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Abstract

An accurate model of a patient’s individual survival distribution can help

determine the appropriate treatment for terminal patients. Unfortunately, risk

scores (e.g., from Cox Proportional Hazard models) do not provide survival

probabilities, single-time probability models (e.g., the Gail model, predicting

5 year probability) only provides a probability for a single time point, and

standard Kaplan-Meier survival curves provide only population averages for a

large class of patients meaning they are not specific to individual patients. This

motivates an alternative class of tools that can learn a model which provides

an individual survival distribution which gives survival probabilities across all

times.

This work motivates such “individual survival distribution” (ISD) models,

explains how they differ from standard models, and gives examples of common

ISD models. It then discusses ways to evaluate such models and introduces a

new approach, “D-Calibration”, which determines whether a model’s probabil-

ity estimates are meaningful. We also discuss how these evaluation measures

differ, and use them to evaluate many ISD prediction tools (both standard

and state of the art) over a range of survival datasets. We further compare

ISD models to common risk (non-ISD) models to demonstrate the superiority

of our ISD class of models.
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Preface

This thesis is an extension of work submitted to the Journal of Machine Learn-

ing Research (JMLR) which is available on arXiv under the title “Effective

Ways to Build and Evaluate Individual Survival Distributions” [34]. The sub-

mission was a collaborative effort led by Professor R. Greiner and included B.

Hoehn and S. Davis in addition to myself. Chapter 2 and 3 which summarize

many survival analysis frameworks and evaluation metrics was a collective

effort. The review of models given in Chapter 4, the empirical analysis in

Chapter 5, and the discussion given in Chapter 6 are my original work. Ap-

pendices A, and C are also my own work as well as the discussion of the Brier

score in Appendix B.2 and of D-Calibration in Appendix B.3. Additionally,

the R package, MTLR, used for a portion of the empirical analysis is my original

work and is published on the Comprehensive R Archive Network (CRAN) [33].
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Chapter 1

Introduction

When diagnosed with a terminal disease, many patients ask about their prog-

nosis [32]: “How long will I live?”, or “What is the chance that I will live

for 1 year... and the chance for 5 years?”. Here it would be useful to have a

meaningful survival distribution S( t | x⃗ ) that provides, for each time t ≥ 0,

the probability that this specific patient x⃗ will survive at least an additional t

months. Using this distribution, patient’s can answer the question “How long

will I live?” by observing their own survival probability at each time point,

e.g., 1 year and 5 years as above. Unfortunately, many of the standard sur-

vival analysis tools cannot accurately answer such questions: (1) risk scores

(e.g., Cox proportional hazard [18]) provide only relative survival measures,

but not calibrated probabilities; (2) single-time probability models (e.g., the

Gail model [16]) provide a probability value but only for a single time point;

and (3) class-based survival curves (like Kaplan-Meier, km [47]) are not specific

to the patient, but rather an entire population.

To explain the last point, Figure 1.1[left] shows the km curve for patients

with stage-4 stomach cancer. Here, we can read off the claim that 50% of

the patients will survive 11 months, and 95% will survive at least 2 months.1

While these estimates do apply to the population, on average, they are not

1 In general, a survival curve is a plot where each [x, y ] point represents (the curve’s
claim that) there is a y% chance of surviving at least x time. Hence, in Figure 1.1[left], the
[ 11 months, 50% ] point means this curve predicts a 50% chance of living at least 11 months
(and hence a 100−50 = 50% chance of dying within the first 11 months). The [ 2 months,
95% ] point means a 95% chance of surviving at least 2 months, and the [ 51 months, 5% ]
point means a 5% chance of surviving at least 51 months.
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designed to be calibrated for an individual patient since these estimates do

not include patient-specific information such as age, treatments administered,

or general health conditions. It would be better to directly, and correctly,

incorporate these important factors x⃗ explicitly in the prognostic models.

This heterogeneity of patients, coupled with the need to provide proba-

bilistic estimates at several time points, has motivated the creation of several

individual survival time distribution (ISD) tools, each of which can use this

wealth of healthcare information from earlier patients, to learn a more ac-

curate prognostic model, which can then predict the ISD of a novel patient

based on all available patient-specific attributes. This thesis considers several

ISD models: the Accelerated Failure Time (aft) model [44], the Kalbfleisch-

Prentice extension of the Cox model (cox-kp) [44], the Kalbfleisch-Prentice

extension of the Cox Elastic Net model (coxen-kp) [80], the Multi-task Lo-

gistic Regression (mtlr) model [82], the Random Survival Forest model with

Kaplan-Meier extensions (rsf-km), and a deep learning model (deephit).

Figure 1.1 (middle, right) show survival curves (generated by mtlr) for

two of these stage-4 stomach cancer patients, which incorporate other informa-

tion about these individual patients, such as the patient’s age, gender, blood

work, etc. We see that these prognoses are very different; in particular, mtlr

predicts that [middle] Patient #1’s median survival time is 20.2 months, while

[right] Patient #2’s is only 2.6 months. The blue vertical lines show the actual

times of death; we see that each of these patients passed away very close to

mtlr’s predictions of their respective median survival times.

One could then use such curves to make decisions about the individual

patient. Of course, these decisions will only be helpful if the model is giving

accurate information –i.e., only if it is appropriate to tell a patient that s/he

has a 50% chance of dying before the median survival time of this predicted

curve, and a 25% chance of dying before the time associated with the 25% on

the curve, etc.

We focus on ways to learn such models from a survival dataset, describing

earlier individuals. Survival prediction is similar to regression as both involve

learning a model that regresses the features of an individual to estimate the

2



Figure 1.1: [left] Kaplan-Meier curve, based on 128 patients with stage-4
stomach cancer. (middle, right) Two personalized survival curves, for two
patients (#1 and #2) with stage-4 stomach cancer. The blue dashed lines
indicate the true time of death.

value of a dependent real-valued response variable – here, that variable is

“time to event” (where the standard event is “death”). However, survival

prediction differs from the standard regression task as its response variable is

not fully observed in all training instances. Many of the instances are “right

censored” [39], in that we only see a lower bound of the response value. This

might happen if a subject was alive when the study ended, meaning we only

know that she lived at least (say) 5 years after the starting time, but do not

know whether she actually lived 5 years and a day, or 30 years. This also

happens if a subject drops out of a study, after say 2.3 years, and is then

lost to follow-up; etc. Moreover, one cannot simply ignore such instances

as it is common for many (or often, most) of the training instances to be

right-censored. Such “partial label information” is problematic for standard

regression techniques, which assume the label is completely specified for each

training instance. Fortunately, there are survival prediction algorithms that

can learn an effective model from a cohort that includes such censored data.

Each such “survival dataset” contains descriptions of a set of instances (e.g.,

patients), as well as two “labels” for each: one is the time, corresponding to

the time from diagnosis to a final date (either death, or time of last follow-up)

and the other is the status bit, which indicates whether the patient was alive

at that final date.

This survival distribution S(t) is related to a number of other functions

3



commonly found in the survival analysis literature. Instead of modelling S(t),

many models instead focus on the hazard function,

h(t) = lim
∆t→0

Pr( t ≤ T < t+∆t | T ≥ t )

∆t
=

f(t)

S(t)
, (1.1)

where f(t) is the probability distribution function (PDF) of event times. The

hazard function h(t) can be seen as the instantaneous rate of failure in the

next instant, given survival up until time t. Chapters 2 and 4 will introduce

a number of frameworks and models, some of which are designed to analyze a

patient’s risk of an event, typically associated with the hazard function, and

others that estimate the probability of survival, corresponding to S(t).

1.1 Thesis Contributions

There are four major contributions of this thesis:

• We motivate the need for ISD models by showing the differences between

ISD models and the standard survival analysis models.

• We give an in-depth review of current evaluation measures as well as

introduce the novel D-Calibration.

• We perform a robust empirical analysis of 6 different ISD models across

a variety of evaluation metrics and provide guidelines for usage.

• We show that ISD models while being more versatile and flexible still

perform as well as non-ISD risk models.

1.2 Other Contributions

In addition to this thesis, I have contributed to some works that do not lie

within the scope of this thesis. One concerns uncertainty estimation in survival

prediction. Since survival prediction involves predicting an entire distribution

S( t | x⃗ ) for every patient (as opposed to regression that predicts a single point

estimate ∈ ℜ for each patient) there is no ground truth to evaluate against.

While there is a ground truth for the event time (death), individual survival

4



distributions are never known so evaluating the “correctness” of two different

survival distributions for the same patient becomes problematic. This chal-

lenge extends to uncertainty estimation as now confidence/credible bands are

calculated as opposed to simpler confidence/credible intervals. I co-supervised

a group project that derived a method for predicting simultaneous prediction

intervals (forming a prediction band) through posterior sampling and greedy

hill climbing; the resulting work has been accepted by the 2019 International

Joint Conference on Artificial Intelligence (IJCAI) [64].

Survival prediction tools also can also be applied to other events outside of

healthcare. Namely, one area is the estimation of reservation prices, defined as

the highest price a consumer is willing to pay for a unit of a good or service.

Given purchasing information, a consumer deciding to purchase an item can

be seen as a right censored observation of their true reservation price – i.e.,

their reservation price was greater than or equal to the price for which they

purchased the item. A consumer failing to purchase an item is left censored –

i.e., their reservation price was lower than the retail price. This was the topic

of P. Jin’s master’s thesis in 2015. I contributed to an extended version of

this thesis by generating entirely new empirical results, which has been since

submitted and is under review at JMLR.

1.3 Outline

Chapter 2 summarizes the different frameworks used in survival analysis,

specifically outlining the difference between risk vs. probabilistic frameworks,

single time vs. multiple time point frameworks, and individual vs. group

frameworks. Given these frameworks, Chapters 3 summarizes the metrics

that can be used to evaluate survival prediction models and introduces a new

metric, D-Calibration. Chapter 4 presents a number of ISD and non-ISD mod-

els including some standard approaches as well as some very recent methods

including deep learning approaches to survival prediction. Using the metrics

and models introduced in Chapters 3 and 4, Chapter 5 performs an empirical

analysis across a wide variety of survival datasets. Chapter 6 concludes the

5



thesis by discussing the implications of the empirical experiments and argues

that ISD models offer a more effective and versatile method for survival pre-

diction. Appendices are also included; Appendix A discusses how we extend

survival curves past the last estimated survival time, Appendix B includes de-

tails and proofs regarding evaluation metrics used for survival prediction and

Appendix C includes detailed empirical results corresponding to Chapter 5.

6



Chapter 2

Survival Analysis/Prediction
Systems

There1 are many different survival analysis/prediction tools, designed to deal

with various different tasks. We focus on tools that learn the model from a

survival dataset,

D = { [x⃗i, ti, δi] }i (2.1)

that provides the values for features x⃗i = [x
(1)
i , · · · , x(k)

i ] for each member

of a cohort of historical patients, as well as the actual time of the “event”

ti ∈ ℜ≥0 which is either death (uncensored) or the last visit (censored), and

a bit δ ∈ {0, 1} that serves as the indicator for death.2 See Figure 2.1, in the

context of our ISD framework.

Here, we assume x⃗ is a vector of feature values describing a patient, using

information that are available when that patient entered the study – e.g., when

the patient was first diagnosed with the disease, or started the treatment.

Additionally, we assume each patient has a death time, di, and a censoring

time, ci, and assign ti := min{di, ci} and δi = I [ di ≤ ci ] where I [ · ] is the

indicator function – i.e., δi := 1 if di ≤ ci (death) or δi := 0 if di > ci

(censored). We follow the standard convention that di and ci are assumed

1Recall from the preface this chapter is generated from collaborative work found in our
submission to JMLR [34].

2Throughout this work we focus on only right censored survival data. Additionally, we
constrain our work to the standard machine-learning framework, where our predictions are
based only on information available at fixed time t0 (e.g., start of treatment). While these
descriptions all apply when dealing with the time to an arbitrary event, our descriptions
will primarily refer to “time to death”.

7



Figure 2.1: Machine Learning paradigm for learning, then using, an ISD (In-
dividual Survival Distribution) Model.

independent.

To help categorize the space of survival prediction systems, we consider

three independent characteristics:

• [R vs P] whether the system provides, for each patient, a risk score

r(x⃗) ∈ ℜ versus a probabilistic value ∈ [0, 1] (perhaps Ŝ( t | x⃗ )).

• [1t∗ vs 1∀ vs ∞] whether the system returns a single value for each patient

(associated either with a single time “1t∗” or with the overall survival

“1∀”), versus a range of values, one for each time. Here 1t∗ might refer to

Ŝ( t∗ | x⃗ ) ∈ [0, 1] for a single time t∗ and 1∀ if there is a single “atemporal”

value (think of the standard risk score, which is not linked to a specific

time), vs ∞ that refers to { [t, Ŝ( t | x⃗ )] }t≥0 over all future times t ≥ 0.

• [i vs g] whether the result is “i ” specific to a single individual patient

(i.e., based on a large number of features x⃗) or is “g ” general to the

population. This g also applies if the model deals with a small fixed set

of subpopulations – perhaps each contains all patients with certain values

of only one or two features (e.g., subpopulation p1 is all men under 50,

p2 are men over 50, and p3 and p4 are corresponding sets of women), or

8



Figure 2.2: Dimensions for cataloging types of Survival Analysis/Prediction
tools [left] – and examples of certain tools.

each subpopulation is a specified range of some computation (e.g., p1′

are those with BMI<20, p2′ with BMI∈ [20, 30] and p3′, with BMI>30).

This section summarizes 6 (of the 2×3×2 = 12) classes of survival analysis

tools (see Figure 2.2), giving typical uses of each, then discusses how they are

interrelated.

2.1 [R,1∀,i]: 1-value Individual Risk Models

(cox)

An important class of survival analysis tools compute “risk” scores, r(x⃗) ∈ ℜ

for each patient x⃗, with the understanding that r(x⃗a) > r(x⃗b) corresponds

to predicting that x⃗a will die before x⃗b. Hence, this is a discriminative tool

for comparing pairs of patients, or perhaps for “what if” analysis of a single

patient (e.g., if he continues smoking, versus if he quits). These systems are

typically evaluated using a discriminative measure, such as “Concordance”

(discussed in Chapter 3.1). Notice these tools each return a single real value

for each patient.

One standard generic tool here is the Cox Proportional Hazard (cox)

model [18], which is used in a wide variety of applications. This models the
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hazard function as

hcox( t, x⃗ ) = h0(t) exp(β⃗
T x⃗) (2.2)

where β⃗ are the learned weights for the features, and h0(t) is the baseline

hazard function. We view this as a Risk Model by ignoring h0(t) (as h0(t) is

the same for all patients), and focusing on just exp(β⃗T x⃗) ∈ ℜ+. (But see the

cox-kp model below, in [P,∞,i].)

There are many other tools for predicting an individual’s risk score, typi-

cally with respect to some disease; see for example the Colditz-Rosner model [15],

and the myriad of others appearing on the Disease Risk Index website3. For

all of these models, the value returned is atemporal, i.e., it does not depend

on a specific time. There are also tools that produce [R,∞,i] models (e.g.

time-dependent Cox) that return a risk score for each of many different time

points; see Section 3.1.

2.2 [R,1t∗,g]: Single-time Group Risk Predic-

tors: Prognostic Scales (PPI, PaP)

Another class of risk predictions explicitly focus on a single time, leading to

prognostic scales, some of which are computed using Likert scales [60]. For

example, the Palliative Prognostic Index (PPI) [53] computes a risk score for

each terminally ill patient, which is then used to assign that patient into one of

three groups. It then uses statistics about each group to predict that patients

in one group will do better at this specific time (here, 3 weeks), than those

in another group. Similarly, the Palliative Prognostic Score (PaP) [57] uses

a patient’s characteristics to assign him/her into one of 3 risk groups, which

can be used to estimate the 30-day survival risk. There are many other such

prognostic scales, including [3], [14], [36]. Again, these tools are typically

evaluated using Concordance.4

3http://www.diseaseriskindex.harvard.edu/update/
4Here, they do not compare pairs of individuals from the same group, but only patients

from different groups, whose events are comparable (given censoring); see Chapter 3.1.
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2.3 [P,1t∗,i]: Single-time Individual Probabilis-

tic Predictors (Gail, PredictDepression, Frac-

tional Logisitc Regression)

Another class of single-time predictors each produce a survival probability

Ŝ( t∗ | x⃗ ) ∈ [0, 1] for each individual patient x⃗, for a single fixed time t∗ –

which is the probability ∈ [0, 1] that x⃗ will survive to at least time t∗. For

example, the Gail model [16]5 estimates the probability that a woman will

develop breast cancer within 5 years based on her responses to a set of survey

questions. Similarly, the PredictDepression system [PredDep] [72]6 predicts

the probability that a patient will develop a major depressive episode in the

next 4 years based on a small number of responses. There is also a gen-

eral model that extends fractional logistic regression to deal with censored

data [67], which can then be used to predict survival probabilities for a fixed

(small) number of time points.

Notice these probability values have semantic content by themselves for a

single patient, and are labels for individual patients, rather than risk-scores

(which recall are only meaningful within the context of other patients’ risk

scores). These systems should be evaluated using a calibration measure, such

as 1-Calibration or Brier score (discussed in Sections 3.3 and 3.4).

2.4 [P,∞,g]: Group Survival Distribution (km)

There are many systems that can produce a survival distribution: a graph of

[t, Ŝ( t )], showing the survival probability Ŝ( t ) ∈ [0, 1] for each time t ≥ 0;

see Figure 1.1. The Kaplan-Meier analytic tool (km) is at the “class” level,

producing a distribution designed to apply to everyone in a sub-population:

Ŝ( t | x⃗ ) = Ŝ( t ), for every x⃗ in some class, e.g., the km curve in Figure 1.1[left]

applies to every patient x⃗ with stage-4 stomach cancer. The SEER website7

provides a set of Kaplan-Meier curves, for each of several cancers. While

5http://www.cancer.gov/bcrisktool/
6http://predictingdepression.com/
7http://seer.cancer.gov/
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patients can use such information to estimate their survival probabilities, the

original goal of that analysis is to better understand the disease itself, perhaps

by seeing whether some specific feature made a difference, or if a treatment was

beneficial. For example, we could produce one curve for all stage-4 stomach

cancer patients who had treatment tA, and another for the disjoint subset of

patients who had no treatment; then run a log-rank test [35] to determine

whether (on average) patients receiving treatment tA survived statistically

longer than those who did not. Chapter 3 below describes various ways to

evaluate [P,∞,i] models; we will use these measures to evaluate km models as

well.

2.5 [P,∞,i]: Individual Survival Distribution,

ISD (aft, cox-kp, rsf-km, mtlr, deephit)

The previous two sections described two frameworks:

• [P,1t∗ ,i] tools, which produce an individualized probability value Ŝ( t∗ | x⃗i ) ∈

[0, 1], but only for a single time t∗; and

• [P,∞,g] tools, which produce the entire survival probability curve [t, Ŝ( t )]

for all points t ≥ 0, but are not individuated –i.e., the same curve for

all patients { x⃗i }.

Here, we consider an important extension: a tool that produces the entire

survival probability curve { [t, Ŝ( t | x⃗i )] }t for all points t ≥ 0, specific to each

individual patient, x⃗i. As noted in the previous section, this is required by any

application that requires knowing meaningful survival probabilities for many

time points. We will see that this model also allows us to compute other use-

ful statistics, such as a specific patient’s expected survival time. We call each

such system an “Individual Survival Distribution” (ISD) model. While the

Cox model is often used just to produce the risk score, it can be used as an

ISD, given an appropriate (learned) baseline hazard function h0(t); see Equa-

tion 4.2. We estimate this using the Kalbfleisch-Prentice (KP) estimator [44],

and call this combination “cox-kp”. We also explore five other models: the
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regularized version of Cox using an elastic net with the KP extension [81],

(coxen-kp), the Accelerated Failure Time model [44] with the Weibull dis-

tribution (aft), Random Survival Forests with the Kaplan-Meier extension

(rsf-km) [42], Multi-task Logistic Regression system (mtlr) [82], and a deep

neural network model, (deephit) [50]. Chapter 4 briefly describes each of

these models and Figure 2.3 shows the curves from these various models, each

over the same set of individuals.

