‘] UNIVERSITY OF
X% A L RT

PROJECT REPORT ON
DDOS ELIMINATION PROOF OF CONCEPT

SUBMITTED BY

STUDENT NAME:GANESH RAMASAMY
MENTOR NAME:LEONARD ROGERS

ACKNOWLEDGEMENT

A great deal of time and effort has been spent in completing this project. Several special people have
guided me and have contributed significantly to this effort and so this becomes obligatory to record my
thanks to them.

I thank Prof.Leonard Rogers, my mentor for constantly guiding me in completing this project.
Starting as a novice programmer, he helped me to transform into an expert in C programming by
guiding me to use Mysql api in C and other encryption libraries. He also helped me to gain in-depth
knowledge about Linux operating system. Now I can boast about myself that I am an expert in both
Debian and Fedora Linux distributions.

I solemnly express my heartiest gratitude to our Program director Dr.Mike MacGregor for giving me
this wonderful opportunity to experiment this project.

Table of Contents

L ABSTRACT ettt ettt ettt e st s b e a e e s bt et e s at e s bt et e eat e s bt et e eate st e e s abeesabeenats 1
2. INTRODUGTION.ciitiitiiieniterteeteniteste ettt et st essestesst e besste s st e ssesasesuteseesesseesseeessaeessteesnseesnseenns 3
2.1 OBJECTIVE OF THE PROJECT ..ottt ettt st sttt e sae et stesaeesseesnee s 3
2.2 PROJECT INTRODUCGTION.......toittitittiiententtetestesreeresitesstessestesseesseseesseesseessseesmsessnseesnsees 3

3. DOS AND DDOS ATTACK ON TCP/IP BASED SYSTEMS.....cooiotiiiiinienereeieee et 4
3.1 DOS ATTACK ...ttt ettt ettt et e sae e bt et s st e be et e s st e s bt s besmtesbeebesaee st easeentesseenseenasees 4
3.2 DDOS ATTACK ... ettt e st et e et e b e e st e s bt e be s st esbeebeentesaeesabeenaseas 4
3.3 TYPES OF DDOS and DOS ATTACKS.....cutotiieieetertertesteteetesieestesite st et te s sesaeesseesaesnee s 4
3.4 PlayStation AND XBox CHRISTMAS SEASON DDOS ATTACKcocevirvierieenienieereeeenn 5
3.5 PROPOSED SOLUTION FOR THE DDOS ATTACK ON CONSOLE BASED SYSTEMS....... 5

4. TCP/IP 3 WAY HANDSHAKE AND TCP FAST OPEN.......coiiiiiiriiieienteieetesteieete sttt 7
4.1 TCP/IP 3 WAY HANDSHAKE.......oootiitiiententeteetentee sttt sttt seeete s st essesaeesseesneenneeeanees 7
4.2 TCP FAST OPEN AND APPLICATION IN THE PROJECT........cocteitriinieenieneenieesiee e 7

5. MY SQL DATABASE. ...ttt ettt ettt ettt st s st et st s st et s e sbt e beeabesaaeessaeesmbeeenseesnneas 10
5.1 APPLICATION IIN PROJECT ... ettt ettt sttt et sae st st e st e st essaaeesaaesaee s 10
5.2 MYSQL APLIN CAH. ..ottt sttt ettt et sa et sb et saeesbe e e e st e e smaeesmneeennees 12
(@0 Ta () 111 0] 1] TSSO PPSPRRRPPP 12

5.3 MY SQL APLIN THu.coiiiiiiiiiieieeeteet ettt sttt st sa et s e b b s bt esneenee 12
(@0 Ta () 111 0] 1] TP PPRPRRRRPP 12

6. PROJECT EXPLANATION......oiittetiititenteieeteettesteete st et st et st e st ssesatesseesesmeessesaneesnneesnseesnnees 13
6.1 AUTHENTICATION PHASE.... oottt ettt ettt et ettt ettt et sae e 13
Code SNIPPetS fOr CAH....couiiiiiiieeieeteee ettt sttt e sttt s et e s bt e saae s sbeeesnneas 14
Code SNIPPELS fOI TH......iiciieiiieiiicieeieeeteee ettt ettt eete e eeesb e e s saeebeessaessseesssesssaeeensseessnssens 15
COAR SIUPPLLS....eiiteiiieeieetteete ettt et e et e bt e st e e bt e st e s beesateesbeesabesabeesabeesseesabesaseesabesnsteesnseeesnnses 15
(@0 Ta () 111 0] 1] TP USRS PPRPRR PP 16
COAR SIUPPELS....eiiteiiieeieeiteete ettt et e st et e st e e ste e st e s beesate e bt e ssbe s beesabeesseesasesaseesaseensteessseeesnnses 17
(@0 Ta () 111 0] 1] TP PPRPRRRRPP 18

6.2 KEY GENERATION PHASEootititieteteteetete ettt sttt ae v s e st s e st esse s e e smneeeanee 20
(@0 Ta () 111 0] 1] TP U SRRRPTPPRPRRRPPP 20
COAE SIUPPLLS....eeeteiiieeieeiteete ettt et e et et e st e e bt e st e s beesate e bt e sabe s beesabeesseesabesssaesaseensteesnseeesnnses 21
(@0 Ta () 111 0] 1] TP PPRPRRRRPP 22
COAR SIUPPLLS....eiiteiiieeieetteete ettt et e et e bt e st e e bt e st e s beesateesbeesabesabeesabeesseesabesaseesabesnsteesnseeesnnses 22
(@0 Ta () 111 0] 1] TP PPRPRRRRPP 23
COAR SIUPPLLS....eiiteiiieeieetteete ettt et e et e bt e st e e bt e st e s beesateesbeesabesabeesabeesseesabesaseesabesnsteesnseeesnnses 23
(@0 Ta () 111 0] 1] TP U SRRRPTPPRPRRRPPP 24
COAR SIUPPLLS....eiiteiiieeieetteete ettt et e et e bt e st e e bt e st e s beesateesbeesabesabeesabeesseesabesaseesabesnsteesnseeesnnses 25

6.3 HANDOVER PHASE:.....ootitiiiteteeetee ettt ettt sttt sttt st sttt be et st et e e 26
COAR SIUPPLLS....eiiteiiieeieetteete ettt et e et e bt e st e e bt e st e s beesateesbeesabesabeesabeesseesabesaseesabesnsteesnseeesnnses 26
(@0 Ta () 111 0] 1] TP PPRPRRRRPP 27
COAR SIUPPLLS....eiiteiiieeieetteete ettt et e et e bt e st e e bt e st e s beesateesbeesabesabeesabeesseesabesaseesabesnsteesnseeesnnses 28
(@0 Ta () 111 0] 1] TP PPRPRRRRPP 29
COAR SIUPPLLS....eiiteiiieeieetteete ettt et e et e bt e st e e bt e st e s beesateesbeesabesabeesabeesseesabesaseesabesnsteesnseeesnnses 30

6.4 COMMUNICATION PHASE ..ottt ettt sttt ettt et s ettt e bt et saaesbe e saneesans 31

COAE SIUPPELS....eeeuieiiieeieeitteeieerte et et e ettt e st e e teesteessseeteessteesseesssassseesssaesseesssesseesssessseesnsssessnssens 31

(O0Ta () 111 0] 0T T RSP PRTRRRRP 32
COAE SIUPPELS....eeeeieiiieeieeitteeieeite et et e s te e st e e teesteessseeseessseesseesssesssaessseesseasssessseesssessseesnsssessnssees 32
(O0Ta () 111 0] 0T T TSP 33
COAE SIUPPELS....eeeuieiiieeieerieeeieeite et et e e bt esteesteesteesssesteessseesseeassassaesssaesseesssessseesssessseesnsssessnssens 34
(O0Ta () 111 0] 0T T RSP PSTRR PR 34
COAE SIUPPELS....eeeeieiiieeieeitteeieeite et et e s te e st e e teesteessseeseessseesseesssesssaessseesseasssessseesssessseesnsssessnssees 35
7 APPEINDIX ...ttt ettt et e st et et e st et e e te st e et e s sesse e be e st esseenseensesseanseentesseenseensessseensseennseannseas 38
8. FUTURE IMPROVEMENTS......oottititrtentereeteetentt ettt ettt et sve et st e s st et st esbeeaesasesaeenns 40
9. CONCLUSION......ctitietestteteetesteesteete st esteste st esseestesseessesssesseessesssasseessasssesseesesssesseensesssesseesnsesssseenns 41
10. LIST OF FIGURES.......oootittiienteeeteet ettt ettt ettt et st sa et be et st e s et st st e s e sbe st e saeebeeanes 42
11. REFEREINCES. ...ttt ettt ettt et ettt s e sa et e st esae et e entesseesesssesseensesssenseensesnssens 44

1. ABSTRACT:

The proposed project is mainly based on DDOS (Distributed Denial of services) attack which was
performed by hacker group lizard-squad in December 2014 Christmas season. Hacker group were
successfully able to perform DDOS attack on XBox, Playstation servers such that gamers were unable
to enjoy their Christmas break.

The proposed system for eliminating DDOS uses three host Initiating Host (IH) client, Communiation
Authentication Host (CAH) which sits in the middle between server and client acting as authentication
medium and Communication Host (CH) which is the server.

The systems divides the TCP/IP 3 way handshake into two systems- one performing the authentication
and the other performing connection-oriented communication. Usually in a client-server model, client
and socket creates a socket to communicate with each other. But in the proposed project, there is an
authenticating server sitting in the middle between client and server. The main purpose of CAH is to
authenticate the client at the first place and eliminate DDOS at its end such that the server sitting at the
other end is not vulnerable to DDOS attack.

CAH uses two parameters systemID and Initiating Key (IK) to authenticate the client or attacker. If the
CAH finds that the client is not authentic or spoofed one, it closes its socket with the client and will not
share the details of original server with the client. In this way client will never know who is the server
and its TCP syn flood attack will be in vain.

The CAH can find the IH’s authenticity by the SYN packet IH is sending. Usually in a TCP/IP 3 way
handshake SYN packets are without payload and data transfer starts only after ACK from client is
received. But in the proposed system, client or IH is programmed in such a way that it has to include its
systemID in SYN packet it is sending to CAH.

If the attacker sends TCP SYN flood without system ID or improper system ID, CAH finds it at the
first place and closes it listening socket and does not share any details about the server to the client. In
this way DDOS is eliminated by CAH at the first place.

After the client sends proper SYN packet with registered systemID, CAH will ask for the initiating key
IH has registered with it. If the client sends Initiating key and System ID, CAH will perform database
lookup and decides whether to listen or drop the connection.

Once when CAH finds the IH is authentic, CAH will generate a new Initiating key with IH such that IH
will use it next time for authenticating with CAH. In this way CAH performs another authentication to
eliminate DDOS.

After IK generation, CAH will get connection details from CH and it will send it to IH. It will also send
the IK it has generated to CH such that it will use it to authenticate IH once again. IH after receiving
connection details from CAH will create one more socket to listen to CH while CH will create a socket
based on the connection details it has sent to communicate with IH.

