stored as a list of n− 1

edges and n vertices. This would take O(n) space. Performing the updates in
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Operation Time Complexity

Calculate K.D.E. for all objects O(dn2)
Find top contributors to density for each object O(n2 log n)
Construct MST in Euclidean Space from complete graph O(dn2)
Update edge weights O(dn2)
Sort edges in MST O(n log n)
Build hierarchy from MST O(n2)

Table 4.5: Time Complexity of HDBSCANk for a dataset X with d dimensions and
n objects.

Step 3 does not increase the space. Extension of the MST adds n new edges

to it, however, this too, does not affect the O(n) space to store the MST. For

edge weight estimation methods that use top contributors, there can be at

most n top contributors for each object. Thus, O(n2) space is required to save

the top contributors list for the dataset. While computing the hierarchy, in

Step 5, at a particular level, only O(n) space is used. Hence, the total space

complexity of HDBSCANk is O(n2), the same as HDBSCAN*.

4.5 Conclusion

In this chapter we explored an extension of HDBSCAN* to use kernel density

estimates. HDBSCAN* uses the unnormalized form of the kNN kernel and in

our experiments, we replaced it with the actual kNN kernel. Testing this on a

sample dataset, we concluded that the original HDBSCAN* approach had to

be modified to incorporate arbitrary kernel density estimates. Also, using a

kernel density estimate requires the exploration of methods that define connec-

tivity between objects. Midpoint estimation is one such method where density

connectivity between two objects is estimated as the density at the midpoint

of the straight line joining these two objects. We proposed HDBSCANk, the

version of HDBSCAN*, that can be used for arbitrary kernels and compared

its results for some datasets with HDBSCAN* for both unnormalized and orig-

inal kNN kernels. We also elaborated on new edge weight estimation methods

that could be used to define the connectivity between objects.

Our experiments so far, are not enough to judge how useful kernel density
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estimates are for hierarchical density based clustering because a) we only com-

pared results of flat partitions that could be obtained from the hierarchy, and

b) we do not have any dataset with a hierarchical ground truth. Thus, in the

next chapter, we propose a hierarchical data generator that provides us with

datasets which have a hierarchical ground truth. This will help evaluate our

hierarchical algorithms more comprehensively, using a ground truth hierarchi-

cal structure. In chapter 6, using these datasets and others, we present a case

study of different kernel density estimates and definitions of connectivity in a

data space integrated into HDBSCANk, also studying the issue of bandwidth

selection for kernels.
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Chapter 5

Data Generator with
Hierarchical Ground Truth

In real world applications of unsupervised techniques of machine learning,

the availability of the true number of groups in the data, and information

about which object belongs to which group is rare. This already makes cluster

analysis results hard to evaluate. In addition, for the datasets that have ground

truth, there is an absence of a hierarchical ground truth since a hierarchical

ground truth involves multiple group assignments for data. To get a better

idea of how good a hierarchical algorithm is, the current approach involves

extraction of a flat partition from each Hierarchical Clustering Analysis (HCA)

hierarchy and to compare these partitions using validation indexes like the

Adjusted Rand Index [34], F-Measure [74], Silhouette Index [60] depending on

availability of a flat partition ground truth labeling.

For document data, there are document collections that have been assigned

categories that form a ground truth hierarchy. However, these must be gen-

erated using human intellect. Datasets like Reuters RCV1 [42] and oshumed

[31] are text document datasets whose hierarchical structure has been docu-

mented. But this is also rare. There is a need for a hierarchical data generator

where there is minimum human intervention, and the data is simple enough

that it can be used to test any hierarchical clustering algorithm, not just the

ones specially proposed for document clustering.

In this chapter, we propose a hierarchical data generator that randomly

samples data, based on the Gaussian sampling techniques and outputs the
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data generated, as well a hierarchical representation for the same. The hier-

archy corresponding to the dataset can be accepted as the correct solution,

i.e. showing the underlying hierarchical properties of the data. Density-based

clustering algorithms often model noise as a cluster and we follow the same

representation of noise in the generator.

Our aim is to generate data that has a hierarchical ground truth. Thus,

the points have to be generated such that they are divided into smaller clusters

at subsequent levels. This would allow HCA algorithms that model noise as

a cluster to easily test their validity against the underlying structure of the

data.

There are two techniques in HCA:

1. Agglomerative or ‘bottom up’ in which each point is a singleton cluster

at first. Each pair of clusters is merged as we move up the hierarchy

based on some similarity criteria.

2. Divisive or ‘top down’ in which all points are initially part of one big

cluster. At subsequent levels, splits are performed, dividing the data

into smaller groups.

Our data generator uses the idea of divisive hierarchical clustering. We start

without any data except the coordinates of the root cluster. A random number

of points are sampled from around this root cluster. These are the cluster

centers or pseudo-centers for that level. They are not part of the final dataset,

only helper points. For every pseudo-center, the number of points it will have is

assigned. A cluster may split into two or more child clusters. Thus, the number

of child clusters a pseudo-center will have at the next level are calculated. By

this calculation, the number of centers for the next level are available. Each of

these are sampled from a Gaussian distribution with mean as their parent and

a standard deviation smaller than any of the deviations at the previous level.

For these pseudo-centers as well, the number of points around each center is

determined. This iterative process continues till the number of points around a

cluster drops below the threshold for that level, or no cluster has child clusters

at the next level. Once all pseudo-centers have been found, we generate the
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data as well a compact hierarchy for it, showing only the major levels at which

clusters are split or die.

As mentioned in Chapter 3, the minimum cluster size is a user defined

parameter in many practical applications of clustering that prevents the algo-

rithms from finding very small clusters of objects. We incorporate the same

parameter into our data generator to make it more consistent with hierarchical

clustering approaches.

In the next section, we briefly describe the parameters of the generator. In

section 5.3 we elaborate on the algorithm of the data generator. Section 5.4

shows some sample hierarchies and section 5.5 presents the ideas for future

work.

5.1 Parameters

The user defined parameters for the data generator can be broadly divided

into two categories:

1. Data descriptive: These parameters describe the properties of the dataset.

These are:

(a) the number of points it should have,

(b) the dimensionality of the data

2. Hierarchy descriptive: These values define the hierarchical properties of

the data. These are:

(a) Branching factor: The maximum number of subclusters a parent

cluster can have.

(b) Minimum Cluster Size: When a cluster has minimum cluster size

number of points, it cannot be split into child clusters.

(c) Separation factor: This controls the degree of overlap between two

adjacent clusters. The higher the separation factor, the smaller the

probability of two clusters touching each other, or being in each

other’s region.
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(d) Split probability decrease constant: A cluster can either die or split

into child clusters. This split probability decrease constant or level

constant value controls the decrease in probability of splitting and

dying, as the level increases.

(e) Retention factor: Whenever a cluster splits into child clusters, a

fraction of its total points are kept at the current level, and the rest

are redistributed among the children. The retention factor makes

sure that child clusters are truly embedded in a parent cluster (as

opposed to only being joined at the level of the parent cluster).

We will elaborate on these parameters and their effect on the data generator

in detail in the next section.

5.2 Data Generation with Hierarchical Ground

Truth: The Approach

Given the number of points numPoints, and their dimensionality, d, we want

to obtain two structures:

1. A (numPoints× d) matrix representing the dataset of points with their

features.

2. The hierarchy for this dataset representing the different clusters a point

can belong to depending on the level of the hierarchy.

Consider a hypothetical dataset with 1000 2-dimensional point. If the min-

imum cluster size parameter is set to 50, one of the possible hierarchies are

shown in Figure 5.1. The root level has all 1000 points. At the next level,

five clusters are obtained. Of these, the biggest clusters split into subclusters

at further levels while those with 50 points do not split. Also, clusters that

do not have more than (2 × 50 = 100) points, do not have child clusters at

the next level. At every level, the clusters become more compact than the

last level. Our aim is to generate data that exhibits these properties of the

hierarchy.
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Figure 5.1: Sample hierarchy for 1000 points dataset : In this sample hierarchy, the
1000 points are divided into 5 clusters, two of which have further subclusters.

To generate data that has a hierarchical cluster structure, we need to be

able to specify constraints on the hierarchical structure that data should have.

Generating the dataset only requires the cluster centers, the standard deviation

associated with that cluster and the number of points in the cluster. For

building the hierarchical structure of the dataset, we need to know how many

levels are present, how many clusters exist at each level, the standard deviation

of each cluster, which clusters split into sub-clusters, and how many points are

in each cluster.

To generate a dataset with hierarchical cluster structure, we start with the

root of the hierarchy, which all data belongs to. In our generator, points for

a cluster are sampled from Gaussian distributions, which are represented by a

mean, which we call the pseudo-center of the cluster, and the 3-sigma region

around the pseudo-center.

Pseudo-centers are points that act as cluster centers. They do not exist in

the dataset as final objects but are used to generate the data itself. Points

are sampled from within the 3-sigma region of the pseudo-centers. Consider

a Gaussian distribution whose mean is the pseudo-center. The 3-sigma region

of the pseudo-center is defined as the area within three standard deviations of

the mean.

Statistically, if we sample a point from a Gaussian distribution, there is

68.27% chance it is sampled from within one standard deviation of the mean,

95.45% chance the sample lies within two standard deviations and a 99.73%
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Figure 5.2: Flowchart depicting the major steps of the Data Generator

probability that the sample is within three standard deviation of the mean.

The Gaussian distribution is a continuous distribution and by using the three

sigma region, we limit our point generation to within this region. This also

allows us to check if a point belongs to another pseudo-center’s region.

Once we know all pseudo-centers, we generate data around them and build

the final dataset and the corresponding hierarchy. These steps have been

summarized in Figure 5.2.

5.2.1 Finding pseudo-centers

Before we elaborate on the procedure for finding the pseudo-centers and their

properties, let us introduce some basic definitions related to the parameters of

the data generator.

Definition 13 (Branching Factor) The branching factor, denoted by

branchingFactor, is the maximum number of child clusters a cluster can split

into.

Definition 14 (Minimum cluster size) The minimum cluster size, denoted

by minClSize, is the size of the smallest cluster that can exist without splitting.
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Definition 15 (Retention factor) The retention factor, denoted by

retentionFactor, is the fraction of the number of points in the cluster that

are generated at the current level when the cluster splits, while the remaining

points of the cluster will be generated from the description of the child clusters

at lower levels.

Our root node is defined by the origin in d-dimensional space. For example,

for a two dimensional dataset, the root node has the pseudo-center coordinates

(0,0). The standard deviation in each dimension is set to 1.

We determine the number of children the root node will have. This is

decided by randomly selecting the number of splits that should happen at

the root node. The number of splits, in general, is a number between 0 and

branchingFactor, where 0 means that the cluster dies at current level, 1 im-

plies it goes to the next level and a number greater than 1 indicates the number

of children of the cluster. For the root node, we must ensure that there are at

least 2 children. The number of splits depends on the following factors:

1. Total number of points in the dataset.

2. Number of points in the cluster: The more points in a cluster, the higher

its probability to be split.

3. The level in the hierarchy, the root node being level 0. The higher the

level, the lower the probability of a split. Thus, more splits happen near

the root.

4. Minimum cluster size: When a cluster is split, each child cluster should

have at least minClSize number of points. For example, if minClSize

is 10 and we have 20 points in a cluster, the child clusters can be 10 and

10. However, if there were only 15 points, the cluster cannot be split

into two. This acts like a stopping criterion.

5. Probability of split: This represents the chance that a cluster has to be

split based on the number of points it has and the level.
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6. Probability of staying: This is the property of a level. Every pseudo-

center has a standard deviation associated with it. This standard devia-

tion shrinks at every level so that levels near the root have more spread

out clusters. With deep hierarchies, shrinking at many levels would lead

to clusters concentrated at small regions. Thus, as we go to lower levels

of the hierarchy, a cluster is more likely to die, avoiding generation of

very deep hierarchies.

7. Retention factor: The retentionFactor is a value between 0 and 1. When

a cluster is split into child clusters, (retentionFactor times number of

points in the cluster) many points are generated at the current level and

the remaining points are redistributed amongst the child clusters.

Let k ∈ [2, branchingFactor] denote the number of children of the root node.

Function getLifeSentence in Algorithm 5 is used to select this value using

probability of split and stay. Note that there are multiple ways of defining

the probability of split and the probability of stay. We present a generic way

of using them. In a subsequent subsection, we will explain how we compute

them in more detail.