Figure 2.3: Survival curves of 10 cancer patients for all six ISD models
considered here, evaluated on the NACD dataset (described in Chapter 5.1).
Note that the set of curves for aft (with the Weibull distribution), cox-kp,
and coxen-kp each have roughly the same shape, and do not cross, due to the
proportional hazards assumption, whereas the curves for all other ISD models
can cross and have different shapes.
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Above, we briefly mentioned three evaluation methods: Concordance, 1-

Calibration, and Brier score. We show below that we can use any of these

methods to evaluate a ISD model. In addition, we can also use variants of

“L1-loss”, to see how a predicted single-time differs from the true time of

death; see Section 3.2. Each of these 4 evaluation methods considers only a

single time point of the distribution, or an average of scores, each based on only

a single time, or a single statistic (such as its median value). We also consider

a novel evaluation measure, “D-Calibration”, that uses the entire distribution

of estimated survival probabilities; see Section 3.5.

2.6 Other Issues

(1) The goal of many Survival Analysis tools is to identify relevant variables,

which is different from our challenge here, of making a prediction about an

individual. For example, some researchers use km to test whether a variable

is relevant, e.g., they partition the data into two subsets, based on the value

of that variable, then run km on each subset, and declare that variable to be

relevant if a log-rank test claims these two curves are significantly different [35].

It is also a common use of the basic cox (and aft) model – in essence, by

testing if the β̂i coefficient associated with feature xi (in Equation 4.2) is

significantly different from 0 [69].

(2a) This “g vs i ” distinction is not always crisp, as it depends on how

many variables are involved – e.g., models that “describe” each instance using

no variables (like km) are clearly “g ”, while models that use dozens or more

variables, enough to distinguish each patient from one another, are clearly “i ”.

But models that involve 2 or 3 variables typically will place each patient into

one of a small number of “clusters”, and then assign the same values to each

member of a cluster. By convention, we will catalog those models as “g ” as

the decision is not intended to be at an individual level.

(2b) Similarly, the “1t∗” vs “∞” distinction can be blurry, if considering a

system that produces a small number k > 1 of predictions for each individual,

e.g., the Gail model actually provides a prediction of both 5 year and 25 year
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survival. We consider this system as a pair of “1t∗”-predictors, as those two

models are different; technically, we could view them as “Gail[5year]” versus

“Gail[25year]” models.

2.7 Relationship of Distributional Models to

Other Survival Analysis Systems

We will use the term “Distributional Model” to refer to algorithms within

the [P,∞,g] and [P,∞,i] frameworks – i.e., both km and ISD models. Note

that such models can match the functionality of the first 3 “personalized” ap-

proaches. First, to emulate [P,1t∗ ,i], we just need to evaluate the distribution at

the specified single time t∗, i.e., Ŝ( t∗ | x⃗ ). So for Patient #1 (from Figure 1.1),

for t∗ =“48 months”, this would be 20%. Second, to emulate [R,1t∗ ,i], we can

just use the negative of this value as the time-dependent risk score – so the

4-year risk for Patient #1 would be -0.20. Third, to deal with [R,1∀,i], we

need to reduce the distribution to a single real number, where larger values

indicate shorter survival times. A simple candidate is the individual distribu-

tion’s median value, which is where the survival curve crosses 50%.8 So for

Patient #1 in Figure 1.1, the median is t̂
(0.5)
1 = 16 months. We can then view

(the negative of) this scalar as the risk score for that patient. So for Patient

#1, the “risk” would be r(x⃗1) = −16. Fourth, to view the ISD model in

the [R,1∀,g] framework, we need to place the patients into a small number

of “relatively homogeneous” bins. Here, we could quantize the (predicted)

median value, e.g., mapping a patient to Bin#1 if that median is in [0, 15),

Bin#2 if in [15, 27), and Bin#3 if in [27, 70]. Here, this Patient#1 would be

assigned to Bin#2. Fifth, to view the ISD model in the [R,1t∗ ,g] framework,

associated with a time t∗, we could quantize the t∗-probability, e.g., quantize

the Ŝ( t∗ = 48 months | x⃗ ) into 4 bins corresponding to the intervals [0, 0.20),

[0.20, 0.57), [0.57, 0.83], and [0.83, 1.0].

These simple arguments show that a distributional model can produce the

8 Another candidate is the mean value of the distribution, which corresponds to the area
under the survival curve; see Theorem B.1.1.
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scalars used by five other frameworks [P,1t∗ ,i], [R,1t∗ ,i], [R,1∀,i], [R,1∀,g], and

[R,1t∗ ,g]. Of course, a distributional model can also provide other information

about the patient – not just the probability associated with one or two time

points, but at essentially any time in the future, as well as the mean/median

value. Another advantage of having such survival curves is visualization (see

Figure 1.1): it allows the user (patient or clinician) to see the shape of the

curve, which provides more information than simply knowing the median, or

the chance of surviving 5 years, etc.

There are some subtle issued related to producing meaningful survival

curves, e.g., many curves end at a non-zero value: note the top aft curve

(Patient 4) in Figure 2.3(top left) stops at (67, 0.50), rather than continue to

intersect the x-axis at, perhaps (103, 0.0). This is true for many of the curves

produced by the ISDs. Indeed, some of the curves do not even cross y = 0.5,

which means the median time is not well-defined; cf. the top line (Patient 4)

on the cox-kp curve (top right), which stops at (67, 0.55), as well as many of

the other curves throughout that figure. This causes many problems, in both

interpreting and evaluating ISD models. Appendix A shows how we address

this.
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Chapter 3

Evaluating Survival
Analysis/Prediction Models

The previous chapter mentioned 5 ways to evaluate a survival analysis/prediction

model: Concordance, 1-Calibration, Brier score, L1-loss, and D-Calibration.

This chapter will describe these – summarizing the first four (standard) eval-

uation measures (leaving some details for Appendix B) and then providing a

more thorough motivation and description of the fifth, D-Calibration. The

next chapter shows how the seven distribution-learning models perform with

respect to these evaluations.

For notation, we will assume models were trained on a training dataset,

formed from the same triples as shown in Equation 2.1, that is D = DU ∪DC

where DU = { [x⃗j, dj, δj = 1] }j is the set of uncensored instances (notice the

event time, tj, here is written as dj), and DC = { [x⃗k, ck, δk = 0] }k is the set

of censored instances (here tk is written as ck). Note also that this training

dataset D is disjoint from the validation dataset, V . We will first introduce

each evaluation metric, then describe how it is computed on solely uncensored

data and then introduce the modifications required to incorporate censored

data. As above, let V = VU ∪ VC where VU is the set of uncensored instances

and VC is the set of censored instances.
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Id di Riski
1 1 6
2 3 3
3 4 5
4 6 2
5 9 4

1 2 3 4 5
1
2 +
3 + 0
4 + + +
5 + 0 + 0

Table 3.1: Simple example to illustrate Concordance (here, with only uncen-
sored patients). Left: time of death, and risk score, for 5 patients. Right: “+”
means the row-patient had a lower risk, and died after, the column-patient;
otherwise “0”.

3.1 Concordance

As noted above, each individual risk model [R,1·,-] (i.e., [R,1·,i] or [R,1·,g],

where 1· can be either 1t∗ or 1∀) assigns to each individual x⃗, a “risk score”

r(x⃗) ∈ ℜ, where r(x⃗a) > r(x⃗b) means the model is predicting that x⃗a will

die before x⃗b. Concordance (a.k.a. C-statistic, C-index) is commonly used to

validate such risk models. Specifically, Concordance considers each pair of

patients, and asks whether the predictor’s values for those patients matches

what actually happened to them. In particular, if the model gives x⃗a a higher

score than x⃗b, then the model gets 1 point if x⃗a dies before x⃗b. If instead x⃗b

died before x⃗a, the model gets 0 points for this pair. Concordance computes

this for all pairs of comparable patients, and returns the average.

When considering only uncensored patients, every pair is comparable, which

means there are
(
n
2

)
= n·(n−1)

2
pairs from n = |VU | elements. Given these com-

parable pairs, Concordance is calculated as,

C
⋀
(VU , r(·) ) =

1
|VU | · (|VU |−1)

2

·
∑

[x⃗i,di]∈VU

∑
[x⃗j ,dj ]∈VU : di<dj

I [ r(x⃗i) > r(x⃗j) ] . (3.1)

As an example, consider the table of death times di and risk scores, for 5

patients, shown in Table 3.1[left]. Table 3.1[right] shows that these risk scores

are correct in 7 of the
(
5
2

)
= 10 pairs, so the Concordance here is 7/10 = 0.7.

This Concordance measure is relevant when the goal is to rank or discrim-

inate between patients, e.g., when one wants to know who will live longer

between a pair of patients. Consider, for example, if we want to transplant
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an available liver to the patient who will die first – this corresponds to “ur-

gency”. Concordance is the desired metric here due to its interpretation, i.e.

given two randomly selected patients, x⃗a and x⃗b, if a model with Concordance

of 0.7 assigns a higher risk score to x⃗a than x⃗b, then there is a 70% chance

that x⃗a will die before x⃗b. Hence, Concordance is actually a generalization of

the Wilcoxon-Mann-Whitney statistics (corresponding to area under the ROC

curve) to continuous data – i.e., here dealing with event times as opposed to

a discrete classification problem [37], [52], [75].

Ranking and discriminating between patients becomes challenging for cen-

sored data. For example, suppose we have two patients who were censored at

times t1 and t2. Since both patients were censored, there is no way to know

which patient died first and hence the risk scores for these patients are incom-

parable. However, if one patient’s censored time is later than the death time

of a second patient, then we do know the true survival order of this pair: the

second patient died before the first.

To be precise, we first need to define the set of comparable pairs, which is

the subset of pairs of indices (here using the validation dataset V and recalling

that δ = 1 indicates a patient who died (uncensored)) containing all pairs of

instances when we know which patient died first:

CP(V ) = { [i, j] ∈ V × V | ti < tj and δi = 1 } . (3.2)

Notice when the earlier event is uncensored (a death), we know the ordering of

the deaths (whether the second time is censored or not) – see Figure 3.1. The

ti < tj condition is to prevent double-counting, and ensure that |CP(V )| ≤(|V |
2

)
.

We then consider how many of the possible pairs our predictor put in the

correct order: That is, of all [i, j] pairs in CP(V ), we want to know how often

r(x⃗i) > r(x⃗j) given that ti < tj. Hence, the Concordance index of V , with

respect to the risk scores, r(·), is

Ĉ(V, r(·) ) =
1

|CP(V )|
∑
i:δi=1

∑
j: ti<tj

I [ r(x⃗i) > r(x⃗j) ] . (3.3)

Still, one remaining issue is how to handle ties, in either risk scores or
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Figure 3.1: Depiction of Concordance comparisons, including censored pa-
tients. Black and white circles indicate uncensored and censored patients,
respectively. Each di is the death time for an uncensored patient, and each
cj is the censoring time for a censored patient. We can only compare: uncen-
sored patients who died prior to a censored patient’s censoring time, or an
uncensored patient’s death time. Here, time increases as we go left-to-right;
hence d1 < c2 < d3 < c4 < d5. Here, we can compare 6 of the

(
5
2

)
= 10 pairs

of patients. Figure adapted from [73].

death times – i.e., for two patients, Patient A and Patient B, consider either

r(x⃗A) = r(x⃗B) or dA = dB. Two standard approaches are (1) to give the model

a score of 0.5 for ties (of either risk scores or death times), or (2) to remove

tied pairs entirely [79]. The first option relates to Kendall’s tau [48], and the

second with the Goodman-Kruskal gamma [28]. The empirical evaluations

(given in Chapter 5.2) use the first, as this gives Kaplan-Meier a Concordance

index of 0.5 since Kaplan-Meier assigns everyone the same risk score. If we use

the second option (excluding ties), then the Concordance for the Kaplan-Meier

model is not well-defined.

While [R,1∀,i] models (such as cox) provide a risk score that is independent

of time, there are also [R,∞,i] models that produces a risk score r(x⃗, t) for an

instance x⃗ that depends on time t; such as Aalen’s additive regression model [1]

or time-dependent Cox (td-Cox) [23], which uses time-dependent features.

These models can be evaluated using time-dependent Concordance [6].

Finally, the [R,−,g] systems compute a risk score, but then bin these scores

into a small set of intervals. When computing Concordance, they then only

consider patients in different bins. For example, if Bin1 = [0, 10] and Bin2

= [11, 20], then this evaluation would only consider pairs of patients (x⃗a, x⃗b)

where one is in Bin1 and the other is in Bin2, e.g., r(x⃗a) ∈ [0, 10] and r(x⃗b) ∈
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[11, 20]. Hence, it will not consider the pair (x⃗c, x⃗d) if both r(x⃗c), r(x⃗d) ∈

[11, 20].

3.2 L1-loss

Survival prediction is very similar to regression: given a description of a pa-

tient, predict a real number (his/her time of death). With this similarity in

mind, one can evaluate a survival model using the techniques used to evaluate

regression tasks, such as L1-loss – the average absolute value of the difference

between the true time of death, di, and the predicted time d
⋀

i:
1
n

∑
i |di − d

⋀

i|.

We consider the L1-loss, rather than L2-loss (which squares the differences),

as the distribution of survival times is often right skewed, and L1-loss is less

swayed by outliers than the L2-loss.

One challenge in applying this measure to our [P,∞,-] models is identifying

the predicted time, d
⋀

i. Here, we will use the predicted median survival time,

that is d
⋀

i = t̂
(0.5)
i , leading to the following measure:

L1( VU , { Ŝ( · | x⃗i ) }i ) =
1

|VU |
∑

[x⃗i,di]∈VU

⏐⏐⏐di − t̂
(0.5)
i

⏐⏐⏐ . (3.4)

While we would like this value to be small, we should not expect it to

be 0: if the distribution is meaningful, there should be a non-zero chance

of dying at other times as well. For example, while the L1-loss is 0 for the

Heaviside distribution at the time of death (shown in green in Figure 3.2), this

is unrealistic.

The L1-loss does not directly apply to survival data as typical regression

problems require having precise target values for each instance; here, many

Figure 3.2: Example of a survival curve (in red), superimposed (in green) with
a degenerate curve that puts all of its weight on a single time point (which
means it assigns 100% chance of dying at exactly this time).
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instances are censored, i.e., providing only lower bounds for the target values.

One option is to simply remove all the censored patients and use the L1-loss

given by Equation 3.4 (which we call “Uncensored L1-Loss”); however, this

will likely bias the true loss as patients who live longer also have more exposure

to becoming censored.

One way to incorporate censoring is to use the Hinge loss for censored

patients, which assigns 0 loss to any patient whose censoring time ck is prior

to the estimated median survival time, t̂
(0.5)
k , i.e., a loss of 0 if ck < t̂

(0.5)
k – and

a loss of ck − t̂
(0.5)
k if the censoring time is greater than t̂

(0.5)
k . That is:

L1hinge(V, {t̂(0.5)j }j ) =
1

|V |

[ ∑
j∈VU

|dj − t̂
(0.5)
j | +

∑
k∈VC

[ck − t̂
(0.5)
k ]+

]
.(3.5)

where VU is the subset of the validation dataset that is uncensored, and VC is

the censored subset, and [a]+ is the positive part of a, i.e.,

[a]+ = max{a, 0} =

{
a if a ≥ 0
0 otherwise

.

This is an optimistic lower bound on the L1-loss for two reasons: (1) it gives a

loss of 0 if the censoring occurs prior to the estimated survival time, implying

that dk = t̂
(0.5)
k , and (2) it gives a loss of ck − t̂

(0.5)
k if the censoring time occurs

after the estimated survival time, which assumes that dk = ck. Both are the

best possible values for the unknown dk, given the constraints.

One weakness of the L1-Hinge loss is that if a model predicts very large

survival times for all patients (both censored and observed), the hinge loss

will give 0 loss for the censored patients; in datasets with a large proportion of

censored patients, this leads to an optimistic score overall. Thus the hinge loss

will favor models that tend to largely overestimate survival times as opposed

to those models underestimating survival time.

A third variant of L1-loss, the L1-Margin loss, assigns a “Best-Guess”

value to the death time corresponding to ck, which is the patient’s conditional

expected survival time given they have survived up to ck – given by

BG(ck) = ck +

∫∞
ck

S(t) dt

S(ck)
(3.6)
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where S(·) is the appropriate survival function; Theorem B.1.1 proves this

value corresponds to the conditional expectation. In practice we use Kaplan-

Meier estimate, ŜKM( · ), generated from the training dataset (disjoint from

the validation dataset) as our estimate of S(·) in Equation 3.6.

We also realized that these BG(ck) estimates are more accurate for some

patients, than for others. If ck ≈ 0 – that is, if the patient was censored near

the beginning time – then we know very little about the true timing of when

the death occurred, so the estimate BG(ck) is quite vague, which suggests we

should give very little weight to the associated loss, |BG(ck) − t̂
(0.5)
k |. Letting

αk be the weight associated with these terms, we would like αk ≈ 0. On the

other hand, if cr is large – towards the longest survival time observed (call

it dmax) – then there is a relatively narrow gap of time where this x⃗r could

have died (probably within the small interval (cr, dmax)); here, we should give

a large weight to loss associated with this estimate.

This motivates us to define

L1margin(V, {t̂(0.5)j } ) =
1

γ

[ ∑
j∈VU

|dj − t̂
(0.5)
j | +

∑
k∈VC

αk|BG(ck)− t̂
(0.5)
k |

]
(3.7)

where γ = |VU |+
∑

k∈VC
αk and αk reflects the confidence in each Best-Guess

estimate. To implement this, we set αk = 1 − ŜKMC
(ck), where ŜKMC

(·) is

the km curve generated from the censoring distribution – i.e., flip the values

of δ and learn km as normal. Doing this gives little weight to instances with

early censor times but high weights to late censor times, almost equivalent

to an observed death time. The use of ŜKMC
(·) will be seen again when

incorporating censored data into the Brier score – see Section 3.4.

Appendix B.1 gives the proof of Equation 3.6 and also introduces reasons

to consider using the log of survival time in the L1-loss.

3.3 1-Calibration

The [P,1t∗ ,i] tools estimate the survival probability Ŝ( t∗ | x⃗ ) ∈ [0, 1] for each

instance x⃗, at a single time point t∗. For example, the PredictDepression

system [72] predicts the chance that a patient will have a major depression
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episode within the next 4 years, based on their current characteristics, i.e., this

tool produces a single probability value Ŝ( 4yr | x⃗i ) ∈ [0, 1] for each patient

described as x⃗i. We can use 1-Calibration to measure the effectiveness of such

predictors. To help explain this measure, consider the “weatherman task” of

predicting, on day t, whether it will rain on day t+ 1. Given the uncertainty,

forecasters provide probabilities. Imagine, for example, there were 10 times

that the weatherman, Mr.W, predicted that there was a 30% chance that it

would rain tomorrow. Here, if Mr.W was calibrated, we expect that it would

rain 3 of these 10 times – i.e., 30%. Similarly, of the 20 times Mr.W claims

that there is an 80% chance of rain tomorrow, we expect rain to occur 16 =

20 × 0.8 of the 20 times.

