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Chapter 1

Wavelet Bases of Hermite Cubic

Splines on an Interval

1.1 Introduction

In this chapter we shall construct wavelet bases of Hermite cubic splines on the
interval. These wavelet bases are suitable for numerical solutions of differential
equations.

By Ly(R) we denote the linear space of all square-integrable real-valued

functions on R. The inner product in Ls(R) is defined as

(u, v) = /R w(@)o(z)dz, uvE Ly(R).

If (u,v) = 0, then we say that u and v are orthogonal. The norm of a function
f in Ly(R) is given by || f]l2 := /{F, f)-

Smooth orthogonal wavelets with compact support were constructed by
Daubechies (see [22]). The Daubechies orthogonal wavelets were adapted to
the interval [0,1] by Cohen, Daubechies, and Vial ([17]). Semi-orthogonal
spline wavelets were constructed by Chui and Wang [16]. These spline wavelets
were adapted to the interval [0,1] by Chui and Quak [15]. In [50] Wang con-
structed cubic spline wavelet bases for Sobolev spaces.

Orthogonal multi-wavelets were constructed by Donovan, Geronimo, Hardin,
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and Massopust [23]. In [30], Heil, Strang, and Strela considered the possibility
of construction of wavelets on the basis of Hermite cubic splines.

Let ¢; and ¢, be the cubic splines given by

(z+1)%(1 ~2z) for z€[-1,0],

$1(x) =49 (1—2)%(2zx+1) for z€]0,1],
0 for zeR\[-1,1],
and
z(x+1)* for ze[-1,0],
$2(z) == ¢ z(x—1)? for z€][0,1],
0 for zeR\[-1,1].

In [20], Dahmen, Han, Jia, and Kunoth constructed biorthogonal multi-
wavelets on the basis of the Hermite cubic splines ¢, and ¢2. These wavelets
were adapted to the interval [0, 1]. However, their construction for the wavelet
basis on the interval [0, 1] was quite complicated.

In this chapter we take a new approach to the construction of wavelet bases
of Hermite cubic splines. In contrast to the semi-orthogonal wavelets of Chui
and Wang, the wavelets at different levels are orthogonal with respect to the
inner product (v, v'), rather than (u,v). This requirement of orthogonality is
more pertinent to applications of wavelets to numerical solutions of differential
equations.

As is well-known, the semi norm is a norm in the underlying Sobolev space
for the second order elliptic problems with zero Dirichlet boundary condition.
Hence, the wavelets with the above orthogonality form a Riesz basis in Sobolev
space and thus stiffness matrices arising from the discretization of the problems
by the wavelets have the uniformly bounded condition numbers. this, in turn,
ensures the efficiency of iterative methods applied to solving the discretized
linear system.

On the other hand, Hermite cubic splines, unlike Daubechie’s scaling func-
tions, have explicit expressions with short supports, which are favorite in nu-

merical solutions of partial differential equations. Furthermore, our wavelets
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have the same short supports as those of Hermite cubic splines, and this guar-
antees the efficiency in algorithm. The potential use of such wavelets maybe
the numerical solutions of differential equations, and the tensor-product coun-
terparts of our wavelets may serve well for solving partial differential equations
in multidimensional spaces. Moreover, changing the orthogonality property
with different inner products results in wavelets suitable for numerical solu-
tions of higher order differential equations or integral equations. This is also
the motivation of constructing such wavelets.

In Section 1.2 we will give two wavelets 1/, and 1), as follows:
’(/11(.’11) = —2¢1(217 + 1) + 4¢1(2.’L') - 2(]51(21‘ - 1) - 21¢2(2$ + 1)+21¢2(2.’E - 1),

Clearly, ¢, and 1, are supported on [—1,1]; ¥; is symmetric and 1, is anti-

symmetric. Moreover,

These wavelets can be easily adapted to the interval [0, 1].
By L5(0,1) we denote the space of all square-integrable real-valued func-

tions on (0,1). The inner product in L,(0,1) is defined as

(u, v) ::/O u(z)v(z)dz, wu,v € Ly(0,1).

Let H'(0,1) be the space of all functions u in Lo (0, 1) for which (the distribu-
tional derivative) u' € Ly(0,1). Let H}(0,1) be the closure of the set

{u € C[0,1]NC*(0,1) : u(0) = u(1) = 0}

in the space H'(0,1), where C|0, 1] denotes the space of all continuous func-
tions on [0, 1], and C*(0, 1) denotes the space of those continuous functions on
(0, 1) whose derivatives are also continuous.

For a nonnegative integer k, we denote by II; the set of all polynomials
of degree at most k. For n > 1, let V,, be the space of those cubic splines
v € C*(0,1) N CJ0,1] for which v(0) = v(1) = 0 and

'UI(j/Qn’(]‘_i_l)/zn) & Hgl(j/Qn’(j+1)/2n) for ] = 0, ceey n 1.

3
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The dimension of V,, is 2", It is easily seen that the set

(1.1) @, :={¢1(2"—j) : 5 =1,...,2"=1}U{(2" =)oy : 5= 0,...,2"}

is a basis for V,,. We label the elements in ®,, as {v, vs, ..., Ugn+1}.
Let ¥, be the set of wavelets given by
(1.2)
W= {1 (2" =) :i=1,...,2" =1} U {p2(2" = oy : 5 =0,...,2"}.

Let W,, be the linear span of ¥,,. It is easily seen that ¥, is a basis for W,,.

Consequently, the dimension of W, is 2"*!. In Section 1.3 we shall show that
/01 w'(z)v'(z)dz =0 YVwe ¥, and v € P,,.
It follows that V,, N W,, = {0}. Moreover, we have V,,.; D V,, + W,, and
dim(V,41) = dim(V,) + dim(W,).

This shows that V,,;; is the direct sum of V,, and W,,. Therefore, we have the
following decomposition of H}(0,1):

Hy(0,1) = Vi + Wy + Wy +

Recall that ®; = {vy, v2,vs,v4}. For n =1,2,..., we label the elements in
¥, as follows:
U, = {won+141, -+, Won+2 }.
Let gx 1= vi/||vi]l2 for k = 1,2,3,4 and gi := wi/||wi||2 for & > 4. Thus,
llgille = 1 for £ = 1,2,.... In Section 1.3 we will show that (g;)k=12.. is a
Riesz sequence in L(0,1).
In Section 1.4 we shall apply the wavelets constructed in Section 1.3 to

numerical solutions of the Sturm-Liouville equation of the form

(1.3 -~ 2 () 52) + g(@ule) = (@), =€ (0,1),

with the Dirichlet boundary condition u(0) = u(1) = 0. We assume that p

and ¢ are continuous functions on [0, 1] and

4
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p(z) > 0, g(z) >0 for all z € [0,1]. Let

(1.4) a(u,v) :=/0 p(z)u' (z)v' () dx—i—/o q(z)u(z)v(z)dz, u,v € Hy(0,1).

Then the variational form of the above equation with the Dirichlet boundary

condition is
a(u,v) = (f,v) Vv e Hy0,1).

Wavelets have been used to discretize differential equations. In particu-
lar, Xu and Shann [52] successfully applied the wavelet method to numerical
solutions of the Sturm-Liouville equation (1.3). The wavelet bases in their pa-
per are anti-derivatives of the Daubechies orthogonal wavelets. Consequently,
their basis functions are not locally supported and, in general, the correspond-
ing stiffness matrix is full (not sparse). Furthermore, the condition number of
the stiffness matrix is not uniformly bounded.

In application of the wavelet method one often encounters the difficulty that
the boundary conditions are hard to impose on wavelets. In our construction,
only two wavelets in U, 15(2"-) and 92(2"- — 27), needed to be adapted to
the interval (0,1) by means of restriction. This is in sharp contrast to the
complexity of the construction of boundary wavelets given in [20].

Recall that {gy : k = 1,...,2"*"'} is a wavelet basis for V,,. Let A, denote

the stiffness matrix (a(g;, g)) _oni1- In Section 1.4 we will prove that

jk=1,.
the condition number of A, isJ uniformly bounded (independent of n). In
particular, for the case p = 1 and ¢ = 1, numerical computation suggests
that the condition number of A, be less than 3.75 for all n. By comparison,
the condition number of the stiffness matrix with respect to the wavelet basis
constructed in [20] is very large.

At the end of this chapter, we shall provide two numerical examples using

the above wavelet basis. The computational results demonstrate the advantage

of our wavelet basis.
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1.2 Spline Wavelets

In this section we construct wavelets on the basis of Hermite cubic splines.
Let ¢1 and ¢, be the cubic splines given in Section 1.1. The graphs of ¢;
and ¢, are depicted in Figure 1.1. Clearly, both ¢; and ¢, belong to C'(R).

Moreover, we have
$1(0) =1, 4,(0)=0, ¢2(0)=0, ¢5(0)=1.
Hence, for a function f € C*(R),

u=Y_ fe(-=3)+ D fGea(- - 9)
J€L JEL
is a Hermite interpolant to f on Z, that is, u(j) = f(j) and «'(j) = f'(j) for
all j € Z.

2 0.5

1.6

1}

o.5

o

—0.5 -

-1 —0.5
-2 -1 o 1 2 —2 - o 1 2

Figure 1.1: Hermit cubic splines on R

Let ® := (¢1,#2)7, the transpose of the 1 x 2 vector (¢, #2). Then &

satisfies the following vector refinement equation (see [30]):

®z) = ) a())®(2 —-j), z€R

where
a(o1) = [ 1/2  3/4 },a(o): [1 0 } and a(1) = { 1/2 —3/4]
~1/8 —1/8 0 1/2 1/8 —1/8
6
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Let S be the shift invariant space generated by ¢; and ¢,. A function g
belongs to S if and only if there are two sequences b; and b, on Z such that
9= _[b1(i)1(- — 5) + b2(5)b2(- — 5)].
JET
Let Sy := {g(2:) : g € S}. Then S C Sy, since @ is refinable. We look for
a wavelet space W such that S] is the direct sum of S and W. We wish to
find two wavelets 1, and 1), such that their shifts generate W. Moreover, we

require

(1.5) (W5, (- = 9)) = (o, dr(- — 7)) =0, m=1,2, Vj€L

For this purpose we need to calculate the inner product of the derivatives of

shifts of ¢; and ¢,. Note that

—6z% — 61 for z €[-1,0],

$1(x) =< 622 -6z for z€0,1],
0 otherwise,
and
322 +4z+1 for ze€[-1,0],
¢o(z) :=1¢ 322 —4dx+1 for z€]0,1],
0 otherwise.

P(x) =Y [br(k)p1(2z — k) + ba(k)do(22 — k)], z€R

k€Z
Then for j € Z we have

W, (-—7) = 21—0 [—21b1(25 — 2) + 42b1(25) — 216, (25 + 2)

—3b2(25 — 2) + 4bo(25 — 1) — 4b2(27 + 1) + 3b2(2 + 2)]
and

W, ¢y — 7)) = ﬁ [33b1(25 — 2) — 6001 (2] — 1) + 6051 (2 + 1)

—33b1(2] +2) + 4by(25 — 2) — 12b5(25 — 1)
+28b2(27) — 12b2(25 + 1) + 4b2(25 + 2)].

7
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For z € C\ {0}, let

qu(z) =) _bi(2j + 1274, qua(e) =D bi(25)2%,

JEZ JEZ
(2) =) ba(25 + 1)2¥F, goa(2) 1= Y by(24)2%.
JEZ JEZ

Then (¢', ¢),(- — 7)) =0 for m = 1,2 and all j € Z if and only if

B(2) (q11(2), 412(2), 421.(2), g22(2))" =0 Yz € C\ {0},

0 —2122442-21272 4z—4271 —32243272
—602+60271 3322-33272 —122—12271 42242844772

We find two independent solutions as follows:

q1(2) —227t — 22 q11(2) z7l—2
q12(2) 4 q12(2) 0
= and =
@1 (2) —21z71 + 212 021(2) 9271+ 92
i g2 (2) | | 0 | i g2 (2) | i 12 |

These two solutions induce two wavelets 1; and i, given by

P1(z)=—2¢1 (22 + 1) + 461 (22) — 2¢1(22 — 1)—21¢2(2z + 1)+2142(22 — 1),
Yo(z) =122 + 1) — 91 (22 — 1) + 9¢2(22 + 1) + 12¢2(22) + 9po(22 — 1).

By our construction, ; and 1, are supported on [—1,1], they satisfy the
conditions in (1.5), and their shifts generate the wavelet space W such that
S; is the direct sum of S and W. Moreover, 1, is symmetric and v, is anti-

symmetric (see Figure 1.2).
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Figure 1.2: Wavelets 1¢; and 1,

Let us take a look at ¢} and v¥. For 0 < 2 < 1/2 we have

Yi(z) = 7922% — 312z, o(z — 1) = —40822 + 120z,
Py(z) = 55222 — 288z +24, h(zr — 1) =168z2 — 48z.

For 1/2 < z <1 we have

Yi(z) = 408z% — 696z + 288, j(z — 1) = —792z% + 1272z — 480,
Wh(z) = 1682% — 288z + 120, (x — 1) = 55222 — 816z + 288.

Hence, the shifts of 1] and 4}, are linearly independent on the interval (0, 1).

Because of shift invariance, the shifts of 9] and %4 are linear independent on

the interval (k,k + 1) for every kK € Z. Suppose b; and by are two square

summable sequences on Z. Let

ui= Y (b)Y = 5) + ba()¥h(- — 5)].

JEZ

Forj <korj>k+1, ¥(-—j) and ¢5(- — j) vanish on (k,k + 1). Since
the shifts of ¢ and 14 are linearly independent on (k, k + 1), there exist two

positive constants C; and C; independent of k, by, and by such that

k+1

k+1 k+1
Ct Z[|b1(j)|2 +1b2(5)P] < /k lu(z)|? dz < C3 Z[Ibl(j)|2 + b2 (5) 7]
Jj=k j=k

It follows that

207 > [ G)P + (b ()] < /R [u(@)[? dz <26 Y _[I(4) + Iba(9) 7).

JEZ JEZ
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In other words, the shifts of 3| and 4} are stable. See [35] for a study of

stability of shifts of several functions.

1.3 Wavelets on the Interval

In this section we use the spline wavelets in the previous section to construct
a wavelet basis for the space H}(0,1).

Recall that V}, is the linear space of those cubic splines v € C*(0,1)NC|0, 1]
for which v(0) = v(1) =0 and

vlG/2n 41y/2) € sl(ijam (g+ryjemy  for j=0,...,2% — 1.
The dimension of V,, is 2"*!. Moreover,
(a) i C Vo C--- C H}0,1);
(b) U,V is dense in H}(0,1).

Let &, and U, be the sets defined in (1.1) and (1.2), respectively. Then &, is
a basis for V,,. Let W,, be the linear span of ¥,,. Clearly, ¥, is a basis for W,,.
Consequently, the dimension of W, is 2"t1.

We claim that
1
(1.6) / w'(z)v'(z)dz =0 Vwe ¥, and v € P,,.
0

Suppose w = 1,(2"- — j) for some r € {1,2} and j € {1,...,2" — 1}. Then
¥l (2"- — j) is supported in the interval [0,1]. Hence, for s = 1,2 and & € Z,

we have

1
/ (2 — §)§, (2 — k) da = / Y2 — )¢ (2" — k) dz = 0,
0 R

where (1.5) has been used to derive the second equality. For the same reason,
(1.6) is valid if v = ¢4(2"- — k) for some s € {1,2} and k € {1,...,2" — 1}.