Once the total number of splits have been decided, we randomly assign the

number of points to be generated by each child pseudo-center, while ensuring

that each child cluster has at least minClSize many points. The function get-

Branches, Algorithm 6, is used to perform this distribution. This function

takes the number of points that are to be redistributed amongst child clusters

and the number of child clusters as inputs. For every child cluster except the

last child, a random number is generated between minClSize and the maxi-

mum number of points that can assigned without violating minClSize. This

number represents the number of points that would be in the child cluster.

For example, suppose 80 points have to distributed amongst 4 clusters satis-

fying minClSize = 15. To ensure that there are at least 15 points in all other

clusters, the first cluster ca have points between 15 and (80 - 15 * (4-0-1)) =

45. Then, there would be at least 45 points still left to divide amongst the

3 remaining clusters. The number of points to redistribute is updated. For
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Algorithm 5 Procedure to find size of each split such that each split has at
least minClSize number of points

Require: retentionFactor, minClSize, branchingFactor
1: function getLifeSentence(points, level)
2: numberOfSplits← 0
3: pointsToRedistribute = points− points ∗ retentionFactor
4: probStay ←probability of stay for level
5: if pointsToRedistribute < minClSize ∗ 2 then
6: prob← some random number between 0 and 1
7: if prob < probStay then . Not enough points to split.
8: numberOfSplits← 1 . The cluster shrinks
9: else

10: numberOfSplits← 0 . The cluster dies
11: end if
12: else
13: probSplit←probability of split at level for points
14: prob← some random number between 0 and 1
15: if prob < probSplit then
16: min← 2
17: max← 2
18: var ← 3 . Maximum number of equal splits that are possible

without violating minClSize
19: for var <= branchingFactor do
20: if pointsToRedistribute/var > minClSize then
21: max = var
22: end if
23: var ← var + 1
24: end for
25: numberOfSplits←generate number between min and max.
26: else
27: if prob < probStay then
28: numberOfSplits← 1
29: else
30: numberOfSplits← 0
31: end if
32: end if
33: end if
34: return numberOfSplits
35: end function
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the last child cluster, the number of points still unassigned, is the number of

points it will have.

Algorithm 6 Procedure to find size of each split such that each split has at
least minClSize number of points

1: function getBranches(minClSize, points, splits)
2: unassignedPoints← points
3: i← 0
4: nx← array to store size of each split
5: for i < splits do
6: if i == splits− 1 then

. finding size of last split so just assign remaining points
7: nx[i]← unassignedPoints
8: else

. Distribute points such that minClSize is never violated
9: max← unassignedPoints− (splits− i− 1) ∗minClSize

10: nx[i]← generate number between minClSize and max
11: unassigned← unassignedPoints− nx[i]
12: end if
13: i← i+ 1
14: end for
15: return nx
16: end function

Definition 16 (Threshold Distance) The threshold distance is the mini-

mum distance between the clusters sampled from two different clusters at a

particular level.

Figure 5.3 illustrates how the threshold distance is used.

Since pseudo-centers sampled from the root node have the same parent,

the threshold distance is not used. For simplicity, for the next level it is set to

1.0, and at every subsequent level, it is reduced by a predefined factor. If the

factor is very low, there is a prominent distance between child pseudo-centers

and the higher level clusters are very tightly packed. From our experiments

with different values of this factor, we have found 0.8 to be a good choice.

Once the k pseudo-centers have been determined, the standard deviation

of each center must be decided.
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Figure 5.3: Role of Threshold Distance : Consider cluster centers A,B and C sampled
from the origin. When cluster A splits into two child clusters a1 and a2 and C splits
into child clusters c1 and c2, there is a minimum distance that must be maintained
between the child clusters of A and C. This is the threshold distance, d.

Definition 17 (Separation factor) The separation factor, denoted by

separationFactor, is the extent of overlap between the three sigma regions of

two adjacent clusters.

For each pseudo-cluster center, c, we find its nearest neighbor in the set C of

all pseudo-centers obtained so far. We want the clusters around the pseudo-

clusters to be distinguishable, hence, it is important to have a fixed method

for deciding the standard deviation, instead of it being another randomly gen-

erated number. Using the separation factor and distance between c and the

pseudo-centers closest to it, denoted by nearestClusterDistance, we define

the standard deviation of the cluster as:

stdc =
nearestClusterDistanceC

separationFactor
(5.1)

Figure 5.4 shows the effect of separationFactor for three cluster centers in

space.

Once the number of splits at first level, their respective pseudo-centers and

standard deviations are defined, we keep track of the following for each level:

1. Number of points in each child cluster.
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(a) Three points in space and the distance
between them.

A B

C

(b) separationFactor=3

A B

C

(c) separationFactor=6

A B

C

(d) separationFactor=8

Figure 5.4: Effect of separationFactor between three cluster centers in space :
Consider three cluster centers, A, B and C, at some level of the hierarchy, such that
B is the nearest neighbor of both A and C. If we were to draw a circle around each
center with radius as three standard deviations around that center, we find that a
separationFactor of 6 leads to touching three sigma regions. Below 6, the regions
overlap and above 6, the separation starts to become more pronounced.
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2. Number of splits for a parent cluster.

3. Clusters that cease to exist at the next level.

4. Clusters that died at earlier levels.

For all subsequent levels, we must decide the number of splits for each cluster

center and, for clusters that die, move them to a list of final cluster centers.

At any level, three things can happen to a cluster:

1. It can split into child clusters.

2. It can stay the same, i.e. move another level down the hierarchy, and

become more dense.

3. It can die, i.e. terminate at the current level, in which case its points are

considered noise at the levels below the current level.

Definition 18 (Division Factor) If a cluster shrinks, its standard deviation

is reduced by the division factor, denoted by divisionFactor. The smaller the

standard deviation, the more closely packed the points in the cluster will be.

This ensures that as we move away from the root and down the tree, clusters

have smaller standard deviations. The value of divisionFactor is between

(0,1).

There are k clusters at level 1. For every cluster, using getLifeSentence

function in Algorithm 5, we decide what happens to it at the next level. If the

cluster ceases to exist after the current level, it is added to the final cluster

center list along with its standard deviation. The standard deviation should

be less than the lowest deviation at the previous level to ensure that lower level

clusters are more dense. For clusters that shrink, i.e, the center and number of

points remain the same, however, as it proceeds to the next level, we decrease

its standard deviation by a predefined divisionFactor. If a cluster splits, the

number of splits is calculated, retentionFactor number of points are assigned

to the cluster at the current level and the rest of the points are redistributed

66



amongst the children at the next level using Algorithm 6, getBranches func-

tion. A summary of these steps can be found in Algorithm 7, getLevelSTDs.

This is a generic procedure that finds the standard deviation of the root as

well. For the root, only lines 14-16 would be executed since the number of

splits is guaranteed to be more than 1.

Now new pseudo-centers for child clusters must be sampled from the parent

clusters that are split. Three conditions are imposed on this sampling:

1. The child cluster pseudo-centers should be sampled from within the 3-

sigma region of the parent pseudo-center and it should not exist in the

3-sigma region of any clusters at the same level as the parent. Figure

5.5a shows an example of two cluster centers and the sampling region

around them. If we sample a pseudo-center in the region common to the

3-sigma regions of A and B, shown by point C in Figure 5.5b , at the data

generation step, the cluster could belong to either A or B. Thus, there

would be ambiguity as to which parent cluster it belongs to. However, if

child pseudo-centers for B is sampled from the non-overlapping region,

there would be no question of which parent pseudo-center the points

belong to at a higher level of the hierarchy, as shown in Figure 5.5c .

2. The child cluster is at least threshold distance for that level apart from

pseudo-centers that are not its siblings. These may be pseudo-centers of

clusters that have died, are shrinking, or sampled from other parents.

3. The child cluster pseudo-center is closer to its siblings than to other clus-

ter’s pseudo-centers. To ensure this, the maximum distance between a

pseudo-center and its siblings is calculated. Also, the minimum distance

between the pseudo-center and other pseudo-centers that are not its sib-

lings is determined. If the maximum sibling distance is less than the

minimum distance of the pseudo-center and non-sibling pseudo-centers,

then the child cluster pseudo-center is closer to its siblings than other

pseudo-cluster centers.

Once all next level cluster centers have been found, we save these values as
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Algorithm 7 Defining Standard Deviation of Clusters

Require: splitsAtLastLevel : Splits at last level which gave birth to the
current cluster centers.
separationFactor
Current cluster centers
Deviation of previous level clusters
longDead : an array that maintains which of the current cluster centers
have died at earlier levels, 1 if cluster just died and 0 if it died earlier.
divisionFactor

1: function getLevelSTDs
2: for every value, s, in array splitsAtLastLevel do
3: if s == 0 then
4: if longDead[s] == 1 then
5: Reduce its old standard deviation to a value less than the

minimum value in deviations of previous level clusters.
6: else
7: Copy its standard deviation as it is.
8: end if
9: end if

10: if s == 1 then
11: Reduce its old standard deviation to a value less than the min-

imum value in deviations of previous level clusters.
12: end if
13: if s > 1 then
14: for each cluster that was formed due to the split do
15: nearestNeighborDistance← shortest distance between this

cluster center and its siblings.
16: Deviation of this cluster is nearestNeighborDistance /

separationFactor.
17: if this deviation is bigger than the smallest deviation of pre-

vious level then
18: Deviation of this cluster is nearestNeighborDistance /

divisonFactor.
19: end if
20: end for
21: end if
22: end for
23: return
24: end function
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AB

(a) Three sigma regions of two cluster centers

AB C

(b) When child pseudo-cluster of A lies in
overlapping region

AB

C

(c) When child pseudo-cluster of A lies in
non-overlapping region

Figure 5.5: Sampling of child cluster pseudo-centers : A and B are two cluster
centers with their three sigma region boundaries in red and blue, respectively. To
sample new pseudo-centers for cluster centers from A and B, if a point is sampled
in the 3-sigma region of A or B, it is possible that it lies in the 3-sigma region of the
other point as well. To avoid such points and to keep the cluster separate, we must
check that a pseudo-center for a child cluster of a parent is not within the sampling
region of any pseudo-center which is not its parent at the previous level.
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representing that level for further processing. If some clusters are still alive,

the next level is processed. Otherwise, data generation is started.

5.2.1.1 Probability of Splitting, Dying and Shrinking

The probabilities of staying and splitting helps the generator decide if a cluster

should split into child clusters, stay as it is, or be considered as noise from the

next level onwards. The situations where these are utilized are as follows

1. If a cluster has at least 2 ∗minClSize points

• it can split into child clusters that would have at least minClSize

points.

• it can stay or die (based on the probability of stay).

2. If a cluster has less then 2 ∗minClSize points

• it can stay or die (based on the probability of stay).

Probability of split

The probability of split is calculated for a cluster at level h to decide if it

should split to generate child cluster at level h+ 1.

Definition 19 (Split probability decrease constant) The split probabil-

ity decrease constant, denoted by levelConstant, controls the rate of decay for

the probability of split and stay with level in the hierarchy.

The probability of splitting of a cluster depends on the levelConstant and two

other factors:

1. The probability of splitting at a particular level. For deeper levels of the

hierarchy, this probability is very low. Also, note that a cluster splits

only if it stays.

2. The number of points in the cluster. A cluster with 500 points should

be more likely to split than a cluster with 100 points. The more objects

a cluster has, the higher is its probability to split.
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Let h be the current level, numPoints be the total number of points in the

dataset, n be the number of points in the current cluster that may split. We

define p as the fraction points in the cluster.

p =
n

numPoints
(5.2)

We can use an exponential decay function with some value for levelConstant

to compute the probability of a split, combing the two factors:

P (split) = e−levelConstant∗h/p (5.3)

The higher the value of p, i.e. the bigger the size of the current cluster, the

smaller would be the value of levelConstant∗h/p and, hence, the larger would

be the probability of a split. Similarly, the smaller the value of p, the higher

the value of levelConstant ∗ h/p and the smaller P (split).

Let us assume that we have a 1000 point dataset and a cluster with 500

points. Figure 5.6a examines the behavior of the function for different values of

levelConstant. By default levelConstant = 0.35 as the hierarchies produced

with it were 5 levels, inclusive of the root, on an average, and hence, were easy

to visualize. This value can be changed by the user. The higher the value, the

smaller the hierarchies would be due to fewer numbers of splits.

Next, we want to analyze how the probability of split changes with the

number of points in the cluster. Figure 5.6b shows the respective curves when

we vary the number of points in the cluster in a 1000 point dataset from 50

to 800. As expected, the probability of splitting a large cluster is high for

any level. As the size of a cluster decreases and level number increases, the

probability of split tends to be 0.