IH performs normal TCP/IP 3 way handshake to connect to CH. After it reaches CH, IH will send its
IK to CH. CH will perform a look-up whether the IK sent by CAH and IH matches with each other or
not. If it matches, it will start communicating with TH. If not, it will close the socket for IH abruptly
ending the connection even before data transfer. In this way, the proposed system performs DDOS
elimination.

In order for the host to have multiple sockets in a single program fork() process was used. It is evident
that web servers like Apache uses fork() to handle multiple clients. Similarly it is used in this project to
handle multiple sockets for multiple connections. Fork() usually creates one parent process and
multiple child process which is multiprocessing capability of operating system.

2. INTRODUCTION

2.1 OBJECTIVE OF THE PROJECT

The main aim of this project is to eliminate Distributed denial of services on console based system such
as SONY, Xbox, PlayStation etc. Though there is possibility to expand the project to other types of
continuous on-line communication systems, it is primarily designed for the console based systems.

2.2 PROJECT INTRODUCTION

The proposed project uses TCP/IP version 4 and splits the TCP/IP 3 way handshake into two systems.
The first systems performs modified three way handshake and acts as authentication medium by
generating session key for the second system and the second system acts as connection oriented
communication medium.

Though there is supposed to be only server and client in every server-client based communication
systems, the above project has three hosts namely Initiating host (IH) (XBox based console client),
Communication authentication host (CAH) (authenticating server) which performs authentication and
handover to original communicating server and Communication host (CH) (original communicating
Xbox server).

The above project uses TCP/IP based communication sockets with TCP Fast Open enabled on
Communication authentication host and Initiating host. For database entries and lookups, both
Communication authentication host and Initiating host uses mysql database.

3. DOS AND DDOS ATTACK ON TCP/IP BASED SYSTEMS

3.1 DOS ATTACK

For the basic Denial of service attack on a server, client (attacker) sends SYN flood to the server
thereby utilizing the server resources fully such that server cannot address clients anymore. This can be
explained in TCP/IP 3 way handshake as follows, server usually opens its listening socket on a
particular IP address and port number for the client to listen on such that for http service for
www.google.com can be as 23.34.56.67 (IP) 80 (port number) and for https service for
www.google.com can be as 23.34.56.67 (IP) 443 (port number).

When server receives number SYN packet on its listening socket, it has to acknowledge all the SYN
packets before processing the upcoming packets leaving to half open connections due to the crash of
server. In this way an attacker by sending TCP SYN flood brings down the services of server.

3.2 DDOS ATTACK

Usually DOS attacks originates from a single attacker while DDOS attacks originates from multiple
computers sitting on the internet. Rather than a single system sending SYN flood attack to the server,
multiple systems sends the SYN flood attack to the server thereby utilizing the server resources and
stopping the services from server. These multiple attackers may be compromised computer systems like
botnets which is running one or more bots to perform DDOS attack.

An attacker who is the controller might send malware or any infectious program to multiple users and
introduce bots to their systems. In this way many computers have bots installed and at a particular time,
the attacker might stimulate all the system as a network(botnet) to perform DDOS attack. In this way it
is understandable that DDOS attacks are more powerful than DOS attacks.

3.3 TYPES OF DDOS and DOS ATTACKS

There are 3 types of DDOS and DOS attacks. The first one is volume based attacks which involves
UDP, ICMP and other spoofed packet floods. The main aim of this attack is to saturate the bandwidth
of server. Magnitude of attack is measured in bits per second (bps).

The second one is Application layer based attacks which includes the attack based on vulnerabilities
present in Windows, OpenBSD and Apache. Magnitude of attack is measured in requests per second
(rps). The third type is protocol based attacks which includes SYN floods attack. Magnitude of attack is
measured in packets per second (pps). The proposed project majorly involves the prevention of
protocol based DDOS attacks.

4

http://www.google.com/
http://www.google.com/

3.4 PlayStation AND XBox CHRISTMAS SEASON DDOS ATTACK

In December 2014, hacker group named lizard-squad did a DDOS attack on Xbox live and Playstation
network such that gamers were unable to use the gaming console during the peak Christmas season.
The proposed project presents a solution to eliminate DDOS attacks on Console based systems such as
XBox, PlayStation etc.

3.5 PROPOSED SOLUTION FOR THE DDOS ATTACK ON
CONSOLE BASED SYSTEMS

The solution uses a unique system ID for each console users and a unique session key or Initiating key
for each users. For each time a user tries to access the gaming server has to provide its unique system
ID which was provided when they buy the gaming console box. Though the unique SYSTEM ID
remains same for each login requests but the Initiating key varies all the time for login requests.

Initially the console client (IH), sends a SYN packet with its unique system ID to CAH thinking it is
sending to original server (CH) but IH is unaware of CAH. CAH holds the database with System ID
and Initiating key of all users. CAH uses TCP Fast open TFO cookies to check whether the client with
system ID was already registered with it or not. If not registered, it will send a RST packet.

If registered, it will ask for the Initiating key from client. TFO based cookies exchange between client
(IH) and server (CAH) can detect IP spoofing as well thereby preventing DDOS attack from IP spoofed
attacker. Then the console client will send its Initiating key which was given to it initially while
registration.

If both the system ID and Initiating key matches with CAH’s database, CAH will start communicating
with TH. If not, RST packet will be sent by CAH to IH and it will close its listening socket and will not
provide any details of original communicating host(CH) to client (IH).

In this way DDOS attack is eliminated from original server (CH). After successful authentication, both
the CAH and IH will enter into IK generation phase. During this phase, IH will first send its randomly
generated encrypted Initiating key to CAH.

Once when CAH receives it, it generates its own Initiating key and concatenates its IK with ITH’s IK
and sends the newly generated encrypted IK to IH and both IH and CAH registers the newly generated
IK to its newlK field in database while the current IK used for authentication will be moved to
currentIK field.

The newly generated IK is used as authentication key for next session and it is used for verification of
client (IH) by server communication host (CH). Both the new IK and current IK are stored in database
of IH and CAH such that it can be used by system administrators for constantly monitoring the unusual
activities.

Once when the IK is generated, CAH sends the session IK to the original server Communicating Host
(CH) sitting at its back. The CH, after receiving the Initiating Key, will send its IP address and port
number it is willing to offer its service on to CAH, which the CAH will send to IH.

IH after receiving the connection oriented details creates a client socket and starts communicating with
CH. Before accessing the services, CH requests the IH for the IK which it has registered with the CAH.
IH will send the Initiating key for session if CH find it matches with the one sent by CAH, it starts
providing the services to IH. If not, it will close its listening socket and asks IH to re-register with
CAH.

4. TCP/IP 3 WAY HANDSHAKE AND TCP FAST OPEN

4.1 TCP/IP 3 WAY HANDSHAKE

In a client-server based communication systems, TCP/IP 3 way handshake works as follows. Client
sends a SYN packet to the server, server then acknowledges the SYN packet with SYN/ACK and then
client acknowledges the server by sending ACK packet back to the server and the communication
socket is established then.

TCP
Chent

SYN/ACK

Client Ports

Figure 1: TCP/IP 3-Way Handshake

4.2 TCP FAST OPEN AND APPLICATION IN THE PROJECT

In the proposed project, when IH requests for accessing the services from CH, sends a SYN packet.
Original users might send SYN packet but the attackers might send SYN flood and in order to avoid
this, the proposed project makes IH programmed in such a way that it includes its system ID in its SYN
packet.

In normal TCP/IP sockets it is impossible to send data with SYN packet because windows/linux kernel
allows data transfer between sockets only after ACK from client. In order to intelligently send TCP
SYN packet with payload in it a new RFC 7413 called TCP Fast open is used.

TCP fast open allows to use payload in SYN packet and it uses TCP based fast open cookies(TFO)
exchanges between client and server. When a new user is buying a XBox console, his XBox console
would have already exchanged encrypted TFO cookies with CAH and when an attacker tries to spoof
the CAH with system ID, CAH will find it at the first place, though it will ask for Initiating key from
the attacker, it will close its listening socket after receiving it.

Even after TFO cookie exchange, if system ID and Initiating key of IH doesn’t match, CAH will close
its listening socket preventing access to original Communicating host(CH) thereby eliminating DDOS
on server such that authentic users can still access thereby there are no disruption of services.

Initially when the new xbox console client registers with CAH the flow diagram is seen below. It is
usually done before user buys the XBox console such that attacker without registered XBox console
client kit cannot perform DDOS attack.

Client Server

SYN

. Wi i
Ith copkje request Server TCP

‘th cookie } generates cookie,
i

SYN-ACK, W based on client IP
Client TCP

caches cookie \|_AC

K(comp|
for later use Petes 3whs)

Normal TCP data
flow can follow. ..

Figure 2: TFO Cookie exchange

After the TFO cookie is cached on XBox client (IH) from CAH, XBox console will be ready for sale
and unique system ID and initial IK will be provided by System administrators from XBox and
PlayStation. Now after system ID is allocated, IH is programmed in such a way that SYN packet it is
sending will have its system ID as payload.

Hacker sending SYN floods without system ID or spoofed SYN floods with system ID will make the
CAH to close its listening socket, and prevents the hacker from getting server’s (CH) IP address and
port number to perform DDOS on original server.

Client Server

ACK acknowledges | SYN, i '
SYN and data —f— th cooki

. Server TCP validates
Ty cookie, passes data

SYN-ACK to application

A Server can send
Cx responses before
receiving client ACK

Normal TCP data
flow can follow...

Figure 3: TCP Fast Open 3-Way Handshake

5.MYSQL DATABASE

5.1 APPLICATION IN PROJECT

Both Initiating host and Communication Authentication host uses mysql database for storing its
initiating key or session key.

The below screenshots shows the version of mysql database in CAH and IH

ganesh@ganesh-X510UAR:~% mysql --version
mysql Ver 14.14 Distrib 5.7.24, for Linux (x86 64) using EditLine wrapper

ganesh@ganesh-X510UAR: ~$ [}

Figure 4: CAH Database Version

panesh@Initiatinghost:~$ mysql --version
ysql Ver 14.14 Distrib 5.7.25, for Linux (1686) using EditLine wrapper

panesh@Initiatinghost:~5

Figure 5: IH Database Version

Initially when XBox or PlayStation console is brought, the CAH has the system ID and Initiating key
of the console box. CAH has four fields in its database- systemID,nextIK, currentIK, previousIK.
During the sale stage, CAH has the nextik and SystemID field initialised while currentik and previousik
fields will be filled up everytime when the system is generating a new IK.

For IH, there is three fields, nextik, currentik, previousik. The systemID has to be manually entered by
every client (IH) since it has to be sent over SYN packet and since it is uniquelD, it is vulnerable when
present over database. Below screenshots show how the database looks at both CAH and IH during
initial stage.

10

Entél

Welcome to the MySOL monitor. Commands end with ; or \g.
Your MySOL connection id is 5

Server version: 5.7.24-8ubuntu®.18.04.1 (Ubuntu)

Copyright (c) 2808, 2018, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective
DWNETS .

