
PROJECT REPORT ON

DDOS ELIMINATION PROOF OF CONCEPT

 SUBMITTED BY

STUDENT NAME:GANESH RAMASAMY

MENTOR NAME:LEONARD ROGERS

ACKNOWLEDGEMENT

A great deal of time and effort has been spent in completing this project. Several special people have
guided me and have contributed significantly to this effort and so this becomes obligatory to record my
thanks to them.

I thank Prof.Leonard Rogers, my mentor for constantly guiding me in completing this project.
Starting as a novice programmer, he helped me to transform into an expert in C programming by
guiding me to use Mysql api in C and other encryption libraries. He also helped me to gain in-depth
knowledge about Linux operating system. Now I can boast about myself that I am an expert in both
Debian and Fedora Linux distributions.

I solemnly express my heartiest gratitude to our Program director Dr.Mike MacGregor for giving me
this wonderful opportunity to experiment this project.

3

4

Table of Contents
1. ABSTRACT:..1
2. INTRODUCTION...3

2.1 OBJECTIVE OF THE PROJECT...3
2.2 PROJECT INTRODUCTION..3

3. DOS AND DDOS ATTACK ON TCP/IP BASED SYSTEMS...4
3.1 DOS ATTACK...4
3.2 DDOS ATTACK..4
3.3 TYPES OF DDOS and DOS ATTACKS...4
3.4 PlayStation AND XBox CHRISTMAS SEASON DDOS ATTACK..5
3.5 PROPOSED SOLUTION FOR THE DDOS ATTACK ON CONSOLE BASED SYSTEMS.......5

4. TCP/IP 3 WAY HANDSHAKE AND TCP FAST OPEN..7
4.1 TCP/IP 3 WAY HANDSHAKE...7
4.2 TCP FAST OPEN AND APPLICATION IN THE PROJECT..7

5.MYSQL DATABASE...10
5.1 APPLICATION IN PROJECT..10
5.2 MYSQL API in CAH..12

Code Snippets...12
5.3 MYSQL API in IH...12

Code Snippets...12
6. PROJECT EXPLANATION..13

6.1 AUTHENTICATION PHASE...13
Code Snippets for CAH..14
Code Snippets for IH..15
Code Snippets...15
Code Snippets...16
Code Snippets...17
Code Snippets...18

6.2 KEY GENERATION PHASE...20
Code Snippets...20
Code Snippets...21
Code Snippets...22
Code Snippets...22
Code Snippets...23
Code Snippets...23
Code Snippets...24
Code Snippets...25

6.3 HANDOVER PHASE:..26
Code Snippets...26
Code Snippets...27
Code Snippets...28
Code Snippets...29
Code Snippets...30

6.4 COMMUNICATION PHASE...31

5

Code Snippets...31
Code Snippets...32
Code Snippets...32
Code Snippets...33
Code Snippets...34
Code Snippets...34
Code Snippets...35

7 APPENDIX...38
8. FUTURE IMPROVEMENTS..40
9. CONCLUSION..41
10. LIST OF FIGURES..42
11. REFERENCES...44

6

1. ABSTRACT:

The proposed project is mainly based on DDOS (Distributed Denial of services) attack which was
performed by hacker group lizard-squad in December 2014 Christmas season. Hacker group were
successfully able to perform DDOS attack on XBox, Playstation servers such that gamers were unable
to enjoy their Christmas break.

The proposed system for eliminating DDOS uses three host Initiating Host (IH) client, Communiation
Authentication Host (CAH) which sits in the middle between server and client acting as authentication
medium and Communication Host (CH) which is the server.

The systems divides the TCP/IP 3 way handshake into two systems- one performing the authentication
and the other performing connection-oriented communication. Usually in a client-server model, client
and socket creates a socket to communicate with each other. But in the proposed project, there is an
authenticating server sitting in the middle between client and server. The main purpose of CAH is to
authenticate the client at the first place and eliminate DDOS at its end such that the server sitting at the
other end is not vulnerable to DDOS attack.

CAH uses two parameters systemID and Initiating Key (IK) to authenticate the client or attacker. If the
CAH finds that the client is not authentic or spoofed one, it closes its socket with the client and will not
share the details of original server with the client. In this way client will never know who is the server
and its TCP syn flood attack will be in vain.

The CAH can find the IH’s authenticity by the SYN packet IH is sending. Usually in a TCP/IP 3 way
handshake SYN packets are without payload and data transfer starts only after ACK from client is
received. But in the proposed system, client or IH is programmed in such a way that it has to include its
systemID in SYN packet it is sending to CAH.

If the attacker sends TCP SYN flood without system ID or improper system ID, CAH finds it at the
first place and closes it listening socket and does not share any details about the server to the client. In
this way DDOS is eliminated by CAH at the first place.

After the client sends proper SYN packet with registered systemID, CAH will ask for the initiating key
IH has registered with it. If the client sends Initiating key and System ID, CAH will perform database
lookup and decides whether to listen or drop the connection.

Once when CAH finds the IH is authentic, CAH will generate a new Initiating key with IH such that IH
will use it next time for authenticating with CAH. In this way CAH performs another authentication to
eliminate DDOS.

After IK generation, CAH will get connection details from CH and it will send it to IH. It will also send
the IK it has generated to CH such that it will use it to authenticate IH once again. IH after receiving
connection details from CAH will create one more socket to listen to CH while CH will create a socket
based on the connection details it has sent to communicate with IH.

IH performs normal TCP/IP 3 way handshake to connect to CH. After it reaches CH, IH will send its
IK to CH. CH will perform a look-up whether the IK sent by CAH and IH matches with each other or
not. If it matches, it will start communicating with IH. If not, it will close the socket for IH abruptly
ending the connection even before data transfer. In this way, the proposed system performs DDOS
elimination.

In order for the host to have multiple sockets in a single program fork() process was used. It is evident
that web servers like Apache uses fork() to handle multiple clients. Similarly it is used in this project to
handle multiple sockets for multiple connections. Fork() usually creates one parent process and
multiple child process which is multiprocessing capability of operating system.

2

2. INTRODUCTION

2.1 OBJECTIVE OF THE PROJECT
The main aim of this project is to eliminate Distributed denial of services on console based system such
as SONY, Xbox, PlayStation etc. Though there is possibility to expand the project to other types of
continuous on-line communication systems, it is primarily designed for the console based systems.