Thus, in order to complete the proof of (1.6), it remains to deal with the case

10
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w = (2% — 7|0y and v = ¢o(2%- — k)|(o,1) for j,k € {0,27}. We have
v'(z)w'(z) = 0 for x € (0,1) if j =0and k = 2" orif j = 2" and k = 0.
Hence (1.6) is valid in this case. Suppose j = k£ = 0. Since 9, and ¢, are

anti-symmetric, 15 and ¢, are symmetric. It follows that

/0 Ya(2) 3 () do = /0 (o)) do.

But (1.5) tells us that 1

| @itz dz =o
Therefore, .

| i@y de o

Consequently,

271

1
/0 Y4 (2")dh(2"z) do = 27" | i (x)dh(x) dz = 0.

0
This verifies (1.6) for w = 5(2")|(0,1y and v = ¢2(2"+)|0,1). An analogous
argument shows that (1.6) is valid for w = 1,(2"- — 2"){(0,1) and v = ¢(2"- —
2")|(0,1- The proof of (1.6) is complete.
It follows from (1.6) that

/Olw’(x)v’(x) dz =0 Vwe W, andveV,.
In particular, V,, " W,, = {0}. We have V,,;; D V,, + W, and
dim(V;, + W,,) = dim(V;) + dim(W,) = 2"*! + 271 = dim(V, ).
This shows that V4 is the direct sum of V,, and W,,. Consequently,
Vimi=Vi+ Wi+ +W,.
Therefore, we have the following decomposition of H}(0,1):

HO,D)=V+W +Wy+---.

11
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Suppose v € V; and w,, € W, for n = 1,2,.... The preceding discussion

tells us that (v',w),) = 0 for all n and (w},,w}) = 0 for m # n. Hence,

v+2:n1

Forn=1,2,... and z € (0,1), let

(1.7) = [lv |IL2(0 1) "'Z“w ||L2(0 1)

L2(0,1)

Yn (@) = (272/V/T29.6) Y1 (2"z — j/2) for j=2,4,...,2" — 2,
Unj(z) = (27"/VIB36) Yn(2"e — (j = 1)/2) for j=3,5,..., 2" ~ 1,
and
Yna(@) = (272 /VT68) 12(2"0),  Wnees () i= (272/V/T6.8) (27w — 2%).
Note that ), ; are so normalized that ”¢7’1,j”l/2(0,1) =1forj=1,...,2"",

Theorem 1.1. The sequence (¥}, ;)n=1p,.,1<j<2~+1 iS a Riesz sequence in

Ly(0,1). In other words, there exist two positive constants A and B such

that
0o ontl 1/2 oo ontl 0o on+l 1/2
(ST k) <SS nn) <o T )
n=1 j=1 n=1 j=1 L2(0,1) n=1 j=1

for every sequence (bnj)n=1.2,.1<j<on+1.

Proof. By (1.7) we have

oo 27+l oo |[2n+1 2

. !
D2 baith| =D N2 basvhy
n=1 j=1 L2(0,1)  n=l|lj= L2(0,1)

In light of the discussion at the end of Section 1.3, we assert that the shifts of
¢; and v} are linearly independent on (k, k + 1) for every k € Z. Hence, there

exist two positive constants A and B (independent of n) such that

2n+1 2n+1 2n+1
A2Y Jbngl < Z bn Vs <B*) ) lbagl’.
i=1 L2(0,1) j=1
This completes the proof of the theorem. O
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For z € (0,1), let

pra(z) = /5/24¢:1(2z - 1),
b12(z) = /15/4¢:(2z),

pr3(z) = +/15/8y(2z — 1),
P14(x) = \/ﬁ—% 2z — 2).

Note that each ¢, ; is so normalized that ||¢ ;[|z,0,1) = 1,5 = 1,...,4. Clearly,

T

V1 is spanned by ¢, ;, 7 = 1,...,4. Consequently, Hj(0,1) is spanned by ¢,
j=1,...,4, together with ¢, j, n=1,2,..., 7 =1,...,2"*1. We relabel these
functions as follows. Let g; := ¢y for 7 = 1,...,4, and let ggn+14; 1= 9y ;
forn=1,2,...and j =1,...,2"", With the same reasoning as in the proof
of Theorem 1.1, we see that the sequence (g;)r=1,,.. is a a Riesz sequence in

Ly(0,1). In other words, there exist two positive constants A and B such that

00 1/2 0o ) 1/2
(1.8) A(ZlbkF) < |1 brgi SB(ZW>
k=1 k=1 k=1

for every square summable sequence (bg)g=12,...-

L2(0,1)

1.4 Applications

In this section the wavelets constructed in the previous section are used to
solve differential equations. We shall confine ourselves to the Sturm-Liouville
equation of the form (1.3) with the Dirichlet boundary condition u(0) = u(1) =
0. We assume that p and ¢ are continuous functions on [0,1] and p(z) > 0,
g(z) > 0 for all z € [0, 1].

For u,v € Hy(0,1), let a(u,v) be the bilinear form given in (1.4). Then
the variational form of equation (1.3) with the Dirichlet boundary condition
is
(1.9) a(u,v) = (f,v) Vv e Hy(0,1).

The corresponding Galerkin approximation problem is the following: find u,, €
V,, such that

(1.10) a(un,v) = (f,v) Vv eV,

13
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By the Lax-Milgram lemma (see, e.g., [7, p. 60]), the approximation problem
(1.10) has a unique solution.

We propose to use the wavelet set G, := {g1,...,gan+1} as a basis for V.
Recall that g; := ¢1; for j = 1,...,4, and gons14; 1= Py forn = 1,2,...
and j = 1,...,2"" where ¢1; (j = 1,...,4) and ¢, ; (j = 1,...,2"*1) are
the functions constructed in the previous section. With this basis for V,,, the

Galerkin approximation problem (1.10) can be discretized as follows:

2n+1

Z (g]’gk) (g]7f> .7: 17' ”,2n+1.

k=1
The stiffness matrix
(a(gj’ gk)) 1<j,k<2n+1
is denoted by A,. We will prove that the condition number of A, is uniformly
bounded (independent of n). Therefore, the wavelet basis G, is a good tool
for preconditioning.
Let us recall that the condition number of an invertible square matrix A
is defined by
cond (4) = [|A]| |47,
where ||-|| is a matrix norm. The spectral condition number of A is defined as
max; [A;(A4)]
min; |A;(A)|’
where the numbers );(A) are eigenvalues of A. If A is a (real) symmetric
matrix, then its condition number with respect to the 2-norm is equal to its

spectral condition number (see [10, p. 51]).

Theorem 1.2. The condition number of the stiffness matrix A,, is uniformly

bounded (independent of n).

Proof. Tt suffices to show that there exist two positive constants B and C

independent of n such that

1.11
( ) n—1 2m+1 n—1 2m+l1
(zwzz b |) < ofuu <c(z:c]r2+zz b |)
m=1 j=1 m=1 j=1

14
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for any "
n-12m

U—Zc,(ﬁl]—l-z > " bt

m=1 j=1
By (1.8) there exists a p051t1ve constant C; independent of n such that

n—1 2m+1

ZCJ¢1]+Z Zb ,]'lr/) m,j

m=1 j=1

”u’”L2(071)

L2(0,1)

n—1 2mt! 1/2
> (Dc,mzzw |) .

m=1 j=1
But
a(u,u) > (pu', w') > p(u', ') = pllv'l|7,04),
where 1 := mingepo,1) p(z) > 0. This establishes the first inequality in (1.11).
Furthermore, we observe that
a(u, u) < v([ullZ 01 + 1W]Z,01)s

where v 1= maxo<;<1{p(z),q(z)} < co. By (1.8) there exists a positive con-

stant Cs independent of n such that

n—1 2m+1
4| La0,1) < Co (Z 2+ D> > [bm ,J|2>

m=1 j=1
Moreover,
4 n-1{|2m+1
ullza0n) < [|Y_ cidry +) Z b, j¥m.,;
=1 La(0,1) m=1 L2(0,1)

Note that |[tm.;|lz,0,1) = O(27™) as m — oco. Hence, there exists a positive

constant C'5 independent of n such that

4 2m+1

lllzago,) < O [(Z |c]-|2) - mz 2—m(z |bm,,2) J

j=1
With the help of the Schwarz inequality we see that there exists a positive

constant C independent of n such that

n—1 gm+1
[l < G (z P+ S S I 1)

m=1 j=1

15
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The second inequality in (1.11) follows. The proof of the theorem is complete.
O

In what follows we apply the wavelet basis G,, to two numerical examples.

Example 1. Consider the Dirichlet problem:

—u" = f on (0,1),
u(0) = u(1) =0,

where f is given by

f(z) = (63.77)%sin(53.77x) + (2.37)*sin(2.37z), =z € (0,1).

The exact solution of the problem is

(1.12) u(z) = sin(53.77x) + sin(2.37z), =z € (0,1),

which could be regarded as the sum of a high-frequency component and a
low-frequency component. Let us use the wavelet basis G, := {g1,-..,gon+1}
to solve the Dirichlet problem. With u, = Zi:; Nk 9k, the Galerkin approxi-
mation problem (1.10) is discretized as

2n+1

(1.13) > (g gme = (g5, f), j=1,...,2""

k=1

The stiffness matrix A, := ( (95, g;g))1 i<t is block diagonal. Moreover,
each block is a banded matrix. By Theorem 1.2, the condition number of
the matrix A, is uniformly bounded (independent of n). This assertion is con-
firmed by numerical computation of the maximal eigenvalue Apay, the minimal
eigenvalue Apmin, and the condition number £ = Apax/Amin of the matrix A, for

n=26,...,12 (see Table 1.1).

We use the CG (conjugate gradient) method to solve the above system
(1.13) of linear equations. Since the stiffness matrix A, is well conditioned,
the CG method converges very fast. Up to n = 12, only 21 iterations are
needed for convergence to the solution of the system of linear equations. Here

and in what follows, we take 1071% as the threshold to stop the iterations. For

16
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n 6 7 8 9 10 11 12
Amax | 1.5780 1.5787 1.5789 1.5789 1.5789 1.5789 1.5789
Amin | 04220 0.4213 0.4211 0.4211 0.4211 0.4211 0.4211

Kk | 3.7397 3.7474 3.7494 3.7498 3.7498 3.7498 3.7498

Table 1.1: Condition number of the matrix A,

n=12,... let e, := |[un — u|lL,0,1), Where u is the exact solution given in
(1.12). For n = 6,...,12, the following table lists the error e, and the rate of

convergence log, e,_1/én.

n 6 7 8 9 10 11 12
en 1.21-2 1.33-3 1.08-4 7.36-6 4.71-7 2.96-8 1.85-9
logy(2=t) | 410 319 3.62 3.88 3.97 3.99  4.00

€n

Table 1.2: Error e, and its convergence rate

It is well known from approximation theory that the Hermite cubic splines
provide approximation of order 4. The preceding computation confirms this
assertion.

If we use the finite elements in ®,, given in (1.1) to discretize the equation
(1.10), then the resulting stiffness matrix is ill conditioned. For n = 12, the
system of linear equations has 8192 unknowns. Without preconditioning, it
takes more than 2000 iterations for the CG method to converge. The following
graph depicts the error against the number of iterations.

In [6], Bramble, Pasciak, and Xu proposed the so-called BPX method for
preconditioning. This method was developed on the nodal basis (piecewise lin-
ear functions). The corresponding spectral condition number (not necessarily
the condition number) was shown to be uniformly bounded. Forn =6,...,12,
the following table gives the maximal eigenvalue Ap,x, the minimal eigenvalue
Amin; and the spectral condition number of the corresponding matrix after

preconditioning:

17
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Figure 1.3: The error against the number of iterations without preconditioning

n 6 7 8 9 10 11 12
Amax | 4.390  4.725 5.004 5.238 5.437 5.607 5.753
0.9311 0.9297 0.9291 0.9323 0.9316 0.9311 0.9308
K 4.715 5.082 5385 5.619 5.836 6.021 6.180

Table 1.3: BPX preconditioning for nodal basis

We observe that piecewise linear functions only provide approximation of
order 2. In order to achieve convergence of order 4, one may extend the
BPX method (or additive Schwarz method) to Hermite cubic splines. We will
prove that BPX method is still valid for Hermite cubic splines in Appendix
A [37]. For n = 6,...,12, the following table gives the maximal eigenvalue
Amax, the minimal eigenvalue A, and the spectral condition number of the

corresponding matrix after preconditioning:

18
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n 6 7 8 9 10 11 12
Amax | 3.962  3.632 3.682 3.718 3.743 3.763 3.777
Amin | 0.7693 0.7696 0.7696 0.7696 0.7696 0.7696 0.7696

K 4630 4.719 4.784 4.831 4.864 4.890 4.907

Table 1.4: BPX preconditioning for Hermite cubic splines

We see that the condition number induced by our wavelet basis is smaller
than that given by the BPX method. For n = 12, after preconditioning by the
BPX method, it takes 26 iterations for the PCG (preconditioned conjugate
gradient) method to converge. Hence, the preconditioning method induced by

our wavelet basis is competitive.

Example 2. Consider the Dirichlet problem
—u't+u=f on (0,1),
u(0) =u(1) =0,

where

flz) = [(63.7)? + 1] sin(53.77z) + [(2.37)* + 1] sin(2.37z), =z € (0,1).

The function u given in (1.12) is the exact solution of the problem.

In this case, the bilinear form a(u,v) is given by

a(u,v) = (W, vy + (u,v), wu,v € H}0,1).

With the wavelet basis G, the Galerkin approximation problem (1.10) is
discretized as

2n+1

(1.14) > (g, gk + (g5, 96))me = (g5, £), G =1,...,2""
k=1

The stiffness matrix
Ap = (<g;7g;c> + <gj7gk>)1gj,k52n+l

is still a sparse matrix. By Theorem 1.2, the condition number of the matrix

A, is uniformly bounded (independent of n). This assertion is confirmed by

19
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n 6 7 8 9 10 11 12
Amax | 1.5780 1.5787 1.5789 1.5789 1.5789 1.5789 1.5789
Amin | 0.4220 0.4213 0.4211 0.4211 0.4211 0.4211 0.4211

Kk | 3.7396 3.7474 3.7494 3.7498 3.7498 3.7498 3.7498

Table 1.5: Condition number of the matrix A,

numerical computation of the maximal eigenvalue Ap,.x, the minimal eigenvalue

Amin, and the condition number « of A, for n =6,...,12 (see Table 1.5).
We use the CG method to solve the above system (1.14) of linear equations.

The computational results are similar to those in Example 1. Up to n = 12,
only 19 iterations are needed for convergence to the solution of the system of
linear equations. For n = 6,...,12, the following table lists the error e, and

the rate of convergence log, e,_1/ey.

n 6 7 8 9 10 11 12
€n 1.21-2 133-3 1.08-4 7.36-6 4.71-7 2.97-8 1.92-9
logQ(e';;l) 410 319 362 388 397 399 3.95

Table 1.6: Error e, and its convergence rate

BPX method is applied for the comparison. Up to n = 12, 21 iterations
are needed for convergence to the solution of the system of linear equations.
The maximal and minimal eigenvalues of the preconditioned system, as well

as spectral condition numbers, are listed in Table 1.7.

n 6 7 8 9 10 11 12
Amax | 3.562  3.632 3.682 3.718 3.743 3.763 3.777
Amin | 0.7696 0.7696 0.7696 0.7696 0.7696 0.7696 0.7696

K 4.628 4.719 4.784 4831 4.864 4.890 4.907

Table 1.7: BPX preconditioning for Hermite cubic splines

Finally, we remark that our wavelet basis can also be used to solve inte-

20
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gral equations numerically. A discrete wavelet Petrov-Galerkin method was
developed by Chen, Micchelli, and Xu [12] for numerical solutions of integral
equations of the second kind with weakly singular kernels. Recently, Shen and
Lin [45] used the wavelet basis Gy, constructed in this chapter to find numerical

solutions of integral equations on the upper half plane.

