INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand cormer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

University of Alberta

A HIERARCHICAL DIAGNOSTIC SYSTEM FOR STUMPS-BASED
BIST STRUCTURES

by

Yansong W. Xu @

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfill-
ment of the requirements for the degree of Master of Science.

Department of Electrical and Computer Engineering

Edmonton, Alberta
Spring 2000

il

Your fle Votre réldrence

Our g Notre réfdrance

L’ auteur a accordé une licence non
exclusive permettant a la

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et .
Bibliographic Services services bibliographiques
385 Waellington Street 385, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-

exclusive licence allowing the

National Library of Canada to

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-60197-8

Canadi

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette theése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

University of Alberta

Library Release Form

Name of Author: Yansong W. Xu

Title of Thesis: A Hierarchical Diagnostic System for STUMPS-Based BIST Struc-
tures

Degree: Master of Science
Year this Degree Granted: 2000

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided, neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material
form whatever without the author’s prior written permission.

..................

Yansong W. Xu
336# 7711 Elbow Dr.
Calgary, AB

Canada, T2V 1K3

Date: 28”‘ DLC l q.q?

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Grad-
uate Studies and Research for acceptance, a thesis entitled A Hierarchical Diag-
nostic System for STUMPS-Based BIST Structures submitted by Yansong W.
Xu in partial fulfillment of the requirements for the degree of Master of Science.

.................

Dr. Xiao gSun /

/\f'\(\ C/Z/ '.
Dr. Bruce Cockburn

Dr. Xian Liu

Dz%kolaidis

Date: ,Q‘pr/[.3). 2o

Abstract

A two-stage hierarchical system for diagnosing gate-level faults in built-in self-
testing CMOS circuits is presented. The first stage employs a new structural analysis
algorithm, while the other stage diagnoses by building and looking up a dynamic fault
dictionary. The system is a further develop to built-in self-diagnosis schemes which
can locate the position of failing flip-flops.

The new structural analysis algorithm is given which diagnoses based on only the
position of the failing flip-flops. The organization and management of the dynamic
fault dictionary is also given. The new approach significantly reduces the size and
look-up time of conventional dictionary while keeping higher diagnostic resolutions.

Extensive computer simulations are performed to illustrate the merits and feasi-
bility of the new algorithms and the high efficiency of the new dictionary using ISCAS
85 and ISCAS 89 benchmark circuits.

Acknowledgements

I would like to thank my supervisor, Dr. Xiaoling Sun, for her advice and support
in the course of this research. Her commendable guidance with valuable ideas and
background knowledge on the work of the thesis is gratefully acknowledged. I would
like to thank my supervisory committee, Dr. Bruce F. Cockburn, who has given me
many useful comments. I would also like to thank the other members of the examining
committe, Dr. Xian Liu and Dr. Ioanis Nikolaidis, for reviewing this thesis.

Most importantly, I thank God who gave me this opportunity to study and the
ability to finish it.

Contents

1 Introduction

2 Background and Literature Review
2.1 Faultsand Fault Testing,
22 FaultDiagnosis

2.2.1
222
2.2.3

224
2.2.5

Overview of the Existing Diagnostic Methods
Diagnosis Using the Fault Dictionary Method
Diagnosis Using a Hierarchical Method with a Dynamic Dictio-
DALY « o o e e e e e e e e e e e e e e
Fault Diagnosis in a STUMPS Environment
STUMPS-Based Built-in Self-diagnosis

3 A New Diagnostic Scheme
3.1 Overview of the Proposed Method
3.2 Terminology and Notations
3.3 Testing and Diagnostic Environment and Process

3.3.1
3.3.2

Diagnosis of the Failing Flip-flops
Diagnosis of the Faulty Nodes

3.4 Diagnostic Stage 1: Structural Analysis

3.4.1
3.4.2
3.4.3
3.4.4

Flipflopsand PIs/POs
Structural Analysis Algorithm
Diagnostic Example Using the Structural Analysis Algorithm .
Discussion on Structural Analysis

3.5 Diagnostic Stage 2: Using a Dynamic Fault Dictionary

3.5.1
3.5.2
3.5.3
3.5.4
3.5.5
3.5.6
3.5.7

Signature Collection Model
Organization of the Fault Dictionary
The Construction of the Fault Dictionary
Dynamic Dictionary Based Diagnostic Algorithm
General Diagnostic Procedure in Stage2
DiagnosticExample
Evaluation of the Dynamic Dictionary Used in the Stage . . .

4 Evaluation of Diagnostic Resolution
4.1 Experimental System Overview
4.2 Diagnosability and Experimental Objectives

4.3 Experimental Procedures and Results Analysis 79

4.3.1 Number of Test Vectors and the Test Pattern Generator ... 79

4.3.2 Data Collection for the Calculationof FE 80

4.3.3 Estimationof RES 81

4.3.4 Results for the Structural Analysis Stage 82

4.3.5 Results for the Dynamic Dictionary Stage 83

436 ResolutionComparison 97

5 Software System Implementation 100
5.1 General Introduction to the Implementation 100
5.2 Important Data Structures 101
5.2.1 Data Structures in Main function 101

5.2.2 Data StructuresinClasses 101

5.3 Diagnostic Implementation 106

6 Conclusion 108
Bibliography 111
Appendices 116
A Algorithm Flowcharts 116
A.1 Structural Analysis Algorithm Flowcharts 117
A.2 Dynamic Dictionary Related Algorithm Flowcharts 121

B h-DIAG User’s Guide 125
C The Comparison of Dictionary Looking-up Time 128
D Experiment on ISCAS 85 With Testing Length 64 K 150

E Experiment on ISCAS 89 With Testing Length 64 K 161

List of Figures

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.6

Al
A2
A3

Logic Fault - One Input of a NAND Gate Stuck-at-0 9
The STUMPS Architecture 12
Nortel’'s BISD Structure 23
UofA’s BISD Structure o vt ittt e e oo 25
Overview of the DiagnosticSystem 28
Flip-flopson Scan Chains 32
PIs and POs in the Original Circuit 34
Original PIs and POs in STUMPS 35
Conelntersectiono, 36
Basic Structures for Forward (up) and Backward Tracing (below) .. 37
Flowchart of Structural Analysis Algorithm 46
AGiven CUT o i e e e e e e 47
Case1: POland PO2Failing 47
Case2: POl Failing, 48
Case3: PO2Failing, 49
Cased4: PO3Failing 49
Case 5: PO2and PO3 Failing 50
Case 6: PO1, PO2and PO3 Failing 51
Signature Collection Model 54
Dynamic Dictionary Form 55
Flowchart of Diagnosis Using Dynamic Dictionary 62
Overview of the Simulation Environment 76
ISCAS’85 circuits resolution overview by estimation of RES2 99
General Flow Chart of h-DIAG 102
Gate Object o v i e e e e e e e e e e e 103
GateList i i i ittt e e e e e e 104
Node Object i i ittt it it e 104
NodeList it i ittt ittt 105
Fault-List Object 106
Flowchart of the Structural Analysis Algorithm 118
Flowchart of the Forwards Tracing Algorithm 119
Flowchart of the Backwards Tracing Algorithm 120

A.4 Flowchart of Diagnosis Using Dynamic Dictionary 121

A.5 Flowchart of Fault Simulation Used for the Dynamic Dictionary . .. 122
A.6 Flowchart of Signature Compaction 123
A.7 Flowchart of Dictionary Construction and Look-up 124
C.1 Time: Comparison With Conventional Dictionary 129
C.2 Time: Comparison With Conventional Dictionary 130
C.3 Time: Comparison With Conventional Dictionary 131
C.4 Time: Comparison With Conventional Dictionary 132
C.5 Time: Comparison With Conventional Dictionary 133
C.6 Time: Comparison With Conventional Dictionary 134
C.7 Time: Comparison With Conventional Dictionary 135
C.8 Time: Comparison With Conventional Dictionary 136
C.9 Time: Comparison With Conventional Dictionary 137
C.10 Time: Comparison With Conventional Dictionary 138
C.11 Time: Comparison With Conventional Dictionary 139
C.12 Time: Comparison With Conventional Dictionary 140
C.13 Time: Comparison With Conventional Dictionary 141
C.14 Time: Comparison With Conventional Dictionary 142
C.15 Time: Comparison With Conventional Dictionary 143
C.16 Time: Comparison With Conventional Dictionary 145
C.17 Time: Comparison With Conventional Dictionary 146
C.18 Time: Comparison With Conventional Dictionary 148
C.19 Time: Comparison With Conventional Dictionary 149

List of Tables

3.1 Length of Dictionary: The First 12 Benchmark Circuits 70
3.2 Length of Dictionary: The Second 12 Benchmark Circuits 71
3.3 Length of Dictionary: The Third 12 Benchmark Circuits 72
3.4 Length of Dictionary: The Last 4 Benchmark Circuits 73
3.5 Comparison With DAPPER: Average Fault Number to be Simulated 73
4.1 Characteristics of ISCAS’89 Benchmark Circuits 75
4.2 Characteristics of ISCAS’85 Benchmark Circuits 75
4.3 Polynomials Used in PRPG for ISCAS Benchmark Simulations 84
4.4 Experiment Results: at Vector Size=1Block 85
4.5 Experiment Results: at Vector Size=3Blocks. 86
4.6 Experiment Results: at Vector Size=8Blocks. 87
4.7 Experiment Results: at Vector Size =30Blocks 88
4.8 Experiment Results: at Vector Size =100 Blocks 89
4.9 Experiment Results: at Vector Size =200Blocks 90
4.10 Experiment Results: at Vector Size =256 Blocks 91
4.11 Experiment Results: at Vector Size=1Block 92
4.12 Experiment Results: at Vector Size=3Blocks. 93
4.13 Experiment Results: at Vector Size =100 Blocks 94
4.14 Experiment Results: at Vector Size =200Blocks 95
4.15 Experiment Results: at Vector Size =256 Blocks 96
4.16 Resolution Comparision With DAPPER (At Testing Length = 8 Blocks) 97
D.1 Results for Benchmark C17 151
D.2 Results for Benchmark C5315 152
D.3 Results for Benchmark C2670 153
D.4 Results for Benchmark C3540 r e e e e 154
D.5 ResultsforBenchmark C432 155
D.6 Results for Benchmark C499 156
D.7 Results for Benchmark C5315 157
D.8 Results for Benchmark C6288 158
D.9 Results for Benchmark C7552 159
D.10 Results for Benchmark C880 160
E.1 Results for Benchmark S1196 162
E.2 Results for BenchmarkS1238 163

E.3 Results for Benchmark S13207 164

E.4 Results for Benchmark S1423 165
E.5 Results for Benchmark 51488 166
E.6 Results for Benchmark S1494 167
E.7 Results for Benchmark S15850 168
E.8 Results for BenchmarkS208 169
E9 ResultsforBenchmark S27. 170
E.10 Results for Benchmark §298 171
E.11 Results for Benchmark S334 172
E.12 Results for Benchmark S349 173
E.13 Results for Benchmark §35932 174
E.14 Results for Benchmark S382 175
E.15 Results for Benchmark S38417 176
E.16 Results for Benchmark S38584 177
E.17 Results for Benchmark 8386 178
E.18 Results for Benchmark S420 179
E.19 Results for Benchmark S444 180
E.20 Results for Benchmark S510 181
E.21 Results for Benchmark 8526 182
E.22 Results for Benchmark S5378 183
E.23 Results for Benchmark S64 184
E.24 Results for Benchmark S713 185
E.25 Results for Benchmark S820 186
E.26 Results for Benchmark S832 187
E.27 Results for Benchmark S838 188
E.28 Results for Benchmark 89234 189

E.29 Results for Benchmark S953

Chapter 1

Introduction

Pass/fail testing is an integral part of integrated circuit (IC) manufacturing: each
fabricated part is placed on a tester for several seconds to determine whether it is
functioning correctly. When the test of a circust under test (CUT) produces a “fail”
result, post-testing diagnosis can be employed to identify the physical defect or de-
fects responsible because in a very large scale integrated (VLSI) circuit there may
be millions of transistors and a “fail” in a pass/fail test of such an ICs does not
reveal which of the millions of transistors is defective. Therefore, no design correc-
tions/improvements can be made to eliminate the failure causing problem without
diagnosis.

Diagnosis of a CUT starts from the errors observed during testing and attempts
to identify the faults which are responsible. Here, “error” means circuit responses
inconsistent with reference circuit responses, while “fault” means models of physical
defects within a circuit that may manifest themselves as errors under specific input
stimuli. We can know there is a defect in the CUT through its errors, while we can
find the location of the defect by knowing the faults. This knowledge can be used
to correct design problems or to make design improvements to enhance fabrication
yield.

As VLSI circuits and systems increase rapidly in complexity and decrease in size,
fault diagnosis for IC chips is becoming much more essential for IC manufacturing.
In the production phase, failure diagnosis is used to identify faults which explain
the erroneous behavior of a circuit. This in turn helps to locate design and process
weaknesses or errors, improve manufacturing yield, and reduce cost.

At this stage, both zero and low yield are the conditions for diagnosis. Fault
diagnosis is also useful in quality improvements. When a VLSI device that passes
the original production test fails in the field, diagnosing the failure can provide in-
formation on design and fabrication weaknesses. This information can assist in field
maintenance and help to correct the design and/or fabrication to minimize a future
appearance of the failure.

Fault diagnosis methodologies for a chip are tightly coupled to the methodologies
with which the chip is tested. Testing techniques can be divided according to following
standards:

Voltage testing and parametric testing

Voltage testing is concerned with the logic values of circuit outputs (voltage levels)
generated by input stimuli as compared with the logic values generated by a reference
circuit for the same stimuli. Parametric testing is concerned with the measured values
of circuit parameters, such as current (like in IDDQ testing), propagation delay or
power consumption, and whether those values fall within predetermined thresholds.

External and internal testing

External testing relies exclusively on an external tester to supply stimuli to the CUT,
and to capture and evaluate the circuit responses. Its chief drawbacks are the ex-
pense of the complex, high-speed testing equipment (multi-million dollars), and the
large volume of data managed by the tester, resulting in long testing times. Internal
testing, such as built-in self-test (BIST), reduces the need for complex, expensive test
equipment by including testing circuitry on-chip. As circuit packing density doubles
every 18 months, an increasing amount of silicon area (normally < 10%) can be used
for BIST. By staying on-chip, BIST can proceed at higher internal circuit speeds
making effective testing of larger, higher density ICs more practical. Internal testing
has become an indispensable technique for testing deep sub-micron ICs.

STUMPS! is a BIST architecture utilizing signature analysis first proposed by
Bardell and McAnney [6] (STUMPS is introduced in detail in chapter 2). Although

1Gelf-Test Using MISR/Parallel SRSG (shift-register sequence generator)

originally proposed for board-level testing, STUMPS has gained in popularity for IC-
level testing. It consists of a pseudorandom pattern generator (PRPG) to provide test
patterns and a parallel compactor to compact internal circuit responses. Test pattern
generation and response compaction occur inside the STUMPS-equipped device. The
tester initiates the test and at its completion obtains and evaluates the final signature
from the CUT.

Off-line and on-line testing

A test is characterized as off-line when the CUT must be taken out of normal operation
to be tested. On-line testing methods perform board-level or chip-level testing during
normal system operation. On-line testing is necessarily internal as a tester cannot be
utilized during normal system operation. Due to design complexity and high cost,
on-line testing is mainly found in safety-critical systems.

The testing process in typical off-line testing environment consists of:

(1) applying many stimuli to the CUT;

(2) capturing the generated circuit responses; and

(3) comparing the responses from the CUT to reference good circuit values to
render a “pass/fail” judgement.

Two basic components are needed for testing, whether external or internal: a
mechanism to provide input stimuli to the CUT, and a mechanism to evaluate the
generated circuit responses. In external testing these mechanisms are wholly con-

tained within the tester, while in BIST some mechanisms are implemented on-chip.

Exhaustive, random and pseudorandom testing

In an ideal testing environment, every CUT would be exposed to all possible input
stimuli during testing, termed ezhaustive testing. Due to time and storage constraints,
exhaustive testing is only practical for small circuits. For example, to exhaustively
test a 100-input circuit with a test system able to apply 1 billion test patterns per
second would require approximately 4 x 103 years, i.e. several orders of magnitude
greater than the age of the universe. To keep testing costs low, the test of a single IC
should be accomplished in mere seconds. A practical solution to this problem is the

random test [7]. A random test consists of a large, random selection of test patterns
used to expose the CUT to a sample of its input space. A truly random selection of test
patterns is undesirable for testing purposes since it is not repeatable (unless stored).
Repeatability is necessary to simplify the comparison of circuit responses. Instead,
a pseudorandom test is used to approximate a random test. It has the properties of
a random test but is fully repeatable. A pseudorandom pattern generator (PRPG)
is a mechanism for generating repeatable sequences of pseudorandom test patterns.
PRPGs can be realized directly in hardware for BIST applications.

After applying an input stimulus, randomly generated or otherwise, it is necessary
to compare the circuit response with a good reference. The obvious approach would
be a direct bit-by-bit comparison of each response with its reference. This is imprac-
tical, however, due to the time required to compare numerous circuit responses in
the test and the high storage demands of many reference responses. A more practi-
cal approach, suitable for BIST, is dats compaction. Data compaction is destructive
data compression with the primary objective of distinguishing different data streams.
Data compaction is performed on the sequence of responses generated by the CUT.
The final result is termed the signature of the CUT. This signature is compared to
a precomputed good circuit signature to render a judgment on the CUT. Thus, only
a single comparison is performed involving a small quantity of data (typically 16 -
32 bits) permitting short testing times, minimal storage needs, and high test quality.
Several data compaction methods exist, including parity checking, transition count-
ing and ones counting [7]. In practice, the mostly commonly used data compaction
method is signature analysis [7].

BIST has been widely accepted by the industry because it is considered as a
promising and efficient method for testing large and complex VLSI designs. In BIST
architecture, test pattern generator is embedded into the chip of the circuit. The
corresponding test responses are compacted into a shift register, which is also part of
the chip.

Different from the non-BIST architectures, where the response for each test pat-
tern can be obtained, only the compacted responses (signatures) are available in BIST
architectures. This makes it impossible to directly analyze the relationship between

4

each test pattern and its response. Unfortunately, this leads to difficulties in the
diagnosis of the BIST. (Traditionally, it is an effective and a regularly used method
to diagnose the faults of a circuit by analyzing its test-response pairs.)

Based on some assumptions, a series of schemes to solve the diagnostic problems
of BIST architectures have been proposed. In [19], McAnney and Savir proposed a
scheme which is based on the analysis to the signatures. They presented a technique
for single input signature analyzer implemented by a linear feedback shift register
(LFSR). This technique is valid for diagnosis of single error sequences. In [12], Chan
and Abraham proposed another scheme which has similar results for Multiple Input
Signature Registers (MISR). The common deficiency of the methods in [19} and [12]
is their single/double error assumptions. These assumptions are not realistic in most
of the situations because even a single defect in a CUT can usually cause hundreds
or thousands of errors in a test response sequence.

Another class of fault diagnostic methodology introduced in [11, 2, 3] is diagnosis
based on a fault dictionary. Fault dictionary methods had been widely used in fault
diagnosis because of their high resolution. Signature-based fault dictionary methods
use look-up tables to compare the signatures from faulty circuits to the signature
of a fault-free circuit. The look-up table is created by simulating faults or fault
classes in a circuit, and recording the faulty signature that is produced. Although
the fault dictionary method can produce a high diagnostic resolution, it has some
drawbacks. The most serious drawback is the time and memory required to construct
and store a complete dictionary, even when small circuits are considered. It is shown
in [20, 21, 22, 23, 24, 25] that for large circuits, the amount of memory required may
make the construction of a conventional dictionary infeasible.

To overcome all the drawbacks existing in the previously mentioned diagnostic
schemes, a novel STUMPS-based diagnostic technology called built-in self-diagnosis
(BISD) has been developed recently in {29] and [34]. With minimal modification
of existing BIST architectures, these novel BISD structures have following common
advantages:

(1) They are capable of locating individual scan flip-flops that capture the erro-

neous circuit responses of the CUT, regardless of the number of errors in the output

5

stream. These flip-flops are called failing flip-flops.

(2) They have a high diagnostic resolution, short diagnostic time, and support a
wide range of trade-offs between diagnostic time and hardware.

(3) They can be compatible with the IEEE standard 1149.1 [2]

(4) They support at-speed BIST operations and fit well in the multi-frequency
BIST environment.

Both [29] and [34] successfully locate the failing flip-flops in the scan chains, but
one problem is left. The problem is: based on the locations and signatures of the
failing flip-flops on the scan chains, what method should be employed to locate the
faulty gates (nodes) in the circuits which cause these flip-flops on the scan chain to
fail.

The objective of the thesis is to solve the above problem as an extension to the
novel BISD schemes introduced before. Specifically, a new scheme performing fault
diagnosis in this diagnostic environment is investigated. A structural analysis based
hierarchical diagnostic system, h-DIAG, developed and employed to finish the above
functional extension, will be presented in this thesis. The hierarchical system is com-
posed of two stages. The first stage proceeds structural analysis using the failing
flip-flop information to locate the plausible faulty nodes in the CUT. In the sec-
ond stage, based on the results of the previous stage, a dynamic fault dictionary is
constructed and looked-up.

In the dynamic dictionary, each column represents a failing flip-flop, while each
row represents a plausible fault. The element at the intersection of each row (cor-
responding to a fault) and each column (corresponding to a failing flip-flop) in the
dictionary is a signature. The signature is the compacted responses on the flip-flop
of the column when fault simulation is processing for the fault of the row. The di-
agnostic procedure in this stage is supported by an efficient fault dictionary scheme
which is designed to make the fault dictionary easy to construct and look up.

The structural analysis algorithm in our h-DIAG system is a new practical struc-
tural analysis scheme at the gate-level that starts the diagnosis from the location
of the failing flip-flops with reasonable resolution. The experiments on the dynamic
fault dictionary show that the storage space and time used to construct and look up
the fault dictionary have been significantly reduced compared with the conventional

6

dictionary schemes without sacrificing the resolution of the diagnosis. The shrink
scale of our dictionary is much more efficient than that developed and employed in
R.C. Aitken and V. K. Agarwal’'s DAPPER system [3]. The experimental results also
show that final resolution of h-DIAG is very high.

The remainder of this thesis is organized as follows.

Chapter 2 contains a background introduction and a literature review about IC
fault detection and diagnosis. STUMPS-based BIST structures, novel BISD schemes
and diagnosis using the fault dictionary will be emphasized.

Chapter 3 presents our proposed structural analysis scheme and dynamic fault
dictionary scheme. The algorithms used in the schemes will be explained with detailed
examples. A complexity analysis of the algorithms will be given. Examples using the
dynamic fault dictionary will be described. The achievement in the size and time
over the conventional fault dictionary and the comparison to the shrink scale of the
dictionary in the famous scheme DAPPER will be shown through a series of tables
and figures from the experimental results of benchmark circuits.

Chapter 4 presents the resolution evaluation methods and the results of the hi-
erarchical diagnostic system. We will introduce the experimental environments, pro-
cedures and circuits used before the analysis of the resolution and other diagnostic
features.

Chapter 5 presents the implementation of the software system.

Chapter 6 gives the conclusion to sum up the thesis.

In Appendix A, the flow chart of the algorithms used in structural analysis and
dynamic dictionaries are presented. In Appendix B, figures reflecting the lookup
time of conventional fault dictionaries and dynamic fault dictionaries are presented
for all the benchmark circuits.

In Appendix D and Appendix E, detailed experimental results on diagnostic res-
olution and diagnostic time at specific testing length are presented for ISCAS’85 and
ISCAS’89 benchmark circuits, respectively.

Chapter 2

Background and Literature Review

This Chapter presents an overview of some of the topics relating to the digital testing
and diagnostic techniques in digital circuits. STUMPS structure and some fault diag-
nostic methods for the STUMPS environment are described. The diagnostic methods
using fault dictionaries are discussed and evaluated. An overview of diagnosis using
hierarchical schemes with dynamic dictionaries is presented. Built-in self-diagnosis
(BISD) structures and their principles are given. Specifically, the two new BISD
schemes proposed in [34] and [29], which the research in this thesis is based on, are
described.

2.1 Faults and Fault Testing

According to the definition in [33], a Fault is a physical failure or defect of one or
more components in a digital circuit/system caused by the manufacturing process,
extreme operating conditions, or wear-out (aging) of the physical components.

Some main reasons which can regularly cause physical failures in manufacturing
processes are silicon defects, lithographic problems, processing problems, etc. Wearing
out or aging can also cause physical defects from long-term operation of circuits
under conditions of high current densities, ion migration, hot electronic trapping, etc.
Another class of physical failure is caused by the automated manufacturing steps
in mounting ICs on the printed circuit board (PCB). The automated IC insertion
equipment can damage the input or output pins by either bending them or shorting
them out.

When a fault changes the logic behaviors of an element, the fault is called a Logic

Fault. Stuck-at Fault is modeled by having a line segment stuck at logic 0 (stuck-at
0) or 1 (stuck-at 1).

For example, the output of a NAND gate normally is logic 0 when all of its inputs
are logic 1, and logic 1 when one or more than one of its inputs is logic 0. When one
of its input is constantly connected to logic 0, as in Figure 2.1 (VSS represents 0), its
behavior is changed in such a way that its output is always a logic 1 no matter what
input values are applied. We call this input node stuck-at-0.

One main task of testing is to find a set of inputs to cause the outputs to be
different from the normal logic behaviors. If such a set of inputs is found, we then say
that this set of inputs constitutes a test for the logic element under that particular
faulty condition because the set of inputs is capable of distinguishing a logic element
(gate) that is functioning normally from one that is being faulty.

Figure 2.1: Logic Fault - One Input of a NAND Gate Stuck-at-0

Permanent faults (we discuss only) are faults in existence long enough to be ob-
served at test time, as opposed to temporary faults (transient or intermittent), which
appear and disappear in short intervals of time, or delay faults which affects the
operating speed of the circuit.

Multiple faults exist when more than one fault exists at one time. The probability
of multiple faults existing in a circuit is typically less than the probability of a single
fault, but the probability increasing with increases in circuit density.

Multiple faults can exist in such a manner that they can be degraded to an equiv-
alent single fault. In this case, the input vectors that test for the existence of the
single fault also test for the existence of the multiple fault condition.

Masked faults are undetectable by definition since the observed circuit behavior is
correct. The presence of some internal or primary input faults may not be observable
at any circuit output. In this case the fault is considered to be masked.

Fault detection or testing is a process of evaluating a circuit/system to detect
the presence of hardware failure due to faults. In general, fault detection frequently
involves the application of a sequence of test stimuli called vectors or patterns to the
inputs of a CUT and analysis of the corresponding responses to the applied test by
first collecting data at the outputs of the CUT. The analysis step is characterized
by comparing the test responses with expected responses when the same test stimuli
are applied. The whole process can be generally automated since it may involve an
automatic test pattern generation (ATPG) and automatic test equipment (ATE). The
generation of test stimuli with expected responses is a very difficult process if done
manually. ATPG can help in many cases if the design has inherent testability. The
ATE used in most cases is either a components or board tester for manufacturing
testing, or a logic analyzer used commonly for prototype debugging.

Closely related to design for testability (DFT), BIST is a design technique in which
parts of the circuit are used to test the circuit itself. BIST is the capability of a circuit
(chip, board, or system) to test itself. It represents a merger of the concept of buili-in
test (BIT) and self-test. BIST techniques can be classified into two categories, namely
on-line BIST, which includes concurrent and non-concurrent techniques, and off-line
BIST, which includes functional and structural approaches.

Among these categories, structural off-line BIST is most widely used. Structural
off-line BIST deals with the execution of a test based on the structure of the CUT. A
PRPG is a multi-output device normally implemented using an LFSR, while a shift
register pattern generator (SRPG) is a single-output autonomous LFSR. For output
response analyzers, a MISR, and single-input signature register (SISR) are normally
used.

An off-line BIST architecture incorporating scan testing and partitioning is the
self-test using MISR/parallel SRSG' (STUMPS) testing architecture [6]. It was orig-
inally proposed to test multi-chip modules at the board-level. A special testing chip
implements the SRSG and MISR components of STUMPS which, respectively, gen-
erate test patterns for the other chips on the board and compact in parallel their
output responses.

Each chip to be tested must utilize scan-based flip-flops [6] configured into scan

LThis is the acronym of Shift-Register Sequence Generator.

10

chains (or data streams). A number of scan chains, per board, are formed by directly
connecting the scan-in and scan-out ports of individual chips. The scan chains are
supplied pseudorandom test patterns in parallel from the SRSG. By scanning in
known test patterns into the scan chains, a sequential circuit is converted into a
combinational circuit during testing. Combinational circuits are easier to test as
their response depends only upon the current input vector, not on past inputs.

The scan chains provide the inputs to the combinational logic blocks and capture
the generated responses. Normal circuit operation is governed by a system clock or
clocks. Scan testing also introduces a separate test clock to govern the serial flow
of data within scan chains. With multiple applications of the test clock, data from
the SRSG is scanned into the scan chains, loading test patterns into the chips to be
tested. The regular system clock is then asserted once to capture the responses from
the chips back into the scan chains. The subsequent test patterns are then scanned
in, while simultaneously, the circuit responses are being scanned out to the test chip
where they are compacted by the MISR. After the application of many test patterns,
the final signature is scanned out of the test chip and compared with a error-free
signature to determine whether response errors were detected.

STUMPS has since become a standard IC-level BIST architecture. Memory el-
ements are realized as scan registers connected to form scan chains. The functions
of the test chip are implemented directly within the IC as dedicated BIST resources.
Figure 2.2 shows the IC-level STUMPS architecture showing the configuration of scan
chains, SRSG and MISR [31].

2.2 Fault Diagnosis

Diagnosing a faulty device intuitively means to find out, although with a certain
degree of uncertainty, the cause of failure. Diagnosis is receiving increasing attention
from both industry and academic: testing for pass/fail information is inadequate,
especially for the purpose of tuning the manufacturing process of ICs.

A CUT fails when its observed behavior is different from its expected behavior.
Diagnosis consists of locating the fault(s) in a structural model of the CUT. In other
words, diagnosis maps the observed misbehavior of the CUT into fault(s) affecting

11

SRSG

v y ¥
'E 1 'a eocsee

= = =

gl [8.\ 1§ [8. ‘g

o~ ’5‘5‘ = '«':‘S L

O|| €8] |O| | €8 @)

5|25 | §| | 2O g

75]) 5] o 75
U | O [AN XN N J

! ! !

MISR

Figure 2.2: The STUMPS Architecture

its components or their interconnections.

The diagnostic process is often hierarchical such that the faulty unit identified
at one level becomes the target of diagnosis at the next level. This is so-called top-
down process, starts with a system operating in the field. During the fabrication of
a system, however, its testing proceeds bottom-up (e.g., from ICs to boards, then to
system), such that a higher level is assembled only from components already tested at
a lower level. This is done to minimize the cost of diagnosis and repair, which increases
substantially with the level at which the faults are detected. In our research, we will
focus on diagnosis at the IC-level.