Here, we have described a binary probabilistic prediction problem, i.e.,

predicting the chance that it will rain the next day. One of the most com-

mon calibration measures for such binary prediction problems is the Hosmer-

Lemeshow goodness-of-fit test [38]. First, we sort the predicted probabilities

for this time t∗ for all patients { Ŝ( t∗ | x⃗i ) }i and group them into a number

(B) of “bins”; commonly into deciles, i.e., B = 10 bins.

Suppose there are 50 patients; the first bin would include the 5 patients

with the smallest Ŝ( t∗ | x⃗i ) values, the second bin would contain the patients

with the next smallest set of values, and so on, for all 10 bins. Next, within

each bin, we calculate the expected number of events, p̄j = 1
|Bj |

∑
x⃗i∈Bj

(1 −

Ŝ( t∗ | x⃗i )). We also let nj = |Bj| be the size of the jth bin (here, n1 = n2 =

· · · = n10 = 50/10 = 5), and Oj be the number of patients (in the jth bin) who

died before t∗. Recalling that di denotes Patient #i’s time of death and letting

oi = I [ di ≤ t∗ ] denote the event status of the ith patient at t∗: for the jth

bin, Bj, we have Oj =
∑

x⃗i∈Bj
oi. Figure 3.3 graphs the 10 values of observed

Oj and expected nj p̄j for the deciles, for two different tests (corresponding to

two different ISD-models, on the same dataset and t∗ time).

To further illustrate these values, consider the following example: If there

are n = 50 patients, then 50/10 = 5 will be in each bin, and the first bin B#1

will contain the 5 with lowest predicted probability values, and the second bin
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Figure 3.3: The bin observed and expected probabilities associated with two
1-Calibration computations, for the mtlr [left] model and the aft model
applied to the GBM dataset for the 75th percentile of time (611 days).

B#2 will contain the next smallest 5 values, and so forth, e.g.,

B#1 = {0.32, 0.34, 0.43, 0.43, 0.48}

B#2 = {0.55, 0.56, 0.61, 0.61, 0.72}
...

B#10 = {0.85, 0.85, 0.86, 0.87, 0.87}

Now consider the 5 patients who belong to B#1. As the average of their

probabilities is p̄1 = 0.32+0.34+0.43+0.43+0.48
5

= 0.4, we should expect 40% of

these 5 individuals to die in the next 5 years – that is, 2 should die. We can

then compare this prediction (p̄1 ×n1 = 0.40× 5 = 2) with the actual number

(O1) of these B#1 patients who died. We can similarly compare the number

of patients who actually died to the number predicted for all the following

bins.

This example brings us to the Hosmer-Lemeshow test statistic:

HL
⋀

(VU , Ŝ( t
∗ | · ) ) =

B∑
j=1

(Oj − nj p̄j)
2

nj p̄j (1− p̄j)
, (3.8)
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where our comparison of the expected number of deaths (nj p̄j) to the true

number of deaths (Oj) is made in the numerator. If the model is 1-Calibrated,

then this statistic follows a χ2
B−2 distribution, which then can be used to find

a p-value. For a given time t∗, finding p < 0.05 suggests the survival model

is not well calibrated at t∗ – i.e., the predicted probabilities of survival at t∗

may not be representative of patient’s true survival probability at t∗.

Returning to Figure 3.3, the HL statistics are 9.29 and 38.44, for the left

and right, leading to the p-values p =0.504 and p < 0.001 – meaning the left

one passes but the right one does not. This is not surprising, given that each

pair of bars on the left are roughly the same height, while the pairs of the right

differ much more.

Survival data typically contains some amount of censoring, making the

exact number of deaths for the jth bin, Oj, unobservable when the bin contains

patients censored before t∗. That is, given a censored patient whose censoring

time occurred before the time of interest (ci < t∗) the patient may or may

not have died by t∗. There are many standard techniques for incorporating

censoring [30]; we use the D’Agostino-Nam translation [21], which uses the

within bin Kaplan-Meier curve in place of Oj. Specifically, the test statistic is

given by,

HL
⋀

DN (V, Ŝ( t∗ | · ) ) =
B∑
j=1

( nj KMj(t
∗) − nj p̄j )

2

nj p̄j (1− p̄j)
, (3.9)

where KMj(t
∗) is the height of the Kaplan-Meier curve generated by the pa-

tients in the jth bin, evaluated at t∗. We use 1−KMj(t
∗) as we are predicting

the number of deaths and not KMj(t
∗) which instead gives the probability of

survival at t∗. Note also that HL
⋀

DN follows a χ2
B−1 distribution, as opposed

to the χ2
B−2 distribution for Equation 3.8.

Note that a [P,∞,i] model, which gives probabilities for multiple time

points, may be calibrated at one time t1, but not be calibrated at another

time t2, since Oj, and p̄j are dependent on the chosen time point. This issue

motivated us to define a notion of calibration across a distribution of time

points, D-Calibration, in Section 3.5.

26



3.4 Brier Score

We often want a model to be both discriminative (high Concordance) and

calibrated (passes the 1-Calibration test). While one can rank Concordance

scores to compare two models’ discriminative abilities, 1-Calibration cannot

rank models besides suggesting one model is calibrated (p ≥ 0.05) and one is

not (p < 0.05) (as p-values are not intended to be ranked). The Brier score [11]

is a commonly used metric that measures both calibration and discrimination;

see Appendix B.2.1.

Mathematically, the Brier score is the mean squared error between the {0

(alive), 1 (dead)} event status at time t∗ and the predicted survival probability

at t∗. Given a fully uncensored validation set VU , the Brier score, at time t∗,

is

BSt∗

(
VU , Ŝ( t

∗ | · )
)

=
1

|VU |
∑

[x⃗i,di]∈VU

(
I [ di ≥ t∗ ] − Ŝ( t∗ | x⃗i )

)2

. (3.10)

Here, a perfect model (that only predicts 1s and 0s as survival probabilities

and is correct in every case) will get the perfect score of 0, whereas a reference

model that gives Ŝ( t∗ | · ) = 0.5 for all patients will get a score of 0.25, and

random guessing (drawing S(t|x) from a uniform distribution) leads to a score

of 0.33.

As noted above, the Brier score measures both calibration and discrimi-

nation, implying it should be used when seeking a model that must perform

well on both calibration and discrimination, or when one is investigating the

overall performance of survival models. One benefit of the Brier score is that

it is a strictly proper scoring rule [56], meaning its score is minimized when

the true probabilities are reported. This differs from common metrics such

as AUROC that are semi-proper [12], meaning AUROC is able to potentially

achieve higher performance when using values other than true probabilities.

In practice this means that given two models of equal discriminative capacity,

a calibrated model will have a lower Brier score than a miscalibrated model.

Similar to 1-Calibration, it is not obvious how to incorporate censored

data since we do not have the death time (di) for the censored instances. In
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1999, Graf et al. [29] proposed a way to compute the Brier Score for censored

data, by using inverse probability of censoring weights (IPCW), which requires

estimating the censoring survival function, denoted as Ĝ(t) over time points t.

We can estimate Ĝ(t) by ŜKMC
(·), the km curve of the censoring distribution

as used above for the L1-Margin loss.

Intuitively, this IPCW weighting counteracts the sparsity of later observa-

tions – if a patient dies early, there is a good chance that di < ci meaning the

event is observed, but if the patient survives for a long time, it becomes more

likely that ci < di meaning this patient will be censored. Gerds et al. [25], [26]

formalizes and proves this intuition.
The censored version of the Brier score for a given time, t∗, is calculated

as

BSt∗

(
V, Ŝ(t∗|·)

)
=

1

|V |

|V |∑
i=1

⎡⎢⎣I [ ti ≤ t∗, δi = 1 ]
(
0− Ŝ(t∗|x⃗i)

)2

Ĝ(ti)
+

I [ ti > t∗ ]
(
1− Ŝ(t∗|x⃗i)

)2

Ĝ(t∗)

⎤⎥⎦ , (3.11)

where ti = min{di, ci}, the event time observed. The first part of Equation 3.11

considers only uncensored patients (who died before t∗) while the second part

counts all patients whose event time is greater than t∗. The patients who were

censored prior to t∗ are not explicitly included, but contribute based on their

influence in Ĝ(·). As Ĝ(t) is a decreasing step function of t, 1

Ĝ(t)
is increasing,

which means that patients who survive longer than t∗ have larger weights

than patients who died earlier, since the longer surviving patients were more

likely to become censored. In this way, patients who were censored prior to t∗

effectively balance out the patients censored after t∗.

An extension of the Brier score to an interval of time points is the Integrated

Brier score, which will give an average Brier score across a time interval [0, τ ],

IBS( τ, VU , Ŝ( · | · ) ) =
1

τ

∫ τ

0

BSt

(
VU , Ŝ( t | · )

)
dt . (3.12)

We will use this measure for our analysis, where τ is the 95th percentile of the

event time in the training dataset – this way, the score is more stable than

using the maximum event time as many datasets contain highly right skewed
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event times. Appendix B.2 further discusses the decomposition of the Brier

score into calibration and discriminative components.

3.5 D-Calibration

The previous sections summarized several common ways to evaluate standard

survival prediction models, that produce only a single value for each patient,

e.g., the patient’s risk score, perhaps with respect to a single time, or the mean

survival time. Each is a [-,1·,-] model. However, the [P,∞,-] tools produce

a distribution – i.e., each is a function that maps [0,∞] to [0, 1] (with some

constraints of course), such as the ones shown in Figure 2.3. It would be useful

to have a measure that examines the entire distribution as a distribution.1

Our distributional calibration (D-Calibration) [4] measure addresses the

critical question:

Should the patient believe the predictions implied by the survival curve? (3.13)

First, consider population-based models [P,∞,g], like Kaplan-Meier curves,

e.g., Figure 1.1[left], for patients with stage-4 stomach cancer. Note that this

curve includes (11months, 50%) and (4months, 75%). If a patient has stage-

4 stomach cancer, should s/he believe that his/her median survival time is

11 months, and that s/he has a 75% chance of surviving more than 4 months?

To test this, we could take 1000 new patients (with stage-4 stomach cancer)

and ask whether ≈500 of these patients lived at least 11 months, and if ≈750

lived more than 4 months.

For notation, given a dataset, D, and [P,∞,g]-model Θ, and any interval

[a, b] ⊂ [0, 1], let

DΘ( [a, b] ) = { [x⃗i, di, δ = 1] ∈ D | ŜΘ( di ) ∈ [a, b] } (3.14)

be the subset of (uncensored) patients in D whose time of death is assigned a

probability (by the model Θ) in the interval [a, b]. For example, DΘ( [0.5, 1.0] )

1While the Integrated Brier score does consider all the points across the distribution,
it simply views that distribution as a set of (x, y) points; see Appendix B.2.2 for further
explanation.

29



is the subset of patients who lived at least the median survival time (using

ŜΘ( · )’s median), and DΘ( [0.25, 1.0] ) is the subset who died after the 25th

percentile of ŜΘ( · ). By the argument above, we expectDΘ( [0, 0.5] ) to contain

about 1/2 of D, and DΘ( [0.25, 1.0] ) to contain about 3/4 of D. Indeed, for

any interval [a, 1.0], we expect

|DΘ( [a, 1.0] )|
|D|

= 1− a (3.15)

or in general
|DΘ( [a, b] )|

|D|
= b− a (3.16)

This leads to the idea of a survival distribution [P,∞,g] model, Θ, being

D-Calibrated: For each uncensored patient x⃗i, we can observe when s/he died

di, and also determine the percentile for that time, based on Θ: ŜΘ( di ). If

Θ is D-Calibrated, we expect roughly 10% of the patients to die in the [90%,

100%] interval, i.e., |DΘ( [0.9, 1.0] )|
|D| ≈ 1− 0.9 = 0.1, and another 10% to die in

the [80%, 90%) interval, and so forth for each of the 10 different 10%-intervals.

More precisely, the set { Ŝi( di ) } over all of the patients should be distributed

uniformly on [0, 1], which means that each of the 10 bins would contain 10%

of D.

This suggests a measure to evaluate a distributional model: see how close

each of these 10 bins is to the expected 10%. We therefore use Pearson’s χ2

test: compute the χ2-statistic with respect to the ten 10% intervals, and ask

whether the bins appear uniform, at (say) the p > 0.05 level. Lemma 1 below

discusses the appropriateness of the Pearson’s χ2 goodness-of-fit test.

This addresses the question posed at the start of this subsection (Equation

3.13):

Yes, a patient should believe the prediction from the survival curve

whenever this goodness-of-fit test reports p > 0.05.

To briefly cover the appropriateness of Pearson’s χ2 test for all uncensored

patients, we assume each patient x⃗i has a true survival function, S( t | x⃗i ),

which is the probability that this patient will die after time t.
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Lemma 1. The distribution of a patient’s survival probability at the time of

death S( di | x⃗i ) is uniformly distributed on [0,1].

Proof. The probability integral transform [5] states that, for any random con-

tinuous variable, X, with cumulative distribution function given by Fx(·),

the random variable Y = Fx(X) will follow a uniform distribution on [0,1],

denoted as U(0, 1). Thus, given randomly sampled event times, t, we have

F (t) ∼ U(0, 1). As the survival function is simply S(t) = 1− F (t), its distri-

bution is 1−U(0, 1), which also follows U(0, 1) and hence S(t) ∼ U(0, 1).

This Lemma shows that, given the true survival model, producing S( · | x⃗i )

curves, the distribution of S( di | x⃗i ) should be uniform over event times. Thus

if a learned model accurately learns the true survival function, ŜΘ( · | · ) ≈

S(·|·), we will expect the distribution across event times to be uniform, e.g.,

each of 10 bins should contain 10% of the patients. This is then tested using

the goodness-of-fit test assuming each bin contains an equal proportions of

patients.

3.5.1 Dealing with Individual Survival Distributions,
ISD

Everything above was for a population-based distributional model [P,∞,g].

These specific results do not apply to individual survival distributions [P,∞,i]:

For example, consider a single patient, Patient #1, whose curve is shown

in Figure 1.1[middle]. Should he believe this plot, which implies that his

median survival time is 18 months, and he has a 75% chance of surviving

more than 13 months? If we could observe 1000 patients exactly identical

to this Patient #1, we could verify this claim by seeing their actual survival

times: this survival curve is meaningful if its predictions matched the outcomes

of those copies, e.g., if around 250 died in the first 13 months, another ≈250

in months 13 to 18, etc. Unfortunately, we do not have 1000 “copies” of

Patient #1. But here we do have many other patients, each with his/her own

characteristic survival curve, including the 4 curves shown in Figure 3.4. Notice

each patient has his/her own distribution, and hence his/her own quartiles,
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Figure 3.4: Four patients from the complete NACD dataset. Notice each died
in a different quartile (shown with a vertical dashed line); see Table 3.2.

Table 3.2: Description of 4 patients from the NACD Dataset. (See also Fig-
ure 3.4)
Patient ID Median Survival Time Event time Event Percentage Quartile

A 85.5 43.4 84.7 #1
B 39.6 31.1 59.8 #2
C 4.7 7.5 30.4 #3
D 13.9 48.3 12.8 #4

e.g., the predicted median survival times for Patient A (resp., B, C and D), are

28.6 (resp., 65.7, 11.4, and 13.9) months; see Table 3.2. For these historical

patients, we know the actual event time for each. Here, if our predictor is

working correctly, we would expect that 2 of these 4 would pass away before

respective median times, and the other 2 after their median times. Indeed,

we would actually expect 1 to die in each of the 4 quartiles; the blue vertical

lines (the actual times of death) show that, in fact, this does happen. See also

Table 3.2.

With a slight extension to the earlier notation (Equation 3.14), for a dataset

D and [P,∞,i]-model Θ, and any interval [a, b] ⊂ [0, 1], let

DΘ( [a, b] ) = { [x⃗i, di, δ = 1] ∈ D | ŜΘ( di | x⃗i ) ∈ [a, b] } (3.17)

be the subset of (uncensored) patients in the dataset D whose time of death is

assigned a probability (based on its individual distribution, computed by Θ)

in the interval [a, b].

As above, we could put these ŜΘ( di | x⃗i ) into “10%-bins”, and then ask if

each bin holds about 10% of the patients. The right-side of Figure 3.5 plots

that information, for the ISD Θ learned by mtlr from the NACD dataset
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Figure 3.5: The right side shows the “calibration histogram” associated with
the NACD dataset. The left portion shows the survival curve for a patient
x⃗27 – here we see that this patient’s event d27 =12.7 months, corresponds to
Ŝ( d27 | x⃗27 ) = 39.4%, which means the patient contributed to the [30, 40)
bin. In a completely D-calibrated model, each of these horizontal bars would
be 10%; here, we see that each of the 10 bars is fairly close. See also Figure 5.4.

(described in Chapter 5.1), as a sideways histogram.

We see that each of these intervals is very close to 10%. In fact, the χ2

goodness-of-fit test yields p =0.882, which suggests that this ISD is sufficiently

uniform that we can believe that these survival curves are D-calibrated.

Note that Figure 3.5 is actually showing 5-fold cross-validation results: the

survival curve for each patient was computed based on the model learned from

the other 4/5 of the data, which is then applied to this patient [77]. Also, the

rust-colored intervals correspond to the censored patients, as explained below.

3.5.2 Incorporating Censored Data into D-Calibration

Conditions become more complicated when considering censored patients. Sup-

pose we have a censored patient, i.e., ti = ci – such that S( ci | x⃗i ) = 0.25.

Since the censoring time is a lower bound on the true death time, we know

that S( di | x⃗i ) ≤ 0.25, since ci < di and survival functions are monotoni-

cally decreasing as event time increases. If we are using deciles, we would like

to know the probability that the time of death occurred in the [0.2,0.3) bin,

i.e., P ( S(di|x⃗i) ∈ [0.2, 0.3) | S(di|x⃗i) ≤ 0.25). Using the rules of conditional
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probability, this is computationally straightforward2:

P (S(di) ∈ [0.2, 0.3) |S(di) ≤ 0.25 ) =
P (S(di) ∈ [0.2, 0.3), S(di) ≤ 0.25 )

P (S(di) ≤ 0.25 )

=
P (S(di) ∈ [0.2, 0.25))

P (S(di) ≤ 0.25)

=
0.05

0.25
(as S(·) ∼ U(0, 1))

= 0.2

Similarly, we can use the same logic as above to compute these probabilities

for the other two bins, [0.1, 0.2) and [0.0, 0.1):

P (S(di) ∈ [0.1, 0.2) |S(di) < 0.25 ) =
P (S(di) ∈ [0.1, 0.2), S(di) < 0.25)

P (S(di) < 0.25)

=
P (S(di) ∈ [0.1, 0.2))

P (S(di) < 0.25)

=
0.1

0.25
(as S(·) ∼ U(0, 1))

= 0.4

and analogously for the [0.0, 0.1) bin. Note that these probabilities sum to

one, (0.2 + 0.4 + 0.4) = 1, as desired.

This example motivates the following procedure to incorporate censored

patients into the D-Calibration process: Given B bins that equally divide [0,1]

into intervals of width BW = 1/B, suppose a patient is censored at time c

with associated survival probability S(c). Let b1 be the infimum probability

of the bin that contains S(c), e.g., 0.2 for the example above where S(ci) =

0.25 ∈ [0.2, 0.3). Then we assign the following weights to bins:

(A) Bin [b1, b2) (which contains S(c)): S(c)−b1
S(c)

= 1− b1
S(c)

(B) All following bins (i.e., the bins whose survival probabilities are all less

than b1):
BW
S(c)

= 1
B·S(c) ,

2To simplify notation, we drop the conditioning on x⃗i of S(·|·).
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Note this formulation follow directly from the example above. This weight

assignment effectively “blurs” censored patients across the bins following the

bin where the patient’s learned survival curve, ŜΘ( ci | i ), placed the censored

patient.