21
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Chapter 2

Modified Hierarchy Basis For
Solving Singular Boundary

Value Problems

2.1 Background

Our investigations in this chapter is concerned with the preconditioning method
on the basis of the modified hierarchy basis for the numerical solution of the
singular boundary value problem arising from the radically symmetric elliptic
partial differential equations, a problem with numerous applications (see, e.g.,
[44]).

When the Dirichlet problem

—Au(x) + ¢(x)u(x) = f(x), in B,
u = 0, on 0B,

is defined on a unit ball B := B;(0) in R? and the data depend only on the
radical coordinate, then after a change of variables, the problem will reduce

to a one dimensional singular boundary value problem,

=L@ +a@u() = f(a), ze(0,1)

22
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where ¢(z) > 0 and ¢(z) € L (0,1).

For the smooth data, it has been proven (see, e.g., [24, 32, 43, 44]) that
the (smooth) solution can be approximated with high order accuracy by the
Galerkin method with a piecewise polynomial subspace. Therefore, no special
functions are required in the basis.

Convergence results of the Galerkin method for the singular boundary val-
ues problems have been studied for the case ¢(z) = 0 in detail in [32]. In [24],
Eriksson and Thomee established the general optimal order error estimates
and even generalized their results to the corresponding time dependent prob-
lems. It shows that the Galerkin method would give the same convergence
results for the singular problems as for the nonsingular problems.

For the solution with certain smoothness (such as in H?), the simple piece-
wise linear nodal basis shall satisfy the approximation requirement. By the
error estimates provided in Section 2.3, we show that a slightly modified piece-
wise linear nodal basis provides the suitable approximation order.

However, it is still a challenging problem to efficiently solve the large system
of linear equations arising from the Galerkin method for the singular boundary
value problems. Like its counterpart for the regular elliptic problems, the lin-
ear system arising from the Galerkin method for the singular boundary value
problems is also ill conditioned. For the regular elliptic boundary value prob-
lem, multigrid methods (see, e.g., [5, 4]), and numerous other preconditioning
methods (see, e.g., [6]), were successfully developed. Nevertheless, to our best
knowledge, presently there are few references about preconditioning methods
of the Galerkin method for the singular problems. To design an easily im-
plemented preconditioning method through the construction of the modified
hierarchy basis shall be the principle goal of this chapter.

The hierarchy basis has been discussed extensively in [55, 56], and has been
proven to be an efficient preconditioning method for low dimensional regular
elliptic problems. In this chapter, we construct a modified hierarchy basis
based on the concept of “stability” (see, e.g., [33, 35, 41]), and the “norm
equivalence” for the Sobolev space (see, e.g., [2, 34, 41, 29]). Such basis is
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then adapted to the nodal basis introduced in section 2.2 for the singular
boundary value problem, and thus the preconditioning can be achieved. It
will be shown later that after applying the preconditioning method based on
the modified hierarchy basis, the condition number of the stiffness matrix
arising from the Galerkin method will be uniformly bounded. In particular,
the condition number is nicely bounded by 2 for the case ¢(z) =0 .

This chapter is divided into three parts. In section 2.2, we propose the pre-
conditioning method on the basis of the modified hierarchy basis for the sin-
gular boundary value problem, and show the connection between the concept
of norm equivalence and stability of the modified hierarchy basis. The condi-
tion number of the preconditioned stiffness matrix is proven to be uniformly
bounded. In section 2.3, we provide basic error estimates for the Galerkin
approximation from the piecewise linear nodal basis subspace V}, with its el-
ement v satisfying the boundary conditions v'(0) = v(1) = 0. We will show
such subspace provides the same approximation order as the linear nodal basis
subspace without the condition v'(0) = 0. Numerical examples are computed

to confirm our results in section 2.4.

2.2 The Galerkin method and the modified hi-
erarchy basis
We consider the boundary value problem of the form

(2.1) —(z*d'(z)) + z%q(z)u(z) = z* f(z), =z €(0,1),

where « =d — 1.
Let v be a real-valued Lebesgue measurable function on R. We define the

L,(0,1) inner product by
1
(u,v) = / u(z)v(z)dz,
0
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and L,(0,1) space by
LQ(O, 1) = {1} : H’U||L2(0,1) < OO}

The weighted L, space L3(0,1) is defined by

Ly(0,1) := {v : /: lz2v(z)|?dz < oo}.

The weighted Sobolev space HL(0,1) is the closure of the set {v : v €
C([0,1]) N C(0,1),v(1) = 0} in the sense of the weighted Sobolev norm

loll = ([ (0@ + 1))

1/2

Define the symmetric bilinear form a(-, ) as follows: for u,v € H(0,1),

(2.3) a(u,v) :——-/0 x"u'(m)v'(a:)dx-}-/o q(z)x*u(z)v(z)dz.

Then the solution u of the singular boundary value problem also solves the

variational problem
(2.4) a(u,v) = (z*f(z),v(z)), Vv € HL(0,1).

Here, with some ambiguity, we also use z® to denote function z +— 2%, z €
(0,1), and we assume that f € L(0,1) (z% f(z) € L2(0,1)).
We have the following Poincare-type inequality ([32]).

Lemma 2.1.
af2

HiL‘ vHLz < Hxa/ZUIHLza v e H(}

a+1
Proof. We have

/Ola:O‘UQ(x)dz = /01<§(j:11),7)2($)d$
= - [[(E) 2@+ ()@

o at2
< CH_1||377"’7)||L2(0,1)”917 20| |2o00,1)
< —llotollzaonllz 5 lonlol
Since ||z|z(0,1) < 1, this completes the lemma. O
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Now we define another inner product for H2(0,1) by

1
(2.5) (U, v) g = / o (2)0' (5)dz, u,v € LY.
0
By Lemma 2.1, we have the following inequalities:

2 .
(26)  (,9)5 <a,0) < (14 (57 lalliwion) 00)z, v e Hy.

Hereafter, we fix a = 1 for simplicity. The case o > 1 can be handled in

the same way without any extra difficulty.

For the uniform partition of [0,1], 0 = 2o < 1 < ... < Zan =1, z; = 277,
j=0,..,2" let ¢ be the hat function ¢(z) := max{0,1 — |z|}, and
(2.7) Pna = (#(2") + d(2" - —1)) X[,
(28) ¢n,j = ¢(2n_.7)7.7 :2,“.,271_1,

where (.3, @ < b, is the characteristic function on the interval [a,b]. Let

Vp :=span{¢,;:j=1,..,2" = 1}.

It is easily seen that V,, C V,,,; forn =1,2,....
The Galerkin method is defined as seeking the element u,, € V,, such that

(2.9) a(un,v) = (xf,v), veV,.

Lemma 2.1 shows that a(-,-) is elliptic, and by the Lax-Milgram theorem,
existence and uniqueness of the solution are guaranteed for both (2.4) and
(2.9).

Taking
2n—1

Up = E cn,j¢n,ja
Jj=1

we can rewrite (2.9) as

2" —1

(210) Z a(¢n,ja ¢n,l)cn,j = <$f’ ¢n,l>) = ]-a vy 277. - 1)

=1
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or more briefly,

(2.11) AnCr = Fy,

where (j,1) entry of the 2" — 1 by 2" — 1 stiffness matrix A, is a(¢n j, dn1),
Cr = (Caty---rCnon-1)T, and F, := ((xf, Pn1),s- -+, (f, Buan_1))T. Here, the
superscript 7' denotes the transpose of a vector or a matrix.

The condition number of a nonsingular M by M matrix A is defined by

k(A) = ||A[[lIA],

1
where [|A|| := supyerm %, x = (z1,...,2:)7, and [x]| := (XX, 22)z.

When A is positive definite and symmetric, we have

() = S,

where Amax,4; Amin,4 are the maximum and the minimum eigenvalues of the
matrix A, respectively.

The following error estimate will be established in the next section:

1Y% (u = un) ||z, < C27")2||2 2|z,

Consequently, the subspace V;, has to be large enough to guarantee that the
error u — U, is sufficiently small. However, increasing the number n will dra-
matically increase the condition number of the associated stiffness matrix A4,
(see, e.g., [5]), which makes solving u,, numerically difficult. It is well-known
in the literature that for an ill-conditioned large linear system, without any
preconditioning, it’s impossible to find an efficient solver. Therefore, seeking a
suitable preconditioning method will be important for solving the discretized
system numerically. There is an abundance of literature contributed to this
topic for the regular elliptic boundary problems, such as [6, 29, 55, 56]. Re-
cently, wavelet methods have been introduced to serve as new preconditioning

methods (see, e.g., [18, 28, 41, 51, 52]). Stability plays the key role in the
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wavelet preconditioning method. In other words, if one is able to find a basis
which is stable in the corresponding Sobolev space, then the condition number
[o 0]

of the associated stiffness matrix is uniformly bounded. A basis, say {¢;}32,,

is stable if it satisfies,

Co (i sz) < ”g cii

where Cp, C} are two positive constants independent of {¢;}32,, and || - || refers

i < Cl(iC?),

=1

to the norm for the space in which we are interested. Stability of the shift
invariant space has been studied extensively in [33, 35].
To find a proper preconditioning matrix for A4, in (2.11), we introduce the

following lemma.

Lemma 2.2. If two positive definite symmetric M x M matrices A, B satisfy

the following condition
CoxTBx < xTAx < C1xT'Bx, Vx e RM.

Then for any M x M matriz S,

k(SASTY < —k(SBST).
Co
Proof. Since
xTSASTx (STx)TA(STx)
Amax,SAST = SUPp ——=—— = sup T
xcRM  X'X x€RM X' X
T B T

< Cl sup X_S___E__X = C'1/\max,SBST'

xERM xTx

Likewise we obtain

Amin,s48T 2 CoAmin sBST,

and hence

k(SAST) < %/{,(SBST).
0
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Lemma 2.2 tells that once one finds a good preconditioning matrix for B,
then it is also a good preconditioning matrix for A provided that the ratio
C1/Cy is not large. Basic properties of positive definite matrices and their

condition numbers maybe found in ([31], chapter 7).

Lemma 2.3. Forn = 1,2,..., let xp := > 4, 2—k/2X[2—k,2—k+1], and gn; =
Xn®hjr J=1,.,2"—1. Let u= 311" cn;én;. Then

1 2"-1 1,271
(2.12) /

>~ costns(@)] s < (wde <2 137 cnsonso)

where (-, Vg 18 deﬁned in (2.5) with o = 1.

2

dx,

Note: We may think of g, ; as the weighted derivative of ¢, ;, and the
weights are 27% k = 1,...,7n, on the subintervals (27%,27%*1) k = n, .., 1.
In other words, we discretize the weight x in the inner product form (-,-)g
through x,,.

Proof. Noting that g, ; =0, j =1,...,2" — 1 on (0,27"), we get

n 92— k+1

(u,uyp = Z/ r|u'(z)|2dz.

Accordingly,

92— k+1

qu—Z/ xzcn,](b’] ’ T,

JEL,
where Ij, ;= {277k, ... on—ktl}

Now we have
2— k+1

(2.13) (v, w)g > 2/2 2"“2%% l

JeEli

(2.14) = 2 [ S| o

By the definition of ¢, ; in (2.7,2.8), we have

277,, (.7 - 1)2—71. <z < jz—n,
$ (@) =14 -2 j2h <z < (+1)2",

0, otherwise.
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Then, on each subinterval (2% 27%+1) k =n,n—1,...,1, it follows that

z : _k 7 2 : 1 z :
Cnﬂz 2¢n,j = C":JX"¢n,] = Cnngnvj'

JEly g€l J€l,

This together with (2.14) yields

, w) > /01

The proof of the right inequality of (2.12) is similar and is omitted. O

2n—1

D (cnj9ni()

=1

2
‘ dz.

Combining Lemma 2.3 with inequality (2.6), we have

Lemma 2.4. Denote by A, the matriz (a(dn j, dni))ji=1,..n, AEn the matriz
({Dnjs Dn ) E)ji=1,..,n and by A, the matriz ({Gn.j» Gn))ji=1,..n- Then the in-

equalities

(215)  x"Apnx < XTAX < (14 ||gllzeeon) X  Appx, VxR,
and

(2.16) xTApx < xTApnx < 2xTA,x, VxR

hold.

The following theorem is a simple consequence of Lemma 2.2 and Lemma

2.4.
Theorem 2.1. For any matriz S of the same size as A, ,
K(SALST) < 2(1 + ||gl|zeo(o,1)) K (S AnST).

By Theorem 2.1, we reduce the problem to preconditioning the much sim-
pler matrix A, instead of A,. Due to the similarity between the basis {915}
and the derivative of the basis {¢,;}, it’s natural to construct another or-
thogonal basis similar to the hierarchy basis to preconditioning A, (see, e.g.,

[65,56]). We will construct such a basis in the rest of this section.
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Proposition 2.1. Let V,, be the linear span of Gnjs J = 1,..,20"1 The

sequence {ffn}nzl,g,_“ of subspaces is nested, that 1is, Vn C Vnﬂ for all n.

Proof. We shall show that the following relation is valid almost everywhere:

+ G2 + 3903, =1,
(2.17) n-1, ={ [ IO s ! .
59n.2j-1F Gn2j + 59n.2j+1, J=2,...,2"7 — L

For brevity, we define n := 27". From the definition of g,_; ., we have

—Q"T“I, <z < 4y,
On-11 =

0, otherwise.
Note that
() -27, p<z<2n,
Gn,1(X) = )
" 0, otherwise,
( 2%, n<zx<2np,
gn2(z) = —2%2, 2n < x < 3n,
0, otherwise,
and
( Q"Tl, 2n <z < 3n,
gn3(z) ={ —2"F 3p<a<dn,
. 0 otherwise.

Hence, for = € (0,4n) \ {n, 2n, 3n}, we have

1
In—-11(Z) = gn1(x) + gno(z) + §gn,3($)-

To verify the second equation in (2.17), first we recall that

1 1 . _
(/);z—l,j = §¢;,2j—1 + ¢;1,2j + §¢;L,2j+17 ae j=2,..,2" -1

Moreover, xn-1 and X, agree on the interval 27"+ 1] and, for j = 2,...,2" "1 —

1, ¢n_1,; is supported in [27"*1 1]. Therefore,
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_— / — /
On-1,; = Xn—1¢n_1,j—Xn¢n_1,j

1 1
= X‘n(§¢:z,2j—1 + @, 05 + §¢;,2j+1)

1 1
= 59n2-1 + Gn2; + o In2+1-

This proves the proposition. O

Similar to the construction of the hierarchy basis, let
(2.18) D1y = Gizj-1, J=1,..,2" l=nn—-1,.,1,

and
Wiy :=span{¢y_;;:j=1,..,271}

Then we have

Proposition 2.2. {1/31,]‘ l=1,..,n,5=1,..,2""1} is an orthogonal basis for

Va.

Proof. We shall verify the following properties:
) (o1, Gy =0, j=1,.,271 =1, 211,
i) (-1, Y1) =0, # 7,
iii) Vi, = Wo + Wi+ + W1
Considering i), for 7 # 1, there exists k such that 25 — 1 € {2"-% +
1,..,27¥1 _ 1}, and

1, (2-2)27 <z < (25 —1)27,
1/;1—1,1' = Q121 = s -1, (25 -2 <z < (25)27

0, otherwise.