The degree of accuracy to which faults can be located is referred to as diagnostic
resolution. No external testing experiment can distinguish among functionally equiv-
alent faults. The partition of all the possible faults into distinct sets of functionally
equivalent faults defines the maximal fault resolution, which is an intrinsic charac-
teristic of the system. The fault resolution of a test sequence reflects its capability of
distinguishing among faults, and it is bounded by the maximal fault resolution.

Conventionally, fault diagnosis can be approached in two different ways. The first
approach does most of the work before the testing experiment (pre-testing work). It
uses fault simulation to determine the possible responses to a given test in the presence
of faults. The data base constructed in this step is called a fault dictionary. To locate
faults, one tries to match the actual response obtained from the CUT with one of

12

the precomputed responses stored in the fault dictionary. If this look-up process is
successful, the dictionary indicated the corresponding faults in the CUT. This kind
of diagnosis can be characterized as a cause-effect analysis [30, 15] that starts with
possible causes (faults) and determines their corresponding effects (response). A
second type of approach, employed by several diagnostic methods, relies on an effect-
cause analysis [1, 32, 5, 35], in which the effect (the actual response obtained from
CUT) is processed to determine its possible causes (faults).

2.2.1 Overview of the Existing Diagnostic Methods

Diagnosis and Testing have different purposes and conflicting requirements. Testing
should be fast, comprehensive and inexpensive since it is performed on every device
manufactured. Techniques used to speed testing, such as signature analysis, severely
hamper fault diagnosis by compacting, and losing, the circuit responses necessary for
diagnosis. Diagnosis is only performed on devices that fail testing, thus the primary
requirements are diagnostic accuracy and detail. The results of diagnosis must be
accurate and specific enough to focus attention on the location of the defect so that
it can be quickly corrected. To reduce cost, it is desirable to perform diagnosis with
existing testing methods and with minimal tester support.

A circuit may have countless possible physical defects that can produce faulty
behavior. Diagnosis employs fault models to systematically characterize the majority
of the potential defects. A fault model is a set of rules and assumptions which describe
the effects that defects have on digital circuits [2]. The results of fault diagnosis are
one or more faults (or fault classes) in the adopted fault model. Although many
fault models, besides stuck-at model, have been proposed to describe various defects,
including: bridging faults, transition faults and delay faults, the most common is still
the stuck-at fault model. Much of the early work in fault diagnosis has been based
on the assumption of the stuck-at fault model. This section reviews the published
literature as a history of fault diagnosis.

Simulation-based Methods

Early diagnostic approaches attempted to enumerate the behavior of faults in the
assumed fault model [1]. A fault dictionary is compiled by simulating the CUT with

13

every fault and recording the corresponding circuit response. Diagnosis then consists
of the simple task of locating the observed response of the CUT in the fault dictionary
and noting the corresponding fault(s). Disadvantages of this technique are set by the
limits of the adopted fault model and the inability to diagnose multiple faults.

Signature Analysis-based Methods

Signature analysis based methods attempt to solve the problem of response data loss
inherent with data compaction. Considerable effort has been made in identifying
and locating errors in the non-compacted circuit responses based on the observed
signature [7, 13, 19, 32]. There are three types of signature analysis-based fault
location techniques: fault dictionary, algebraic analysis and intermediate signatures.

A. Fault Dictionary

Fault dictionary technology as an outgrowth of logic simulation has been a useful tool
for diagnosing faults in integrated circuit [30, 15]. The fault dictionary-based method
can construct a look-up table containing the modeled faults and their corresponding
faulty signatures [7]. Diagnosis then consists of locating the observed faulty signature
in the dictionary. Fault dictionary technology has been widely accepted because of its
high resolution and accuracy. Recent research indicated that stuck-at fault dictionary
is very efficient in the diagnosis of CMOS bridging faults, which is a very popular
research topic in VLSI diagnostic area [20]. Further discussion about fault dictionary
methods will be presented in section 2.2.2.

B. Algebraic Analysis

Algebraic analysis methods attempt to compute the erroneous circuit response from
the faulty signature obtained from testing.

The first such method was given by McAnney and Savir [19]. It uses an linear
feedback shift register (LFSR) that is the reciprocal of the LFSR. used for compaction.
The reciprocal LFSR is initialized with the faulty signature obtained from the CUT
then clocked to reverse the compaction and compute where the error was introduced.
This method constrains the test length to be no greater than the state space of the
LFSR. At most two errors in the test sequence can then be identified.

14

A similar method by Chan and Abraham [13] is applicable to both serial and
parallel compactors. It uses state transition matrices to describe the compaction
process. An analytical formulation is given to calculate the error location in the test
sequence. The method is limited to identifying which compaction step introduced the

errors or the channel(s) containing the errors.

C. Intermediate Signatures

Intermediate signature methods are based on signatures obtained at regular intervals
during testing. For diagnostic purposes, circuit responses are partitioned into short
blocks. An intermediate signature is obtained after the compaction of each block of
responses. The intermediate signatures are compared with error-free counterparts to
target failing blocks for diagnosis [32].

Error Control Code Method

The diagnostic method in {34], which we will discuss in subsection 2.2.3.1 in more
detail, uses a special programmable MISR (PMISR) to perform compaction. A set of
equations based on Reed-Solomon codes [17] is obtained from the faulty signatures
and solved to identify the error-capturing frames. Each scan chain is then re-tested
to locate the actual erroneous flip-flops.

2.2.2 Diagnosis Using the Fault Dictionary Method

Many fault dictionary methods have been proposed [2, 8, 14, 20, 21, 22, 23, 24, 25]
for fault diagnosis. A fault dictionary is a database used for diagnosing faults on
VLSI. The fault dictionary records the errors that each fault on a circuit’s fault list
would cause during testing. A fault list is created after equivalent faults have been
collapsed. A fault simulation then determines for each input what the correct outputs
are, and what errors each fault on the fault list would cause.

Term 1: A full response dictionary is the dictionary which stores the circuit
outputs in the presence of each fault for each test. This dictionary has the advantage
of providing all the information available for a given test set. Further, it can easily
be stored in a bit-packed manner.

15

Term 2: A pass/fail dictionary is similar to the full dictionary but only stores
one bit of information per fault-vector pair — a 1 if the circuit fails the test in the
presence of the fault and a 0 if it passes. The diagnostic expectation of the pass/fail
dictionary is worse than the diagnostic expectation for the full dictionary, but if the
circuit has a large number of primary outputs, the pass/fail dictionary is significantly
smaller.

To locate the faults in a detective circuit, the errors observed on the circuit are
compared with the errors recorded in the fault dictionary. If the fault model were
perfect, fault location would be a matter of “looking up” the observed errors in the
dictionary. A matching algorithm is used to choose the fault from the fault list
which is the same models as the fault to be located (as in Ezact-Match Dictionary
Method [11]). Some methods, as described in [23], choose the fault from the fault
list which most closely models the fault to be located. These methods identify the
fault from the fault list which would cause errors most closely matching the observed
errors. The matching algorithm assigns a score to each fault on the fault list. The
fault with the highest score is hopefully the fault which best models the defect in the
circuit under test.

Although much more feasible than the guided probe method with higher resolu-
tion, the stumbling block to the serious application of conventional fault dictionaries
and matching algorithms for relative large circuits is the size of the dictionary and
processing time of constructing and looking-up the dictionary. The experiment in [24]
shows that for some ISCAS circuits, the file to store the conventional dictionary would
fill several large disks, take months to create, and take days to process for each diag-
nosis. Thus, the conventional fault dictionary is an appealing fault location tool and
has already been proven effective in many aspects, but the enormity of a conventional
dictionary prevents its application to fault location at the VLSI circuit level.

In order to reduce the complexity of the fault dictionary, many dictionary com-
paction measures have been taken.

In [21], Pomeranz and Reddy proposed a compaction dictionary which is named
Compact. The dictionary uses a greedy algorithm to choose columns from the full
response dictionary to augment a pass/fail dictionary. The result is a compacted
dictionary with little or no erosion of diagnostic expectation (for the modeled faults).

16

Boppana and Fuchs [8, 2] introduced two methods for compacting fault dictionar-
ies based on diagnostic trees. A diagnostic tree gives the equivalence classes that are
distinguished after each test is applied. Both of the proposed methods use a tree-
based analysis to remove information from the dictionary that does not contribute to
increased diagnostic performance. After the diagnostic tree is compacted it is stored
in a set of tables.

A problem in these schemes is: although the size of the dictionary had been
reduced, the entry number in the dictionary is still the number of the faults in CUT.
In another words, the length of the dictionary did not get reduced.

2.2.3 Diagnosis Using a Hierarchical Method with a Dynamic
Dictionary

Different from a conventional dictionary, which has entries for all of the faults in
the circuit, the dynamic dictionary contains only the entries for the suspicious faults
based on the clues obtained in previous testing/diagnostic stages. In these kinds of
hierarchical structures, as the clues obtained in previous stages become clearer, the
size of the dictionary will become smaller and the time used to look up the dictionary
will become shorter.

In [24] P. G. Ryan from Intel proposed a new scheme which can reduce the size
of the dictionary by using a two-stage procedure to reduce problem size before con-
structing a small fault dictionary. The approach utilizes dynamic fault dictionaries,
test set partitioning and reduced fault lists to reduce the size and complexity of the
fault dictionary. It develops multiple tests for a CUT with each test covering a small
portion of the circuit and corresponding to a small fault list that could cause the
faulty circuit. During a diagnosis, the complete fault list is reduced by intersecting
the coverage list of the tests the chip fails. One of the failing test sets is then fault
simulated to build the dictionary. One of the limitations of the approach is the need
for multiple, partitioned tests as described above. If these tests are not available as
a consequence of the design process, manually partitioning an existing test program
may be difficult.

In [25], a two-stage fault isolation for sequential random logic VLSI circuits was

17

presented. Two fault dictionaries, limited 2 and dynamic ® fault dictionaries were
introduced. In the first stage of the dynamic process, a limited fault dictionary
identifies candidate faults, which are further distinguished in the second stage by a
dictionary generated dynamically for the candidate faults and a subset of the test
vectors. High resolution was provided and the cost of full static dictionaries was
avoided.

A common limitation to both [24] and [25] is that these methods focussed on
the analysis to the individual test pattern< — >response pairs instead of signatures
which are the compressed responses to a series of input. This makes these methods
not suitable for the situations where only signatures are directly available.

In another aspect, although the use of date compaction techniques such as sig-
nature analysis [7] can reduce the size of the dictionary, a full circuit simulation
is required to obtain each entry in the dictionary which can easily negate the cost
savings which initially justified data compaction.

In [3], R.C. Aitken and V.K. Agarwal from the VLSI Design Laboratory of McGill
University proposed a diagnostic method using pseudo-random vectors without inter-
mediate signatures which can be used to locate faults in circuits tested with random
or pseudo-random test vectors. Their proposed scheme, named DAPPER, is applica-
ble to multi-output combinational circuits. DAPPER classifies faults initially by their
detection probability, then based on the classification, it performs fault simulation.
Due to the fact that the resolution of the classification is very coarse, the number of
faults to be simulated in the next stage is still not very ideal.

As part of this thesis research, a dynamic dictionary with a hierarchical structure
is proposed (see chapter 3). Based on structural analysis, the number of final faults
to be simulated to construct the dynamic dictionary and the size of the dictionary
can be greatly reduced compared with a conventional fault dictionary (see following
chapters). The degree of the reduction in the number of faults to be simulated,
on average, is much more apparent than that in DAPPER for single-stuck-at fault
model*. The new dictionary scheme can be used in BIST with the STUMPS structure.

23 small, inexpensive fault dictionary created once to identify for each diagnosis a small number
of candidate faults.

3a dictionary which has the detail of a full dictionary, but for just the candidate faults.

4Besides this fault model, DAPPER is also valid for some other fault models which our system

18

2.2.4 Fault Diagnosis in a STUMPS Environment

Fault diagnosis is an important process in the design of integrate circuit chips with
BIST structure using sub-micron technologies. As well as helping to correct design
errors, it can be used to improve yield and increase circuit reliability. Normally, fault
diagnosis is the opposite of fault simulation: it starts with a stimulus and observed
faulty circuit responses, and then determines the fault set that can produce the faulty
response given the same stimulus. To reduce the fault set, many stimulus/faulty
response pairs must be considered. Knowledge of the fault(s) potentially responsible
for the observed behavior is then used by the designer to correct design problems or
improve yield.

In 1987, McAnney and Savir proposed to use faulty signature information for fault
diagnosis [19]. The technique they presented was to use a single input signature ana-
lyzer implemented by a LFSR. The technique is valid for the diagnosis of single error
sequences. In 1990, Chan and Abraham obtained similar results by using Multiple
Input Signature Registers (MISR) [12]. Some other techniques that use two LFSRs
for diagnosing single and double error sequences were reported in [26].

The major deficiency of these techniques is their single/double error assumptions
and these assumptions are generally unrealistic. In [16}, r-error correcting BCH code
is used to diagnose r bit errors in a sequence. Unfortunately, r can only be very small.
For sequences with more than 4 bit errors, the diagnostic aliasing is very high.

In many situations, fault diagnosis requires that many stimulus/faulty response
pairs be obtained from a CUT. However, this is at odds with current internal testing
methods. The necessity of testing increasingly dense ICs has led to the innovation of
BIST. One form of BIST is STUMPS which is both an aid and a hindrance to fault
diagnosis. It is an aid since it permits the observation of many internal circuit nodes,
aiding diagnostic resolution. However, it is a hindrance as these observation points
are inaccessible from off-chip during testing. Additionally, post-testing time must be
expended to scan out this internal circuit information where it can be used for fault
diagnosis.

Once initialized, the testing of a STUMPS-equipped IC occurs mainly on-chip.
is not valid yet.

19

The result obtained is a final signature (typically 16 - 32 bits long) which is the
compacted response of the CUT for the entire test set. This signature is then com-
pared off-chip with the good signature (obtained through logic simulation of the good
circuit) by the tester to produce a pass/fail judgment of the IC. By staying mainly
on-~chip, testing can proceed at much higher speeds.

The final signature is suitable for rendering a pass/fail judgment of a CUT, how-
ever on its own it is grossly inadequate for fault diagnosis. Consider a STUMPS
implementation consisting of 16 data streams, each of 1024 bits and a test length
of 100,000 patterns. Each circuit response consists of (16 x 1024) bits or 2 Kbytes
of information, while the entire test consists of 200 Mbytes of information. The cir-
cuit response information lost during data compaction is unrecoverable from a final
signature of several bytes. This makes IC-level fault diagnosis a difficult and costly
task.

Data retrieval is one method for obtaining the lost circuit response informa-
tion [32]. Recall that in STUMPS, access to all data streams is only available through
two ports: a scan-in port for input and a scan-out port for output. Data retrieval in
STUMPS is the process of scanning out in serial the contents of all data streams to
obtain the response of the CUT.

To perform fault diagnosis, many stimulus/faulty response pairs must be scanned
out from the CUT. However, scanning out the entire circuit response for every stimu-
lus in the test set is time-consuming and unnecessary. Not every circuit response will
be faulty as certain stimuli may not induce errors in circuit responses and produce the
same responses as the good circuit. Fault-free circuit responses can be determined
through circuit simulation, thus it is desirable to only scan out the faulty circuit
responses.

For the purposes of data retrieval, the test set is divided into discrete intervals
of one or more test patterns. Each interval has an intermediate signature computed
by logic simulation of the good circuit. This is the intermediate result of compacting
all responses up to and including the responses from the current testing interval.
All such signatures are compiled into a dictionary of intermediate signatures. During
data retrieval, the intermediate signatures obtained from the CUT are compared with
their counterparts in the dictionary. A discrepancy indicates that the preceding test

20

interval must contain at least one faulty response, whereupon all responses in the
present interval are scanned out to be used for fault diagnosis.

Consider a system with intervals consisting of 100 test patterns, the specific steps
of the data retrieval process are [7}:

Step 1: Initialize the BIST circuitry in the CUT to the beginning of the test se-

quence.
Step 2: Apply the next 100 test patterns to the CUT.
Step 3: Scan out the intermediate signature from the CUT.

Step 4: Compare the signature with the counterpart in the dictionary. If the sig-
natures are the same, the state of the BIST circuitry in the CUT is restored
to the state before the signature was scanned out. However, if the signatures
differ, the BIST circuitry in the CUT is restored to the state at the start of the
current interval. The 100 test patterns are then re-applied, but instead of being
compacted each response is scanned out and stored for further fault diagnosis.
Once all responses in the interval have been scanned out, the BIST circuitry in
the CUT is restored to that of the good circuit at the end of the current test
interval.

Step 5: If there are more intervals in the test set, go to Step 2.

Step 6: The stored responses are transferred from the tester to a workstation where
fault diagnosis can proceed off-line.

After data retrieval is complete, fault diagnosis [32] is performed to determine the
fault class(es) responsible for the observed faulty responses. In addition to the faulty
responses, the following data and systems are necessary to perform fault diagnosis:
(1) a structural description of the CUT, (2) a fault simulator, and (3) a PRPG to
generate the test patterns in the test. The first step of fault diagnosis involves the
structural analysis of the circuit to create a minimal fault list. Subsequently, each
fault in the list is simulated with the generated stimuli and the resulting responses
are compared with the retrieved responses. If the simulated responses match all
retrieved responses, the fault is accepted. Otherwise, the fault is rejected as it does

21

not reproduce all observed responses. The final result of fault diagnosis is a set
of faults that can reproduce the observed faulty behavior and thus are potentially
responsible for the defect(s) in the CUT.

As can be seen from the previous steps, data retrieval is a complex, lengthy pro-
cess as compared with pass/fail testing. A pass/fail judgment of a CUT involves a
single, uninterrupted application of the test set followed by the scan-out and com-
parison of the final signature. The only tester-CUT interaction is at the start to
initiate the test, and at the end to scan-out the final signature. Data retrieval, on the
other hand, demands many more interactions between the tester and the CUT. Each
test interval is initiated and halted, the intermediate signatures are scanned out, the
BIST circuitry is reset, and ultimately the circuit responses are scanned out. Data
retrieval occupies an expensive testing system for an extended length of time that
can otherwise be used to verify many more newly fabricated ICs. It transfers more

data from the CUT than may be necessary to accomplish fault diagnosis.

In [31], an alternative solution to the data retrieval method used in Waicukauski’s
diagnostics scheme [32] was proposed. In this solution, they proposed to transfer
partially compacted data from the CUT to the tester, and to use analytical methods
off-line to recover the information lost during signature compaction. The recovery
scheme can reduce the amount of data transferred from the CUT to the tester (typi-
cally by a factor of 8), and can eliminate the need for decision making by the tester on
every intermediate signature. As a result, the tester time used for data retrieval for
fault diagnosis can be decreased, while employing a less expensive tester to perform
the task.

2.2.5 STUMPS-Based Built-in Self-diagnosis

In [19] a technique for single input signature analyzer was presented. The technique is
implemented by a linear feedback shift register and it guarantees that correct diagnosis
of single error sequences. The major deficiency of this technique is its single error
assumption.

In [34], a novel BIST fault diagnostic scheme for scan-based VLSI devices was
proposed. The scheme is an application of error control code theory [17] and it is

22

based on multiple scan structure STUMPS and its faulty signature information as
shown in Figure 2.3.

This scheme can guarantee correct identification of the scan flops that capture
errors during test, regardless of the number of the error the CUT may produce.
Knowing failing scan flops location is very helpful in diagnosis since most of today’s
VLSI circuits are designed in RTL (Register Transfer Level). In addition to failing
scan flops, the proposed scheme is also capable of identifying failing test vector(s)
with a better diagnostic capacity than existing techniques. [34] supports at-speed
BIST operations and fits well in the multi-frequency BIST environment.

PRPG
i |
o |
=l e g |
5 B £ |
EINE S Z
] Lo | |
R |
(" chain ‘,
E selection . ,
. controler ‘—le ij \/
I ? !
: : |
clk clr
; ? Programmable MISR
i — enable SM
> MISR —

Figure 2.3: Nortel’s BISD Structure

This scheme consists of two levels of data compaction. It firstly compresses the
test response of a test vector into the PMISR (Programmable MISR); secondly it
compresses the content of the PMISR into the MISR, then it clears the PMISR.

After all test vectors have been applied, the signature collected in the MISR
is saved for off-line analysis. The PMISR is then set to another polynomial and the
whole process is repeated until an adequate number of signatures have been collected.

23

Basically, the scheme requires applying the same test vector set 2t times if up
to ¢ scan flop frames may capture errors during the test. In order to improve the
resolution (at the flip-flop level), the final approach used is to fault diagnose one
chain at a time. So, assuming that at most t; (1 < j < m) scan flops on scan chain j
may capture errors, the scheme requires repeating the same test set 2*(t;+t2+...tm)
times in order to diagnose all of the scan chains.

In [34], diagnostic coverage is defined as the percentage of circuit nodes in a CUT
that are diagnosable for a given test time if any of them fails during test. This
coverage can be used as a measure of the effectiveness of its proposed scheme for an
allowed test time for diagnosis.

Diagnostic coverage of faulty nodes is a different concept from the final resolution
of the faulty nodes. Some nodes can be covered but can not be identified at last. The
identification of the possible faulty nodes is the responsibility of logic level diagnosis.
Experiments show that a reasonable high diagnostic coverage can be achieved in this
scheme with a small test time cost.

For the logic-level diagnosis, two basic methods are recommended in [34]: the
first method is through identification of the failing test vectors; the second method
is through analysis of the structure of the CUT after knowing the exact locations of
the failing scan flops. In order to further improve the resolution, the approach to
combine both of them are also recommended.

In [29], another novel built-in self-diagnosis scheme, named BISD-Scan, for IC-
level STUMPS-like architectures was presented as shown in Figure 2.4. BISD-Scan
utilizes normal BIST resources, and processes in high diagnostic resolution, short di-

agnostic time and with low hardware overhead.

This scheme requires partitioning each scan chain into p segments so that each scan
segment contains n/p scan flip-flops. It also introduces a signal named compaction
control.

This scheme employs a divide-and-conquer technique to identify faulty segments
in a CUT, then refines the diagnostic resolution to locate individual failing flip-flops,
using output masking. The locations of failing flip-flops provide important informa-
tion to further identify faulty gates and physical failures in CUTs.

24

PRPG

EIENET
| v/ T
ity 2
gu | iL 8
50| | ol £ o
N L
- B 5
c i
i ~ compaction
. select _——_;y_u_ T 441 control
And] [Aud ‘And|
i | i
C 3

MISR

Figure 2.4: UofA’s BISD Structure

The BISD procedure consists of four basic steps as follows:

Stepl: Compute mp signatures, one for each scan segment, and locate all faulty

segments.
Step2: Locate the faulty scan segments on the m scan chains.
Step3: Compute & (n/p) signature in k faulty segments.
Step4: Locate individual faulty scan flip-flops in & faulty scan segments.

This scheme possesses a high diagnostic resolution (to the scan flip-flop level) and an
affordable diagnostic time. As for logic-level diagnosis, simulation-based techniques,
structural analysis and electronic probing method are recommended.

Both [29] and [34] achieved a reasonable high diagnostic coverage or resolution at
flip-flop level. The essential problem solved by them is locating the failing flip-flops.
This means that once a fault is created in the circuit, the failing flip-flops caused by
it can be located. This is very important but not enough. For the manufacturers, the
exact location of the faulty gate (node) is what they finally need.

25

In this thesis, as the function extension to the novel BISD schemes designed in [29]
and [34], a hierarchical diagnostic scheme is proposed to locate the faulty gate (node)
in the circuit. The hierarchical system is composed of two stages. In the first stage, it
analyses the circuit with structural analysis algorithms to get the plausible faulty sites
of the circuit. Based on this information and fault simulation, a dynamic fault dictio-
nary is built up. Through looking up the dynamic dictionary, the further diagnosis
is processed.

Both the novel structural analysis algorithm which is specially designed for the
requirement and the scheme of the new fault dictionary will be presented in the
following chapters.

26

Chapter 3

A New Diagnostic Scheme

This chapter presents a new hierarchical scheme for gate-level fault diagnosis in
STUMPS-based built-in self-diagnosis (BISD) structures. An overview of the scheme
is given. The terminology used to describe the scheme is defined. The algorithms used
in the scheme are described and examples to illustrate the operations of the scheme
and algorithms are presented. The computational complexity of the algorithms is
also analyzed.

3.1 Overview of the Proposed Method

With the techniques proposed in [29] and [34], any flip-flop that has captured the
erroneous circuit responses of a CUT, called a failing flip-flop, can be correctly iden-
tified independent of error multiplicity. The signatures of all failing flip-flops can be
collected during the test procedure. Based on the locations of failing flip-flops and
their faulty signatures provided by the above two schemes, the hierarchical scheme
proposed in this thesis will further diagnose the error-causing logic gates.

As shown in figure 3.1, the hierarchical system is composed of two stages. They
are the Structural Analysis stage and the Dynamic Dictionary stage.

In the first stage of the hierarchical system, where the corresponding algorithms
employ the conventional single fault assumption, the diagnosis uses the locations of
the failing flip-flops to locate gate level fault, or find out the suspicious faulty sites
through a new structural analysis method.

Structural analysis had been used in many ATPG algorithms, but the main prob-
lem solved is to analyze the relation between each test pattern and corresponding

27

Fault Universe

|
1
Second Stage Potential Faults (have same faulty signatures)
 First Stage Potential Faults (affecting same Primary Outputs)

Figure 3.1: Overview of the Diagnostic System

response. So the logical structure of the circuit and the logical relationship between
the nodes must be considered. This is not suitable to our situation because failing
vector information was lost during the signature computation.

The new structural analysis method presented in this thesis only depends on the
location of the failing flip-flops and the connection between nodes.

In the second stage, where the corresponding algorithms employ the single stuck-
at fault assumption, the diagnosis creates a dynamic dictionary for the plausible faults
diagnosed by the first stage. It is based on the analysis of signatures for each flip-flop.
The dictionary is constructed by fault simulation, response compaction and signature
collection. There is one entry in the dictionary for each plausible fault obtained in the
structural analysis. The simulation length is the same as the testing length. During
the diagnosis, once the corresponding signatures are collected from the testing site
with the schemes provided in [34] and [29], they are used to look up the dictionary
to find the entry which has same signatures. The corresponding fault(s) is (are) the
diagnostic result, the final plausible faulty set.

Introducing the dynamic dictionary greatly reduced the size of the conventional
dictionary and the time of looking up the dictionary.

In the remainder of this chapter, the algorithms used in the two stages are pre-
sented. All the terms related to the algorithms are defined. The examples reflecting
the algorithms are given. The complexity of the algorithms are analysed®.

!In this scheme, we assume that all faults exist on the line segments (nodes) in the CUT and
that the gates themselves perform fault-free function.

28

3.2 Terminology and Notations

Definition 3.1 A circuit consists of a set of logic gates and a set of line segments.
A gate in the circuit is a logic gate while a node in the circuit is one line segment.
Each logic gate and node has an unique identification number.

A set of gates is a set of numbers each of which represents a logic gate in the circuit.
A set of nodes is a set of numbers each of which represents a node. The number

representing a gate is equal to the number representing the output node of the gate.

Definition 3.2 The forward tracing set of nodes N: f.affected_nodes is a set of nodes
which are on all the paths from N to all the primary output nodes. The set is

constructed in following way:
1. N belongs to the set f_affected_nodes.

2. The output of a gate G belongs to the set f_affected_nodes if N is the input of
the gate G.

3. M belongs to the set f_affected_nodes if M is fanout of N.

4. The elements in f affected_nodes of M belong to f_affected_nodes of N if M is in
the set f_affected_nodes of N.

Definition 3.3 backward tracing set of node N: b_affected_nodes is a set which is
composed of all nodes which are on the path from N to any PIs. The set is constructed

in following way:
1. N belongs to the set b_affected_nodes.

2. All the inputs of the gate G belong to the set b_affected_nodes if N is the output
of the gate.

3. M belongs to the set b_affected_nodes if N is a fanout of M.

4. The elements in b.affected_nodes of M belong to b_affected_nodes of N if M is
in the b_affected_nodes of N.

29

Definition 3.4 A failing flip-flop pattern (FFFP) is a set of flip-flops which caught
an error during a test.

For example, in figure 3.2, if the flip-flops are coded from 1 to 12 and the first,
seventh and the twelfth caught the error, the failing flip-flop pattern is {1, 7, 12}.
The FFFP is one of the important inputs to the diagnostic system.

Definition 3.5 Fault collapsing is to identify equivalent faults in a circuit and to

generate the minimum fault set under a chosen fault model.

Definition 3.6 General fault collapsing is a procedure to collapse faults among the
whole circuit based on the single stuck-at fault model?.

Definition 3.7 A fault list is a fault set containing all the collapsed faults after
general fault collapsing.

Definition 3.8 Local fault collapsing is to collapse faults among plausible faults of
the circuit after structural analysis under single stuck-at fault model.

Definition 3.9 A group is a fault set satisfying following conditions:
1. each member of it is a collapsed-fault.

2. all of its members (if it has more than one member) affect the same primary
outputs (POs).

3. is also the maximum set satisfying above (1) and (2).

Once the plausible faulty sites (nodes) are located after structural analysis, local fault
collapsing is performed among these nodes. Then all the resulting faults form a group.
It can be seen that the more groups the circuit has, the higher the resolution that

can be obtained in the structural analysis stage.

Definition 3.10 The First Fault Elimination (FE1) is the ratio between the number
of excluded faulty sites over the number of all collapsed faults. The higher the FE1
the higher the diagnostic resolution of structural analysis.

2General fault collapsing is performed to get the fault list which is used after structural analysis
to decide which faults are to be simulated.

30

Definition 3.11 A common-sig-set(t) is a set satisfying the following conditions:

1. each member of it is a collapsed-fault.

2. all its members (if it has more than one member) belong to same group and

have the same signatures at the given testing length ¢.
3. is the maximum set satisfying (1) and (2) above.

Definition 3.12 An act-fault-set(t) is the common-sig-set(t) in which the actual fault
exists.
Definition 3.13 A dynamic fault dictionary is a fault dictionary which is created
and looked up during the diagnosis.

In h-DIAG, the fault dictionary is constructed after structural analysis. There
is an entry for each fault of the group, which affects only failing flip-flops in the
given FFFP. There is a column for each affected primary output (failing flip-flop).

The elements of the dictionary are the failing signatures collected from the failing
flip-flops by fault simulation.

Definition 3.14 The Second Fault Elimination (FE2) is the ratio between the num-
ber of excluded faults over the number of all collapsed faults. The higher the FE2
the higher the diagnostic resolution of second stage.

Definition 3.15 A failing signature of a failing flip-flop F (FFFS) is the signature
which is the result of compacting all the responses on F into MISR. FFFS is an
important input to the diagnostic system.