To perform the goodness-of-fit test, we must first calculate the observed

proportion of patients within each bin. Let Nk represent the observed propor-

tion of patients within the interval [pk, pk+1), e.g., [pk, pk+1) = [0.2, 0.3) in the

example above. We can formally calculate:

Nk =
1

|V |

|V |∑
i=1

[
I [S(di) ∈ [pk, pk+1) ∧ di ≤ ci ] (3.18)

+
S(ci)− pk

S(ci)
· I [S(ci) ∈ [pk, pk+1) ∧ ci < di ](3.19)

+
(pk+1 − pk)

S(ci)
· I [S(ci) ≥ pk+1 ∧ ci < di ]

]
. (3.20)

Above, Line 3.18 refers to the weight that the patients with observed events

contribute to the kth bin – i.e., each uncensored patient whose survival proba-

bility at time of death lands in [pk, pk+1) contribute a value of 1. Here, by the

use of di ≤ ci we consider the event to be uncensored if one’s event time and

censor time are equal. Note that in the case of all uncensored individuals (Line

3.18) is the only piece used – Line 3.19 and Line 3.20 need not be computed.

Next, Line (3.19) gives the weight from the censored patients whose survival

probability at time of censoring is within the kth bin (item (A) above). Lastly,

Line (3.20) gives the weights from censored patients whose survival probability

was contained in a previous bin (item (B) above).

Theorem B.3.1 in Appendix B.3 proves that the expected value of Nk for a

D-calibrated ISD-model is equal for all bins, i.e., E[Nk] = pk+1 − pk, allowing

the application of the goodness-of-fit test with uniform proportions.

To further illustrate this concept of blurring a patient across bins, consider

a patient who is censored at t = 0 with S(ci) = 1. This patient is then blurred

across all (B = 10) bins, adding a weight of 0.1 to all 10 bins. Alternatively, if

a patient is censored very late, with S(ci) ≤ 0.1 then the patient is not blurred

at all – a weight of 1 is added to the last bin.
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This identifies a weakness of D-Calibration: if a validation set contains N0

patients censored at time 0, then all bins are given an equal weight of N0/B; if

N0 is large relative to the total number of patients, then the bins may appear

uniform, no matter how the other patients are distributed, which means any

model based on such heavily “time 0 censored” data would be considered to

be D-Calibrated.

3.5.3 Relating D-Calibration to 1-Calibration

This standard notion of 1-Calibration is very similar to D-Calibration, as both

involve binning probability values and applying a goodness-of-fit test. How-

ever, 1-Calibration involves a single prediction time – here Ŝ( t∗ | x⃗i ), which is

the probability that the patient x⃗i will survive at least to the specified time, t∗.

Patients are then sorted by these probabilities, partitioned into equal-size bins,

and assessed as to whether the observed survival rates for each bin match the

predicted rates using a Hosmer-Lemeshow test. By contrast, D-Calibration

considers the entire curve, Ŝ( t | x⃗i ) over all times t – producing curves like

the ones shown in Figures 1.1, 2.3, and 3.4. Each curve corresponds to a

patient, who has an associated time of death, di. Here, we are considering

the model’s (estimated) probability of the patient’s survival at his/her time

of death, given by Ŝi( di | x⃗i ). These patients are then placed into B = 10

bins,3 based on the values of their associated probabilities, Ŝi( di | x⃗i ). Here

the goodness-of-fit test measures whether the resulting bins are approximately

equal-sized, as would be expected if Θ accurately estimated the true survival

curves (argued further in Appendix B.3).

Note D-Calibration tests the proportion of instances in bins across the

entire [0, 1] interval, but this is not required for the “single probability” 1-

Calibration. For example, the single probability estimates for the rsf-km

curve in Figure 2.2, at time 20, range only from 0.05 to 0.62. That is, the dis-

tribution calibration { Ŝi( di | x⃗i ) } should match the uniform distribution over

[0,1], while the single probability calibration { Ŝi( t
∗ | x⃗i ) } is instead expected

3Note the number of bins does not have to be 10 – we chose 10 to match the typical
value chosen for the 1-Calibration test.
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Table 3.3: Summary of differences between 1-Calibration and D-Calibration.
1-Calibration D-Calibration

Objective Evaluate Single Time Probabilities Evaluate Entire Survival Curve
Values considered { p̂( t∗ | x⃗i) } { p̂( di | x⃗i) }
Should match Empirical number of deaths Uniform
Statistical Test Hosmer-Lemeshow test Pearson’s χ2 test

to match the empirical percentage of deaths.

Table 3.3 summarizes the differences between D-Calibration and 1-Calibration.

To see that they are different, Proposition B.3.2, in Appendix B.3.2, gives a

simple example of a model that is perfectly D-Calibrated but clearly not 1-

Calibrated, and another example that is perfectly 1-Calibrated but clearly not

D-Calibrated.
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Chapter 4

Methods

Sections 2.4 and 2.5 listed several distributional models (km, and the ISDs:

cox-kp, aft, mtlr, rsf-km, and deephit); this chapter provides more

information about those six models. It also summarizes six individual risk

models (i.e., [R,1∀,i] models). Section 3 provided 5 different evaluation mea-

sures: Concordance, L1-loss, 1-Calibration, Integrated Brier score, and D-

Calibration. Chapter 5 provides an empirical comparison of these seven distri-

butional models, with respect to all five of these evaluation measures, across

a variety of 13 datasets. In addition to comparing ISD models to one another,

it also compares them to the six [R,1∀,i] models, in terms of Concordance.

Below we separate these 13 models into the standard survival analysis mod-

els (km, cox/cox-kp, aft) and their extension (coxen-kp), the random sur-

vival forest model (rsf/rsf-km), multi-task models (mtlr, mtlsa), boosting

models (gbmcox, gbmsci), the survival support vector machine (ssvm), and

the deep-learning models (deepsurv, deephit).

4.1 Standard Models and Extension (km, aft,

cox/cox-kp, coxen-kp)

Likely the most used tools for survival analysis are the Kaplan-Meier model

(km) used for group-wise survival curves, the Cox-Proportional Hazards model

(cox) (and its extension to a survival curve, cox-kp), and the accelerated

failure time model (aft). These tools were initially designed for inference as

opposed to prediction – i.e., they are used to determine if specific individual
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features were significantly impacting the event time (typically death). For

inference, km differs from aft and cox as the former can only test one (nom-

inal) feature at a time whereas the latter are multivariate models and can test

many features at once. Due to the popularity of the cox model there is also a

regularized variant using an elastic net, coxen-kpwhich we have also included

in our experiments.

4.1.1 Kaplan-Meier (km)

The km model is commonly used when the goal is determining a population’s

survival distribution. In the case where all patients are uncensored, the km

model is simply the empirical distribution of survival time (the running total of

events divided by the population size – analogous to the empirical cumulative

distribution function). In the event of censoring, km effectively redistributes

the weight of the censored patient to the patients later in time (known as

“redistribution to the right”). Specifically, km calculates the survival function

as,

Ŝ(t) =
∏
i:ti≤t

(
1− #di

ni

)
,

where ti is an event time, #di is the number of (uncensored) events at ti and ni

is the population at risk (those who have not had an event nor been censored

by time ti). From this equation one can observe the km estimate is a step

function that drops only at observed event times and stays constant at censor

times (as seen in Figure 1.1[left]).

Another common use for km is when investigating a single (binary) feature

of interest that may impact the event time, e.g., whether a patient did or did

not receive a specific treatment. Two separate survival curves can be derived

– one for the group that received treatment and another for those that did

not. These curves can then be compared via a log rank test and if the test

is significant, then there is reason to believe the survival distributions differ

between the two groups [17].

Note km uses no features when building population survival curves; we

therefore use this as our baseline model in our empirical analysis. As all
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patients are assigned the exact same survival curve, the Concordance will

always be 0.5 because all patient’s risk scores are equal. Additionally, 1-

Calibration is undefined for km as all predicted probabilities are the same, so

there is no way to “bin” probabilities as required by 1-Calibration.

4.1.2 Accelerated Failure Time (aft)

As opposed to km, which is a completely non-parametric estimate of the sur-

vival distribution, the aft model is fully parametric and assumes a distribu-

tion on survival times [74]. Specifically, aft directly learns the distribution

on event times (Ti) as,

log Ti = θ⃗ T x⃗i + σ ϵ,

where θ⃗ are learned feature weights, x⃗i are patient features, σ is the scale

parameter and ϵ is the error term. By specifying distributions of ϵ, different

distributions of the event times are formed; for example, if one assumes ϵ fol-

lows a normal distribution then this is equivalent to the event times following

a log-normal distribution. Common choices for the distribution of ϵ include

the normal, logistic, and extreme value distributions, which correspond (re-

spectively) to a log-normal, log-logistic, and Weibull distribution on the event

time. To learn the feature weights, we can use gradient descent with the

corresponding log-likelihood of the chosen distribution.

Note the distribution class D chosen for aft certainly influences its perfor-

mance, e.g., it is possible that aft[Weibull] on a dataset may fail D-Calibration

whereas aft[Log-Logistic] may pass; similarly for 1-Calibration at some time

t∗, and the scores for Concordance, L1-loss and Integrated Brier score will

depend on that distribution class. This paper will focus on aft[Weibull] be-

cause, while still being parametric, the Weibull distribution is versatile enough

to fit many datasets.

4.1.3 Cox-Proportional Hazards Model (cox/cox-kp)

One challenge of the aft model is that often the true distribution of event

times is unknown in practice. The cox model avoids the need to fully specify
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the form of the survival distribution by modeling the hazard function

h(t) = lim
∆t→0

Pr( t ≤ T < t+∆t | T ≥ t )

∆t
, (4.1)

which can be viewed as the instantaneous rate of failure in the next instant,

given survival up until time t. The cox model formulates the hazard function

as

hcox( t | x⃗ ) = h0(t) exp(θ⃗
T x⃗), (4.2)

where θ⃗ are the learned weights for the features, and h0(t) is the baseline hazard

function shared by all patients. We view this as a risk model by ignoring h0(t)

(as h0(t) is the same for all patients), and focusing on exp(θ⃗T x⃗) ∈ ℜ+, i.e.,

exp(θ⃗T x⃗) is taken as the risk score used in the calculation of concordance. By

ignoring h0(t) the coxmodel is able to produce risk scores for patients without

having to paramaterize how the hazard (and thus the survival) changes over

time and so cox is considered to be a semi-parametric model.

In addition to being semi-parametric, cox is also a proportional hazards

model, since the hazard ratio between two patients is a constant ratio over

time, i.e.,

h( t | x⃗i )

h( t | x⃗j )
=

h0(t) exp(θ⃗
T x⃗i)

h0(t) exp(θ⃗T x⃗j)
=

exp(θ⃗T x⃗i)

exp(θ⃗T x⃗j)
,

which is independent of time. This implies that hazard curves are proportional

and do not cross, subsequently meaning survival curves also do not cross.

By modeling the hazard function this way, one can maximize the partial

likelihood of the occurrence of events (deaths) to estimate feature weights, θ⃗.

This is known as the partial likelihood as it depends only on θ⃗ and ignores

the baseline hazard h0(t). The probability of an event (death) occurring for

patient i (encoded as xi) at time ti was given above as h0(t) exp(θ⃗
T x⃗), however,

given that we know the set of patients alive (at risk) at time ti, the probability

that it was patient xi who experienced the event is given by h( ti |xi )∑
j:tj≥ti

h( ti |xj )
.

Therefore we construct the partial likelihood (of a single patient i) as follows:

Li(θ⃗) =
h( ti |xi )∑

j:tj≥ti
h( ti |xj )

(4.3)

=
h0(ti) exp(θ⃗

T x⃗i)∑
j:tj≥ti

h0(ti) exp(θ⃗T x⃗j)
(4.4)
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=
exp(θ⃗T x⃗i)∑

j:tj≥ti
exp(θ⃗T x⃗j)

(4.5)

One can then find the total partial likelihood,

L(θ⃗) =
∏
i:δi=1

Li(θ⃗)

which gives the partial log-likelihood,

l(θ⃗) =
∑
i:δi=1

(θ⃗T x⃗i − log
∑

j:tj≥ti

exp(θ⃗T x⃗j)) . (4.6)

Given this likelihood function, ⃗theta can be estimated using gradient descent

methods. In addition to cox using this as its objective function, we will later

see it used by gbmcox and deepsurv in Sections 4.4 and 4.6 to predict risk

scores for individual patients.

While the cox model is able to estimate feature weights, θ⃗, without spec-

ifying the baseline hazard function h0( t | x⃗ ), individual survival distributions

cannot be specified without first estimating a baseline survival function, Ŝ0( t ).

Given this Ŝ0( t ), the survival function for a patient x⃗ is:

Ŝ( t | x⃗ ) = Ŝ0( t )
exp(θ⃗T x⃗).

Two common ways of estimating Ŝ0( t | x⃗ ) are the Breslow estimator [9]

and the Kalbfleisch-Prentice (KP) estimator [45]. As recent empirical evidence

suggest the KP estimator produces smaller bias and lower mean squared er-

ror in practice [78], we utilize the KP estimator for estimating the baseline

survival function to create the Cox-based ISD model, cox-kp. In short, the

KP estimator uses a discrete failure time approach to estimating the survival

function; a more in-depth discussion concerning the KP estimator is available

in Xia et al. [78].

All code for the implementation of the standard models presented here

came from the survival package in R [68].

4.1.4 Cox Elastic Net (coxen-kp)

As cox is unregularized, it can often suffer from overfitting; to adjust for

this Yang and Zou introduced a regularized version using an elastic net [80].
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The objective function of coxen-kp a mixture of the partial log-likelihood

(Equation 4.6) for the Cox model and the penalty term:

λ

(
1− α

2
∥θ∥22 + α ∥θ∥1

)
,

where θ are the feature coefficients and λ and α are tuning parameters. Note

that α = 1 corresponds to the LASSO penalty and α = 0 corresponds to the

ridge penalty. The values of hyperparameters α and λ can be selected by an

interval cross-validation.

Code for the implementation of coxen-kp can be found in fastcox pack-

age in R [81].

4.2 Random Survival Forests (rsf/rsf-km)

Following the standard survival analysis methods, a more recent method is

an adaption of random forests to the field of survival analysis [42]. Given

a labeled dataset, a random survival forest learner will produce a set of T

decision trees from a bootstrapped sample of the training survival dataset.

It grows each tree recursively, starting from the root – recursively identifying

each subsequent node based on the set of patients who arrive there. For each

branch, the growth stops if there are fewer than k0 deaths (where k0 is chosen

via cross-validation). Otherwise, it identifies a splitting feature for this node:

it first randomly draws a small random subset of the features to consider, then

selects the feature (from that subset) that maximizes the difference in survival

between two daughter nodes, based on the logrank test statistic (or some other

chosen splitting rule). This becomes the splitting rule of that node and the

learner then considers its two daughters, by splitting on the node’s feature.

Each leaf node in each tree corresponds to the set of training instances that

reached that node. At performance time (after learning the survival forest with

T trees), a test patient is dropped into each of the T survival trees, leading

to T leaf nodes, which can produce T Kaplan-Meier curves from the training

instances in each of the T nodes. The rsf-km implementation then “averages”

these curves, by taking a point-wise average across the curve for all time points

– see Figure 4.1.
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The original random survival forests (rsf) paper [42] returned risk scores

for each patient, rather than these survival curves. In particular, rsf computed

the cumulative hazard function,

H(t) =

∫ t

0

h(u) du = − logS(t),

which can be estimated by the Nelson-Aalen estimator,

Ĥ(t) =
∑
ti≤t

#di
ni

using the same notation that we used for the Kaplan-Meier estimator. Similar

to the construction of the survival curves for rsf-km, rsf builds a risk score

by taking the average of Ĥ(t) within each leaf node. Note this is a [R,∞,i]

model, but a single risk score can be extracted by taking the maximum of

Ĥ(t). Note when computing concordance, rsf-km uses the median survival

time whereas rsf uses this risk score, leading to different performance between

the two methods. As such, hyperparameters (splitting rule, number of trees,

minimum samples per leaf node) are estimated separately for rsf and rsf-km.

The implementation by the original authors of rsf and rsf-km is available in

the randomForestSRC package in R [41].

4.3 Multi-task Models (mtlr, mtlsa)

Here we present two different models based on multi-task learning, an ISD

model, (mtlr) and a non-ISD model that produces risk scores (mtlsa). The

code for mtlr is publicly available as an R package (MTLR) [33] and mtlsa is

publicly available in its authors github1.

4.3.1 Multi-task Logistic Regression (mtlr)

Consider2 modeling the probability of survival of patients at each of a vector

of (monotonically increasing) time points τ = [t1, t2, . . . , tm] – e.g., τ could be

the m =60 monthly intervals from 1 month up to 60 months. To motivate

1https://github.com/MLSurvival/MTLSA
2This paragraph is paraphrased from [82]; reprinted with permission of publisher/author.
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Figure 4.1: This figure illustrates how to combine two different survival
curves, to produce a new one. (rsf-km uses this idea to “merge” the curves
obtained from the various leaf nodes reached by a novel instance.) Here, two
survival curves, given in blue, are averaged to produce the survival curve shown
in dark orange. Note that the averaged curve is generated from a point-wise
average, i.e., new calculations need only be computed at each death time –
corresponding to a drop in either (blue) Kaplan-Meier curve.

mtlr imagine setting up a series of simple logistic regression models: for each

patient, represented as x⃗ ∈ ℜs,

Sθ⃗i
(T ≥ ti | x⃗ ) =

(
1 + exp(θ⃗i · x⃗+ bi)

)−1

, 1 ≤ i ≤ m, (4.7)

where θ⃗i are the time-specific parameter vectors. While the input features x⃗

stay the same for all these classification tasks, the binary labels yi = [T ≥ ti]

can change depending on the threshold ti. We encode the survival time d of

a patient as a sequence of binary values: y = y(d) = [y1, y2, . . . , ym], where

yi = yi(d) ∈ {0, 1} denotes the survival status of the patient at time ti, so

that yi = 0 (no death event yet) for all i with ti < d, and yi = 1 (death)

for all i with ti ≥ d. Here there are m + 1 possible legal sequences of the

form3 [0, 0, . . . , 1, 1, . . . , 1], including the sequence of all ‘0’s and the sequence

3Notice there are no ‘0’s after a ‘1’. This is the ‘no zombie’ rule: once someone dies, that
person stays dead.
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of all ‘1’s. The mtlr model actually computes the probability of observing

the survival status sequence y = [y1, y2, . . . , ym] as:

SΘ(Y=[y1, y2, . . . , ym] | x⃗ ) =
exp(

∑m
i=1 yi × θ⃗i · x⃗+ bi)∑m

k=0 exp(fΘ(x⃗, k))
,

where Θ = [θ⃗1, . . . , θ⃗m, b1, . . . , bm], bi is the ith bias term, and fΘ(x⃗, k) =∑m
i=k+1(θ⃗i · x⃗ + bi) for 0 ≤ k ≤ m is the score of the sequence with the event

occurring in the interval [tk, tk+1) before taking the logistic transform, with

the boundary case fΘ(x⃗,m) = 0 being the score for the sequence of all ‘0’s.

Given a dataset of n patients {x⃗r} with associated time of deaths {dr}, we

find the optimal parameters (for the mtlr model) Θ∗ as

Θ∗ = argmax
Θ

n∑
r=1

[
m∑
i=1

yr,j(θ⃗i ·x⃗r + bi)− log
m∑
k=0

exp fΘ(x⃗r, k)

]
− C

2

m∑
j=1

∥θ⃗j∥2

(4.8)

where the C (for the regularizer) is found by an internal cross-validation pro-

cess. Note the resulting mtlr-model Θ∗ involves (p+1)×m parameters, over

data with p features.