Since g;_, ; is a constant on supp{t;_1;} = [(25 — 2)27, (2§)27] for j/ =
1,...,2"71 — 1, i) is true. For the case j = 1, we obtain that 2/31_1,1(= gi1)
is orthogonal to Vj_, because gi-14,7 = 1,..,2!71 — 1, have no overlapped

support with zﬁl_l’l.
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ii) follows from

SUDP{T/;l—l,j} n SUPP{QZl—l,j'} =0.

Finally, we turn to iii). First, {g;, ?l:"ll is defined to be a basis for V;.

Second, by i) and ii), we have
(2.19) Vio=WVi+Wi+Wy+- + W,

According to definitions, %1 = g11 by (3.21), Wy = span{tyo,}, and
Vi = span{gy,1}. Therefore, Vi can be replaced by W, in (2.19).
This completes the proof. 0

In what follows we shall provide the preconditioning method for A, in
(2.16). More precisely, we can find two sparse matrices P and H based on the
change of bases from {g,, ;}; to {11 ;}1; such that (PH)A,(PH)T is an identity
matrix. By Theorem 2.1, it is clear that (PH) is also a good preconditioner
for the stiffness matrix A,. To find the matrices P and H, we shall write
(2.17,3.21) into the matrix form for the convenience of explanation.

Denote by G, ¥, the vectors of functions (G115 Grr-1) 7, (D11, -on) 1/31,21)71,
respectively. Let ¥ := (U7, ..., U7 )T and denote by Ay, the matrix (I, (¥)7).
Then flﬁ,,n is a diagonal matrix by Proposition 2.2. Furthermore, one can find

a diagonal matrix P such that

(2.20) Iyn_y = PAg  PT.

where (I, ) entry of the matrix P is ||¥(1)||7}, and (1) denotes the I—th entry
of the vector .

Clearly, P is a stable (orthonormal) basis for V;,, and due to the simple
transformation from the basis G, to the basis P¥ (see (2.17),(3.21)), A, can

be preconditioned through a basis transformation from G,, to PU.
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By (2.17), we have
(2.21) Gi1 = Bg1G,

where B,,_; is a 27! — 1 by 2! — 1 matrix (only nonzero entries are listed.)

11

NI N[

Denote by Bj,_, the 2"~! by 2/ — 1 matrix

1 00
00100
1
Then, (3.21) becomes
(2.22) ¥, = By, ,GL.

Thus, (2.21) and (2.22) together yield

( Gi-1 ) _ ( By )G
- = .
‘I’l——l B«Zz,l—l

By H,_, we denote the 2™ — 1 by 2" — 1 transformation matrix

Bgvl_l 0
0 I2n__21

Then we have

V=H - H, 1G,.
For brevity, let
H:=H,-- 'Hn—la
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and thus we have the transformation between two bases

¥ = HG,.

Note that Ay, = HA,H”. By (2.20), we have

(2.23) In_y = (PH)A,(PH)".
Let S in Theorem 2.1 be PH in (2.23). Then
K(SARST) < 2(1 + [lal|zeeo0)-

Consequently, (PH) is a suitable preconditioner for A,. Furthermore, it’s
easily seen that (PH) has O(N) nonzero entries, where N = 2" — 1 is the size
of the basis functions for V,,. Therefore, implementation of the preconditioning

shall be efficient. Detail discussion may be found in [52, Prop. 4.6].

Corollary 2.1. For the case q(z) = 0, the condition number of the matriz

(PH)A,(PH)T is bounded by 2 for all n.
Now we provide a preconditioning algorithm for solving (2.11). Notice that
A,C, =F, & (PH)A,(PH)'(PH)T)"'C, = (PH)F,.
Then (2.11) is equivalent to the following linear equations with x = ((PH)T)~1C,,
(2.24) [(PH)A,(PH)'|x = (PH)F,.

To solve (2.11) for Cy,, we first solve (2.24) for x, and the solution of (2.11)
is
C, = (PH)"x.

Note that the matrix [(PH)A,(PH)T] is well conditioned. Therefore it’s

efficient to solve (2.24) for x numerically.
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2.3 Error Estimates

We provide basic error estimates in this section and show that finite dimen-
sional subspaces used in section 2.2 do provide the suitable approximation
order.

To keep the practical applicability, and for the convenience of stating the
results, we restrict ourselves to the uniform partition case in the previous
section. Under such setting, it’s easier to describe the preconditioning method
based on the multi-level nested subspaces.

However, error estimates stated in this section hold for the general non-
uniform partition case. Furthermore, the preconditioning method developed
in the previous section is readily generalized to the non-uniform partition case
as long as the sequence of subspaces are nested.

For the general non-uniform partition defined by 0 = zp < 1 < ... < xpy =
1, let

T—Tj—1 ) )
zj—m]-_l’ T e [xj'_l’x]]’

¢ =1 = @ €[zl
0, otherwise.

We also let h; := x; —z;_1, and h := max;<j<m{h;}, where the later quantity

measures the mesh size. The finite dimensional space is spanned by the nodal

basis functions {¢;},
Vi, := span{do + ¢1, P2, ..., Srr-1}.
Then the Galerkin method is to find u; € V}, such that
a(up,v) = (zf,v), Yv € V.

We will follow several lemmas to obtain error estimates in this section.

In the following, the solution u is assumed to be smooth (u € H?, where H?
denotes the usual Sobolev space of functions with the second weak derivative
on (0,1)) with the boundary conditions «'(0) = u(1) = 0. We let the same
letter C' which is independent of A denote the different constants in the different

inequalities.
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Lemma 2.5. There erists a constant hy such that for all h < hy,

l2V/2(u' = up)llz, < Chlla'u"|L,,

where C is a constant depending on max;~1{z;/z;_1} and that u; € V}, is the

interpolant of u defined by

ur(z) = u(21)(do(x) + d1(2)) + D ulz;)d;(2)-

Proof. On the interval I; := (z;—1, z;), ¢ > 1, similar to the proof of Lemma 2

in [24], we have

/wi w(u' — uf)?dr < z; /zi (u' — u))’dz.
o1 i1
By the well-known result (see, e.g., [7], p. 7)
o' = willLay < Chllu"| Ly,
it follows that

/1 z(u' —uj)ide < a:,-C’hZ/ z (u")2dzx < Chzi/ 1 z(u")dz

i—1 Ti_1 Ti-1 Ja;y

< CR?||="*u"|13 0
which implies,
(2.25) |22 (' — u))||Lyz) < Chl|z 20" || Lyry-

On the interval I; = (0,2,), let e(z) := «/(z) — v/(z1). Then e(z;) = 0 and

e¢'(z) = v"(z). Following the idea in Lemma 2.1, we have

31 z1 1 2 z
/ zle(z)]? = / x/ e'(t)dt' dz S/ z
0 0 z 0

S ||t1/2€,||%2(11)h2,

[
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and hence

x1 T
(2.26) / zju'(z) — o' (z1)2dz < h2/ z|u” (z)2dz.
0 0

Since

1 1
/ zlu'(z) — u'(z)Pde =T, + Ty — 2/ zu' (z)u' (1) dr,
0 0
where I'y := [7 z|u/(z)[*dz, and Ty := |u'(z1)? [} zdz, we have
/ z|u'(z) — o (z1)*dz > T, — ol'| — él"g +Is.
0

Let @« = 1/2. Note that u}(z) = 0, € I,. Then together with (2.26), we

have
(2.27) (|22 — w)l|zacry = 16/ 1y = Ta < 202|/20"|[2, 1,y + 20,

Combing (2.25) with (2.27) yields

|22 (W = up)l|Z 00y < CR|le* |2 01y + 2Ta.
The proof will be completed by estimating I'y:
' 2 2 24,1 2 2 o " 2 h3 "2
2Ty = ()P (on)? < W) = 1| [ ] < Sl
Hence there exists a constant hg such that
h||“"”%2(o,z1) < ||$1/2U"||%2(o,1), Vh < ho,
and thus completes the proof. (W

Theorem 2.2. There exists a constant hy such that for any h < hyg,

(2.28) 122 (u' = up)||za00,1) < Chl|20"|| a0,
and
(2.29) 22 (u — up) | 2a0,) < CH?||2Y24" | L400,0)
hold.
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Proof. (2.28) is a standard error estimate.

1/2

IA

Ca(u — up,u —up) < Calu — up,u — uy)

< Olla'(u = up)lzel2**(u' = u)llz.,

1222 (u" = wp)IIZ,

and hence,
|22 (u' = up)lz, < Cllz"?( = )|, < Chlla"*u"||1,,

where the last step used Lemma 2.5.

(2.29) can be obtained through a duality argument.

Let w solves a(v,w) = {(z(u — up),v), Yov € H}. Then we have

a(u — un, w) = (T(u — up),u — un) = ||z (w — un)|%,,

and

a(u—up,w) = alu—unw—wy) < Oz (W = uj)llL,lle/*(w' — w))l|,
< ORP||a ||, |2 2w |,
Once we prove the regularity of w, i.e.,

1212w ||z, < Ol (u — un)|lr.,
(2.29) holds.
w satisfies the following equation, (from —(zw')’ = z(u — up — qw))
w(z) = / : : /0 (u(s) — un(s) — q(s)w(s))sdsdt.
Differentiating both sides of the above expression twice, we have
W) = 5 [ (uls) — un(s) = a(u(s))sds — (u(o) - ua(z) + (e,
and thus

1 [% s
Hx”"’w”lle < ”_/ (_)1/251/2(11, — Up — qw)ds
Ty T

+ (122w = un)l|, + Clla"*wllz,.

L,
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By the Hardy’s inequality
1 T
— [ s@ar|| <2l
I3 [ 1o, <21
we get

e, < |3 [ = ) - s quias] + - )l

+ Cllz*?wllz, < Clllz*2(w = un)l|z, + ||z ?w]|L,).

It remains to prove ||z'/%wl|r, < C||zY?(u — up)||L,:

I Pl = )l > (2 = un), w) = a(w, w)

> Ollz/*w'|[f, 2 Olla*wlf,. =

Finally, for the case g(x) = 0, we provide error estimates for ||[u' — u}||z,

and ||u — upl|L,-

Theorem 2.3. If ¢(z) =0, then

|l — |z, < Chlju"||L,.

Proof. wu, satisfies the following equation,
(2.30) (z(u' —uy),v") =0, Yv € V.

In fact, V) := {v' : v € 3} is {w = Z]N; ¢ixy; : {¢;} € RM7'}. In other
words, V}, is the linear span of the piecewise constants on each interval I;,j > 1
with 0 on the interval I;.

Let uj, = Z;‘iz cjxr;- Then (2.30) is equivalent to

/ 1 (W'(z) — ¢))zdz =0, i>1.

6 = / W (b)tdt/ / bt
Ti-1 Ti-1
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Setting I := f;z’ tdt, we obtain

eI~ ity = [ () - uh(e) s

Ti-1

_ / ( /:_il(u’(x)—u'(t))tdt)2da:/F2, i> 1.

Estimating the last term in the above equation gives

(2.32)

P oy [ ([ wer-r [ ca
/lt ”(s)ds’zdt

stldt < w12

Now we have

(2.33) / ((z) — w!(8))?dt = /

/ / |u// st

Hence, after plugging (2.34) into (2.32), we estimate the term ||u'—u}|[7 1)
in (2.32) by

i f‘”l 2
[u'(2) — uh(2)Pdz < Bl 0 T
/mi—1 h i La(L;) (f;H tdt)2
72
S hsllulIHQ ‘ 4 -’l?i—'l <
H N (g, ) [T dt)? (

x;

a:i_l )2h2| |u”| I%z(]{)'

On the interval Iy,

/0 Y W @)de = / i
By

Thus the proof is completed. (N

/ ds‘ dx

" 2ds/ 2ds!d:v5 “u””%z(o,itl)hgl
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Theorem 2.4. Ifqg(x) = 0, there exists a constant hy such that for any h < hy,

|lu = unllLy01) < Chllu' — up]Ly0,)-
Proof. Let e := u — uy, and let w solve the problem,

—(zw') =e, with w(l) =w'(0)=0.

Then

(2.34) w(z) = /xl %/Ote(s)dsdt.

Differentiating (2.34) twice, it follows that

1 [° 1
w"(z) = —/ ds — ~e(zx).
@)= 53 | els)ds = e
By using Hardy’s inequality, we have
(2.35) llzw”||z, < 2llellz, + lellz. = 3lle]|L,-

On the other hand,

nma=@@=—4hww_

Integrating it by parts yields

1 1
|M&=Amww=ﬂxwuuwm Vo € Vi,

which implies
llellz, < ll€']lL, Jnf [lz(w’ — )],

Suppose we have the result inf,cy, |[z(w' — v')||, < Chllzw"||L, for the

moment. Then together with (2.35), we have
llefl, < Chllell,lle]lz..

Thus completes the proof. O

It remains to prove
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Lemma 2.6. For an element w € H(} NH? w'(0) = 0, there exists a constant

ho such that for any h < hy,
inf ||z(w' — )|z, < Chl|lzw"||L,.
vEV},

Proof. Let v be an element in V;,. Then there exist ¢, ..., car such that v =

M
> j=2 CiXr;- Let
¢j = / xw’(:v)dx// zdz.
I I
Then a similar approach in Theorem 2.3 can be taken to obtain
l|lz(w' = v)IIZ, < Chllzw"||Z,.

Detail steps are as follows:
Onl;,j>1,1etT:= ij zdz. It follows that

/Ij|x(w’—v')lzd:v = /Ijla:/:l(w'(x)—w’(t))tdt‘zdx/(ﬁ)

1 z; z 9
< ﬁ/ Ix/ t/ w"dsdt’ dz
I; Tj-1 t
1 @ | 2
C'l—/ (x/ / |w"(s)s|d3’dt‘ dz
F2 Ij Tj-1 i

1
Cigg [ lallsw’lleoy/Fshsfda
7

Ji, 2*dz

1"2

IA

IN

= Cihjllsw"|lZ,

< Ch||sw"|lL,,

where C; = x;/x;_; (since £ < ;Jff—l)

On the interval I;, we use the trick in Lemma, 2.5 again, and we obtain

J, et = o [ urta]'a
< [l [ wowo] e

T X 2
< / / ' (t)tlde] d
0 T

< R[w" ()13, 0)-
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Let T'y := [ |aw!(z)[*dz, and T3 == [ |zw'(z,)[2dz = —llw (z1)|?. Then
we have
Fl S 2h2||tw"(t)H%2(Il) + 2F2

Estimating 2I'; gives

2 2 # 2 2
28 = Zatlw'(a)P < 28 ([ w'Odt)” < SR ()
0
Hence there exists hy depending on w, such that for any A < hy,

w12,k < w7401

This completes the proof. O

2.4 Examples

Now we shall provide the results of numerical examples to illustrate the theory
developed earlier.
For the first example, let ¢(z) = 0 and

flz) = —g:v”l(sin g:v + :vg cos gx)

Then the solution is

T
U = —COS —T.
2

To define the coarsest grid, we split the domain (0,1) into 2! = 2 pieces,
and then divide each piece into 2 pieces of equal length. We keep on splitting
until there are 2" pieces. Therefore, we have n levels of nested subspaces.