3.3 Testing and Diagnostic Environment and Pro-
cess

The diagnostic system is part of a complete fault testing and diagnosis process. It
incorporates the results of testing and diagnosis of failing flip-flops along with the
corresponding signatures of those flip-flops collected during the testing. The complete
testing and diagnostic process proceeds as follows:

31

| PRPG I

|
1 | s o
2 6 10
3 w4 11
4 8 12

| MISR

Figure 3.2: Flip-flops on Scan Chains

3.3.1 Diagnosis of the Failing Flip-flops

The general steps used in diagnosis of failing flip-flops can be summarized as follow:

1. Generate a series of pseudorandom test patterns using PRPG.
2. Assert the test patterns to the circuit under test/diagnosis.
3. Collect the signatures.

4. Analyse the signatures using the algorithms in [29, 34] to detect if there are
faults in the circuit. If there is at least one flip-flop detected as failing, the
circuit is faulty and the gate level diagnostic process should be performed.

3.3.2 Diagnosis of the Faulty Nodes

The basic steps in the diagnosis of a fault are listed as follow.
1. Read in the circuit. The netlist of the circuit is read in and an internal form of
the circuit is created and data structures like gate list, node list etc. are constructed.
2. Enter stage 1 diagnosis by invoking a structural analysis algorithm.
Using the location of failing flip-flops as input, the algorithm creates the set which
contains the locations of the plausible faulty nodes.

We assume there is no signature aliasing during the diagnosis of failing flip-flops
so that all of the failing flip-flops can be exactly located before we enter our stage 1
diagnosis. In this stage, we also assume that each circuit under test contains a single

32

fault.

3. Perform fault collapsing. Through general fault collapsing, create a fault
list. We complete the local fault collapsing by picking up the faults in the fault list
which are located on the sites belonging to sets created in previous step. Thus, a
corresponding group is constructed.

4. Enter stage 2 diagnosis by constructing a dynamic fault dictionary. For
the plausible faults diagnosed in the previous step, construct a fault dictionary whose
size is decided by the number of faults in the group and the number of the failing
flip-flops. Insert the relative signatures obtained through fault simulation into the
dictionary.

In this stage, we assume that the fault simulation length is same as that used in
the physical testing and we also assume that each circuit under test contains a single
stuck-at fault.

5. Look up above fault dictionary by physically collecting signatures of
failing flip-flops. A fault set is created. This set is composed of all the faults which
have exactly the same signatures as those collected from the testing.

6. Make Conclusion. If the above set is empty, or the current system doesn’t iden-
tify any fault which is responsible for the failing flip-flops and their corresponding

signatures in the assumed fault model, another fault model should be considered.

3.4 Diagnostic Stage 1: Structural Analysis

After testing is completed in a STUMPS structure, the signatures of all flip-flops
are compared with good machine values. When the CUT fails in the testing, i.e.
the correct signatures are different from the signatures collected from testing on at
least one flip-flop, and the pass/fail states of all the output points become known,
the structural analysis starts. It proceeds to identify the component(s) that, if de-
tectable, affect all the failing flip-flops and do not affect those correct flip-flops. The
components identified are the potential causes of the test failure.

As with many testing and diagnostic schemes which assume that only one fault
exists in the circuit during the test session, in our system, the structural analysis

33

is based on the assumption that the fault model belong to the single faulty site
model, e.g., single stuck-at fault, single stuck open or single gate delay fault model.
This is known as single fault assumption. This assumption is justified when tests are
performed frequently enough so that the probability of more than one fault developing
between test sessions is sufficiently small.

The structural analysis algorithms consist of four main procedures. The first
procedure, called Forward_Tracing, is used to find the f affected_nodes of any node
and to find the primary outputs that the node can reach. The second procedure,
called Backward_Tracing, is used to trace backwards from any site to primary inputs
to get b_affected_nodes of the site. The third procedure, called getcommon, exam-
ines the b_affected_nodes of any two primary outputs and find common elements in
them. These elements have paths to both primary outputs. The last procedure, kick-
common, analyses the b_affected_nodes of the correct primary outputs and removes
them from the plausible faulty sites.

3.4.1 Flip-flops and PIs/POs

The flip-flops on scan chains in a STUMPS structure are composed of the flip-flops
and primary inputs/outputs of original circuits. Consider the combinational circuit

below in figure 3.3. Let the circuit have i primary inputs and o primary outputs.

Figure 3.3: PIs and POs in the Original Circuit

In the corresponding STUMPS structure, each Primary Input/Primary Output
is mapped to a flip-flop. The input of the flip-flop corresponds to a primary output
and the output of the flip-flop corresponds to a primary input. When the number of
primary inputs [is greater than the number of primary outputs lo, there will be (I§

34

- Io) flip-flops left which have no inputs. When the number of primary outputs Io
is greater than primary inputs fi, there will be (o - Ii) flip-flops left which have no
output.

Assuming the combinational circuit having 10 primary inputs and 5 primary out-
puts, and there are two scan chains, then the STUMPS may look like the one depicted
in figure 3.4:

% MISR |

Figure 3.4: Original PIs and POs in STUMPS

Thus, for combinational circuits in STUMPS structure, the failing flip-flops can
be regarded as the failing primary outputs of the CUT. And the tracing from failing
primary outputs to primary inputs is equivalent to the tracing back from failing flip-
flops, which represent the failing primary output nodes, to flip-flops which represent
the primary input nodes.

3.4.2 Structural Analysis Algorithm

Once a fault is injected into a circuit under test (CUT), there exists a path from the
site of the fault to each of the POs (Primary Outputs) where errors are detected.
Hence, the plausible fault sites belong to the intersection of the cones of all the failing
primary outputs as depicted in Figure 3.5. The cone of a primary output indicates
all the sites which can cause that primary output to fail. For example, in Figure 3.5,
there are two big ovals. The left one represents a set of nodes while the right one rep-
resents a set of primary outputs (flip-flops). Each small black square in the right big
oval represents a primary output (flip-flop). For example, the cone of the primary out-
put represented by the third black square from top, is composed of nodes f1, {2 and f3.

35

) © ¢

e ><>'_<~~‘F[j‘pﬂops
'* -

g 4

1
e

Failing Flip Flops

Figure 3.5: Cone Intersection

The basic technique used is tracing back through the CUT from its POs (flip-
flops). For each failing flip-flop fff, we trace backwards from it to the PIs. During
the tracing, we create a set of sites, which are the b_affected_nodes for the POi. We
name this set TBi, which means the tracing back result of primary output i. As we
finish tracing back for all of the failing flip-flops, we take the intersection of above
sets: TBO, TB1, TB2, TBS, ..., TBn. All the elements in the intersection are sites
which affect all of the failing flip-flops. We name this intersection set as f.s, which
means that each site of this set affects all failing POs.

At same time, Figure 3.5 also shows us other information: for any plausible fault
site, there should not be any path from it to the correct POs3.

For the elements in the current f.s, it is still possible that some of them can also
affect the correct POs. Therefore, the next step of the algorithm is to remove those
sites affecting the correct POs from the f.s.

We use a similar method to get all the sites which can affect the correct POs. For
each correct PO, we trace backwards from it to the PIs and we put b_affected_nodes
of the correct PO into the set NFFi (“No Failing Flip-flop”). As we finish tracing
back for all of the correct POs, we take the union of above sets: NFF0, NFF1....
NFFm, where m is the number of correct POs, to form another new set, n_s, where
each site has at least one path to the correct POs. Finally, we remove all the sites

which are both in n_s and f.s from f.s. The sites in current f.s are the plausible faulty

3We assume that during the diagnosis of failing flip-flops, all possible input combinations for each
gate had appeared, thus the locations of the failing flip-flops are exact.

36

sites of this stage.
In the algorithms, some basic structures of the circuits shown in figure 3.6 are

given special consideration.

*)
T C|:]
o Fo d
. 3
-
——— —
A S 3
1 . [.:J
| — O pr

Figure 3.6: Basic Structures for Forward (up) and Backward Tracing (below)

1. Forward Tracing: There are three cases in the upper part of the figure 3.6
corresponding to three kinds of nodes from which forward tracing performs:
(1) Node which is an input node of a gate.

(2) Node which is an output of a gate which has fanout(s).
(3) Node which is a primary output node.

2. Backward Tracing: Four cases in below part of the figure 3.6 corresponding
to four kinds of nodes from which backward tracing starts:
(1) Node which is a fanout of an output and an input of a gate.
(2) Node which is an primary input.
(3) Node which is an output of a gate.

37

(4) Node which is a fanout of a primary input.

The input to the algorithm are the positions of failing flip-flops. The algorithms
proceed as follows:

Algorithm 3.1 Inside_Checker Algorithm:

Inputs:

Nlist: node list of the circuit;

N : node tracing backward from;

(Nlist and N all are non-null)

Output:

A success or failure indicator.

Comment:

The function of the algorithm is to check if a node has been inside a traced node set.
We use n as the number of the nodes of the circuit and m as maximum fanout of
gates.

Algorithm:

Procedure Inside_Checker(Node_list, Node)

1. L = Length(Node_list); /* decide the length
2. flag=0;
3. for i=1, L /* for all nodes in the list
4 if Node = Node_list(i) then
/* matched
5 flag=1;
6. break;
7. end if;
8 end for
9. return(flag); /* return the flag

end procedure;

Complexity Analysis:
Two basic operation of this algorithm is to analyze if a node is in a node set. In the
worst case, the number of nodes in the set is n. Thus the W(n) = O(n).

38

Algorithm 3.2 Get_Common Algorithm:

Inputs:

Nlist: node set of the circuit;

NL : node set of the circuit;

Output:

Ncomm: node set of the circuit which contains common nodes of two input node
sets;

Algorithm:

Procedure Get_Common(Node_list, NL)

1. L1 = Length(Nlist); /* decide the length of Nlist
2. L2 = Length(NL); /* decide the length of NL
3. fori=1,1L1 /* for all nodes in Nlist
4. for j =1, L2 /* for all nodes in NL
5. if Nlist(i) = NL(j) then
/* matched
6 Ncomm <- Nlist(i);
7. end if;
8. end for
9 end for
10. return(Ncomm); /* return the flag

end procedure;

Complexity Analysis:
The basic operation of this algorithm is to analyze if a node in NL is also a member
of Nlist. In the worst case, the numbers of nodes in both Nlist and NL are same as

the number of nodes in the circuit, n. Thus the W(n) = n x n = O(n?).

Algorithm 3.3 Kick_Out_.Common Algorithm:
Inputs:

Nlist: node set of the circuit;

NL : node set of the circuit;

Output:

39

Nleft: node set which contains the nodes of Nlist except those which are members
of NL;
Comment:
The algorithm is used to remove the nodes, which have path(s) to correct flip-flops,
from a node set in which every node has at least one path to a failing flip-flop. We
use n as the number of the nodes of the circuit.
Algorithm:

Procedure Kick_Out_Common(Nlist, NL)

1. L1 = Length(Nlist); /* decide the length of Nlist
2. L2 = Length(N1); /* decide the length of NL
3. for i= 1, L1 /* for all nodes in Nlist
4. for j =1, L2 /* for all nodes in NL

5. if (Nlist(i) = NL(j)) /* matched

6. {

7. remove Nlist(i); /* removed the node

8. break;

9. }

10. end for

11. end for

12. return(Nlist);

end procedure;

Complexity Analysis:

The basic operation of this algorithm is to analyze if a node in NL is also a member
of Nlist. In the worst case, the numbers of nodes in both Nlist and NL are same as
the number of nodes in the circuit, n. Thus the W(n) = n x n = O(n?).

Algorithm 3.4 Backward_Tracing Algorithm:
Inputs:

Glist: gate list of the circuit;

Nlist: node list of the circuit;

N : node tracing backward from;

(Glist, Nlist and N all are non-null)
Output:

40

b.af fected_nodes : node set in which all elements can reach N by a path.
Comment:

The function of the algorithm is to locate all the nodes which have paths to a specific
node. b_af fected_nodes is a set used to keep all the nodes which had been traced.
We use n as the number of the nodes of the circuit, m as maximum fanout of gates
and s.G as a source gate of a node. A flowchart of the algorithm can be found in
figure A.3 of Appendix A.

Algorithm:

Procedure Backward_Tracing (Node)

1. if Inside_Cheker(b_affected_nodes, N) then
/* if the node had been traced

2. return(0); /* no tracing any more
3. else
4. b_affected_nodes <- N; /* put the node into its
/* back_tracing_set
5. end if
6. if 8_G = SourceGate(N) != -1 then
/* N is not a primary input
7. if output(s_G) = N then
/* is an output of a gate
8. for i = 0 to No_input(s_G)
/* for all its input nodes
9. Backward_Tracing(input(s_G,i));
/* backward tracing its input
10. end for
11. else
12. if Inside_Checker(output_fanout(s_G), N) then
/* is a fanout of a gate
13. Backward_Tracing(output(s_G));
/* backward tracing its fanin
14. end if
15. end if
16. else /* N is a PI related node
17. node_in = N.fanin(); /* because it has no source gate
18. if node_in.fanout() > 1 then
/* N is one of the fanout
19. Backward_Tracing(node_in);
/* backward tracing the PI
20. else

41

22. if fanout(node_in) = 1 then

23. return; /* N is a direct PI
24. end if

25. end if

26. end if

end procedure

Complexity Analysis:

The basic operation of this algorithm is to analyze if nodes, met during the backward
tracing procedure, had been traced (or, in the traced node list). In the worst case,
there are n nodes can be met during the tracing procedure and the number of nodes
in the traced node list is n. Thus the W(n) = n x n = O(n?).

Algorithm 3.5 Forward_Tracing Algorithm :

Inputs:

Glist: gate list of the circuit;

Nlist: node list of the circuit;

N : node tracing forward from;

(Glist, Nlist and N all are non-null)

Output:

RPO : primary output node set in which all elements can be reached from N by a
path.

Comment:

The function of this algorithm is to find all the output nodes which can be reached
from a specific node in the circuit. The algorithm is mainly used in the simulation of
the diagnostic system.

f-af fected_nodes is a set used to keep all the nodes which had been traced. We use n
as the number of the nodes of the circuit. A flowchart of the algorithm can be found
in figure A.2 of Appendix A.

Algorithm:

Procedure Forward_Tracing(N)
1. if Inside_Checker(N, f_affected_nodes) then

42

> W N

-~

10.

11.
12.

12.

13.
14.

/*

return(0) ; /*
else
f_affected_nodes <- N;
/*
/*
end if

if Node_HasFanoutGate(N) = 0
/*

RPO <- N; /*
RPO_num <- RPO_num + 1;

/*

else

if the node had been traced
no tracing any more

put the node into its
tracing_forward_set

then
if it has not any fanout
put the node into

affected_PO_set

while (i <- Node.Fanout(N))

/*
/*
/*
/*

recursively invoke the procedure
to put elements of its fanout’s
forward_tracing_set

into its forward_tracing_set

f_Gate <- Node.FanoutGate(i);

i <= i+l

/%

locate the fanout gate

Forward_Tracing(f_Gate.OutputNode());

/%
end while
end if

end procedure

Complexity Analysis:

invoke forward tracing proc

The basic operation of this algorithm is to analyze if nodes, met during the forward

tracing procedure, had been traced (or, in the traced node list). In the worst case,

there are n nodes can be met during the tracing procedure and the number of nodes
in the traced node list is n. Thus the W(n) = n x n = O(n?).

Algorithm 3.6 Siructural_Analysis Algorithm:

Input:

FF FP failing flip-flop pattern;
Output:

43

p-f-n: plausible faulty nodes;

Comment:

This is a main procedure of the structural analysis. It traces the CUT (circust under
test) from all of the failing flip-flops to find all of the nodes which can reach the failing
flip-flops. It also traces the CUT from all of the correct flip-flops (normal flip-flops)
to find all the nodes which can reach the normal flip-flops. Based on the tracing
results, it finds all the nodes which can reach the failing flip-flops and can not reach
the normal flip-flops. These nodes are the plausible faulty nodes.

A primary output is denoted by PO[j] and a primary output in FFF P is denoted by
FFFP[i], where j and i are the index variables. The algorithm refers to the number
of primary output as m. A flowchart of the algorithm can be found in figure 3.74.
Algorithm:

Procedure Structural_Analysis (FFFP)
/* Now the failing POs are
/* put in : FFFP

o

. 1< 0;
. while(i < size(FFFP))

-

/* for all failing POs
2. Backward_Tracing(FFFP[il]);

/* back trace from this PO

/* to get its tracing_back_set
3 i <= i+l
4. if i =1 then /* if this is the first one PO
5. p_f_n[l = p_f_n_for_one_PO0];

/* put all it elements of

/* tracing back_set into

/* p_f_n
6. else
7. p-f_n = Get_Common(p_f_n, p_f_n_for_one_P0)
/* get those elements both in
/* p_f_n and
/* trace_back_set of current PO
8. end if
9. end while

10.for (j=0; j< m; j++)

“The flowchart also can be found in figure A.1 of Appendix A.

44

11. if !Inside_Cheker(FFFP, PO(j)) then
/* for each no-failing flip_flop
12. Backward_Tracing(P0(j));
/* backward tracing the PO
13. p_f_n = Kick_Out_Common(p_f_n, p_f_n_for_one_P0)
/* remove those elements in
/* the back_tracing set of the PO
/* from p_f_n

14. end if

15. end for

16. £.8 <~ p_f_n;

17. return(f_s); /* return plausible faulty sites

end procedure

Complexity Analysis:
Let the number of primary outputs be m and the number of nodes of the circuit be n.
As what have been analyzed before: the complexity of Backward_Tracing is O(n?),
the complexity of Get_Common is O(n?), the complexity of Inside_Cheker is O(n?)
and the complexity of Kick_ Out_Common is O(n?). So the complexity between line 2
and line 8 is O(n?) and the complexity between line 11 and line 14 is O(n?). Because
m can not be greater than n, in the worst case, the complexity of the while loop
is O(n®) and the complexity of the for loop is also O(n%). Thus the complexity of
whole procedure is O(n3).

Here, f.s is a group and all its elements are the plausible faulty sites. In an
extreme case, if there is only one element in f_s, it means that only one site can affect

all the failing flip-flops. In this case, we can decide the faulty site at once.

3.4.3 Diagnostic Example Using the Structural Analysis Al-
gorithm

In this subsection, we present an example to show how the above algorithm works.

We will use ffffi] to represent the tracing back result of failing flip-flop i and nfffi] to

represent the tracing back result of correct flip-flop 4.

Figure 3.2 shows a small combinational digital circuit. The circuit has eighteen
different sites. There are 4 PIs and 3 POs. Therefore, there is a total of C} + C3

45

1
1

Select a correct flip-flop &

| backward tracing from it

' ¥

Put result nodes of backward
tracing intosetp_g n

1 T

i —y

Start

(Y

“_._ ./

Select a failing flip-flop

] Selectanode formp g n

T

Yes The node is in p_f_n?

first failing flip-flop?

Yes g

| No

. Take the node away from p_f_n!
;

1
|
i
|
1

+

. . Yoo
intersecting all result nodes from { all result nodes from

backward_tracing with p_f_n | backward_tracing => p_{_n |
=>p_fn vk = : ;

All the
failing flip-flops
processed?

No

Figure 3.7: Flowchart of Structural Analysis Algorithm

+ C} = 3 +3 +1 =7 possible FFFPs: {PO1, PO2}, {PO1}, {PO2}, {PO3}, {PO2,
PO3}, {PO1, PO2, PO3} and {PO1, PO3}.

The algorithm accepts any pattern in FFFP. For each pattern, the algorithm

performs as follow:

Case 1: In the first case, both POl and PO2 are failing and PO3 is correct. We
trace backwards from PO1 and find fif{1] = {18, 17, 12, 8, 16, 6, 5, 15, 2, 3}.
We trace backwards from PO2 and find fif2] = { 14, 10, 11, 7, 8, 1, 4, 6, 5,
2, 3}. The intersection of ffj{1] and fif2] is fs = {2, 3, 5, 6, 8}. We trace

46

PO3
4
10
14
2 i PO2
56 8
3
12
8 po1
15 16 17

Figure 3.8: A Given CUT

backwards from PO3 and find nffi3] = {13, 9, 7, 1, 4, 5, 2, 3}. In this case,
because there are no other correct POs, the n_s = nff{3]. The common sites of
fs and n_sis {2, 3, 5}. Taking them away from f.s, we get final f.s = {6, 8}.

So, the plausible sites are node 6 and node 8 as shown in Figure 3.9 .

1 : |
—\ °_J>'3 -
B |
.
1

| 10
2 | : 1 ’] 14 PO2
—_ 5|6 8
. . > 1
12

| 18 PO1
15 16| 17|

| >

Figure 3.9: Case 1: PO1 and PO2 Failing

Case 2: In the second case, PO1 is failing and both PO2 and PO3 are correct. We
trace backwards from PO1 and find nf{l] = {18, 17, 12, 8, 16, 6, 5, 15, 2, 3}.

47

We get fs = {18, 17, 12, 8, 16, 6, 5, 15, 2, 3}. We trace backwards from PO2
and find nff2] = { 14, 10, 11, 7, 8, 1, 4, 6, 5, 2, 3}. We trace backwards from
PO3 and find nff{3] = {13, 9, 7, 1, 4, 5, 2, 3}. The union of nff[3] and nfff2] is
n_s = {14, 10, 8,6,9,13, 11, 7,1,4,5,2,3}. The common sites of f-s and n_s is {2,
3, 5,6,8}. Taking them away from f_s, we get final f.s = {18, 17, 12, 16, 15}. So,
the plausible sites are node 18, 17, 12,16 and node 15 as shown in Figure 3.10 .

9 13
7 PO3
4
10
14
2 1" PO2
56 8
3
12
o 2 poi
ER 169 o 7

Figure 3.10: Case 2: POl Failing

Case 3: In the third case, only PO2 is failing. We trace backwards from PO2 and
find (2] = { 14, 10, 11,7, 8, 1, 4, 6, 5, 2, 3}. The f.s = { 14,10, 11,7, 8, 1, 4,
6, 5, 2, 3}. We trace backwards from PO3 and find nffi3] = {13, 9, 7, 1, 4, 5,
2, 3}. We trace backwards from PO1 and find nfffl] = {18, 17, 12, 8, 16,6, 5,
15, 2, 3}. The union of nff{1] and nff{3] is n.s = {13,9, 7, 1, 4, 5, 2, 3, 18, 17,
12, 8, 6, 16, 12}. The common sites of f.s and n_s are { 7, 8, 1, 4, 6, 5, 2, 3}.
Taking them away from f.s, we get final f.s = {14, 10,11}. Thus, the plausible
sites are node 10, 14 and node 11 as shown in Figure 3.11 .

Case 4: In the fourth case, only PO3 is failing, PO1 and PO2 are normal. We trace
backwards from PO3 and find f{3] = {13, 9, 7, 1, 4, 5, 2, 3}. Thus, fs= {13,
9,7, 1, 4, 5, 2, 3}. We trace backwards from PO2 and find nffi2] = { 14, 10,

48

PO3
4
10
14
2 1 e PO2
56 8
3
12
B po1
15 16 17

Figure 3.11: Case 3: PO2 Failing

11, 7,8, 1, 4, 6, 5, 2, 3}, from PO1 and find nff1] = {18, 17, 12, 8, 16,6, 5, 15,
2, 3}. The union of nf{1] and nff2] is n_s = {18, 17, 12, 8, 16,6, 5, 15, 2, 3, 14,
10, 11, 7, 1, 4 }. The common sites of f.s and n_s are {7,1,4,2, 3, 5}. Taking
them away from f.s, we get final f.s = {13,9}. So, the plausible sites are node
13 and node 9 as shown in Figure 3.12 .

12| 5 ooy
15 \15 ‘ 17|
/

Figure 3.12: Case 4: PO3 Failing

Case 5: In the fifth case, PO2 and PO3 are failing, PO1 is normal. We trace back-

49

wards from PO2 and find fff2] = { 14, 10, 11, 7, 8, 1, 4, 6, 5, 2, 3}. We trace
backwards from PO3 and find fff[3]={13, 9, 7, 1, 4, 5, 2, 3}. The intersection
of 2] and fff{3] is f-s = {1,2, 3, 4,5, 7}. We trace backwards from POl and
find nffi1l] = {18, 17, 12, 8, 16,6, 5, 15, 2, 3}. In this case, because there are
not other correct POs, the n_s = nff{l]. The common sites of f.s and n.s are
{2,3,5}. Taking them away from f.s, we get final f.s = {1,4,7}. So, the plausible

sites are node 1,4 and node 7 as shown in Figure 3.13 .

[9 13
e PO3
4
[]
10
14
2 I PO2
56 8
3
12
B poi
15 16 17

Figure 3.13: Case 5: PO2 and PO3 Failing

Case 6: In the sixth case, all PO1, PO2 and PO3 are failing. We trace backwards
from POl and find fff{1] = {18, 17, 12, 8, 16,6, 5, 15, 2, 3}. We trace backwards
from PO2 and find fff{2] = { 14, 10, 11, 7, 8, 1, 4, 6, 5, 2, 3}. We trace backwards
from PO3 and find ff3] = {13, 9, 7, 1, 4, 5, 2, 3}. The intersection of them is
f-s = {2,3,5}. Because n_s = { }, we get final f.s = {2,3,5}. So, the plausible

sites are node 2,3 and node 5 as shown in Figure 3.14 .

Case T7: In the last case, Both POl and PO3 are failing and PO2 is normal. We
trace backwards from PO1 and find ffl] = {18, 17, 12, 8, 16, 6, 5, 15, 2, 3}.
We trace backwards from PO3 and find f3] = { 13,9, 7, 1, 4, 5, 2, 3}. The
intersection of fff{1] and ff3] is f.s = {2,3,5}. We trace backwards from PO2

50

PO3
4
10
14
2 i PO2
o 5. 6 8
e
12
B po1
15 16 17

Figure 3.14: Case 6: PO1, PO2 and PO3 Failing

and find nffi2] = {14, 10, 11, 7, 8, 1, 4, 6, 5, 2, 3}. The n.s = nffi2]. The
common sites of f.s and n.s are {2,3,5}. Taking them away from f.s, we get
final f.s = { }. Therefore, no plausible faulty site! This is the case that some
other fault models, rather than single-site fault models, should be considered.

3.4.4 Discussion on Structural Analysis
Main advantages

The diagnosis of this stage locates the plausible faulty sites without knowing the
failing response vectors. This is a new investigation in the diagnostic area. The new

features in this structural analysis can be summarized as follow:

1. Basically, it starts from the location of failing flip-flops. It also considers the
flip-flops which are not failing so that the resolution can be raised.

2. It does not require any test pattern response pairs information.
3. It does not need to know any logical relationship between nodes in the CUT.

s
4. The analysis speed is very fast.

51

5. It can offer high enough resolution which will guide the further diagnosis in a
very small range. (In our hierarchical scheme, it makes the number of faults to
be simulated much smaller, even smaller than that of DAPPER [3)).

A fact affecting the resolution

The resolution of this stage depends on the number of groups in the CUT. Thus, the
resolution of this stage will be low when the number of groups in the CUT is small.
Normally, circuits with more primary outputs (flip_flops) have more groups.

3.5 Diagnostic Stage 2: Using a Dynamic Fault
Dictionary

In IC manufacturing process, the following situation may occur: after many chips
have been manufactured, the yield is found to be very low and all the faulty chips
have the same faulty behavior. In this case, it is necessary to find out the fault in
these chips and the diagnostic result will be helpful for the manufacturers to modify
the design or adjust the fabrication process.

The plausible faulty sites can be located after the diagnosis in stage 1, but to
get a higher resolution, further diagnosis is necessary. In stage 2, a new fault dic-
tionary diagnostic method is proposed. Using this method, the fault dictionaries are
constructed dynamically to finish the further diagnosis with high efficiency. In the
following parts of the chapter, we will describe the idea of the dynamic dictionary,
the construction of the dynamic dictionary, looking up of the dynamic dictionary and
the advantage of the dynamic dictionary over conventional dictionaries.

The conventional fault dictionary method, using a complete fault list, provides a
high diagnostic resolution. However, a great deal of memory space is required for such
a dictionary, even when small circuits are considered. At same time, due to the huge
size of the dictionary, the time used to construct and look up the specific record can
also be huge. Therefore, the implementation of such a dictionary is very expensive in

52

hardware.

The reason that the conventional dictionary is huge is that the dictionary contains
a corresponding record for each fault of the circuit under test and diagnosis. Although
some records may never be used, they still have to be constructed into the dictionary
because there is no hint at all to indicate which records will be possibly used and
which are not when the dictionary is constructed. Therefore the dictionary has to be
a complete one.

In our hierarchical diagnostic system, the plausible faulty sites had been located
by the diagnosis in the first stage. This means that only the fault set constructed by
the first stage needs to be considered for further diagnosis instead of all of the possible
faults of the circuit. Therefore a corresponding dictionary which only contains the
records of the plausible faults can take the place of the complete dictionary.

The dynamic fault dictionary scheme is proposed based on our structural analysis
implementation. The dynamic characteristics of the dictionary are reflected in the

following aspects:

1. The dictionary is created during the diagnosis. The dictionary is created after
diagnostic stage 1 and at the beginning of diagnostic stage 2.

2. The size of the dictionary is determined by the number of failing flip-flops from
testing (i.e. the number of columns), and the number of the plausible faulty

sites from the diagnosis of stage 1 (i.e. the number of rows).

3.5.1 Signature Collection Model

To collect the signature of a specific failing flip-flop (PO) in STUMPS-based BISD,
“Chain select” and “Compaction control” in [29] are employed. By setting “Chain
select” properly, we can select the chain in which the failing flip-flops exists. By
selecting “Compaction control” properly, we can select the frame in which the failing
flip-flop exists. Thus, we can force only responses of the specific PO to be compacted
into the MISR during testing. We present the compaction model in the Figure 3.15.

53

PRPG

|

Q — é

c e s

£ 8 g

S S G}
—]
! chain |
| select ——— |, Compaction
— i (1N | control

lAnd| [And |And|

Y
L MISR le——clk_sel

Figure 3.15: Signature Collection Model

In this model, clksel is a clock signal which is only “enabled” when the response
of the specific PO has been shifted to the bottom of the chain. It is “disabled” in
the other cases. For each chain, this makes the response value in the other flip-flops
ignored by the MISR. During each fault simulation and testing, the chain containing
the specific PO is connected to a MISR, and feeds the MISR as one of its input bits.
The other input bits of the MISR. are 0. The order of the MISR’s input bit to be fed
by the PO depends on the scan chain in which the PO is in. In one of the simplest
cases, assuming there is only one 16-bit MISR and 16 scan chains, the order of the
scan chain, where the PO is in, is the order of the MISR’s input bit to be fed by the
POs in the chain.

3.5.2 Organization of the Fault Dictionary

Based on a given FFFP, a plausible faulty site set can be obtained through diagnosis
in the structural analysis stage. Then a corresponding group can be obtained by
letting each site be stuck_at.0 and stuck.at_1 and then perform local fault collapsing

inside the set.