Probability of stay

The probability of staying and splitting are independent of each other. Only if

a cluster is big enough to split and is able to stay at a particular level does the

probability of stay come into play. We want it to have the following property:

It should decrease as we go to lower levels. Thus, it is a function of the level
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(a) The size of cluster was set to 500. As the value of levelConstant and current level
increase, the probability of split also decreases. The higher the levelConstant, the lower
the probability of split at a level.
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(b) For the default value of levelConstant, the larger the number of points in the cluster,
the larger is the probability of split at any level.

Figure 5.6: Probability of split at different levels of the hierarchy, for different
values of split probability decrease constant, levelConstant and number of points
in a cluster for a 1000 point dataset.
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number and for the root level, it should be 1. The higher the initial probability

to stay, the more levels we will have in the tree.

To reduce the number of user defined parameters, we have modeled the

probability of stay similar to the probability of split using levelConstant and

the current level number, h:

P (stay) = elevelConstant∗h (5.4)

The probability of stay is independent of the number of points in the cluster

and the number of points in the dataset. It is function of the level number.

As with probability of split, we observe the behavior of probability of stay for

different levels in Figure 5.7 .
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Figure 5.7: Probability of stay for a cluster at different levels of a hierarchy, for
different values of split probability decrease constant, levelConstant : As the value
of levelConstant and current level increase, the probability of stay also decreases.
The higher the levelConstant, the lower the probability of stay at a level and the
smaller will be the overall hierarchy.

5.2.2 Data Generation Process

Once all pseudo-centers for clusters have been found, we generate the data.

The pseudo-center of each cluster has a deviation associated with it and the

number of points in its cluster. We simply generate the respective number

of points from within the three sigma region of each center. Fox example,

consider a 400 point cluster that splits into 3 child clusters. The 3 clusters
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1000:1

500:2 400:3 -100:0

180:4 150:5 120:6 -50:0 200:7 160:8 -40:0

-50:0

-100:0

-40:0-160:0-200:0-120:0-150:0-180:0 -100:0

(a) The points kept at a level when a cluster splits are shown collectively as a child of the
split cluster at next level with a negative sign, meaning they are noise at this level. Similarly,
the points in all “dead” clusters are also shown with a negative sign at subsequent levels.

pseudo-
center

No. of points
in cluster Standard Deviation

Indices of points
in final Dataset Last Alive Level

c0 100 sd0 900-999 0 (root)

c1 50 sd1 450-499 1

c2 40 sd2 860-899 1

c3 180 sd3 0-179 2

c4 150 sd4 180-329 2

c5 120 sd5 330-449 2

c6 200 sd6 500-699 2

c7 160 sd7 700-859 2

(b) Pseudo-centers description for clusters and the corresponding indexes of points in the
generated data (obtained from the data generation step). Indexing starts from 0.

Figure 5.8: Data Generation for 1000 points and minimum cluster size of 100,
retentionFactor of 0.10, branchingFactor of 5

are assigned the data in the range [0,400) to facilitate a fast build up of the

hierarchy. This is shown in Figure 5.8.

5.2.3 Ground Truth Hierarchy Generation

Hierarchy generation is the process of assigning labels to each object for dif-

ferent levels of the tree. We simply assign labels [0,k] at each level where 0 is

for noise and k is the total number of pseudo-centers for clusters generated.

In the final hierarchy, each level represents a cluster assignments for the

points. The root level is populated first with all points assigned 1. Iteratively,

we look at all other levels, assigning 0 to the clusters that have died and a

label to those that exist at current level. Algorithm 8 shows the pseudo code
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to build the final hierarchy. The generated hierarchy for Figure 5.8 is shown

in Figure 5.9.

0-999:1

900:999:0500-899:3

860-899:0700-859:8500-699:7

0-499:2

450-499:0330-449:6180-329:50-179:4

Figure 5.9: The Final Hierarchy for the Data Hierarchy for 5.8 : The format is index
range : cluster number. It implies that the labels of the points in that index are the
cluster number.

Algorithm 8 Pseudo code to build the final hierarchy file given all pseudo-
centers of clusters and the data hierarchy

1: function hierarchyBuilder
2: hierarchy ←matrix of size levels× numPoints+ 1
3: clusterNumber ← 2
4: for level l in the hierarchy do
5: hierarchy[l][0]← thresholdDistance
6: if l == lastLevel then
7: Label all points as noise
8: Set density level as 0.
9: end if

10: if l == 0 then . Root node
11: Label all points as 1, belonging to one cluster.
12: Set density level as 1 or the initial threshold distance.
13: end if
14: if l 6= 0 or l 6= lastLevel then
15: for cluster, c present at this level do
16: if c died at a level before or at l then
17: Assign all its points cluster label 0.
18: else
19: Assign all its points label clusterNumber
20: end if
21: clusterNumber = clusterNumber + 1
22: end for
23: end if
24: end for
25: return
26: end function
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5.3 Sample Hierarchies

In this section we present some sample datasets and their underlying hierar-

chies. We use the default settings listed in Table 5.1 and vary one of the major

parameters - the branching factor, or the separation factor, or the retention

factor - one at a time, to show the different hierarchies that can be obtained

for the same number of points and dimensionality.

The split probability decrease constant was set to 0.35 as the hierarchies

produced with it were 5 levels, inclusive of the root, on an average, and hence,

were easy to visualize. The minimum cluster size is set to 30 for a 1000

points dataset to get deep enough hierarchies and to have enough points to

redistribute amongst child clusters.

Parameter Default setting

Number of points in dataset 1000
Dimensionality of data 2
Branching factor 5
Minimum Cluster Size 30
Separation Factor 3
Split probability decrease constant 0.35
Retention Factor 0.10

Table 5.1: Default setting for the Data Generator

5.3.1 Varying the Branching Factor

For these experiments, we vary the branching factor, keeping all other pa-

rameters constant. The branchingFactor defines the maximum number of

splits that a cluster can split into. The effects of the branching factor can be

summarized as

• The higher the number of possible splits, the larger the number of sub-

clusters. With more subclusters, points are more evenly distributed be-

tween them, and the only way a hierarchy would be deep is if a cluster

shrinks over multiple levels. Since the probability of split favors large
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clusters, the chances of a split after the split of a cluster with large num-

ber of points would be low. This can be observed in Figure 5.10c and

its corresponding hierarchical ground truth. The root node split into 9

clusters and none of them split into subclusters at deeper levels of the

hierarchy.

• The branching factor only specifies the range of possible splits for a

cluster. For instance, branchingFactor = 10 can lead to a split into 1,

2, 3, 4, 5, 6, 7, 8, 9, or 10 clusters while a branchingFactor = 5 would

only give 1, 2, 3, 4 or 5 clusters. Thus, branchingFactor = 5 is just

another case for branchingFactor = 10. An example is Figure 5.10e

which was produced by setting the branching factor to 15 but the result

was similar to branching factor of 10.

Figure 5.10 shows some datasets and their corresponding hierarchical ground

truths for varying branching factors.

5.3.2 Varying the Separation Factor

The separationFactor defines how much overlap there should be between two

adjacent clusters. The effects of separation factor are summarized as

• The smaller the value of this parameter, the more overlap there can be at

a particular level. Figure 5.11 shows some sample datasets with different

separation factor values for some two level hierarchy.

• Since clusters generally exists for more than one level, the standard devi-

ation that they have when they are born decreases by the divisionFactor

at every level. Higher values of separationFactor, lead to further apart

clusters, that will shrink more quickly at subsequent levels. Contrasting

between two datasets generated for the same separationFactor = 3 but

different number of levels, see Figure 5.12, we find that for the deeper

hierarchy (Figure 5.12b), we already have very small densely packed clus-

ters in blue. Based on this reasoning, it is safe to have a small separation

factor and the default is set to 3.
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(d) Corresponding hierarchy for 5.10c
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(e) Branching Factor = 15
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(f) Corresponding hierarchy for 5.10e

Figure 5.10: Effect of Branching Factor : Generated 1000 point datasets in 2 di-
mensions with minimum cluster size 30, rententionFactor of 0.10 and separation
factor of 3. We observe that branchingFactor = 10 can lead to numerous splits at
root levels leading to few or no splits at further levels. Note that the labels so not
represent the actual labels of clusters in the hierarchy. These numbers are only for
visualization.
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(c) Separation Factor = 3.5
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(d) Separation Factor = 4
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(e) Corresponding hierarchy for all the
datasets

Figure 5.11: Generated 1000 point datasets with minimum cluster size 30,
rententionFactor of 0.10 and branchingFactor of 5. For the same structure of
datasets with different separation factor values, higher separation factors generate
datasets that overlap less, (a) having the most overlap between the two clusters and
separationFactor = 2.5 while (d) has the least overlap amongst these datasest with
separationFactor = 4.
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(a) Short hierarchy example
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(b) Deeper hierarchy example

Figure 5.12: Generated 1000 point datasets in 2 dimensions with separationFactor
of 3, minimum cluster size 30, rententionFactor of 0.10 and branchingFactor of 5.
As clusters shrink at deeper levels of the hierarchy, their standard deviation reduces.
This implies that if we already start with a small value of standard deviation to avoid
overlap, shrinking would cause the clusters to be concentrated in very small regions
due to low standard deviations.

5.3.3 Varying of Retention Factor

The retention factor defines the fraction of points that stay at a level – become

noise – when a cluster splits. We vary the retention factor from {0,0.1,0.2},

allowing 0 points, 10% of the points and 20% of the points to be retained at

the parent level. Some observations about the retention factor are:

• If no points are retained at the parent level, the nested clusters typically

would be surrounded by less dense regions.

• The higher the retention factor, the lower the number of points to dis-

tribute between child clusters. Thus, there must be a balance between

the amount of points retained at a parent and the number of points in

the child cluster.

5.4 Summary and Future Work

In this chapter, we proposed a novel data generator that produces data with

hierarchical cluster structure. We used a method of sampling Gaussian distri-

butions for the generation of data. Also, we assumed that the Gaussians were
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(b) Corresponding hierarchy for 5.13a
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(c) Retention Factor = 0.10
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(d) Corresponding hierarchy for 5.13c
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(e) Retention Factor = 0.20
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(f) Corresponding hierarchy for 5.13e

Figure 5.13: Effect of Retention Factor : Generated 1000 point datasets in 2 dimen-
sions with minimum cluster size 30, branchingFactor of 0.10 and separation factor
of 3. The rentionFactor can be seen as the amount of noise that should be between
child clusters or the number of less-dense points that help connect child clusters.
Note that the labels so not represent the actual labels of clusters in the hierarchy.
These numbers are only for visualization.
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isotropic, i.e. same standard deviation in each dimension. Each dimension

was independent of the other and data was uncorrelated between dimensions.

Using probabilities of split and stay, we were able to ensure that there were

more splits for large clusters. However, there is always the small chance that

in spite of a large probability to split/stay, a big cluster dies or a small cluster

splits. By using the minimum cluster size parameter, we ensure that no clus-

ter has fewer points than the minimum cluster size value. Also, we presented

numerous hierarchies and datasets that can be obtained from the generator.

In the future, we would like to extend our work to anisotropic Gaussians,

allowing dependence between the dimensions and we would use a covariance

matrix to record the standard deviation as well the degree of correlation be-

tween the data in each dimension. Mahalanobis distance [47] would be used

to check if a point is within the three sigma region of a parent. The result

would be elliptical clusters, instead of spherical shaped-clusters.

The data generator models noise as a cluster, i.e. all points that become

noise are given the label 0 irrespective of which level they are at and which

cluster they initially belonged to. Thus, the datasets generated can be used

by algorithms that represent noise as one cluster. Other HCA algorithms like

Single Linkage [37], on the other hand, give a unique label to every noise object.

Every noise object belongs to its own singleton cluster. These algorithms would

not be able to use the datasets generated. Thus, in the future, we would like

to have an implementation of noise that can be used by both kinds of datasets

and not just limited to density-based clusters.

82



Chapter 6

Case Study of Integrating
Kernel Density Estimates into
Hierarchical Clustering

The most important user defined parameter for HDBSCAN* is mpts which

is the number of nearest neighbors to consider (including the point itself)

while estimating the density using the unnormalized kNN kernel [12]. For our

extended version of HDBSCAN* with kernels, HDBSCANk, we introduced

the parameter, kernel, which is the kernel density estimate the user wants the

algorithm to use for its calculations, the connectivity method, method, that we

elaborated on in Chapter 4 and the smoothing parameter, bandwidth, which

defines the bandwidth of the kernel in each dimension. In the case of the kNN

kernel, bandwidth is simply the value of k. Our preliminary experiments using

one kernel and method left some questions unanswered in Section 4.2. Testing

using one kernel does not say much about a generalized algorithm that can

be used with any kernel. Comparing results of only flat partitions does not

tell us how good a hierarchical clustering algorithm is in discovering complete

ground truth hierarchies. Similarly, just evaluating one bandwidth value does

not tell much about the robustness of a technique.