There are many details here – e.g., to insure that the survival function starts

at 1.0, and decreases monotonically and smoothly, how to deal appropriately

with censored patients, how to decide how many time points to consider (m),

and how to minimize the risk of overfitting (by regularizing). Yu et al. [82]

provides the details.

Afterwards, the learned mtlr-model Θ∗ = [θ⃗1, . . . , θ⃗m] can produce a

curve for a novel patient, who is represented as the vector of his/her fea-

tures x⃗j ∈ ℜr. This involves computing the probability mass function (PMF),

[f1(x⃗j, θ⃗1), . . . , fm(x⃗j, θ⃗m)]; the running sum of these values is essentially the

survival curve. We then use splines to produce a smooth monotonically de-

creasing curve – such as the 10 such curves shown in Figure 2.3 (bottom-right).

4.3.2 Multi-task Learning for Survival Analysis (mtlsa)

Multi-task Learning for Survival Analysis (mtlsa) [51] is similar to mtlr

in many ways – e.g., mtlsa also selects a discrete number of time points
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(m) to evaluate whether the event has occurred or not. mtlsa uses the

“ones-complement” of the mtlr matrix Y (where now 1 indicates alive and

0 means death), to define P as a matrix whose rows are non-negative and

non-increasing :

P = { 0 ≤ Yij ≤ Yiℓ |∀i = 1 . . . n; ∀j, ℓ 1 ≤ j ≤ ℓ ≤ m}. (4.9)

Using this definition they define the optimization problem:

min
XB∈P

1

2
||Y −XB||2F +R(B)

where X ∈ ℜn×p is the input matrix of patient features, B ∈ ℜp×m is the

estimated coefficient matrix, p denotes the number of features, m the number

of time points, || · ||F is the Frobenius norm, and R(B) denotes a regularization

term. Li et al. [51] describe this as a multi-task learning problem as there is

a dependency between the outcomes at all time points being captured by the

shared representation in B; that paper also shows how to incorporate censored

data, perform efficient training, and address all constraints.

This method is similar to the ISD framework, as it too learns values at

multiple time points to predict the survival time. However, while the values

of P (Equation 4.9) are non-negative, they are not bounded by 1, and can

be larger than 1 in practice, so they are not probabilities. Thus this type of

model better matches the [R,∞,i] framework, which produces risk scores for

each time point. (Since these m mtlsa risk scores are monotonic, we can fit

a spline to produce risk scores for each time point.) To be consistent with the

other non-ISD models considered, we use the sum of risk scores to represent

an “overall” risk score – similar to how rsf uses the max of the cumulative

hazard function for its risk score.

4.4 Boosting Models (gbmcox, gbmsci)

Boosting models have long been a very popular topic in machine learning

and statistics, and have now started to appear in survival prediction. The

intuition is to combine many weak models – often many shallow decision trees
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– to create one overall strong model. Unlike random forests, which combine

very deep decision trees, boosting instead combines “shallow” decision trees,

which are grown to a depth of (usually) two to six.

Moreover, while both random forests and boosting models are trained on a

bootstrap sample – i.e., sampling with replacement – the training samples for

boosting models are iteratively weighted such that instances that are misclas-

sified (have a higher error) are weighted more heavily and thus sampled with

a higher proportion in the next iteration. Here we introduce two non-ISD

boosting models4 that have been adapted to the task of survival prediction

based on gradient boosting : gbmsci and gbmcox.

4.4.1 Gradient Boosting Machine

The primary difference between boosting and gradient boosting is the data

on which the weak learners are trained. In the boosting procedure explained

above, instances with high error were given more weight and thus at each

iteration, weak learners were trained to focus on the instances that the previous

iteration’s learned classifier gave high error. For gradient boosting, at each

iteration the additional weak learner is actually trained on the (pseudo) losses

themselves.

In more detail, let F (m−1) be our model at iteration m− 1. Training weak

learners on the losses can be motivated by observing that at iteration m, we

wish to learn an improved model,

F (m)(x) = F (m−1)(x) + f (m)(x),

such that

F (m−1)(x) + f (m)(x) = y,

where y is our target variable and f (m)(x) is the new, weak model. Equivalently

we can write

f (m)(x) = y − F (m−1)(x),

4There is an existing ISD model based on boosting, Survival Boost [7], however, the
paper did not contain the sufficient details to implement the algorithm and attempts to
obtain the author’s original code were unsuccessful. For these reasons we do not include
Survival Boost in this analysis.
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which is the residual vector of the model at the m − 1st iteration. The term

gradient boosting comes from the observation that the residual vector of a

target variable is equivalent to the gradient of the L2/MSE loss:

y − ŷ =
1

2

∑
i

(yi − ŷi)
2.

where ŷi is the predicted value for yi. Gradient Boosting Machines (GBMs)

generalize from the L2 loss to using other (differentiable) loss functions and

their corresponding gradients. When using other loss functions, note that

each sequential model is trained to learn the negative gradient – also called

pseudo-loss or pseudo-residuals.

Formally, we wish to learn a model F (x) from data {xi, yi}ni=1 that min-

imizes some differentiable loss function,
∑n

i=1 L(yi, F (xi)). As in boosting

above, we consider F (x) to be an additive expansion of weak learners, F (x) =∑M
m=0 w(m) f (m)(x), where f(m) is ourmth weak learner and w(m) is the weight

for the mth weak learner. GBMs are greedily learned in two stages at each

iteration; first we calculate the pseudo-residuals (negative gradients),

g
(m)
i = −

[
∂ L( yi, F (xi)

∂ F (xi)

]
F (x)=F (m−1)(x)

, (4.10)

and use g
(m)
i as the target labels on which our weak learner f (m) is trained.

Then we calculate the weight w(m) of the learned weak learner as

w(m) = argmin
w

n∑
i=1

L( yi , F
(m−1) (xi) + w f(xi) ). (4.11)

The model is then updated as F (m) = F (m−1) (x) + w(m) f(x).

Given the construction of GBMs, we can define a GBM that optimizes the

smoothed concordance (gbmsci) and a GBM that optimizes the Cox partial

likelihood (gbmcox). In practice, optimizing Concordance tends to be difficult

due the discrete calculation used over the indicator function. Instead, one can

use a logistic sigmoid function as an approximation to the indicator function

leading to the smoothed concordance (SCI),

SCI(D,F (·)) = 1

|CP(D )|
∑

(i,j)∈CP(D )

1

1 + eα (F (xi)−F (xj) )
, (4.12)
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where CP(·) is the set of concordant pairs (see Section 3.1), D is our training

dataset, F (xi) represents the risk score assigned to patient i, and α is a hyper-

parameter that controls the steepness of the sigmoid function. Chen et al. [13]

provides details about the gradient and update of the gbmsci. Additionally,

code for gbmsci’s implementation have been made available by its authors5.

Similarly, one can apply GBMs to Cox’s partial likelihood function (Equa-

tion 4.5) to create a model (gbmcox) that assigns risk scores to patient [59].

In practice, gbmcox and gbmsci typically perform similarly since it has been

shown that maximizing Cox’s partial likelihood actually optimizes a smooth

approximation of Concordance [65]. gbmcox has been well developed and is

included in many R packages including gbm and xgboost.

4.5 Survival Support Vector Machines (ssvm)

Support vector machines (SVMs) are a very common tool in machine learning

that seek a hyperplane in the feature space that maximizing the margin dis-

tances between classes. This learned hyperplane can then be used to classify

instances. Alternatively, instead of classification, a variant, called Rank-SVM,

instead learns models that rank patients, leading to the survival SVM (ssvm).

We train a linear ssvm by solving the optimization problem,

min
w⃗

1

2
||w⃗||22 + γ

∑
(i,j)∈CP(D )

max
(
0, 1− w⃗T (x⃗i − x⃗j

)
where w⃗ are feature weights, and γ > 0 is the term to control the regulariza-

tion of the model. Pölsterl et al. [58] addresses the complexities of learning

w⃗ given that many instances are censored. They also describe how to formu-

late ssvm as a kernel ssvm instead of a linear SVM, which allows the model

much greater flexibility in which to make predictions regarding the ranking of

patients. Specifically, in our empirical analysis we apply the ssvm with the

clinical kernel, which has been shown to be very effective in survival data,

without having to tune additional kernel hyperparameters [70]. The imple-

mentation for ssvm have be found in the Python package scikit-survival.

5https://github.com/uci-cbcl/GBMCI
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4.6 Deep Learning Models (deepsurv, deep-

hit)

Neural networks and deep learning is a rapidly expanding topic in the ma-

chine learning community, which has only recently begun to expand into sur-

vival prediction. Two of these deep learning models are the non-ISD model

deepsurv, and the ISD model deephit. deepsurv is a feed-forward neural

networks that outputs a patient’s “risk” from a linear activation function –

this risk corresponds to a non-linear version of exp(θ⃗ T x⃗i) that the Cox model

uses in Equation 4.5. This risk score is then combined with the log of Cox’s

partial likelihood function (Equation 4.6) to train the model. Since the out-

put of deepsurv is analogous to the risk scores produced by the Cox model,

we could apply the KP estimator of a baseline survival function to transform

deepsurv into an ISD model; however, since we already consider cox-kp we

do not include this extension in our empirical results and instead consider the

deephit model, which directly learns the survival distribution.

Originally, deephit [50] was developed to address the challenge of com-

peting risks [2], which models the risk one accrues from multiple event types

– e.g., death from breast cancer or death from heart attack – but it can easily

be reduced to a model that only considers one event type. deephit is an ISD

model that characterizes the problem of survival prediction in the same way

that multi-task models did in Section 4.3: i.e., the time of death of trans-

formed into a m-dimensional binary vector that indicates whether a patient

is alive (0) or dead (1) at each time, where m is the number of time points

considered. As such, the output of deephit is the probability of a patient

dying within each of the m+ 1 intervals generated via the softmax activation

function – i.e., ŷk,i is the probability of death occurring in the kth time interval

for the ith patient.

The loss function for deephit LTotal = α1 Ll + α2 Lr, is a weighted com-

bination of a log-likelihood loss, Ll, and a loss that incorporates ranking, Lr.
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The log-likelihood loss at each time interval k is defined by,

Ll = −
n∑

i=1

[
δi log ( ŷk,i ) + (1− δi) log

(
Ŝ( tk | x⃗i )

)]
, (4.13)

where δ is the indicator that the event is observed (uncensored) and Ŝ( tk | x⃗i ) =∑m+1
j≥tk

ŷj,i. While the Ll loss drives the calculation of probabilities (ideally cali-

brated probabilities), the Lr loss corresponds to a smooth concordance function

to drive concordant predictions. Specifically, Lr is given as,

Lr =
∑

(i,j)∈CP(D )

η
(
Ŝ( ti | x⃗i ) , Ŝ( ti | x⃗j )

)
, (4.14)

where ti is the event time of x⃗i and η(x, y) = y−x
σ
, which is an approximation

to the indicator function where the steepness is controlled by σ. Note this

approximation to concordance actually approximates time-dependent concor-

dance [6] – the “risks” correspond to the survival probability at the event time

ti in Equation 4.14 for both x⃗i and x⃗j (where now higher risk implies living

longer). For a proportional hazard model, such as cox-kp, the time-dependent

Concordance and the usual Concordance measure are actually equivalent.

In addition to the normal neural network hyperparameters (e.g., batch

size, number of layers, number of nodes), α1, α2, σ and m must be chosen as

well. Both deepsurv and deephit use random search [8] for hyperparameter

selection. Code for deepsurv is available on its authors’ github6 and deephit

is also available on github7, however here we have used our own implementation

in the empirical analysis.

6https://github.com/jaredleekatzman/DeepSurv
7https://github.com/chl8856/DeepHit
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Chapter 5

Empirical Analysis

Chapter 4 listed several distributional models (km, and the ISDs: aft,cox-

kp,coxen-kp, mtlr, rsf-km, and deephit), and many risk models (mtlsa,

rsf, deepsurv, gbmsci, gbmcox, and ssvm) and Section 3 provided 5 dif-

ferent evaluation measures: Concordance, Integrated Brier score, L1-loss, 1-

Calibration, and D-Calibration. This section provides two separate empirical

comparisons: (1) The evaluation of the seven distributional models, with re-

spect to all five of these evaluation measures across twelve diverse datasets, and

(2) a comparison between the ISD models and the six risk models evaluated

by Concordance on the same twelve datasets. While there are many different

survival models, we have chosen to compare some common, standard models

as well as a wide breadth of others, namely multi-task models, random forest

models, deep learning models, boosting models, and support vector machines.

Note each model’s performance can also be strongly tied to the model’s

assumptions; the standard models and the multi-task models make some type

of linear assumption – e.g., the cox model assumes the log of the relative

hazard ratio is linear in features, mtlsa assumes the risk at each time point

is linear in features, and mtlr is a log-linear model. Given this assumption,

we expect the performance of these specific models to be worse for event times

that have a nonlinear relationship with the patient features. That is, we expect

the standard models and the multi-task models to perform worse than other

models on some datasets – likely indicating some non-linear relationships in the

data. Similarly, cox-kp, coxen-kp, and aft[Weibull] share the assumption
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of proportional hazards (survival curves cannot have different shapes) so they

cannot accurately reflect the affect of features having varying influence over

time, e.g., a blood test may be influential on early event times but not impact

event times far from the starting date.

5.1 Datasets and Evaluation Methodology

There are many different survival datasets; here, we selected twelve publicly

available medical datasets in order to cover a wide range of sample sizes,

number of features, and proportions of censored patients. We excluded small

datasets (with fewer than 150 instances) to reduce the variance in the evalua-

tion metrics. Our datasets ranged from 170 to 9105 patients, from 12 to 7399

features, and percentage of censoring from 17.23% to 86.21%; see Table 5.1.

Note that we have not included extremely high-dimensional data (with tens

of thousands of features, often found in genomic datasets), as such data raises

additional challenges beyond the scope of standard survival analysis; see [76]

for methods to handle extremely high-dimensional data.

Four datasets were retrieved from data collected by The Cancer Genome

Atlas (TCGA) Research Network [24]: Glioblastoma multiforme (GBM 592

patients, 12 features), Glioma (GLI 1105 patients, 17 features), Rectum ade-

nocarcinoma (READ, 170 patients, 38 features), and Breast invasive carcinoma

(BRCA, 1095 patients, 58 features). To ensure a variety of feature/sample-size

ratios, we consider only the clinical features in our experiments.

We have also included the Northern Alberta Cancer Dataset (NACD, 2402

patients, 53 features) which is a conglomerate of many different cancer pa-

tients, including lung, colorectal, head and neck, esophagus, stomach, and

other cancers. In addition to NACD we have included a number of other large

datasets, where the following are commonly used to evaluate the Deep Sur-

vival Analysis systems as they have a (relatively) large number of samples:

the Worchester Heart Attack Study (WHAS, 1638 patients, 6 features) which

examines the survival of myocardial infraction survival [27], the Molecular

Taxonomy of Breast Cancer International Consortium (Metabric, 1981 pa-
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tients, 79 features) which contains gene expression data and clinical features

[20], the Study to Understand Pronoses Preferences Outcomes and Risks of

Treatment (SUPPORT2, 9105 patients, 74 features) [49], the German Breast

Cancer Study Group (GBSG) [63], and the survival of nasopharyngeal carci-

noma patients (NPC, 6449 patients, 13 features) [43].

Lastly, we included two high-dimensional datasets: the Dutch Breast Can-

cer Dataset (DBCD) [40] contains 4919 microarray gene expression levels for

295 women with breast cancer, and the Diffuse Large B-Cell Lymphoma (DL-

BCL) [51] dataset contains 7399 features focusing on Lymphochip DNA mi-

croarrays for 240 biopsy samples.

Below, we consider a dataset to be:

• “High-Censor” if the censoring is greater than 70% – here: READ,

BRCA, and DBCD;

• “High-Dimensional” if it includes more features than samples – here

DBCD and DLBCL (note the DBCD is both High-Censor and High-

Dimensional).

• “Nice” otherwise – i.e., all other datasets. These all fall under stan-

dard analysis conditions: low to medium censoring and a low number of

features relative to the sample size.

We applied the following pre-processing steps to each dataset: We first

one-hot encoded all nominal features and removed any feature containing only

1 unique value. For missing data, we replaced any missing value with the

respective feature’s mean value; if the feature was missing over 25% of its

values we also included a missing indicator (MI) as some features may not

be missing at random – e.g., only some patients may receive a blood test

since they are sicker at the time of data collection. Table 5.1 includes all the

details regarding sample size, censored proportion, and the number of features

pre/post processing.

Following these processing steps, each dataset was partitioned in five dis-

joint subsets, for five-fold cross validation (5CV). We compute the folds by

55



Table 5.1: Overview of datasets used for empirical evaluations. From left to
right: (1) the number of patients in each dataset, (2) the percent of patients
censored, (3) the number of features contained in the original dataset (exclud-
ing the time and status features), (4) the number of features after one-hot
encoding and adding missing indicators. Here, and tables below, solid lines
separate theNice datasets and theHigh-Censor dataset and the dashed line
separates the High-Dimensional datasets (DBCD is both High-Censor
and High-Dimensional).

#: N % Censored # Features # Final Features
GBM Nice 592 17.23 8 12
GLI Nice 1105 44.34 9 17

WHAS Nice 1638 57.68 6 6
Metabric Nice 1981 55.17 21 79

GBSG Nice 2232 42.23 7 7
NACD Nice 2402 36.59 51 51

SUPPORT2 Nice 9105 31.89 43 74
READ HC 170 84.12 14 38
BRCA HC 1095 86.21 14 58
NPC HC 6449 80.80 9 13

DBCD HC,HD 295 73.22 4919 4919
DLBCL HD 240 42.50 7399 7399

sorting the instances by time and censorship, then placing each censored (resp.,

uncensored) instance sequentially into the folds – meaning all folds had roughly

the same distribution of times, and censoring. Within each fold data is nor-

malized with respect to the training fold prior to passing it to the models.

For coxen-kp, rsf, rsf-km, mtlr gbmsci, gbmcox, and ssvm, we

used an internal 5CV (within each training fold, of 4/5 of the data) for hyper-

parameter selection. For deepsurv, deephit, and mtlsa, we instead split

the training set, such that 20% was reserved as a validation set to tune the

hyperparameters (this is also how the model’s authors tuned their systems).

Since rsf, rsf-km, deepsurv, and deephit have many parameters to tune,

we applied random search with 25 iterations [8], whereas other models used

grid search for hyperparameter selection. There were no hyper-parameters to

tune for the remaining models: cox-kp, km, and aft.

As 1-Calibration required specific time points, and as models might perform

well on some survival times but poorly on others, we chose five times to assess

the calibration results of each model: the 10th, 25th, 50th, 75th, and 90th
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percentiles of survival times for each dataset. Appendix C.1 presents all 360

values (6 ISD models (km excluded) × 12 datasets × 5 time-points); here

we instead summarize the number of datasets that each model passed as 1-

Calibrated (at p ≥ 0.05) for each percentile.

As there are many issues regarding the statistical significance of results

coming from cross-validation [71], we make no claims to statistical significance

in this analysis. Instead, for all evaluations, we simply plot the box and whisker

plots from the 5CV results for Concordance, Integrated Brier score, and L1-loss

and give their respective means and standard deviations in Appendix C. As

Concordance requires a risk score, we use the negative of the median survival

time and similarly use the median survival time for predictions for the L1-loss.

To adjust for presence of censored data, we used the L1-Margin loss, given

in Section 3.2. As datasets have varying scales for the time variable we have

reported normalized losses for the L1-Margin loss by dividing the L1-Margin

los by the maximum event time of each dataset – i.e., a value of 1 indicates the

L1-Margin loss is equal to the maximum event time (censored or uncensored)

in the respective dataset. As 1-Calibration (resp., D-Calibration) results are

reported as p-values, and it is not appropriate to average over the folds, we

combined the predicted survival curves from all cross-validation folds for a

single evaluation, and report the resulting p-value.