54

For each fault in the group: F1, F2, F3, ... and Ff (f is the number of the faults in
the group), there is a record in the dictionary corresponding to it. For each element in
FFFP: fifl, fif2,... fifp (p is the number of the failing Flip-flops), there is one column
corresponding to it. Thus, the dynamic dictionary is of the form shown in Figure 3.16.

Fl
F2
F3

Ff |

Figure 3.16: Dynamic Dictionary Form

The element on the cross point of each row (corresponds to a fault) and each
column (corresponding to a failing flip-flop) in the dictionary is a signature. The sig-
nature is the compacted responses on the flip-flop of the column when fault simulation

is processing for the fault of the row.

3.5.3 The Construction of the Fault Dictionary

The construction of the fault dictionary starts after the FFFP is available and cor-
responding group had been constructed by the diagnosis of structural analysis stage.
The construction procedure is given below.

First, calculate the size of the dictionary to be constructed. The size of the
dynamic dictionary is decided by multiplying the number of the flip-flops in the FFFP
with the number of the plausible faults in the group. Second, eject a fault from the
plausible fault set, then collect the signatures of the corresponding flip-flops. Once the
fault is ejected, fault simulation is processed using an algorithm. Thirdly, collect the
responses of failing primary outputs and compact them into MISR. For each failing
primary output, its signature is collected using the signature collection model as
described above. Finally, put the collected signatures into the corresponding position

55

of the dictionary.

For the dictionary constructed in this way, each plausible fault has a corresponding
row entry in the dictionary. The look-up into the dynamic dictionary is a search
procedure during which the signatures of each row, are compared entry by entry till
the same entry as that collected from testing is located.

3.5.4 Dynamic Dictionary Based Diagnostic Algorithm

In this section, the algorithms used in the diagnosis by the dynamic dictionary are
presented and analysed. The algorithms proceed as follows:

Algorithm 3.7 DD_Parall_Pattern_Sim Algorithm

Inputs:

Glist: gate list of the circuit;

Nlist: node list of the circuit;

Tp: 256 test patterns;

Fn and Fu: fault node and the stuck at value respectively;

(Glist, Nlist and Tp are all non-null; Fn and Fv can be null while it means fault
free simulation;)

Output:

256 responses of the fault simulation or fault free simulation.

Comment:

The function of the algorithm is to perform parallel pattern simulation.

The index variable i is used to point to current gate being simulated; The g is the
number of the gates in the Glist; n is the number of the nodes in the circuit; Pfis
plausible fault set; PIs is the primary input set. A flowchart of the algorithm can be
found in figure A.5 of Appendix A.

Algorithm:

Procedure DD_Parall_Pattern_Sim()

0. if !(Fn in Pf) then /* if the fault is not the
1. return /* plausible one, exit.
2. end if

56

3. if Fn in PIs then /* the fault is on a PI
4. if Fv = 1 then
5. setbit; /* set bits of SA 1 node
6. else
7. clearbit; /* clear bits of SA 0 node
8. end if;
9. end if
10. fori=1tog /* for all the gates
11. if fault_free(Glist(i)) then

/* the gate is no fault related
12. £f_evaluate(Glist(i))

/* evaluate its value
13. else /* fault is in I/0 of the gate
14. for j = 1, input(Glist(i))
15. if fault_free(j) then

/* j is not faulty node
16. continue; /* skip it
17. else
18. if Fv = 1 then

/* set j SA value
19. setbit
20. else
21. if Fv = 0 then
22. clearbit
23. end if
24. end if
25. break;
26. end if
27. j <= j+1;
28. end for
29. if j > input(Glist(i)) then

/* no input is faulty
30. if Fv = 1 then

/* set output SA value
31. setbit
32. else
33. if Fv = 0 then
34. clearbit
35. end if
36. end if
37. else
38. f_evaluate (Glist(i))

/* evaluate the gate
39. end if
40. end if

57

41. end for

end procedure

Complexity:

The basic operation in this algorithm is to perform evaluation for every gate in the
circuit. All the gates are evaluated no matter if they are fault related or not. Thus,
the complexity of the algorithm W (n) = O(n).

Algorithm 3.8 DD_Record_Compac Algorithm

Inputs:

256 responses of the fault simulation or fault free simulation;

Previous signatures of each failing flip-flop;

The failing flip-flop pattern (FFFP);

Output:

The new signatures of all failing flip-flops (FFF'S);

Comment:

The function of the algorithm is to compact the outputs of the simulation into a
MISR.

The index variable i is used to point to current primary output, m is the number of
the primary output and n is the number of nodes in the circuit. A flowchart of the
algorithm can be found in figure A.6 of Appendix A.

Algorithm:

Procedure DD_Record_Compac()

1. fori=0tom /* for all POs

2. if (i in FFFP) then

3. signature[i] .Load(); /* load its previous signature
end if

4. end for;

5. fori=1tonm

6. if t(i in FFFP) then /* if i is not a failing PO

7. continue; /* skip it

58

8. else /* i is a failing PO
9. for (j = 0,255, j++) /* for each response
10. if respomseli,j] =1
11. input_1_bit =1
12. else
13. input_1i_bit = 0
14. MISR.NEXT (signature); /* get next state
15. signature xor = input_1_bit
/* compact the respomse to the
/* signature
16. end for
17. end if
18. end for

19. return(FFFS)
end procedure;

Complexity:

There are two basic operations here. The first one compares a primary output with
each element in FFFP to judge if it belongs to the set(line 1 through 4), the com-
plexity is O(n?). The second one gets the signatures for failing primary outputs, the
complexity is also O(n?). Thus W(n)=n xn + n x n = O(n?).

Algorithm 3.9 DD_Build_In_And_Look_Up Algorithm

Inputs:

Psig: signatures from testing;

fPOs: number of failing primary outputs;

RECd: the compacted records, obtained from simulation, of failing flip-flops;
Outputs:

Match or no-match indicator (If the row entry is same as the signatures obtained
from testing it returns 1) and the entry’s location in DD.

Comment:

The function of the algorithm is to look up the dynamic dictionary to find the entry
of the dictionary which has same signatures as that collected from the testing.

The index variable i is used to point to current primary output; n is the number of

59

the nodes in the circuit; L is current available entry of the dictionary and m is the
number of the primary outputs in the circuit. The procedure is invoked when a fault
simulation finishes and the signatures of all the failing flip-flops have been obtained
from this simulation. A flowchart of the algorithm can be found in figure A.7 of
Appendix A.
Algorithm:

Procedure DD_Build_In_And_Look_Up()

1. init Psigl0..fPOs]; /* obtain the signatures

2. for i = 1, fP0Os /* for all failing signatures
3. DDIL,il <- RECd[i]l; /* put the signature into

/* the dictionary

4. end for

5. for i = 1, fPOs /* for all failing signatures
6. if !(Psig = RECd[i]) then /* compare the signature

7 break; /* not matched

8 else

9. continue; /* ready to compare the others
10. end if
11, i<-1i+1;
14. end for
16. if i = fPOs + 1 then /* all matched

16. current-fault -> act-fault-set;
17. L=1L +i;

18. return (1);

18. else

19. L=L+1;

20. return (0);

21. end if;

end procedure

Complexity:

The basic operation is to put the signatures collected from simulation for a fault into
fault dictionary and compare the signatures with those from testing. Because m < n,
in the worst case, the complexity W(n) = O(n).

Algorithm 3.10: DD_Based_Diagnosis Algorithm

60

Inputs:

F: the plausible faults diagnosed by structural analysis;

S: the signatures collected by testing;

L: the testing length;

(Both F and S are no empty and L is a positive integer;)

Output:

Final diagnostic result R (plausible faults diagnosed through DD).

Comment:

This is the main algorithm for the diagnosis of second stage. The function of the
algorithm is to create the dynamic dictionary and look-up the dictionary. It basically
is composed of a sequence of procedure calls, CreatTP(), DD_Parall_Pattern_Sim(),
DD Record_Compac() and DD _Build In_And _Look_Up().

The element number of F' is denoted as m and the number of nodes of the circuit is
denoted as n. The index variable used are: i, the current fault in F' being processed,
and j, the current simulation block. This is the main algorithm for the diagnosis of
second stage. It basically is composed of a sequence of procedure calls, CreatTP(),
DD _Parall_Pattern_Sim(), DD_Record_Compac() and DD _Build In_And_Look_Up().
A flowchart of the algorithm can be found in figure 3.175.

Algorithm:

Procedure DD_Based_Diagnosis()

1. fori<- 0 tom /* for all plausible faults
2. for j<-0Otol /* for all blocks
3. CreatTP(); /* create the test patterns
4. DD_Parall_Pattern_Sim() /* fault simulation
5. DD_Record_Compac() /* compact the responses
6. end for
7. DD_Build_In_And_Look_Up(S); /* build into the dictionmary
/* and compare it with
/* the practical record
8. end for;

end procedure

5The flowchart also can be found in figure A.4 of Appendix A.

61

@

—y

Select a fault from plausible
fault set (group)

Are there any

Choose current # of block and faults left
create test patterns for this blocl? in plausible set?
|
Perform parallel simulation Build and look up the dictionary
and compact the responses

l Return (fault) ‘

Figure 3.17: Flowchart of Diagnosis Using Dynamic Dictionary

Are there any
blocks left?

Complexity:
As what had been analyzed before, the complexity of line 5 is O(n?). In the worst
case, m = 2 xn, so the complexity of the algorithm is W (n) = O(n?%).

3.5.5 General Diagnostic Procedure in Stage 2

The diagnostic procedure in stage 2 can be summarized with the following steps:

Step 1: Create the plausible fault set pF: For each plausible site pSite diagnosed in
stage 1, add “pSite S.A.1" and “pSite S.A.0” to pF, before local fault collapsing
among pF.

Step 2: Signatures of each failing PO are collected after pseudo-random testing of a

62

certain length (e.g. ¢t = 100 k).

Step 3: At same time, signatures of each failing PO for all plausible faults in pF
are calculated by fault simulation, with same testing length as in Step 2 (e.g. ¢
= 100 k), forming a fault-signature dictionary for pF. The single-stuck-at fault

model is assumed during the simulation.

Step 4: Compare the actual fault signatures obtained in Step 2 with those in the
fault-signature dictionary formed in step 3: If the testing signatures are same
as the simulation signatures of fault f, fis the diagnosed fault. Due to the fact
that there may be more than one fault which has the same simulation signatures
as the testing signatures, the above f can be not unique. If only one plausible
fault in pF has same faulty signatures as signatures obtained from testing (|
act_fault_set(t)| = 1), the diagnosis finishes.

If there is a subset s of pF, all of the faults (more than one) in s have the same
fault signatures as signatures obtained from testing (| act-fault_set(t) | > 1),
the diagnosis should go further.

3.5.6 Diagnostic Example

To illustrate diagnosis using a dynamic dictionary, we emulate the diagnosis on bench-
mark circuit C7552 as an example.

In ¢7552, there are 3512 gates, 3719 nodes, 207 primary inputs and 108 primary out-
puts. Assume the input to the diagnostic system is as follow:

(1) Location of failing flip-flops node number of the failing primary outputs:

10101 10715 10716 10717 10718 10759 10837 10838 10839 10840
10641 10711 10712 10713 10714 10760 10761 10762 10763 10632
10905 10906 10104 10706 11334 11333 11340 10907 10574 10729

(2) Signatures of the failing flip-flops corresponding signatures for each failing
flip-flop:

65378 5378 7648 18641 45223 65378 32318 52516 47687 58

63

45172 1553 44496 56629 65378 65378 38838 5616 21715 62548
53538 53538 53538 53538 23860 36799 26535 39957 35141 44803

According to this, the diagnostic result of stage 1 is:

Gate 3398's output node,

Gate 3007’s output node,

Gate 221’s output node,

Gate 3007's 2nd input node input node,

Gate 2381’s output node,

Gate 2381’s 1st input node input node and

Gate 2381’s 2nd input node input node

(each of them can lead to two faults: SA1 and SAO0.)

After local fault collapsing among above faults, there are 8 plausible faults left:

2381’s output node stuck.at 0,

2381’s output node stuck.at 1,

3398’s output node stuck.at 0,

3398’s output node stuck.at 0,

3398’s 1st input node stuck_at 0,

3007’s 1st input node stuck.at 1,

2381’s 1st input node stuck.at 1 and

2381’s 2nd input node stuck_at 1.

Then after fault simulation, the following dynamic dictionary was constructed:
entry O:

37929 37929 65378 5424 56300 37929 47945 51036 9305 42554
56127 27994 50843 46718 65378 37929 64765 32443 16280 12087
47721 47721 47721 47721 49551 6010 39109 34509 57870 21535

entry 1:

65378 65378 7648 18641 45223 65378 32318 52516 47687 58
45172 1553 44496 56629 65378 65378 38838 5616 21715 62548
53638 53538 53538 53538 23860 36799 26535 39957 35141 44803

entry 2:

37929 37929 65378 41326 56300 37929 3863 29442 36871 4708
56127 27994 50843 46718 65378 37929 64765 32443 16280 12087
47721 47721 47721 47721 30161 41764 11419 12947 57870 57409

entry 3:

65378 65378 65378 51749 45223 65378 25692 6217 64332 31023
45172 1553 44496 56629 65378 65378 38838 5616 21715 17532
53538 53538 53538 53538 7834 51311 18384 23000 35141 35594

entry 4:

37929 37929 65378 30307 56300 37929 55322 41999 18186 50537
56127 27994 50843 46718 65378 37929 64765 32443 16280 12087
47721 47721 47721 47721 41692 29737 64406 58782 57870 14156

entry 5:

37929 37929 7648 9114 56300 37929 5493 42607 53516 27505
56127 27994 50843 46718 65378 37929 64765 32443 16280 40735
47721 47721 47721 47721 13951 58612 3308 63326 57870 50248

entry 0 is corresponding to : 2381’s output node stuck_at 0,
3398’s output node stuck-at 0.

entry 1 is corresponding to : 2381’s output node stuck.at 1.

entry 2 is corresponding to : 3398’s 1st input node stuck.at 0,
2381’s 2nd input node stuck-at 1.

entry 3 is corresponding to : 3007’s 1st input node stuck.at 0.

entry 4 is corresponding to : 3007’s 2nd input node stuck_at 1.

entry 5 is corresponding to : 2381’s 1st input node stuckat 1.

Because the given signatures are same as entry 1, the diagnostic result of the
second stage is: 2381’s output node stuck at 1.

3.5.7 Evaluation of the Dynamic Dictionary Used in the Stage

The fault location capability of different dictionary diagnostic systems can be evalu-
ated by the size of the fault dictionary, the complexity of creation, the look-up time
and the resolution. In this section, some features of the new dynamic dictionary will

65

be compared with the conventional dictionary schemes. Also, we will conduct some
experiments to compare the shrink scale while concerning the number of simulation
to be performed between h-DIAG and DAPPER.

The Improvement of the Length over the Conventional Dictionary

In order to demonstrate the advantage of the dynamic dictionary in the dictionary
length, the following experiments are performed on ISCAS benchmark circuits. For
each circuit, 10 faults are randomly ejected. For each fault, Fi, we get the number
of the faults in the corresponding group, N, whose value is same as the length of the
dynamic dictionary of the group.

At same time, the number of all the collapsed faults in circuit is the length of the
conventional dictionary.

All of the results are presented in tables 3.1 through 3.4 for the benchmark circuits.
In these tables, TL stands for the length of complete dictionary; DD-length stands for
the length of the dynamic dictionary for each group; while Save indicates the space
saved by using the dynamic dictionary.

The Improvement of the Look-up Time of the Dynamic Dictionary

The look-up time in the fault dictionary method is actually the time used to compare
the signatures obtained from testing with the signatures in the dictionary.

In order to demonstrate the advantage of the look-up time of the dynamic dic-
tionary, the following experiments were performed. For each benchmark circuit, 10
faults from 10 groups are ejected randomly. Then, ten dynamic dictionaries were
constructed for each group. At same time, a part of the conventional dictionary is
constructed by putting the faults of the ten groups in the front of the dictionary.
Using the time of comparing one entry as the time unit, the time to find the last fault
in both the dynamic dictionaries and conventional dictionary can be calculated. The
experimental results for all the benchmark circuits are shown in appendix C.

66

Comparison with DAPPER

DAPPER (3, 4] employed “fault detection probability estimation” method as its first
diagnostic stage to provide coarse-grain resolution by eliminating potential faults be-
fore simulation. The average number of faults left after the elimination for ISCAS’85
benchmark circuits is given both numerically and as a percentage in the columns 3
and 4 in table 3.58. For each circuit, the second column indicates the number of the
faults in the circuit, the third column presents the average faults to be simulated
and the fourth column tells the percentage of the faults to be simulated in the whole
fault set’. In the same table, we present the corresponding numbers by our struc-
tural analysis in the columns 6 and 7. We put the average number of faults in each
group (which is the number of faults to be simulated) into the sixth column and put
the percentage of the faults to be simulated in the whole fault set into the seventh
column. We can find out that for all of the compared circuits, structural analysis can
eliminate more faults than its counterpart in DAPPER. The percentage of the faults
which it can eliminate more than DAPPER ranges from 0.92% to 17.77%.

Comparison with IBM simulation scheme

After the diagnosis of the first stage, one alternative method to perform the further
diagnosis is the IBM simulation scheme {5]. In the IBM scheme, the testing and
diagnostic patterns T1, T2, ..., T'n are generated firstly before they are applied to the
physical circuit to get the responses: R1, R2, ..., Rn. Then, for all the faults in the
plausible fault set, fault simulation is performed. During the fault simulation, each
pattern Ti (i is from 1 to n) is applied to all the faults in above fault set. The faults
will be discarded from the fault set if its response is different from that collected from
testing/diagnosis, Ri. Thus, after all the patterns have been applied, the faults still
in the fault set are the final plausible faults being looked for. These faults have the
same responses as the physical fault for all the test patterns generated.

In our specific diagnostic environment, the dynamic dictionary scheme employed

8These two columns are from columns 4 and 5 of table 2 in [3].
"Their experiments are based on the single stuck-at fault model [4].

67

in h-DIAG is more suitable than IBM scheme because of the following reasons:

1. The diagnostic result available for this stage is mainly the signatures of the

failing flip-flops. In order to use the IBM scheme, we must take some special

measures to recover all the required test response pairs from above signatures.

Under our diagnostic condition, this is almost impossible.

2. Using the IBM simulation scheme, basic steps are performing fault simulation
and comparing the simulation results. Using the h-DIAG dictionary scheme, the

extra work necessary is to save the fault simulation results into a space to build

up the dictionaries. The construction of fault dictionaries provides a possibility

to reduce the fault simulation by reusing the fault dictionary. For example,
if two faults existing in two chips affect the same POs, after the first chip is

diagnosed using the dictionary, it is not necessary to invoke fault simulation for
the fault in the second chip. Instead, the dictionary used for the first chip can

be loaded and then looked up directly.

Compared with IBM’s scheme, the apparent disadvantage of h-DIAG is the space

to store the dictionary, although the size of the dictionary has been greatly reduced

through dynamic technique.

Conclusions Reached

1. The diagnosis in this stage closely depends on the result of the previous stage.

2. In our scheme, the length of the dynamic fault dictionary is significantly reduced

when compared with the conventional dictionary by around 98% for most of

the benchmark circuits. Correspondingly, the construction and look-up time
to the dictionaries are also significantly reduced compared with that needed
in conventional dictionaries. This makes the dictionary method much more

practical and appealing.

3. Due to the aliasing, it is possible that two complete records in two different

groups are equal. In the conventional dictionary, these two faults can not be

68

identified. With the dynamic dictionary, the final plausible fault is restricted
to a specific group and the faults of the other groups will not be considered at
all. Thus aliasing becomes less and resolution is improved by using the dynamic

dictionary method.

. It will be an interesting investigation and development to generally reduce the
simulation through re-use of the simulation results by looking up the dynamic

dictionaries while diagnosing more than one chip.

69

Group c6288, TL=7744 ¢75582, TL=7556 c880, TL=982 81196, TL=1850
No. DD-Length | Save % | DD-Length | Save % | DD-Length | Save X | DD-Length | Save %
1 2 99.9742 347 95.4076 99.8982 1 99.92
2 123 98.4117 468 93.8063 1 99.8982 3 99.76
3 282 96.3585 187 97.5251 23 97.6578 M 97.28
4 308 96.0227 2 99.9735 16 98.3707 57 95.44
5 2 99.9742 1 99.9868 4 95.5193 4 99.68
6 2 99.9742 16 99.7882 23 97.6578 37 97.04
7 175 97.7402 468 93.8063 1 99.8982 4 99.68
8 227 97.0687 468 93.8063 1 99.8982 59 95.28
9 331 95.7257 456 93.9651 38 96.1303 §7 95.44
10 331 95.7257 148 98.0678 16 98.3707 2 99.84
Average 178.3 97.6976 255.9 96.6133 16.4 98.3299 25.8 97.936
Group c1355, TL=1574 c17, TL=22 ¢1908, TL=1893 c2670, TL=28611
No. DD-Length | Save % | DD-Length | Save &% | DD-Length | Save % | DD-Length | Save %
1 7 50.6353 5 77.2727 161 91.495 13 99.5021
2 77 50.6353 5 77.2727 853 54.9392 39 98.5063
3 7 50.6353 7 68.1818 10 99.4717 2 99.9234
4 s 50.6353 5 77.2727 17 99.102 17 99.3489
5 14 99.1105 7 68.1818 853 54.9392 417 84.0291
8 e 50.6353 5 77.2727 853 54.9392 2 99.9234
7 ey 50.6353 5 77.2727 853 54.9392 107 95.902
8 (44 50.6353 7 68.1818 75 96.038 5 99.8085
9 14 99.1105 7 68.1818 853 54.9392 2 99.9234
10 e 50.6353 5 77.2727 17 99.102 59 97.7403
Average 624.4 60.3304 58 73.6364 454.5 75.9905 66.3 97.4607
Group ¢8540, TL=38446 c{32 , TL=504 c499, TL=786 ¢c153815, TL=5368
No. DD-Length | Save % | DD-Length | Save % | DD-Length | Save & | DD-Length | Save %
1 7 99.7969 64 87.3016 209 71.2121 10 99.8135
2 285 91.7295 64 87.3016 209 71.2121 25 99.5338
3 136 96.0534 102 79.7619 8 98.8981 11 99.7949
4 35 98.9843 50 90.0794 8 98,8981 82 98.4707
5 109 96.8369 64 87.3016 209 71.2121 13 99.7576
6 201 94.1672 64 87.3016 209 71.2121 28 99.4778
7 136 96.0534 64 87.3016 8 98.8981 4 99.9254
8 107 96.895 32 93.6508 33 95.4545 2 99.9627
9 136 96.0534 5 99.0079 209 T1.2121 112 97.9112
10 188 94.5444 64 87.3016 209 712121 2 99.9627
Average 134 96.1114 57.3 88.631 131.1 81.9421 28.9 99.461

Table 3.1: Length of Dictionary: The First 12 Benchmark Circuits

70

i

812388, TL=1355

813207 , TL=14027

81423, TL=1527

s1488, TL=1546

No. DD-Length | Save % | DD-Length | Save & | DD-Length | Save % | DD-Length | Save %
1 2 99.8524 6 99.9572 12 99.2141 2 99.8706
2 1 99.9262 2 99.9857 1 99.9345 19 98.771
3 9 99.3358 489 96.5139 11 99.2796 8 99.4825
4 1 99.9262 20 99.8574 5 99.6726 60 96.119
5 30 97.786 19 99.8645 11 99.2796 132 91.4618
6 3 99.7786 14 99.9002 (] 99.6071 8 99.4825
7 10 99.262 12 99.9145 12 99.2141 3 99.806
8 1 99.9262 99.9786 14 99.0832 25 98.3829
9 44 96.7528 99.9358 11 99.2796 2 99.8706
10 1 99.9262 16 99.8859 12 99.2141 2 99.8706
Average 10.2 99.2472 59 99.5794 9.5 99.3779 26.1 98.3118
Group 81494, TL=1588 815850, TL=16077 8808, TL=219 827, TL=32
No. DD-Length | Save § | DD-Length | Save § | DD-Length | Save X | DD-Length | Save %
1 2 99.8716 6 99.9627 101 53.8813 14 56.25
2 1 99.9358 13 99.9191 101 53.8813 4 87.5
3 5 99.6791 13 99.9191 1 99.5434 14 56.25
4 1 99.9358 13 99.9191 1 99.5434 14 56.25
5 66 95.7638 63 99.6081 101 53.8813 93.75
6 8 99.4865 15 99.9067 13 94.0639 90.625
7 108 93.068 8 99.9627 13 94.0639 14 56.25
8 8 99.4865 6 99.9627 101 53.8813 14 56.25
9 49 96.8549 115 99.2847 10 95.4338 14 56.25
10 6 99.6149 8 99.9502 10 95.4338 3 90.625
Average 25.4 98.3697 25.8 99.8395 45.2 79.3607 9.6 70
Group 8898, TL=320 8844, TL=872 3349, TL=380 835988, TL=41398
No. DD-Length | Save % | DD-Length | Save & | DD-Length | Save & | DD-Length | Save %
1 24 92.5 16 95.6989 1 99.7368 63 99.8478
2 13 95.9375 99.4624 21 94.4737 15 99.9638
3 14 95.625 99.4624 2 99.4737 27 99.9348
4 4 98.75 21 94.3548 23 93.9474 1 99.9976
5 24 92.5 4 98.9247 15 96.0526 27 99.9348
6 1 99.6875 19 94.8925 1 99.7368 63 99.8478
7 28 91.25 12 96.7742 21 94.4737 63 99.8478
8 1 99.6875 16 95.6989 5 98.6842 27 99.9348
9 1 99.6875 16 95.6989 16 95.7895 1 99.9976
10 20 93.75 23 93.8172 5 98.6842 3 99.9928
Average 13 95.9375 13.1 96.4785 11 97.1053 29 99.9299

Table 3.2: Length of Dictionary: The Second 12 Benchmark Circuits

Group 8982 , TL=4285 838417, TL=39028 438584, TL=38793 4386, TL=410
No. DD-Length | Save % | DD-Length | Save % | DD-Length | Save & | DD-Length | Save %
1 2 99.5294 9 99.9769 4 99.9124 37 90.9756
2 14 96.7059 99.9974 4 99.9897 2 99.5122
3 10 97.6471 2 99.9949 51 99.8685 46 88.7805
4 4 99.0588 70 99.8206 4 99.8866 2 99.5122
5 14 96.7059 18 99.9539 3 99.9923 13 96.8293
6 4 99.0588 70 99.8206 251 99.353 37 90.9756
7 14 96.7059 18 99.9539 44 99.8866 2 99.5122
8 15 96.4706 7 99.9821 16 99.9588 92.6829
9 99.5294 17 99.9564 27 99.9304 2 99.5122
10 99.2941 2 99.9949 251 99.353 13 96.8293
Average 8.2 98.0708 214 99.9452 725 99.8131 18.4 95.5122
Group 8420, TL=457 8444, TL=508 8510, TL=564 8586, TL=567
No. DD-Length | Save % | DD-Length | Save ¥ | DD-Length | Save % | DD-Length | Save %
1 1 99.7812 16 96.8504 2 99.6454 19 96.649
2 215 52.954 13 97.4409 54 90.4255 19 96.649
3 215 52.954 8 98.4252 102 81.9149 19 96.649
4 215 52.954 20 96.063 17 96.9858 14 97.5309
5 1 99.7812 17 96.6535 99.6454 14 97.5309
6 10 97.8118 24 95.2756 98.9362 7 98.7654
7 215 52.954 3 99.4094 17 96.9858 7 98.7654
8 215 52,954 14 97.2441 102 81.9149 8 98.9418
9 10 97.8118 1 99.8031 2 99.6454 (] 98.9418
10 1 99.7812 10 98.0315 8 98.9362 2 99.6473
Average 109.8 75.9737 12.6 97.5197 31 94.5035 11.3 98.0071
Group 85878, TL=5385 8641, TL=675 8718, TL=7137 3820, TL=850
No. DD-Length | Save § | DD-Length | Save & | DD-Length | Save % | DD-Length | Save %
1 152 97.1455 3 99.5556 7 99.0502 134 84.2353
2 14 99.7371 25 96.2963 21 97.1506 134 84.2353
3 115 97.8404] 99.1111 18 97.5577 103 87.8824
4 133 97.5023 19 97.1852 11 98.5075 83 90.2353
5 147 97.2394 98.963 12 98.3718 103 87.8824
6 17 99.6807 98.963 17 97.6934 9 98.9412
7 89 98.3286 17 97.4815 10 98.6432 2 99.7647
8 3 99.9437 98.6667 17 97.6934 137 83.8824
9 2 99.9624 98.963 7 99.0502 4 99.5294
10 3 99.9437 21 96.8889 7 99.0502 4 99.5294
Average 67.5 98.7324 12.1 98.2074 12.7 98.2768 7.3 91.6118

Table 3.3: Length of Dictionary: The Third 12 Benchmark Circuits

72

Group 1838, TL=870 3838, TL=933 89934, TL=8805 8958, TL=1107
No. DD-Length | Save % | DD-Length | Save % | DD-Length | Save % | DD-Length | Save %
1 2 99.7701 443 52.5188 204 97.6831 2 99.8193
2 143 83.5632 1 99.8928 202 97.7058 19 98.2836
3 99.5402 443 52.5188 524 94.0488 19 98.2836
4 99.7701 1 99.8928 1 99.9886 12 98.916
S 12 98.6207 443 52.5188 538 93.8898 33 97.019
6 99.5402 1 99.8928 63 99.2845 19 98.2836
7 99.7701 443 52.5188 114 98.7053 3 99.729
8 104 88.046 1 99.8928 18 99.7956 15 98.645
9 1 99.8851 13 98.6066 81 99.0801 1 99.9097
10 2 99.7701 1 99.8928 576 93.4583 8 99.2773
Average 27.6 96.8276 179 80.8146 232.1 97.364 13.1 98.8166

Table 3.4: Length of Dictionary: The Last 4 Benchmark Circuits

Circuit | Num. of | avg. sim faults | Percentage | Num. of Group | avg. sim faults | Percentage
Name Faults in DAPPER | in DAPPER in h-DIAG in h-DIAG in h-DIAG
c432 524 39.9 7.6% 15 34.93 6.68%
c499 758 152.0 20.1% 43 17.63 2.33%
c880 942 44.8 4.8% 68 13.85 1.47%
cl355 1574 244.0 15.5% 43 36.60 2.33%
c1908 1879 114.3 6.1% 57 32.96 1.75%
c2670 2595 91.3 3.5% 139 18.67 0.72%
c3540 3428 2329 6.8% 127 26.99 0.79%
c5315 5350 4444 8.3% 364 14.70 0.28%
¢6288 7744 678.4 8.8% 63 122.92 0.16%
c7552 7548 407.8 5.4% 318 23.74 0.31%

Table 3.5: Comparison With DAPPER: Average Fault Number to be Simulated

3

Chapter 4

Evaluation of Diagnostic

Resolution

In this chapter, we describe a series of experiments to evaluate the effectiveness of
the new diagnostic algorithms proposed in Chapter 3. Computer simulations were
performed on some standard benchmark circuits. The simulations help to illustrate
the performance of the algorithms and also show that it is feasible to apply the
algorithms on large VLSI circuits.