2.2 PROJECT INTRODUCTION
The proposed project uses TCP/IP version 4 and splits the TCP/IP 3 way handshake into two systems.
The first systems performs modified three way handshake and acts as authentication medium by
generating session key for the second system and the second system acts as connection oriented
communication medium.

Though there is supposed to be only server and client in every server-client based communication
systems, the above project has three hosts namely Initiating host (IH) (XBox based console client),
Communication authentication host (CAH) (authenticating server) which performs authentication and
handover to original communicating server and Communication host (CH) (original communicating
Xbox server).

The above project uses TCP/IP based communication sockets with TCP Fast Open enabled on
Communication authentication host and Initiating host. For database entries and lookups, both
Communication authentication host and Initiating host uses mysql database.

3

3. DOS AND DDOS ATTACK ON TCP/IP BASED SYSTEMS

3.1 DOS ATTACK
For the basic Denial of service attack on a server, client (attacker) sends SYN flood to the server
thereby utilizing the server resources fully such that server cannot address clients anymore. This can be
explained in TCP/IP 3 way handshake as follows, server usually opens its listening socket on a
particular IP address and port number for the client to listen on such that for http service for
www.google.com can be as 23.34.56.67 (IP) 80 (port number) and for https service for
www.google.com can be as 23.34.56.67 (IP) 443 (port number).

When server receives number SYN packet on its listening socket, it has to acknowledge all the SYN
packets before processing the upcoming packets leaving to half open connections due to the crash of
server. In this way an attacker by sending TCP SYN flood brings down the services of server.

3.2 DDOS ATTACK
Usually DOS attacks originates from a single attacker while DDOS attacks originates from multiple
computers sitting on the internet. Rather than a single system sending SYN flood attack to the server,
multiple systems sends the SYN flood attack to the server thereby utilizing the server resources and
stopping the services from server. These multiple attackers may be compromised computer systems like
botnets which is running one or more bots to perform DDOS attack.

An attacker who is the controller might send malware or any infectious program to multiple users and
introduce bots to their systems. In this way many computers have bots installed and at a particular time,
the attacker might stimulate all the system as a network(botnet) to perform DDOS attack. In this way it
is understandable that DDOS attacks are more powerful than DOS attacks.

3.3 TYPES OF DDOS and DOS ATTACKS
There are 3 types of DDOS and DOS attacks. The first one is volume based attacks which involves
UDP, ICMP and other spoofed packet floods. The main aim of this attack is to saturate the bandwidth
of server. Magnitude of attack is measured in bits per second (bps).

The second one is Application layer based attacks which includes the attack based on vulnerabilities
present in Windows, OpenBSD and Apache. Magnitude of attack is measured in requests per second
(rps). The third type is protocol based attacks which includes SYN floods attack. Magnitude of attack is
measured in packets per second (pps). The proposed project majorly involves the prevention of
protocol based DDOS attacks.

4

http://www.google.com/
http://www.google.com/

3.4 PlayStation AND XBox CHRISTMAS SEASON DDOS ATTACK
In December 2014, hacker group named lizard-squad did a DDOS attack on Xbox live and Playstation
network such that gamers were unable to use the gaming console during the peak Christmas season.
The proposed project presents a solution to eliminate DDOS attacks on Console based systems such as
XBox, PlayStation etc.

3.5 PROPOSED SOLUTION FOR THE DDOS ATTACK ON
CONSOLE BASED SYSTEMS
The solution uses a unique system ID for each console users and a unique session key or Initiating key
for each users. For each time a user tries to access the gaming server has to provide its unique system
ID which was provided when they buy the gaming console box. Though the unique SYSTEM ID
remains same for each login requests but the Initiating key varies all the time for login requests.

Initially the console client (IH), sends a SYN packet with its unique system ID to CAH thinking it is
sending to original server (CH) but IH is unaware of CAH. CAH holds the database with System ID
and Initiating key of all users. CAH uses TCP Fast open TFO cookies to check whether the client with
system ID was already registered with it or not. If not registered, it will send a RST packet.

If registered, it will ask for the Initiating key from client. TFO based cookies exchange between client
(IH) and server (CAH) can detect IP spoofing as well thereby preventing DDOS attack from IP spoofed
attacker. Then the console client will send its Initiating key which was given to it initially while
registration.

If both the system ID and Initiating key matches with CAH’s database, CAH will start communicating
with IH. If not, RST packet will be sent by CAH to IH and it will close its listening socket and will not
provide any details of original communicating host(CH) to client (IH).

In this way DDOS attack is eliminated from original server (CH). After successful authentication, both
the CAH and IH will enter into IK generation phase. During this phase, IH will first send its randomly
generated encrypted Initiating key to CAH.

Once when CAH receives it, it generates its own Initiating key and concatenates its IK with IH’s IK
and sends the newly generated encrypted IK to IH and both IH and CAH registers the newly generated
IK to its newIK field in database while the current IK used for authentication will be moved to
currentIK field.

The newly generated IK is used as authentication key for next session and it is used for verification of
client (IH) by server communication host (CH). Both the new IK and current IK are stored in database
of IH and CAH such that it can be used by system administrators for constantly monitoring the unusual
activities.

5

Once when the IK is generated, CAH sends the session IK to the original server Communicating Host
(CH) sitting at its back. The CH, after receiving the Initiating Key, will send its IP address and port
number it is willing to offer its service on to CAH, which the CAH will send to IH.

IH after receiving the connection oriented details creates a client socket and starts communicating with
CH. Before accessing the services, CH requests the IH for the IK which it has registered with the CAH.
IH will send the Initiating key for session if CH find it matches with the one sent by CAH, it starts
providing the services to IH. If not, it will close its listening socket and asks IH to re-register with
CAH.

6

4. TCP/IP 3 WAY HANDSHAKE AND TCP FAST OPEN

4.1 TCP/IP 3 WAY HANDSHAKE
In a client-server based communication systems, TCP/IP 3 way handshake works as follows. Client
sends a SYN packet to the server, server then acknowledges the SYN packet with SYN/ACK and then
client acknowledges the server by sending ACK packet back to the server and the communication
socket is established then.

Figure 1: TCP/IP 3-Way Handshake

4.2 TCP FAST OPEN AND APPLICATION IN THE PROJECT
In the proposed project, when IH requests for accessing the services from CH, sends a SYN packet.
Original users might send SYN packet but the attackers might send SYN flood and in order to avoid
this, the proposed project makes IH programmed in such a way that it includes its system ID in its SYN
packet.