To find answers to all these questions, we undertook a detailed case study.

As examples of kernels with fixed bandwidth parameter, we integrated the

Gaussian kernel and the Epanechnikov kernel into our framework, HDBSCANk.

We performed an exhaustive search to find the best bandwidth based on op-
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timizing internal cluster validation measures, DBCV [51] and SI [60]. These

results were compared with the best performance we can get by using sta-

tistical bandwidth estimators like Silverman’s Rule of thumb [66], and cross

validation using Maximum Likelihood [18, 25] mentioned in Section 2.2.1.1.

We also integrated the All-Points-Core-Distance kernel into our algorithm,

HDBSCANk. This kernel was recently proposed by Moulavi [50]. Lastly, all

kernel results were evaluated against the original HDBSCAN* as the baseline

algorithm.

We used a variety of datasets – two dimensional datasets downloaded

from Joensuu Clustering Datasets [1] and two self generated two dimensional

dataset, real datasets downloaded from the UCI repository [43], artificially gen-

erated high dimensional datasets using Handl and Knowles [27] data generator

and hierarchical datasets obtained from our data generator with hierarchical

ground truth proposed in the Chapter 5.

6.1 Cluster Validation Measures

In this section we explain the cluster validation measures used in the experi-

ments.

6.1.1 External Validation Measure

External cluster validation measures are used to evaluate the extent to which

cluster labels match externally available ground truth labeling.

Adjusted Rand Index (ARI)

The Rand Index [56] is a measure of similarity between two data clusterings.

Given a dataset with n objects S = {o1, . . . , on}, and two labellings of S:

X = {x1, . . . , xn} and Y = {y1, . . . , yn}, where xi and yi are the possible

cluster assignments for the object oi, we can calculate

• a - the number of pairs of objects that have the same label in both X

and Y.
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• b - the number of pairs of objects that have the different label in X as

well as Y.

• c - the number of pairs of objects that have the same label in both X

but different labels in Y.

• d - the number of pairs of objects that have the different label in X but

same labels in Y.

Using a, b, c, d, the Rand index is defined as:

R =
a+ b

a+ b+ c+ d

The Rand Index is between 0 and 1 and can give high values even for random

groupings of objects. Also, the expected value of the Rand Index of two

random partitions does not take a constant value (say zero). The Adjusted

Rand Index (ARI) proposed by Hubert and Arabie [34] assumes the generalized

hypergeometric distribution as a model of randomness and overcomes these

shortcomings of the Rand Index.

The ARI is in the range -1 to 1, giving 1 for a perfect match between the

two clusterings and -1 if the index is less than the expected value. Hubert and

Arabie [34] proposed the general form for adjustment of an index by chance,

for an index with a constant expected value, is given by

AdjutedRandIndex =
Index− ExpectedIndex

MaxIndex− ExpectedIndex

Using Rand Index, ARI is defined as:

ARI =
a− (a+c)(a+b)

a+b+c+d

2a+b+c
2
− (a+c)(a+b)

a+b+c+d

(6.1)

where a, b, c, d are defined as above.

Hierarchy Agreement Index (HAI)

The Hierarchy Agreement Index (HAI) [36] is based on the Rand Index [56] and

compares the hierarchical structure of two hierarchies. Its values ranges from

0 (dissimilar hierarchies) to 1 (same hierarchical structure). The relatedness
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of each pair of objects in the dataset under two input hierarchies is compared

and the results are aggregated to achieve a single unified measure of hierarchy

correspondence.

To perform this evaluation for a n object dataset, a hierarchy distance,

dH(a, b) between two elements a and b in cluster hierarchy H is defined. Let

na,bo be the smallest node in the hierarchy containing both a and b, and noD

be the total number of objects at node no. Then, size(no) = |noD

n
| represents

the proportion of total objects in no as compared to the dataset size n.

dH(a, b) =

{
0 if na,b is a leaf node

size(na,b) otherwise

Two elements that lie in the same leaf node are maximally close under that

hierarchy. Finally, HAI is given by:

HAI(H1,H2) = 1− 1

N2

N∑
i=1

N∑
j=1

|dH1(xi, xj)− dH2(xi, xj)| (6.2)

The distance dH is independent of the specific structure of the hierarchy be-

cause it is unaffected by the number of intermediate nodes between xi , xj and

nxi,xj .

6.1.2 Internal Validation Measures

These measures are used to measure the goodness of a clustering structure

using only the data itself.

Density Based Cluster Validation (DBCV)

DBCV is a relative validation index for density-based, arbitrary shaped clus-

ters. Let C = {C1, . . . Ck} be the clustering solution being evaluated that

assigns each object to one of the k clusters. The relative density connection

between two objects is assessed using the following formulation of the density

based distance, The all-points-core-distance (inverse of the density) of an ob-

ject x, belonging to cluster Cj with respect to all other nj1 objects in Cj is

defined as:

allptscoredist(o) =

(∑
xi∈Cj ,xi 6=x

(
1

d(x,xi)

)d
nj − 1

)−1/d
(6.3)
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The original space in which the clustering solution is embedded is transformed

to the density space using the all points core distance to represent density of

an object and the Mutual Reachability Distance [41], between two objects xi

and xj to define the connectivity between them.

dmreach(xi,xj) = max(dcore(xi), dcore(xj), d(xi,xj)) (6.4)

Using allptscoredist and dmreach, a Minimum Spanning Tree is built in

Mutual Reachability Space. From this MST, individual MSTs for each cluster

are derived, capturing both the density and shape of the cluster. The edges in

the MSTs are used to identify the regions of low density within the clusters,

while the edges in the full MST are used to identify regions of high density

between pairs of clusters, representing the density separation between clusters.

The density sparseness of a cluster (DSp) is the maximum edge weight

value in its corresponding MST, considering only its internal vertices, i.e.,

vertices that have a degree greater than one. Considering the edges connecting

two clusters, the density separation of the two clusters (DSep) is given by the

minimum dmreach between the internal vertices of the clusters, thus, capturing,

the region with lowest density between the clusters.

A validation index VC is computed for each cluster using its density sparse-

ness, DSp, and density separation, DSep w.r.t the cluster nearest to it.

The denominator is a normalization term that ensures VC is in the range

[-1,1] and the min allows the closest neighbor cluster to be selected for calcu-

lations.

VC(Ci) =
minj 6=i(DSep(Ci, Cj))−DSp(Ci)

max(minj 6=i(DSep(Ci, Cj)), DSp(Ci)
(6.5)

DBCV is the combination of quality of all clusters, define as:

DBCV (C) =
∑
C∈C

|Ci|
|X|

VC(Ci) (6.6)

By multiplying the quality of each cluster by the percentage of objects it

contains, noise is implicitly considered. A clustering solution with high amount

of noise is penalized, receiving a small score, even if its clusters have a good

individual score according to Equation 6.5.
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Silhouette Index (SI)

The Silhouette Index is an internal validation measure that compares how

similar an object is to its own cluster compared to other clusters [60]. The

Silhouette Index for a single object ranges from -1 to 1, where a high value

indicates that the object fits well into its own cluster and fits poorly into

neighboring clusters. If most objects have a high value, then the clustering

configuration is appropriate. If many points have a low or negative value, then

the clustering configuration may have too many or too few clusters, or there

may be no structure in the data.

Consider an n object dataset X = {x1, . . . xn} and a clustering solution

C = {C1, . . . , Ck} that separated the objects in X into k clusters. For every

object x ∈ Ci, let ax be the average dissimilarity of x with all other objects

within the same cluster Ci.

Let bx be the lowest average dissimilarity of x to any other cluster of which

x is not a member. Thus, from the set C, we select the cluster Cj that is

closest to x and Ci 6= Cj. The silhouette value of x is defined by

sx =


1− ax

bx
if ax < bx

0 if ax = bx
ax
bx
− 1 if ax > bx

(6.7)

The Silhouette index of the dataset X is the average silhouette for all objects.

SI(X) =
1

n

n∑
i=1

sxi (6.8)

6.2 Experimental Setup

For the case study described in this chapter, we normalized the datasets to [0, 1]

in each dimension. Consider a n object dataset X = {x1,x2 . . .xn} in d di-

mensional space. The value of each object in dimension j is (x1j,x2j, . . . ,xnj).

By calculating the minimum and maximum value of objects in dimension j,

the normalized value zij of object xi in j dimension is given by

zij =
xij −min(x·j)

max(x·j)−min(x·j)
(6.9)
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• Kernel

We use the All-Points-Core-Distance [51], Gaussian and Epanechnikov

kernels for our experiments.

• Edge Weight Estimation Methods

The following edge estimation methods, proposed in Section 4.3 to define

the connectivity between a pair of objects, are compared in the experi-

ments.

1. Midpoint Estimation, hereafter referred to as M1, estimates the

density for an edge as the density at the midpoint due to the whole

dataset.

2. Midpoint Estimation using top contributors, hereafter referred to

as M2, estimates the density for an edge as the density at the

midpoint due to a subset of the dataset.

3. Torque Rule Estimation using top contributors, hereafter referred

to as M3, estimates the density for an edge as the density at the

torque point due to a subset of the dataset.

4. Golden Search using top contributors, hereafter referred to as M4,

estimates the density for an edge as the density at the point where

the density estimate is minimum, calculated by performing golden

search and minimizing the K.D.E. value.

Since Interval Estimation and Torque Rule Estimation consistently gave

results that were no better than Midpoint Estimation for most datasets,

we do not analyze them in this chapter.

• Calculation of Bandwidth

1. We used two common heuristics to estimate bandwidths – Silver-

man’s Rule of thumb [66] and Maximum Likelihood [18, 25]. These

were calculated using the functions available in R and MATLAB,

respectively. Their respective equations can be found in Chapter 2,

Equation (2.3) and Equation (2.4).
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2. We also performed a small experiment with three datasets of di-

mensionality {2, 10, 64} and found that the bandwidth range of

[0.001, 0.200] with increments of 0.001, is sufficient to find an opti-

mal partition for any dataset. The small experiment was as follows:

Consider a value h ∈ [0.001, 0.200]. Using h as the bandwidth

in every dimension for some kernel in HDBSCANk, we obtain a

hierarchy and flat partitions from it. On evaluating all partitions

from the hierarchies built for different values of h ∈ [0.001, 0.200],

we found that the value of h that gave the best possible flat partition

was in this range. This is one way of performing an exhaustive

search for the optimal bandwidth.

• Partition Extraction For datasets that did not have a hierarchical

ground truth, we used the following partition techniques:

1. Stability partition: This is the default flat partitioning technique

used by HDBSCAN* which is an instance of FOSC [11].

2. All partitions: In practical scenarios, ground truth is not available.

Often, an internal validation index is used to decide which param-

eter gives the best result. Based on this practice and to obtain a

sense of the “potential” of a hierarchy, i.e., what could be the best

possible extracted partition, from each hierarchy, we extracted and

evaluated all possible partitions. This can be achieved as follows:

Consider a simple cluster tree for the hierarchy, as shown in Fig-

ure 6.1. The set of all possible extractions from this tree are all

combinations of clusters such that each object has only one cluster

assignment. Thus, parent clusters cannot be combined with their

child clusters. For this sample tree, all possible partitions are :

{C1,C2} and {C1,C3,C4}.

• Internal Validation

For each bandwidth and selected partition extraction method, we report

three types of values -
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C1 C2

C3 C4

Figure 6.1: Sample Cluster Tree

1. The maximum ARI that can be obtained from the hierarchies. This

represents the potential of the hierarchy generated.

2. The ARI value of the bandwidth that has the highest value of

DBCV.

3. The ARI value of the bandwidth that has the highest value of SI.

• For datasets with hierarchical ground truth, the hierarchy for each com-

bination of kernel, method, bandwidth was compared with the given

hierarchical ground truth using HAI.

• Minimum Cluster Size Both HDBSCAN* and HDNSCANk have the

parameter, mclSize, for hierarchy simplification. In HDBSCAN*, mclSize

is set to be the same value as mpts, though this can be varied. For

consistency in hierarchies extracted from both algorithms, we decided

to fix the value of mclSize. Also, HDBSCANk does not have a mpts

parameter. Only when using the kNN kernel bandwidth = k = mpts;

for other kernels, bandwidth is a small decimal number and it cannot be

used to set the value of mclSize.

A summary of the parameters of the case study is listed in Table 6.1.