An overview of the simulation environment is given, including discussions about
the circuits used for the simulations and the computer resources used for the exper-
iments. The simulation goals are defined and the simulation results are presented.
Based on the simulation results, the performance of the algorithms is analyzed.

4.1 Experimental System Overview

The environment used to carry out the simulation experiments consists of software
package h-DIAG and the set of ISCAS'85 and ISCAS’89 benchmark circuits. The
software was developed using the GNU C++ compiler, g++, under SunOS and
Solaris. All simulations were executed on identical SUN Ultra 1 workstations each
equipped with 128 Mbytes of RAM.

The ISCAS’85 and ISCAS’89 benchmark circuits were introduced by Brglez and

74

etc. [9,10] in 1985 and 1989 respectively. These circuits have become the standard for
analyzing the performance of testing and diagnostic methods for both combinational
circuits and sequential circuits. A description of the circuits are given in table 4.1

and 4.2 respectively.

[~Clreult Clrcult Taput | Output | D Fiip | Basic
Name a i Lines Lines Flops Gates
I circult [} T 3 10
| 5308 Tunctional multipliers 11 3 3 %6 |
| 5208 traffic § role [} 14 110
334 %, 11 1 180 |
| S340 Tour-bit_multiplier 11 T 161 |
5382 | 3400 [31 158 |
[3386 controllers from HLD 3 150 |
5400 traffic light controler 21 162
20 || Tancilgnal sultioh i &1 16]
444 traffic Ight) 3 [} 3y 181
[— 3310 controllers from HLD 19 T [} 311
traffic ight controler 3 [] 3 94
— S6Al | based 33 2 19 I |
313 D based 33 3 1] 308 |
re-synthesized 8333 13 J¢) 3 80 |
[S83% || PLD device based 13 J§-] ¥ iy
| 3333 Tunctional multipllers B 3 LY 300 |
5083 controllers from hnn 18 = i) 308
31198 ro~ esized 81338 X 1L} T 530 |
31338 | ooms'. m:l':s random FFs 13 14 1 508 |
1433 circul 17 L3 T4 88T |
[31438 s0d 81404 [0] 653 |
| 31404 || controllers from HLD -3 1) -3 [.ZY4
[—35378 I circult - S) 10| 3770 |
[S0354 ¢ real-chlp 10 ki 738 E807_|
[~S13207 | c D 31 131 [-1.1) 81|
[SI38E0 | c real-chip 13 37 o7 [rae]
538057 T Greuit 33 1738 | 16068 |
| SIBA1T || spesific real-chlp 15 108 1638 | 1311 |
[S35354 spesific real-chip 12 1482 19283 |

Table 4.1: Characteristics of ISCAS’89 Benchmark Circuits

Ci Circul Total laput Qutput
Name Punction Gates Lines Lines
e e T

aa
[— 880 ALU and T T 353 36 |
[T C1388 || BCAT 546 & 33|
| Ci908 | — 880 33 35
ALU and C. T 1103 Py 140 |
ALU and Control 1660 30 33|
o Sog e
Ter 7 33
[C7883 ALU and C T 3313 108 |

Table 4.2: Characteristics of ISCAS’85 Benchmark Circuits

The “C” in the name of ISCAS’85 circuits stands for combinational circuits, while
the “S” in the name of ISCAS’89 circuits stands for sequential circuits. The number
in the name of each ISCAS circuit refers to the number of interconnect lines among
the circuit primitives. The double of this number also represents the upper bound on
the size of the single stuck-at fault list.

(6]

The ISCAS’89 benchmarks, compared to the ISCAS’85 benchmarks, are much
bigger in size and more complex in circuit functions. Using both sets of benchmarks

for our experiments provides both thorough and realistic evaluations of our diagnostic
system.

Select General
CUTs

i

| ISCAS 89 Circui ity Cirl:mu ISCAS 8S Circui
| /(SCAS 89 Format lSCASDm;; Fm lSCAS as F

|

t

1

I

|

i

|

ﬁ

| lSCAS 89 = ISCAS BSi

i .

| Test Paterns |
i Locati gnanires .

! Circuit Netlist on St . Created by .
. of Failin gFlipFlo ‘of Failin gFﬁpﬂo PRPG s

V

I Stuctural_Analysis

: t
i ¢ - -h-DIAG- -
; ' Build and Look_up
! Dynumc Dtctionary

1 i

E Output: Output

: Time Used Plausible Faulty Sites Resoludon
: Plausible Faults

i

| Funther Diagnosis

Figure 4.1: Overview of the Simulation Environment

The overview of our simulation environment is presented in Figure 4.1. The h-
DIAG program is the center of the environment. h-DIAG implemented all the algo-
rithms proposed in the previous chapter. h-DIAG requires four sources of input, they
are: a circuit netlist in the format of the ISCAS'85!, the location of failing flip-flops
(the node number of corresponding primary outputs), a set of signatures of these
failing flip-flops and pseudorandom test patterns created by PRPG. The main out-
puts produced by h-DIAG are the plausible faulty sites by structural analysis in its

1For this reason, all the circuits described in the format of ISCAS’89 have to be transformed.

76

first stage and the final plausible faults by constructing and looking-up the dynamic
dictionary in its second stage. The outputs also include some statistical data like
diagnostic time and the diagnostic resolution.

The implementation issues and user’s manual of h-DIAG will be presented in

chapter 5 and appendix B respectively.

4.2 Diagnosability and Experimental Objectives

The diagnostic ability of a system reflects how powerful the system is in identifying
and locating the fault(s). It is represented by the diagnostic resolution. The higher
the diagnostic resolution is, the more valuable the diagnostic information becomes for
finding actual defects in the CUT.

Two basic methods are used to measure the resolution of our diagnostic system.
In the first method, a value named fault elimination rate (FE) is calculated. This
value indicates the percentage of the faults, which are not causing the error, in the
total faults of the circuit for each specific diagnosis. The larger the percentage is,
the smaller the number of plausible faults is. The formula calculating FE can be

expressed as:

Number_of Total_Faults — Number_of _Plausible_Faults
FE = x 100%,
Number_of_Total_Faults

where Number_of Total Faults is the number of all the faults of the circuit after
fault collapsing; Number_of Plausible_Faults is the number of the faults not elimi-
nated (including the un_distinguishable faults after diagnosis).

The second method originated from the theory discussed in [18], where a value
and its corresponding calculation formula satisfying the following requirements were
proposed:

. The value should be minimum when the diagnostic method has completely

failed, i.e. the diagnostic system can not distinguish any fault;

The value should be maximum when the diagnostic method is perfect, i.e. it
can distinguish any fault;

The value should increase as number of groups and/or the equalization among

fault number in groups increases.

Thus, the formula can be expressed as:

RES

gl x log(g1/N) + g2 x log(g2/N) +gn x log(gn/N)

= — X 100%,

N x logN

where N is the total number of faults of the circuit; n is the number of the groups

divided by the diagnostic system; g1, g2, ... gi, ... gn are the number of faults in

each group;

This formula has following properties:

1

2.

0 <=RES <=1;
RES =1 when N = n;
RES = 0 when n = 1;

any change toward equalization of g1,92,...g1 increases RES (when n has no
change);

any increase to n (by breaking a gi) increases RES (when other groups have no
change).

Assume two diagnostic algorithms, D1 and D2, and any CUT. If D1 can generally
divide the faults of CUT into more groups and/or the numbers of the faults in different

78

groups have better equalization than D2, then the RES of D1 will be greater than
RES of D2.

This method can reflect the general diagnostic ability of a specific diagnostic
scheme on any circuit. But for each circuit, to get its exact RES value, all of the
faults have to be diagnosed in advance to obtain the data for each group. This is not
feasible for large circuits.

Our basic experimental objective is to evaluate the resolution of structural analysis
and dictionary method through calculating some FE and estimating the RES through
an approximate method. Also, we will compare the resolution of h-DIAG with that of
DAPPER based on some calculation results of FE on ISCAS’85 benchmark circuits.

4.3 Experimental Procedures and Results Analy-
sis

This section presents the procedure and the results of the experiment for both struc-
tural analysis stage and the dynamic dictionary stage. Statistic value of FE and RES
were obtained for most of the benchmark circuits. FE value at testing length of 2048
are collected and compared with that of DAPPER. Some representative tables con-
taining the complete results at testing length = 64k can be found in appendix D and
appendix E.

4.3.1 Number of Test Vectors and the Test Pattern Genera-

tor

Our structural analysis stage is independent of the test vectors, so FE1 and RES12
will not be affected by test patterns.

The second stage of our system is based on the fault simulation. The total time
required to execute a diagnosis run depends upon the number of test vectors used
during the test session. To minimize the testing time, the total number of vectors

2FE1 and RES1 are FE and RES of stage 1 while FE2 and RES2 are those of stage 2, respectively.

79

should be as small as possible. However, the test set should be long enough to
provide an acceptable diagnostic resolution. In another words, the final plausible
fault set should be very small and most of the faults in the initial fault list should be
eliminated.

For the experiments of our second stage, both FE and RES are the functions of
the test length. So the test length used for diagnosis of each benchmark circuit must
be chosen in advance. (The relationship between the RES2 and the testing length
will be illustrated in Figure 4.2.)

Each set of vectors is generated using minimum cost LFSR defined by primitive
polynomials [7]. The length of the LFSR used for each benchmark circuit is equal to
the number of primary inputs in the circuit when the number of Pls are less than 256.
For those circuits whose Pls is greater than 256, one or more LFSR with length=256
should be used and for the left PIs, another LFSR with the length same to the number
of left PlIs should be used.

Besides the polynomials corresponding to LFSR with length of 256, table 4.3
shows the polynomials which describe the LFSR used to generate the input vectors
for each benchmark circuit. These polynomials are taken from the list of primitive
polynomials given in [7].

4.3.2 Data Collection for the Calculation of FE

For most of the ISCAS benchmark circuits, we randomly ejected 10 groups from each
circuit, then we randomly selected 10 faults from each group. In this way, we got
100 random faults for each circuit. For each fault in one group, we traced forward
to get the flip-flops it affected. Using these locations of flip-flops as the locations of
the failing flip-flops, we started our structural analysis scheme to locate all of the
corresponding plausible faulty sites. Applying relative formula, we got the FE for the
corresponding diagnosis.

For each specific fault in a group, we performed the fault simulation and collected
all the faulty signatures for the corresponding failing flip-flops by compacting the
generated responses through MISR. These signatures were supplied to the diagnosis

80

algorithm in stage 2. They were inserted into the dynamic fault dictionary in proper
position. Because some of the entries of the dictionary are the same, the length of
the dictionary is definitely equal to or less than the number of the faults in the group.
We focused on the number of the faults which have exactly the same faulty signatures
as the specific faults, because these faults are just the plausible faults which we can
not distinguish in the stage 2. And those N = number of total faults - number of the
faults with same signatures as the specific fault faults are definitely distinguishable
from the specific fault. This means that: while diagnosing with the characteristic
of this specific fault, we can eliminate these N faults from the plausible fault set in
this stage. Thus, we obtained the FE for the fault of the second diagnostic stage by
dividing N with number of the total faults of the circuit and thus we get FE2.

The average values of FE1 and FE2 for each circuit are recorded in the column 4
and 8 of tables 4.4 through 4.15.

4.3.3 Estimation of RES

As described in the previous section, we randomly ejected 100 faults from 10 randomly
selected groups. We used the number of the faults in each group as g(3), which is the
result of structural analysis, the number of the selected group as n, and the addition
of each g(i) are the N. The RES calculated in this way is called Resl of the group.

After simulation, we can distinguish different common_sig_set, where all faults
have same signatures. We added the number of the faults in each common.sig_set
together as N, the number of the common_sig_set in the group as n, the number of
the faults in each common_sig_set as g(i), then we got the RES of stage 2 for this
group, which is called Res2.

After we got the Resl and Res2 of each group, we calculated their average values
respectively. Thus we got the approximate RES1 and RES2 of the corresponding
circuits.

In tables 4.4 through 4.15, the average values of RES1 and RES2 for each circuit
are recorded in the columns 5 and 9.

In the following subsections, the results of the simulations for both structural

81

analysis and dynamic dictionary will be analysed and discussed.

4.3.4 Results for the Structural Analysis Stage

The first part of the tables 4.4 through 4.15 (columns 3 to 6), details the simulation
results of the structural analysis.

Four quantities are presented for each circuit: The average number of faults in
each group, which affect the same flip-flops; the average number of FE; the average
number of RES; and the CPU time required for diagnosis by structural analysis. Each
result is the average of the 100 trials performed. For example, considering C3540 in
table 4.4, there are 192.6 faults on average in each group, FE on average is 0.944097,
RES on average is 0.501029 and the average CPU time is 2.583084 seconds.

The following observations can be made from the tables:

1. The result of structural analysis is independent of the testing length (the number
of the testing vectors).

2. The CPU time used in structural analysis, for all the benchmark circuits, ranged
from 0.003486 seconds to 27.954675 seconds on a 140 MHZ Ultra 1 Sparcstation.

3. For some circuits, the FE is very high. The highest FE reached is 0.998749 for
S35932.

4. It can be found that, normally, for the circuits with more flip-flops in their scan
chains, their FE is higher.

5. The number of faults in each group ranged from 5.9 of C17 to 451.2 of S13207.

6. For any two circuits with similar number of faults, the smaller the average of
faults in each group, the larger the number of its FE. One example is S38417
and S38584.

82

4.3.5 Results for the Dynamic Dictionary Stage

The second part of the tables 4.4 through 4.15 (columns 7 to 10), details the simulation
results for the dynamic dictionary.

Because all of the benchmark circuits have an unequal number of inputs and
outputs, for simplicity, test patterns are supplied by an LFSR of length equal to
the number of inputs, connected directly to the circuit inputs. For example, for
benchmark circuit C5915, a 178-bit LFSR is used to generate test patterns, with the
least significant bit of the LFSR connected to the first input of the circuit.

The remaining parts in tables 4.4 through 4.15 summarize the results of the exper-
iments in stage 2 of our diagnostic system. The testing length in tables 4.4 through
4.10 are 1 block (256 vectors), 3 blocks, 8 blocks, 10 blocks, 30 blocks, 100 blocks, 200
blocks and 256 blocks for ISCAS’85 benchmark circuits respectively. In tables 4.11
through 4.15 are 1 block, 3 blocks, 100 blocks, 200 blocks and 256 blocks for ISCAS’89
benchmark circuits respectively. In each table, from the seventh column to the tenth
column, each column lists the following information: the average number of faults
which have same signatures, the average FE of the stage, the average RES of the
stage and the average simulation time required per fault.

The following significant observations can be made from the data:

1. The diagnostic time closely depends on the testing length. For example, for
C3540, the diagnostic time (CPU) used in this stage is 9.846411 seconds at
testing length 1 block, while the diagnostic time (CPU) used is 34.112416 sec-
onds when the test length is 3 blocks.

2. Normally, the longer the testing length, the higher the resolution®.

3. For most of the circuits, the fault elimination (FE) can reach more than 99%
when the testing length reaches 100 blocks. In most situations, the plausible
fault number is very close to one, the final target.

4. The resolution changes little after the testing length is longer than 100 blocks.

3The larger FE and RES will also be obtained.

83

Benchmark LPSR Polynomial

circuits (remained part)
€1335 2 25 +1

17 25 +22 41
€1908 23 4213 41
2670 2338 L 5T 4}
€3340 280 4 237 4270 4 3 41
c432 2% gl 41
499 24 2341
5315 2178 4287 41
6288 293 L o3 L9 Lot
€7552 2307 4 243 4
880 zﬁ+a‘+l
1196 252 429 13 4ol 1 |
51238 233 L 3 L3 4 gl 41
813207 2188 4 5186 4 32 4 g1 41
a1432 29 £ 0 188 Lot 41
81488 23 4212 £ 20 3t 41
1494 234 4 213 p 3l pat 41
215850 2% 1 37 £ 2% 23 41
8208 218 + 37 41

227 2T+l 41

8298 3"+53+!

8344 :"+:‘+z’+a‘+l
8349 2P et p2d+at 41
35932 257 4 g3 13 4ot 41
2382 24 ot b2l +al +1
838417 2138 4 239 4 237 4 52 4y
838584 2184 L g4 23 p 2t
5386 28 42t b3 42l 41
8420 2 4318 £l ! 41
2444 M ezt pad szt 41
510 238 425 41

5826 24 4t b 2d 42l 41
85378 2316 4 287 £33 4ol 41
s641 2% £ 23 4+ 230 £ 2t 41
sT13 s“+c’_7+z”+a‘+l
2820 33428 +1
8832 223 4+28 41
2838 200 +20 £ 2% + 30 41
9234 24T 4 o83 1y
2053 298 42t 2% pal 41

Table 4.3: Polynomials Used in PRPG for ISCAS Benchmark Simulations

84

circuit No.PO FEl Resl Tim-1 Nasg FE2 Res2 Tim2
C17 Mean val 5.9 | 0.731405 | 0.533700 | 0.003875 1.00 | 0.954545 | 1.000000 | 10.832122
Std devi 1.0 | 0.046332 | 0.007733 0.000420 0.00 | 0.000000 | 0.000000 | 12.098172

C1908 { Mean val 161.0 | 0.914950 | 0.498443 1.402980 | 22.56 | 0.988082 | 0.540494 | 3.135840
Std devi 0.0 | 0.000000 | 0.000000 | 0.000000 | 23.89 | 0.012623 | 0.000000 | 0.000000

C2670 | Mean val 307.9 | 0.882087 | 0.501401 0.808191 | 201.43 | 0.922853 | 0.518262 | 25.838037
Std devi 261.9 | 0.100319 | 0.004141 0.352002 | 187.29 | 0.071730 | 0.031354 | 21.568973

C3540 | Mean val 192.6 | 0.944097 | 0.501029 | 2.538938 | 18.32 | 0.994684 | 0.568683 | 9.846441
Std devi 49.6 | 0.014384 | 0.007406 | 0.333998 | 32.84 { 0.009531 | 0.123478 | 4.575392

C432 | Mean val 75.7 | 0.849802 | 0.512127 | 0.054102 7.63 | 0.984861 | 0.580407 | 2.262642
Std devi 15.3 | 0.030322 | 0.002969 | 0.000513 8.63 | 0.017130 | 0.024493 | 0.338429

C499 | Mean val 195.4 | 0.730812 | 0.522151 0.172306 1.53 | 0.997893 | 0.945665 | 30.207202
Std devi 13.6 | 0.018786 | 0.003237 | 0.003020 216_ 0.001050 | 0.000653 | 2.250980

C5315 | Mean val 55.2 | 0.989711 | 0.500968 1.333310 16_.-7;_ 0.996872 | 0.579707 | 4.212523
Std devi 33.4 | 0.006226 | 0.033914 | 0.102149 19.47 | 0.003630 | 0.064317 | 2.601977

C6288 | Mean val 262.4 | 0.966114 | 0.510911 | 29.686549 1.26 | 0.999837 | 0.952493 | 22.407754
Std devi 85.5 | 0.011035 | 0.031374 | 2.772940 0.41 | 0.000052 | 0.009605 | 8.610687

C75562 | Mean val 360.9 | 0.952231 | 0.498974 | 3.319447 | 241.73 | 0.968008 | 0.513940 | 28.353079
Std devi 14.0 | 0.001854 | 0.000228 | 0.356409 | 147.62 | 0.019537 | 0.008088 | 0.584208

C880 | Mean val 30.0 | 0.969419 | 0.529421 | 0.060040 | 15.93 | 0.983778 | 0.536006 | 0.832946
Std devi 13.5 | 0.013700 | 0.097049 | 0.005828 11.58 | 0.011795 | 0.095336 | 0.193653

Table 4.4: Experiment Results: at Vector Size = 1 Block

85

circuit No.PO FEl Resl Tim-1 N.sg FE2 Res2 Tim2
Cl17 | Mean val 5.9 | 0.731405 | 0.533700 | 0.003807 1.00 | 0.954545 | 1.000000 | 10.875810
Std devi 1.0 | 0.046332 | 0.007733 | 0.000501 0.00 | 0.000000 | 0.000000 | 12.057351

C1908 | Mean val 161.0 | 0.914950 | 0.498443 1.404200 2.05 | 0.998917 | 0.825423 | 93.939499
Std devi 0.0 | 0.000000 | 0.000000 0.000000 1.94 | 0.001025 | 0.000000 | 0.000000

C2670 | Mean val 307.9 | 0.882087 | 0.501401 0.806073 | 201.43 | 0.922853 | 0.518262 | 78.385253
Std devi 261.9 | 0.100319 | 0.004141 0.349788 | 187.29 | 0.071730 | 0.031354 | 65.244135

C3540 | Mean val 192.6 | 0.944097 | 0.501029 | 2.538192 2.13 | 0.999382 | 0.839885 | 34.112416
Std devi 49.6 | 0.014384 | 0.007406 0.335803_ 8.54 | 0.002477 | 0.194847 | 16.808274

C432 | Mean val 75.7 | 0.849802 | 0.512127 0.054251‘ 1.42 | 0.997183 | 0.877723 | 6.957865
Std devi 15.3 | 0.030322 | 0.002869 | 0.000501 1.76 | 0.003495 | 0.112979 1.039517

C499 | Mean val 195.4 | 0.730812 | 0.522151 0.172500 1.02 | 0.998595 | 0.995592 | 95.551985
Std devi 13.6 | 0.018786 | 0.003237 | 0.003014 0.02 { 0.000028 | 0.004430 7.120709

C5315 | Mean val 55.2 | 0.989711 | 0.500968 1.333160 16.53 | 0.996917 | 0.607134 | 12.830254
Std devi 33.4 | 0.006226 | 0.033914 | 0.102326 | 19.65 | 0.0036685 | 0.074656 7.988380

C6288 | Mean val 262.4 | 0.966114 | 0.510911 | 29.832922 1.26 | 0.999837 | 0.952493 | 69.607121
Std devi 85.5 | 0.011035 | 0.031374 | 2.792268 0.41 | 0.000052 | 0.009605 | 26.800453

C7552 | Mean val 360.9 | 0.952231 | 0.498974 | 3.319252 | 205.47 | 0.972807 | 0.517811 | 85.875088
Std devi 14.0 | 0.001854 | 0.000228 | 0.362374 | 127.75 | 0.016907 | 0.012783 1.240207

C880 | Mean val 30.0 | 0.969419 | 0.528421 | 0.060239 8.46 | 0.991385 | 0.563380 | 2.567477
Std devi 13.5 | 0.013700 | 0.097049 | 0.005924 7.45 | 0.007587 | 0.080330 | 0.578692

Table 4.5: Experiment Results: at Vector Size = 3 Blocks

86

circuit No.PO FE1 Resl Tim-1 Nsg FE2 Res2 Tim2
C17 | Mean val 5.9 | 0.731405 | 0.533700 | 0.003865 1.00 | 0.954545 | 1.000000 10.981832
Std devi 1.0 | 0.046332 | 0.007733 | 0.000429 0.00 | 0.000000 | 0.000000 11.958290
C1908 | Mean val 161.0 | 0.914950 | 0.498443 | 1.404200 2.05 | 0.998917 | 0.825423 | 93.938499
Std devi 0.0 | 0.000000 | 0.000000 | 0.000000 1.94 0._(_)01025 0.000000 0.000000
C2670 | Mean val 307.9 | 0.882087 | 0.501401 | 0.804797 | 200.70 0.;23133 0.519265 | 208.194814
Std devi 261.9 | 0.100319 | 0.004141 | 0.349327 | 188.97 | 0.072374 | 0.031257 | 173.732569
C3540 | Mean val 192.6 | 0.944097 | 0.501029 | 2.550121 1.29 | 0.999626 | 0.906536 | 87.810585
Std devi 49.6 | 0.014384 | 0.007406 | 0.328201 2.01 0.90_0_582 0.069980 | 42.717358 |
C432 | Mean val 75.7 | 0.849802 | 0.512127 | 0.054373 1.13 0.9_9;758 0.960251 18.180214
Std devi 15.3 | 0.030322 | 0.002969 | 0.000839 0.28 | 0.000550 | 0.031209 2.731683
C499 | Mean val 195.4 | 0.730812 | 0.522151 | 0.172036 1.02 | 0.998595 | 0.995592 | 246.778055
Std devi 13.6 | 0.018786 | 0.003237 | 0.003030 _0.02 0.000028___ 0.004430 18.388_&
C5315 | Mean val 55.2 | 0.989711 | 0.500968 | 1.332282 -9.22 0.998280_ 0.625403 34.114_163—
Std devi 33.4 | 0.006226 | 0.033914 | 0.102279 | 13.68 | 0.002550 | 0.094097 | 21.176466
C6288 | Mean val 262.4 | 0.966114 | 0.510911 | 29.635309 1.26 | 0.999837 | 0.952493 | 180.517055
Std devi 85.5 | 0.011035 | 0.031374 | 2.756831 0.41 9.000052 0.009605 | 69.859151
C7552 | Mean val 360.9 | 0.952231 | 0.498974 | 3.315426 | 125.63 6.983374 0.527718 | 230.94335%6
Std devi 14.0 | 0.001854 | 0.000228 | 0.356019 | 106.10 | 0.014042 | 0.022725 2.317982
C880 | Mean val 30.0 | 0.969419 | 0.529421 | 0.059757 2.60 | 0.997352 | 0.723105 7.323440
Std devi 13.5 | 0.013700 | 0.097049 | 0.005899 2.45 | 0.002494 | 0.070995 1.585640

Table 4.6: Experiment Results: at Vector Size = 8 Blocks

87

circuit No.PO FEL Resl Tim-1 | Nasg FE2 Res2 Tim2
C17 | Mean val 5.9 | 0.731405 | 0.533700 | 0.003849 | 1.00 | 0.954545 | 1.000000 | 11.453884

Std devi 1.0 | 0.046332 | 0.007733 | 0.000444 | 0.00 | 0.000000 | 0.000000 | 11.517226

C1908 | Mean val | 161.0 | 0.914950 | 0.498443 | 1.404200 | 2.05 | 0.998917 | 0.825423 | 93.939499
Std devi 0.0 | 0.000000 | 0.000000 | 0.000000 | 1.94 | 0.001025 | 0.000000 | 0.000000

C2670 | Mean val | 307.9 | 0.882087 | 0.501401 | 0.808071 | 152.00 | 0.941785 | 0.525241 | 793.094032
Std devi | 261.9 | 0.100319 | 0.004141 | 0.351517 | 142.88 | 0.054722 | 0.032841 | 660.887024

C3540 | Mean val | 192.6 | 0.944097 | 0.501029 | 2.547300 | 1.26 | 0.999635 | 0.918804 | 325.840234
Std devi 49.6 | 0.014384 | 0.007406 | 0.328210 | 0.92 | 0.000267 | 0.022812 | 158.537719

C432 | Meanval | 75.7 | 0.849802 | 0.512127 | 0.054046 | 1.13 | 0.997758 | 0.960251 | 67.804757
Std devi 15.3 | 0.030322 | 0.002069 | 0.000461 | 0.28 | 0.000550 | 0.031209 | 10.150365

C499 | Meanval | 195.4 | 0.730812 | 0.522151 | 0.172331 | 1.02 | 0.998595 | 0.995592 | 929.836725
Std devi 13.6 | 0.018786 | 0.003237 | 0.003018 | 0.02 | 0.000028 | 0.004430 | 69.280567

C5315 | Mean val | 552 | 0.980711 | 0.500968 | 1.334041 | 1.89 | 0.999647 | 0.825199 | 130.378806
Std devi 33.4 | 0.006226 | 0.033914 | 0.102060 | 2.09 | 0.000389 | 0.100284 | 81.116048

C6288 | Mean val | 262.4 | 0.966114 | 0.510011 | 30.041573 | 1.26 | 0.999837 | 0.952493 | 677.165160
Std devi 85.5 | 0.011035 | 0.031374 | 2.815485 | 0.41 | 0.000052 | 0.009605 | 260.706735

C7552 | Mean val | 360.9 | 0.952231 | 0.498074 | 3.321127 | 34.44 | 0.995442 (0.598123 | 865.035728
Std devi 14.0 | 0.001854 | 0.000228 | 0.354320 | 108.84 | 0.014404 | 0.092406 | 10.767680

C880 | Meanval | 30.0 | 0.969419 | 0.520421 | 0.059578 | 1.12 | 0.998860 | 0.961882 | 28.558824
Std devi 13.5 | 0.013700 | 0.097049 | 0.005905 | 0.33 | 0.000333 | 0.027334 |- 6.005498

Table 4.7: Experiment Results: at Vector Size = 30 Blocks

88

circuit No.PO FEl Resl Tim-1 | Nsg FE2 Res2 Tim2
C17 Mean val 5.9 | 0.731405 | 0.533700 0.003447 1.00 | 0.954545 | 1.000000 13.050176
Std devi 1.0 | 0.046332 | 0.007733 | 0.000089 | 0.00 | 0.000000 | 0.000000 10.025736
C1908 | Mean val 161.0 | 0.914950 | 0.498443 1.404200 2.05 | 0.998917 | 0.825423 93.939499
Std devi 0.0 | 0.000000 | 0.000000 0.000000 1.94 | 0.001025 | 0.000000 0.000000
C2670 | Mean val 307.9 | 0.882087 | 0.501401 | 0.807179 | 23.05 | 0.991172 | 0.620865 | 2625.847524
Std devi 261.9 | 0.100319 | 0.004141 | 0.351877 | 20.60 | 0.007889 | 0.301868 2190.156i27_
C3540 | Mean val 192.6 | 0.944097 | 0.501029 | 2.539086 | 1.26 | 0.999635 | 0.918804 1088.0353T
Std devi 49.6 | 0.014384 | 0.007406 | 0.333889 | 0.92 | 0.000267 o.omﬁlz 527.265156;
C432 | Mean val 75.7 | 0.849802 | 0.512127 | 0.053934 | 1.13 | 0.997758 0.960-2.51 226.60135;-
Std devi 15.3 | 0.030322 | 0.002969 | 0.000471 | 0.28 | 0.000550 | 0.031209 33.905295
C499 | Mean val 195.4 | 0.730812 | 0.522151 | 0.171822 | 1.02 | 0.998595 | 0.995592 | 3108.436746
Std devi 13.6 | 0.018786 | 0.003237 | 0.002995 | 0.02 | 0.000028 ‘9004430 231.614127
C5315 | Mean val 55.2 | 0.989711 | 0.500968 | 1.334772 | 1.25 | 0.999767 _3.940847 436.006780
Std devi 33.4 | 0.006226 | 0.033914 | 0.103687 | 0.42 | 0.000078 | 0.032890 | 271.176601
C6288 | Mean val 262.4 | 0.966114 | 0.510911 | 29.837088 | 1.26 | 0.999837 | 0.952493 | 2325.593572
Std devi 85.5 | 0.011035 0.021374 2.789874 __0_.41 0.000052 | 0.009605 | 968.234382
C7552 | Mean val 360.9 | 0.952231 0.4;8974 3.316932 -_6;76 0.999105 | 0.835561 | 2891.513983
Std devi 14.0 | 0.001854 | 0.000228 | 0.356957 | 32.20 | 0.004262 | 0.304235 40.346103
C880 | Mean val 30.0 | 0.969419 | 0.529421 | 0.059837 | 1.12 | 0.998860 | 0.961882 93.213357
Std devi 13.5 | 0.013700 | 0.097049 | 0.005893 | 0.33 | 0.000333 | 0.027334 19.927223