Type 'help;' or "\h' for help. Type '\c¢' to clear the current input statement.

mysqgl> use cah;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed

mysql> select *from project;

e e T Fommmmmm - R +

| systemid | previousik | currentik | nextik

e e Fommmmmm - R -
1234 | NULL | NULL | 19152915 |

e e R #o--mmmm - #---------- +

1 row in set (9.68 sec)

mysql>]
Figure 6: CAH's Database

mysql> use ih;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysgl> select *from project;

1 row in set (0.88 sec)

mysql>
Figure 7: IH's Database

The above screenshot shows how the database at both IH and CAH looks during sales stage of gaming
console box. Once when the client starts using the product, when newik is generated, nextIK field value
goes to currentik and the newIK generated will go to nextIK field while the IK in currentIK will go to
previousIK field. The values in database are used as references by database administrator to check for
any abnormalities.

11

5.2 MYSQL API in CAH

Code Snippets

static char host = "localhost"; *Connection parameters for connecting to mysql. Localhost CAH. */
static char *user = "ganesh"; *Connection parameters for connecting to mysql. Username*/
static char *pass ="1234"; *Connection parameters for connecting to mysql. Password*/
static char *dbname = "cah";*Connection parameters for connecting to mysql. Tablename*/
unsigned int port = 3306;*Connection parameters for connecting to mysql. Portnumber*/
static char *unix_socket = NULL;*Connection parameters for connecting to mysql.*/
unsigned int flag = 0;*Connection parameters for connecting to mysql.*/
MYSQL *conn; *Mysql Connection variable*/
MYSQL_RES *res; *Mysql Connection result variable*/
MYSQL ROW row;*Mysql Connection row variable*/
conn =mysql init(NULL); *Initializing the mysql connection*/
if(!(mysql _real connect(conn,host,user,pass,dbname,port,unix socket,flag))) *Conditional
statement for mysql Connection*/
{
fprintf(stderr,"\n error: %s[%d]\n",mysql error(conn),mysql _errno(conn)); * If
connection is not possible after using all the connection parameters, print couldn’t connect error
message */
exit(1l);
}

5.3 MYSQL API in IH

Code Snippets

MYSQL *conn= mysql init(NULL); *Initializing the mysql connection*/

if(mysql real connect(conn,"localhost","root","1234","ih",3306,NULL,0)==NULL) *Connection parameters
for connecting to mysql. */

{

fprintf(stderr,"%s\n",mysql _error(conn)); * If connection is not possible after using all the
connection parameters, print couldn’t connect error message */

exit(1l);

}

12

6. PROJECT EXPLANATION

6.1 AUTHENTICATION PHASE

This is the initial phase of the project. During this phase, the console box client Initiating host (IH) will
initiate a connection to Communication host with an IP address and port number . [H will be thinking it
is communicating with original server but the SYN request of IH with its systemID will go to the
Communication Authentication Host (CAH).

CAH after receiving the systemID of IH gets the Initiating key also from IH and performs a database
lookup to authenticate the IH and moving forward to further phases.

Below are the code snippets and screenshots for this phase. Before proceeding to each phase
explanation screenshots, below are the IP configuration for all three hosts (IH,CAH,CH).

ganesh@ganesh-X510UAR:~$ ifconfig vmnet8

vmnet8: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 15608
inet 172.16.212.1 netmask 255.255.255.8 broadcast 172.16.212.255
ineté feB80::250:56ff:fecd:8 prefixlen 64 scopeid @x28<link=
ether 00:50:56:c0:00:88 txqueuelen 1688 (Ethernet)
RX packets 14171 bytes @ (8.0 B)

RX errors & dropped ® overruns 8 frame @
TX packets 598 bytes @ (0.0 B)
TX errors @ dropped ® overruns © carrier @ collisions ©

ganesh@ganesh-X510UAR:~$ |
Figure 8: CAH ifconfig

ganesh@Initiatinghost:~ op/Project$ ifconfig

- Link encap: Ethernet Hhladdr 08:8c:29:f8:16:25
inet addr:172.16.212.135 Bcast:172.16.212.255 Mask:255.255.255.0
ineté addr: fe8@::909b:b@ec:5c3b:bbec/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1508 Metric:1

RX packets:5962 errors:1 dropped:® overruns:@ frame:@
TX packets:5105 errors:® dropped:® overruns:@ carrier:®
collisions:® txqueuelen:1086

RX bytes:5309464 (5.3 MB) TX bytes:515172 (515.1 KB)
Interrupt:19 Base address:0x2800

Figure 9: IH ifconfig

13

hanesh@Communicationhost:~/Desktop/Projects ifconfig
Link encap:Ethernet HWaddr 00:0c:29:50:5f:78
inet addr:172.16.212.146 Bcast:172.16.212.255 Mask:255.255.255.0
inet6 addr: fe80::7862:b32b:9a9:b593/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1580 Metric:1

RX packets:7067 errors:4 dropped:® overruns:® frame:®
TX packets:6064 errors:0 dropped:® overruns:® carrier:0
collisions:® txgueuelen:16606

RX bytes:6477377 (6.4 MB) TX bytes:565185 (565.1 KB)
Interrupt:19 Base address:0x20080

Figure 10: CH ifconfig

Code Snippets for CAH

int main(int argc, char argv[]) *Main program with argument passing enabled at terminal*/
{
struct sockaddr in server addr,client addr,cli_addr; * Structure initialisation for server address and
client address*/
if(argc<0) * if the program is executed without passing any argument at terminal */
{
fprintf(stderr,"ERROR,no port provided \n");* Since only port number is passed at CAH end,
if it is not passed at terminal print the error no port number is provided */
exit(1);* Exit if true */
}
sock= socket(AF INET,SOCK STREAM,0); * Initialising the TCP socket to a variable sock */
bzero((char*) &server addr, sizeof(server addr)); * Clearing the memory of variable server address
*/
portnumber = atoi(argv[1l]); * passing the port number as variable */
server_addr.sin family=AF INET; * Initializing the server address as INET family */
server _addr.sin addr.s addr= INADDR ANY; * Accepts any address from INET family as server address
*/
server _addr.sin port=htons(portnumber); * Accepts any portnumber for server and converting it from
unsigned short integer to network format */
int qlen=5; * Buffer length for TCP Fast open connection */
setsockopt(sock,SOL TCP,TCP_FASTOPEN,&qlen,sizeof(qlen));* setting the socket as TCP Fast open socket
with protocol TCP */
if (bind(sock, (struct sockaddr *)&server addr,sizeof(server _addr))<0) *Binding the socket with
server address and port number */
{
error("Binding ERROR"); * If there is problem in binding, print binding error */
}
listen(sock,5); * Specify the number of clients can listen at a time.
newsock=accept(sock, (struct sockaddr *)&client addr,&clilen); *Initialize the listening socket to the
variable newsock */
clilen = sizeof(client addr); * Client address is initialized to variable clilen */

14

Code Snippets for IH

struct sockaddr _in server addr; * Initializing the structure for server address */

struct hostent *serverd; *Initialising the structure to a variable for entering the server address */
sock=socket (AF_INET,SOCK STREAM,0); * Create TCP socket and initializing to a variable sock */

serverd = gethostbyname(argv[1l]);* getting the server address from client as command line argument */
portnumber = atoi(argv[2]);* getting the server portnumber to connect to as command line argument */
bzero((char*)&server addr,sizeof(server _addr));* clearing the memory of server address variable */
server _addr.sin family=AF INET;* specifying the server address as INET family */

bcopy((char *)serverd->h addr, (char *)&server addr.sin addr.s addr,serverd ->h length);* copying the
server parameters */

server _addr.sin port=htons(portnumber);* specifying the server portnumber and converting it from
unsigned short integer to network format */

ganesh@Initiatinghost:~$ cd Desktop/Project/
ganesh@Initiatinghost:~/Desktop/Pro
Enter your system ID:I

jectS ./itest 172.16.212.1 8900

Figure 11: IH system ID request

Code Snippets

printf("Enter your system ID:");* Print statement for getting client’s system ID */

bzero(buffer,255); * Clears the memory of buffer */

fgets(buffer,255,stdin);* gets the system ID as standard input */
sendto(sock,buffer,sizeof (buffer),MSG FASTOPEN, (struct sockaddr in *)&server addr,sizeof(server addr));
*Sends the system ID over SYN packet using TCP FAST OPEN to CAH. */

ganesh@ganesh-X510UAR:~/Desktop/test$./ctest 8900

Figure 12: CAH opening port for authentication

ganesh@Initiatinghost:~/Desktop/Project$./itest 172.16.212.1 8988

Enter your system ID:1234
Enter your initiating key
Figure 13: IH sending SYN packet with SystemID

15

L 2 0.000077.. 172.16.212.1 172.16.212.135 TCP 74 8900 — 50792 [SYN, ACK] Seq=0 Ack=256 Win=28960 Len=0 MSS=1460 SACK_PERM=1 TSval=3877560500 TSecr=3427850535 WS=128

3 0.000676.. 172.16.212.135 172.16.212.1 TCP 66 50792 —~ 8900 [ACK] Seq=256 Ack=1 Win=29312 Len=0 TSval=3427850536 TSecr=3877560500
4 5.233485.. Vmware_c0:00:08 Vmware_f8:16:25 ARP 42 who has 172.16.212.135? Tell 172.16.212.1

55.233699.. Vmware_f8:16:25 Vmware_c0:00:08 ARP 42172.16.212.135 is at 00:0c:29:f8:16:25

6 5.235797.. Vmware_f8:16:25 Vmware_c0:00:08 ARP 42 who has 172.16.212.17? Tell 172.16.212.135

7 5.235805.. Vmware_c0:00:08 Vmware_f8:16:25 ARP 42 172.16.212.1 is at 00:50:56:c0:00:08

Window size value: 29200
[calculated window size: 29200]
Checksum: 0xb3be [unverified]
[Checksum Status: Unverified]
Urgent pointer: 0
- Options: (32 bytes), Maximum segment size, SACK permitted, Timestamps, No-Operation (NOP), Window scale, TCP Fast Open, No-Operation (NOP), No-Operation (NOP)
= TCP Option - Maximum segment size: 1460 bytes
+ TCP Option - SACK permitted
- TCP Option - Timestamps: TSval 3427850535, TSecr @
Kind: Time Stamp Option (8)

Length: 10
6636 72710 b3 be B0 00 02 04 05 b4 04 02 08 Oa Ko
40 00 00 00 00 01 03 @3 07 22 Ga 96 78 18 fb so9900 90Woaiias
5b 89 b2 ba 01 01 31 32 33 34 Ga 00 60 00 60 60 | 12 34

00 00 00 00 0O 00 00 0O 00 00 00 0O 00 00 00 6O

Figure 14: Wireshark packet capture of SYN packet with payload

The above screenshot shows the TCP syn packet sent from IH to CAH with systemID 1234 displayed
in the payload section.