In normal TCP/IP sockets it is impossible to send data with SYN packet because windows/linux kernel
allows data transfer between sockets only after ACK from client. In order to intelligently send TCP
SYN packet with payload in it a new RFC 7413 called TCP Fast open is used.

TCP fast open allows to use payload in SYN packet and it uses TCP based fast open cookies(TFO)
exchanges between client and server. When a new user is buying a XBox console, his XBox console
would have already exchanged encrypted TFO cookies with CAH and when an attacker tries to spoof
the CAH with system ID, CAH will find it at the first place, though it will ask for Initiating key from
the attacker, it will close its listening socket after receiving it.

7

Even after TFO cookie exchange, if system ID and Initiating key of IH doesn’t match, CAH will close
its listening socket preventing access to original Communicating host(CH) thereby eliminating DDOS
on server such that authentic users can still access thereby there are no disruption of services.

Initially when the new xbox console client registers with CAH the flow diagram is seen below. It is
usually done before user buys the XBox console such that attacker without registered XBox console
client kit cannot perform DDOS attack.

Figure 2: TFO Cookie exchange

After the TFO cookie is cached on XBox client (IH) from CAH, XBox console will be ready for sale
and unique system ID and initial IK will be provided by System administrators from XBox and
PlayStation. Now after system ID is allocated, IH is programmed in such a way that SYN packet it is
sending will have its system ID as payload.

Hacker sending SYN floods without system ID or spoofed SYN floods with system ID will make the
CAH to close its listening socket, and prevents the hacker from getting server’s (CH) IP address and
port number to perform DDOS on original server.

8

Figure 3: TCP Fast Open 3-Way Handshake

9

5.MYSQL DATABASE

5.1 APPLICATION IN PROJECT
Both Initiating host and Communication Authentication host uses mysql database for storing its
initiating key or session key.

The below screenshots shows the version of mysql database in CAH and IH

Figure 4: CAH Database Version

Figure 5: IH Database Version

Initially when XBox or PlayStation console is brought, the CAH has the system ID and Initiating key
of the console box. CAH has four fields in its database- systemID,nextIK, currentIK, previousIK.
During the sale stage, CAH has the nextik and SystemID field initialised while currentik and previousik
fields will be filled up everytime when the system is generating a new IK.

For IH, there is three fields, nextik, currentik, previousik. The systemID has to be manually entered by
every client (IH) since it has to be sent over SYN packet and since it is uniqueID, it is vulnerable when
present over database. Below screenshots show how the database looks at both CAH and IH during
initial stage.

10

Figure 6: CAH's Database

Figure 7: IH's Database

The above screenshot shows how the database at both IH and CAH looks during sales stage of gaming
console box. Once when the client starts using the product, when newik is generated, nextIK field value
goes to currentik and the newIK generated will go to nextIK field while the IK in currentIK will go to
previousIK field. The values in database are used as references by database administrator to check for
any abnormalities.

11

5.2 MYSQL API in CAH

Code Snippets
 static char host = "localhost"; *Connection parameters for connecting to mysql. Localhost CAH. */

static char *user = "ganesh"; *Connection parameters for connecting to mysql. Username*/

static char *pass ="1234"; *Connection parameters for connecting to mysql. Password*/

static char *dbname = "cah";*Connection parameters for connecting to mysql. Tablename*/

unsigned int port = 3306;*Connection parameters for connecting to mysql. Portnumber*/

static char *unix_socket = NULL;*Connection parameters for connecting to mysql.*/

unsigned int flag = 0;*Connection parameters for connecting to mysql.*/

MYSQL *conn; *Mysql Connection variable*/

 MYSQL_RES *res; *Mysql Connection result variable*/

 MYSQL_ROW row;*Mysql Connection row variable*/

 conn =mysql_init(NULL); *Initializing the mysql connection*/

 if(!(mysql_real_connect(conn,host,user,pass,dbname,port,unix_socket,flag))) *Conditional

statement for mysql Connection*/

 {

 fprintf(stderr,"\n error: %s[%d]\n",mysql_error(conn),mysql_errno(conn)); * If

connection is not possible after using all the connection parameters, print couldn’t connect error

message */

 exit(1);

 }

5.3 MYSQL API in IH

Code Snippets
MYSQL *conn= mysql_init(NULL); *Initializing the mysql connection*/

if(mysql_real_connect(conn,"localhost","root","1234","ih",3306,NULL,0)==NULL) *Connection parameters

for connecting to mysql. */

{

fprintf(stderr,"%s\n",mysql_error(conn)); * If connection is not possible after using all the

connection parameters, print couldn’t connect error message */

exit(1);

}

12

6. PROJECT EXPLANATION

6.1 AUTHENTICATION PHASE
This is the initial phase of the project. During this phase, the console box client Initiating host (IH) will
initiate a connection to Communication host with an IP address and port number . IH will be thinking it
is communicating with original server but the SYN request of IH with its systemID will go to the
Communication Authentication Host (CAH).

CAH after receiving the systemID of IH gets the Initiating key also from IH and performs a database
lookup to authenticate the IH and moving forward to further phases.

Below are the code snippets and screenshots for this phase. Before proceeding to each phase
explanation screenshots, below are the IP configuration for all three hosts (IH,CAH,CH).

13

Figure 8: CAH ifconfig

Figure 9: IH ifconfig

Code Snippets for CAH
int main(int argc, char argv[]) *Main program with argument passing enabled at terminal*/

{

struct sockaddr_in server_addr,client_addr,cli_addr; * Structure initialisation for server address and

client address*/

 if(argc<0) * if the program is executed without passing any argument at terminal */

 {

 fprintf(stderr,"ERROR,no port provided \n");* Since only port number is passed at CAH end,

if it is not passed at terminal print the error no port number is provided */

 exit(1);* Exit if true */

 }

 sock= socket(AF_INET,SOCK_STREAM,0); * Initialising the TCP socket to a variable sock */

 bzero((char*) &server_addr, sizeof(server_addr)); * Clearing the memory of variable server address

*/

 portnumber = atoi(argv[1]); * passing the port number as variable */

 server_addr.sin_family=AF_INET; * Initializing the server address as INET family */

 server_addr.sin_addr.s_addr= INADDR_ANY; * Accepts any address from INET family as server address