Table 4.8: Experiment Results: at Vector Size = 100 Blocks

89

cireuit No.PO FE1 | Resl| Timl| Nag FE2 Res2 Tim?2
C17 | Meaaval | 5.9 | 0.731405 | 0.533700 | 0.003486 | 1.00 | 0.954545 | 1.000000 | 14.134148
Std devi 1.0 | 0.046332 | 0.007733 | 0.000039 | 0.00 | 0.000000 | 0.000000 | 5.683369
C1908 | Mean val | 161.0 | 0.914950 | 0.498443 | 1404200 | 2.05 | 0.998917 | 0.825423 | 93.939499
Std devi 0.0 | 0.000000 | 0.000000 | 0.000000 | 1.94 | 0.001025 | 0.000000 | 0.000000
C2670 | Mean val | 307.9 | 0.882087 | 0.501401 | 0.807735 | 7.90 | 0.996974 | 0.660003 | 5458.815100
Std devi | 261.9 | 0.100319 | 0.004141 | 0.349808 | 6.06 | 0.002320 | 0.273329 | 4542.025294
C3540 | Mean val | 192.6 | 0.944007 | 0.501020 | 2.583084 | 1.26 | 0.999635 | 0.918804 | 2364.809385
Stddevi | 49.6 | 0.014384 | 0.007406 | 0300177 | 0.92 | 0.000267 | 0.022812 | 1183.518810
C432 | Meanval | 75.7 | 0.849802 | 0.512127 | 0.055431 | 1.13 | 0.897758 | 0.960251 | 514.060115
Stddevi | 15.3 | 0.030322 | 0.002969 | 0.000255 | 0.28 | 0.000550 | 0.031209 | 76.710864
CA%9 | Meanval | 195.4 | 0.730812 | 0.522151 | 0.178925 | 1.02 | 0.998595 | 0.995592 | 6831.190783
Std devi | 13.6 | 0.018786 | 0.003237 | 0.003507 | 0.02 | 0.000028 | 0.004430 | 509.161224
C5315 | Mean val | 55.2 | 0.989711 | 0.500968 | 1.336986 | 1.25 | 0.999767 | 0.944982 | 909.599185
Std devi | 33.4 | 0.006226 | 0.033914 | 0.103930 | 0.41 | 0.000075 | 0.039950 | 567.707326
C6288 | Mean val | 257.5 | 0.966743 | 0.510858 | 27.954675 | 1.16 | 0.999850 | 0.951586 | 359.155048
Stddevi | 837 | 0.011457 | 0.031367 | 3.151904 | 0.40 | 0.000052 | 0.009921 | 325.485275
C7552 | Mean val | 360.0 | 0.952231 | 0.498974 | 3.399714 | 5.16 | 0.999317 | 0.848371 | 6005.496838 |
Std devi | 14.0 | 0.001854 | 0.000228 | 0.382086 | 18.73 | 0.002478 | 0.296890 | 63.555649
C880 | Meanval | 300 | 0.969419 | 0.529421 | 0.060217 | 1.12 | 0.998860 | 0.961882 | 187.084758
Std devi | 13.5 | 0.013700 | 0.097049 | 0.005896 | 0.33 | 0.000333 | 0.027334 | 39.932952

Table 4.9: Experiment Results: at Vector Size = 200 Blocks

90

circuit No.PO FE1 Resl Tim-1 | Nsg FE2 Res2 Tim2
C17 | Mean val 59 | 0.731405 | 0.533700 | 0.004311 | 1.00 | 0.954545 | 1.000000 | 15.819340
Std devi 1.0 | 0.046332 | 0.007733 | 0.000087 | 0.00 | 0.000000 | 0.000000 6.232031
C1908 | Meanval | 46.0 | 0.975717 | 0.497522 | 1.170343 | 1.29 | 0.999316 | 0.919218 | 261.100891
Std devi 219 | 0.011584 | 0.001946 | 0.101115 | 0.46 | 0.000242 | 0.003007 | 125.383467
C2670 | Mean val | 289.7 | 0.889035 | 0.497437 | 0.764616 | 249.13 | 0.904585 | 0.588660 | 6034.480739
Stddevi | 126.3 | 0.048380 | 0.003373 | 0.131576 | 123.96 | 0.047476 | 0.193064 | 2578.342938
C3540 | Mean val | 154.8 | 0.955073 | 0.497475 | 2779782 | 1.19 | 0.999655 | 0.934192 | 1796.801760
Std devi 33.3 | 0.009677 | 0.004103 | 0.112361 | 0.94 | 0.000274 | 0.023102 | 146.174483 |
C432 | Meanval | 84.6 | 0.832064 | 0.509906 | 0.056007 | 1.19 | 0.997639 | 0.968242 | 683.457326
Std devi 31.3 | 0.062030 | 0.005218 | 0.000200 | 0.30 | 0.000604 | 0.024077 | 289.761357
C499 | Mean val | 196.1 | 0.729862 | 0.523331 | 0.179654 | 1.03 | 0.998582 | 0.988980 | 8147.404217
Std devi 12.9 | 0.017830 | 0.002051 | 0.002299 | 0.03 | 0.000042 | 0.011076 | 598.354840
C5315 | Mean val | 189 | 0.996468 | 0.505503 | 1316716 | 104 | 0.999806 | 0.986245 | 480.217113 |
Std devi 8.2 | 0.001530 | 0.003651 | 0.047601 | 0.20 | 0.000037 | 0.020152 | 234.944257
C6288 | Mean val | 344.0 | 0.955579 | 0.508798 | 33.011082 | 1.24 | 0.999840 | 0.953541 | 7850.700117
Std devi 65.3 | 0.008435 | 0.000331 | 5.913423 | 0.43 | 0.000055 | 0.001681 | 689.124612
C7552 | Mean val | 379.8 | 0.949730 | 0.498331 | 3.596253 [4.79 [0.998366 | 0.832931 | 8231.839510
Std devi 33.0 | 0.004368 | 0.000418 | 0.118743 | 16.38 | 0.002167 | 0.274776 | 386.788076
C880 | Meanval | 33.3 | 0.966130 | 0.512168 | 0.060524 | 1.13 | 0.998850 | 0.958757 | 275.255875
Std devi 12.2 | 0.012430 | 0.070052 | 0.003754 | 0.33 | 0.000333 | 0.020741 | 53.853788
Table 4.10: Experiment Results: at Vector Size = 256 Blocks

91

crcuit No.PU FEL ~Res] Tim-T Nsg “FEZ Res2 Tim2 |
[SII96 | Mean val 40.4] [0.500125 | 0.117078 | 10.52 | 0.991584 | 0.638678 | 0.739408 |
| Std devi 18.5] 0.012768 | U.U737854 | U.025230 | 12.25 | U.009802 | U.I76470 | U.22510L |
— SI238 | Mean val 76.5 | 0.980450 | 0.544043 | O0.I38041 | 9.30 | 0.993137 | 0.838173 | 0.625464
[Std devi T8.0 | U.0IIBA3 [0.I35472 | U.035833 | 9.26 | 0.000837 | U.204847 | U.316259 |
T S13207 | Mean val 451.2 | 0.967833 | U.503347 | 4.4B5I22 | 415.50 | 0.970378 [U.510800 | 179.388912 |
[S1423 | Mean val T0.8 | 0.992935 | 0.504880 | 0.287925 | 1.27 | 0.9991068 | 0.9116800 | 0.475551 |
| 3.2 | U.002085 | U.090I58 | U.042187 U.54 | U.000355 | U.U88398 | 0.116078 |
[81488 | Mean val B7.3 | U.543195 | U.504151 | 0.045058 | 2.80 | 0.99818D [0.771755 | 1.493503
[Std devi BI.3 | U.U33208 | U.U2I097 | U.UI4588 3.45 | U.002232 | U.T79371 0755777
[S1494 | Mean val 77.8 | 0.950070 | 0.514055 | 0.048938 | 3.31 | 0.097875 | 0.782814 | 1.311980 |
| Std devi 42.3 | U.027138 | 0.099820 | U.UIU862 222 | O.001426 | U.175880 | U.553523 |
[Std devi 34.8 | U.002I82 | U.UL7063 | 2.463643 | 38.77 | U.0024I1 | U.T2A950 | [1.198270 |
[~ S208 | Mean val 9T.7 | 0.581187 | 0.502271 | 0.007545 | 2.04 | 0.990685 | U.783321 | 0.853328 |
Stddevi | 28.0 | U.127870 | U.071652 | U.0RKB7G_ 2.70 | 0.012330 | 0.037768 | U.258813 |
[~ S27 'Mean val 9.4 | 0.707580 | 0507237 | 0.003758 | 1.14 | 0.964286 | 0.947114 | 0.125158 |
5.5 | U.171200 | U.U38479 | U.000032 U.38 | U.0III35 | U.U4B6AT | U.USU78S |
[~ 8208 Mean val 0.4] 0.936004 | U.500820 | O.0081B2 | 1.20 | 0.998250 | U.028564 | 0.252414 |
. | Std devi 7.3 | UUZ27T5 | U.086924 | U-U0U663 U7 | O.00I473 | U.OAT9A3 | U.092438 |
[8344 Mean val 17.5 | 0.052581] 0.502774 | 0.010436] 1.19 | 0.996801 | 0.933129 | 0.316783 |
| [Std devi 5.7 | U.015329 | U.008490 | U.U0IBIG U.39 | U.U0IU8U | U.UA670L | U.I02387 |
[s349 Mean val 15.5 | 0.056485 | 0.522945 | 0.010592 | 1.22 [0.998700 | 0.026553 | 0.272924 |
B.7 | U.0I7704 | U.IU U.00TZ8T U041 | U.00IU9T | U.USI387 | U.U97884 |
835932 | Mean B1.8 | 0.5998748 | 0.507962 | 1.574815 | 35.71 | 0.999137 | 0.5310890 | 486.078119 |
[Std devi 20.5 | U.000498 | U.0IB0B7 | U.207984 | 21.78 | U.000526 | 0.069288 | 19.671549 |
[8382 Mean val T1.2 | 0.973721 | 0.517138 | U.000524 | 1.29 | U.096975 | 0.908203 | 0.292287 |
[Std devi 4.7 | U.0T0999 | U.U3I23T | U.UOU00 U.53 | U.001258 | U.I0993T | U.I7I8S0 |
[838417 | Mean val BL.7 | 0.998678 | U.505275 | 12.369864 | 34.50 | 0.999118 | 0.568150 | 34.804143 |
[Std devi 27.1 | U.000895 | U.O7IL1d 3327115 24.78 | U.000635 | U.120659 | 17.936185 |
| Std devi_ TO0.0 | 0.002577 | U.005781 | 1.474001 | B84.95 | U.0U2190 | U.009674 | L11.726843 |
3380 Mean val 35.2 | 0.014171 | 0.507157 | O.000380 | 3.84] 0.000634 [0.794328 | 0.496852 |
evi 13.1 | U.031927 | U.015882 | U.00I087 | 5.99 | U.01462L | U.200478 | U.I31595 |
[5420 | Mean val 708.6 | U.543588 | U.510314 | 0.025203 | 42.12 | 0.907834 | 0.52258] | 4.089310 |
[Std devi_ 427 | 0092344 | U.099554 | U002 | 45.31 | U.TOLHAS | U.U970680 | U.8I5929 |
sddd Mean val | 18.7] 0.967087 | 0.500770 | 0.010342 | 1.55 | 0.996948 | 0.877684 | 0.307685]
‘ evi | 4.9 | U.009554 | U.0IT098 | U.000975 U-93 | U-U0I82T | U.IU8708 | U.ILT7YL |
[s510 Mean val 87.4 | 0.880567 | 0.500011 | 0.019455 | 11.33 | 0.979911 | 0.580700 | 0.895892 |
[Std devi_| 0.7 | U.US4502 | U.UI0747 | V. “13.72 | U.024334 | U.1a0474 | U.37924% |
8528 Mean val 14.2] 0.074868 | 0.511028 | O.011818 | 1.76 | 0.996887 [0.850129 | 0.281785 |
Std devi 6.0 | U.0I0557 | U.UA2808 | U.UOISU8 1.82 | U.003212 | U.148433
[~ 5378 | Mean val T28.0 | 0.976334 | 0.405438 | 0.739800 | 15.25 | 0.997130 | 0.569736 |
| [Std devi | 26.1 | U.004904 | U.UOIBG8 | U.071859 | 23.55 | U.004422 | 0.026390
[~ 8641 Mean val 17.8 | 0.973571 | [0.067374 | 3.58 | 0.994578 | U.668897 | 0.898388 |
-9 | U.010294 | U.OISUI0 | U.0ITISE 3.23 | U.004784 | U.USU64Y | U.528108 |
8713 K K [2.5 | 0.995097 | X
[~ 8820
[~ 8832
8838 0.502¢
89234 X [30158 |
229.7_| U.026092 | U.0006I6 | Z.U73148 | 229.52 | U.U25057 | U.UUAS37 | 20.BA5178 |
—Std devi 10.0 | U.009017 | U.023915 | O.006380 | 4.56 | U.004392 | U.163108 | U.334510 |

Table 4.11: Experiment Results: at Vector Size = 1 Block

92

arouit 0.PO FEIL I Resl Tim-T | Nsg FEZ 2] Res2 2
[SI108 | Mean val 204 | U.057664 | U.500125 | U.I17192 | 8.02 | 0.999584 | 0-711850 | 2.221853 |
evi I8.5 | 0.012768 | U.073782 | U.025260 10.77 | U.008620 | U.I8441T | U.561930 |
— S1238 | Mean val 8.5 | 0.080450 | 0.544943 | O0.I3BL73 | 6.29 | 0.995358 | U.717587 | 1.902233 |
evi | 18.0 | U.0II843 | U.I35472 | U.035822 B.00 | U.005905 | U.194%08 | U.085250 |
FSI3207 | Mean val | 451.2 | U.967833 | 0.503347 | 4.475142 | 225.04 | 0.983743 | 0.511886 | 582.470852 |
| Std devi_| 2098 | U.014954 | U.005082 | 1301030 | 206.80 | U.0I4743 | U.USGUBT | 273.304172 |
[SI432 | Mean val 0.8 | 0992935 | 0.504880 | 0.287494 | 1.18 | 0.999228 | 0931911 | I.520700
evi 3.2 1 0.002085 | U.090156 | U.UAZ621 | U.39 | U.0002550 | U.0GB339 | U.465548 |
[S1488 | Mean val B7.8 | U.043105 | U.504151 | 0.050336 | 1.41 [U0.999088 | 0.808817 | 4.681600 |
[Std devi 5.3 | U.033208 | U.02I087 | U.0I5254 U.43 | U.000278 | 0.077878
[S1494" [Mean val 77.8 | 0.950070 | 0.514055 | 0.047442 | 1.38] 0.999127 | 0.012235 | 4.029601 |
evi 273 [U027138 | U.099820 | U.0I0954 | U.40 | U.000256 | U.065754 | I.7UCAL3 |
[SI5850 | Mean val B7.9 | 0.096402 | 0.501545 | 13.22/878 | 47.58 | 0.997041 | U.591980 | 57.921164 |
[Std devi JA.8 | U.002182 | U.0L7083 | 2.487707 37.89 | 0.002357 | U.142191 | 35.480927 |
[5208 | Mean val OL.7 | 0.581187 | 0.502271 | 0.007698 | 1.10 | 0.994977 | 0.068038 | 2.513114 |
evi 28.0 | U.127870 | U.071852 | O.000707 | U.30 | U.001377 | U.UA6719 | U.7954%9 |
[527 | Mean val 9.4 | 0.707580 | 0.507237 | O0.003815 | 1.4 | 0.964288 | 0.947114 | 0.381541 |
5.5 | U.I71209 | U.038479 | U.000062 | U.38 | U.UILI38 | U.04664T | U.247447 |
[5208 | Mean val T0.4 | 0.936004 | 0.500820 | 0.008234 | 1.I8 | 0.996312 | 0.992337 | U.749791 |
Std devi 7.3 [0.U22715 | U.US6Y24 | U.000B5T | U.48 | 0.00I43T | U-U3BSEY | U.274888 |
[5344 | Mean val T7.8 | U.952581 | U.502774 | O0.010586 | 1.19 | 0.998801 | 0.033129 | 0.965103 |
evi 5.7 | U.015329 | U.0USA90 U.U0I645 0.39 | U.00I060 | U.U4B701 | U.313592 |
— S349 | Mean val_ 18.5 | 0.956465 | U.522945 | U.010727 | 1.22 | 0.998798 | 0.926553 | U.8206406 |
evi B.7 | V017704 | U.102848 | U.00I524" 0.4T | U.00109T | U.UBI387 | U.2971286 |
[S35932 | Mean val B1.8 | 0.998748 | 0.507962 | 1.600008 | 25.40] 0.9993584 | 0.555580 | I30.086583 |
evi 20.5_{ U.UU04YS | U.UIB067 | U.229I01 | 14.63 | U.000354 | U.U6I88A | 594075186 |
[5382 | Mean val TI.2 | 0973721 | 0.517138 | 0.009580 | 1.21 | 0.997158 | 0.026828 | U.875288 |
[Std devi 2.7 | U.0TUS9Y | U.03T23T | U.UIES3 UAT | U.U0USBT | U.TUOU6E | U.517888]|
T S38417 | Mean val SI.7 | U.098676 | U.5052/5 | 12.370538 | 91.79 | 0.999185 | 0.560942 | 105.763023 |
evi 27.1 | U.000695 | U.U7I114 3.327381 | 24.12 | U.000BI8 | U.I20275 | 54.267150 |
[538584 | Mean val T53.8 | 0.995261 | 0.500325 | 5.002058 | B83.32 | 0.997852 | 0.517357 | 042.720268 |
evi TOU.0 | 0.002577 | U.005781 | L.271293 | 88.85 | U.U02239 | U.U42042 | 390.521607 |
[5386 | Mean val 35.2 | U. R [0.000451 | 1.1 | 0.997171 | 0.050773 | 1.500052 |
3.1 | U.031927 | U.UI5882 U017 0.44 | U.00I0SL | U.U034597 | U.405652 |
[S420 | Mean val 308.8 | 0.543588 | 0.510314 | 0.025227 | 27.45 | 0.0309934 | 0.528923 | 9.020571 |
L evi 2.7 T V092342 | U.099554 | 0.002938 | 35.04 | 0.076683 | U.095771 | I.795554 |
[5444 | Mean val 16.7 | 0.967087 | 0.500779 | 0.010377 | 1.53 | 0.0060988 | 0.885691 | 0.923380 |
[Std devi 1.9 | U.000554 | U.0I1098 | O.000952 | U.93 | U.00I823 | U.II5910 »
[S510 | Mean val §7.4 | 0.830567 | O.500011 | 0.019526 | 1.32 | 0.997660 [0.006008 | 2.709104 |
@vi | 30.7 | U.054502 | U0I0747 | U.003437 T2 | 0.002122 | U.090762 | I.148281 |
[5526 | Mean val 14.2 | 0.074868 | U.511028 | O0.011795 | 1.15 | 0.097977 | 0.044215 | 0.787587 |
—Std devi 8.0] U.010557 | U.U42808 | U.001499 | 0.38 | 0U.000629 | U.047126 | U.IB8U86 |
— S5378 | Mean val | 126.0 | 0.976334 | U.405438 | 0.730858 | 2.93 | 0.999450 |
[S641 Mean val 17.8 | U. . [0.087118 | 2.06 | 0. B
| Std devi 8.9 | U.010294 | U.UIS0I0 U.0L103L T1.32 | U. X N
Std devi 1.9 | O.006712 | U.011450 | U. N X A X
— 5820 | Mean val 100.8 7 0. [0.502254 | U. - X . X
[Std devi 24.3 | 0.028579 | U.US034 | 0. X X X
[5832 | Mean val TI5.1 | 0.867713 | 0.505600 | 0. X X X
[Std devi 0.0 | 0.000000 | U.U0UOU0 | U.OGUUU0 | 73.52 | U.078802 | 0000000 0.
[59234 | Mean val 132.8 | 0.950870 | 0.491025 | 4.183123 | 298.38 | 0.068112 | U.501539 |
— S953 | Mean val WWWW—WWW%
Std devi T0.0 | U.009017 | U.U23915 | U.U006440 3.13 | 0.002829 | 0.152252 |

Table 4.12: Experiment Results: at Vector Size = 3 Blocks

93

3]
&
B
g
;
i
]
:

3
G
g.
E
x
:
3
5
N:

!
il
é
4
|

:
:
;
%
a
i

0
3|%3
%
.
i
)
i
N
i

14 fl i
;
it
|
i

V000496 | U.0T806 |

[Std devi 3.2 | U.002085 | U.000156 | U.042839 | U.39 | O.000255 | U.068339 | 1Z.297090 |
'Mean val 87.8 | 0.943195 | 0.504I5I | 0. [1.07 | 0.999308 | [148.814301 |
- otd devi 51.3 | U.033208 | U. U.UT4TT U.27 QOUL77 | U.025483 | 73.289751
'Mean val 77.8 | 0.950070] 0.514055 | 0.046623 | 1.07 | 0.999313 | 0.974197 | 132.158791 |
| Std devi 423 | 0.027138 | U.099820 | U.UI0782 [U.24 | O.000I53 | U.UI4740 | 55.920015 |
I Std devi 34.8 | 0.002182 | 0. z. —32.33 | V002011 | U.143152 TI33.028675 |
Mean val 9Y.7 | 0.581187 | 0.502271 | O0.007631 | 1.04 | 0.905251 | U.985123 | B5.175747 |
| Std devi 28.0 | U.127870 | U.U71652 | O.000692 | U.20 | U.000899 | U.050704 | 25.954356 |
‘Mean val 9.4 | 0.707589 | 0.507237 | 0.003781 1.14 | 0.984288 | 0.947114 |
[Std devt 5.5 | U.171209 | U.U38479 | U.000042 | U.36 | U.ULT138 | U.U46641 S.UIT79T
‘Mean val 20.4 | 0.996094 | U.509820 | U.008156 | 1.14 | 0.996437 | 0.945815 | 24.482782
FStd_devi 7.3 | U.022715 | U.086924 | U.00U653 | U.35 | U.CUI09U | U.03353% FUS0022 |
Mean val 17.8 | U.052581 | U.502774 | 0.01044Y | 1.19 | 0.99680L | 0.039189 | 31.323758 |
[Std devi 5.7 | 0.015329 | U.00BA90 | U.001825 | U.39 | O.00I080 | U.04B701 | 1U.I76U32 |
“Mean val 16.5 | 0.956465 | 0.522945 | U0.010600 | 1.22 | 0.998790 | U.026553 | 28.095428 |
—Std devi U.0L7704 | U.1C2848 | U.001524 U4 | U.00I09T | U.U81387 | 9.728708 |

0. 208378 |

[0.009568 |

g
?F%?‘ o
1 b i

'Mean val 0.973721 | 05171306 | [121 | 0.997158 | 0.926828 | 25.955908 |
evi U.UI0999 | U.031231 | U.K0U82L U.2T | U.00098T | U.I00088 | 17.2I519%8 |
Mean B1.7] 0.098678 | U.505275 | 12.657335 | 2.32 | 0.999940 | 0.765388 | 3540.240704 |
[Std devi Z7.1 | U.U0U6YS5 | U.O7ILId | 3.5I5851 | 1.99 | U.O0U0SI | U.075551 | 1822.848279 |
[Std devi_ | 100.0 | U.002577 | U.UUS/8L | 1.480544 070 | O.0000I8 | U.U32426 | IT768.58525T |
Mean val 35.2] U.0T4171 | 0.507157 | 0.009343 | 1.08 | 0.997415 | 0.974803 | 49.773458 |
 Std devi T3.T | U.031927 | U.UIS882 | U.00I0Z8 U.22 | U.000582 | U.UI3941 | 13.403352 |
Mean val 205.5 | 0.543588 | 0.510314 | 0.025209 | 5.20 | 0.604806 | 296.128230 |
[Std devi 1277 U052344 | U099554 | O.0U2931 | 11,22 | U.024544 | U.USUSAL [58.932283 |
‘Mean val 16.7 | 0.987087 | 0.500779 | 0.010330 | 1.53 | [0.885601 | 30.457289 |
—Std devi 3.9 | U.009554 | U.ULT098 | U.000990 U.93 | 0.001823 | U.115910 | 1L 152072 |
[0.019450 | K

Table 4.13: Experiment Results: at Vector Size = 100 Blocks

94

0500275 | 12.383359 |
0.UTIIIA 3.329150 | 1.99 |

144

;%

g

arcal 0. FEIL Resl ~Tim-1 N5 FEZ
[SII98 | Mean val 30.4 | 0.967664 | 0.500125 | 0.117148 | L.06]
[Std devi 18.5 | U.014768 | U.073784 | U.025213 | U.23 |
— S1238 | Mean val 76.5 | 0.080450 | 0.544943 | 0.140308 | 1.52 |
| Std devi 18.0 | U.0II843 | U.I135472 | U.034881 13T
[S13207 | Mean val 351.2 [0067833 | U.503347 | 4.481532 | 8.3L |
[Stddevi | 209.8 | U.UI3954) U.UUGUBZ | L.389790 18.31
—SI423 | Mean val | 10.5 | 0.992935 | U.504880 | 0.28006f | 1.18 | U.
‘ [Std devi 3.2 | U.U02085 | U.US0I56 | U.042342 U39 [U.
[81488 | Mean val 87.8 | U.943195 [U.504I5Y | 0.049502 | 1.07 [0.
| Std devi 51.3 | U.033208 | U.021097 | U.012718 0.27 X
[S14594 | Mean val 77.8 | 0.950070] 0.514955 | 0.047070 | 1.06 | 0.
[Std devi 723 | U.UZ7138"| U.US9820 | U.UI08U6) U.23 | U.UISS
'Mean val 57.9 | 0.996402 | U0.501545 | 13.165654 | 33.46 | .
[Std devi 348" | V002182 | U.UL7063 | 2.483513 31.7Z | U.001I973
[~ 5208 | Mean val §1.7 | 0.581187 | U.502271 | 0.007640 | 1.04]
Std devi 280 [U.I27870 | U.071852 | U.000677 | U.20 |
527 Mean val 9.4 | 0.707580 | 0.507237 | 0.003923 | L.14 |
| Std devi 5.5 | U.171209 | U.U35479 | U.U00068 | U.36 |
[8208 'Mean val 70.4 | 0.936094 [0.500820 | 0.008293 | .14 |
[Std devi 7.3 1 U.UZZ715 | U.U86922 | U.000653 | U.35 |
8344 Mean val_ T7.5 | U.952581 | U.502774 | 0.010803 | 1.19 |
. [Std devi_ 5.7 | U.015329 | U.008480 |~ G.UUI752 | U.39 |
[8349 | Mean val 18.5 | 0.956465 | 0.522945 | 0.010857 | 1.22 |
[Std devi 8.7 | U.017704 | U.1U2B848 | U.00I446 U.41
[835932 | Mean val B1.8 | 0.998748 | 0.507962 | 1.843054 | 4.73 |
8382 Mean val 11.2 | 0.973721 | 0.517138 | 0.000580 | I.21 |
- Std devi 4.7 | U.0I0999 | U.03T23T U.000797 | U.41
[838417 [2.32 |
838584 |
[~ 8388
[5420
[8444 |

TEEIE

0000000 | U.000000 14758
| 4.307266 | 178.14

O O00BTE | L. I02947 | I77.74
—0.00078 | L.00 |

0023915 | 0.008309 1 0.00

O.0UO00

Table 4.14: Experiment Results: at Vector Size = 200 Blocks

95

No.PO FET Resl Tim-T | Nsg FEZ Res2
Mean val 34.0 | 0.972816 | 0.504583 | 0. [1.00 | 0.999200 | 1.U00000 |
[Std devi 22.2 | U.0L7775 X U.01300T U.00 | 0. U.00U000
[5td devi 21.8 | U.015932 | U.U72049 | U.UIBIJS U.12 | 0.000104 | U.U53351 |

Mean val 13.1

Std devi 49

Mean val 414
evi A

'Mean val 83.1 | 0.959467 |
Std devi 219
‘Mean val T1.8 | 0.999265 |
.1 .
'Mean val 77.6 | U.645480 |
Std devi 39.5
Mean val 11.1
Std devi 1.9 |
Mean val 13.2 |
eVl [X:]
Mean val 15.3
| otd devi 8.3
‘Mean val 16.6

'FEEEEEEEEEETEEREERERERECELLEL

evi | 863
'Mean val 32.1 |
evi 19.0
Mean val 150.0 |
evi TI7.8
Mean val 19.8
Std devi 15
'Mean val 82.0 |
evi 4l.4]
Mean val 19.9]
el 5.8
'Mean val 138.2 |
Std devi 98.8
Mean val 11.4
evi 3.7
Mean val 12.0 |
evi 1.8
Mean val 134.0
Std devi 0.0
'Mean val 80.3 |
| Std devi 317
Mean val 443.0]
Std devi 0.0
'Mean val 3335 |
[—267.8 |

Table 4.15: Experiment Results: at Vector Size = 256 Blocks

96

Figure 4.2 is a graphical representation of the RES2 for ISCAS’85 circuits. The X
and Y axes are the test length and value of RES2 respectively. Each curve represents
the RES2 average value of 100 faults at different testing lengths. It can be generally
seen that the number of RES2 increases as the number of the test vectors increases.

But after the length is greater than 100 Blks, the RES does not increase much.

4.3.6 Resolution Comparison

In [3], some experiments were performed to investigate the final resolution of DAP-
PER. The circuits they checked were the ISCAS’85 benchmarks. Input vectors were
generated by LFSRs as indicated in [10] and initialized to random values. A test
length of 2048 was used. Based on the results of [3] and the redundancy number of
each ISCAS’85 circuits presented in [27], we can calculate the average FE for each of
their experimental circuit as shown in the sixth column in table 4.16. We also put our
FE (average of FE2) of corresponding circuits at same testing length (t = 8 Blocks,
~ equivalent to 2048 test vectors) in the seventh column in the same table.