5.2 Empirical Results – ISD models

Here we consider only the ISD models and compare them across the five dif-

ferent evaluation metrics. Section 5.3 below compares the ISD models to the

non-ISD models with respect to Concordance.

Concordance, Integrated Brier score, and L1-loss Results

Figures 5.1, 5.2 and 5.3 give the empirical results for Concordance, Integrated

Brier score, and L1-Margin loss respectively, where each diamond is the mean

score of the associated model on the dataset,with red diamonds corresponding

to the best scoring model. Appendix C provides tables for the exact empirical
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results for these measures.

Best Performance: Here we find that rsf-km and mtlr generally perform

best on a majority of datasets; rsf-km does best on six of twelve for Concor-

dance, seven of twelve for Integrated Brier score and mtlr does best on eight

of twelve for the L1-Margin loss.

Nice Datasets: Recall that the first seven datasets are Nice. The results

for GBM, GLI, GBSG, and NACD are comparable across all ISD models,

with all ISD models greatly outperforming the baseline, km. While aft,

cox-kp, and coxen-kp generally perform worse than the other ISD models,

this is by a small margin. For WHAS and Metabric, we see that rsf-km

greatly outperforms all models in terms of Concordance and Integrated Brier

Score. The three more-complex ISD models (mtlr, rsf-km, and deephit)

outperform the other three for all metrics on the (largest) SUPPORT2 dataset

though they show relatively equal performance compared to each other. Note

that mtlr performs better in the L1-Margin loss, outperforming other models

on three of the seven Nice datasets, and by a relatively large margin for GLI

and SUPPORT2.

High-Censor Datasets – READ, BRCA, NPC, DBCD: Note first that

the variance in the evaluation metrics is generally higher (note the scale of

the y-axis) on READ, BRCA, and DBCD for all models (except km) due to

the small number of uncensored patients within each test fold – this is not

present in NPC probably due to its larger sample size, 6449. Here there is

a clear indication that rsf-km outperforms all other models with respect to

Concordance and the Integrated Brier Score, scoring best for all four High-

Censor datasets. Again, mtlr performs better on L1-Margin loss with much

better performance on BRCA and NPC.

High-Dimensional Datasets – DBCD and DLBCL: There are no entries

for cox-kp and aft for these two datasets as they failed to run on them,

likely due to the large number of features. We see that mtlr and rsf-km

each perform best on one dataset, mtlr does best on DLBCL (which is not

High-Censor) and rsf-km performs best on DBCD as discussed previously
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(except for the L1-Margin Loss). Here deephit performs relatively poorly on

both datasets, which could be due to their relatively small sample sizes (295,

240 respectively).

Figure 5.1: Box and whisker plot for Concordance; means are given by di-
amonds where red diamonds indicate the best performing ISD model. Note
that the y-axis scales differ between datasets in order to identify differences in
model performance. Here km has been excluded as it always gives a Concor-
dance of 0.5. For this figure (and the following two) aft and cox-kp failed
to run for datasets DBCD and DLBCL so those entries are left blank.
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Figure 5.2: Box and whisker plot for Integrated Brier Score; means are given
by diamonds where red diamonds indicate the best performing ISD model.
Note that the y-axis scales differ between datasets in order to identify differ-
ences in model performance.
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Figure 5.3: Box and whisker plot for L1-Margin loss; means are given by
diamonds where red diamonds indicate the best performing ISD model. Note
that the y-axis scales differ between datasets in order to identify differences
in model performance. The L1-Margin Loss is normalized by dividing by the
maximum event time over the entire dataset – i.e., a value of 1 indicates a loss
equal to the maximum event time.

1-Calibration Results

Table 5.2 gives the number of datasets each model passed for 1-Calibration,

for each time of interest. This does not include km: As km assigns an identi-

cal prediction for all patients, it cannot partition patients into different bins,
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Table 5.2: Results from 1-Calibration evaluations. Columns represent model
used and rows indicate the percentile of the time points used. Recall there are
12 datasets – meaning no model performed perfectly for any of the percentiles.

aft cox-kp coxen-kp mtlr rsf-km deephit
10th 2 3 6 8 7 4
25th 3 3 4 7 6 0
50th 0 2 2 10 7 2
75th 1 2 2 6 3 2
90th 0 2 4 3 4 0

meaning it cannot be evaluated by 1-Calibration.

We see that mtlr is typically 1-Calibrated across the percentiles of survival

times. Specifically, mtlr is 1-Calibrated for at least six (of the twelve datasets)

for the 10th, 25th, 50th, and 75th percentiles, outperforming all other models

considered at these percentiles. The 90th percentile appear to be the most

challenging in general, as some models (aft, deephit) are not 1-Calibrated for

any datasets, cox-kp is 1-Calibrated for two, mtlr is 1-Calibrated for three,

and rsf-km and coxen-kp are 1-Calibrated for four. The 75th percentile also

showed to be challenging: aft, was 1-Calibrated for only one dataset, cox-

kp, coxen-kp, and deephit were 1-Calibrated for two, rsf-km for three and

mtlr for six.

SUPPORT2 was the most challenging dataset, for all models – only mtlr

was 1-Calibrated, and only at the 50th percentile; see Appendix C.1. In gen-

eral, in addition to SUPPORT2, High-Censor datasets seemed the most

difficult to be 1-Calibrated as only coxen-kp, mtlr, and rsf-km were effec-

tive there (and more so for mtlr).

D-Calibration Results

Table 5.3 gives the D-Calibration p-values for each model and dataset. Specif-

ically, this shows km passes D-Calibration for every dataset. In fact, Lemma 2

in Appendix B.3 proves that km is asymptotically D-Calibrated. While km

will tend to be D-Calibrated, it is also the least informative model, since it

assigns all patients the same survival curve.

This motivates us to consider ISD-models, provide each patients with
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Figure 5.4: These figures show the (sideways) decile histogram used for the
D-Calibration test. Each of these is run on the NACD dataset; from left to
right: running cox-kp, mtlr and km.

his/her own survival curve. Of these, mtlr passes all datasets except SUP-

PORT2, which failed to be D-Calibrated for all models besides km. Following

km and mtlr, rsf-km and coxen-kp performed next best, only failing to

be D-Calibrated for two datasets: NACD and SUPPORT2. deephit followed

closely behind, being D-Calibrated for nine of twelve datasets, failing on SUP-

PORT2, DBCD, and DLBCL (recall deephit also performed poorly on all

other metrics for DBCD and DLBCL as well). cox-kp slightly outperformed

aft by being D-Calibrated for five datasets while aft was D-Calibrated for

two.

Figure 5.4 provides (sideways) histograms, to help visualize D-Calibration.

For each subfigure, each of the 10 horizontal bars should be 10%; we see a

great deal of variance for the not-D-Calibrated cox-kp [left], a small (but

acceptable) variability for the D-Calibrated mtlr [middle], and essentially

perfect alignment for the D-Calibrated km [right]. See also Figure 3.5.
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Table 5.3: Results for D-Calibration evaluations. Columns correspond to the
dataset and rows to the model. Results are the p-value from the goodness-of-fit
test. Bold values indicate that a model passed D-Calibration, i.e., p ≥ 0.05;
and “-” means the algorithm did not return an answer.

km aft cox-kp coxen-kp mtlr rsf-km deephit
GBM 1.000 0.002 0.111 0.158 0.560 0.914 0.693
GLI 1.000 0.038 0.036 0.127 0.190 0.887 0.691

WHAS 1.000 0.035 0.310 0.265 0.826 0.475 0.666
Metabric 1.000 0.780 0.986 0.691 0.994 0.814 0.299

GBSG 1.000 0.000 0.249 0.910 0.500 0.889 0.784
NACD 1.000 0.000 0.001 0.004 0.882 0.010 0.895

SUPPORT2 0.151 0.000 0.000 0.000 0.000 0.000 0.000
READ 1.000 0.000 0.000 1.000 1.000 1.000 0.904
BRCA 1.000 0.895 0.000 1.000 0.998 0.999 0.998
NPC 1.000 0.011 0.996 1.000 0.990 0.999 0.999

DBCD 1.000 - - 0.933 0.867 0.843 0.000
DLBCL 1.000 - - 0.992 0.974 0.621 0.013

#D-Calibrated 12 2 5 10 11 10 9

5.3 Empirical Results – Non-ISD vs. ISDMod-

els

Here we compare the non-ISD models (mtlsa, rsf, deepsurv, gbmsci, gbm-

cox, and ssvm) to the ISD models considered above. As these non-ISD models

only predict risk scores, we only evaluate and compare them to ISD models

with respect to Concordance. Since we observed that mtlr, rsf-km, and

deephit always outperformed aft, cox-kp, and coxen-kp we consider only

the former models here. While we reported the values of Concordance in Fig-

ure 5.1 above and Table C.1 in Appendix C, we also show them in Figure 5.3

below and Table C.9 in Appendix C for ease of comparison.

First, we note that gbmsci failed to finish (per fold) in ten hours and was

therefore stopped on SUPPORT2, NPC, DBCD, and DLBCL (the datasets

with the most observations or features). We found that an ISD model per-

formed best on three, and a non-ISD model did best on the other nine; specif-

ically, rsf and ssvm account for seven and gbmcox account for the other

two. However, note these differences between best performing ISD model and

non-ISD models are often very small, often less than 0.005 (see Table C.9

in Appendix C). It appears that ssvm performs very well on the High-
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Dimensional datasets though the standard deviation is large suggesting this

difference may not generalize to other High-Dimensional datasets without

further evaluation.
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Chapter 6

Discussion: Implications of
Empirical Analysis

Chapter 5 introduced empirical results across five metrics for ISD-models on

a variety of datasets. We begin this chapter by reintroducing the ideas of dis-

crimination and calibration and then summarizing the empirical results and

specifically discuss each component – discrimination, calibration, and the L1-

loss (Sections 6.1 - 6.3). Based on these findings, we make recommendations

on the usage of ISD-models in Section 6.4 and in Section 6.5 we discuss the

results of comparing ISD-models to non-ISD-models. We conclude this Chap-

ter in Section 6.6 by arguing why using ISD-models offer a more effective and

comprehensive survival prediction tool.

6.1 Evaluation of Concordance (ISD Models)

Steyerberg et al. [66] noted two different types of performance measures of a

survival analysis model – calibration and discrimination – here we first focus

on the latter:

Discrimination: “Do patients with higher risk predictions experience the

event sooner than those who have lower risk predictions?”

Discrimination is a very important measure for some situations – e.g., if we

have 2 patients who each need a kidney transplant, but there is only a single

kidney graft, then we want to know which patient will die faster without the
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transplant [46]. As discussed in Section 3.1, Concordance measures how well

a predictor does, in terms of this discrimination task.

This paper motivated and studies models that produced an individual sur-

vival curve for a specific patient. Such ISD tools may not be optimal for

maximizing discrimination (and therefore Concordance); and even tools like

cox and rsf, which were originally developed for discrimination, were then

extended to produce these individual survival curves. Given this qualifier,

Figure 5.1 showed (over the set of ISD tools tested), rsf-km scored best on

Concordance for six of the twelve datasets tested, mtlr scored best on five

and deephit performed best on only one. The finding that cox-kp and

coxen-kp did not score best on any dataset is unexpected given the claim

that “a method designed to maximize the Cox’s partial likelihood also ends

up (approximately) maximizing the concordance” [65].

However, when we look at GBM, GLI, GBSG, and NACD from the Nice

datasets, none of the ISD-models significantly outperform one another, in

terms of Concordance. For SUPPORT2, the three more complex models

(mtlr, rsf-km, deephit) outperform the two standard models and elas-

tic net extension (aft, cox-kp, coxen-kp) by a wide margin (relative to the

standard deviation) and on Metabric and WHAS, rsf-km is the clear winner.

The relatively low performance of mtlr compared to deephit and rsf-km on

Metabric and WHAS, suggests there is some nonlinear relationship between

the features and event time that mtlr is not able to exploit due to it’s log-

linear relationship with the features. These findings suggest for Nice datasets,

more complex models (mtlr, rsf-km, and deephit) may not necessarily of-

fer large benefits in terms of Concordance but it appears that in the presence

of non-linear relationships, rsf-km is the strongest model. For this reason we

suggest, for Nice datasets, rsf-km should be tested and evaluated against

a simpler model such as cox-kp, and if no significant difference is observed,

then use cox-kp as it offers a simpler, more elegant solution to the problem

of discrimination.

For the High-Censor datasets, rsf-km had the best performance of all

all ISD models, though often the variation was large as the testing set had
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few uncensored observations. However, given that this was consistent across

four datasets, we suggest rsf-km be utilized for discrimination on High-

Censor datasets. For the High-Dimensional datasets, mtlr and rsf-

km each performed best for one dataset but deephit showed relatively poor

performance. This may instead be an artifact of the sample size rather than the

number of features (or a mixture of the two) that leads deephit to over fit to

the training data. For High-Dimensional datasets, we acknowledge that we

only have two (small) datasets and no clear indication of any ISD performing

best so we deliberately make no suggestion on model usage, beyond noting

that cox-kp and aft are ill suited to the task given that they failed to run

on these datasets.

6.2 Evaluation of Calibration

As noted above, Concordance is only one measure for an ISD tool. Given

that an ISD tool can produce a survival curve for each patient (and not just

a single real-valued score), it can be used for various tasks, with various asso-

ciated evaluations. For example, consider patients who are deciding whether

to undergo an intensive medical procedure. Using the plots from Figure 3.4,

note that Patient C has a very steep survival curve with a low median sur-

vival time, while Patient A has a shallow survival curve with a large median

survival time. If we were to use this to predict the outcome of a procedure,

we might expect Patient C to opt-out of the procedure, but Patient A to go

through with it. Note the decision for Patient C is completely independent

of Patient A, in that we could give the procedure to one, both, or neither of

them. As these patients are not being ranked for a limited procedure, Con-

cordance is not an appropriate metric and instead we need to evaluate such

predictors using a calibration score – perhaps 1-Calibration or D-Calibration,

as discussed in Sections 3.3 and 3.5.

As discussed in Section 3.3, 1-Calibration is particularly relevant for [P,1t∗ ,i]

models– i.e., models that produce a probability score for only 1 time point

(for each patient). We also noted that ISD models, that produce individual
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survival curves, can also be evaluated using 1-Calibration, once the evaluator

has identified the relevant specific time t∗. Here, we evaluated a variety of

time points: the 10th, 25th, 50th, 75th and 90th percentiles of survival times

for each dataset. We found mtlr to be superior to all the models considered

here for all percentiles except the 90th, which proved hard for all models. The

observation that mtlr was 1-Calibrated for a range of time points, across

a large number of diverse datasets, suggests that the probabilities assigned

by mtlr’s survival curves are representative of the patients’ true survival

probabilities; the observation that the other models were not 1-Calibrated as

often, calls into question their effectiveness here.

Of course, our analysis is performing the 1-Calibration test for 6 mod-

els (km is excluded) across 12 datasets and 5 percentiles, meaning we are

performing 360 statistical tests. We considered applying some p-value correc-

tions, e.g., the Bonferroni correction – to reduce the chance of “false-positives”,

which here would mean declaring a model that was truly calibrated, as not.

However, the actual p-values (see Appendix C.1) show that including these

corrections would likely impact the models equally, further strengthening the

claim that mtlr has excellent 1-Calibration performance.

Our D-Calibration results further support the use of mtlr’s individual

survival curves over other ISD-models, by showing that mtlr was the ISD-

model that was most often D-Calibrated (only failing on SUPPORT2). Recall

that km is technically not an ISD since it gives one curve for all patients.

We see that different ISD-models are quite different for this measure, e.g.,

aft and cox-kp produce significantly worse performance for D-Calibration,

being D-Calibrated for only two and five datasets, respectively. As discussed

in Section 5.2, aft is a completely parametric model, which means it cannot

produce different shapes (see Figure 2.3[top-left]), likely impacting its ability

to be D-Calibrated. Our analysis showed only that aft[Weibull] is here not D-

Calibrated; aft[χ] for some other distribution class χ, might be D-Calibrated

for more datasets.

In addition to discussing discrimination (Concordance) and calibration (1-

Calibration, D-Calibration) separately, we can also consider a hybrid evalua-
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tion metric – the Integrated Brier score – which measures a combination of

both calibration and discrimination – see Section 3.4 and Appendix B.2. We

see rsf-km performing the best (or tying) for seven of the twelve datasets, and

mtlr performing best on the rest. Here, note that if mtlr performed best

on Concordance for a dataset then mtlr almost performed best or tied for

the Integrated Brier Score (and similarly for rsf-km) which demonstrates the

interrelatedness of Concordance and the Integrated Brier Score (both measure

some type of discrimination), though the Integrated Brier Score also measures

calibration.

The Integrated Brier scores, along with 1-Calibration and D-Calibration

results, collectively show mtlr outperforms other models (for calibration).

Specifically, while rsf-km performed better on High-Censor datasets for

Concordance, this difference is not as profound with regards to the Integrated

Brier Score. Examining the 1-Calibration results in Appendix C.1, we see

that mtlr is much more often 1-Calibrated for the High-Censor datasets

whereas rsf-km fails to be 1-Calibrated for these datasets and instead is

usually 1-Calibrated only on the Nice datasets. Additionally, we also found

that deephit was not 1-Calibrated in general, suggesting that this model may

not be useful for calibration tasks.

6.3 Evaluation of L1-Loss

Given that survival prediction looks very similar to regression, it is tempting

to evaluate such models using measures like L1-loss. A small L1-loss shows

that a model can help with many important tasks, such as decisions about

hospice, and for deciding about various treatments, based on their predicted

survival times. However, simply because a model has the best performance

for L1-loss does not mean the estimates are useful – consider the NPC dataset

where mtlr has an average L1-loss of 2.004 – two times the maximum event

time. While this is the lowest average error, predicting the time of death up to

an error of 2 times the maximum event time is likely not helpful to a patient.

While the best model may not represent a “good” model, our empirical
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results still showed mtlr had the lowest L1-Margin loss on eight of twelve

datasets, often by a wide margin. We see that km is also competitive for the

High-Censor datasets, but given the construction of the L1-Margin loss, this

is not surprising (refer back to Section 3.2).

6.4 Which ISD-Model to Use?

As shown above, which ISD-model works best depends on properties of the

dataset, and on what we mean by “best”.

In terms of discrimination (Concordance), we observed that forNice datasets,

simple models (e.g., cox-kp) generally performed well but was not as accurate

as rsf-km on a few specific datasets (WHAS, Metabric, SUPPORT2). This

suggests both a simple model, cox-kp, and rsf-km should be evaluated on a

dataset and if no significant difference arises then the simpler model should be

chosen. For High-Censor datasets, we observed that rsf-km consistently

performed better than other models, and so suggest using rsf-km here. Due

to the small number of High-Dimensional datasets, there was no clear indi-

cation of which model was superior so the choice of ISD model remains unclear

past the observation that aft and cox-kp failed to execute on these datasets.

The finding that rsf-km is a dominating model in terms of concordance

may come as a surprise, especially with respect to the deephit model whose

authors found that deephit outperformed rsf on the Metabric dataset in

their own experiments [50]. We believe our findings are more robust for two

reasons: (1) hyperparameters for Deep learning are notoriously hard to learn

without special, hand-crafted selection (which does not generalize) so we chose

to utilize random search as a fair baseline comparison, and (2) in the deephit

paper, they only try 100 trees with rsf and do no tuning of hyperparameters

(note the default number of trees for rsf is 1000).