Concerning the singular boundary value problem (2.4), once the finite di-
mensional subspace V,, is fixed, the stiffness matrix A, is also fixed, as well
as the preconditioner PH. Therefore, we will demonstrate the performance
of the preconditioner first by comparing the condition numbers of A, with
those of (PH)A,(PH)T with different n. In Table 2.1, we display the maxi-
mum eigenvalues, minimum eigenvalues and the condition numbers of the two

matrices A, and (PH)A,(PH)T for the different n.
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n 5 6 7 8 9 10

Amax.A, 11042 2.3342 4.8342 9.8742 2.0043 4.0443
Amin, A 0.0477 0.0232 0.0115 0.0057 0.0028 0.0014
K(An) 2.3043 1.0044 4.214 17445 7.0645 2.8546

AmaxPHA(PH)T | 1.9688 1984 1.992 1996 1.998  1.999
AminpHA.PEye | 1031 1.016  1.008 1.004 1.003  1.001
k(PHA,(PH)T) | 1.909 1.954 1.977 1.988 1994 1.997

Table 2.1: Condition numbers of the matrix A, and (PH)A,(PH)T

Computing results in Table 2.1 show that condition numbers of the pre-
conditioned stiffness matrices are uniformly bounded by 2, which verifies the

result of the Corollary in section 2.2.

Now, we are ready to implement our preconditioning method to solve the
first example. We use the Galerkin method to solve the problem with mesh
size 1/2" and let u and u;, denote the solution and the Galerkin solution of the
singular problem, respectively. |(u — up)|m1, ||(w — up)||L, With different n are
listed in Table 2.2. As predicted by Theorem 2.3, 2.4, the Galerkin method
with the piecewise linear nodal basis preserves O(h), O(h?) convergence rates

for |(u — up)|m, ||(v — up)||L,, respectively.

|u — up| g |[u — unl|,
0.0307 1.73 x 107*
0.0134 4.53 x 1075
0.0062 1.20 x 107
0.0029 3.16 x 1076
0.0014 8.17 x 1077
10 | 7.05 x 107* 2.12 x 1077

© o N O o

Table 2.2: Estimates of |u — up|m, ||u — up||L,
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After we apply the weighted Jacob iterative method with w = 2/3 (see, e.g.,
[8]), and an initial guess of 0, to the preconditioned linear system for 10,15,20
iterative times, we obtain the numerical solutions u;;. The errors between the
numerical solution and the Galerkin solution, estimated in H! semi-norm and

Ly norm, are given in Table 2.3.

st — un|m |luie — unl|L,
itno=10  itno=15  itno=20 | itno=10 itno=15 itno=20
4.00-4 1.02-5 2.60-7 | 1.31-4 3.28-6 8.34-8
4.05-4 1.04-5 2.67-7 | 1.38-4 3.48-6 8.91-8
4.06-4 1.05-5 2.69-7 | 1.41-4 3.57-6 9.14-8
4.07-4 1.05-5 2.70-7 | 1.43-4 3.61-6 9.25-8
4.07-4 1.05-5 2.70-7 | 1.43-4 3.63-6 9.30-8
10 | 4.07-4 1.05-5 2.70-7 | 1.43-4 3.64-6 9.32-8

© oo = o v B

Table 2.3: Estimates of |u; — un|g1, ||wie — un||p, with the different iterative

numbers

Since the condition number is strictly bounded by 2, it can be expected that
the convergence rate of u; — uy shall be like O(p™), where iterative number
is denoted by m, and p < 1. Numerical results in Table 2.3 indicate that
P % In fact, a careful analysis of iterative methods with a given condition
number bound may give an estimate of the convergence rate, which shall not
be discussed in detail here.

Similar to the example shown in [24], let ¢(z) = 1—22, f(z) = (1—1?)2+4
in our second example. Subspace level is up to » = 10. In this situation,
u(z) = 1 — 22, and |(u — up)|m, ||(v — un)||z, are computed in Table 2.4 for
different n. Condition numbers of the preconditioned system are shown in
Table 2.5. Similar computing results to example one are obtained. These

numerical results confirm the performance of our preconditioning method.
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lu —unlm v —uallL,
0.0306 2.07 x 1074
0.0141 5.49 x 107°
0.0067 1.44 x 107°
0.0033 3.70 x 1076
0.0016 9.45 x 1077
10 | 8.03 x 1074 2.39 x 1077

© 0 N & ov|PB

Table 2.4: Estimates of |u — us|g1, |ju — un||L,

n 5 6 7 8 9 10
Amax, A 11042 2.3342 4.8342 9.87+2 2.0043 4.0443
Amin,An 5.38-2 261-2 1.29-2 6.4-3 3.2-3  1.6-3
K(An) 2.0443 89143 37544 15446 6.2846 2.5446

AmaxpHanpmr | 2016 2021 2023 2024 2024 2.024
AminpHA,pEyT | 1.036  1.018  1.009 1.004 1.002  1.001
k(PHA,(PH)T) | 1.946 1986 2.005 2.015 2.019 2.022

Table 2.5: Condition numbers of the matrix A, and (PH)A,(PH)T

|uit — un|m ||uie — unl|L,
itno=10  itno=15  itno=20 | itno=10 itno=15 itno=20
3.89-4 1.04-5 2.81-7 | 1.10-4 2.78-6 7.19-8
3.92 -4 1.05-5 2.86-7 | 1.14-4 2.89-6 7.48-8
3.93 -4 1.05-5 2.87-7 | 1.16-4 2.93-6 7.59-8
3.93-4 1.06-5 2.87-7 | 1.16-4 2.95-6 7.64-8
3.93 -4 1.06-5 2.87-7 | 1.17-4 2.96-6 7.66-8
10 | 3.93-4 1.06-5 2.87-7 | 1174 2.97-6 7.67-8

© 0 NN o o ov B

Table 2.6: Estimates of |uiy — up|g1, ||ui — un||z, with the different iterative

numbers
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Chapter 3

C! wavelets on two dimensional

triangular meshes

3.1 Introduction
We are interested in the multilevel analysis on a sequence of nested subspaces
VO C Vl C V2 e

on triangulations {7}, of a polygonal domain  in R2. The multilevel

decomposition of {Vj}%2, is to seek the proper subspaces that

VJ:%+WI+W2+"'+WJ_1+WJ.

Wk C Vi is chosen to be orthogonal to V;_; with respect to some kind
of inner product. The basis functions for Wk are generally called wavelets.
If the usual L, inner product (-,-); on  is applied, then basis functions,
say {d’ﬂjel o fOr Wk, are traditionally called semi-wavelets [14, 16|, where
Iy denotes the index set of wavelets. Let {¢%};c7, be basis functions for V4.
Then

Wby, =0, K<k, jel, j €lyp.
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A basis {#;}%2, is stable if we have

o ] o0
2 2
1D sl =D e,

where || - || is the norm of interest. Here, ~ refers to that two terms can be
bounded by some constant multiple of each other, with the constant indepen-
dent of the parameters on which these two terms may depend. Similarly, We
let < (2) denote that the first (second) term can be bounded by a constant
multiple of the second (first) term.

Moreover, {¢;}52, is a Bessel sequence if and only if [16]
= 2

1D _csdsl| S Db

j=1 7j=1

A well-known norm equivalence theory in literature (for example, see [21,

54]) reads
J
(3.1) [l e 2 D 2% Jug |7,
k=0
where

J
uzzuk, ux, € Wi, Wo = V.

k=0
Consequently, if the (semi-)wavelet basis {¢¥};er, , for W, is stable in the L,
space, then wavelet system {27%%¢¥};_q1 . jer,, forms a stable basis in the
Sobolev space H*® [1, 10], where s is some positive real number.

Stable bases in Sobolev spaces have broad applications in numerically solv-
ing partial differential equations as well as integral equations {12, 13, 11, 19,
21, 34, 38, 45, 52|. For higher order problems, wavelets with higher order
smoothness, such as C! wavelets, are required. This motivates people to con-
struct the stable wavelet systems in Sobolev spaces. In particular, some stable
wavelets in Sobolev spaces have been constructed and discussed on the uniform
meshes in [39, 41, 50, 51].
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Validation of (3.1) requires some mild conditions on the subspaces {V;}%2,,
i.e., the Jackson inequality and the Bernstein inequality. In general, the Jack-
son inequality implies the suitable approximation capability provided by the
subspaces {V;}%2,, and the Bernstein inequality, known as the inverse in-
equality for a long time in finite element literature, usually holds true for the
underlying subspaces {Vi}52,.

Floater and Quak have constructed the semi-wavelets from the piecewise
linear nodal basis with small supports on the irregular meshes in [25, 26, 27].
Their wavelets are orthogonal among different levels with respect to the L,
inner product. By (3.1), it is clear that their wavelets also form a stable basis
in the Sobolev space after properly scaled. To reduce the support of wavelet,
Stevenson introduced the discrete Lo inner product in [46, 47] for each subspace
Vi, which is also generated from the piecewise linear nodal basis. Wk is then
the orthogonal complement of V;_; in Vi with respect to the discrete inner
product for V;. His wavelet for the linear nodal basis for two dimensional case
is simple and has three coeflicients. Numerical results on the regular mesh (see
[39]) show the potential for numerically solving partial differential equations.
The idea of constructing wavelets which are not L, orthogonal among levels
can also be found in several other papers (see [48, 49]).

C' wavelets on general meshes are of particular importance for fulfilling
the smoothness condition required by numerically solving high order prob-
lems. However, the difficulty in choosing the proper C! scaling functions on
general meshes as well as the lack of general theory to verify the stability of
wavelets make it intensely difficult to construct stable C! wavelets in Sobolev
spaces. Main goal of this chapter is to investigate the general theory on the
construction of C! continuous wavelets on the general meshes. We wish to
develop the theory independent on the Fourier analysis, which is considered as
the fundamental theoretical tool for the wavelet analysis on uniform meshes.
On the other hand, to further generalize Stevenson’s idea to more complicated
finite element spaces may not be suitable because one key estimate of the pro-

jection operator (Theorem 4.3 in [47]) involves three levels of subspaces. In
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this chapter, we shall overcome this weakness by estimating the same opera-
tor only involving two levels. Our method greatly reduces the complexity in
the estimate and thus makes the estimate for more complicated basis functions
possible. Moreover, our wavelets are extremely short supported, and this leads
to the fast algorithm for applications.

We will take Powell-Sabin elements (PS element, see [42]) as basis func-
tions for subspaces {V;}$2,. On the three-direction meshes, where grid lines
run only in three directions (see [36] and [3], p.294), PS element is C' con-
tinuous on the meshes and the subspaces {Vi}52, are nested. We design the
discrete Lo inner product (-, - Da(k) for each subspace V; and our wavelet sub-
space Wy is orthogonal to Vj_; with respect to the discrete inner product
() py(ry- One improvement in our estimate is that the proof is proceeded on
the standard equilateral triangle in stead of an arbitrary triangle due to the
affine invariance property of the basis functions. The stability of the wavelet
basis in the Sobolev space H? is verified.

Although the three-direction meshes are a type of regular triangular meshes,
our theory does not employ any property of the regular structure of meshes.
The obstacle preventing us from applying our theory to irregular meshes is the
difficulty in seeking the nested subspaces from suitable C! continuous refinable
functions. However, our theory is sufficiently flexible to be extendable to irreg-
ular meshes once proper C' continuous refinable basis functions on irregular
meshes are obtained.

This chapter is divided into four parts. In Section 3.2, we introduce the
knowledge of Powell-Sabin C! element which is employed later as scaling func-
tions to produce the sequence of the nested subspaces. We construct the
wavelets in Section 3.3, and some basic properties of the wavelets are pre-
sented. More precisely, we define one discrete Lo inner product for each sub-
space, and on the basis of such inner products, we construct the wavelets to
form a Riesz basis in Sobolev spaces. In Section 3.4, we focus on the general
theory of Riesz basis in the Sobolev space. We shall verify that our wavelets

satisfy all required conditions to form a Riesz basis in the Sobolev space H?2.
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The last section is devoted to the examples of the computation for wavelets

on the regular triangular meshes.

3.2 PS element and C! basis functions

Powell-Sabin (PS) element has been traced back to 1977 and was widely used in
CAGD because of its simple structure (compared with other C'! elements). On
a three-direction mesh, it is refinable and thus the sequence of subspaces from
PS element is nested. On a general mesh, PS element is no longer guaranteed
to be C! continuous globally. Applications utilizing these nonconforming PS
element were discussed in [40]. In this chapter, we use PS element as the scaling
functions to generate the sequence of nested subspaces on two dimensional
three-direction meshes.

The structure of this section is organized as follows. In Section 3.2.1,
we give the definition of PS element and study the local basis functions on
an arbitrary triangle. In connection with the local basis functions on the
standard equilateral triangle of edge length one, we discuss the affine map and
affine invariance properties of the local basis in Section 3.2.2. By (3.10), we
shows that affine invariance property allows us computing independently on
the shapes of the triangles and thus it provides an efficient way to carry out
computing and constructing wavelets. In Section 3.2.3, we combine local basis
functions together to get C' continuous basis functions on a three-direction
mesh. Associated with such basis, discrete L, inner products and norms are

introduced.

3.2.1 Powell-Sabin element

PS element is composed of piecewise quadratic polynomials on an arbitrary
triangle AP P,P; with 9 degrees of freedom [42]. We concern with one type
of subdivision of a triangle shown in Figure 3.1. Let O be the centroid of

the triangle T := AP, P,P;, and PS element used throughout this chapter
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is defined to be a piecewise quadratic function on 6 small sub-triangles and
C! continuous on 7. O is chosen to be the centroid because we wish the
multilevel subspaces from PS element are nested. For the PS element on a
non-degenerated triangle, it has 9 degrees of freedom. In other words, we have

the following property for PS element.

Proposition 3.1. For a given piecewise quadratic function on the splitting
sub-triangles as shown in Figure 8.1, if it is C* on the triangle AP, Py Py with
given values, as well as derivatives at Py, P,, and Ps, then this function is

uniquely determined.

P,

d, ;

1 p2
P, P P,
ds

Figure 3.1: PS element is composed of 6 piecewise quadratic polynomials p,,

D2, ---, Pg, Tespectively on a triangle

Existence of such PS element is a consequence of the affine invariance
property of PS element, and this will be shown in Section 3.2.2. Uniqueness
has been proved in [42]. The interpolation data we discussed here have 9
degrees of freedom, i.e., function values and the derivatives at 3 vertices. For
derivatives at a vertex, there are 2 degrees of freedom if we notice that any
two different directional derivatives of a C' continuous function at a point
determine its tangent plane at that point from fundamental calculus.