Circuit | No. of | Missed | Redundant | un-distin | FE % | FE % FE %
Name | Faults | Faults Faults faults | DAPPER || h-DIAG | difference
C432 520 0 4 4 99.2308 || 99.7758 0.5450
C499 750 0 8 8 98.9333 || 99.8595 0.9262
C880 942 9 0 9 99.0446 || 99.7352 0.6906
C1908 | 1870 20 9 29 98.4492 || 99.8917 1.4400
C2670 | 2478 314 117 431 82.6069 || 92.3133 9.7100
| C3540 | 3291 19 137 156 95.2508 || 99.9626 4.7028
C5315 | 5291 1 59 60 98.8659 |i 99.8280 0.9621
C6288 | 7719 0 34 34 99.5500 || 99.9837 | 0.4247 |
C7552 | 7417 366 131 497 03.2992 || 98.3374 | 5.0382

Table 4.16: Resolution Comparision With DAPPER (At Testing Length = 8 Blocks)

It can be seen that our fault elimination rate is higher than that of DAPPER
by comparing the values in the FE columns in table 4.16. The last column in the
table is used to illustrate the advantages of the resolution provided by our system.
The numbers show how many percent of faults on average can be excluded more in

our system than in DAPPER. For example, for C2670, we can eliminate 9.71% faults

97

more than DAPPER can do, so that, for each specific diagnosis, we can on average
eliminate 9.71%%2478 = 240.6 faults more from the plausible fault, or undistinguished
fault set. Therefore, the number of undistinguished faults will be 431 -240 =191. This
means that h-DIAG can restrict final fault to a even smaller range than DAPPER
can do.

The fact that our final resolution is better than DAPPER is attributed to the

following reasons:

1. Our structural analysis has restricted the plausible faults in a smaller range than
DAPPER’s first stage’s diagnosis. The diagnosis in the second stage inherits

this previous advantage.

2. All signatures we analyzed in the second stage are complete signatures of a
failing flip-flops while in DAPPER, information about the failing flip-flops is
just part of the signatures.

Thus, if subsequent diagnostic methods are used for further diagnosis of a circuit,
h-DIAG requires less time and computer resources than DAPPER because of the
higher resolution h-DIAG has already obtained.

98

l + - L] A g L] ? L) *
c17. Res2 o—
T e -x —c1008. Reg2~—+-%
095 |-, c3540. Res2 -0 -
' ©432. Bas2»—0
- R a-- .
0.9 -:F- rain
¥ //,
'
085 H // -
;—»-—-—-o ————————— ———— ————_————— -
g o8H 4
I
g 075 & 4
|
§ oz il]
1
|
oes i
|
|
08k J
K
a]
055 J
0'5 3 L L. L L
()} 50 100 200 250
Testing Block, t
1 5% ¥ > —
©499. Res2. +="
oesfpa- - a- - - - oo AT T R e v
yen ¢7552. Res2 « -
“ 880, Res2 - -
09 | 7 J
P d .
085 //’ /
- P I L 7
7 R
S o8} / K4 i |
F I, ,
< P, ’
075 | 1y ’ J
! - ’
_I-..‘ 7
’
2 o7pl p .
’ / Vi
1 4
0685 . 4 o
|4 .
0.6 -,‘,(x .
P. ’,
ossff .’]
:/
05 I L 1 L 1
o 50 100 150 200 250
Testing Block, t

Figure 4.2: ISCAS’85 circuits resolution overview by estimation of RES2

99

Chapter 5

Software System Implementation

In this chapter, the implementation issues of h-DIAG will be discussed. We will
present the general introduction to the implementation, the implementation tool,

general flow chart of the system, main data structures and functions.

5.1 General Introduction to the Implementation

h-DIAG is a gate-level diagnostic system. It is a two-valued logic system, i.e., only two
logic values, logic 1 and logic 0, are used. h-DIAG is a collection of software modules
that perform simulation, creation of pseudorandomly generated responses, output
response compaction, diagnosis by circuit structural analysis, dynamic dictionary
construction and diagnosis by looking up the dictionary.

The h-DIAG software system was developed in a modular structure using C+-+.
The various modules of the system were implemented as C++ objects, or classes.
A C++ class is a collection of data and functions that operate on the data. The
classes used in h-DIAG can be divided into three categories: circuit-related classes,
diagnosis-related classes, and miscellaneous classes. Circuit-related classes define the
structures of the logic gates available for simulations, construct a representation of
the CUT, and control the way that logic information is passed between the gates dur-
ing simulations. Diagnosis-related classes deal with structural analysis, test pattern
generation, creating and injecting faults iuto the CUT, implementing the diagnos-
tic algorithms, producing the simulation, constructing the dynamic dictionary and
diagnostic outputs. The miscellaneous classes do not perform specific simulation or

100

diagnostic operations, but are used by other classes in h-DIAG.
A flowchart illustrating the functions performed by h-DIAG is given in figure 5.1.

5.2 Important Data Structures

The data structure in h-DIAG includes those used in main function, those used as
members of classes and those used inside the member functions of each class. In this

section, we will introduce the data structures in the main function and in each class.

5.2.1 Data Structures in Main function

The following data structures are used in main function:

1. previous_signature: An array of type Integer to keep the previous signatures
for each failing flip-flop.

2. affected_pri_out_nodes: An array that stores all the POs which are affected
by a fault.

3. vector and response: Both are Integer arrays storing the test vectors and

responses from simulator.
4. Arr: a long integer array used as a dynamic dictionary.

5. fault_no_in_the_set: An array that stores all the plausible faults after diag-
nosis in the first stage.

5.2.2 Data Structures in Classes
Some basic data structures in h-DIAG’ classes are presented in this section.
Data Structures in Gate Class

The Gate class represents a single logic gate in a circuit. It is an abstract class
serving as a base class from which subclasses representing the individual logic gates

are derived.

101

f_ﬁ
e

| Read in the parameters g
| -3
5
S Phra—— g
' Read in the circuit under test (g
| O
. Build the circuit @]
| Diagnositic Stage 1
| i
| Diagnostic Stage 2 — ?,,
!]
2
| Print diagnostic results
1
r_“—\

Stop |

Figure 5.1: General Flow Chart of h-DIAG

102

The member variables of the Gate class include the number of inputs, the output
Node, and an array of input Nodes. Each subclass derived from the base has a specific
FEvaluate() member function that implements the behavior of the respective logic gate.
All Gate objects in the circuit are stored in a global linked-list.

Figure 5.2 illustrates the basic structure of a Gate object.

Gate

InputNode] ———
InputNode2 ——

Output Node
InputNode3 ———

Input Noden ————

Figure 5.2: Gate Object
The following information is stored in every Gate object:

1. next: A pointer pointing to the next gate.
2. ninputs: The number of inputs to the gate.
3. in: The array of input Nodes.

4. out: The array of output Nodes.

The form of the gate list is shown in Figure 5.3
Data Structures in Node Class

The Node class abstracts the interconnections between logic gates in a digital circuit.
All Nodes, except for the primary input and primary output Nodes, must have a
source Gate and at least one fanout Gate. The primary input Nodes have no source
Gate, while the primary output Nodes have no fanout Gate. The member variables of
a Node object are: a unique numerical address, the Node name, the source Gate, the

number of fanout Gates, an array of Gates in the fanout, and an Int256 object (see

103

input Node

I

Output Node

last-gate

Figure 5.3: Gate List

below) which represents the 256 logic values of the Node when simulated in parallel.
Figure 5.4 illustrates the basic structure of Node objects.

To allow quick access to any specific Node, all Nodes within the circuit are stored in
a DynamicArray structure (see below), indexed by the Node address. This structure
grows in size as the circuit is being created and new Nodes are added while permitting

direct access to individual Nodes like a standard array.

Node \
Node | Output Gate
I
Node Node \ Output Gate
Node ™
Input Gate/ ‘ Output Gate
Primary foput Node [» Output Gate
Node\\
\ Output Gate
> Output Gate

Figure 5.4: Node Object

The following information is stored in every Node object:
1. next: A pointer pointing to the next gate.
2. ninputs: The number of inputs to the gate.

3. in: The array of input Nodes.

104

4. out: The array of output Nodes.

A dynamic array is used to specify which numbers (addresses) correspond to
existing Nodes in the circuit. The dynamic array contains pointers to all of the
Nodes. The pointers are indexed by the address of the Nodes. Since the addresses
are not necessarily consecutive, the dynamic array may contain gaps. If an address
does not actually have an associated Node, the corresponding index in NodeArray is
set to NULL. For example, if circuit Node number 3 in the ISCAS85 netlist represents
a fanout node and is not directly associated with a logic gate, the dynamic array will
contain a NULL value.

The basic connection of the node and the NodeArray is shown in Figure 5.5

i
° J NodeArray
—_
-0 @ O[e e e
R
B . =
it ——8— —&] & U
output -——@ @ [[]

Figure 5.5: Node List

Data Structures in Fault Class and FaultList Class

The Fault class encapsulates an individual stuck-at fault. The member variables
include: the type of stuck-at fault (input or output); the fault location in terms of a
Gate and Node object; and the stuck-at value (either logic 1 or logic 0). Faults can
be contained in FaultList objects, implemented as singly linked-lists.

The organization of the fault list can be shown in Figure 5.6.

Data Structures in Register Class

The Register class implements the MISR and LFSR objects used in the simulation.
Register is the base class, and the MISR and LFSR classes are derived from the

105

Gate Gate
: . t
| | ‘
. b b
Node+—+—9 -—r—e - e
; SN -
{ v L
i -—te
. [] s —
T
[
: |
i
[
i i
L
| Num of Faults |
S A

Figure 5.6: Fault-List Object

base class. To support large registers (more than 32 bits), the actual shift register is
implemented with g++ built-in Integer objects. The Integer class provides multiple
precision integer arithmetic, including logic operations. Thus, effectively any length
of shift register can be realized.

Data Structures in Sim Class

The Sim class is mainly composed of an pointer array of Register class.

5.3 Diagnostic Implementation

The first step in the diagnostic procedure is to read the circuit into the h-DIAG. Thus,
first of all we parse the circuit’s net-list file and create the appropriate Gate and Node
objects to represent the circuit. The net-list file is parsed one line at a time; the logic
gate is extracted and the respective Gate and Node objects are created. Extensive
use of regular expressions in the g++ built-in String class are used to parse each
circuit line. Error-checking is performed on each line read to ensure a valid circuit in
form of ISCASS5 circuit is created.

After the circuit has been read and the corresponding Node list and Gate list are
set up, the location of the failing flip-flops are read in. This leads to the start of the
diagnosis in structural analysis.

106

During this stage, each failing flip-flop fi is traced backward to the nodes corre-
sponding to the primary inputs and all of the nodes passed by are put into Nfi. NF
is initialized as Nf1. While all of the Nfi are obtained for the corresponding failing
flip-flops, an “AND” operation is performed between Nfi and NF, and the result is
put into NF. The nodes in the NF are those having paths to all of the failing flip-flops.
After this is done, each correct flip-flop is traced back and every node passed by is
checked to see if it belongs to NF. If it is, the node is eliminated from the NF. After
this procedure, all the nodes in the NF are the nodes which affect the failing flip-flops
but do not affect the correct flip-flops. Thus we get all of the plausible faulty nodes
of stage 1.

For all the faulty nodes, we created the stuck-at-1 and stuck-at-0 faults. All these
faults are put into a fault array. Then fault collapsing among these faults is completed
to get the final fault array where all of the faults inside have been collapsed.

The above steps are implemented using forward_tracing, backward_tracing, in-
side_checker, kick_out and some member functions of the Node class and Gate class.

Before the second stage starts, the signatures of all of the failing flip-flops are
read. Then the faults in the previous fault array are ejected one by one. For each
fault ejected, the 256-bit value of the node is set to the stuck-at value if the node is a
output of a gate, or a specific bit corresponding to the node is set to the specific value.
Test vectors are then created by calling the member function of LFSR, Next(). After
256 vectors are created, all of them are inserted to the 256-bit value of corresponding
PI nodes. The 256 bits are simulated in parallel from the PIs to the POs, gate by
gate. The final responses of the failing flip-flops are caught and compacted into the
corresponding signatures. This procedure is repeated untill all of the required test
vectors had been simulated. The final signatures are put into the fault dictionary and
at same time compared with those of the actual testing result.

After the above analysis is done, the faults having the same signatures as those
obtained from testing are the final plausible faults.

107

Chapter 6

Conclusion

As built-in self-testing (BIST) technique becomes widely applied in designing and
testing digital systems, the diagnosis in a BIST environment should attract more
attention from both academia and industry (2, 3, 5, 7, 12, 29, 32, 34].

One of the well known BIST architectures used for integrated circuit (IC) testing is
self-test using MISR /parallel SRSG' (STUMPS) [6]. STUMPS presents many internal
circuit observation points from which data is compacted into a final signature. The
application of test patterns and circuit response compaction occurs completely on-
chip. Only the final signature is extracted from the CUT where it can be compared
by the tester with an error-free reference signature. The original circuit responses are
thus normally unavailable for fault diagnosis.

Besides the location of the faulty scan-path(s) and/or flip-flops, there are two
other important problems to be solved in the diagnosis of a STUMPS structure [29)].
The first problem is to identify the scan flip-flops which capture erroneous circuit
responses of the combinational logic associated with the flip-flops. The second prob-
lem, or the further problem, is to locate the gate-level faults and failures which cause
the erroneous circuit responses. In [29] and [34], new buslt-in self-diagnosis (BISD)
schemes were proposed and proved very efficient in diagnosing the failing flip-flops for
STUMPS structures. With the BISD schemes, both the locations and corresponding
signatures of the failing flip-flops can be obtained.

This thesis, based on the new BISD schemes, presents a new hierarchical scheme

LThis is the acronym of Shift-Register Sequence Generator.

108

to diagnose the faulty gate (node) of the CUT. The main contributions of this thesis
are:

(1) Extended the diagnostic ability of the BISD systems proposed in [29, 34},
which can locate failing flip-flops, to the stage where faulty gate level nodes can be
located.

(2) Proposed and implemented a new and feasible gate-level structural diagnostic
method which only requires the location of the failing/correct flip-flops and which is
suitable to all the single faulty sites models.

(3) Proposed and implemented a structural analysis based hierarchical diagnostic
scheme.

(4) Proposed and implemented a new dynamic dictionary scheme suitable for
built-in self-test (BIST) / built-in self-diagnosis (BISD) environments, which greatly
reduces the length, the build-up time and the look-up time needed in the conventional
fault dictionaries.

(5) Based on the two resolution evaluation methods introduced, extensive exper-
iments were made for the new diagnostic system h-DIAG.

(6) A user friendly interface was designed and on-line user manual was constructed.

The following conclusions are reached from this thesis research:

1. As the first stage of the hierarchical system, the structural analysis algorithm
provides an effective initial diagnosis of a faulty circuit. The experiments on
ISCAS’85 benchmark circuits indicated that, for all of the circuits, h-DIAG can
remove more faults from the plausible fault set than corresponding diagnostic
stage of DAPPER (3] can do. In some cases, h-DIAG can even remove ap-
proximately 17% faults more than this stage of DAPPER. The smaller fault
set size leads to savings in the amount of CPU resources, time and space re-
quired in implementing subsequent diagnostic stages, such as circuit-level fault

simulation.

2. Closely related to the results of our structural analysis, the length of our dy-

namic dictionary is significantly reduced compared to conventional dictionaries.

109

In most cases, the length of the dynamic dictionary was just 1 - 3% of the
conventional length. In one specific case during our experiment, the length of
the dynamic dictionary was just 0.0024% of the conventional length (S38414
of ISCAS’89, group 2). This makes the space for the dictionary, the time to
construct and look-up the dictionary significantly reduced.

3. Generally speaking, the finsl recolution of h-DIAG depends on the test length.
The experiments also indicated that at the testing length of 100 block (25600
vectors), our resolution was very good such that the number of plausible faults
was very close to 1 in most of the cases (this means almost only one plausible
fault is left). When we prolong the test length, little change in resolution can be
obtained. The comparison to the final resolution of DAPPER at same testing
length 2048 vectors on ISCAS’85 circuits showed that our h-DIAG is more
powerful.

The result of this research suggests that our new diagnostic algorithms can be
a valuable part of a complete fault testing and diagnostic system. The following
problems have been identified for further investigation:

1. Due to the fact that state-of-the-art VLSI designs are closely held company
secrets and, as such, are unavailable for experimentation, all of the experiment
results that we obtained are based on the ISCAS benchmark circuits. We think
it would be quite helpful to exercise our diagnostic scheme on circuits with

industrial sizes and with practical faulty responses.

2. Investigate the application of the structural analysis to the other diagnostic
schemes to reduce the diagnostic cost. For example, stuck-at fault dictionaries
are used to diagnose CMOS bridging faults in [20]. The diagnostic method
uses information from a stuck-at fault dictionary, and the relationships between
stuck-at faults and low-resistance bridging faults, to perform a diagnosis. It
is claimed in [20] that for tests performed on benchmark circuits, over 92% of
bridging faults in the circuit can be diagnosed correctly.

110

Although this method produced a high diagnostic resolution, it has some draw-
backs. The most serious drawback is the time and memory required to construct
and store a complete stuck-at fault dictionary. For large circuits, the amount

of memory required may make the construction of a dictionary infeasible.

We think it will be interesting research to see how much the size of the dic-
tionary can be reduced by introducing our structural analysis scheme and the
corresponding dynamic dictionary scheme to [20].

111

Bibliography

[1] Miron Abramovici and Melvin A. Breuer. Multiple Fault Diagnosis in Combi-
national Circuits Based on an Effect-Caused Analysis IEEE Transactions on
Computers, 29(6):451-460, 1980.

[2] Miron Abramovici, Melvin A. Breuer and Arthurp D. Friedman. Digital System
Testing And Testable Design. IEEE, Inc., 1990.

[3] R. C. Aitken and V. K. Agarwal. A Diagnosis Method Using Pseudo-Random
Vectors Without Intermediate Signatures. Proc. ICCAD, pages 574-577, Nov.
1989.

[4] R. C. Aitken. A Hierarchical Method of Fault Diagnosis with Built-In Self-Test
Applications. PhD. Thesis, Dept. of Electrical Engineering, McGill University ,
April 1990.

[5] Y. Arzomanian and J. Waicukauski. Failure diagnosis in an LSSD Environment.
Proc. Int. Test Conf., pages 86-88, 1981.

[6] P.H. Bardell and W.H. McAnney. Self-Testing of Multichip Logic Modules. In-
ternational Test Conference, pages 200-203, 1982.

(7] P.H. Bardell, W.H. McAnney, and J. Savir. Buslt-In Test for VLSI: Pseudoran-
dom Techniques. John Wiley & Sons, 1987.

[8] V. Boppana and W. K. Fuchs. Fault dictionary compression by output sequence
removal. Proc. of International Conference on Computer-Aided Design, pages
576-579, 1994.

112

[9] F. Brglez and H. Fujiwara. A Neutral Netlist of 10 Combinational Benchmark
Circuits and a Target Translator in Fortran. In Proc. IEEE Int. Symposium
on Circuits and Systems, pages 663-698. Special Session on ATPG and Fault
Simulation, June 1985.

[10] F. Brglez, D Bryan and K Kozminski. Combinational Profiles of Sequential
Benchmark Circuits. In Proc. IEEE Int. Symposium on Circuits and Systems,
pages 1929-1934, 1989.

[11] H. Y. Chan, E. Manning and G. Metze. Fault Diagnosis of Digital System.
Wiley-Interscience, U.S.A, 1970.

[12] J.C. Chan and Abraham. A Study of faulty Signatures Using a Matrix Formu-
lation. Proc. Int. Test Conf., pages 553-561, 1990.

[13] J.C. Chan and B.F. Womack. A Study of Faulty Signatures for Diagnostics.
Proc. IEEFE Int. Symposium on Circuits and Systems , pages 2701-2704, 1990.

[14] Brian Chess. Diagnostic Test Pattern Generation and the Creation of Small
Fault Dictionaries. Master Thesis. Dept. of Electrical and Computer Engineering,
University of California, Santa Cruz, June, 1995.

[15] H. Cox and J. Rajski. A method of Fault Analysis for Test Generation and Fault
Diagnosis. IEEE Transactions on Computer-Aided Design, 7(7):813-873, 1988.

[16] T.R. Damarla, C.E. Stroud and A. Sathaye. Multiple Error Detection and Iden-
tification via Signature Analysis. J. Electronic Testing: Theory and Applications,
page 193-207, 7, 1995.

[17] S. Lin and D.J. Costello. Error Control Coding: Fundamentals and Applications.
Prentice-Hall, Inc. New Jersey, 1983.

[18] D. Mandelbaum. A Measure of Efficiency of Diagnostic Tests Upon Seguential
Logic. IEEE Trans. on Electronic Computer, page 630, Oct. 1964.

113

[19] W. H. McAnney and J. Savir. There is information in faulty signatures. Proc.
Int. Test Conf., pages 630-636, 1987.

[20] S. D. Millman, E. J. McCluskey and J. M. Acken. Diagnosing CMOS bridging
faults with stuck-at fault dictionaries. Proc. Int. Test Conf., pages 860-870,
1990.

[21] 1. Pomeranz and S. M. Reddy. On the Generation of Small Dictionaries for Fault
Location. Proc. of International Conference on Computer-Aided Design, pages
272-279, 1992.

[22] 1. Pomeranz and S. M. Reddy. On Dictionary-Based Fault Location in Digital
Logic Circuits. IEEE Transactions on Computers, pages 48-59, Vol. 46, NO. 1,
January 1997.

[23] J. Richman and K. R. Bowden. The Moden Fault Dictionary. Proc. Int. Test
Conf., pages 696-702, 1985.

[24] P. G. Ryan, S. Rawat and W. K Fuchs. Two-Stage Fault Location. Proc. Int.
Test Conf., pages 963-968, 1991.

[25] P. G. Ryan and W. K Fuchs. Dynamic Fault Dictionaries and Two-Stage Fault
Isolation. IEEE Transactions on VLSI Systems, page 176-180, Vol. 6, No. 1,
March, 1988.

[26] J. Savir and W.H. McAnney. Identification of Failling Tests with Cycling Regis-
ters. Proc. Int. Test Conf., pages 322-328, 1988.

[27] M. Schulz and E. Auth. Advanced Automation Test Pattern Generation and
Redundancy Identification techniques. Proc. International Symposium on Fauli-
Tolerant Computing, pages 30-35, Tokyo, Japan, June, 1988.

[28] C. E. Shannon. The mathematical Theory of Communication. Bell System Tech.
Journal, page 379 - 423, Vol 27, 1948.

114

[29] Xiaoling Sun. BISD-Scan: a Built-in Self-Diagnosis Scheme for Scan-Based VLSI
Circuits. Technical Report, Department of Electrical and Computer Engineering,
University of Alberta, 1996.

[30] A. R. Vishnubhotla. Simulation of Combinational Circuits for Fault Diagnosis.
Simulation, pages 235-245, 1993.

[31] Wes A. Tutak. Error Identification and Data Recovery in MISR-Based Data
Compaction. Master Thesis. Dept. of Electrical and Computer Engineering, Uni-
versity of Alberta, August 1997.

[32] John. Waicukauski and E. Lindbloom. Failure Diagnosis of Structured VLSI.
IEEE Design and Test of Computer, pages 49-60, 1989.

[33] Francis C. Wang. Digital Circuit Testing. Academic Press Inc. 1991.

[34] Yuejian Wu, Saman Adham. BIST Fault Diagnosis in Scan-Based VLSI Envi-

ronments. International Test Conference, 1996.

[35] K. Yamazaki and T. Yamada. SIFLAP-G: A Method of Diagnosing Gate-Level
Faults in Combinational Circuits. IEICE Trans. Inf. & Sytem. E76-D(7), pages
826-831, July, 1993.

115

Appendix A
Algorithm Flowcharts

116

A.1 Structural Analysis Algorithm Flowcharts

ey

This is
first failing flip-flop?

! No

f
I
!
|
|
|
' 1
i intersecting all result nodes from |
i ! backward_tracing withp_f_n !
’ : =>p_fn !

|
I

No

117

O

|
I Select a normal flip-flop
E
!
!

backward_tracing from it
|
L}
! all result nodes from
backward_tracing =>p_g_n

i Selectanode fromp_g n

|
|

1

!
Take the node away from p_f_nj

o

No All .the
normal flip-flops

processed?

L Yes

Return (p_f_n)

Figure A.1: Flowchart of the Structural Analysis Algorithm

118

The Node
had been traced?

Yes The Node

Yes

‘ Yes |
| i> # of fanout ReturnQ

No

, |
E ‘ L]

; ' Node =its i th fanout

Figure A.2: Flowchart of the Forwards Tracing Algorithm

119

The Node Yes
had been traced?
{ No
r ' T
| Node -> tracing backward set |
|
)
No Yes
]
The Node No
is an output of a gate? Yes
— #of fanout =1
Y ;
i !
‘ |
y e s Node = s fanin i
i | . ! 1 No
: i=1 | T l
—_— ‘ i Node = its fanin
v -
- i |
; i 1 | | backward_wracing0 |
. L 1
| | Node=itsithinputnode ! ; 5
i ; ! ! backward_tracing(Q
i g l
(|
| 1 1 1
§ A
; | backward_wacing) | |
' : i Return()
‘ |
| |
;——ﬁ |
e =
N
i i
i
No Yes 1

i> # of input nodes

Figure A.3: Flowchart of the Backwards Tracing Algorithm

120

A.2 Dynamic Dictionary Related Algorithm Flowcharts

=3

Select a fault from plausible
fault set (group)

r
'

i Choose current # of block and
1[create test patterns for this block
|
L
! Perform parallel simulation {
i and compact the responses |
! J

'
]

Are there any
blocks left?

i No
Y
-
| Build and look up the dictionary
l Retum (fault)

Figure A.4: Flowchart of Diagnosis Using Dynamic Dictionary

121

No The fault
o is in a plausible fault
|
i
|
| Yes
| Yes The fault
! ' isa PI?
. | Setstuck_at_valuetothe Pl | !
| ! No
| Selecta gate from the gate list
: |
‘ i
i Yes The fault is
; i on one input of
; | : 9
| Evaluate the gate based on the | the gate?
[faulty input i

No |

Yes
The fault is

on output of
the gate?

No

|

| l
! Fault free evaluation for the gate

| Settstuck_at value on the
output

Remrn ()

Figure A.5: Flowchart of Fault Simulation Used for the Dynamic Dictionary

122

Start

Select a failing flip-flop

Choose the scan-chain
it belongs to, ith chain

Select one response bit
which has value X

Create a input to MISR, all bits
are 0 except the i th bitis X

!

Compact the input to MISR

All 256 bits
processed ?

Retumn ()

Figure A.6: Flowchart of Signature Compaction

123

Start

Y

Seiext a railing flip-flop

T

Y

Insert its signature into the
Dictionary

Any failing flip-flop
not processed ?

Noy

Select a failing flip-flop

Any failing flip-flop
not processed ?

No

!

|
The fault corresponding to this
i new entry is a plausible fauit

'

‘ return ())

Figure A.7: Flowchart of Dictionary Construction and Look-up

124

Appendix B
h-DIAG User’s Guide

Yansong W. Xu
Department of Electrical and Computer Engineering, University of Alberta

NAME
h-DIAG - a hierarchical diagnostic system

SYNOPSIS
h-DIAG | options] [#of BLOCK] circuit.file

DESCRIPTION
h-DIAG can analyse all the combinational circuits described in the format of
ISCAS85 [9]. It implements the diagnostic scheme presented in the author’s
M.Sc. thesis. It is able to perform two-stage diagnosis. The first is diagnosis
by structural analysis while the second is diagnosis by constructing and looking
up a dynamic fault dictionary.

Essentially, the first stage diagnosis requires the name of the circuit and the
location (node number) of the failing flip-flops. For the second stage diagnosis,
the signatures of the failing flip-flops are required.

The following information can be produced by h-DIAG during a diagnostic

session.

- The number of faulty sites in each group.

125

- The number of faults in each common-sig-set(t)

- Time used for diagnosis

- The fault elimination rate (FE) of the diagnosis

- Total number of circuit Gates, Nodes, PIs and POs
- Total number of collapsed faults

- Help information

- Miscellaneous information

OPTIONS

-h help (inde) !

-a both structural analysis and simulation; otherwise only structural
analysis (test length is needed in the unit of block (256 patterns
in each block))

-8 instead of general resolution analysis, only diagnosis for a
specific case, indicated by the user what the failing POs are
and/or what are their signatures

-p produce signatures of failing POs for all plausible (a ejected)
faults (requ 2 -a -s)

-d diagnosis for specific failing POs and their signatures exclusive
with -p (requ -s)

-e eject a fault and get the POs affected by it (inde)

-tf show the total faults in the CUT after being collapsed

-fm shows the format of the input file (circuit) (inde)

-ct print out the netlist of the circuit being diagnosed

-1s list the number of faults in each set 3 (requ -a)

-lg list the number of the sites in each group

-dd shows core of current dynamic dictionary

-pn print the last polynomial being used as prpg (last LFSR)

-pm show the polynomial being used as MISR

-Pg print all the test patterns created by last LFSR

126

-t1

-t2

-el

-e2

-G

-cN

-cO

Note:

print the time used for the structural analysis (requ -d -s)

print the time used for the second stage diagnosis (requ -d -s -a)
print the diagnostic resolution reflected by fault elimination rate

of the stage 1

print the diagnostic resolution reflected by fault elimination rate

of the stage 2

number of LFSRs used (256 bits < — > one LFSR, except last one)
print the number of circuit Gates

print the number of circuit Nodes

print the number of circuit primary Inputs

print the number of circuit primary Outputs

This is an independent parameter.
Other parameters are required.

Inside this set, all faults have same signatures.

127

Appendix C

The Comparison of Dictionary
Looking-up Time

In this appendix, we present the time used in looking up the conventional dictionary
and dynamic dictionary. The experiments are performed on all the ISCAS benchmark
circuits. In each figure, the X represents 10 groups we randomly selected while the
Y represents the time needed to find the last fault of the group. With a conventional
dictionary, we assume that all the faults of group i+1 is just put after the faults of

group 4. The time unit is the time used to compare one entry of the dictionaries.

128

7000 T T T v T T — v
Cmumnidh-q:_
8000 | R
_. 5000
! ool , !
:
Bl . - 1
é 2000 |
1000 | -
— - -
0 . - N - : L S
0 1 2 4 5 [7 8 9
- Fauit Groups, c1355
50 ' P

Time (unit: tirne for one entry)
g

w0k . J
- e —————
—— -—/\"v'/ A\’___/_ T
0 " i . " L — .
] 1 2 7 8 9

4 H
Fault Groups, c17

Figure C.1: Time: Comparison With Conventional Dictionary

129

HERREEE

Time (unit: time for one entry)

1500 1
1000 - - * 1
- ’ ’ \ SN
500 - h / b
/’ , \\\ /
0 s . " Y
[} 1 2 3 5 [7 8 9
Fault Groups, ¢1908
700 ~— T + T T
Dynamic Dictionary «+—
Complete Dictionary - -
600 ” - -
E 500 4
§ w}f ! 1
;
§ 300 [/,” \
E L
100 |- ! .
0 ""/t\\n;;". . N , S .
Q 1 2 3 4 S (] 7 8 9
Fault Groups, 2670

Figure C.2: Time: Comparison With Conventional Dictionary

130

1400 T T T — v T - ™
1200 + 4
__ 1000 | <
P ool ,]
:
i
P .
20| / - 3
// \ - - \\’\«/’/
0L - . . . - — - "
0 1 2 4] 7 8 9
Fault Groups, c3540
800 T T T T - ™ —
s | . .