ganesh@Initiatinghost: ~/Desktop/Project
ganesh@Initiatinghost:~, ojects ./itest 172.16.212.1 8900

Enter your system 1D:1234
Enter your initiating key :19152915
Figure 15: IH sending its IK to CAH

Code Snippets

printf("Enter your initiating key :");* Print statement for getting client’s Initiating key */
bzero(ba,255);* Clears the memory of variable ba */

fgets(ba,255,stdin);* gets the Initiating key as standard input */

n=write(sock,ba,strlen(ba));* send the initiating key entered by client to CAH over its socket */

16

77 458.3997.. 172.16.212.135 172.16.212.1 TCP 66 50798 — 8900 [ACK] Seq=256 Ack=1 Win=29312 Len=0 TSval=3428308917 TSecr=3878018880

- - 7550798 — 8900 =256 Ack=1 Win=29312 Len=9 TSval=3428313006 TSecr=3878018880
. 172.16.212.1 172. .135 TCP 66 8900 — 50798 [ACK] Seq=1 Ack=265 Win=29056 Len=0 TSval=3878022970 TSecr=3428313006

79 462. 4

80 462.4933.. 172.16.212.1 172.16.212.135 TCP 73 8900 — 50798 [PSH, ACK] Seq=1 Ack=265 Win=29056 Len=7 TSval=3878022974 TSecr=3428313006
81 462.4938.. 172.16.212.135 172.16.212.1 TCcp 66 50798 —~ 8900 [ACK] Seq=265 Ack=8 Win=29312 Len=0 TSval=3428313011 TSecr=3878022974

82 462.4944.. 172.16.212.135 172.16.212.1 TCP 70 50798 —~ 8900 [PSH, ACK] Seq=265 Ack=8 Win=29312 Len=4 TSval=3428313011 TSecr=3878022974
83 462.4945.. 172.16.212.1 172.16.212.135 TCP 70 8900 - 50798 [PSH, ACK] Seq=8 Ack=269 Win=29056 Len=4 TSval=3878022975 TSecr=3428313011
84 462.5377.. 172.16.212.135 172.16.212.1 Tcp 66 50798 — 8900 [ACK] Seq=269 Ack=12 Win=29312 Len=0 TSval=3428313054 TSecr=3878022975

85 462.5575.. 172.16.212.1 172.16.212.135 TCP 86 8900 — 50798 [PSH, ACK] Seq=12 Ack=269 Win=29056 Len=20 TSval=3878023038 TSecr=3428313054
1000 = Header Length: 32 bytes (8)

+ Flags: ©x018 (PSH, ACK)
Window size value: 229
[Calculated window size: 29312]
[window size scaling factor: 128]
Checksum: @x05ac [unverified]
[Checksum Status: Unverified]
Urgent pointer: 0
- Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps
+TCP Option - No-Operation (NOP)
+ TCP Option - No-Operation (NOP)
= TCP Option - Timestamps: TSval 3428313006, TSecr 3878018880
Kind: Time Stamp Option (8)

Length: 10
60 50 56 cO 00 68 00 ©c 29 T8 16 25 068 00 45 6O PV)y % E
00 3d 53 az 40 00 40 06 e6 6e ac 10 d4 87 ac 10 =500 n
d4 01 c6 6e 22 c4 6a fa a6 a8 49 56 e0 fa 80 18 n".j v
00 e5 05 ac 00 00 01 61 08 Oa cc 57 e7 ae e7 25 W %
df 40 31 39 31 35 32 39 31 35 @a @191529 15

Figure 16: Wireshark capture of IH’s IK

After receiving IK if it matches with its database, CAH will send welcome packet to IH. The screenshot
showing CAH generating welcome packet.

Figure 17: CAH dfter receiving IK

Code Snippets

bzero(buffer,255);* Clear the memory of variable buffer */
n = read(newsock,buffer,255);* Read the system ID sent by IH using CAH’s listening socket newsock */

ar=atoi(buffer);* Since the system ID from IH is obtained as string standard input, it is converted to
integer using atoi conversion */

bzero(bu,255);* Clear the memory of variable bu */
p=read(newsock,bu,255);* Read the Initiating key sent by IH using CAH’s listening socket newsock */

br=atoi(bu);* Since the Initiating key from IH is obtained as string standard input, it is converted
to integer using atoi conversion */

cr = atoi(row[0]); *Convert the string in mysql database at row 0 to integer using standard atoi
conversion */

dr=atoi(row[3]);* Convert the string in mysql database at row 3 to integer using standard atoi
conversion */

if(ar == cr & br == dr) * Condition if the input from IH and the data in CAH database matches each
other*/

{

er=write(newsock,message,strlen(message));* Write the message “WELCOME” to IH */

17

printf("\n%s\n\n",message);* Print the message to be written. */
}
else * Condition if the input from IH and the data in CAH database does not match with each other*/
{

fr=write(newsock,mas,strlen(mas));* Write the message “RESET” to IH */

printf("\n %s\n",mas);* Print the message to be written. */

79 462.4886.. 172.16.212.1 172.16.212.135 TCP 66 8990 —~ 50795 |ACK] Seq=1 ACK=265 W1N=29056 Len=0 TSval=38/80229/0 ISecr=3428313006
81 462.4938.. 172.16.212.135 172.16.212.1 TCcp 66 50798 — 8900 [ACK] Seq=265 Ack=8 Win=29312 Len=0 TSval=3428313011 TSecr=3878022974

82 462.4944.. 172.16.212.135 172.16.212.1 TCcp 70 50798 — 8900 [PSH, ACK] Seq=265 Ack=8 Win=29312 Len=4 TSval=3428313011 TSecr=3878022974
83 462.4945.. 172.16.212.1 172.16.212.135 TCP 70 8980 — 50798 [PSH, ACK] Seq=8 Ack=269 Win=29056 Len=4 TSval=3878022975 TSecr=3428313011
84 462.5377.. 172.16.212.135 172.16.212.1 cp 66 50798 — 8900 [ACK] Seq=269 Ack=12 Win=29312 Len=0 TSval=3428313054 TSecr=3878022975

85 462.5575.. 172.16.212.1 172.16.212.135 TCP 86 8900 —~ 50798 [PSH, ACK] Seaq=12 Ack=269 Win=29056 Len=20 TSval=3878023038 TSecr=3428313054
1000 .. = Header Length: 32 bytes (8)

+ Flags: 0x018 (PSH, ACK)

Window size value: 227

[Calculated window size: 29856]

[Window size scaling factor: 128]

Checksum: 0x2d4f [unverified]

[Checksum Status: Unverified]

Urgent pointer: @
- Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps
+ TCP Option - No-Operation (NOP)

+ TCP Option - No-Operation (NOP)

- TCP Option - Timestamps: TSval 3878022974, TSecr 3428313006

Kind: Time Stamp Option (8)

Length: 10
00 0c 29 T8 16 25700 50 56 cO 00 08 08 00 45 00 %PV E
00 3b 50 f2 40 00 40 06 e9 20 ac 10 d4 01 ac 10 P@-@
d4 87 22 c4 c6 6e 49 56 e@ fa 6a fa a6 bl 80 18 ".o.nIv]
00 e3 2d 4T 00 00 01 01 08 Oa e7 25 ef 3e cc 57 -0 % >W
e7 ae 57 65 6c 63 6f 6d 65 Welcom e

Figure 18: Screenshot capture of CAH sending welcome packet to I[H

ganesh@Initiatinghost:~/Desktop/Projects .fitest 172.16.212.1 8900
Enter your system ID:1234
Enter your initiating key :19152915

Welcome

Figure 19: IH receiving the welcome message dfter successful authentication

Code Snippets
n=read(sock,bc,255);* Read function for reading the message sent by CAH */

printf("\n %s\n\n\n\n",bc);* Print the message */

Port number 8900 on listening state at CAH end when authentication is success.

18

ganesh@ganesh-X510UAR:-$ netstat -a
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State

8 6 B.8.8.8:89e8 B.8.8.8:% LISTEN
8 e 6.8.8.8:982 B.8.8.8:% LISTEN
3] 8 localhost:mysqgl 8.0.0.8:% LISTEN

Figure 20: Port status of CAH when there is successful authentication

We can see that CAH is sending reset message and access denied message after unsuccessful
authentication.

Enter your system ID:4
Enter your initiating key :34

A

Access deniedAccess denied
Figure 21: Unsuccessful authentication at IH end

ganesh@ganesh-X510UAR:~/Desktop/test$./ctest 8968

Reset

Figure 22 Unsuccessﬁll authentication at CAH end

125 1298,850.. 172.16.212.135 172.16.212.1 TCP 34150804 - 8900 [SYN] Seq=0 Win=29200 Len=255 MSS=1466 SACK_PERM=1 TSval=3429149433 TSecr=0 WS=128 TFO=C

126 1298.850.. 172.16.212.1 172.16.212.135 TCP 74 8900 - 50804 [SYN, ACK] Seq=0 Ack=256 Win=28960 Len=0 MSS=1460 SACK_PERM=1 TSval=3878859397 TSecr=3429149433 WS=128
127 1298.850.. 172.16.212.135 172.16.212.1 TCP 66 50804 — 8960 [ACK] Seq=256 Ack=1 Win=29312 Len=0 TSval=3429149434 TSecr=3878859397

128 1302.806.. 172.16.212.135 172.16.212.1 TCP 69 50804 - 8900 [PSH, ACK] Seq=256 Ack=1 Win=29312 Len=3 TSval-3429153389 TSecr=3878859397

129 1302.806.. 172.16.212.1 172.16.212.135 TCP 66 8900 - 50804 [ACK] Seq=1 Ack=259 Win=29056 Len=0 TSval-3878863353 TSecr=3429153389

130 1302.810.. 172.16.212.1 172.16.212.135 TCP 718900 - 50804 [PSH, ACK] Seq=1 Ack=259 Win=29856 Len=5 TSval=3878863357 TSecr=3429153389

131 1302.810.. 172.16.212.1 172.16.212.135 TCP 66 8900 - 50804 [FIN, ACK] Seq=6 Ack=259 Win=29056 Len=0 TSval-3878863357 TSecr=3429153389

132 1302.810.. 172.16.212.135 172.16.212.1 TCP 66 50804 - 8900 [ACK] Seq=259 Ack=6 Win=29312 Len=0 TSval=3429153393 TSecr=3878863357

133 1302.810.. 172.16.212.135 172.16.212.1 TCP 70 50804 - 8900 [PSH, ACK] Seq=259 Ack=7 Win=29312 Len=4 TSval-3429153394 TSecr=3878863357

134 1302.810.. 172.16.212.1 172.16.212.135 TCP 54 8900 - 50804 [RST] Seq=7 Win=0 Len=0

Figure 23: Packet capture of the RST packet sent by CAH to IH

Once when CAH identifies that an attacker or unregistered user is trying to access the services from
Communication host, it closes the listening socket and it will not send IP address and port number
details of the original server (CH) to the client or attacker such that it can never reach the server to
disrupt the services.