When the objective is to build a calibrated model, it was clear the mtlr

generally outperformed other ISD models in terms of both 1-Calibration and

D-Calibration on all three divisions (Nice,High-Censor, andHigh-Dimensional),

though mtlr was comparable to rsf-km for Nice datasets. For this reason
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we suggest using mtlr for building calibrated models, in general. This finding

also extends to the task of minimizing the L1-Loss, as mtlr was dominant on

for a large majority of the datasets (nine of twelve).

6.5 How do ISD-Models compare to non-ISD-

Models?

Finally, we ask if non-ISD models (here, specifically single time risk models)

can outperform ISD models in a discrimination task – i.e., wrt concordance

measure. To evaluate this, we chose risk models corresponding to many of our

ISD models – including a multi-task model (mtlsa), the original random forest

model (rsf), a deep learning model (deepsurv), boosting models (gbmsci

and gbmcox), and also included a support vector machine model (ssvm).

Our results (in Table C.9) showed that the ISD models did not outperform

the non-ISD models and instead only performed best on three of the twelve

datasets. However, we also found that these differences are by a very small

margin: the best performing ISD model for each dataset was always within

one standard deviation of the best performing non-ISD model. Within their

specific domains, we saw that the ISD models often outperformed their non-

ISD counterpart: mtlr outperformed mtlsa for eleven of twelve datasets,

rsf-km outperformed rsf on six of twelve and tied on one, and deephit

outperformed deepsurv on seven of twelve and tied on one as well.

The disparity that non-ISD models performed better is largely due to the

observation that ssvm outperformed all ISD models on four datasets and

specifically on both High-Dimensional datasets. We suggest that the ef-

fectiveness of ssvm on high dimensional data should be further explored to

see if this finding generalizes to more datasets. The observation that ssvm

outperforms many models is surprising as ssvm is rarely considered as a com-

peting model in much of the survival prediction literature; instead, models are

typically compared to rsf and cox.
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6.6 Why use ISD-Models?

As noted above, this paper argues for the use of models that generate ISDs

(i.e., [P,∞,i]). This is significantly different from models that only generate risk

scores ([R,1∀,i]), as those models can only be evaluated using a discriminatory

metric as shown above. While this discrimination task (and hence evaluation)

is helpful for some situations (e.g., when deciding which patients should receive

a limited resource), it is not helpful for others (e.g., deciding whether a patient

should go to a hospice, or terminate a treatment). A patient’s primary focus

will be on his/her own survival, not how they rank among others – hence the

risk score such models produce do not meaningfully inform individual patients.

The single point probability models, [P,1t∗ ,i], are a step in the right di-

rection for benefiting patients, but they are still often inadequate, as they

apply only to a single time-point. While hospital administrators may want

to know about specific time intervals (e.g., t∗ =“30-day readmission” proba-

bilities), medical conditions seldom, if ever, are so precise. This is problem-

atic as these probabilities can change dramatically over a short time interval,

i.e., whenever a survival curve has a very steep drop. For example, consider

Patient #1 (P1) in Figure 2.3 for the mtlr model. Here, we would opti-

mistic about this patient if we considered the single point probability model

at t∗=6months, as ŜMTLR(P1 | 6months ) = 0.8, but very concerned if we in-

stead used t∗=12months, as ŜMTLR(P1 | 12months ) = 0.35. Note this trend

holds for many of the patients, including P2, P6, P8; this is also true for the

other ISD-models shown.

This suggests a model based on only a single time point may lead to in-

appropriate decisions for a patient. Note also that such a model might not

even provide consistent relative rankings over a pair of patients, ie it might

provide different discriminative conclusions. Consider patients P5 and P7 in

Figure 2.3[mtlr]. Here, at t∗ =20months, we would conclude the green P7

is doing worse (and so should get the available liver), but at t∗ =40months,

that the blue P7 is more needy. We see similar inversions for a few other pairs

of patients in mtlr, and also for several pairs in the rsf-km, and deephit
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models.

Of course, one could argue that we just need to use multiple single-time

models. Even here, we would need to a priori specify the set of time points –

should we use 6 months and 12 months, and perhaps also 30 months? . . . and

maybe also 20 months? This becomes a non-issue if we use individual survival

distribution (ISD; [P,∞,i]) models, which produce an entire survival curve,

specifying a probability values for every future time point. Moreover, while

risk score models can only be evaluated using a discrimination metric, these

ISD models can be evaluated using all metrics, making them an overall more

versatile method for survival analysis. Further still, we have shown that these

risk score models do not significantly outperform ISD models making there

use even less desirable.

Bottom line: In general, a survival task is based on both a dataset, and

an objective, corresponding to the associated evaluation measure. Our ISD

framework is an all-around more flexible approach, as it can be evaluated using

any of the 5 measures discussed here (Section 3) – both commonly-used and

alternative. Importantly, when evaluating ISD models discriminatively (using

Concordance), the risk scores we advocate (mean/median survival time) have

meaning to clinicians and patients, whereas a general risk score, in isolation,

has no clinical relevance. Moreover, the use of risk score models shown no

great benefit over ISD models so their use is called into question when a more

flexible model serves the same purpose with equivalent performance.
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Appendix A

Extending Survival Curves to 0

In practice, survival curves often stop at a non-zero probability – see Figure 2.3

and Figure A.1[left] below. This is problematic as it means they do not corre-

spond to complete distribution (recall a survival curve should be “1−CDF(t)”,

where CDF is the Cumulative Distribution Function) which leads to problems

for many of the metrics, as it is not clear how to compute the mean, or the me-

dian, value of the distribution. One approach is to extend each of the curves,

horizontally, to some arbitrary time and then drop each to zero (the degenerate

case being dropping the survival probability to zero at the last observed time

point). This approach has downsides: dropping the curve to zero at the last

observed time point produces curves whose mean survival times are actually

a lower bound on the patient’s mean survival time, which is likely too small.

In the event that the last survival probability is above 0.5 (as is often the case

for highly censored datasets) this may bias our estimate of the L1-loss, which

is based on the median value. Alternatively, if we instead extend each curve

to some arbitrary time and then drop the curve to zero, we need to decide on

that extension, which also could bias the L1-loss.

Since both standard approaches have clear downsides (and there is no way

of knowing how the survival curves act beyond the sampled survival times), we

chose to simply extrapolate survival curves using a simple linear fit: for each

patient x⃗i, draw a line from (0, 1) – i.e., time is zero and survival probability is

1 – to the last calculated survival probability, (tmax, Ŝ( tmax | x⃗i )), then extend

this line to the time for which survival probability equals 0 – i.e., (t0(x⃗i), 0)
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– see Figure A.1[right]. Note that curves cannot cross within the extended

interval, which means this extension will not change the discriminatory criteria.

Figure A.1: On left, survival curves generated from mtlr for the NACD
dataset. Left shows this model’s survival curves end at 68.9 months. On right,
linear extensions of those survival curves go as far as 118 months.

There are extreme cases where a survival model will predict a survival curve

with survival probabilities of 1 (up to machine precision) for all survival times

(think “a horizontal line, at p = 1”). In these cases, this linear extrapolation

will never reach 0. To address this, we fit the Kaplan-Meier curve with the

linear extension described above to compute t0KM ; we then replace any infinite

prediction with this value. Additionally, as the Kaplan-Meier curve is to rep-

resent the survival curve on a population level, we also truncated any patient’s

median survival time by t0KM .
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Appendix B

Evaluation Measures –
Supplementary Information

This appendix provides additional information about the various evaluation

measures.

B.1 L1-loss, and variants

B.1.1 Proof of Equation 3.6

For completeness, we prove Equation 3.6. (This claim is also proven by Gupta

and Bradley [31], which uses mean residual life rather than expected total life.)

Theorem B.1.1. The conditional expectation of time of death, D, given that

a patient was censored at time c, is given by: E[D |D > c] = c+
∫∞
c S(t) dt

S(c)
.

Proof. Let D be the r.v. for the time when a patient dies, and define

S(c) = P (D > c) =

∫ ∞

c

P (D = t) dt

as the survival function – i.e., the probability that the patient dies after time

c. Given this, the conditional probability is

P (D = t |D > c ) =
P (D = t, D > c )

P (D > c )
=

P (D = t, D > c )

S( c )
=

{
0 if t < c

P (D=t )
S( c ) otherwise

.

E[D |D > c ] =

∫ ∞

c

t
P (D = t )

S( c )
dt

=
1

S( c )

[∫ ∞

c

c P (D = t ) dt +

∫ ∞

c

(t− c)P (D = t ) dt

]
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=
1

S( c )

[
c S( c ) +

∫ ∞

c

(∫ t

c

dx

)
P (D = t) dt

]
= c +

1

S( c )

[∫ ∞

c

(∫ ∞

x

P (D = t) dt

)
dx

]
(B.1)

= c +

∫∞
c

S(x ) dx

S( c )
.

Step B.1 is an application of Tonelli’s theorem [61], which lets us swap the

order of integration for a non-negative function. As desired, this quantity,

E[D |D > c ], is always at least c. Moreover, when c = 0, this is

0 +

∫∞
0

S( t ) dt

1
=

∫ ∞

0

S( t ) dt = E[D ]

which is the expected value of the distribution for this survival curve (and

exactly the claim of the Theorem).

B.1.2 Log L1-loss

The L1-loss measure implicitly assumes that the quality of a prediction, t̂
(0.5)
j ,

depends only on how close it is to the truth dj – i.e., on |dj − t̂
(0.5)
j |. But this

does not always match how we think of the error: if we predict Patient A will

live for 120 months then found that he actually lived 117 months, we would

consider our prediction very accurate. By contrast, if we predict Patient B will

live 1 month, but then find she lived 4 months, we would consider this to be

a poor prediction. Notice, however, the L1-loss for Patient A is |dA − t̂
(0.5)
A | =

|120 − 117| = 3 months, which is the same as the L1-loss for Patient B:

|dB − t̂
(0.5)
B | = |1− 4| = 3 months!

This motivates us to consider the relative error, rather than an absolute

error: here, as our prediction for Patient A is off by only 3 / 120 = 2.5%, we

consider it good, whereas our prediction for Patient B is off by 3 / 1 = 300%.

The Log-L1-loss reflects this:1

ℓLogL1( di, t̂
(0.5)
i ) = | log(di)− log(t̂

(0.5)
i )| (B.2)

1 Note that the times mentioned in “Doc, do I have a day, a week, a month or a year?”
are basically in a log-scale.
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To compute the average Log-L1-loss over the dataset VU , we can use Equa-

tion 3.4 but using log(dj) rather than dj, etc.

B.2 Brier Score Details

This section supplements the description of the Brier score given in Section 3.4,

discussing (1) the decomposition of the Brier score into calibration and dis-

crimination components and (2) the failure of the Integrated Brier score to

incorporate the full distribution of probabilities in survival curves.

B.2.1 Brier Score Decomposition

As mentioned in Section 3.4, the Brier score can be separated into calibration

and discriminatory components. The original separations were the the work of

Sanders [62] and Murphy [54], [55] and later put into the context of calibration

and discrimination (also known as refinement) by DeGroot and Fineberg [22].

Recall the notation and mathematical expression of the Brier score for a

set of uncensored instances, VU ,

BS
(
Ŝ( t∗ | · ), {x⃗i}

)
=

1

|VU |
∑
i∈VU

(
I [ di ≤ t∗ ]− Ŝ(t∗|x⃗i)

)2

.

To simplify notation, let pi = Ŝ( t∗ | x⃗i ). The separation of the Brier score

requires that a discrete, distinct number of predictions exist; here, assume

there are K distinct values for pk for k = 1, . . . K. Further, let nk be the total

number of patients with pk as their prediction and hence |VU | =
∑K

k=1 nk.

Finally, let λk be the observed proportion of the nk patients who have died

by t∗ and thus (1 − λk) is the proportion still alive. The separation theorem

of the Brier score states that BS = C + D, where C and D are nonnegative

calibration and discriminatory scores where

C =
1

|VU |

K∑
k=1

nk(λk − pk)
2 (B.3)

D =
1

|VU |

K∑
k=1

nkλk(1− λk). (B.4)
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Note the calibration score, C, is nearly equivalent (up to a factor of nk)

to the numerator of the Hosmer-Lemeshow test (Equation 3.8). However,

the Hosmer-Lemeshow test subscript refers to bins whereas here the subscript

refers to a distinct value of pk. One can see that C represents a calibration

score as the estimated probabilities, pk, must be close to the true proportion

of deaths, λk in order to have a small score (lower is better). In fact, to satisfy

C = 0, all predictions, pk must be equal to λk (Equation B.3).

There are also similarities between D and the denominator of the Hosmer-

Lemeshow test. However, note Equation B.4 uses the the true proportion

of deaths λk, whereas the Hosmer-Lemeshow test uses an estimated value,

p̄. Note that D has a “good” (low) score if all patients associated with a

prediction probability pk have the same status, i.e., they either all die or are

all still alive.

To understand why this means D is a discriminatory measure, consider

the extreme case where BS(·, ·) = 0, which means both D = 0 and C = 0.

For D = 0, all patients associated with each probability value must either be

dead by t∗ or all be alive at t∗, i.e., λk ∈ {0, 1} for k = 1, 2; note only K = 2

is possible here. In turn, for C = 0, we require pk = λk for k = 1, 2, that is

pk ∈ {0, 1} – all predictions will be 1 or 0. Here we are discriminating perfectly

between the patients who have died and the patients who are still alive, with a

model that predicts only 1’s or 0’s. Of course, we should not require a model

to estimate survival probabilities to be precisely 1 or 0, for the same reason

that we do not expect the learned distribution to correspond to the Heaviside

distribution shown in Figure 3.2.

B.2.2 Integrated Brier score does not involve the Entire
Distribution

At the beginning of Section 3.5, we claimed the Integrated Brier score (IBS),

IBS( τ, VU , Ŝ( · | · ) ) =
1

τ

∫ τ

0

BSt

(
VU , Ŝ( t | · )

)
dt ,

does not utilize the survival curves’ full distribution of probabilities over all

times. For example, on a km curve, we expect that 10% of patients will die in
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every 10% interval, e.g., 10% of all patients will die in the [0.5, 0.6) interval.

While D-Calibration will debit a model that fails to do this, this Integrated

Brier score does not require this. The most obvious example is the perfect

model, where each patient is given the appropriate Heaviside distribution (Fig-

ure 3.2) at his/her time-of-death: here the only probabilities are {0,1} – here

IBS(·, ·) = 0, even though no patient’s ŜHeaviside( di | x⃗i ) is ever in [0.5, 0.6).

However, as we have previously noted, the inherent stochasticity of the world

means that meaningful distributions should include non-zero probabilities in

other places as well, rather than placing all weight on a single time point.

Since the Integrated Brier score fails to account for this, there is no guar-

antee that probabilities are meaningful across individual survival curves. This

motivated us to introduce D-Calibration, to determine whether a proposed

ISD-model produces meaningful distributions, with probabilities that reflect

the number of deaths that have occurred in the population. To see that these

two metrics are measuring different aspects, note the Integrated Brier scores

for all ISD-models are nearly equivalent for the GLI dataset, but only mtlr,

rsf-km, and deephit are D-Calibrated.

B.3 D-Calibration Details

B.3.1 Proof for D-Calibration with Censored Data

Here we prove the expected value of Nk (given in Lines 3.18, 3.19, and 3.20)

is equal for all bins, i.e., E[Nk] = pk+1 − pk – which allows us to apply the

goodness-of-fit test with uniform proportions. We assume that all survival

curves are strictly monotonically decreasing meaning we have the equality,

di ≤ ci ⇐⇒ S(di) ≥ S(ci)). This equivalence lets us replace di ≤ ci with

S(di) ≥ S(ci), within the indicator functions in Nk. To simplify notation, we

define Ik := [pk, pk+1), Sc := S( c | x⃗ ), and Sd := S( d | x⃗ ). The proof below

shows that the expected value of the summand within Lines 3.18 – 3.20 above

is equal to pk+1 − pk, i.e., we ignore
1
|V |

∑|V |
i=1[·] and take the expected value of

the term inside the summation.
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Theorem B.3.1. Given the formula for Nk (Lines 3.18 – 3.20), if the true

survival function S(·|·) is strictly monotonically decreasing then proportions

are equal across all bins, i.e., E[Nk] = pk+1 − pk.

Proof.

E[Nk] =E
[
I [Sd ∈ Ik ∧ Sd ≥ Sc ]

+
Sc − pk

Sc

· I [Sc ∈ Ik ∧ Sc > Sd ]

+
(pk+1 − pk)

Sc

· I [Sc > Sd ∧ Sc ∈ [pk+1, 1] ]

]

= E
[
I [Sd ∈ Ik ∧ Sd ≥ Sc ]

]
+ E

[
Sc − pk

Sc

· I [Sc ∈ Ik ∧ Sc > Sd ]

]
+ E

[
(pk+1 − pk)

Sc

· I [Sc > Sd ∧ Sc ≥ pk+1 ]

]

= Pr[Sd ∈ Ik ∧ Sd ≥ Sc ]

+ Pr[Sc ∈ Ik ∧ Sc > Sd] − pk E
[
1

Sc

· I [Sc > Sd ∧ Sc ∈ Ik ]

]
+ (pk+1 − pk)E

[
1

Sc

· I [Sc > Sd ∧ Sc ≥ pk+1 ]

]

= Pr[Sd ∈ Ik ∧ Sd ≥ Sc] + Pr[Sc ∈ Ik ∧ Sc > Sd] (I)

− pk E
[
1

Sc

· I [Sc > Sd ∧ Sc ≥ pk ]

]
(II)

+ pk+1E
[
1

Sc

· I [Sc > Sd ∧ Sc ≥ pk+1 ]

]
(III)

Focusing on the second probability in line (I), note Sc ∈ Ik = [pk, pk+1) and

Sc > Sd imply that Sd ∈ [0, pk+1) which can be expanded to the cases for

Sd < pk and Sd ∈ Ik. Using this, we reformulate the probability by noting the

equivalence of the event space,

Pr[Sc ∈ Ik ∧ Sc > Sd] = Pr[Sc ∈ Ik ∧ Sd < pk] + Pr[(Sc ∧Sd) ∈ Ik ∧ Sc > Sd].
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Combining the second piece above with the first probability in line (I), we

again simplify by noting these probabilities bound Sc < pk+1,

Pr[Sd ∈ Ik ∧ Sd ≥ Sc] +Pr[(Sc ∧Sd) ∈ Ik ∧ Sc > Sd] = Pr[Sd ∈ Ik ∧ Sc < pk+1].

Using this simplification we can rewrite the entirety of line (1),

Pr[ Sd ∈ Ik ∧ Sd ≥ Sc ] + Pr[ Sc ∈ Ik ∧ Sc > Sd ]
= Pr[ Sd ∈ Ik ∧ Sc < pk+1 ] + Pr[ Sc ∈ Ik ∧ Sd < pk ]

Recalling the independence assumption, c ⊥ d, we have the following equali-

ties:

Pr[Sd ∈ Ik ∧ Sc < pk+1] = Pr[Sd ∈ Ik] · Pr[Sc < pk+1] = (pk+1 − pk) Pr[Sc < pk+1],

Pr[Sc ∈ Ik ∧ Sd < pk] = Pr[Sc ∈ Ik] · Pr[Sd < pk] = pk Pr[Sc ∈ Ik],

where the final equalities are due to the uniformity of the survival function on

d, S(d) ∼ U(0, 1). This then leaves the final simplification of line (I) as,

Pr[Sd ∈ Ik ∧ Sd ≥ Sc] + Pr[Sc ∈ Ik ∧ Sc > Sd] = (pk+1 − pk) Pr[Sc < pk+1]

+ pk Pr[Sc ∈ Ik].