6.2.1 Case Study Steps

The aim of our study is to observe the behavior of the kernels and methods

for edge estimation in order to get insight into their performance. Based on

the type of available ground truth, our experiments can be summarized as:

1. Case 1 - Available ground truth is hierarchical: In this case, the hierarchy

obtained from HDBSCANk and HDBSCAN* are compared with the
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Table 6.1: Experimental Parameters

Parameter Settings

Kernel
Normal
Epanechnikov
All-Points-Core-Distance Kernel

Internal Validation Index
DBCV
SI

Bandwidth
Silverman’s Rule of Thumb Bandwidth
Maximum Likelihood Bandwidth
Exhaustive search in range [0.001, 0.200]

Edge Weight Estimation Methods

M1 Midpoint estimation
M2 Midpoint estimation using top contributors
M3 Torque Rule using top contributors
M4 Golden search using top contributors

given ground truth using HAI. For the exhaustive search, the bandwidth

with the maximum HAI and the corresponding HAI value are reported.

2. Case 2 - Available ground truth is a single labeling of the objects: In this

case, for the stability partition, we report the ARI. When all partitions

are evaluated, we report the bandwidth for the hierarchy that obtained

the maximum ARI, the bandwidth with maximum DBCV value and the

bandwidth with maximum SI value. The ARI of the partitions with best

DBCV and the best SI are reported as well.

6.3 Results

This section is organized as follows. We have 4 major categories of datasets:

two dimensional datasets, real datasets, high dimensional datasets and datasets

with hierarchical ground truth. For each category, we present an aggregate re-

sult which summarizes the general behavior of all the datasets together. Next,

we illustrate the results of a few datasets in more detail.

6.3.1 Results on Two dimensional Clustering Data Sets

A summary of the two dimensional datasets is given in Table 6.2 . The plots

of these datasets are shown in Figure 6.2 .
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Figure 6.2: Two Dimensional Datasets
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Dataset Name No. of points No. of Clusters
aggregation 788 7
compound 399 6
spiral 312 3
r15 600 15
jain 373 2
flame 240 2
5gaussians 500 5
2gaussians 200 2
pathbased 300 3
2spirals 1000 2
d31 3100 31

Table 6.2: 2 dimensional datasets Summary

For datasets with less than 1000 points, a minimum cluster size of 10 was

used; for 2spirals and d31, minimum cluster size was set to 50.

The potential of an algorithm is the best ARI value we could get if we knew

the right parameters to use (to obtain this best result). For HDBSCAN*, this

potential is found if we test every value of mpts and from every hierarchy that is

produced, extract all possible partitions. Since there are no parameters for the

All-Points-Core-Distance kernel, the search for the best partition to determine

“potential” is limited to a single hierarchy. By comparing these partitions with

the available ground truth, we can determine the maximum value of ARI that

is achievable, hence, recording the parameters that lead to this best possible

result. We ran this experiment on all 11 datasets. Figure 6.3 shows the bar

plot comparing all these techniques after aggregating the ARIs of all datasets.

We found that

• Our baseline HDBSCAN*, on an average, also performed well, giving

close to 0.95 ARI.

• The All-Points-Core-Distance Kernel could give about 0.8 ARI.

• In terms of potential of the Normal kernel, if all partitions were evaluated

for every hierarchy, a maximum ARI of close to 0.95 could be obtained

with Method M3 (Torque Rule estimation using top contributors).
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Figure 6.3: Maximum ARI that can be achieved on an average for Two Dimensional
Datasets

• The Epanechnikov kernel was also not far behind, with ARI close to 0.95

when used with the edge estimation method M2, Midpoint Estimation

using top contributors.

• The simple edge estimation method of Midpoint Estimation, M1, was

outperformed by all other kernel-edge weight estimation method combi-

nations.

• The plug-in bandwidths performed better with the Epanechnikov kernel

than with the Normal kernel. Silverman’s rule of thumb was better than

Maximum Likelihood estimation of bandwidth.

Based on this average behavior, we can conclude that HDBSCANk is capable

of finding the ground truth. It can perform better than HDBSCAN* and

the All-Points-Core-Distance kernel. However, there is still the problem of

finding the right bandwidth. Simply using a precomputed bandwidth with

Epanechnikov kernel can give ARI close to the potential ARI.

In practical applications of unsupervised machine learning algorithms, the

ground truth of the datasets is not available. If there were enough resources

available in terms of computation power and time, one could still use internal

validation measure to select the best parameters. For both HDBSCAN* and
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HDBSCANk, this process would be similar to what we did to find the poten-

tial of the algorithms. In the same setting as above, we introduced interval

validation measures – DBCV and SI – to help us find the best parameter. We

then compare the ARI value from this ‘best’ partition to what we are capable

of achieving.

We compared how a kernel would perform if the resources were available,

and determine how the two internal validation measures compare to each other

on this task. We use box plots to show the variation of ARI of partitions

selected by optimizing DBCV and SI. The results are shown in Figure 6.4.

We can summarize these results as follows:

• Among the kernels, Epanechnikov shows the least variation in ARIs ob-

tained by choosing the best partition with SI. With SI, the median value

of ARI that can be obtained for this kernel by exhaustively searching for

the best bandwidth is close to 1. See Figures

• The Normal kernel with DBCV has consistency small Interquartile range,

irrespective of edge estimation methods.

• The Normal kernel can identify a better partition when used in combi-

nation with DBCV as compared to SI.

• The outliers on the plots, Figures 6.4a, 6.4b, 6.4c and 6.4d correspond

in all cases to the d31 dataset with DBCV and the spiral with SI.

• HDBSCAN* and All-Points-Core-Distance kernel, Figure 6.4e, have a

long box plots, meaning the results vary a lot. Usually, as in the case of

HDBSCAN-DBCV combination, it is more probable to get a partition

with ARI less than 0.75 than one with higher ARI.

From these box plots we conclude that the edge estimation methods are more

robust when used with SI or DBCV as compared to applying the same vali-

dation measures for selection of best partition with HDBSCAN* or the All-

Points-Core-Distance kernel does not always give a high ARI. Also, with edge
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(a) M1 - Midpoint Estimation
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(b) M2 - Midpoint Estimation using top
contributors
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(c) M3 - Torque Estimation using top
contributors
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(d) M4 - Golden Search on top contribu-
tors
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(e) HDBSCAN and All-Points-Core-
Distance Kernel

Figure 6.4: Performance of Validation Measures - Density-based cluster validation
(DBCV) and Silhouette Index (SI) - with HDBSCAN*(HD) and HDBSCANk with
the All-Points-Core-Distance kernel (APCD), the Normal kernel (Nrm) and the
Epanechnikov (Epan) kernel.
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weight estimation methods that use top contributors, the partitions selected

with best DBCV and best SI were high ARI partitions.

Though the box plots indicate which internal validation index can be useful,

we find that doing such an extensive analysis of every possible partition is

time consuming and with an algorithm that is already O(dn2 + n2 log n) in d

dimensions, it would not be feasible to undertake such an analysis in many

practical applications. Thus, we focus the rest of the experimental analysis on

evaluating the performance of all algorithms using the partitions we can get

from the hierarchies by the default extraction method based on stability.

On an average, the maximum ARI achievable with HDBSCAN* ( Table

6.3) by evaluating all partitions for all hierarchies built for different values of

mpts, was 0.93. When evaluating only the stability partition, the ARI value

of 0.922 was obtained. Using internal validation measures, DBCV and SI,

produced stability partitions with ARI of 0.78 and 0.82, on an average.

For the Normal kernel (Figure 6.5), on an average for all two dimensional

datasets, the maximum ARI achieving by evaluating all partitions from hier-

archies of bandwidths [0.001, 0.200], was about 1 with M3. If only stability

partitions were evaluated for the same hierarchies, the maximum ARI value

achievable was about 0.95 with M2. For all methods, the best ARI from sta-

bility partitions was close to that obtained by evaluating all partitions. Now,

looking at what we could achieve, using the internal validation measure DBCV

gave the ARI value of close to 0.8 with M2-M4; with SI, the average ARI of 0.7

could be obtained. The heuristic bandwidth’s stability partitions showed simi-

lar behavior. Thus, using internal validation measures or heuristic bandwidths

with the Normal kernel did not find stability partitions that were better than

HDBSCAN* or the All-Points-Core-Distance kernel. Note that datasets like

d31 and spiral, scatter plots shown in Figures 6.2k and 6.2c respectively, were

identified to be outliers in the Figure 6.4a-6.4d. Their ARI values would affect

Potential Best ARI from Stability Partition
Validation Measure used for Selection
SI DBCV

0.93 0.92 0.78 0.82

Table 6.3: Different ARIs from HDBSCAN*
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Figure 6.5: Maximum ARI from Stability Partitions averaged over all 11 datasets:
HDBSCANk with Normal Kernel

the mean result for the potential plots as well the plots for the ARI values

obtained from the stability partitions as well.

A similar analysis with the Epanechnikov kernel (Figure 6.6) was con-

ducted. Though the potential of the hierarchies was found to be close to

the ARI value of 1 with edge weight estimation methods M2-M4, and the

highest achievable ARI from stability partitions was also close to 1, the in-

ternal validation measures could not select a partition with such values of

ARI. The heuristics bandwidth estimators were able to perform better than

the All-Points-Core-Distance kernel for all edge weight estimation methods,

Silverman’s rule of thumb being more accurate. Using either of the heuris-

tic bandwidths with methods M2-M4, the ARI achieved was more that what

HDBSCAN* or All-Points-Core-Distance kernel can achieve. Thus, with the
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Figure 6.6: Maximum ARI from Stability Partitions averaged over all 11 datasets:
HDBSCANk with Epanechnikov Kernel
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two dimensional datasets,the Epanechnikov kernel did better than the Normal

kernel. On an average for the 11 datasets, using the internal validation indexes

selects partitions with lower ARI value. The heuristic bandwidth estimators

perform better than DBCV or SI, their stability partitions giving more ARI

than the All-Points-Core-Distance kernel. We got the ARI of 0.9 with M2 and

DBCV with the Epanechnikov kernel, which is more than the All-Points-Core-

Distance kernel result (ARI close to 0.8) and the ARI of best DBCV and SI

partitions from HDBSCAN* ( Table 6.3).

Our aggregate plots do not tell us much about the individual datasets. The

datasets in this section can be broadly divided into three categories:

1. Datasets with approximately the same density of each cluster – 5gaus-

sians, 2gaussians, 2spirals;

2. Datasets in which some clusters are more dense than others – aggrega-

tion, compound, r15, jain, or some clusters seem to form a bigger cluster

– d31 and r15, however they are still globular enough to be identified as

different clusters at some density level. The pathbased dataset is another

dataset where one cluster is less dense than the other two clusters;

3. Datasets where denseness of a cluster is concentrated at one end of it.

The best example for this is spiral dataset. The three spirals have more

points where they are close and less at the tails. The flame dataset,

which comes from fuzzy clustering, also falls in this category as it is not

so easy to separate.

We now analyze one representative dataset from each category and also present

a study of the robustness of the bandwidth of HDBSCANk and mpts for HDB-

SCAN*.

6.3.1.1 2spirals Dataset

The 2spirals dataset, Figure 6.2j, is a 1000 point dataset with 2 spirals that

have uniform density along the arms of the spirals. Figure 6.7 shows the

maximum ARI we can get using HDBSCAN*, HDBSCANk with the Normal
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Figure 6.7: Maximum ARI that can be achieved on the 2spirals Dataset

and Epanechnikov kernels with different edge estimation methods and the All-

Points-Core-Distance kernel. Irrespective of kernel, edge estimation method

and algorithm used (HDBSCAN* or HDBSCANk), this dataset can be easily

separated into two clusters. On evaluating all partitions from hierarchies of

heuristic bandwidths, a partition with ARI value of 1 can be found.

With HDBSCAN*, irrespective of internal validation measure used, the

ARI of 1 could be achieved from amongst the stability partitions. The All-

Points-Core-Distance kernel could also produce the stability partition with the

ARI value of 1.

As we observed in Figure 6.7, the Epanechnikov kernel is capable of finding

the ground truth of this dataset when all partitions are evaluated. As shown in

Figure 6.8, on comparing only the stability partitions with the ground truth,

the ARI value of 1 is still achievable. Evaluating the range of bandwidths from

[0.001, 0.200] and selecting the partition with maximum SI did not give good

ARI results. That is to be expected because SI is known to work better with

globular clusters than arbitrary shaped clusters. Using DBCV for selection as

well as the heuristic bandwidth estimators gave the ARI of 1.
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Figure 6.8: 2spirals Dataset : maximum ARI from stability partitions the Epanech-
nikov Kernel in HDBSCANk

Robustness of Bandwidth

Figures 6.9a - 6.9d shows the change in ARI with change in bandwidth of

HDBSCANk using the Normal and the Epanechnikov kernel. The Epanech-

nikov kernel showed less change in ARI with increasing bandwidth. Also, for

M3, it was able to give ARI of 1 for all bandwidths after 0.021. The Normal

kernel also had a number of bandwidths for which the ground truth could be

identified. The heuristic bandwidths gave ARI of 1, irrespective of kernel and

method.