19

ganesh@ganesh-X510UAR: ~/Desktop/test$ netstat -a

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State
8] B 8.8.8.8:982 8.8.8.8:* LISTEN

8@ localhost:mysqgl 6.0 LISTEN
B localhost:8307 0.0.8.0: LISTEN
® localhost:domain 0.0.0.0:° LISTEN
8 localhost:ipp 8.0.8.0:* LISTEN
8 0.8.0.0:https B.8.8.8:* LISTEN

F 1'-g-ure 24: Port status of CAH cif-ter unsuccessful authentication

6.2 KEY GENERATION PHASE

After receiving the welcome packet, IH will generate its Initiating key and sending it to CAH in the
encrypted form. The screenshot is seen below

N

ganesh@Initiatinghost: ~fDesktuprrajecI:

ganesh@Initiatinghost:~/Desktop/Projects ./itest 172.16.212.1 B908
Enter your system ID: 1234
Enter your initiating key :19152915

Welcome

The generated IK of IH is:5915
The Encrypted IK of IH is:70598

Figure 25: IH generating its IK and sending the Encrypted IK to CAH

Code Snippets

if(strcmp(bc, "Welcome") == 0) * Based on the message sent by CAH, IH will read the message and if the
message says welcome, it will proceed with the upcoming code */

{

int key=0xFCAB;* Key used for performing private key symmetric encryption and decryption shared only
by CAH and IH and not shared over network*/

for(i=1;i<5;i++)* Loop for generating random sequence */

{

e=1000+(rand()%5000) ;* Random function for generating a random sequence*/

b
printf("The generated IK of IH is:%d\n",e);* Printing the generated random sequence by IH */

f=e+key;* Performing encryption function*/

20

printf("The Encrypted IK of IH is:%d\n",f);* Printing the encrypted IK */
n=write(sock,&f,sizeof(f));* Writing the IK over socket to CAH*/

}

else * If the message received is not “WELCOME”*/

{

printf("Access denied"); * It will print access denied*/
}

ganesh@ganesh-X510UAR:

Welcome

Encrypted IK from IH:70598

Decrypted IK from IH:5915
Figure 26: CAH receiving the encrypted IK and decrypting it

Code Snippets

int key=0xFCAB;* Key used for performing private key symmetric encryption and decryption */
hr=read(newsock,&gr,sizeof(gr));* Read function for reading the encrypted IK sent by IH*/
printf("\n Encrypted IK from IH:%d\n",gr);* Printing the encrypted IK*/
ir = gr - key;* Generating the decrypted text using the private key symmetric decryption */
printf("\n Decrypted IK from IH:%d\n",ir);* Printing the decrypted IK*/

CAH receives the IK from IH and it generates its own IK and it concatenates both the IK to generate
the final session key or new initiating key. After sending the final IK to IH once when IH records the
IK to its database, CAH receives IK recorded message from IH.

ganesh@ganesh-X510UAR: (§ ./ctest 8980

Welcome

Encrypted IK from IH:70598

Decrypted IK from IH:5915
The final generated IK is :49155915
The final generated encrypted IK is :49220598

IK recorded from IHJ]

Figure 27: CAH generating its IK and sending the Encrypted IK to IH

21

Code Snippets
int i=0;* Initializing i to 0*/
for(i=1;1i<5;i++)* Loop for generating random sequence for IK generated by CAH*/
{
e=1000+(rand()%9000); * Generating random sequence using rand() function*/
}
int count=0; * Initialising count to 0*/
a=e;* Initialising a as e*/
while (e !'= 0) * Function for concatenating CAH’'s random sequence and IH’s random sequence
to generate final IK*/
{
e /= 10; * Calculating the number of digits in e*/
++ count;* Increment e each time when e as not reached its end*/
}
b=pow(10,count); * Performing power operation with count of number of digits of e*/
c= a * b; * If e is for digit, calculate the power function first and multiply it to the
original generated sequence by CAH*/
de= ¢ + ir; * Then add the multiplied value to IK generated by IH. In this way concatenation
of IK of CAH and IH is performed*/
printf("The final generated IK is :%d\n",de); * Printing the final generated IK */
fe = de+key; * Encrypting the IK*/
printf("The final generated encrypted IK is :%d\n",fe); * Printing the final encrypted IK*/
er=write(newsock,&fe,sizeof(fe)); * Writing the final encrypted IK over socket to IH*/

The generated IK of IH is:5915
The Encrypted IK of IH i5:70598

The final encrypted IK from CAH:49228598
The new initiating key 15:49155915
IK Recorded from CAH

Figure 28: IH receiving the encrypted IK and decrypting it

IH after receiving the encrypted final IK from CAH, decrypts it and stores the IK to its database and
CAH sends it has recorded the IK in its database message to IH.

Code Snippets

n=read(sock,&g,sizeof(g)); * Reading the encrypted IK over socket sent by CAH*/
printf("The final encrypted IK from CAH:%d\n",g);* Printing the final encrypted IK*/
h=g-key; * Performing decryption for IK*/

printf("The new initiating key is:%d\n",h); * Printing the new initiating key*/

22

CAH after generating the new IK will store the IK for next session in nextik field while the current IK
in next IK field will move to current IK field. Since after initial registration this is the first time the
client has requested for a new IK, previousIK field is empty. But when the next time, client requests for
newlK, value from currentIK will move to previousIK field. The screenshot can be seen below

mysql> select *from project;

R D ----------- R R +

| systemid | previousik | currentik | nextik

R R R R +
1234 | NULL | 19152915 | 49155915 |

Figure 29: CAH updating its database after NEW IK is

generated

Code Snippets

char query[2000]; * Initializing the query */

sprintf(query, "UPDATE project SET nextik = %d WHERE systemid =1234",de);* Printing the IK as query
into CAH’s mysqgl database*/

mysql _query(conn,query); * Connection function for query*/

IH after getting the new IK will store the IK for next session in nextik field while the current IK in next
IK field will move to current IK field. Since after initial registration this is the first time the client has
requested for a new IK, previousIK field is empty. But when the next time, client requests for newIK,
value from currentIK will move to previousIK field. The screenshot can be seen below

mysql> select *from project;

1 row in set (0.00 sec)

mysgl=>
Figure 30: IH updating its database after NEW IK is generated

Code Snippets

char query[2000]; * Initializing the query */

23

sprintf(query, "UPDATE project SET new ik= %d",h); * Printing the query value into IH’s database*/
mysql _query(conn,query); * Connection function for query*/

h-X510UAR:- ' $./ctest 8900

Encrypted IK from IH:67598

Decrypted IK from IH:2915
The final generated IK is :29152915
The final generated encrypted IK is :29217598

IK recorded from IH|]

Figure 31: CAH end when one more newik is generated

Update in CAH database can be seen that the previousik field has been updated. And the newik will be
used for next session. The main purpose of having three fields for initiating key is to monitor the
database by database administrator for any abnormalities and logging.

1234 | 19152915 | 49155915 | 29152915 |
Figure 32: Changes in CAH database when IH requests for one new IK

Code Snippets

mysql query(conn,"UPDATE project SET previousik = currentik WHERE systemid=1234"); * Update function
in mysql api updating the database field previouik at CAH after new IK is generated*/

mysql query(conn,"UPDATE project SET currentik = nextik WHERE systemid=1234");* Update function in
mysql api updating the database field currentik at CAH after new IK is generated*/

We can see that the client has to use the IK generated from last session to login to next session and
generating new IK.

24

o T

ganesh@Initiatinghost: ~fDesktop/Project

ganesh@Initiatinghost:~/Desktop/Project$.fitest 172.16.212.1 8900
Enter your system ID:1234
Enter your initiating key :49155915

Welcome

The generated IK of IH is:2915

The Encrypted IK of IH is:67598

The final encrypted IK from CAH:29217598
The new initiating key 1s5:29152915

IK Recorded from CAH

Figure 33: IH end when one more newik is generated

IH database can be seen as

mysql= select *from project;

1 row in set (6.00 sec)

WECLEN |
Figure 34: Changes in IH database when IH requests for one new IK

Code Snippets

mysql query(conn,"UPDATE project SET prev_ik = current ik"); * Update function in mysql api updating
the database field previousik at IH after new IK is generated*/

mysql query(conn, "UPDATE project SET current ik = new ik");* Update function in mysql api updating the
database field currentik at IH after new IK is generated*/

25

6.3 HANDOVER PHASE:

CH will always be connected to CAH. Once when the CAH performs IK generation, CAH will send
the created session key or IK to CH. CH after receiving the session key, will send its socket details like
IP address and port number it has created its socket on to listen IH or xbox console client.

ganesh@Communicationhost:~/Desktop/Project$.fa.out 172.16.212.1 8908
key for session verification 1s:29152915

ganesh@Communicationhost:~/Desktop/Projects |

Figure 35: CH getting connected to CAH and getting the Initiating key for verification of IH

Code Snippets

struct hostent *serverd;*Initialising the structure to a variable for entering the server address */
sock=socket (AF_INET,SOCK STREAM,0);*TCP socket creation for CH to connect to CAH*/

serverd = gethostbyname(argv[1l]);*Getting server address as input in command line */

portnumber = atoi(argv[2]); *Getting server portnumber as input in command line */
bzero((char*)&server _addr,sizeof(server_addr)); *Clearing the memory of server address*/

server _addr.sin family=AF INET; *Specifying server address is AF _INET family */

bcopy((char *)serverd->h addr, (char *)&server addr.sin addr.s addr,serverd ->h length);* copying the
server parameters */

server_addr.sin port=htons(portnumber); * specifying the server portnumber and converting it from
unsigned short integer to network format */

if(connect(sock,&server addr,sizeof(server _addr))<0) *Connecting to server (CAH) socket using connect
function */

{

printf("Error to connect"); *If couldn’t connect print the error statement */
}

else * IF connection is success */

{

n=write(sock,bf,255);* Writing the IP address of CH to CAH over socket*/
n=write(sock,&portno,sizeof(portno)); * Writing port number of CH to CAH over socket*/
n=read(sock,&a,sizeof(a)); * Reading IK sent by CAH over socket*/

printf("Key for session verification is:%d\n",a);* Print the IK*/

}

CAH after sending the generated IK to CH receives the IP address and port number details of CH that it
would like to listen on to communicate with IH. After it receives the details, it will send it to IH. Then
it will display the message that IP address and port number details of CH are sent to IH, handover
process is completed.

The main purpose CAH performs here is elimination of DDOS by authentication and introducing the
CH to IH such that IH can create a socket to listen to CH.

26

nesh-X510UAR:- ' ' $./ctest 8908

Welcome

Encrypted IK from IH:67598

Decrypted IK from IH:2915
The final generated IK is :29152915
The final generated encrypted IK is :29217598

IK recorded from IHIK recorded from IH
IP address received from CH :172.16.212.146
Port number received from CH :4404

IP address and port number details are sent to IH. Handover process completed.