We may construct 9 basis functions associated with these 9 degrees of

freedom for PS elements on a triangle. Such basis functions are so called local
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basis functions, compared to the basis functions defined on the whole mesh.
We may drop local if the context is clear. For a given triangle AP, P, P; in
Figure 3.2, we may define 9 basis functions ¢r pg, ¢1,p,1 and ¢r p2 centered at

the vertex P € {P,, P;, Ps}. For ¢7p, o, we have

0dr.py 0 Oér.po, _
(3.2) <ZST’Pl’olﬂ =1 WIPI - Ody (Py) |P1 -
and
OdT p, 0 Odr,p 0 .
=0, —| =0, =21 =0, =2,3.
¢T’P1’0|Pj 8d1(P])|PJ 8d2(R7)'PJ ]
P,
P, ™
d: do
d, 'e) q:
T
da d: ey
P, d: d, P, P, HT qs3 P
Figure 2a Figure 2b

Figure 3.2: Notation for the triangle T

Recall that directional derivative of a function f in d direction is gg =

cos(B)%% + sin(H)%, where d is a direction with the unit length and the angle
between d and z axis is §. Here, by dy(P), ds(P) we denote the directions of
the unit length along the edges starting from the vertex P following the right
hand rule. For example, d;(Py) is the direction in I—’Tf’z, and dy(Py) is in ]TP;;>
We drop P from dy(P), da(P) if the context is clear. Let |d;(P)|, 7 = 1,2 be
the length of the edge starting from the vertex P and in the direction d;(P).
For instance, |d,(P;)| = |P1P;|. T may come into the notation to suggest that
the relevant symbols be based on the triangle T', such as d;(T, P), |d;(T, P)|

in Section 3.2.3. Subscript T is used to imply that ¢z p, o is defined on the
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triangle T locally. If the context is clear, the subscript T in ¢7 p, o is omitted.
Clearly, ¢p, o interpolates the value at the vertex P, while keeps all other
interpolation data such as derivatives at P;, P, P3 and values at P, P3 zeros.
This is similar to the Hermite interpolants in one dimensional case [34]. ¢p, 1

interpolates the derivative at P, in d; direction, i.e.,

8¢P ,1 6¢P1’1
(3.3) Odi |p, = 1/IPiP2|,  ¢palp =0, A |k =0,
and
_ Oppin| Odpi1y _ o ._
¢P1,1|Pj_0: 3d1 |Ff,_ ’ 5d2 |Pj_0 .7_2)37

where scale parameter 1/|P;P,| is used for the affine invariance purpose. In
particular, if |PyP2| = 1, then ¢p, ; has the unit derivative in Pl_P; direction
at P;. Function ¢p, » which interpolates the directional derivative at P in the
direction ]ﬁ; (i.e., d2(Py)) is defined similarly. Likewise, we may define the
basis functions centered at P, Pj.

These 9 basis functions are PS elements with prescribed interpolation data.
By Proposition 3.1, we claim such basis functions are uniquely determined.
They are linear independent. If not, then we have a PS element which is a
linear combination of them such that this PS element is identically zero on
the triangle. If we notice that each basis function interpolates the different
data of values and derivatives at 3 vertices, then this PS element must have
non zero value or directional derivative in some direction at one vertex. This
contradicts the fact that this PS element is identically zero on the triangle.

Thus we have

Proposition 3.2. {¢T,P’j}pzpl7P2,P3,j:0,1’2 s a local basis for PS elements on

the triangle AP, P P;.

Now we consider when two PS elements on two neighboring triangles join
C*' continuously. First, we give a proposition on the property of PS element

(see Figure 3.1).
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Proposition 3.3. If quadratic functions pl,p2 are C' continuous across the

common boundary Ogs (see Figure 3.1), then
(3.4) pl = p2 + A%,

where X\ is an arbitrary constant, and | = 0 refers to the function of the line

through O and q3.

Let’s consider the directional derivative of pl, p2 in Figure 3.1 in Ogj

direction. By (3.4), we have
opl  0Op2 ( ol
80g; 80g;  00g,

Then directional derivative of the PS element in Ogs direction on P, P, is lin-

= 0).

ear. Moreover, it interpolates two corresponding directional derivatives at P;
P,. However, the directional derivative in Pl—P; direction of the PS element are
respectively two linear functions on Pig; and ¢3P, and they join C! continu-
ously. The same analysis is applied to T' := AP, P3P, in Figure 3.3. Let ¢ be
the midpoint of P, P3, and O, O’ be the centroids of AP, P, P;, AP, P3P, re-
spectively. Then we may anticipate that two PS elements on two neighboring
triangles sharing the same values and derivatives at vertices P; and P; could
fail to join C?! continuously across the common boundary P, P; unless O, ¢, O’

are co-linear.
P

P,

Figure 3.3: Two neighboring triangles sharing the common edge P, P;

However, on a three-direction mesh, P, P, P; P, forms a parallelogram, and

then O, g, O' fall on the line through P, and P, automatically. Hence, two PS
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elements join C? continuously in this case. This is the reason why we restrict

ourselves to three-direction meshes.

3.2.2 Affine map and the local basis on the standard

equilateral triangle

In this section, we illustrate how to compute basis functions efficiently in a
uniform way. Affine map plays an important role in the connection of a PS
element on an arbitrary triangle with a PS element on the standard triangle.

The following proposition is a basic property of the affine map.

Proposition 3.4. There is a unique affine map mapping from T to T or from

T to T, where T, T} are two non-degenerated triangles.

Proof. First we prove there is a unique affine map which maps three vertices
of T to the corresponding vertices of T1. Let Pi(x1, 1), Po(z2,v2), P3(x3, y3)
be three vertices of T' and Pj(z}, v}), Ps(z5, y4), Pj(z}, y3) be the vertices of 77,
respectively. The affine map A : T — T; satisfies

' . b
(x:>:___<a11 a12><w >+< 1), 123
i a1 a2 Y; b

Rearranging the above equations yields

(x'l\ (2151 0 0 0\ (an )
!, z2 y2 1 0 0 O a2
xy |z ys 1 0 00 by
Yt 1o 00 oy Qa1
Ys 0 0 0 z 9y 1 a99

\v5/ \o 00w ui/\e)

Obviously, unique existence of the affine map is equivalent to the non-singularity

of the matrix
z1 1

Zo y21 )

z3 y3 1
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which implies that Py, P, P; are non-collinear. This uniquely fixed a;;, b;,
1=1,2, j = 1,2 and gives the affine map. Moreover, the map is injective. If

not, then there exist two different points z,, 3 in T with the expression
Ty =P+ ePo + 3P, 1o =P+ BoP2 + B3Ps
such that Az; = Az,, that is
(c1 — B1)P| + (a2 — B2) Py + (a3 — B3) P3 = 0.

This shows that a; = §;, j = 1, 2,3 and thus z; = z,. This is a contradiction.
The map is surjective. For any point 2’ = Z?zl o; P! € Ty, it is clear that
Az = 2/, with z = Z?zl o; P, eT.

It shows that this affine map is a one to one correspondence from T to T;.
Existence and uniqueness of the affine map from T3 to T can be verified in an

analogue manner. This completes the proof. O

Proposition 3.5. Let the affine map A: T — T3, with A(P)) = P|, A(P,) =
P,. If t = P, +t(P, — P), then 2’ = A(z) = P] + t(Py — P]) is on the line

P|P;.
Proof.
¥ = Az) = A(P) +tA(P, — P) = tA(R) + (1 — t) A(P)
= tPy+ (1 —t)P| = P +t(Py— P)).
This completes the proof. O

Proposition 3.5 tells that if a function f(z') is defined on the line segment
P/Pj, and the affine map satisfies A(P,) = P, A(P;) = P;, then f(A(z)) is
defined on the line segment P, P,. Based on Proposition 3.5, next proposition

explores the relationship of the derivatives of the two functions f(z') and

g9(z) = f(A(z)).
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Proposition 3.6. If the affine map A satisfies A(P,) = P|, A(P,) = P;, and
g(z) = f(A(z)), then

0
|P1P2| |P1 == PI f
(Ple) 3(P’Pz)
P B - . . L. .
where ﬁ%ﬂ = I_Pll_;z_l 1s the directional derivative of g at point P;.

By Proposition 3.6 we have

(3.5) ¢1,p.i (1) = ¢7 5, ;(Ar(2))/1d;(T, )|, ©=1,2,3,j=1,2,
and
(3.6) or,p0(T) = 05 5. o(Ar(z)), i=1,2,3.

Here, T := AP, P,P; is the standard equilateral triangle with unit edge lengths
and affine map Ag : T — T. By |d;(T, P,)| we denote the length of the edge
of the triangle T starting from P; in d; direction.

Proposition 3.6 provide a general way to construct the PS element on an
arbitrary triangle. More precisely, We construct the basis functions on the
standard triangle T first, and find the affine map mapping a given general
triangle T' to T next. Finally, (3.5, 3.6) determines the basis functions on T'.

IfAT) =T, g(z) = f(Az)),z € T,z € T , and f(&) is a PS element on T,
then g(z) is also a PS element on T'. Furthermore, {¢7 5 :(A(2))} 5_p, 5, B, j=01.2
is a basis of PS elements on T {¢7 5 ;(Z)}s_p, #, ;=012 are given explic-
itly on T in the end of this section, and this, on the other hand, verifies the
existence of the PS element in Proposition 3.1.

The representation of a PS element on T" and its correspondence after being

affinely mapped onto 7" have the following affine invariance property.

Proposition 3.7. Let the PS element f be defined on T with the expression

(37) f(.’L') = Z aT,Pi,j¢P,j(x)>

P,eN(T),j=0,1,2
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where N(T) := {Py, P,, P3} is the set of three vertices of triangle T. By the
affine map, we map the function f on the triangle T to its correspondence f

on the standard triangle T by

(3.8) f(@) := f(Az +b),
where P; = AP; +b,j=1,2,3 and {P;, j =1,2,3} are three vertices of T. f

is also a PS element on T, and it has the expression

(3.9) f@= > oppbp5,0).

i=1,2,3,j=0,1,2

Then, we have
(3.10) arpj=0opp;, ©=1,2,3,7=0,1,2

Proof. Taking directional derivative of (3.7), we have

o), Oy
ad] P; T7-Pi).7 ad]

P’

which implies

wnp =0
P 04 (T, P)

pi'dj(TaPi)|’ J=12
Likewise, we have
of . -
d" ",-:?—'d'T,.Pi ; =1,2
T,P;,j 6dJ(T,.Pz)|PZI .7( )I J

Using the property of affine map in Proposition 3.6 and (3.8), we obtain

of . of
a7 1@ Pl = 5o sl (T, R
ad](T,R)IP" .7( )I ad](T,H)IP‘| ]( )l

This implies (3.10) and thus completes the proof. O

Equation (3.10) motivates us to introduce the scale parameter 1/|P, P,
in the definition of PS local basis in (3.3). The representations of the PS

element therfore are invariant on different triangles. This enables us to carry
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out computing on the standard reference triangle instead of a general triangle.
Furthermore, (3.10) provide a quick way to map a PS element on a general
triangle to a PS element on T.

To end this subsection, we shall construct the basis functions on T with
explicit expressions due to their importance. As shown in Figure 3.2b, T is
divided into 6 sub-tria&le)s. We set up the coordinate system as follows. Let
P, be the origin, and P, P, be in the positive z-axis direction. On each sub-
triangle, a basis function is a quadratic function. Let pl, ..., p6 be polynomials
on sub-triangles AOP,g3, AOg3P2 ..., AOq2]31, respectively.

Using Proposition 3.3, together with the prescribed values and derivatives
at three vertices of T, we compute the basis functions on 7. For the basis
function ¢p, ;, we have
(3.11) pl=pb=p6 = x—i — §.’E2+—1—$y+-1-y2,

V37 2 V3 6
p2=p3=p4 = pl+2(z—1/2)%

®p, 2 shall be symmetric to ¢p, ; about the line y = (tan 30°)z, and ¢p, o has
the expression
(3.12) p1 = 1-—2z%—2¢%
p2 = 1-22% -2y +4(z - 1/2)%,
p3 = pd=1-22"-20° +4(x —1/2)> +3(y +
1

)%,

1, 1y
V3 V3

ph = 1-22% - 22 +3(y+

1
V3 V3
p6 = pl.

Other six basis functions on the vertices Py, P; can be described in an analogue
manner, or be obtained by using the symmetric property of the basis functions.

As a conclusion of this sub-section, we derive the basic properties of the
affine map, and compute the basis functions on the standard triangle. Com-
bining the affine map with the basis functions on T, we get the basis functions

on a general triangle. Moreover, we also give an explicit method to transform

a PS element on a general triangle to its correspondence on T by (3.10). In
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general, we provide the necessary basic knowledge of the local basis functions,
which are the fundamental bricks to build the basis functions on three-direction

meshes.

3.2.3 Basis functions on the meshes

Once we have the basis functions on an arbitrary triangle AP, P, P3, we shall
define the basis functions on three-direction meshes. Let 7 be the triangu-
lation, and A be the vertex set. There are 3 basis functions denoted by
{¢p;}j=0zy associated with each vertex P. Here, in order to define the basis
function uniformly, let ¢p, #p, be the functions interpolating the derivatives
at the node P in the directions of the positive z-axis, y-axis, respectively. The
supports of ¢p, dp, consist of the neighboring triangles of the vertex P. On
each neighboring triangle T', ¢p, #p, can be written as the linear combination
of the local basis functions ¢r p1, ¢r p2, if we notice that the tangent plane at
a vertex of a C! function is uniquely determined by any two different direc-
tional derivatives. Let the set S be S := {¢p;, P € N, j = 0,z,y}. Then
the space V is the linear span of the set S. V reproduces the polynomial of
degree 2 on each triangle in the given mesh.

We assume that the refinement procedure is to subdivide each triangle by
connecting the middle point of each edge. After each refinement, one triangle
is subdivided into 4 similar sub-triangles. Furthermore, we assume that for a
triangle T' € T, three interior angles are bounded below and above by some
constants. This assumption implies that the ratio /;/l; is bounded up and
below for 7,5 = 1,2,3 by some constants, where [y, 5,3 are the lengthes of a
given triangle 7. The mesh size thus can be measured by any one of [y, [,
and l3. If the mesh size is h, which is defined by h := maxp7{diameter of T},
then ||¢p;l|L, =~ h.

On a triangle, say AP, P, P5, we have two representations of a function in V/,
i.e., in terms of local basis functions {¢r,p, ; }i=1,2,3,=01,2 OF {@p, j}i=1,23,j=024-

In the following, we wish to discuss the basis {¢p;}per j=0y in detail. @p;
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is defined on the six neighboring triangles (denoted by 7 (P)) of the vertex P
in 7. On its supported triangle, ¢p; is a PS element, and

¢P0IP——1 ¢Po| =0, N2>qg#P, 37 q=0,q€N,j=x,y,

and

a ¢P,z

% P =

:0,¢P,x|q=o,qu, =0 N3g#P

8¢P,z I
Oz
¢p, is defined exactly in the same way. For any T € T(P;), say T in Figure
3.1, ¢p, 5 (or ¢p, ) on T can be represented in terms of local basis ¢7,p, 1 and

¢1.p, 2. If the angle between P, P, and z axis is 6; and the angle between P, P;

and z axis is 6;, then

¢P1 T 8¢P1 L

¢P1,93
0" 17 B (P

a¢1‘—"1 T |
Bdl (T, Pl) 2!

= cos(6;) = cos(62)

e,

Recall that d;(T, P,),i = 1,2, are two directions along two edges of T starting

from the vertex P;. ¢p, , restricted on T' can be written as

|d2(T’ PI)I

d,(T, P
M¢T,P1,l + COS(92)——'—“h‘—-¢T,P1 2.

(3.13) ¢pl,z|T = cos(6r) :

¢p, o is simply the same as ¢r p o on T, i.e.,

(3.14) PpolT = $1,P 0

(3.13-3.14) gives the local representations of the (global) basis functions.
It is clear that ¢p;, 7 = 0,z,y can be locally represented by the local basis
function ¢rp,; T € T(P),P € N(T),j =0,1,2. In other words, basis function
op;, j = 0,z,y are PS elements on each neighboring triangle T of P. Now we
propose the definition of discrete L, inner product and its associated norm.
For any function f € V, it is a PS element on a triangle T € T. f can be

represented in terms of the (global) basis functions or in terms of local basis
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functions triangle by triangle. We use the latter representation. Suppose f is

represented as (3.7) on a triangle T € 7. By (3.8), we obtain

(3.15) 1£1 2y = 1112, 7 voL(T).