Figure 6.9e shows change in ARI with change in mpts for HDBSCAN*. Of

the 19 mpts tested, all gave an ARI of 1. As mentioned earlier, the All-Points-

Core-Distance kernel also gives ARI of 1 with stability partition.

Thus, with both the Normal and the Epanechnikov kernel in HDBSCANk,

we can perform as well as HDBSCAN* and HDBSCANk with All-Points-core-

Distance kernel.

6.3.1.2 d31 Dataset

This dataset is composed of 31 Gaussian clusters of 100 points each, as shown

in Figure 6.2k. Figure 6.10 shows the ARI we can obtain if we evaluated all

possible partitions from every hierarchy. With HDBSCAN*, the maximum
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(a) M1
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(b) M2
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(c) M3
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(d) M4
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(e) HDBSCAN* and All-Points-Core-
Distance kernel

Figure 6.9: 2spirals dataset: Change in ARI as bandwidth of kernel of HDBSCANk
and mpts of HDBSCAN* is varied
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Figure 6.10: Maximum ARI that can be achieved on the d31 Dataset

achievable ARI was 0.8 while from the HDBSCANk with All-Points-Core-

Distance kernel hierarchy, a partition with ARI of 0.7 could be extracted. The

exhaustive search with the Normal and Epanechnikov kernels could produce

partitions with maximum ARI of close to 0.9 with methods M2-M4. Evaluating

all partitions from hierarchies built with the Normal kernel using these heuris-

tic bandwidth estimators gave an ARI value that was smaller than the best

ARI we can get by exhaustively searching for the bandwidth. The bandwidth

estimators performed better with the Epanechnikov kernel, the best partition

from the HDBSCANk hierarchy using Silverman’s rule of thumb giving an

ARI of almost

Using HDBSCAN* with internal validation measures for selecting the best

stability partition for the hierarchies for different mpts, the ARI of partition

with maximum DBCV was 0.33 while with SI, ARI of 0.8 was obtained. The

stability partition from All-Points-Core-Distance kernel gave ARI of 0.7. Now

we compare these results with those from the stability partitions from the

Epanechnikov kernel.

On evaluating all partitions from the hierarchies in bandwidth range [0.001

,0.200], we found that the Epanechnikov kernel had the potential of giving

ARI of close to 0.9 with M3 (from Figure 6.10). On evaluating only the stabil-

ity partitions, the best ARI achievable is the same – about 0.87 with M3, as
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Figure 6.11: d31 Dataset : ARI using HDBSCANk with Epanechnikov Kernel

shown in Figure 6.11. All four edge estimation methods are capable of produc-

ing a stability partition with ARI of about 0.85. Using the stability partition

with best SI gave better ARIs than optimizing the DBCV values here because

DBCV prefers some of these clusters to be combined while SI prefers them

to be separated. The ARI value obtained with SI and DBCV was 0.87 (with

M3) and 0.35 (M2-M4), respectively. The stability partitions extracted from

hierarchies constructed based on Silverman’s Rule of thumb heuristic band-

width estimator performed well, giving ARI value of approximately 0.8 with

edge weight estimation methods M2-M4. On the other hand, cross validation

using Maximum Likelihood also gave ARI close to 0.8 with methods M2 and

M3.

Robustness of the bandwidths

HDBSCANk with the Epanechnikov kernels is capable of finding stability par-

titions with better ARI than HDBSCAN* or All-Points-Core-Distance kernel.

Of the 200 bandwidths tested for the Epanechnikov kernels, there was only one

‘best’ bandwidth for every kernel-edge weight estimation combination. Thus,

predicting the correct bandwidth-kernel-method combination is important to

obtain good results. The heuristic bandwidth estimators with the Epanech-

nikov kernel with edge eight estimation methods M2-M4 will give stability
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Figure 6.12: Maximum ARI that can be achieved on the spiral Dataset

partitions of close to the baseline algorithms: HDBSCAN* and HDBSCANk

with the All-Points-Core-Distance kernel.

6.3.1.3 Spiral Dataset

The spiral dataset (Figure 6.2c) is similar to the 2spirals dataset, except that

all three spirals are denser at the place where they are closest together and

sparser at their tails. Figure 6.12 shows the maximum ARI we can get by

evaluating all partitions for every algorithm. HDBSCAN* can identify the

underlying structure with mpts = 2, 3, 4. With the All-Points-Core-Distance

kernel, we achieved an ARI of approximately 0.5. Both the Normal and the

Epanechnikov kernels in HDBSCANk are capable of identifying the ground

truth when giving the right parameters. The edge weight estimation meth-

ods, that used the top contributors, work with both kernels when conducting

an exhaustive search for the best bandwidth. The heuristic bandwidths, es-

pecially Silverman’s rule of thumb, was found capable of an ARI of 1 with

Epanechnikov kernel, irrespective of the method for estimating the connectiv-

ity between objects. However, using them with the Normal kernel and M1

gave low ARIs of 0.1.

With HDBSCAN*, irrespective of interval validation measure used to select

the best stability partition over the range of mpts tested, an ARI of 1 could
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Figure 6.13: spiral Dataset : maximum ARI from stability partitions using the
Epanechnikov Kernel

be achieved. The stability partition for All-Points-Core-Distance kernel gave

ARI of 0.49.

The Epanechnikov kernel, on evaluating all partitions, was capable of ARI

of 1 as shown in Figure 6.12. Figure 6.13 compares the different ARI values we

get from the stability partitions of hierarchies built with Epanechnikov kernel.

The maximum ARI of the stability partitions of the hierarchies for bandwidths

[0.001,0.200] was 1. Thus, the stability partitions can identify the ground

truth. Both internal validation measures, DBCV and SI, for selecting the best

stability partition from the hierarchies built for the range of bandwidths did

not produce partitions with high ARI values. However, the stability partitions

from hierarchies built with Epanechnikov kernel and bandwidths estimated

from Silverman’s rule of thumb and Maximum Likelihood gave ARI values of

1 each with all top contributors edge estimation methods, i.e. M2-M4.

Thus, with the Epanechnikov kernel in HDBSCANk, we could get better

results than the All-Points-Core-Distance kernel and HDBSCAN*.

Robustness of bandwidth

Figures 6.14a-6.14d show the change in ARI with change in bandwidth of

HDBSCANk using the Normal and the Epanechnikov kernels. There are very

few bandwidths with M1 whose stability partitions are capable of finding the
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(b) M2
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(c) M3
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(d) M4
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(e) HDBSCAN* and All-Points-Core-
Distance kernel

Figure 6.14: spirals dataset: Change in ARI as bandwidth of kernel of HDBSCANk
and mpts of HDBSCAN* is varied
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ground truth. On the other hand, with edge weight estimation methods M2-

M4, smaller bandwidths in range 0.02 to 0.100 are capable of finding the un-

derlying structure in the dataset. A wider range is available with the Epanech-

nikov kernel. The heuristic bandwidths gave ARI of 1 with the Epanechnikov

kernel for methods M2-M4. With the Normal kernel and Silverman’s rule of

thumb, gave ARI of 0.75. When the stability partitions built from hierar-

chy of Maximum Likelihood heuristic bandwidth and the Normal kernel was

compared with ground truth, ARI of approximately 0.4 was obtained. For

HDBSCAN*, of the 30 mpts evaluated, only two mpts were found whose sta-

bility partition gave the ARI value of 1.

Thus, extracting stability partitions from hierarchies using Epanechnikov

kernel has a wider range of bandwidths that pertain to the underlying ground

truth as compared to the Normal kernel and HDBSCAN* mpts parameter.

Both the Normal and Epanechnikov kernels are capable of doing better than

the All-Points-Core-Distance kernel integrated into HDBSCANk.

6.3.2 Results on High Dimensional Artificial Data sets

In this section, we test HDBSCANk and HDBSCAN* with higher dimensional

datasets, varying the number of clusters and the dimensionality, summarized

in Table 6.4. These datasets were generated using the ellipsoid generator by

Handl and Knowles [27]. According to their description of the generator, there

may be some degree of overlap between the ellipsoids. A minimum cluster size

of 50 was used.

We first present the average best ARI we can get for the 16 datasets gener-

ated if we evaluated all partitions from every hierarchy. Next, we take a closer

look at the 32 dimensional datasets and how the performance of the algorithms

changed with different number of clusters. Next, for 12 cluster datasets, we

Parameter Range

Dimensionality 4,12,32, 64
No. of Clusters 10, 15, 20

Table 6.4: Parameters for Ellipsoid Data Generation
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Figure 6.15: Maximum ARI that can be achieved on the High Dimensionality
Datasets on an average

comment on their separability as dimensionality increased. Lastly, for the

32 dimensional dataset with 15 clusters, the robustness of the bandwidth of

HDBSCANk and mpts parameter of HDBSCAN* respectively are presented.

Potential to Identify Clusters in Higher Dimensions

Figure 6.15 shows the average best ARI that can be obtained by evaluating

all possible partitions from hierarchies to identify and separate the clusters in

higher dimensions. With HDBSCAN*, the highest achievable ARI was found

to be approximately 0.4 on an average. HDBSCANk with the All-Points-Core-

Distance kernel built a hierarchy whose best flat partition had an ARI of 0.28.

Performing an exhaustive search for the bandwidth with the Normal kernel

gave a partition with ARI value 0.55 with M3. The best partition from the

Epanechnikov kernel was with edge weight estimation method M3 and ARI

value of 0.58; method M2 giving ARI of 0.57 being the next best. While the

heuristic bandwidths had performed well with the Epanechnikov kernel in two

dimensional datasets, they did poorly in this setting this time. However, they

performed better with the Normal kernel, giving ARI values of 0.47.

Thus, in terms of potential, an exhaustive search for the bandwidth with

the Normal and the Epanechnikov kernels in HDBSCANk can give better

results than HDBSCAN* and the All-Points-core-Distance kernel.
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Figure 6.16: Maximum ARI that can be achieved on the three 32 Dimensionality
Datasets on an average

Varying Number of Clusters

We present results for the 32-dimensional datasets with different numbers of

clusters in the ground truth.

The bar plot in Figure 6.16 summarizes the results for the maximum ARI

possible for these datasets if all partitions were extracted from every hierar-

chy. The maximum ARI from the All-Points-Core-Distance kernel was 0.4 on

average for the three datasets while form the HDBSCAN* hierarchies a parti-

tion with the an ARI value of about 0.55. On an average, the Normal kernel

results in an ARI of 0.75 with M2 and M3. The Epanechnikov kernel with

exhaustive search for the best bandwidth could partially identify the ground

truth clusters, giving an ARI value of approximately 0.80 with edge weight es-

timation methods M2 and M3. The heuristic bandwidths worked better with

the Normal kernel than the Epanechnikov kernel. They gave better partitions

than those obtained from HDBSCAN* hierarchy for edge weight estimation

methods M2 and M3 with the Normal kernel.

HDBSCAN*, on evaluation of only the stability partitions gave ARI value

of 0.45 when DBCV was used for internal validation and 0.55 with SI. The

All-Points-Core-Distance kernel integrated into HDBSCANk, on an average

for the 32 dimensional datasets, produced stability partitions with ARI of
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Figure 6.17: Average Maximum ARI from Stability Partition for 32 dimension
Datasets

approximately 0.4.

The potential is what we could get if we evaluated all partitions against the

available ground truth. For the Normal kernel, Figure 6.17, it was approxi-

mately 0.75 with M3. On evaluating only the stability partitions, HDBSCANk

with this kernel was capable of getting an ARI value of 0.79 with edge weight

estimation method M3. Using DBCV for selecting the best stability parti-

tion from the hierarchies of range of bandwidth tested gave ARI of 0.72 with

M4 and SI produced a stability partition of ARI value 0.76 with M3. Using

heuristic bandwidth estimators did not give as good results but the average

from All-Points-core-Distance kernel could be improved to 0.55 with M3 using

either bandwidths.

Figure 6.18 compares the best ARI that can be obtained on evaluating

all stability partitions from hierarchies obtained with the Normal and the

Epanechnikov kernels, and using M3. Also compared are the ARI for stability

partition from the All-Points-Core-Distance kernel hierarchy and the best ARI

that can be obtained amongst all stability partitions of HDBSCAN* for all

possible mpts. We found that as the number of clusters increases, it becomes

harder to find the ground truth. The decrease in maximum ARI from the

Normal and the Epanechnikov kernels with change in number of clusters is

slower than the drop in ARI values for HDBSCAN* and the All-Points-Core-
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Figure 6.18: Change in maximum ARI from Stability Partitions by varying number
of clusters for 32 dimensional Datasets: For HDBSCANk with the Normal and the
Epanechnikov kernels, ARI for M3 are shown.