*/

 server_addr.sin_port=htons(portnumber); * Accepts any portnumber for server and converting it from

unsigned short integer to network format */

 int qlen=5; * Buffer length for TCP Fast open connection */

setsockopt(sock,SOL_TCP,TCP_FASTOPEN,&qlen,sizeof(qlen));* setting the socket as TCP Fast open socket

with protocol TCP */

 if (bind(sock,(struct sockaddr *)&server_addr,sizeof(server_addr))<0) *Binding the socket with

server address and port number */

 {

 error("Binding ERROR"); * If there is problem in binding, print binding error */

 }

listen(sock,5); * Specify the number of clients can listen at a time.

 newsock=accept(sock,(struct sockaddr *)&client_addr,&clilen); *Initialize the listening socket to the

variable newsock */

clilen = sizeof(client_addr); * Client address is initialized to variable clilen */

14

Figure 10: CH ifconfig

Code Snippets for IH
struct sockaddr_in server_addr; * Initializing the structure for server address */

struct hostent *serverd; *Initialising the structure to a variable for entering the server address */

sock=socket(AF_INET,SOCK_STREAM,0); * Create TCP socket and initializing to a variable sock */

serverd = gethostbyname(argv[1]);* getting the server address from client as command line argument */

portnumber = atoi(argv[2]);* getting the server portnumber to connect to as command line argument */

bzero((char*)&server_addr,sizeof(server_addr));* clearing the memory of server address variable */

server_addr.sin_family=AF_INET;* specifying the server address as INET family */

bcopy((char *)serverd->h_addr,(char *)&server_addr.sin_addr.s_addr,serverd ->h_length);* copying the

server parameters */

server_addr.sin_port=htons(portnumber);* specifying the server portnumber and converting it from

unsigned short integer to network format */

Figure 11: IH system ID request

Code Snippets
printf("Enter your system ID:");* Print statement for getting client’s system ID */

bzero(buffer,255); * Clears the memory of buffer */

fgets(buffer,255,stdin);* gets the system ID as standard input */

sendto(sock,buffer,sizeof(buffer),MSG_FASTOPEN,(struct sockaddr_in *)&server_addr,sizeof(server_addr));

*Sends the system ID over SYN packet using TCP FAST OPEN to CAH. */

Figure 12: CAH opening port for authentication

Figure 13: IH sending SYN packet with SystemID

15

The above screenshot shows the TCP syn packet sent from IH to CAH with systemID 1234 displayed
in the payload section.

Code Snippets
printf("Enter your initiating key :");* Print statement for getting client’s Initiating key */

bzero(ba,255);* Clears the memory of variable ba */

fgets(ba,255,stdin);* gets the Initiating key as standard input */

n=write(sock,ba,strlen(ba));* send the initiating key entered by client to CAH over its socket */

16

Figure 14: Wireshark packet capture of SYN packet with payload

Figure 15: IH sending its IK to CAH

After receiving IK if it matches with its database, CAH will send welcome packet to IH. The screenshot
showing CAH generating welcome packet.

Code Snippets
bzero(buffer,255);* Clear the memory of variable buffer */

n = read(newsock,buffer,255);* Read the system ID sent by IH using CAH’s listening socket newsock */

ar=atoi(buffer);* Since the system ID from IH is obtained as string standard input, it is converted to
integer using atoi conversion */

bzero(bu,255);* Clear the memory of variable bu */

p=read(newsock,bu,255);* Read the Initiating key sent by IH using CAH’s listening socket newsock */

br=atoi(bu);* Since the Initiating key from IH is obtained as string standard input, it is converted
to integer using atoi conversion */
cr = atoi(row[0]); *Convert the string in mysql database at row 0 to integer using standard atoi
conversion */

 dr=atoi(row[3]);* Convert the string in mysql database at row 3 to integer using standard atoi
conversion */

if(ar == cr && br == dr) * Condition if the input from IH and the data in CAH database matches each
other*/

{

 er=write(newsock,message,strlen(message));* Write the message “WELCOME” to IH */

17

Figure 16: Wireshark capture of IH’s IK

Figure 17: CAH after receiving IK

 printf("\n%s\n\n",message);* Print the message to be written. */

}

else * Condition if the input from IH and the data in CAH database does not match with each other*/

{

 fr=write(newsock,mas,strlen(mas));* Write the message “RESET” to IH */

 printf("\n %s\n",mas);* Print the message to be written. */

}

Code Snippets
n=read(sock,bc,255);* Read function for reading the message sent by CAH */

printf("\n %s\n\n\n\n",bc);* Print the message */

Port number 8900 on listening state at CAH end when authentication is success.

18

Figure 18: Screenshot capture of CAH sending welcome packet to IH

Figure 19: IH receiving the welcome message after successful authentication

We can see that CAH is sending reset message and access denied message after unsuccessful
authentication.

Once when CAH identifies that an attacker or unregistered user is trying to access the services from
Communication host, it closes the listening socket and it will not send IP address and port number
details of the original server (CH) to the client or attacker such that it can never reach the server to
disrupt the services.

19

Figure 20: Port status of CAH when there is successful authentication

Figure 21: Unsuccessful authentication at IH end

Figure 22: Unsuccessful authentication at CAH end

Figure 23: Packet capture of the RST packet sent by CAH to IH

6.2 KEY GENERATION PHASE
After receiving the welcome packet, IH will generate its Initiating key and sending it to CAH in the
encrypted form. The screenshot is seen below

Code Snippets
if(strcmp(bc,"Welcome") == 0) * Based on the message sent by CAH, IH will read the message and if the

message says welcome, it will proceed with the upcoming code */

{

int key=0xFCAB;* Key used for performing private key symmetric encryption and decryption shared only

by CAH and IH and not shared over network*/

for(i=1;i<5;i++)* Loop for generating random sequence */

{

e=1000+(rand()%5000);* Random function for generating a random sequence*/

}

printf("The generated IK of IH is:%d\n",e);* Printing the generated random sequence by IH */

f=e+key;* Performing encryption function*/

20

Figure 24: Port status of CAH after unsuccessful authentication

Figure 25: IH generating its IK and sending the Encrypted IK to CAH

printf("The Encrypted IK of IH is:%d\n",f);* Printing the encrypted IK */

n=write(sock,&f,sizeof(f));* Writing the IK over socket to CAH*/

}

else * If the message received is not “WELCOME”*/

{

printf("Access denied"); * It will print access denied*/

}

Code Snippets
int key=0xFCAB;* Key used for performing private key symmetric encryption and decryption */

 hr=read(newsock,&gr,sizeof(gr));* Read function for reading the encrypted IK sent by IH*/

 printf("\n Encrypted IK from IH:%d\n",gr);* Printing the encrypted IK*/

 ir = gr - key;* Generating the decrypted text using the private key symmetric decryption */

 printf("\n Decrypted IK from IH:%d\n",ir);* Printing the decrypted IK*/

CAH receives the IK from IH and it generates its own IK and it concatenates both the IK to generate
the final session key or new initiating key. After sending the final IK to IH once when IH records the
IK to its database, CAH receives IK recorded message from IH.