Now we address line (II) and analagously line (III):

−pk E
[
1

Sc

· I [Sc > Sd ∧ Sc > pk ]

]
= −pk

(∫ 1

pk

∫ Sc

0

1

Sc

f(Sc) dSd dSc

)
(Def. of E[·])

= −pk

(∫ 1

pk

Sc

Sc

f(Sc) dSc

)

= −pk Pr[Sc > pk]

Here f is the probability distribution function (PDF) for the distribution

generated by the survival function applied to a censored observation. As the

censoring distribution is unknown f(Sc) is also unknown whereas f(Sd) would

be the PDF of the uniform distribution.

91



Following the steps above for line (III) analogously gives us

pk+1 E
[
1

Sc

· I [Sc > Sd ∧ Sc > pk+1 ]

]
= pk+1 Pr[Sc > pk+1]

Combining the simplifications of lines (I), (II) and (III), we have the fol-

lowing,

E[Nk] = (pk+1 − pk) Pr[Sc < pk+1] + pk Pr[Sc ∈ Ik] (I)

− pk Pr[Sc > pk] (II)

+ pk+1 Pr[Sc > pk+1] (III)

= pk+1 (Pr[Sc < pk+1] + Pr[Sc > pk+1])

− pk (Pr[Sc < pk+1]− Pr[Sc ∈ [pk, pk+1) + Pr[Sc > pk])

= pk+1 − pk

This proof requires the assumption that survival curves are strictly mono-

tonically decreasing on [0,1]. This assumption implies survival curves will not

contain any large flat areas, i.e., there will not be non-zero probability mass

for S(ci) = S(di) when ci ̸= di. Without this assumption certain terms in

the proof below would fail to cancel with one another, leaving us with non-

equivalent proportions within each bin (specifically higher proportions within

bins that contain these flat lines).

A natural corollary of Theorem B.3.1 is that all consistent estimators of the

true survival distribution will be D-Calibrated (if the true survival distribution

is strictly monotonic). Further, if survival time is independent and identically

distributed (i.i.d.) across patients then there will only be one true survival

curve for all patients, and thus, as Kaplan-Meier is uniformly consistent [10],

[19]:

Lemma 2. The Kaplan-Meier distribution is asymptotically D-Calibrated.
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Figure B.1: Simplified models to illustrate: [left] a model can have perfect
1-Calibration for a time, but not be D-Calibrated, and [right] a model can
have perfect D-Calibration, but not be 1-Calibrated for a time. (See text for
description.)

This is consistent with the results given in Table 5.3 which showed that

km always passed the D-Calibration test with a p-value 1.000, in 11 datasets

and 0.151 in the other one. Under all uncensored data, we would expect the

typical 5% Type I error rate for claiming p <0.05 as significant.however in

the presence of censored data, the proportion of the patients within each bins

become smoothed, effectively boosting the p-value.

B.3.2 D-Calibration Compared to 1-Calibration

Proposition B.3.2. It is possible for a ISD model to be perfectly D-calibrated

but not 1-calibrated at a time t∗; and for (another) ISD model to be perfectly

1-calibrated at time t∗ but not D-calibrated.

Proof. “1-Calibration ̸⇒ D-Calibration”: Consider the model shown in

Figure B.1[left]. Here, the green curve corresponds to 4 apparently-identical

patients {x⃗g,1, . . . , x⃗g,4}, and the red curve, to apparently-identical {x⃗r,1, . . . , x⃗r,4}.

The “∗”s mark the time when each patient died, denoted as dx⃗ for x⃗. We in-

tentionally use simple examples, with no censored patients, with curves that

go to 0.

Note this model assigns Ŝ(T1 | x⃗g,i ) = 0.75 for each of the 4 green patients,

and Ŝ(T1 | x⃗r,j ) = 0.25 for each of the 4 red patients.
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To show that this model is 1-Calibrated, with respect to T1: Recall we first

sort the Ŝ(T1 | x⃗ ) values, then partition them into k sets. Here, we consider

k = 2, rather than the deciles earlier. The first set contains the 4 patients

with Ŝ(T1 | x⃗ ) = 0.75 (i.e., the green patients); and the second, the 4 patients

with Ŝ(T1 | x⃗ ) = 0.25. Now note that 3 of the 4 “Ŝ(T1 | x⃗ ) = 0.75 patients”

are alive at T1; and 1 of the 4 “Ŝ(T1 | x⃗ ) = 0.25 patients” are alive at T1 –

which means this model is perfectly 1-Calibrated at T1.

However, this model is not D-Calibrated: To be consistent with the earlier

1-Calibration analysis, we partition the time intervals into 2 sets (not 10), as

shown in Figure B.1. Here, Ŝ( dx⃗ | x⃗ ) ∈ [0.5, 1] holds for only 1 patient, and

Ŝ( dx⃗ | x⃗ ) ∈ [0, 0.5] holds for 7; if the model was D-Calibrated, each of these

sets should contain 4 patients.

“D-Calibration ̸⇒ 1-Calibration”: See Figure B.1[right], where again,

each line represent 4 different patients; notice the outcomes are different from

those on the left. To see that this model is D-Calibrated, note there are 4

patients with Ŝ( dx⃗ | x⃗ ) ∈ [0.5, 1] (the green patients), and 4 with Ŝ( dx⃗ | x⃗ ) ∈

[0, 0.5] (for the red patients). However, the model is not 1-Calibrated, at T1:

Of the 4 patients with Ŝ(T1 | x⃗ ) = 0.75, 2 are alive at T1; and of the 4 patients

with Ŝ(T1 | x⃗ ) = 0.25, 2 are alive at T1. To be 1-Calibrated, there should be

3 living patients in the first set, and 1 in the second; hence this model is not

1-Calibrated at T1.

B.4 Other Subtle Points

All of these tools for producing survival curves are able to deal with “right

censored” events: where the censored event time is a lower bound of the time

of death. This corresponds to, perhaps, the termination of a study, or when a

participant left the study early. There are other types of censoring, including

“left censoring”, which provides an upper-bound on the time of death (e.g.,

when a survey finds that the patient is currently dead, but does not know when

previously this happened), and “interval censoring”, when we can constrain

the time of death to some interval. While there are extensions of each of
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these tools that can accommodate these alternate types of censoring, here

we considered the most common case of having right-censored instances, and

included only datasets that had only such instances.

As a second subtle issue: some of the methods involve taking the log of

a predicted value, or of a true value; see Appendix B.1.2. This is clearly

problematic if that value is 0, e.g., if a patient died during a transplantation

surgery. To avoid these errors, we replace any such 0 with the value η, which

is defined as 1/2 of the minimum observed positive time of any event, in that

dataset. That is, we ignore all time=0 events, and then consider the smallest

remaining value. If that value is, say, 1.0 day, then we set η =0.5 days. Note

that all other times are left unchanged.
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Appendix C

Detailed Empirical Results

This appendix includes the tables that correspond to the figures given in Sec-

tion 5.2. Further, Appendix C.1 provides the all p-values for the 1-Calibration

tests.

Table C.1: Concordance results from the five-fold cross validation for each
model/dataset. Solid lines separate the Nice datasets and the High-Censor
datasets and the dashed line separates the High-Dimensional datasets
(DBCD is both High-Censor and High-Dimensional). Bold values in-
dicate the best performing (highest Concordance) model.

KM AFT Cox-KP CoxEN-KP MTLR RSFKM DeepHit

GBM 0.500 (0.00) 0.690 (0.02) 0.699 (0.02) 0.703 (0.02) 0.708 (0.03) 0.692 (0.02) 0.705 (0.02)

GLI 0.500 (0.00) 0.807 (0.01) 0.808 (0.01) 0.806 (0.00) 0.816 (0.01) 0.808 (0.02) 0.811 (0.02)

WHAS 0.500 (0.00) 0.820 (0.01) 0.821 (0.01) 0.820 (0.01) 0.830 (0.01) 0.890 (0.01) 0.842 (0.01)

Metabric 0.500 (0.00) 0.658 (0.03) 0.658 (0.03) 0.666 (0.03) 0.653 (0.02) 0.684 (0.02) 0.663 (0.01)

GBSG 0.500 (0.00) 0.663 (0.02) 0.663 (0.02) 0.660 (0.02) 0.671 (0.02) 0.668 (0.02) 0.663 (0.03)

NACD 0.500 (0.00) 0.755 (0.01) 0.755 (0.01) 0.756 (0.01) 0.759 (0.01) 0.758 (0.01) 0.751 (0.00)

SUPPORT2 0.500 (0.00) 0.798 (0.00) 0.798 (0.00) 0.784 (0.02) 0.823 (0.00) 0.822 (0.00) 0.825 (0.01)

READ 0.500 (0.00) 0.594 (0.07) 0.536 (0.15) 0.570 (0.11) 0.669 (0.13) 0.715 (0.08) 0.607 (0.16)

BRCA 0.500 (0.00) 0.680 (0.05) 0.609 (0.1) 0.745 (0.02) 0.735 (0.05) 0.750 (0.02) 0.725 (0.04)

NPC 0.500 (0.00) 0.676 (0.01) 0.676 (0.01) 0.674 (0.01) 0.678 (0.01) 0.715 (0.02) 0.677 (0.02)

DBCD 0.500 (0.00) - - 0.719 (0.05) 0.738 (0.07) 0.748 (0.04) 0.681 (0.11)

DLBCL 0.500 (0.00) - - 0.595 (0.04) 0.626 (0.04) 0.595 (0.04) 0.591 (0.04)
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Table C.2: Integrated Brier Score results from the five-fold cross validation
for each model/dataset. Bold values indicate the best performing (lowest
Integrated Brier Score) model.

KM AFT Cox-KP CoxEN-KP MTLR RSFKM DeepHit

GBM 0.152 (0.00) 0.130 (0.01) 0.128 (0.01) 0.130 (0.01) 0.126 (0.01) 0.129 (0.01) 0.135 (0.01)

GLI 0.200 (0.00) 0.125 (0.01) 0.126 (0.01) 0.126 (0.01) 0.124 (0.01) 0.127 (0.01) 0.128 (0.01)

WHAS 0.193 (0.00) 0.129 (0.00) 0.128 (0.00) 0.129 (0.00) 0.117 (0.00) 0.068 (0.01) 0.100 (0.01)

Metabric 0.186 (0.00) 0.167 (0.00) 0.167 (0.00) 0.164 (0.00) 0.165 (0.00) 0.160 (0.00) 0.172 (0.00)

GBSG 0.201 (0.00) 0.181 (0.00) 0.180 (0.00) 0.184 (0.00) 0.177 (0.00) 0.177 (0.01) 0.179 (0.01)

NACD 0.202 (0.00) 0.149 (0.00) 0.149 (0.00) 0.151 (0.00) 0.148 (0.00) 0.149 (0.00) 0.152 (0.00)

SUPPORT2 0.220 (0.00) 0.150 (0.00) 0.155 (0.00) 0.164 (0.01) 0.140 (0.00) 0.140 (0.00) 0.140 (0.00)

READ 0.115 (0.01) 0.200 (0.05) 0.317 (0.28) 0.131 (0.04) 0.117 (0.01) 0.109 (0.02) 0.120 (0.01)

BRCA 0.124 (0.00) 0.137 (0.02) 0.335 (0.29) 0.121 (0.01) 0.116 (0.00) 0.113 (0.01) 0.127 (0.01)

NPC 0.125 (0.00) 0.116 (0.00) 0.115 (0.00) 0.116 (0.00) 0.115 (0.00) 0.113 (0.00) 0.116 (0.00)

DBCD 0.158 (0.00) - - 0.144 (0.01) 0.144 (0.02) 0.139 (0.01) 0.180 (0.05)

DLBCL 0.230 (0.00) - - 0.220 (0.01) 0.217 (0.01) 0.229 (0.01) 0.251 (0.02)

Table C.3: L1-Margin results from the five-fold cross validation for each
model/dataset. Bold values indicate the best performing (lowest L1-Margin
loss) model. The L1-Margin Loss is normalized by dividing by the maximum
event time over the entire dataset – i.e., a value of 1 indicates a loss equal to
the maximum event time.

KM AFT Cox-KP CoxEN-KP MTLR RSFKM DeepHit

GBM 0.406 (0.028) 0.353 (0.007) 0.354 (0.007) 0.378 (0.027) 0.356 (0.017) 0.371 (0.023) 0.382 (0.021)

GLI 0.45 (0.006) 0.29 (0.027) 0.288 (0.023) 0.265 (0.02) 0.251 (0.011) 0.43 (0.022) 0.273 (0.007)

WHAS 0.828 (0.002) 0.778 (0.028) 0.621 (0.018) 0.595 (0.047) 0.633 (0.015) 0.543 (0.018) 0.598 (0.021)

Metabric 0.592 (0.007) 0.526 (0.024) 0.503 (0.017) 0.491 (0.018) 0.502 (0.013) 0.561 (0.017) 0.541 (0.031)

GBSG 0.992 (0.01) 0.837 (0.019) 0.823 (0.027) 0.869 (0.028) 0.815 (0.027) 0.836 (0.043) 0.851 (0.064)

NACD 0.788 (0.007) 0.542 (0.019) 0.542 (0.016) 0.564 (0.02) 0.546 (0.017) 0.559 (0.011) 0.551 (0.049)

SUPPORT2 1.09 (0.001) 0.659 (0.018) 0.682 (0.015) 0.685 (0.013) 0.62 (0.014) 0.654 (0.016) 0.645 (0.028)

READ 0.873 (0.064) 1.327 (0.154) 1.134 (0.152) 0.916 (0.133 0.844 (0.071) 0.845 (0.156) 1.337 (0.576)

BRCA 0.564 (0.014) 0.823 (0.297) 0.861 (0.057) 0.525 (0.046) 0.498 (0.023) 0.995 (0.098) 0.633 (0.095)

NPC 2.239 (0.073) 2.259 (0.085) 2.513 (0.115) 2.440 (0.183) 2.004 (0.060) 2.53 (0.141) 2.179 (0.227)

DBCD 1.389 (0.044) NA (NA) NA (NA) 1.317 (0.073) 1.185 (0.127) 1.219 (0.059) 2.025 (0.722)

DLBCL 0.981 (0.098) NA (NA) NA (NA) 0.923 (0.117) 0.893 (0.069) 0.964 (0.066) 0.929 (0.076)

C.1 1-Calibration

Each table corresponds to a different percentile of event times for each dataset.

Moving down the 10th, 25th, 50th, 75th, and 90th percentiles are given.
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Table C.4: 1-Calibration results at t∗ = 10th percentile of event times. Bolded
values indicate models that passed 1-Calibration (p > 0.05). The “# Cali-
brated” row of each table gives the total number of datasets passed by each
model – that is, the values in that row correspond to Table 5.2. This applies
too all Tables in Section C.1.

AFT Cox-KP CoxEN-KP MTLR RSFKM DeepHit
GBM 0.009 0.003 0.000 0.035 0.028 0.104
GLI 0.148 0.313 0.282 0.000 0.151 0.053

WHAS 0.004 0.015 0.018 0.551 0.209 0.000
Metabric 0.005 0.003 0.758 0.270 0.011 0.016

GBSG 0.000 0.000 0.000 0.013 0.624 0.003
NACD 0.045 0.059 0.000 0.082 0.002 0.052

SUPPORT2 0.000 0.000 0.000 0.000 0.000 0.000
READ 0.496 0.000 0.999 0.995 0.998 0.985
BRCA 0.010 0.000 0.192 0.104 0.974 0.011
NPC 0.000 0.211 0.007 0.124 0.023 0.001

DBCD - - 0.383 0.285 0.068 0.000
DLBCL - - 0.543 0.591 0.449 0.000

# Calibrated 2 3 6 8 7 4

Table C.5: 1-Calibration results at t∗ = 25th percentile of event times.
AFT Cox-KP CoxEN-KP MTLR RSFKM DeepHit

GBM 0.002 0.002 0.000 0.159 0.470 0.001
GLI 0.134 0.191 0.028 0.015 0.407 0.002

WHAS 0.000 0.001 0.000 0.001 0.001 0.000
Metabric 0.073 0.016 0.008 0.245 0.290 0.013

GBSG 0.000 0.000 0.000 0.001 0.922 0.000
NACD 0.119 0.063 0.000 0.038 0.012 0.005

SUPPORT2 0.000 0.000 0.000 0.000 0.000 0.000
READ 0.000 0.000 0.240 0.393 0.031 0.000
BRCA 0.000 0.000 0.057 0.730 0.082 0.000
NPC 0.000 0.714 0.017 0.773 0.021 0.000

DBCD - - 0.063 0.419 0.016 0.000
DLBCL - - 0.218 0.282 0.133 0.000

# Calibrated 3 3 4 7 6 0
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Table C.6: 1-Calibration results at t∗ = 50th percentile of event times.
AFT Cox-KP CoxEN-KP MTLR RSFKM DeepHit

GBM 0.031 0.512 0.013 0.556 0.438 0.021
GLI 0.002 0.022 0.000 0.014 0.625 0.369

WHAS 0.000 0.000 0.000 0.084 0.000 0.000
Metabric 0.019 0.007 0.002 0.970 0.151 0.000

GBSG 0.000 0.001 0.000 0.006 0.359 0.073
NACD 0.014 0.026 0.000 0.701 0.001 0.000

SUPPORT2 0.000 0.000 0.000 0.100 0.000 0.029
READ 0.000 0.000 0.000 0.347 0.437 0.000
BRCA 0.000 0.000 0.004 0.641 0.108 0.000
NPC 0.041 0.350 0.162 0.185 0.001 0.001

DBCD - - 0.005 0.074 0.000 0.000
DLBCL - - 0.135 0.516 0.840 0.000

# Calibrated 0 2 2 10 7 2

Table C.7: 1-Calibration results at t∗ = 75th percentile of event times.
AFT Cox-KP CoxEN-KP MTLR RSFKM DeepHit

GBM 0.000 0.000 0.015 0.286 0.239 0.002
GLI 0.000 0.000 0.000 0.005 0.673 0.810

WHAS 0.000 0.000 0.000 0.005 0.000 0.000
Metabric 0.000 0.000 0.000 0.187 0.035 0.000

GBSG 0.129 0.210 0.000 0.004 0.520 0.046
NACD 0.000 0.000 0.000 0.327 0.007 0.121

SUPPORT2 0.000 0.000 0.000 0.000 0.000 0.007
READ 0.000 0.000 0.000 0.132 0.000 0.000
BRCA 0.000 0.000 0.000 0.048 0.007 0.000
NPC 0.021 0.510 0.472 0.416 0.000 0.002

DBCD - - 0.000 0.000 0.000 0.000
DLBCL - - 0.319 0.604 0.023 0.000

# Calibrated 1 2 2 6 3 2
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Table C.8: 1-Calibration Results at t∗ = 90th Percentile of Event Times
AFT Cox-KP CoxEN-KP MTLR RSFKM DeepHit

GBM 0.000 0.000 0.060 0.208 0.649 0.014
GLI 0.000 0.000 0.000 0.010 0.120 0.000

WHAS 0.000 0.000 0.000 0.000 0.000 0.000
Metabric 0.000 0.000 0.047 0.003 0.002 0.000

GBSG 0.000 0.212 0.000 0.000 0.168 0.009
NACD 0.000 0.000 0.000 0.003 0.000 0.004

SUPPORT2 0.000 0.000 0.000 0.000 0.000 0.016
READ 0.000 0.000 0.000 0.003 0.023 0.000
BRCA 0.000 0.000 0.000 0.001 0.048 0.000
NPC 0.000 0.538 0.424 0.248 0.000 0.000

DBCD - - 0.653 0.000 0.000 0.000
DLBCL - - 0.061 0.333 0.281 0.000

# Calibrated 0 2 4 3 4 0
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