Distance kernel. However, there was only one value of the mpts and bandwidth

that gave the presented value of ARI for each setting.

In summary, for the 32 dimensions, using HDBSCANk, we can improve

upon the results from HDBSCAN* and the All-Points-Core-Distance kernel if

we perform an exhaustive search for bandwidth or use one of the heuristics

for estimating the bandwidth and using them with the Normal kernel. Any of

the edge estimation methods with top contributors can be used.

Robustness of a bandwidth for a high dimensional dataset

For the 32 dimensional dataset with 15 clusters, Figures 6.19a-6.19d depict the

change in ARI value as bandwidth changes for the edge estimation methods.

All edge weight estimation methods except M1 produce stability partitions

with high ARI values for both kernels. The heuristic bandwidths give an ARI

of approximately 0.5 with the normal kernel and 0 with the Epanechnikov

kernel. Figure 6.19e shows the variation in ARI value for different mpts. We

see that the maximum achievable ARI for this dataset with HDBSCAN* is

about 0.65 and this can only be achieved with mpts = 2. The All-Points-

core-Distance kernel gives a small ARI value of 0.4. Thus, looking at these

figures, we conclude that if any bandwidth in the range [0.01,0.15] is used with

HDBSCANk with the Normal or the Epanechnikov kernel and edge weight es-
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(e) HDBSCAN* and All-Points-Core-
Distance kernel

Figure 6.19: 32 dimensional dataset with 15 clusters: Change in ARI as bandwidth
of kernel of HDBSCANk and mpts of HDBSCAN* is varied

114



Methods

M1 M2 M3 M4

A
R

I

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 6.20: Maximum ARI that can be achieved on the High Dimensionality
Datasets with 20 clusters

timation methods M2-M4, the stability partition obtained would have an ARI

value higher than what HDBSCAN* or the All-Points-core-Distance kernel

integrated into HDBSCANk cam give on comparison with the ground truth.

Varying Dimensionality for 20 clusters

Figure 6.20 elaborates on the performance of the algorithms on datasets with

20 clusters when varying the dimensionality. HDBSCAN* and the All-Points-

Core-Distance kernel, on average, did not perform well (maximum ARI from

partitions was 0.4 and 0.2 respectively). The Normal kernel had the maximum

potential of an ARI value of 0.7 with edge weight estimation methods M2-M3.

For the Epanechnikov kernel, checking all bandwidths in the predefined range,

a maximum ARI of about 0.75 with edge weight estimation methods, M2

and M3, can be achieved. The heuristic bandwidths with the Normal kernel

produced partitions that had better ARI values than both HDBSCAN* and

HDBSCANk with All-Points-Core-Distance kernel. With the Epanechnikov

kernel, on the other hand, the partitions did not confirm to the ground truth,

giving ARI values in negative.

For edge estimation method M3, Figure 6.21 shows the change in ARI that

can be obtained for the datasets with 20 clusters. With the Normal kernel,

there is a drop in ARI from 0.6 in 32 dimensions to 0.45 in 64 dimensions while
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Figure 6.21: Change in maximum ARI from Stability Partitions by varying number
of clusters for 32 dimensional Datasets. For HDBSCANk with the Normal and the
Epanechnikov kernels, ARI for M3 are shown.

Dataset No. of objects Dimensions No. of clusters
yeast 1484 7 10
iris 150 4 3
seeds 210 7 3
wine 178 13 3
glass 214 9 6
ecoli 151 5 3
leaf 340 16 3

Table 6.5: UCI Data sets (only numeric attributes)

the Epanechnikov kernel remains almost the same in ARI for the two higher

dimensions. Interestingly, the ARI of the stability partition from the All-

Points-Core-Distance kernel steadily increases with increase in dimensionality.

HDBSCAN* exhibits a similar behavior. This may be due to the way the data

is generated by Handl and Knowles’s [27] data generator. As dimensionality

increases and the number of clusters increases, the data becomes more and

more well separated.

6.3.3 Results on UCI Data Sets

We used seven datasets from the UCI repository [43] and they are summarized

in Table 6.5. We present the average results over all datasets first, and then

elaborate on the dataset iris, as well the dataset leaf. A minimum cluster size

of 10 was used.
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Figure 6.22: Maximum ARI that can be achieved on UCI Datasets over all datasets

Looking at Figure 6.22, we can see that HDBSCAN* and the All-Points-

Core-Distance kernel showed consistent behavior as last section, giving ARI

values of 0.4 and 0.3, on average. An average maximum ARI (over all 7

datasets) of about 0.55 using the Normal kernel and M2 could be obtained.

Similar to the high-dimensional datasets in the previous section, the band-

widths obtained from heuristic bandwidth estimators did not perform well

with the Epanechnikov kernel.

HDBSCAN*, on an average for the datasets with 20 clusters produced

stability partitions with ARI 0.26 when DBCV was used for internal validation

and 0.29 when the stability partition with highest SI value was reported. The

stability partitions from All-Points-Core-Distance kernel gave an ARI of 0.27.

Figure 6.23 presents the results for the Epanechnikov kernel and the ARI

of stability partitions obtained in combination with different edge estimation

techniques and heuristic bandwidths. The best stability partition was never

as accurate as the partition that could be obtained by evaluating all possible

partitions. The partition with the maximum SI was as good as a random

partition, on an average, with the ARI value of 0.3. Since UCI datasets ranged

in dimensionality from 4-16, we start to see that the heuristic bandwidth

already perform worse than the interval validation measures here. Both DBCV

and SI produce partitions with ARI close to 0.3-0.4, the best being 0.37 with
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Figure 6.23: Maximum ARI that can be achieved on UCI Datasets using the
Epanechnikov kernel in HDBSCANk on an average over all datasets

SI and M4.

Iris

The iris dataset consists of 4 dimensions describing 3 kinds of flowers – iris

setosa, iris virginica and iris versicolor – with the two overlapping classes.

Figure 6.24 summarizes the ARI values we would get if we had the resources

and the ground truth to exhaustively search for the partition with the max-

imum ARI. HDBSCAN* can achieve an ARI value of 0.71; the All-Points-

Core-Distance kernel can achieve an ARI of 0.7 and using M2, M3 or M4, ARI

values of almost 0.85 with the Normal as well as the Epanechnikov kernels can

be achieved. The best partitions from hierarchies using heuristic bandwidths

have an ARI value of approximately 0.6.

HDBSCAN*, irrespective of which internal validation measuer was opti-

mized to choose the best stability partition, an ARI value of 0.57 was always

achieved for this dataset. HDBSCANk with the All-Points-Core-Distance ker-

nel also resulted in a stability partition of an ARI of 0.56.

For the Normal kernel and evaluation of all stability partitions, see Figure

6.25, an ARI of 0.75 with M4 when exhaustively looking for the bandwidth

can be achieved. The bandwidth estimated with Silverman’s rule of thumb

and Maximum Likelihood can result in partitions with an ARI close to 0.56.
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Figure 6.24: Maximum ARI that can be achieved on iris Dataset
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Figure 6.25: Maximum ARI that can be obtained from Stability Partitions using
HDBSCANk with the Normal kernel - iris Dataset

Robustness of Bandwidth for iris

Figure 6.26 shows the change in ARI of stability partitions obtained form

different bandwidths in HDBSCANk and mpts in HDBSCAN*. The All-Points-

Core-Distance kernel in HDBSCANk and HDBSCAN* gave the ARI values of

0.56. HDBSCANk with the Normal and Epanechnikov kernels, on the other

hand, was capable of getting ARI of 0.75 and 0.7, which are higher than the

ARI from both HDBSCAN* and the All-Points-Core-Distance kernel. The

ARI value of 0.56, though, is consistently achieved by all.
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(e) HDBSCAN* and All-Points-Core-
Distance kernel

Figure 6.26: iris dataset: Change in ARI as bandwidth of kernel of HDBSCANk
and mpts of HDBSCAN* is varied
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Figure 6.27: Maximum ARI that can be achieved on leaf Dataset

Leaf

The leaf dataset has 16 dimensions and 340 objects with 3 clusters. Separating

the classes is a challenge. Figure 6.27 summarizes the results of potential of

the techniques. The All-Points-Core-Distance kernel and HDBSCAN* gave the

same highest achievable ARI of 0.12. The Normal kernel with M3 was able

to obtain an ARI value of 0.37 and no algorithm could get a higher ARI than

this. The heuristic bandwidths have an ARI of zero with the Epanechnikov

kernel and an ARI of 0.1 with the Normal kernel.

With stability extraction type, the best ARIs obtained were even worse,

reaching a high of at most 0.3. The All-Points-Core-Distance kernel gave ARI

of 0.013 while partitions selected by optimizing both DBCV and SI failed

to improve the ARI. The stability partitions from hierarchies using heuristic

bandwidth estimators were better with the Normal kernel and came to close

to the maximum ARI possible. Hence, we omit those charts here.

6.3.4 Results on Synthetic Hierarchical Data Sets

The main purpose for proposing the data generator in Chapter 5 was to be able

to evaluate hierarchies produced by hierarchal clustering algorithms against

an underlying hierarchical ground truth. The data generator has a number of

parameters. In this section, we conducted three different studies, varying
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Parameters Values

Number of Points 1000
Minimum Cluster Size 30
Retention Factor 0.10
Dimensionality 2, 5, 10, 20
Branching Factor 3, 5, 7, 10
Separation Factor 2.5, 3, 3.5, 4

Table 6.6: Parameter Settings for Hierarchical Datasets. The bold numbers repre-
sent the default values.

• the dimensionality of the data,

• the separation between the clusters (determined by separationFactor),

• the maximum number of children a cluster could have (controlled by

branchingFactor),

Table 6.6 lists the values that were varied when generating datasets from

the data generator with hierarchical ground truth.

In all experiments, we compared the hierarchies obtained with the different

algorithms with the “ground truth hierarchy” as constructed by the generator

using HAI [36], as defined in Chapter 5.

6.3.4.1 Varying Dimensionality of Data

On an average over all datasets generated, see Figure 6.28, we get at an ARI

value of at least 0.78 irrespective of which method or kernel we use. HDB-

SCAN* and the All-Points-Core-Distance kernel also produce hierarchies with

HAI of approximately 0.8. The Normal kernel with exhaustive search and edge

weight estimation methods M2, M3 and M4 is able to identify hierarchies that

have HAI of approximately 0.85 when compared with the underlying ground

truth of the data structure. The Epanechnikov kernel with edge weight estima-

tion method M2 did slightly better than all other kernel-method combinations.

The heuristic bandwidth estimators do not outperform this HAI.

Figure 6.29 shows the change in value of HAI for each method. It is in-

ferred that the performance of HDBSCAN* and All-Points-Core-Distance ker-
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Figure 6.28: Average maximum HAI over all dataset for variable dimensionality of
data

nel did not change much with dimensionality while the exhaustive search for

bandwidth with the Normal and the Epanechnikov kernels started to produce

hierarchies that had lower HAI values as dimensionality increased. This is

exactly the observation we had when we compared the flat partitions from

these algorithms in high dimensional datasets. The bandwidth calculated us-

ing Maximum Likelihood has the minimum ARI amongst all techniques when

used in combination with the Normal kernel. With the Epanechnikov kernel,

it started to perform better with increase in dimensionality from 10 to 20 for

all edge weight estimation methods.

6.3.4.2 Varying Separation Between Clusters

The separation factor in the data generator defines the spread of a cluster as

a function of its distance from its nearest cluster. Larger values of this factor,

lead to a smaller spread of a cluster and more separated clusters. We now

study how HDBSCANk is able to extract the hierarchy from the dataset as

the clusters are more or less separated.

As the separation between clusters became more pronounced, it should be

easier to identify clusters and subclusters, we explained in Section 5.5.3.2. This

behavior is shown by all algorithms. In Figure 6.30, we show the increasing

value of HAI for different edge weight estimation techniques for the Normal
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(e) HDBSCAN* and All-Points-Core-
Distance kernel

Figure 6.29: Trend of maximum HAI as Dimensionality increases for the Normal
and the Epanechnikov kernels, HDBSCAN* and All-Points-Core-Distance kernel
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and the Epanechnikov kernels, HDBSCAN* and the All-Points-Core-Distance

kernel. The hierarchies showed an improvement in HAI value as separation

factor increased. Performing an exhaustive search for the best bandwidth with

Epanechnikov kernel and the Normal kernel produced hierarchies with HAI

value over 0.9 using edge estimation methods M2, M3 and M4. The HAI from

hierarchy built with Silverman’s rule of thumb saw a drop in HAI value with

increasing separation factor with the Epanechnikov kernel, however, the HAI

value of approximately 0.8 could still be achieved. The bandwidth estimated

using Maximum Likelihood heuristic performed better with the Normal kernel.