21

Figure 26: CAH receiving the encrypted IK and decrypting it

Figure 27: CAH generating its IK and sending the Encrypted IK to IH

Code Snippets
int i=0;* Initializing i to 0*/

 for(i=1;i<5;i++)* Loop for generating random sequence for IK generated by CAH*/

 {

 e=1000+(rand()%9000); * Generating random sequence using rand() function*/

 }

 int count=0; * Initialising count to 0*/

 a=e;* Initialising a as e*/

 while (e != 0) * Function for concatenating CAH’s random sequence and IH’s random sequence

to generate final IK*/

 {

 e /= 10; * Calculating the number of digits in e*/

 ++ count;* Increment e each time when e as not reached its end*/

 }

 b=pow(10,count); * Performing power operation with count of number of digits of e*/

 c= a * b; * If e is for digit, calculate the power function first and multiply it to the

original generated sequence by CAH*/

 de= c + ir; * Then add the multiplied value to IK generated by IH. In this way concatenation

of IK of CAH and IH is performed*/

 printf("The final generated IK is :%d\n",de); * Printing the final generated IK */

 fe = de+key; * Encrypting the IK*/

 printf("The final generated encrypted IK is :%d\n",fe); * Printing the final encrypted IK*/

 er=write(newsock,&fe,sizeof(fe)); * Writing the final encrypted IK over socket to IH*/

IH after receiving the encrypted final IK from CAH, decrypts it and stores the IK to its database and
CAH sends it has recorded the IK in its database message to IH.

Code Snippets
n=read(sock,&g,sizeof(g)); * Reading the encrypted IK over socket sent by CAH*/

printf("The final encrypted IK from CAH:%d\n",g);* Printing the final encrypted IK*/

h=g-key; * Performing decryption for IK*/

printf("The new initiating key is:%d\n",h); * Printing the new initiating key*/

22

Figure 28: IH receiving the encrypted IK and decrypting it

CAH after generating the new IK will store the IK for next session in nextik field while the current IK
in next IK field will move to current IK field. Since after initial registration this is the first time the
client has requested for a new IK, previousIK field is empty. But when the next time, client requests for
newIK, value from currentIK will move to previousIK field. The screenshot can be seen below

Code Snippets
char query[2000]; * Initializing the query */

sprintf(query,"UPDATE project SET nextik = %d WHERE systemid =1234",de);* Printing the IK as query

into CAH’s mysql database*/

mysql_query(conn,query); * Connection function for query*/

IH after getting the new IK will store the IK for next session in nextik field while the current IK in next
IK field will move to current IK field. Since after initial registration this is the first time the client has
requested for a new IK, previousIK field is empty. But when the next time, client requests for newIK,
value from currentIK will move to previousIK field. The screenshot can be seen below

Code Snippets
char query[2000]; * Initializing the query */

23

Figure 29: CAH updating its database after NEW IK is
generated

Figure 30: IH updating its database after NEW IK is generated

sprintf(query,"UPDATE project SET new_ik= %d",h); * Printing the query value into IH’s database*/

mysql_query(conn,query); * Connection function for query*/

Update in CAH database can be seen that the previousik field has been updated. And the newik will be
used for next session. The main purpose of having three fields for initiating key is to monitor the
database by database administrator for any abnormalities and logging.

Code Snippets
mysql_query(conn,"UPDATE project SET previousik = currentik WHERE systemid=1234"); * Update function

in mysql api updating the database field previouik at CAH after new IK is generated*/

mysql_query(conn,"UPDATE project SET currentik = nextik WHERE systemid=1234");* Update function in

mysql api updating the database field currentik at CAH after new IK is generated*/

We can see that the client has to use the IK generated from last session to login to next session and
generating new IK.

24

Figure 31: CAH end when one more newik is generated

Figure 32: Changes in CAH database when IH requests for one new IK

IH database can be seen as

Code Snippets
mysql_query(conn,"UPDATE project SET prev_ik = current_ik"); * Update function in mysql api updating

the database field previousik at IH after new IK is generated*/

mysql_query(conn,"UPDATE project SET current_ik = new_ik");* Update function in mysql api updating the

database field currentik at IH after new IK is generated*/

25

Figure 33: IH end when one more newik is generated

Figure 34: Changes in IH database when IH requests for one new IK

6.3 HANDOVER PHASE:
CH will always be connected to CAH. Once when the CAH performs IK generation, CAH will send
the created session key or IK to CH. CH after receiving the session key, will send its socket details like
IP address and port number it has created its socket on to listen IH or xbox console client.

Code Snippets
struct hostent *serverd;*Initialising the structure to a variable for entering the server address */

sock=socket(AF_INET,SOCK_STREAM,0);*TCP socket creation for CH to connect to CAH*/

serverd = gethostbyname(argv[1]);*Getting server address as input in command line */

portnumber = atoi(argv[2]); *Getting server portnumber as input in command line */

bzero((char*)&server_addr,sizeof(server_addr)); *Clearing the memory of server address*/

server_addr.sin_family=AF_INET; *Specifying server address is AF_INET family */

bcopy((char *)serverd->h_addr,(char *)&server_addr.sin_addr.s_addr,serverd ->h_length);* copying the

server parameters */

server_addr.sin_port=htons(portnumber); * specifying the server portnumber and converting it from

unsigned short integer to network format */

if(connect(sock,&server_addr,sizeof(server_addr))<0) *Connecting to server (CAH) socket using connect

function */

{

printf("Error to connect"); *If couldn’t connect print the error statement */

}

else * IF connection is success */

{

n=write(sock,bf,255);* Writing the IP address of CH to CAH over socket*/

n=write(sock,&portno,sizeof(portno)); * Writing port number of CH to CAH over socket*/

n=read(sock,&a,sizeof(a)); * Reading IK sent by CAH over socket*/

printf("Key for session verification is:%d\n",a);* Print the IK*/

}

CAH after sending the generated IK to CH receives the IP address and port number details of CH that it
would like to listen on to communicate with IH. After it receives the details, it will send it to IH. Then
it will display the message that IP address and port number details of CH are sent to IH, handover
process is completed.