Note that
l¢75,112,~1, PeN(T),j=0,1,2.

Then
7112 ~ }: ~2
”fHLZ(T) - aT’Phj.

i=1,2,3,j=0,1,2

Combining with (3.15), we have

|I.f] I%z(T) = Z a%,Pi,jVOI(T)?
i=1,2,3,j=0,1,2

where vol(T') ~ h? if the mesh size is h.
For two given functions f(x), g(z) € V which have the representations like
(3.7) with the coefficients {ar p, ;j} and {fr,p, ;}, respectively, their discrete Lo

inner product can be defined as follows,

(3.16) (f,9)p, = Y_volT) Y orpBrpey.

TeT PeN(T),j=0,1,2

Obviously, the discrete L, norm induced by the discrete Ly inner product is

equivalent to the L, norm for any function in V/, i.e.,

Proposition 3.8.
<f’f>D2§||f”%27 fev.

By (3.10), we may replace ap, j, Bp,; With az,-,i,j,ﬁpm in the definition of
discrete inner product (3.16). It suggests that we use affine map to map the
function on T to the function on the standard triangle T first with the rep-
resentation (3.9) on 7. The discrete L, inner product or norm then can be
computed on T, respectively. Let T run over all triangles in 7 and sum the

discrete inner products or norms up, then we get the corresponding discrete
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L, inner product or norm. Next, we introduce the new notation for multilevel
analysis purpose. Recall that the uniform subdivision procedure is utilized to
refine the mesh. We have 3 basis functions sitting on each vertex in the mesh
for each level. We add the superscript or the subscript k£ to denote the trian-
gulations, set of nodes, discrete inner products, etc, in the corresponding level
k. For instance, for the k-th level mesh, we may use the following notation:
Ter Niy (> ) Dath)» ¢’};,j, aﬁ’j, Sk, Vi etc.

Since (global) basis functions are PS elements on each triangle and C!

continuous, we may claim the refinability of the basis functions.

Proposition 3.9. Basis functions {¢};} pen,j=0,y are refinable.

Proof. We prove that ¢?31,:1: can be represented as the linear combination of
the higher level basis functions. Refinability of other basis functions shall be
proved similarly. We take the triangle 7" in Figure 3.1. Other neighboring
triangles of P; on which d)opm is supported can be dealt with in the same way.

It is easily seen that QS?DM determines the values and derivatives in z,y
directions at Pp, ¢, q3. Let these data be (ap,o = 0,ap,, = 1,ap,, = 0),

(Ctgs,05 Qgy 23 Otgy ), AN (Qlgy 0, Clgs 2y s ). Then we prove that

f= > OéP,o¢}v,o+% > apibp,
Pe{P1,q2,03} Pe{P1,g2,93} =25y
is identical to ¢3, , on APyg2¢3.
On APiq2q3, f shares the same values and derivatives at Py, go, g3 with
qﬁopl,m. Furthermore, f and ¢9,1,$ are both PS elements on APiqyqs in V;. By

Proposition 3.1, they are identical. f = ‘15(1)31@ can be proved on the rest sub-

triangles of T similarly. This completes the proof. O

Refinability of the basis functions implies that the subspaces {V,}2, are

nested, i.e.,
Vb C Vl .

Here, S := {(JS']“:,j}PeNk; j=0,z,y and Vi := spansSy.
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The wavelet subspace Wk is defined to be the orthogonal complement of
Vi—1 in Vj, with respect to the discrete inner product (-,-)p,x) for Vx. More

precisely, for any w € Wk, we have
(w,v)D2(k) =0, YveV.

Wk is the counterpart of Wy, which denotes the L, orthogonal complement of
Vi—1 in Vi. Here, we define the Ly orthogonal projection to be Qx : Ly — V;
with (Qru,v),, = (4,v),,, 4 € Ly, v € Vi. Then we have

o0

Wi == Pk(U Vi),

=0

where Pk: = Qk —_ Qk—l; k= 0, ]_, ey (Q—l = 0)
For {Vi}%2,, it is easily seen that the following Jackson inequality

~y

(3.17) v — Qruillz, S 272 o2, ve € Vi, 0 <k <1
and the Bernstein inequality
(3.18) vellmz S 4¥[vkllL,, vk € Vi

hold true.
In the next section, the basis functions for Wk shall be constructed, and

we call these functions wavelets.

3.3 Construction of wavelets

One favorite feature for the wavelets is the simple structure, which means the
local (or small) supports of the wavelets. For each refinement, we get more
newly created vertices. These vertices are middle points of edges in the old
mesh. There are wavelet functions associated with these new vertices in the
finer level mesh. We shall construct the wavelets for Wl. Wavelet functions

for other wavelet subspaces can be constructed similarly.
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Let two triangles AP, P, P; and AP, P; P, in the mesh 7, share the common
edge P,P; (see Figure 3.3). After the refinement, new vertex g, the middle
point of the edge P, Ps, is created. We define 3 wavelets associated with ¢ in

the following form,

(3.19) ;,j’ = :B(:]l,j’ ;,j’(x) + Z ﬂ]la,-,qu}z-,j(x), j'=0,z,y.
i=1,3,j=0,z,y

;,j, is automatically orthogonal to all basis functions of Vj, except {¢°P,j, P =
P, P, = 0,z,y} with respect to the discrete Ly inner product (-, '>D2(1)-
Since we have 7 coefficients in the expression of the wavelet with only 6 con-
straints (which are the orthogonality conditions between the wavelet and 6
basis functions sitting at Py, P3), there is at least one nontrivial solution for
the coefficients in (3.19). We want further that ﬁ;ﬂ-, # 0, and thus we may
normalize the coefficients to make ﬁ;yj, = 1. Suppose that there is only one
nontrivial solution with ﬂ;,j, = 0. Then, we prove that the rest coeflicients

must be zeros, too. For a fixed j’, suppose we have

(3.20) = D, Bhbh).
i=1,3,j=0,2,y
Considering the support of ¢ i(z), i = 1,3, j = 0,z,y, we find that
> j—02y Bbi i, ;(x) shall be orthogonal to ¢% ;(z), j = 0,z,y, because
¢}33’j(:c), j = 0,z,y are orthogonal to qSOPl,j(x), j = 0,z,y automatically.
Here, orthogonality is in the sense of discrete Ly inner product.
First, we shall note that 3., . Bp ;#p, ;(z) has zero values and zero
derivatives at vertices other than Py in MVy. 7. .. Bp, ;0p, ;(2) orthogonal to
P.i(%), 5= 0,2,y implies that 3°._ = Bp ;bp, ;(z) must have zero value, as
well as zero derivatives at vertex P. Thus ., . . Bp, ;6p, ;(z) has zero values
as well as zero derivatives at all vertices in A;. Since on each triangle in 77,
> i=02y Bby jPp, ;() is a PS element, 3. . Bh ;ép, ;(x) is then identically
zero on all triangles in 7; by Proposition 3.1. Hence ﬁll’m’ =0, 5 =0z1y.
Likewise, we obtain fp, ; =0, j = 0,z,y.

This contradicts the fact that there is at least one non-trivial solution for
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coefficients and thus excludes the solution with ﬂ,},j/ = 0. Consequently, we

may write the wavelet in the form,

(3.21) v =Pt D, Brgtrg), J =0z

1=1,3,j=0,z,y
Clearly, our short supported wavelet has at most 7 non-zero coefficients.
For convenience of stating the next lemma, we write 1/),} y ina clearer expres-

sion:

(322) ;,j' = ¢;,j’ + Z ;,j’,P,j¢}3,j($)’ j’ = O, Z,y.
PENq;j=0r’E,y

Here, N, is defined to be the set of two vertices in Ny, whose midpoint is g.

Accordingly, N f , k=0,1,2,... is defined for the meshes in different levels.
Note that for two different wavelets 1, ; and 4y ; with {q,j} # {¢,J'},

they have the different components qﬁé,j and ¢;,,j,. This leads to the following

lemma.
Lemma 3.1. {t;;}geni\Wo,j=0,2y 15 a stable basis for W, in Ly space.

Proof. Let

9= Z Z Ya5¥a,-

qENI\NO j=0,z,y

T 1 1 1
=it D Y Brirabhi

Recalling that

PENq j1=0,w,y
we have
_ 1 , 1 1
g = E , hIq,Jd)q,j + Yq,i E : IBq,j,P,j1¢P,j1]
qul\NO,j—_—O,(l‘,y PENij1=07x7y
_ 1 1
(3-23) = E 7q,j¢q,j + E aP,j¢P,ja
qul\NO,j=07$ay PENo,jZO,Z',y
where

— al
apj; = E 7q,ylﬁq,jl,P,j'

PENQ J1=0,z,y
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Since there are six neighboring triangles around the vertex P € A} in a

three-direction mesh, we have
2 2
(3.24) 0 SC Y Vg
PENq)j1=07x’y
where C is a fixed constant only dependent on the number of the neighboring
- . 1

triangles and coefficients {£, ; p,}-

Note that {¢p;}Pens,j=0zy is @ Riesz basis of V; in L, space. By (3.23),
we have

”gH%Z = Z ’73,j||¢§,jlliz + Z a%’,j”‘ﬁ}?,jll%z'
qGNl\NO,j=0,Z,y PENOaj‘_‘Oal‘,y

Assume the mesh size of 7; is h. Then
||¢}’,j||%22h2a PENlajZO:x)y'
By the estimate of (3.24), we have
2 -2 2
lgllf,h72~ > 2,

This completes the proof. O
As a direct consequence of Lemma 3.1, we have

Corollary 3.1.
” Z al;’,gwg,]"%z = (2—k)2 Z (ali’,j)27 k= O) 17 sy
PeNk\Nk—17j=0>xvy PENk\Nk—l:j=07$7y

provided that the initial mesh size is ~ 1.

Counting the number of basis functions, we claim that {4 }en\w,_, is

a Ly stable basis for Wk. To keep the consistence of the notation, we let

g’j = ¢y and NV_; be the empty set in what follows. Then we have Wo =V,.
Let Y}, be the orthogonal projection from V4.4, to Vi with respect to (-, *) p,(k+1),

ie., (kak+1,v')D2(k+1) = (vk+1,v’)D2(k+1), Vg € Vit1, v' € Vik. The following

proposition exhibits the stability of the wavelet basis for W} in the Sobolev

space H2.
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Proposition 3.10.
Fllugllr, = Juelaz, w € Wiy, k=1,2,--.
Proof. We have

Hurlle. = |lukllpay = I = Ye1)url| Doy

< T = Qr=1)ukl oy = [T = Q1) vl |z, S 272 |uk| a2

In the last inequality, we use the approximation property (the Jackson inequal-

ity (3.17)) of the subspace V;. Hence,
lullz, < 47*|uklge.
By the inverse inequality, we obtain
ke S 45| ukl|z,-

Combining the previous two inequalities together completes the proof. [

3.4 Stability of the wavelets in Sobolev space
HZ

In this section, we consider the stability of the wavelets in Sobolev space H2.
We go through several necessary lemmas before we finally reach the result.
The first lemma is a type of strengthened Cauchy-Schwarz inequality, which is
of particular importance in ensuring that the wavelets form a Bessel sequence
in H?. Similar lemmas appeared in [2, 47]. In [47], a particular short proof
is presented on the basis of the advanced knowledge of spaces interpolation.
For self-contain purpose, we shall give here a quite basic proof based on some

cancellation properties employed in [2].

Lemma 3.2. (Strengthened Cauchy-Schwarz inequality)
(3.25)
(Dug, Av)r, < C270P @ |wy]|1,) 2 uillz,),  uk € Vi, wi € Vi, k <1,
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where C 1s a constant independent of k,1. Here, /\ is the Laplacian operator

defined by Au 1= Ugy + Uyy.

Proof. Without loss of generality, we take £ = 0. We consider the case [ >
k + 2, and (3.25) holds true for the case | < k + 2 automatically by Cauchy-
Schwarz inequality and inverse inequality.

We concern with L, inner product of Aug and Aw; on a given triangle
T € 7Ty, as shown in Figure 3.1. By the rule of the refinement procedure, the
sub-triangles in the mesh with level number [ are all similar to 7. Moreover,
v; can be written in terms of basis functions in V sitting on the vertices in
NNT.

Note that Awug are piecewise constants on 6 sub-triangles of 7', and Ay,
are piecewise constants on all sub-triangles of 7" € 7;. We focus on the basis
functions in level ! with their support in one of 6 sub-triangles of T in level
0, say AOP3qz. The shaded area in Figure 3.4 is defined in such a way that
every basis function v; € V] centered in the shaded area has the support totally
within AOPs;q,. We choose the largest possible triangle in AOPsq, as the
shaded area. For any basis function v; € V] sitting on the vertex within the
shaded area in Figure 3.4, because its first derivatives vanish on the boundary
of AOPsqs, it is orthogonal to Auy because

/ (Aug)(V-Vuy) = (Auo)/ (V-Vy) = (Auo)/ Vu-fids = 0,
AOP3qz AOPsq2 OAOP3q

where 0AO Psqs is the boundary of the triangle AO Psqs.

Roughly speaking, the distance between the shaded area and the boundary
0AOP;q, is about the same size of the support of basis function in V}, i.e.,
27! multiple of the length of the edge of AOP;g,. 2~ comes from the uniform
refinement procedure. This leads to the estimate

area(AOPsq;) — shaded area
area(AOPsq»)

(3.26) <C27 (k=0).

Note that the basis functions centered on the boundary of AOPsq, has the

support outside the shaded area and Awuy is a constant on AOP;q,. Then, for
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\ .

P

O

Figure 3.4: Supports of two PS elements in two different levels

a function v; € Vj, we have

/ (Do) (Av) = / (Do) (Awy)
AOPsqs AOP3g2\ShadedArea

' ’AUOI |L2(AOP3q2\Sha,dedArea.) l |Avl| 'Lz(AOquz\ShadedArea)

7N

IA

| |Au0| |L2(AOP3q2\ShadedArea) | |Avl| |L2(AOP3112)

< 02_l|lAukHLg(AOPaqz)“Avll|L2(A0P3q2)’

where 27! comes from (3.26).
Inequality (3.25) on the sub-triangle AOPsq, can be obtained by the use
of inverse inequality. After we sum the estimate on each sub-triangle up, the

result follows. O

Lemma 3.2, together with Corollary 3.1 shows that the wavelet system

{27* f,j}k,q,j is a Bessel sequence in H2.

Theorem 3.1. Letu = ZZZO U With ug = quNk\Nk——l Zj:O,x,y ﬂf’j(Q‘k f;,j) €
Wi, k=0,1,...,J. Then

(3-27) lullfe S>> D (Bi)™

k=0 qENk\Nk-—l Jj=0,z,y
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Proof. 1t follows that

J
(3.28)  Jul = > (Auw,Dug)g,
I,m=0
J
> 27 (4w |,) (4™ [ 12,) (Lemma  3.2)
1,m=0
J

> 4 fullz,

=0

A

A

Moreover,

J J
lullZ, = 11D wll’< Y 47 (@ wli,) (4" lusl3,)
=0

l,m=0
J

S DAl
1=0

Combining above two inequalities, we have
J J
el SO w7, S D47 > D @765,
k=0 k=0 qEN\NE—1 7=0,7.y

where we used Corollary 3.1 in the last inequality.
This completes the proof.
O

Bessel sequence property of the wavelet basis guarantees the upper bound
for ||u||g2 in (3.27). If we can prove the lower bound for ||u||g2, then the
wavelet basis form a Riesz basis in H?. This is the task of the remaining
section.