6.3.4.3 Varying Branching Factor

In this last experiment, see Figure 6.31, we varied the number of child clusters

that a cluster could have. The behavior of the algorithms was consistent with

the last two experiments – HDBSCAN* and the All-Points-Core-Distance ker-

nel both produced hierarchies with the HAI of about 0.83. We were able to

obtain an HAI value of approximately 0.85 on average; the Normal kernel did

the best with edge estimation methods M2, M3 and M4, using an exhaustive

search for bandwidth over all possible partitions; similar evaluations with the

Epanechnikov kernel produced an hierarchy that had HAI value of approxi-

mately 0.9 with M2. Of heuristic bandwidth estimators, cross validation with

Maximum Likelihood gave hierarchies with HAI of 0.81 with the Normal kernel

and 0.83 with the Epanechnikov kernel. Silverman’s rule of thumb bandwidth

performed better with the Normal kernel, giving hierarchies of HAI 0.83 with

M1 and with the Epanechnikov kernel, approximately 0.8 with all methods.

Robustness of Bandwidth for an hierarchical dataset

Figure 6.32 shows the effect of change of bandwidth of HDBSCANk and mpts

of HDBSCAN* on the hierarchical structure of the dataset. There are values in

Figures 6.32a, 6.32b and 6.32d where there is a peak that shows the maximum

value of HAI that was obatined. However, in general, for both HDBSCANk (ir-

respective of the kernel and edge weight estimation method) and HDBSCAN*
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(e) HDBSCAN* and All-Points-Core-
Distance kernel

Figure 6.30: Trend of maximum HAI as Separation factor increases for the Normal
and the Epanechnikov kernels, HDBSCAN* and All-Points-Core-Distance kernel
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Figure 6.31: Average maximum over all dataset HAI for variable number of child
clusters of data

(Figure 6.32e), all bandwidths and mpts can identify the underlying hierarchi-

cal structure well. Thus, the bandwidth is robust in an hierarchical setting.

6.4 Discussion

Our case study was divided into two major parts: in the first part, we analyzed

the flat partitions that we can get from hierarchies build using HDBSCAN*

and HDBSCANk, and in the second part, we compared our hierarchies to

the available hierarchical ground truths. We exhaustively looked for the ‘best’

bandwidth, using various selection methods and also tested how well statistical

bandwidth estimations did in a hierarchical clustering setting.

For datasets from whose hierarchy which we extracted flat partitions :

• While in two dimensions, the heuristic bandwidth estimators worked

better with the Epanechnikov kernel, they did not perform well with

that kernel in higher dimensions.

• The Normal kernel in general performed well if we could exhaustively

search for the bandwidth in [0.001, 0.200] range.

• In terms of edge weight estimation techniques, we found that methods
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(e) HDBSCAN* and All-Points-Core-
Distance kernel

Figure 6.32: Dimensionality 5, separation factor 3 dataset: Change in HAI as band-
width of kernel of HDBSCANk and mpts of HDBSCAN* is varied
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which underestimated the density – using only the top contributors of

the objects they connected – were capable of performing better than

simple methods of estimating density at the midpoint.

• We optimized internal validation measures, DBCV and SI, to select the

‘best’ partition and found that they were not always successful. For two

dimensional datasets, they did well. While selecting the best stability

partition from the hierarchies in higher dimensions, they could achieve

an ARI of about 0.6 on an average. Further, selecting a partition that

optimized DBCV or SI value performed better than choosing the stability

partition of hierarchy built from a heuristic bandwidth.

• With increase in dimensionality, flat partitions from the Normal kernel

in combination with the heuristic bandwidths started to perform better

than using the Epanechnikov kernel.

• The All-Points-Core-Distance kernel integrated into HDBSCANk was

outperformed by both the Normal and Epanechnikov kernels with edge

weight estimation methods M2, M3 and M4 in higher dimensions.

For datasets whose hierarchical structure was available:

• When we performed the analysis of directly comparing hierarchies with

ground truth for datasets generated from our hierarchical data generator,

we found that the obtained cluster hierarchies did indeed correspond well

to the ground truth structure, irrespective of dimensionality and overlap

between clusters.

• With increase in dimensionality, Silverman’s rule of thumb performed

better than the Maximum Likelihood estimation bandwidth for the Nor-

mal kernel. With the Epanechnikov kernel, Maximum Likelihood es-

timation produced hierarchies that adhered to ground truth better as

dimensionality increased. These were as good as the exhaustive search

for bandwidth for all edge weight estimation methods tested.
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• Increasing the separation between clusters helped built hierarchies that

were better able to identify the underlying structure. Here, exhaustive

search for bandwidth performed the best with either kernels and connec-

tivity definitions.

• For variable number of clusters, we found HDBSCANk an exhaustive

search for bandwidth showed the Epanechnikov and the Normal kernels

to be robust.

Overall, we can say that it is possible to find better partitions than those

obtained by HDBSCAN* or with the All-Points-Core-Distance kernel. In a

practical scenario, exhaustive search over all bandwidths, comparing with the

ground truth, is not an option. The partitions selected by optimization of in-

terval cluster validation measures, DBCV and SI, were found to be, in general,

better than the partitions from heuristic bandwidth estimators, especially in

high dimensional datasets. However, using the edge estimation methods with

top contributors and performing an exhaustive search for the bandwidth using

an internal measure are time-intensive processes. The heuristic bandwidths hi-

erarchies are not guaranteed to give good flat partitions. Thus, to trade time

with higher value of ARI, using HDBSCAN* or the All-Points-Core-Distance

kernel in HDBSCANk are better options.

In hierarchical settings, exhaustively searching for the ‘best’ bandwidth the

Normal and Epanechnikov kernels could give better hierarchies than HDB-

SCAN* hierarchies. Also, the hierarchies obtained using the statistical band-

width estimators gave high HAI values of about 0.8, meaning they can identify

the underlying hierarchical structure to a good extent.

6.5 Summary

In this chapter, we presented results from our case study and tried answering

the questions we had in the beginning. This case study analyzed our algorithms

as well as internal validation measures, statistical bandwidth calculators, flat

partitions and hierarchical datasets. We found that using K.D.E. in the hi-
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erarchical density-based clustering setting lead to good results and we could

improve on the baseline algorithm, HDBSCAN*, that we compared with. In

the final chapter, we present the final conclusion and future work in the next

chapter.
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Chapter 7

Conclusion and Future Work

Density-based clustering has largely used distance to estimate density [21, 24,

2, 35]. As Azzalini [3] noted in 2007, we now have the computational power

to use density estimates in clustering. In 1975, when Hartigan [28] proposed

his ideas of density-based clustering, it was not possible to use computation-

ally expensive methods, but now it is. There is extensive research around

density-based clustering methods with kernels [2, 8, 17, 32, 49, 70] but they

are algorithms that find a flat partition. To the best of our knowledge, there

is no hierarchical algorithm that uses general density estimates.

This thesis was a first step towards integration of kernel density estimates

into density-based hierarchical clustering. We started with the simple idea of

replacing distance with density in an existing hierarchical density-based algo-

rithm. The density between two objects was defined as the value of density

at the midpoint of the edge connecting them. However, the midpoint and the

density at the midpoint of each edge in the complete graph had to be estimated

before a Minimum Spanning Tree could be extracted. Thus, it was compu-

tationally expensive. Further, the technique was prone to overestimation of

density at the midpoint due to presence of objects closer to the midpoint than

the end object vertices of the edge.

This led us to propose HDBSCANk, a framework for integrating arbitrary

density estimates into hierarchical clustering. We found a number of kernel

density estimates to use but no simple way to define the connectivity between

objects. We, thus, proposed some possible definitions of connectivity by esti-
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mating the edge weight between two connected objects by various methods.

We set out on this case study with many questions in mind

1. Can integration of an arbitrary kernel density estimate into hierarchical

clustering do better than the kNN approach?

2. Does one kernel always outperform others?

3. Is one of our edge estimation methods always better than the others?

4. Since we do not have ground truth in practical applications, can we use

an internal validation measure to predict the best parameter to use?

5. There are statistical methods for estimating bandwidths of kernels. Is it

feasible to use them?

6. And most importantly, are we capable of identifying the hierarchical

structure of a dataset?

To answer all these questions, we conducted an extensive experimental

evaluation. We performed an exhaustive search for the best bandwidth for

the selected kernels, and compared the results with bandwidths estimated by

heuristics commonly used in statistics. We also used interval validation mea-

sures, DBCV [51] and SI [60], to choose the partition that optimized their

value and checked how the value of ARI [34] of these partitions fared as com-

pared to the partitions with the maximum ARI. We repeated this process for

the Normal kernel as well as the Epanechnikov kernel with all edge weight

estimation methods. Similar set-up results from the All-Points-Core-Distance

kernel [50] and HDBSCAN* were computed.

There are many datasets with flat ground truths to test clustering algo-

rithms but only few document datasets for which a hierarchical ground truth

structure are available. To make the hierarchical comparison of this case study

possible, we proposed a data generator that produces datasets with hierarchi-

cal ground truth.

Since it is time intensive to extract all partitions in real world applica-

tions, we compared those results with the stability partition technique [11].
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Its results were found to be not far off from the potential if all partitions were

extracted. These experiments were performed on 11 two-dimensional datasets

taken from Joensuu Clustering Datasets [1], 16 high dimensional datasets gen-

erated with the data generator by Handl and Knowles [27] and 7 datasets from

the UCI repository [43].

Producing datasets with the data generator presented in Chapter 5, we

used HAI [36] to compare the clustering hierarchies with the ground truth

hierarchies and found that all methods, kernels and heuristic bandwidths did

well.

Our final recommendation for edge density connectivity estimation is to

use Torque Rule estimation with top contributors, Golden search with the top

contributors. Since the Epanechnikov kernel was found to be as good as the

Normal kernel always, we suggest using it over the Normal kernel for density

estimation since it is faster to compute. If a flat partition is needed, we do not

recommend the heuristic bandwidth estimators unless the data is known to be

well separated and low dimensional. In hierarchical settings, however, these

heuristics are recommended, though with the exhaustive search for bandwidth,

one can get better clustering hierarchies.

We found HDBSCAN* and the All-Points-Core-Distance kernel to be faster

than other kernel density estimates. Though the Normal and the Epanechnikov

kernels can do better than HDBSCAN* and the All-Points-Core-Distance ker-

nel with edge weight estimation methods that use top contributors, they re-

quire the value of the bandwidth that cannot always be selected using a heuris-

tic. Some datasets worked better with DBCV while partitions with higher

ARI value were selected on optimizing the SI value. In general, they could

find bandwidths that gave better ARI values than using heuristic bandwidths,

especially in high dimensions.

7.1 Future Work

In this thesis, we proposed a general framework in which any kernel can be

used for hierarchical density-based clustering. We tested on well known kernels
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in statistics, and our research has opened up many venues for further research.

Our algorithm is time intensive with continuous kernels like the Normal kernel,

and the best edge weight estimation method to define connectivity between

objects require extra computations before density of an edge in the Minimum

Spanning Tree can be updated. Thus, we need to find ways to make either the

computations faster or use different kernels.

There has recently been research focused on reducing the time to compute

density estimates [57, 65, 81]. Raykar and et al. [57] propose a technique

that reduces the estimation for one dimension from O(mn) time to O(n+m)

where n is the number of objects for which density has to be estimated and

m is the number of objects that influence density for each object. Zheng et

al. [81] proposed randomized and deterministic algorithms for kernel density

estimation on large datasets.

New kernels can also be proposed, like the parameterless All-Points-core-

Distance kernel [50] that was integrated into HDBSCANk.

A different direction for future research could be to propose a new heuristic

to calculate the bandwidth. We will need estimators that are able to estimate

bandwidth for multidimensional data. For example, Duong and Hazelton [19]

proposed a cross validation technique for multivariate kernel density estimation

and Chacon and Duong [13] proposed a another bandwidth estimator. It would

be interesting to see how these estimators perform in HDBSCANk.

Our research utilized numerical datasets. Real data, however, is not al-

ways just numerical. It can possess categorical attributes as well as binary at-

tributes. Kernels have been proposed for handling these special feature types

[5, 26]. Clustering datasets with different kinds of data is another direction to

look into.
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