The main purpose CAH performs here is elimination of DDOS by authentication and introducing the
CH to IH such that IH can create a socket to listen to CH.

26

Figure 35: CH getting connected to CAH and getting the Initiating key for verification of IH

Code Snippets
if((childpid=fork())==0) *Using fork system call to create a new process for handling CH since CAH

already has parent process running for IH */

 {

 close(sock); * If the process is not created, close the socket */

 }

 else * If not perform the following*/

 {

 newsork=accept(sock,(struct sockaddr *)&cli_addr,&clileng);* Create a new listening socket

for CH */

 clileng = sizeof(cli_addr); * Client address of CH*/

 bzero(bf,255); * Clear the memory for bf */

 a=read(newsork,bf,255); * Reading IP address sent by CH */

 a=read(newsork,&b,sizeof(b)); * Reading port number sent by CH */

 printf("\n IP address received from CH :%s\n",bf);* Printing IP address sent by CH */

 printf("Port number received from CH :%d\n",b);* Printing IP Port number sent by CH */

 z=write(newsork,&de,sizeof(de)); * Writing IK over socket to CH */

 printf("\n Key for session verification is sent to CH \n"); * Printing it has sent the IK to

CH */

 c=write(newsock,bf,255); * Writing IP address of CH to IH. newsock is for IH, newsork is for

CH */

 d=write(newsock,&b,sizeof(b)); * Writing port number of CH to IH. */

 printf("\n IP address and port number details are sent to IH. Handover process completed. \

n"); * Printing the handover processis completed */

}

27

Figure 36: CAH after sending the IK to CH

Code Snippets
n=read(sock,bf,255);* Read IP address sent by CAH and store it in varaiable bf */

printf("\n The IP address of CH is:%s",bf);* Print IP address of CH sent by CAH*/

n=read(sock,&j,sizeof(j)); * Read port number sent by CAH and store it in varaiable j */

n=read(sock,bf,255);* Read IP address sent by CAH and store it in varaiable bf */

printf("\n The IP address of CH is:%s",bf);* Print IP address of CH sent by CAH*/

printf("\n The Port number of CH is: %d",j); * Print port number of CH sent by CAH*/

IH after receiving the connection details from CAH, uses fork() process to create a new client socket to
listen CH while it uses parent process to communicate with CAH. After successfully creating the
socket, if IH reaches CH, it has the following display message in console client.

28

Figure 37: IH receiving the IP address and port number details of CH

Code Snippets
if((childpid = fork()) == 0) * Creating child process for communicating with CH while parent process

is for communication with CAH*/

{

close(sock); * If process is not created, close the parent socket and program. */

}

else * If created successfully */

{

struct sockaddr_in servere_addr; * Structure for server address */

sork=socket(AF_INET,SOCK_STREAM,0); * Creating TCP socket*/

bzero((char*)&servere_addr,sizeof(servere_addr)); * Clearing the memory for server address*/

servere_addr.sin_family=AF_INET; * Specifying server address family as INET or IP family */

servere_addr.sin_addr.s_addr=inet_addr(bf); * Server address as the variable got from CAH */

servere_addr.sin_port=htons(j); * Server port number as the variable got from CAH. It uses short

integer to network converter for the port number */

if(connect(sork,&servere_addr,sizeof(servere_addr))<0) * Connect function to connect to the server

address and port number */

{

printf("\nError to connect\n");* If couldn’t connect */

}

else

{

printf("\n Connected to Communicating host");* If connection is success, Print the connected statement

*/

}

29

Figure 38: IH after reaching CH

CH will also use fork() function to create a new process to create a listening socket for IH. While it has
another parent process running to listen CAH.

We can see that CH displaying the IP address of IH after IH gets connected to CH.

Code Snippets
if((childpid = fork()) == 0) * Creating a child process at CH to make a listening socket to listen to

IH */

{

close(sock);* If not created properly, close the parent socket and program*/

{

int portno=4404; * Variable for port number */

struct sockaddr_in servere_addr,client_addr; * Structure for server address */

sork=socket(AF_INET,SOCK_STREAM,0); * Creating a new socket under child process at CH to communicate

with IH */

bzero ((char*) &servere_addr,sizeof(servere_addr)); * Clearing the memory space of server address */

servere_addr.sin_family=AF_INET; * Specifying the address family of server */

servere_addr.sin_addr.s_addr=inet_addr("172.16.212.146"); * Specifying the address of server. Usually

it will be a static public IP sitting over internet */

servere_addr.sin_port=htons(portno); * Specifying the port number for CH. Usually it is declared by CH

itself after getting IK from CAH */

if (bind(sork,(struct sockaddr *)&servere_addr,sizeof(servere_addr))<0) *Binding the address and port

of server CH socket */

{

error("Binding error"); * Print error if there is any */

}

else

{

listen(sork,5); * Mention the child socket to be listening socket */

newsork=accept(sork,(struct sockaddr *)&client_addr,&clilen); * Create the listening socket for IH */

clilen=sizeof(client_addr); * Client address length */

char *bt; *Initialize character bt */

bt=inet_ntoa(client_addr.sin_addr); * IH’s IP address is stored over bt. Ntoa function converts

network address to string format */

printf("\n Initiating Host IP address:%s",bt); * Print the IP address of client IH */

}

30

Figure 39: CH after reaching IH

6.4 COMMUNICATION PHASE

Code Snippets
char vs[255]="Hello"; * Initializing the message to be sent */

o=write(sork,vs,255); * Writing the message over socket sork. IH uses sock for CAH and sork for CH */

printf("\n Message to CH:%s\n",vs); *Print the message */

31

Figure 41: IH sending hello packet to CH

Figure 40: Wireshark capture of TCP/IP 3 way handshake and data transfer between CH and IH

Code Snippets
char bo[255]; * Initializing the character bo */

bzero(bo,255); * Clearing the memory for bo */

r=read(newsork,bo,255); * Reading the message sent by IH. CH uses sock for communicating with CAH and

newsork for listening to IH */

printf("\n Message from IH: %s",bo); * Print the message */

IH is programmed in such a way that it will automatically send the IH it has generated to CH.