Key for session verification is sent to CH
Figure 36: CAH dfter sending the IK to CH

Code Snippets

if((childpid=fork())==0) *Using fork system call to create a new process for handling CH since CAH
already has parent process running for IH */

{
close(sock); * If the process is not created, close the socket */
}
else * If not perform the following*/
{
newsork=accept(sock, (struct sockaddr *)&cli addr,&clileng);* Create a new listening socket
for CH */

clileng = sizeof(cli addr); * Client address of CH*/

bzero(bf,255); * Clear the memory for bf */

a=read(newsork,bf,255); * Reading IP address sent by CH */

a=read(newsork,&b,sizeof(b)); * Reading port number sent by CH */

printf("\n IP address received from CH :%s\n",bf);* Printing IP address sent by CH */

printf("Port number received from CH :%d\n",b);* Printing IP Port number sent by CH */

z=write(newsork,&de,sizeof(de)); * Writing IK over socket to CH */

printf("\n Key for session verification is sent to CH \n"); * Printing it has sent the IK to
CH */

c=write(newsock,bf,255); * Writing IP address of CH to IH. newsock is for IH, newsork is for
CH */

d=write(newsock,&b,sizeof(b)); * Writing port number of CH to IH. */

printf("\n IP address and port number details are sent to IH. Handover process completed. \
n"); * Printing the handover processis completed */

27

ganesh@iInitiatinghost: ~fDesktop/Project

ganesh@Initiatinghost:~/Desktop/Projects ./itest 172.16.
Enter your system ID:1234
Enter your initiating key :49155915

HWelcome

The generated IK of IH is:2915

The Encrypted IK of IH i5:67598

The final encrypted IK from CAH:29217598
The new initiating key is:29152915

IK Recorded from CAH

The IP address of CH is5:172.16.212.146
The Port number of CH is: 4484 The Port number of CH is: 4484

Figure 37: IH receiving the IP address and port number details of CH

Code Snippets

sock,bf,255);* Read IP address sent by CAH and store it in varaiable bf */

"\n The IP address of CH is:%s",bf);* Print IP address of CH sent by CAH*/
sock,&j,sizeof(j)); * Read port number sent by CAH and store it in varaiable j */
sock,bf,255);* Read IP address sent by CAH and store it in varaiable bf */

"\n The IP address of CH is:%s",bf);* Print IP address of CH sent by CAH*/

"\n The Port number of CH is: %d",j); * Print port number of CH sent by CAH*/

n=read
printf
n=read
n=read
printf
printf

—_~ e~ o~~~ —~

IH after receiving the connection details from CAH, uses fork() process to create a new client socket to
listen CH while it uses parent process to communicate with CAH. After successfully creating the
socket, if IH reaches CH, it has the following display message in console client.

28

janesh@Initiatinghost:~/Desktop/Projects ./fitest 172.16.212.1 8906
nter your system ID:1234
nter your initiating key :49155915

Welcome

generated IK of IH is:2915

Encrypted IK of IH is:67598
final encrypted IK from CAH:29217598
new initiating key is:29152915

[K Recorded from CAH

The IP address of CH is:172.16.212.146
The Port number of CH is: 4484 The Port number of CH is: 4404
Connected to Communicating host

Figure 38: IH after reaching CH

Code Snippets

if((childpid = fork()) == 0) * Creating child process for communicating with CH while parent process
is for communication with CAH*/

{

close(sock); * If process is not created, close the parent socket and program. */

}

else * If created successfully */

{

struct sockaddr _in servere addr; * Structure for server address */

sork=socket (AF_INET,SOCK STREAM,0); * Creating TCP socket*/

bzero((char*)&servere addr,sizeof(servere addr)); * Clearing the memory for server address*/
servere_addr.sin_ family=AF INET; * Specifying server address family as INET or IP family */

servere addr.sin addr.s addr=inet addr(bf); * Server address as the variable got from CAH */

servere addr.sin port=htons(j); * Server port number as the variable got from CAH. It uses short
integer to network converter for the port number */

if(connect(sork,&servere addr,sizeof(servere addr))<0) * Connect function to connect to the server
address and port number */

{

printf("\nError to connect\n");* If couldn’t connect */

}

else

{

printf("\n Connected to Communicating host");* If connection is success, Print the connected statement
*/

}

29

CH will also use fork() function to create a new process to create a listening socket for IH. While it has
another parent process running to listen CAH.

ganesh@Communicationhost:~fDesktop/Project$.fa.out 172.16.212.1 8900
Key for session verification 1s:29152915

ganesh@Communicationhost:~/Desktop/Project$
Initiating Host IP address:172.16.212.135

Figure 39: CH after reaching IH

We can see that CH displaying the IP address of IH after IH gets connected to CH.

Code Snippets

if((childpid = fork()) == 0) * Creating a child process at CH to make a listening socket to listen to
IH */

{

close(sock);* If not created properly, close the parent socket and program*/

{

int portno=4404; * Variable for port number */

struct sockaddr _in servere addr,client addr; * Structure for server address */

sork=socket (AF_INET,SOCK STREAM,0); * Creating a new socket under child process at CH to communicate
with IH */

bzero ((char*) &servere addr,sizeof(servere addr)); * Clearing the memory space of server address */
servere addr.sin_family=AF INET; * Specifying the address family of server */

servere _addr.sin addr.s addr=inet addr("172.16.212.146"); * Specifying the address of server. Usually
it will be a static public IP sitting over internet */

servere addr.sin_port=htons(portno); * Specifying the port number for CH. Usually it is declared by CH
itself after getting IK from CAH */

if (bind(sork, (struct sockaddr *)&servere addr,sizeof(servere addr))<0) *Binding the address and port
of server CH socket */

{

error("Binding error"); * Print error if there is any */

}

else

{

listen(sork,5); * Mention the child socket to be listening socket */

newsork=accept(sork, (struct sockaddr *)&client addr,&clilen); * Create the listening socket for IH */
clilen=sizeof(client addr); * Client address length */

char *bt; *Initialize character bt */

bt=inet ntoa(client_addr.sin_addr); * IH’s IP address is stored over bt. Ntoa function converts
network address to string format */

printf("\n Initiating Host IP address:%s",bt); * Print the IP address of client IH */

}

30

41 27.76373.. 172.16.212.135 172.16.212.146 TCP 74 52174 — 4404 [SYN] Seq=0 Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSval=1911205339 TSecr=0 WS=128

42 27.76437.. 172.16.212.146 172.16.212.135 TCP 74 4404 - 52174 [SYN, ACK] Seq=0 Ack=1 Win=28960 Len=0 MSS=1460 SACK_PERM=1 TSval=2747252345 TSecr=1911205339 WS=128
43 27.76490.. 172.16.212.135 172.16.212.146 TCP 66 52174 —~ 4404 [ACK] Seqg=1 Ack=1 Win=29312 Len=0 TSval=1911285341 TSecr=2747252345

44 27.76564.. 172.16.212.135 172.16.212.146 TCP 321 52174 — 4404 [PSH, ACK] Seg=1 Ack=1 Win=29312 Len=255 TSval=1911205342 TSecr=2747252345

45 27.76608.. 172.16.212.146 172.16.212.135 TCP 66 4404 - 52174 [ACK] Seq=1 Ack=256 Win=30080 Len=0 TSval=2747252346 TSecr=1911205342

46 27.76683.. 172.16.212.146 172.16.212.135 TCP 321 4404 — 52174 [PSH, ACK] Seq=1 Ack=256 Win=30080 Len=255 TSval=2747252347 TSecr=1911205342

47 27.76732.. 172.16.212.135 172.16.212.146 TCP 66 52174 —~ 4404 [ACK] Seq=256 Ack=256 Win=30336 Len=0 TSval=1911205344 TSecr=2747252347

48 27.76821.. 172.16.212.135 172.16.212.146 TCP 70 52174 — 4404 [PSH, ACK] Seq=256 Ack=256 Win=30336 Len=4 TSval=1911205345 TSecr=2747252347

49 27.76887.. 172.16.212.146 172.16.212.135 TCP 321 4404 — 52174 [PSH, ACK] Seq=256 Ack=260 Win=30080 Len=255 TSval=2747252349 TSecr=1911205345

50 27.76955.. 172.16.212.146 172.16.212.135 TCP 66 4404 — 52174 [FIN, ACK] Seq=511 Ack=260 Win=30080 Len=8 TSval=2747252350 TSecr=1911205345

+ Frame 1: 90 bytes on wire (720 bits), 90 bytes captured (720 bits) on interface @

+ Ethernet II, Src: Vmware_50:57:78 (00:0c:29:50:5f:78), Dst: Vmware_e2:de:01 (00:50:56:e2:de:01)
+ Internet Protocol Version 4, Src: 172.16.212.146, Dst: 91.189.89.199

+ User Datagram Protocol, Src Port: 39827, Dst Port: 123

+ Network Time Protocol (NTP Version 4, client)

00 50750 e2 de 01 00 Oc 29 50 5f 78 08 00 45 10 PV P_
00 4c 71 02 40 00 40 11 93 67 ac 16 d4 92 5b bd Lg-@ @ g
59 c7 9b 93 @0 7b 0@ 38 76 62 23 00 00 00 6O 00 Y {8 vb
00 00 00 00 00 00 00 00 00 00 00 00 00 0O 00 00
00 00 00 00 00 00 00 G 00 00 PO 0@ 00 00 GO 60
00 00 e@ 35 @1 9a 1f 8b 92 8a

Figure 40: Wireshark capture of TCP/IP 3 way handshake and data transfer between CH and IH

2]

6.4 COMMUNICATION PHASE

Enter your initiating key :49155915

Welcome

The generated IK of IH is:2915

The Encrypted IK of IH is5:67598

The final encrypted IK from CAH:29217598
The new initiating key 1s5:29152915

IK Recorded from CAH

The IP address of CH is:172.16.212.146

The Port number of CH is: 4404 The Port number of CH is: 4484
Connected to Communicating host

Message to CH:Hello

Figure 41: IH sending hello packet to CH

Code Snippets

char vs[255]="Hello"; * Initializing the message to be sent */
o=write(sork,vs,255); * Writing the message over socket sork. IH uses sock for CAH and sork for CH */
printf("\n Message to CH:%s\n",vs); *Print the message */

31

ganesh@Communicationhost:~/Desktop/Project$./a.out 172.16.212.1 8900
Key for session verification 1s5:29152915
ganesh@Communicationhost:~/Desktop/Project$

Initiating Host IP address:172.16.212.135
Message from IH: Hello

Figure 42: CH receiving hello message from IH

Code Snippets

char bo[255]; * Initializing the character bo */

bzero(bo,255); * Clearing the memory for bo */

r=read(newsork,bo,255); * Reading the message sent by IH. CH uses sock for communicating with CAH and
newsork for listening to IH */

printf("\n Message from IH: %s",bo); * Print the message */

ganesh@Initiatinghost:~/Desktop/Projects ./itest 172.16.212.1 8900
Enter your system ID:1234
Enter your initiating key :49155915

Welcome

The generated IK of IH is:2915
The Encrypted IK of IH is5:67598

The final encrypted IK from CAH:29217598
The new initiating key is:29152915
IK Recorded from CAH

The IP address of CH is:172.16.212.146

The Port number of CH is: 4484 The Port number of CH is: 4404
Connected to Communicating host

Message to CH:Hello

Message from CH:Enter IK to continue
Figure 43: CH requesting IH to send its IK to continue

IH is programmed in such a way that it will automatically send the IH it has generated to CH.