Time (unit: tvne for one entry)
g

100 - LN
G T - -—
-— T~
\‘
° . e . P i L i \“l
(1] 1 2 4 H [7 8 9
Fault Groups, cA32

Figure C.3: Time: Comparison With Conventional Dictionary

131

1400 T T T T y T T T

1200 |- L

§

Time (unit: time for one entry)

400 +
zm;———- ————y > - 3
N, e \\ -
0 L - s i . = .
0 1 H 3 4 s (] 7 8 -]
Fault Groups, c499
300 T T ~ T T 2 -
Dynamic Dictionsry o
Compiets Dictionary -
250 |

Time (uni: me for one eniry)
]

S0+ A
- .
V;/’ Tl g -
0 " i n Y- —_ a i
0 1 2 3 4 5 (] 7 8]
Fault Groups, c5315

Figure C.4: Time: Comparison With Conventional Dictionary

132

1800 T v T - ™ T T T

Complete Dictionary
1600
’
1400
E 1200 + .
L
g 1000 |- 4
3
% m |
£ wor
400 | . 1
o - =
o -
200 b ';// PN - 4
/ -
0 L L " —_ " . s
0 1 2 3 4 5 7 8]
Fault Groups, ¢8288
600 T T T T T T
Oynamic Dictionsry +—
Complets Dictionary e
500 + - - R
3
-
£ wp
100 - N 4
__J// T —— - -
- — —
o i - i - x
0 1 2 4 L [14 8 9
Fault Groups, 432

Figure C.5: Time: Comparison With Conventional Dictionary

133

Time (unit: time for one entry)
g

L. ST TN
¥ \‘\ . N
o de L ~ e A Ao il A
Q 1 2 4 s 7 9
Fault Groups, ¢7552
180 T T —r — T T T
Dynamic Dictionary <+
Compiets Dictionary ~
160 |
140 |+ : R

Time (unit: time for one entry)
g

60 |
. a
40 LN
20} e]
e .

0 e ; . N N -~ “ .

0 1 2 3 4 s [7 8]

Feult Groups, c880

Figure C.6: Time: Comparison With Conventional Dictionary

134

300 T T T T T T
DOynamic Dictionary -
250 p
F oo} .]
£
§
g
é 100 | .)
0} AN TN
i \ a .
o S s \‘v : L‘ " L
Q 1 2 3 4 S 7 8 9
Fauit Groups, 31196
120 + - T T T
Compiete Dictionary -
100
P
§
P -
i) < »
g owr
a
20+
0 —2:/1 L < T i Y i
[} 1 2 3 4 $ [] 7 8 9
Fault Groups, $1238

Figure C.7: Time: Comparison With Conventional Dictionary

135

Time (unit: time for one entry)
g

200 ;
|
100 / | b
o J S s et SIS
(] 1 2 3 4 5 (] 7 8 9
Feult Groups, $13207
100 ~ - T T v T —
DOynamic Dictionary «+—
%l Complets Dictionary - |
80

Time (unit: time for one entry)
g

40 .
30k . J
20
. /‘,,\7 _
1w}l / - Py - -— 7
0 / .) L
0 1 2 3 4 S 7 8 1]
Fauit Groups, 51423

Figure C.8: Time: Comparison With Conventional Dictionary

136

300 T T - T T T T T
Dynamic Dictionary ~—-
Compiete Dictionery -
20 | o 1
i |
§ o ,]
i
E 100 ‘\ p
I v
rl
50 4
- / -
/ ~
0 " N c T N
0 1 2 4 5 7 8 9
Feult Groups, 51488
300 v - - T — v
Oynamic Dictionary <—
Compiete Dictionary -
250 + -
= :
r
3
g 150
-
s
£ oot N
\
50 + B . c\\ 4
0 b . A H L
0 1 2 4 s [} 7 8 9
Fauit Groups, 1494

Figure C.9: Time: Comparison With Conventional Dictionary

137

150 h

Time (unit: time for one entry)
H

- /
50 + . / J
- /
. - ;
—~ \t——{
° L " . " L
/] 1 2 3 4] [} 7 8 9
Fault Groups, 515850
500 - T - v
Dynamic Dictionary +—
Compiste Dichonary -
450 N <
400 ~
P
g 300 +
2]
P
i 200 . *
Pl .
1@"»—‘——‘\ - - 4
S0 \ I 1
N\
N\ .
° L N - " = L —
[} 1 2 3 4 5 [] 7 8 9
Fault Groups, 5208

Figure C.10: Time: Comparison With Conventional Dictionary

138

100 v v T v y - T v
Dynamic Dictionary -~—
%0l Complete Dictionmry- —— - |
- T+ 4
3
E
! . .
£ o«
é 0k -~ 4
m I~ -
3 ——— —_———————
10+ 4
0 N . . g . .
] 1 2 3 4 5 8 7 8]
Fault Groups, 527
140 T T T * v v
Dynamic Dictionery t—
120 4
. or
8 wf
!
-]
2 L
Eoal
20} * ;
. N\
0 . n N . ‘m " A o«
0 1 2 3 4 S [] 7 8 9
Fault Groups, 3298

Figure C.11: Time: Comparison With Conventional Dictionary

139

140 T T T - . — i '

120 .A<

-
8
T
"

Time (unit: tma for one eniry)

)]
b
w0 |
20 . N |
-“W-. o ‘ ’) .____/ -
’/ h //\'//
._/ .
0) ! l l
0 1 2 3 4 s . > - |
Faut Groups, 3344
120 v . _ . , |
Dynamic Dictionary +—
Complete Dictionary -
100 | |
oo |
: - .
: o .
o« |
e R
20} .) |
. \\ V)
/ e \\ . Y‘
ok = Y .) ~) - .
o 1 2 3 4 s . . - I
Fault Groups. 3349

Figure C.12: Time: Comparison With Conventional Dictionary

140

300 T T T T T T T T
P
250 | :
% 200 .]
g
3 .
5 150 - . b
£ .
ol yd AN
Ll -
0 T/‘L\\\- - . . e e
0 1 2 3 4 [7 8 9
Fault Groups, 535632
90 - v T T s - T
Complets Dictionery hey
80| IR
704 4

Time (unit: ime for one entry)
8

0+ .
2t o !
g '\‘“\, ’ - - .]
o Sy

0 1 2 3 s 7 8 9

4 S
Fault Groups, 8382

Figure C.13: Time: Comparison With Conventional Dictionary

141

250 T — v T T T T T
Dynamic Dictionary ~—
Complete Dictionary -
200 - h
£ |
g 150 b
.E K
g 100 . 4
5 'l a
50 - 4
- \\ /70
o "\‘;—A — i i A T/
(1] 1 2 3 4 5 7 8 9
Fault Groups, 838417
800 . T T T T
Oynamic Dictionary <—
Complete Dictionery -
700 -
600 - 9

Time (unit: tme for one entry)
8

300 4
*
200 + p
100 + .. E 4
° »\/LF‘ e, \' o ke \T——’——”
[1 2 3 4 -3 [} 7 8]
Fault Groups, 538584

Figure C.14: Time: Comparison With Conventional Dictionary

142

160 4

10+ e .

Time (unit: tme for one entry)
8

40 -\ B . //\\ - 4
N ,/ ‘\ e \\ -
20 / N 7 N 4
’ N g
0 '] A [t / I " 1 L V//
0 1 2 4 s 8 7 8]
Fault Groups, 5398
1200 T —_— - T - T T
Dynamic Dictionary
Complete Dictionary -~

1000 1

Time (unit: time for one sntry)
8

[} 14 8 9

o al i i i e
4 5
Fault Groups, 3420

Figure C.15: Time: Comparison With Conventional Dictionary

143

n

140

120

I
8
b4

2

(Anue 0uo o) Bw yun) Bl

4

Fault Groups, s444

(Anue ouo s0y By IN) Buny

200
150
00

4

Feult Groups, 8510

144

Time (unit: time for one entry)
-]

0 " . L s L "
0 1 2 3 4 5 [7 8 9
Fault Groups, 8526
100 v - T T — 2
------ Oynemic Dictiorary
Compiete Dictionary -
800 | 4
%00
§ wl} !
E
§ ‘
£l
e
100 ¢ yau \
N\,
S AN
‘w’ 4
o I s A 'S A - ;- e
¢ A} 2 3 4 5 [7 8 9
Fault Groups, 85378

Figure C.16: Time: Comparison With Conventional Dictionary

145

140 T T T — T T T T
Dynamic Dictionary ~—
Complete Dictionary -
120 E
100 - 4
§ wf il 1
E
P 80 b . 4
s .
£ .l |
-
; A
27 ’ - . ,/‘\"‘ — e
/ - — ~—
0 . s . N " . L L
0 1 2 4 5 7 8]
Fault Groups, 8641
140 T T T T T T T T
Dynamic Dictionary +—
Compilete Dictionery -
120 + . 4
% 100 1
8 wf]
E
:E 80| . p
E o |
2 /\‘\ - 1
/"// o ~ — e \\\\‘./4 N -
Yy ———¢
0 . L i . N "
'] 1 2 7 8 9

4 S
Fault Groups, 3713

Figure C.17: Time: Comparison With Conventional Dictionary

146

4

Fault Groups, 8820

g8 § 8
(Anue 0uo 20} SR :hun) eust

e

(Ao 0U0 204 BwW Jun) ouny

Fauh Groups, 3832

4

147

-+ Compiete -—

Time (unit: tme for one entry)
1

2000 +
g 1500 e o T
!
§ o |
[RN g - ‘\\\ .
0 i i - i \T’/L\/"’-‘x
0 1 2 3 F.:t 323‘ [} 7 8]

Figure C.18: Time: Comparison With Conventional Dictionary

148

140 T T T T 2 T T

120 | - -
. wof ! B 1
£
8 wf :
B
g
i 9 v
A

- g L’ V\'\
0 :‘ — . . \
‘,’/ d . -
s “ .
L X

0 1 2

:

0

4 5
Fault Groups, 5953

Figure C.19: Time: Comparison With Conventional Dictionary

149

Appendix D

Experiment on ISCAS 85 With
Testing Length 64 K

In this appendix, we present the detailed diagnostic results for ISCAS’85 benchmark
circuits at the testing length = 64 K (256 blocks). 100 randomly ejected single stuck-

at faults are used to collect corresponding information.

Ele: element number

Inp: input order of the node to the element!

SA: stuck-at value

N.PO: number of nodes affecting the same POs as the diagnosed fault
FE1: fault elimination rate for stage 1

Resl_1: estimation for RES1

Time.Stru: time used for structural analysis

N.Sq: number of the faults having same signatures as the diagnosed fault
Resl 2: estimation for RES2

Time, Furt: time used for building and looking up the fault dictionary
FE2: fault elimination rate for stage 2

1.1 means that the node is just the output of the element itself.

150

N
ETe] —T__‘n [R.PO FET | T,
o . A : —U-00AI0Y 0
- - T ; U ORASOT T
77T A A —0-00R30T T
T A -E7EX0S | 0.00430T T
-] UITIT U-E78803 [U.00A30T" T
U T S T8RO] U.00K30T" 0
s 88T SEATOTT | ORI
- [X B !
U881 KRTIB
U.881
0 U85
< 0.8818T
U.BBIBT
R 81
; s U:BETET
K 2 X 818
- OTTITIT]
10 - 0.
- A
3 0.
_T' 3 ST &T
T OTTITIT]
1] Meanwl | 5.0 [0.731405]
T Sid devs | 1. U088 TT

Table D.1: Results for Benchmark C17

151

CIIT2A0
ST740
31730
31730
ST730
31240

SISTI0
-I3T730
TITI30
31730
ITIR0
ITIT
IR0
31230
31740
3TIA0
~TT2A0
-TITIXT
1310
874820
.UTA8I0
.UTABI0
.U7A830_
.UTBI0
.U738I0
. B7A820
974820
BYLGY)
BYLCYON
KYLY
RYLUYY

FRETT

!‘.
557
T8
[IRUE
| J8U8"
8085
[INUS
[TI8T
[TI8R07
-y
[818
[TUBY
-l
st
[1731
| IS8S
—T32T
1327
1231
— T840
| 1840
mee
[T507
1807
myris
1782
1812

T79T
[TT7T8T
[~T718
[~ I7IR
[T T8
[TUSY
mtie
meis
o
my
my
[TIR8Y
7883
[TIREY
Y
7863
v
Yy
WYy
[TIRTY
[TIEBY
[IEBY

X790
[I880 | O
[TI880
[TIB7Y
[I88T

[7853

[35T

[~ 35X
my

TEIR

—I82T

152

Results for Benchmark C3315

-
-

Table D.2

Std devi |

=1
=1

il

Results for Benchmark C2670

Table D.3

153

[O.UTTTON | 185150088 |

FEZ _ RealZ | Tim Furt

S GOI7I0 | U.9TT 208 | TEST 350085 |

BRSO e .
BUIEB0

[T
| Y
TII9

Results for Benchmark C3540

Table D.4

154

LLLLLLL

e
.mrr mwmwrmmwm
S esau didad uadH Sy e S A A A

Results for Benchmark C432

-
-

Table D.5

155

[308354540 |

BIOAT_
V]

- TBT0AT
TBIUAZ
- TBTORZ
BIUXT
RUIVLY

REICIVE
BV

- IRIGAT
TORZ
TURZ
TOXZ

181
211

|;'|"||'.

3
Y33
rr—

-
N
RRRE 13131313] mnmm SEREREEEERRRRE F
: : EEREEGE SEEEEEEER v

[—I8K
|80
318
[77%
A
| 34
T80
3%
[7RT
R
A
08
maty
187
[783
138
41%

i

Results for Benchmark C499
156

-
-

Table D.6

e
sl
A
e
B
m. shhbhbiliisliaisiskitkickick kil lalam i f

R

Results for Benchmark C5315

-
-

Table D.7

157

P,

(1%

Raall]

—PET

€an X
[Std devi 833

5

Results for Benchmark C6288

Table D.8

158

F.

Real 1

rel

PO

.ﬁuz

Results for Benchmark C7552

-
-

Table D.9

159

Results for Benchmark C880
160

Table D.10

LI e
e
e .mm_.
i :
W
e
W e
Kwrmwmmmmﬁmmwmrﬁ ARRRARRRRRRRRRARARRRRRRARARARARRRARRARRRAARNAARARARAARRAMMENDSOSURRAROARSSEEIIS,
mmmwmmwwm%wwmwmwﬁmwmﬁmw%_ mwmmwmmmwmmwww %ﬁ ﬁm_m_mw_,.%mww%mmvwwwmﬁwﬁ%ﬁWw

Appendix E

Experiment on ISCAS 89 With
Testing Length 64 K

In this appendix, we present the detailed diagnostic results for ISCAS'89 benchmark
circuits at the testing length = 64 K (256 blocks). 100 randomly ejected single stuck-

at faults are used to collect corresponding information.

Ele: element number

Inp: input order of the node to the element!

SA: stuck-at value

N.PO: number of nodes affecting the same POs as the diagnosed fault
FEL: fault elimination rate for stage 1

Resl_1: estimation for RES1

Time.Stru: time used for structural analysis

N.Sg: number of the faults having same signatures as the diagnosed fault
Resl 2 estimation for RES2

Time, Furt: time used for building and looking up the fault dictionary
FE2: fault elimination rate for stage 2

L_1 means that the node is just the output of the element itself.

161

bt

2

S
[387
3BT
T3
[TOXS
[TORE
me
[TTORS
[~ 89X
804
|~ 513
313
[B4
[T TORE
1A%
I8
[855
[usy
[TOAS
-,
[907
873
873
[8us
B8
BTT
808
[H0Y
[189
789
T8y
[718
718
8%
38X
-l
Y
8%
T
801
-y
487
18T
| SB7,
38T
[X8T
[587
{785
| 765
[788
T8y
[T85
353
53
148
mly
[TI5S
8BTS
—BI0
[—TY
Ty
BI0
-
[B
808
[708
— 708
| BOX
[T
[T
[1148
798
118
[T
YLy
YL

Results for Benchmark S1196
162

.

Table E.1

noooooddd i nogLonan e ngooo

I
s A A AR AR ANA AT AR AR AN mmmﬁm_

1

=

[—T85

iy

i

)

31T
A1

163

Results for Benchmark S1238

Table E.2

Y63 | 1172109985 |
Y63 | TITL.I0%EE |
—TT77.T09085]
[1BI5.03904]
TR0 DIG0AT]
FTE30.DIRAT |
1630530541 |
—TE30.0300A]
1830 B30T
WUSCAR Ve
TEI9. DI04
T8V D300AT
1630 DS00T]
WU
WMUGA Y.
WO e,

[0.708824_| T1I8. SZR5AE |
[O.T14337 | 28787579 |

A
: . i
Bl s
e
A s
3 2bbpbbbp bk bapEbRRERRED M_Tu
_W i

s

Results for Benchmark S13207

.

Table E.3

164

EEREEREE

LT e
Sl e e
aE e o

i
SN e e S i
S
s B e e
m NARARARRARAARAARANAARRNAA
ﬂmmm_w%m#w%%m%_w_Twmwm_mmmmwwmwmw_mwmmﬁmmmﬁWWW%W%_%% _%%wmmmv%

Results for Benchmark S1423
165

.

Table E.4

THEUEU]
o
~IREUED |
TIERUED]
“SRURD]
;

o

Ele
mayi
vy
[1258
[T078
[TOBS
| 1329

TIT
138
mE)
-
1378
[TIBT
[TI8T
| UBY
[T UBET
U8
-y
[TTABI
187
—TI08
[TA30
1079
[TIOY
.Y
)
[T8
LY
Y]
[TT3A7
myi
[1227
[Y135
[o3y
-
1430
1107
[TTT0Z
[T237
[TI53
YOG
10
[1308
[1I7T
-l
)
1330
[TI7Y
[TTORS
[T TIBE

mui
[TI75~
[1137
-y
137
|08
il
1380
| T018
1018
[1183
[88T
654
[TTORE”
mxw
)
[1138
o
X4
me
631
TA78
[TABE

166

Results for Benchmark S1488

.
.

Table E.5

FEL
s
CEEAXT
UREAXT
DREAXT
R Yd
UBEAAT
USEIST]

PO
18

18

18

- —
- -
5
-
L —
BE—
-
5
B8
-
g3
58

5

)

T8
3
w5
58]
58|
)
-

Bl.
1337
[TI80
[TI8Y
[T T388
[TI58
| TI58
may.
1273
[535
[0
1338
[0
|y

TT70
883
[1A10
[1379
mu)y
L)
MY LS
" TIA3
BT
[TTUR
1055
1338
[T78Y
[836
[T TT37
[T
[12687
[TI08
[TI08
murC
Ny
| 1763
[IOTE
0TV
mysy
.
1328
Ol
B8
70T

187
XYLy
[ISTS
YS90
[Ty
[1333
[TORE™
[CTI08
Ly
[I817
1397
[TIBE
[T315

[738
o
[T338

[TIU
myay)

TBY
63y
[T
[TInT
1101
1301
1Ay
[I3X
[TRT
|y
[8%
825
IS8
389
-
98
187
223
X

TI3T
1308
1352

Results for Benchmark S1494
167

Table E.6

=1
=1

181

Results for Benchmark S15850

Table E.7

168

1]

[TO.8A5480 | O-505438]

1UL

[N PO

10T

101

197

Results for Benchmark S208

.
-

Table E.8

169

esting lengih =
Ele | In FET Real] Y. Str. FEZ Hesl J
8 | - U A 0. .OU335E OYBETS0_ | U-SRI7XA0 |
B -SB2500 | U.51233 TOXIBE . 507330 |
< .58 2500 5T OOAIBE — OBR7TS0) U.U07430 |
- 582800 _|_U.51733 Rinz %1y 37500 _|_U.007440_|
362500 | U.512337 | U.00X358 A U RI73A5_|
. 36I500 . BTZ33 - B8B780_| U.W07XAY |
- . 582500 n .GOX35E UB8750 | U.H0743Y_|
- . SBZ500_ | U.51233 -OUA3SS UGBS0 | U.U07T4A0]
- .562500 STZ337 | U.00X355 A A
v SIS0 A O0LISE "UBBTS0_ | U.00733Y_|
vy -SBI500 R-) D0A3SS A [0.507339 |
Y1 -XBIZ00_ | U.51233 OOAISE .UBB750 | U.U074A0 |
30 . SB2500 X UOX35S SS8750 | _U.WI7330 |
i .582500 B 004385 A [T OB0TAAT |
T . S8I500 BTT3 OOLISS A LOU73AY_|
o -BTS000_ |~ U.500000_ | U.003514 A my
875000 | U.500000 | U.G0X5T. OUR750 | 1.
"7S000_|_U.500000 | U.U04ST AUyt-U R
X 2 —0.500000_ | U.00A5T -GBETS0_| T OG0T
76 T X R . U.00AA03 YG8750_| 1.
(T8 3 S37500 1 U.S00000 | U.004403 A | Y. 000000
WMean val | 11.1 | U.853300 | O.S0807Z | U.004388 | T 18 [U.UBI088 | U.03I500 |
40 UWWW .30 WW%

Table E.9: Results for Benchmark S27

170

S

¢

Pl

e

i3 AULRARARRARARARC : : _v
__Mm_

Results for Benchmark S298
171

Table E.10

NSz | PET T WealZ [Tim,Furt]
00000 |
TR0
g
TROU00
TRO0000_| 137
TRRRR 137
00000 .
D3R5I |
- UIA5Y0]
SRS
CIABAY |
TIAEAT |
UIAEIT |
GIASIT |
UKL |
GIARAT |
OIABAT]

172

Results for Benchmark S334

.

Table E.11

E
o
Sl
el e
2 mwwnmwwwmuwnmwmwmwwmnnwunnnnnnnnnunnnnunnn w%mmﬂmmmummmﬂuw 2 xm_mm_mm
e Saiad a4 i SH uaad A AR A A Ao

-1

11

178
mycw

HEEEEEREEEREE

ML
183
78

Results for Benchmark S349

.
-

Table E.12

173

e
S e
i i
I
P L
i e
E%u zr%nw%%ngggrIwngggnagag kb Tw_rw 2phb nrngnsunun%mmss_.usu

i
e M

174

Results for Benchmark S35932

-
2

Table E.13

lim,FPurt

1.

UOTBA7T

7

—
TOSTA |
UOSI9% |
DOETUA 1 1
Ly
TOBT98_| 1

N.5g

:
At
X'
-OTUSS
-OTSS
00046
:
x
K1)
A
-OTOR
-OTONA
UTOS
-OTORX
-
-OTOR0R
Ri10)72
—0-0TOBAY
-OXRIGRE
:
OTTS03
LOTTS03
OTIE0S
0T 150
OTTS0S
{19
(1199:1"¥]
OTT503
;OTI503
K29
OTI583
O0T06S
- IRRIOBE
ORRATY
TRRI
8 13
01078
010760
010769
OTOTEY
-OTO780
G.0T0769
-OTO7E0
010760

—Heal T

£
Doug Do<sagduoaog o[nooogdogoaag Nxsaggoocaooagaog ofefele]

177
32X
32X

B AR ANA N ud N s agsasnadnaanaaannga I

Results for Benchmark S382
175

-

Table E.14

TPUB3IE_|

=Sk e

- S0Ta_|

S ORIBTE 1. 0000 | J58 2. 700039]

DDA

B1

[U-SUOOG

U.JU87I8 | U.500000 BIBEUT

U.J007T

[Mean val |
Std devi |

2

41117

Results for Benchmark S38417

.
.

Table E.15

176

m S PERRRRRERERRRERPEEPRERER 4 d9ddy
? REER o] i) s i o e o]] e)i] e ie]] o] ied e o REER
FFFEEFT EF iddadia

0T

AL Ik A
R 1L SR
UOUUAR |1

R

AL 5
AL A
A I SR
ATLU G
R
"TRRRIT:

e

U e T e

xm i_ Lkl kil hisafkois ket LEbEEELEEEEELLEEEEELLE L Jagaaanadaadadda
.4 FARNRRRNARARRANANRRRRNANRATACCD . __
s i e G bbsaiaa

Results for Benchmark S38584

-
-

Table E.16

177

T
PEPPEPPPPPPEFPrrrrrrT _ i FEFTEL .
e
PR e
S
ikl i
B e

Kw._vm# 2k EEEEEEREL EEEEEERERRRERRERE _”r .T.L
HT%T%%I%% SR SRS

Results for Benchmark S386

-
.

Table E.17

178

L2 X
UIAUS7 | SAABBAVO |
4.
[T ST ABEA0T_|

HOSBI% | U.UIAUST]

[N_Sx

im.otr.

[U.OT373T
Ut
A1)t
01373
UTIIT
U218
OUTIIT6
OIZI18
OTIL
OTISIY
UTISI0
AVI07 UTIBID
OTIRTY
.OTIBID
LUTTZ00
017300
017200
UTZ200
X OTIA0S
5 . OTI303
[OT2303
X UTIA03
A .0T2Z350
K 0T 2350
X OTI300
012350
UTII00_
OTZI00
027200
LOITI00
Kivipi]
. 027 00
.027390
0.0272090 |19
.077290,
OTTI00
[U.0TTT00
017790 |10

AL

BTIE5A
).

')

.918

‘UTBTIE
OTTEER
-GTIE5% ATTOT.
Age
BTI55X
WTIS8X
"STIEA0 |
-S540 |
5295401 U-
ST]
ERISA0 |
Ayl
SIS]
LYil L
U.570540]
STUBL0 |

10
10
10
0
10
&1
T
it
Y1
i
T
Y3t
71
i

179

Results for Benchmark S420

.
.

Table E.18

e
e
mm...TmWWWmm.mmmmmewmmmmmm
e
e
REE R #mmwnmnmwmwmmmrr

P m_
O e S 34 25 A AN MMM AAA AR AN AN AR Au A AAr AN
F a4 g e disisddida e Li

180

Results for Benchmark S444

Table E.19

[Tim Fart |
Avin
OBE0R |

Y0055

15,

ALY USEU90 |

= 19,

| YY0

30737300

—TI5.785095 |

130785095 |

000003575374

e
By R
R

mt
[A8Z
[z
339
— 30"
[107
[TI88
Wil
iy
30X
38T
[358
387 |
382
15—
3%
333
388
=
84
iy
5
175
113
TST
—T—
T8T
Y]
il
i
817
[0
507
378
[AB8—
438
30T
=L
188
iys
X
[TYHT
-
303
512
378
577

181

Results for Benchmark S510

-
.

Table E.20

S L i
e i
B e
o i
e e
e
Smsn e
3 LLLLLLEL NARRARARNARAARRRAARRARARAARARALIARRANIRARAAAANANS
s 44442 o A A A A A A w_%%wmmw%_wwm%_m%_m_mmmm_mmw_wvww%_mwm_wm__

Results for Benchmark S526

Table E.21

182

-STT940
-ST70R0

Pl

—
- JUB00S | U.A8USA0

O

39

eV

Results for Benchmark S5378

.
.

Table E.22

183

[T54.538350 |

TIT003
-BIRYT "EB7750]
ESI0T

[U.7I8187 | 18Z.B08508 |

“DOBST
UUEST
TRADT?

[TI3 | O.008814 |
[T14 | 0.00T883 | U.058547 |

.USBEB7
[USE887
J.OBBEBT
JUSTOIO
I-US7010
JUS7010
.UST0T0
XLy(1)()]
087010
.U 7010
-US7010
.US70T0
. US70T0
OB TUTT
.US7010_
.087010_
R U
057010
(1]

- oores

107

0500000 |1
Kiivxim

SOR3080 | 0408828 |
005439 _| 0011358 |

o
Y4

ngoadoo nooogo

—Ele_]
778

o

F

Ay uNNiA M Ra N

Results for Benchmark S64

.
.

Table E.23

184

7.

T .mmmmmmmmmmwmm it mm A)

185

Results for Benchmark S713

.
.

Table E.24

Gl

i

Ele
[T875
35X
35X
(387
;s
354
miy
mUl
| 198
— 50—
-
88

87

14
[~T8T
[183
Y0

(90
TIY
yi
A8
-
AR
[AR
7130
[130
¥
e
iy
578
| 530~
U
[~ 508
[TS0
510

0
[300
308
— 08
[0
—307_
400]
| 455
Kt
(387
A87
.
78

418
[BBU
| SHD
710

()

0
-
—ra—
' 149
[S1%
T 5A%
-y
S50
538
3%
378
578
[SBX
584

33D

[
BEE

3BER

5ok

o] o] oed o] 2ed e me

AN

FIEprerty

UUBEZA_| U.UBTII

Frl
RiLYXiX]

BBEE

49

LITT

500
[300
71T
308
568
U8
[BIT
[HIY
-
BIY
M2y

PE RFF

FF

[:Y£-]
8BTS
837
| B35

Results for Benchmark S820

Table E.25

186

[STT

71

(-]
[0
[873

813

73
T8
y58

1T

1

13

FRRFRFEREr T E AL BREERE:

b

I

Results for Benchmark S832
187

.
-

Table E.26

Wwwwwwwwwwwwwwrwwwwwm :

IERR .me.m RERERRRRER .mmmmmmmmm W .

O

s

2] st 2] e ned e me] 2]] e ned e o] e] e nc] med] e] o e]]

- TI0008
130008 | VT

- A0SURA
AUSUEA
ATSUEA

Ele
808
[TU8s
| 080
| 192
[8u%
L

ol
wyiy

Results for Benchmark S838
188

-

Table E.27

- -
10.
5 1D

LEA0BES | 3IT15.650013 _
J.BAUBEE | 3115.650017 |
000000 58T -TAT08T—]
T AI0I56 |
A 33 ATUTBE |
A (1%
A A%,
A [TOTS6 |
A - XI0158 |
A X ATOTES |
A .
A XTOISE |
A ILATUISE |
A ATOIS8 |
A FLITOTSE |
3541
-
m TUTSE |
|~ TXIA0.5RE00_|
13740, 500800
{—13240. 559800 _|
[T3230.550600_|
MRCYLUR

PET
DUSUBT
PUIUST
-GOJUBT
Do308T

e LbbLLLLLLLLEEEEELLEERERRE bbbl bbb bl blbhhbbb bbb bl s b ek
" H

LAt A FHadadH s LAt Wmmmmm iscadi WWWWWWW%__

189

Results for Benchmark S9234

Table E.28

Results for Benchmark S953

Table E.29

190