Code Snippets
p=read(sork,qz,255); * IH reading the message sent by CH */

printf("\nMessage from CH:%s\n",qz); * IH printing the message sent by CH */

32

Figure 42: CH receiving hello message from IH

Figure 43: CH requesting IH to send its IK to continue

This is an additional level of security performed at this step. CH will receive the IK fro CAH and it will
ask the IH to send its IK such that CH can verify the authenticity of IH.

Code Snippets
o=write(sork,&j,sizeof(h)); * IH writing the IK it has generated with CAH to CH. h was the variable IH

used for storing final IK with CAH */

printf("IK sent by IH:%d\n",h);* IH printing the IK it has sent to IH*/

33

Figure 44: IH sending its session key or IK to CH for authentication

Figure 45: CH displaying IK received from IH

Code Snippets
r=read(newsork,&dh,sizeof(dh)); * CH reading IK sent by IH */

printf("\n IK sent by IH: %d",dh); * CH printing IK sent by IH */

If the IK sent by IH matches with IK sent by CAH, CH and IH starts communication process.

Code Snippets
char rz[255];* Initialising the variable rz */

p=read(sork,rz,255); * Reading the message sent by CH whetherit can continue communicating or have to

re-register */

printf("\n%s\n",rz);* Printing the message */

34

Figure 46: IH entering communication phase

Code Snippets
if(a==dh) * a was the variable ch used for storing IK sent by CAH and dh was used by ch for storing IK

sent by IH. If both matches */

{

char cz[255]="You have reached CH. Communication begins."; * Initializing the cz */

r=write(newsork,cz,255); * Write message we are communicating to IH */

printf("\n Communication phase starting"); * Printing the message and still listening on socket */

}

else * If IK does not match */

{

char by[255]="Reregister to continue"; * Initialise re-register message*/

r=write(newsork,by,255); * Write message re-register to IH */

close(sork); * Close the socket avoiding further communication */

}

Suppose if there is a bug in IH program and if IH sends a different IK compared to what CAH has sent
to CH, then CH will send re-register IK message to IH to enter communication process. If IH receives

35

Figure 47: CH entering communication phase

Figure 48: Port status of CH after successful IK verification

this message, CH will close its listening socket, IH has to restart the whole process again to start
communicating with CH.

CH displaying the IK sent by IH.

We can see that CH closing its listening socket abruptly after IK sends a different IK. In this way, CH
also eliminates unauthorized entry for hackers. Though CAH stops attacker at the first place, CH also
has additional security functionality to stop the intruders from performing DDOS on it.

36

Figure 49: IH after unsuccessful IK verification

Figure 50: CAH after unsuccessful IK verification:

37

Figure 51: Port status of CH after unsuccessful IK verification

7 APPENDIX
The screenshot for compiling cah program by including mysql library

The screenshot for compiling cah program by including mysql libraries. Lm library is for math
function.

The screenshot for compiling IH program by including mysql library

The screenshot for compiling IH program by including mysql and lm library. Lm library is used for
math function

38

Figure 52: Compiling CAH program

Figure 53: Compiling CAH program

Figure 54: Compiling IH program

Figure 55: Compiling IH program

The TCP fast open value as 3 means CAH can act both as server and client. TCP Fast open is enabled
only for linux kernels 3.7 or above

39

Figure 56: Compiling CH program

Figure 57: How to enable TCP fast open in CAH

Figure 58: How to enable TCP fast open in IH

8. FUTURE IMPROVEMENTS
In the handover phase, CAH receives the IP address and port number details from CH and sends it over
its listening socket to IH such that IH uses them to create a connection to CH. When the connection
details are shared over internet, it is vulnerable to hacker.

The attacker might craft TCP syn flood after hacking the connection detailed packets and perform
DDOS attack directly on CH. In order to avoid this, SSH(Secured shell) can be implemented on all
three hosts and end-to-end data encryption can be implemented for all data transfers such that all the
data these three hosts are communicating over internet are encrypted and the hackers might take years
to decrypt them to perform DDOS attack.

40

9. CONCLUSION
In this way a system which performs DDOS elimination using four phases is designed. Though there
are many systems present currently which can eliminate DDOS attack from the internet, the proposed
system is a standalone approach because it embeds payload in SYN packet using TCP fast open and
eliminates DDOS at the first place by avoiding TCP SYN flood attack by sending the RST packet when
it receives SYN packet without systemID or unregistered systemID.

The system also adds additional security by placing Communication authentication host (CAH) at the
middle by moving point of attack to CAH. Though it might look CAH is vulnerable to SYN flood
attack, CAH uses intelligent decision strategies at the first place to avoid SYN flood attack. After
performing authentication CAH performs a clean handover to CH for IH and creates proper
environment for CH and IH to communicate with each other.

Though the proposed system is implemented only for console based gaming systems like Xbox,
PlayStation etc, its functionality can be later implemented in real-time web applications and other
systems too.

41

10. LIST OF FIGURES

Illustration Index
 Figure 1: TCP/IP 3-Way Handshake...7
 Figure 2: TFO Cookie exchange...8
 Figure 3: TCP Fast Open 3-Way Handshake..9
 Figure 4: CAH Database Version..10
 Figure 5: IH Database Version..10
 Figure 6: CAH's Database...11
 Figure 7: IH's Database...11
 Figure 8: CAH ifconfig...13
 Figure 9: IH ifconfig...13
 Figure 10: CH ifconfig..14
 Figure 11: IH system ID request...15
 Figure 12: CAH opening port for authentication..15
 Figure 13: IH sending SYN packet with SystemID..15
 Figure 14: Wireshark packet capture of SYN packet with payload..16
 Figure 15: IH sending its IK to CAH..16
 Figure 16: Wireshark capture of IH’s IK...17
 Figure 17: CAH after receiving IK...17
 Figure 18: Screenshot capture of CAH sending welcome packet to IH...18
 Figure 19: IH receiving the welcome message after successful authentication......................................18
 Figure 20: Port status of CAH when there is successful authentication...19
 Figure 21: Unsuccessful authentication at IH end..19
 Figure 22: Unsuccessful authentication at CAH end..19
 Figure 23: Packet capture of the RST packet sent by CAH to IH...19
 Figure 24: Port status of CAH after unsuccessful authentication...20
 Figure 25: IH generating its IK and sending the Encrypted IK to CAH...20
 Figure 26: CAH receiving the encrypted IK and decrypting it...21
 Figure 27: CAH generating its IK and sending the Encrypted IK to IH...21
 Figure 28: IH receiving the encrypted IK and decrypting it...22
 Figure 29: CAH updating its database after NEW IK is generated..23
 Figure 30: IH updating its database after NEW IK is generated...23
 Figure 31: CAH end when one more newik is generated...24
 Figure 32: Changes in CAH database when IH requests for one new IK...24
 Figure 33: IH end when one more newik is generated..25
 Figure 34: Changes in IH database when IH requests for one new IK...25
 Figure 35: CH getting connected to CAH and getting the Initiating key for verification of IH.............26
 Figure 36: CAH after sending the IK to CH...27
 Figure 37: IH receiving the IP address and port number details of CH..28
 Figure 38: IH after reaching CH...29
 Figure 39: CH after reaching IH...30
 Figure 40: Wireshark capture of TCP/IP 3 way handshake and data transfer between CH and IH........31
 Figure 41: IH sending hello packet to CH..31