Code Snippets

p=read(sork,qz,255); * IH reading the message sent by CH */
printf("\nMessage from CH:%s\n",qz); * IH printing the message sent by CH */

32

This is an additional level of security performed at this step. CH will receive the IK fro CAH and it will
ask the IH to send its IK such that CH can verify the authenticity of TH.

ganesh@Initiatinghost:~fDesktop/Projec
Enter your system ID:1234
Enter your initiating key :49155915

Welcome

generated IK of IH is:2915
Encrypted IK of IH is:67598
final encrypted IK from CAH:29217598

new initiating key 1s5:29152915
IK Recorded from CAH

The IP address of CH is5:172.16.212.146

The Port number of CH is: 4484 The Port number of CH is:
Connected to Communicating host

Message to CH:Hello

Message from CH:Enter IK to continue
IK sent by IH:29152915

Figure 44: IH sending its session key or IK to CH for authentication

Code Snippets

o=write(sork,&j,sizeof(h)); * IH writing the IK it has generated with CAH to CH. h was the variable IH
used for storing final IK with CAH */
printf("IK sent by IH:%d\n",h);* IH printing the IK it has sent to IH*/

ganesh@Communicationhost:~/Desktop/Project$.fa.out 172.16.212.1 8968
ey for session verification 15:29152915
ganesh@Communicationhost:~/Desktop/Project$

Initiating Host IP address:172.16.212.135
Message from IH: Hello
IK sent by IH: 29152915

Figure 45: CH displaying IK received from IH

33

Code Snippets

r=read(newsork,&dh,sizeof(dh)); * CH reading IK sent by IH */
printf("\n IK sent by IH: %d",dh); * CH printing IK sent by IH */

If the IK sent by IH matches with IK sent by CAH, CH and IH starts communication process.

ganesh@Initiatinghost:~/Desktop/ProjectS ./itest 172.16.212.1 8906
Enter your system ID:1234
Enter your initiating key :49155915

Welcome

The generated IK of IH is:2915

The Encrypted IK of IH is5:67598

The final encrypted IK from CAH:29217598
The new initiating key is:29152915

IK Recorded from CAH

The IP address of CH is:172.16.212.146

The Port number of CH is: 4404 The Port number of CH is: 4404
Connected to Communicating host

Message to CH:Hello

Message from CH:Enter IK to continue
IK sent by IH:29152915

You have reached CH. Communication begins.
Figure 46: IH entering communication phase

Code Snippets

char rz[255];* Initialising the variable rz */

p=read(sork,rz,255); * Reading the message sent by CH whetherit can continue communicating or have to
re-register */

printf("\n%s\n",rz);* Printing the message */

34

ganesh@Communicationhost:~/Desktop/Project

Key for session verification 1s:29152915

ganesh@Communicationhost:~/Desktop/Projects
Initiating Host IP address:172.16.212.135

Message from IH: Hello
IK sent by IH: 29152915
Communication phase starting

Figure 47: CH entering communication phase

Code Snippets

if(a==dh) * a was the variable ch used for storing IK sent by CAH and dh was used by ch for storing IK
sent by IH. If both matches */
{

char cz[255]="You have reached CH. Communication begins."; * Initializing the cz */
r=write(newsork,cz,255); * Write message we are communicating to IH */
printf("\n Communication phase starting"); * Printing the message and still listening on socket */

}
else * If IK does not match */

{

char by[255]="Reregister to continue"; * Initialise re-register message*/
r=write(newsork,by,255); * Write message re-register to IH */
close(sork); * Close the socket avoiding further communication */

}

ganesh@Communicationhost:~$ netstat -a

Active Internet connections (servers and established)

Proto Recv-(Q Send-Q Local Address Foreign Address State
tcp localhost:ipp iges LISTEN
tcp 172.16.212.146: 4404 S5 LISTEN
tcp ubuntu:domain * ok LISTEN
tcpé ip6-localhost:ipp [z:]:% LISTEN
udp ubuntu:domain *pk

*:bootpc g

*:53320

*:ipp

*:40100

*:mdns

[::]:53341

[::]:mdns

udp
udp

200002200
200002200

Suppose if there is a bug in IH program and if IH sends a different IK compared to what CAH has sent
to CH, then CH will send re-register IK message to IH to enter communication process. If IH receives

35

this message, CH will close its listening socket, IH has to restart the whole process again to start
communicating with CH.

ganesh@Initiatinghost:~/Desktop/Projects ./fitest 172.16.212.1 8900
Enter your system ID:1234
Enter your initiating key :49155915

Welcome

generated IK of IH 1s:2915
Encrypted IK of IH is:67598
final encrypted IK from CAH:29217598
new initiating key is:29152915
IK Recorded from CAH

The IP address of CH is:172.16.212.146

The Port number of CH is: 4404 The Port number of CH is: 4404
Connected to Communicating host

Message to CH:Hello

Message from CH:Enter IK to continue
IK sent by IH:4404

Figure 49: IH after unsuccessful IK verification

CH displaying the IK sent by IH.

ganesh@Communicationhost:~/Desktop/Projects
Key for session verification is:29152915
ganesh@Communicationhost:~/Desktop/Projects

Initiating Host IP address:172.16.212.135
Message from IH: Hello
IK sent by IH: 4404

Figure 50: CAH after unsuccessful IK verification:

We can see that CH closing its listening socket abruptly after IK sends a different IK. In this way, CH
also eliminates unauthorized entry for hackers. Though CAH stops attacker at the first place, CH also
has additional security functionality to stop the intruders from performing DDOS on it.

36

ganesh@Communicationhost:~/Desktop/Project$ netstat -a
Active Internet connections (servers and established)

Proto Recv-(Send-(Q Local Address Foreign Address
] ® localhost:ipp k¥
8 ® ubuntu:domain * ok
G} 8 ip6-localhost:ipp BE]|e%
] 0 *:49198 BEs
] ® ubuntu:domain e
8 8 *:bootpc =
i) 0 *:53320 s
] e *:ipp *
8 @ *:mdns *
] B [::]:53341 B1]3%
] @ [::]:mdns 1]
raweé G} B [::]:ipvo-icmp [2a]]2=

F igre 51: Port status of CH after unsuccessful IK verification

37

State

LISTEN
LISTEN
LISTEN

7 APPENDIX

The screenshot for compiling cah program by including mysql library

ganesh@ganesh-X510UAR:~/Desktop/test$ gcc -c -Ifusr/include/mysql ctest.c

Figure 52: Compiling CAH program

The screenshot for compiling cah program by including mysql libraries. Lm library is for math
function.

nesh-X510UAR:~/Desktop/test$ gcc -o ctest ctest.o -L fusr/lib/mysqgl -lmysqlclient -1m
nesh-X510UAR:~/Desktop/test$

Figure 53: Compiling CAH program

The screenshot for compiling IH program by including mysql library

ganesh@Initiatinghost: $ cc -c -Ifusrfinclude/mysqgl itest.c

itest.c: In function ‘main’:

Figure 54: Compiling IH program

The screenshot for compiling IH program by including mysql and Im library. Lm library is used for
math function

ganesh@Initiatinghost: gcc -o itest itest.o -L fusrflib/mysql
-lmysqlclient -1m

ganesh@Initiatinghost: S |

Figure 55: Compiling IH program

38

ganesh@Communicationhost:~/ top/Project
ch.c: In function ‘main’:
ch.c:25:17: passing argument 2 of ‘connect’ from incompatible pointer t

ype [-Wincompatible-pointer-types]
if(connect(sock,&server_addr,sizeof(server_addr))<0)
A

Figure 56: Compiling CH program

The TCP fast open value as 3 means CAH can act both as server and client. TCP Fast open is enabled
only for linux kernels 3.7 or above

ganesh@ganesh-X510UAR:~/Desktop,/test$ sudo sysctl -p
net.ipv4.tcp fastopen = 3
ganesh@ganesh-X510UAR:~/Desktop/test$ |

Figure 57: How to enable TCP fast open in CAH

ganesh@Initiatinghost:~/Desktop/Project$ sudo sysctl -p
sudo: unable to resolve host Initiatinghost: Connection timed out
[sudo] password for ganesh:

net.ipv4.tcp_fastopen = 3
ganesh@Initiatinghost:~/Desktop/Projects

Figure 58: How to enable TCP fast open in I[H

39

8. FUTURE IMPROVEMENTS

In the handover phase, CAH receives the IP address and port number details from CH and sends it over
its listening socket to IH such that TH uses them to create a connection to CH. When the connection
details are shared over internet, it is vulnerable to hacker.

The attacker might craft TCP syn flood after hacking the connection detailed packets and perform
DDOS attack directly on CH. In order to avoid this, SSH(Secured shell) can be implemented on all
three hosts and end-to-end data encryption can be implemented for all data transfers such that all the
data these three hosts are communicating over internet are encrypted and the hackers might take years
to decrypt them to perform DDOS attack.

40

9. CONCLUSION

In this way a system which performs DDOS elimination using four phases is designed. Though there
are many systems present currently which can eliminate DDOS attack from the internet, the proposed
system is a standalone approach because it embeds payload in SYN packet using TCP fast open and
eliminates DDOS at the first place by avoiding TCP SYN flood attack by sending the RST packet when
it receives SYN packet without systemID or unregistered systemID.

The system also adds additional security by placing Communication authentication host (CAH) at the
middle by moving point of attack to CAH. Though it might look CAH is vulnerable to SYN flood
attack, CAH uses intelligent decision strategies at the first place to avoid SYN flood attack. After
performing authentication CAH performs a clean handover to CH for IH and creates proper
environment for CH and IH to communicate with each other.

Though the proposed system is implemented only for console based gaming systems like Xbox,
PlayStation etc, its functionality can be later implemented in real-time web applications and other
systems too.