42

 Figure 42: CH receiving hello message from IH..32
 Figure 43: CH requesting IH to send its IK to continue...32
 Figure 44: IH sending its session key or IK to CH for authentication..33
 Figure 45: CH displaying IK received from IH..33
 Figure 46: IH entering communication phase...34
 Figure 47: CH entering communication phase..35
 Figure 48: Port status of CH after successful IK verification...35
 Figure 49: IH after unsuccessful IK verification...36
 Figure 50: CAH after unsuccessful IK verification:...36
 Figure 51: Port status of CH after unsuccessful IK verification...37
 Figure 52: Compiling CAH program..38
 Figure 53: Compiling CAH program..38
 Figure 54: Compiling IH program..38
 Figure 55: Compiling IH program..38
 Figure 56: Compiling CH program...39
 Figure 57: How to enable TCP fast open in CAH...39
 Figure 58: How to enable TCP fast open in IH...39

43

11. REFERENCES
https://www.youtube.com/watch?
v=CMDBF84vSRk&index=4&list=PLPyaR5G9aNDvs6TtdpLcVO43_jvxp4emI https://
www.youtube.com/watch?
v=Ts8eXOkx8TE&list=PLPyaR5G9aNDvs6TtdpLcVO43_jvxp4emI&index=5

https://www.youtube.com/watch?
v=DboEGcU6rLI&index=6&list=PLPyaR5G9aNDvs6TtdpLcVO43_jvxp4emI
http://www.kitebird.com/mysql-book/ch06-3ed.pdf
https://www.youtube.com/watch?v=jACHG6tZakw&t=1159s
https://www.youtube.com/watch?v=vgs1eQJ1avs
https://codereview.stackexchange.com/questions/126812/multithreaded-client-socket
https://www.geeksforgeeks.org/computer-network-tcp-3-way-handshake-process/
https://lwn.net/Articles/508865/

https://stackoverflow.com/questions/5791860/beginners-socket-programming-in-c

https://stackoverflow.com/questions/30079248/how-to-activate-the-tcp-fast-open-in-linux

https://blog.wasin.io/blog/2016/12/26/how-to-enable-fast-tcp-open-on-ubuntu.html

https://c-program-example.com/2012/04/c-program-to-encrypt-and-decrypt-a-password.html

44

https://blog.wasin.io/blog/2016/12/26/how-to-enable-fast-tcp-open-on-ubuntu.html
https://stackoverflow.com/questions/30079248/how-to-activate-the-tcp-fast-open-in-linux
https://stackoverflow.com/questions/5791860/beginners-socket-programming-in-c
https://lwn.net/Articles/508865/
https://codereview.stackexchange.com/questions/126812/multithreaded-client-socket
https://www.youtube.com/watch?v=vgs1eQJ1avs
https://www.youtube.com/watch?v=jACHG6tZakw&t=1159s
http://www.kitebird.com/mysql-book/ch06-3ed.pdf
https://www.youtube.com/watch?v=DboEGcU6rLI&index=6&list=PLPyaR5G9aNDvs6TtdpLcVO43_jvxp4emI
https://www.youtube.com/watch?v=DboEGcU6rLI&index=6&list=PLPyaR5G9aNDvs6TtdpLcVO43_jvxp4emI
https://www.youtube.com/watch?v=Ts8eXOkx8TE&list=PLPyaR5G9aNDvs6TtdpLcVO43_jvxp4emI&index=5
https://www.youtube.com/watch?v=Ts8eXOkx8TE&list=PLPyaR5G9aNDvs6TtdpLcVO43_jvxp4emI&index=5
https://www.youtube.com/watch?v=Ts8eXOkx8TE&list=PLPyaR5G9aNDvs6TtdpLcVO43_jvxp4emI&index=5
https://www.youtube.com/watch?v=CMDBF84vSRk&index=4&list=PLPyaR5G9aNDvs6TtdpLcVO43_jvxp4emI
https://www.youtube.com/watch?v=CMDBF84vSRk&index=4&list=PLPyaR5G9aNDvs6TtdpLcVO43_jvxp4emI

	1. ABSTRACT:
	2. INTRODUCTION
	2.1 OBJECTIVE OF THE PROJECT
	2.2 PROJECT INTRODUCTION

	3. DOS AND DDOS ATTACK ON TCP/IP BASED SYSTEMS
	3.1 DOS ATTACK
	3.2 DDOS ATTACK
	3.3 TYPES OF DDOS and DOS ATTACKS
	3.4 PlayStation AND XBox CHRISTMAS SEASON DDOS ATTACK
	3.5 PROPOSED SOLUTION FOR THE DDOS ATTACK ON CONSOLE BASED SYSTEMS

	4. TCP/IP 3 WAY HANDSHAKE AND TCP FAST OPEN
	4.1 TCP/IP 3 WAY HANDSHAKE
	4.2 TCP FAST OPEN AND APPLICATION IN THE PROJECT

	5.MYSQL DATABASE
	5.1 APPLICATION IN PROJECT
	5.2 MYSQL API in CAH
	Code Snippets

	5.3 MYSQL API in IH
	Code Snippets

	6. PROJECT EXPLANATION
	6.1 AUTHENTICATION PHASE
	Code Snippets for CAH
	Code Snippets for IH
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets

	6.2 KEY GENERATION PHASE
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets

	6.3 HANDOVER PHASE:
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets

	6.4 COMMUNICATION PHASE
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets

	7 APPENDIX
	8. FUTURE IMPROVEMENTS
	9. CONCLUSION
	10. LIST OF FIGURES
	11. REFERENCES