41

10. LIST OF FIGURES

Hlustration Index

Figure 1: TCP/IP 3-Way Handshake.............coioiiiiiieeeeeeeeee ettt e 7
Figure 2: TFO Co0Ki@ eXChane.........ccoteiiiriiiiiieritiiieteetet ettt ettt sr st e s 8
Figure 3: TCP Fast Open 3-Way Handshake............cccceeriiiiiiiiiiiiieieceeecsieecsiee e e e e s sieneee s s 9
Figure 4: CAH Database VEISION......cc.cecuerterierierienieiientenieestesitesteste st esseesae st essessesstessessesseenseessnsesane 10
Figure 5: TH Database VEISION.......ccccueiuiiiiiiiiiieiieeieeee ettt ettt sse e s e e s e s e neee e 10
Figure 6: CAH'S Database.........c.coueruiiiiiriiriiiieeteieeteeteret ettt sttt sb st re et s e e e 11
Figure 7: TH'S DatabDase......ccc.eeoieeiiieiieieetee ettt ettt s e et e st s b e st e s bt e sas e e e seeeeenneeas 11
Figure 8: CAH HfCONTIG. .. .coiiiiiieiieeeee ettt sttt nee e 13
Figure 9: TH TfCONTIG...cc.veeuieiiiieeiteeee ettt ettt ettt st e s bt e ebeesaaeens 13
Figure 10: CH ifCONTIG....c.ueiiiiieiiiieeeeete ettt ettt sr e et ea 14
Figure 11: TH SYStemM ID FOQUEST.....cccuutieieeiiieeieiiteeeeiteeeeeiite e s ettt e e st e e e s sateeessstaeeessssssseaeeeeeaeseesenns 15
Figure 12: CAH opening port for authentiCation..........c..ceceevuerirrieriinienieniererieeeeseeeese et 15
Figure 13: IH sending SYN packet with SystemID.........ccccceouiiiiiiiiiiiiiieeeeeeeeee e 15
Figure 14: Wireshark packet capture of SYN packet with payload........c..cccceeverieniniinininiciienieee 16
Figure 15: TH sending its IK t0 CAH....cc..uiiiiieeeeeee ettt 16
Figure 16: Wireshark capture of TH’S TK..........coctiiiriiiiiiinienieierteieeee ettt 17
Figure 17: CAH after receiving IK.......co.coieiiiiiiieieteeere ettt ettt et 17
Figure 18: Screenshot capture of CAH sending welcome packet to IH........c.cccoceeviriiiiniienneenniennnennne 18
Figure 19: IH receiving the welcome message after successful authentication............cceccevceevervienncenn. 18
Figure 20: Port status of CAH when there is successful authentication...........ccceccevveeverveinieenieenneenn. 19
Figure 21: Unsuccessful authentication at TH eNd..........ccceevueriirieniinienieeieniereeeeteee sttt 19
Figure 22: Unsuccessful authentication at CAH end...........cccereriiiriiriesienienenereeseereese e 19
Figure 23: Packet capture of the RST packet sent by CAH t0 TH........ccceeviiriininiieniinenieneeeeieeeeeenne 19
Figure 24: Port status of CAH after unsuccessful authentication.............ceceeveeverveniienenseenieenseenneenne 20
Figure 25: IH generating its IK and sending the Encrypted IK t0 CAH........ccccoiiiiiiiniiiiiieiieeeen. 20
Figure 26: CAH receiving the encrypted IK and decrypting it.........ccccceveeveereereniienrienenneneeneeeeeneeenne 21
Figure 27: CAH generating its IK and sending the Encrypted IK to IH........ccccooiiiiiiniiniiiniiiieneen. 21
Figure 28: IH receiving the encrypted IK and decrypting it........c..cecceeveeverneereenennienieenenieenreeereeeseeens 22
Figure 29: CAH updating its database after NEW IK is generated............coccevervuerieneieneenneenneenneeenne 23
Figure 30: IH updating its database after NEW IK is generated..........cc.cceceevuereenerseeneenenneneeneenneennens 23
Figure 31: CAH end when one more newik is generated.............ccoceevieriernienieniienienniee e 24
Figure 32: Changes in CAH database when IH requests for one new IK.........cc.cccceeviininniniinenniennneenne 24
Figure 33: IH end when one more newik is generated..........cco.cceveerrueenieniienneeniieeneeeiee e 25
Figure 34: Changes in [H database when IH requests for one new IK..........cccccoccerviininiinniniinieenneenne 25
Figure 35: CH getting connected to CAH and getting the Initiating key for verification of IH............. 26
Figure 36: CAH after sending the IK t0 CH........cocieiiiiiiiiniiniiieeteseeeneeieeeeetesre ettt 27
Figure 37: IH receiving the IP address and port number details of CH.........c.cccocevirieniinenieiniienniene 28
Figure 38: TH after reaching CHo.......cccccouiiiiiiiiniiieiiciteteceeeeeteeit ettt ettt saee e saneeea 29
Figure 39: CH after reaChing TH.........ccooiiiiiiiiniiieeeeeeeteee ettt ettt et 30
Figure 40: Wireshark capture of TCP/IP 3 way handshake and data transfer between CH and IH........ 31
Figure 41: TH sending hello packet t0 CH........cccciiiiiiiiiiiiniieeeieceiiecsiee et ssre e e eree e e s siaaeeeeeas 31

42

Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:

43

CH receiving hello message from TH...........ccceevuiiiieriiiriienieceeeieeeeeie e essvee e 32
CH requesting IH to send its IK t0 CONtINUE...........ccoteriierriienieiiienieeieeeeee et sieeeesiee e 32
IH sending its session key or IK to CH for authentication...........ccccceeeveeeeenierneensieeneeesnnnen. 33
CH displaying IK received from TH.........cccoceeriiriiiniiniieieneeieeeereeieetesiee et 33
IH entering cOMMUNICAtION PRASE.......ceeiiriiiirieeiienieeieerie ettt aeesteesreesaeesaeesraesseeesnsneas 34
CH entering communication PRase...........c.coovueiriiriiinienite ettt 35
Port status of CH after successful IK verification..........ccccceceeverieneenenienenninieeieeeeeeenn 35
IH after unsuccessful TK VerifiCation..........ccceeveevierirrinienieieciereeeee e 36
CAH after unsuccessful IK vVerification:...........ceceeeereriienieninnienieneeieseeeeieeseee e 36
Port status of CH after unsuccessful IK verification..........c.cceccevvvereenercieniinninieeieeeeeenn 37
Compiling CAH PIOZIAIM.......ciriieiieeeieeiiierieeteesteesteesteesseesssessseesseesssessssesssessssesssseessssssesans 38
Compiling CAH PIOZTAIT.......ceruiiiiitiieeieeeteeieeet et sate st e st e sbeesatesbessseesaseesseesneeeeenseesnns 38
ComPiling TH PrOGIa......cceecuieeieriieenierieenieeiteesteesteesssessseesseesssessssesssessseesssseessssseessssseesnns 38
Compiling TH PrOGIami........coeiutirieeiiiniieeieeete et ettt e et e sae s st e sate e bt e s st eeesneeessnneeenns 38
ComPiling CH PIOZIAIM.......ceecuiiiieeieerieeieesteesteeseeeseessesseesseesssessssesssessseesssessseessssessssssees 39
How to enable TCP fast open in CAH.........cooiiiiiiiieieeeece ettt e 39
How to enable TCP fast open il TH........cccooviiriiiirieiiiiiecieeteeieesee et 39

11. REFERENCES

https://www.youtube.com/watch?
v=CMDBF84vSRk&index=4&list=PL.LPyaR5G9aNDvs6Ttdpl.cV0O43 jvxp4emlhttps://
www.youtube.com/watch?

v=Ts8eXOkx8TE&list=Pl.PyaR5G9aNDvs6Ttdpl.cVO43 jvxp4emI&index=5

https://www.youtube.com/watch?
v=DboEGcU6rLI&index=6&list=PL.PyaR5G9aNDvs6TtdpL.cVO43 jvxpdeml
http://www.kitebird.com/mysql-book/ch06-3ed.pdf
https://www.youtube.com/watch?v=jACHG6tZakw&t=1159s
https://www.youtube.com/watch?v=vgsleQJlavs

https://codereview.stackexchange.com/questions/126812/multithreaded-client-socket

https://www.geeksforgeeks.org/computer-network-tcp-3-way-handshake-process/
https://lwn.net/Articles/508865/

https://stackoverflow.com/questions/5791860/beginners-socket-programming-in-c

https://stackoverflow.com/questions/30079248/how-to-activate-the-tcp-fast-open-in-linux

https://blog.wasin.io/blog/2016/12/26/how-to-enable-fast-tcp-open-on-ubuntu.html

44

https://blog.wasin.io/blog/2016/12/26/how-to-enable-fast-tcp-open-on-ubuntu.html
https://stackoverflow.com/questions/30079248/how-to-activate-the-tcp-fast-open-in-linux
https://stackoverflow.com/questions/5791860/beginners-socket-programming-in-c
https://lwn.net/Articles/508865/
https://codereview.stackexchange.com/questions/126812/multithreaded-client-socket
https://www.youtube.com/watch?v=vgs1eQJ1avs
https://www.youtube.com/watch?v=jACHG6tZakw&t=1159s
http://www.kitebird.com/mysql-book/ch06-3ed.pdf
https://www.youtube.com/watch?v=DboEGcU6rLI&index=6&list=PLPyaR5G9aNDvs6TtdpLcVO43_jvxp4emI
https://www.youtube.com/watch?v=DboEGcU6rLI&index=6&list=PLPyaR5G9aNDvs6TtdpLcVO43_jvxp4emI
https://www.youtube.com/watch?v=Ts8eXOkx8TE&list=PLPyaR5G9aNDvs6TtdpLcVO43_jvxp4emI&index=5
https://www.youtube.com/watch?v=Ts8eXOkx8TE&list=PLPyaR5G9aNDvs6TtdpLcVO43_jvxp4emI&index=5
https://www.youtube.com/watch?v=Ts8eXOkx8TE&list=PLPyaR5G9aNDvs6TtdpLcVO43_jvxp4emI&index=5
https://www.youtube.com/watch?v=CMDBF84vSRk&index=4&list=PLPyaR5G9aNDvs6TtdpLcVO43_jvxp4emI
https://www.youtube.com/watch?v=CMDBF84vSRk&index=4&list=PLPyaR5G9aNDvs6TtdpLcVO43_jvxp4emI

	1. ABSTRACT:
	2. INTRODUCTION
	2.1 OBJECTIVE OF THE PROJECT
	2.2 PROJECT INTRODUCTION

	3. DOS AND DDOS ATTACK ON TCP/IP BASED SYSTEMS
	3.1 DOS ATTACK
	3.2 DDOS ATTACK
	3.3 TYPES OF DDOS and DOS ATTACKS
	3.4 PlayStation AND XBox CHRISTMAS SEASON DDOS ATTACK
	3.5 PROPOSED SOLUTION FOR THE DDOS ATTACK ON CONSOLE BASED SYSTEMS

	4. TCP/IP 3 WAY HANDSHAKE AND TCP FAST OPEN
	4.1 TCP/IP 3 WAY HANDSHAKE
	4.2 TCP FAST OPEN AND APPLICATION IN THE PROJECT

	5.MYSQL DATABASE
	5.1 APPLICATION IN PROJECT
	5.2 MYSQL API in CAH
	Code Snippets

	5.3 MYSQL API in IH
	Code Snippets

	6. PROJECT EXPLANATION
	6.1 AUTHENTICATION PHASE
	Code Snippets for CAH
	Code Snippets for IH
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets

	6.2 KEY GENERATION PHASE
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets

	6.3 HANDOVER PHASE:
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets

	6.4 COMMUNICATION PHASE
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets

	7 APPENDIX
	8. FUTURE IMPROVEMENTS
	9. CONCLUSION
	10. LIST OF FIGURES
	11. REFERENCES