Let the projection operator Z! be defined by,
Zf = (1Y )Y Y, k=1,2,..,1—-1; Z :=YV1---Y_,.

Z! projects a function in V; into Wk(k < 1) and the estimate of this operator

is the key in verifying the stability of the wavelet system in Sobolev space.
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Lemma 3.3.
12| 0psr, < CAER k<,

where A < 2, and C is a constant independent of [, k.
Suppose Lemma 3.3 holds true for a moment, then we claim
Theorem 3.2. {275y} .}, i is a Riesz basis for H?.

J . _ =7
PTOOf Let u = ZkZO U Wlth U — quNk\Nk—l Zj:O,a:,y 5,](2 k é:,‘]) € Wk,
k=0,...,J. First, we verify that

J
llullfe 2 Y 4%kl |2,
k=0

For simplicity, by Zj we denote Z; in the proof. Note that u, = Zyu, k =
0,...,J. Let s = 2. Then we have

J
RHS = ) 4%||Zull},
k=0
J J J J
= > 42w, Zwu), =Y 4% Y Pu,Zp Y Puu),
k=0 k=0 =0 m=0
J min(l,m)
= Z Z 4ks<ZkH’u, ZkPmU>L2
t,m=0 k=0

J min(l,m)

< 0D PlZPullZPrull, (124, S 22079, k< 1)
Ilm=0 k=0
J min(l,m)

S/ Z Z 4ks|IPlu“L22}‘(l_k)||Pmu||L22)\(m_k)
Ilm=0 k=0
J min(l,m)

= > > 2 OmRENER) Pl ) (27| Prullz,)
Iim=0 k=0
J

S Y 27 mezminlme-N (98| Pl |, ) (27| | Pl 1)
{,m=0
J

S Do @1Pwllz,)*
=0
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Therefore, we obtain
RHS < ||ull%e.

By Corollary 3.1,

J
lullfe ZRHES >~ > >~ > (8F)%

k=0 qENk\Nk_l J=0,z,y

Note that {27%9¥ }i 4 is a Bessel sequence in H? by Theorem 3.1 and

U2, Vi is dense in H?. It follows that {27%¢% .}, . is a Riesz basis in H?.

This completes the proof.
O

It remains to prove Lemma 3.3.

Proof.
Ztu
HZIIcHLN—Lz = sup w
wevi |ullz,
HZ]lcUlHLz ”'UchDz(k) L. H'Ul—IIIDz(l—l) “vl”Dg(l)

= sup :
weVi ||kl Dar) Ukl Do) llvillpay (il 2,

where v; := Y;-lul, j <l, vy ;== 1y and le =Y;---Y_1.
By Proposition 3.8, we have for k =1,2,...,1 — 1,
||Z/lcul||Lz ~ ||(1 —Yk—l)vknnz(k) <1 ||Ul“D2(l) ~1

|[vkll Do) [kl D2 k) ~ Ml
For k = 0, Zw; = vy, and thus
[
|vol| D20y

Now we consider 2120 _ f < J <. Note that v; = Yjv;4,. Then

Ni+illpy+1y? =

lvillpay  1illpag) ||Yj’0j+1HD2(j+1)< [1v;]| D25
V5] Do)

irillpagery — Nillpageny Nvistllpagen

1Yjvi+1llpy(i+1) . C ‘ .
Toriliogten < 1 because Yj is the orthogonal projection from Vj; to V; with
respect to the discrete Ly inner product (-, -) p,(j+1)-
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If we assume 1211220)_ < 9 (A < 2), k <j < !lforamoment and postpone

villpgy a1y —
its lengthy and tedious proof to the next lemma, then we have 121220 <
Nvj+1llDg+1)
2*. Hence,
HZIchL2—>L2 < CZA(l_k)'
This completes the proof. O

As pointed out in the previous lemma, the key step to verify ||Z}||1,oz, <

C2X0=H) is that the ratio ||f]|p,()/IIfl|p.+1) < 2* for any f € V.

Lemma 3.4. There exists a positive number \ < 2 that

U sy /N1 Vbygesny < 22, f € Vi

Proof. Without loss of generality, we take £k = 0 and verify that for some
A< 2,
1f1zl1Ba 0/ I llBory < 22

is true for any f € V; on any triangle T in 7.
For a function f(z) € V; on T as shown in Figure 3.1, let

(3.29) f@y= Y.  opop), zeT.

i=1,2,3,j=0,1,2
By the unique affine map A : T — T, we map f(x) to f(Z) by letting
F(%) == f(A(%)), where T is a standard equilateral triangle. By (3.10) (ap,; =
ap, ;), we have
(3.30) f@&= Y  apep,), ieT.
1=1,2,3,7=0,1,2

This indicates that we may compute the discrete L, norm of a given function
after it is affine mapped onto the standard triangle. Therefore, without loss of
generality, we assume that f is a function defined on the standard equilateral

triangle 7' with unit edge lengths in the following proof.
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Let f(x) be the PS element on T in the form of (3.29). To compute

|| f|7!|Ds(0), We simply have

£zl =voUT) > ahy

i=1,2,3,j=0,1,2

It is clear that || f|7| |%2(0) is the sum of squares of 9 variables {ap, ; }i=1,2,3,j=0,1,2-
On the other hand, these variables uniquely determine the PS element on T'.
To compute || f|7||p,(1) of the discrete L, norm in higher level, we need values
and derivatives of f at the midpoints of three edges of T'. In other words, we
shall write f(z) in terms of higher level PS elements with local basis on each
sub-triangle T} := APyq3q2, T := Aq2q3ql, T3 := Aq3Pql, T := Aq2q1P;,
respectively. Since T is symmetric, the data (values and derivatives) of two
basis functions {@p, o, ¢p, 1} at g1, g2, and g; are sufficient for the computation.
Data of other 7 basis functions at ¢;, g2, and g3 can be obtained similarly due
to the symmetry of the basis functions.

We concern with the values and derivatives of f(z) at the midpoint ¢3.
Note that ¢p, ;, j = 0,1,2 has zeros values and derivatives at any point on
the line P\ P,. Thus, ap,;, j = 0,1,2 have no contribution to the value or
derivatives at ¢3. Only {ap;, P = P, P,,j = 0,1, 2} have contribution to ¢3.
Such contribution can be obtained by studying the values and derivatives of
{op10,dP 1} at ¢3,¢2. First, we derive the value and derivatives of ¢p, o at
g3. ¢p, o is a piecewise quadratic polynomials on T, and its expression is given

explicitly in (3.12). By simple computing, we have

(3.31) op0(g3) = 1/2,
0¢p, 0 _
8d2(T1,q3)
09p, o
0dy(T1, ¢3)
Odp, 0
8d2(T3,q3)
Odp, 0
0dy (T3, q3)
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where d;(T, P) type definition of direction is given in Section 3.2.1. Since
¢p, o is symmetric about the line Pyql, its value and derivatives at ¢2 can be
obtained by (3.31) (see Figure 3.5). Consequently, contribution of ap, o to
g3, ¢2 can be computed from (3.31). Because of the symmetry, contribution of

ap, 0 to ¢3 can be computed from (3.31), too.

P, 2,93 -2 P,
1/2

Figure 3.5: Value and derivatives of ¢p o on T

Second, we study the contribution of ¢p, ; at ¢3,¢2. By the expression of
ép, 1 as in (3.11), we have (see Figure 3.6)

(3.32) ¢p1(g3) = 1/8,
Oop, 1
60T
Odp, 1
0dy (T, ¢3)
O9p, 0
8d2(T3,q3)
0¢p, 1
0dy (T3, ¢3)

With (3.31-3.32) in hand, we compute the value and the derivatives of f(z)

= —1/2

= -1/2.

at ¢3 as follows,
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P, 1/2°q3  -1/2 P,
1/8

Figure 3.6: Value and derivatives of ¢p, ; on T

f(g3) = > opérs(gd)
j=0,1,2,P=P,P,

0 0opi(q3

Uy = Y an, 200

§=0,1,2,P=P1,P,
where d refers to one of four directions {d2(11,¢3), di(T1,43), d2(T3,q3),
d1(T3,93)} at ¢3 shown in Figure 3.5 or Figure 3.6. Hence, the value and
the derivatives of f(z) at ¢3 is a linear combination of

{ap, 0, 0P, 1,0p, 2,0p, 0, P, 10p, 2}. We give the details in the following,

1 1
f(qg) = §(CVP1,0 + aPz,O) + g(apl,l + aPz,?),
of
m(%) = 2(ap0 —ap,0) + (@1 — ar),
m(q?)) = (apo—apo) — —z—apz,Q + §(O‘P1,2 +ap,1),
of 1
ddy(Ts, q3) q3) = (ap,0—apy) - 5P+ ‘2“(C¥p1’2 + ap,1),

1
(@3) = 2(ap,0—ap o)+ 5(ap2 —ap).
2
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Using the symmetric property of T, we get other values and derivatives at

q2,ql.
To compute || f|1,||p,1), we have

a%",,q,o = f(Q)a q = Py,q2,q3,

and
1 of
: T =P,q2,q3, j =1,2
aTl,q,] 23d (Tl q) (Q)a q 1,494,949, ] ’ <y
where I comes from the definition of 5;;(%—'3;—) =2, j7=1,2. It follows that

vol
||f!T1u2D2(l)———~———— S Y (ehpy)

P=P1,92,¢43 =0,1,2

It is easily seen that || f|r, ||3, (1) 1s @ quadratic form of the variables {ap;}p=piP, Ps =012
Let a be the column vector form of these variables. Then in a similar way,
we may compute ||f|5||5,q), J = 2,3,4, which are all quadratic forms of .

Hence, we may write

4
f 12l By = Z £zl 5,02y = vol(T)a" Da,
i=1

where D is a 9 x 9 symmetric positive definite matrix, and o is the transpose

of the vector «. It follows that

||f|T||2[)2 o ol

1/)\D,m x S - S 1/)\D, iny
a ||f|T||D2(1) " ol Da m

where Ap min, AD max are respectively the minimal, maximal eigenvalues of the

matrix D. From the computation, we have
AD,min > 0.0679 > 402,

Let A = log,(1/0.0679). Then we have

1f17l13,0)

< 2%
1 f 111D,y
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It is clear that on an arbitrary triangle T, we have the same estimate. After

we sum up the above inequality over all triangles in 75, we have

11y _ o
: |
7T,

This completes the proof. O

3.5 Examples

In this section, we shall demonstrate the computation of basis functions, as well
as wavelet functions, on the regular triangular mesh. The mesh is constructed
by connecting lower left vertex with upper right vertex of each square in the
uniform tensor product mesh. The support of each basis function contains 6
triangles, as shown in Figure 3.7. On each triangle, the basis function is a PS
element which is a piecewise continuous quadratic function on its six pieces
of sub-triangles. Therefore, we have to compute each PS element one by one,

and put them together to obtain the basis functions.

Y
P. (0,1
3 ©.1) p 1,1
7 \\ P - 2
, ~ 23 - ,
7 P ~ - /
. 24__>P, ,
’ | -~ Py
s .Blp S~
sa7 21 & P13
- N
P - s P P ¥ ~
4,/’Pﬂ,/ 32 S 11 / P~ 1.0 X
\\P43 /iD P // P@’ P P1
So7 42 63 17
P, P -
~N - /7
“4 P < 53-1 ’ P6
s 4 )/l; P s
// /’54_/ \6\2 6/4
7~ Py ~ P
Py Ps

Figure 3.7: Supports of the basis functions qSOO,j, 7j=0,z,y
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For the basis function ¢J ,, it satisfies the following conditions,

$60(0) = 1, ¢po(P)=0, P € Ne(0)\ {0}
940,
ox
where Ne(O) := {O, Py, Py, ..., Ps} is the set of vertices neighboring O plus O
itself in Figure 3.7. ¢00,w7 qﬁ%,y satisfy the similar conditions at the vertex O in
Ne(O).
For one triangle in the support of (;500,0, say AOP, P,, the PS element of the

0
(P) = o, 8%‘;’9<P>=0,PeNe<0),

basis function ¢%’0 satisfies the above conditions at three vertices O, Py, P,
too. By the properties of PS element, unique PS element is determined.

There are two ways to carry out the computation. The first method is
based on the affine transformation. Because we have the basis functions on
a standard equilateral triangle, we may compute the basis functions on an
arbitrary triangle by finding the affine map between these two triangles. The
interpolation data on the vertices, such as directional derivatives, shall be
computed accordingly. The second method uses the properties of PS element
and computes the quadratic functions on each sub-triangles directly with the
given conditions on three vertices.

In the following, we give the basis functions for {¢g ;}j=0xy(see Figure

3.7).
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$0.0
Py = Py =Py =Py =Psy=Ps3=1-2z"+2zy — 2%
Py = (1-22%+42zy —2y%) + (y — 2z + 1)%
Ps = (1-22%+2zy—20°)+ (y— 20+ 1)>+ (x +y — 1)%
Py = (1-22%+42zy—2y%) + (z+y—1)%
Py = Py
Py = (1-22 422y —2y°) + (z+y—1)> +4(y — z/2 — 1/2)%
Py = (1-22%42zy—2y°) +4(y — /2 -1/2)%
Py = (1-22°+42zy—2y%) + (y—2x - 1)%
P33 = Py
Py = (1-20°+2zy—2¢°) + (y— 22— 1)> +4(y — /2 — 1/2)*;
Py = (1-22"4+2xy-2y°) + (z+y +1)%
Pi3 = Py
Py = (1-2242zy—2¢*)+ (z+y+1)*+ (y— 2z — 1)%
Py = (1-224+23y—20°) +(z+y+1)2 +4(y - z/2+1/2)%
Py, = (1-22°+2zy— 2¢°) +4(y — /2 +1/2)%;

Py = Py
P = (1-22"+2zy —2y°) +4(y — 2/2+1/2)* + (y — 22 + 1)*;
Fsy = Py
Psy = P
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0
¢O,x

P, = —gxz + 2y — y* + 7

Py, = P+ %(y -2z +1)%

P53 = PH+%(y—2x+1)2+%(x+y—1)2;
Py = P11+—;—(a:+y—1)2;

Py = Pu+(z-y)%

Py = Ph+ -;—(x +y—1)%

Py; = Py

Py = Py;

Py = P21—|—2x2—-;-(y—2$—1)2;

Py, = Py +22%

Py3 = Py

Py = Py;

Py = (—ng—-xy+y2+x)—%(x+y+1)2;

3
P42 = (—§x2—$y+y2+x),

3 1
Py = (—38° —zy+y°+2)— Z(y— 2z — 1)%

2 2
3 1 1
Pu = (32 —ay+¢’+2) - S -2 -1)" - S(@+y+1)%
1 1
1
P52 = (§$2+$y+117),
Ps3 = Py,
By = Ps;
3 4 1 2
Po = (-52° +ay+a)+5(y -2+ 1)5
Py, = P
3 5
Py = (—§x + zy + T);
Psy = PFes;
84
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and

P04
1
Py = —zy— sy +y;
Py = Pu;
1 1
b3 = (—xy—§y2+y)+—2-(x+y—1)2;
Py = Pig;
3
Py = —x2+zy—§y2+y;
2 3 2 1 2
Py = (-z +zy -5y +y)+§(x+y—1);
3 1
Py = (-2’ +ay—sy*+y)+ 5@ +y— 1) +2(y - z/2-1/2)%
3
Py = (=2*+ay— 5y’ +y) +2(y — /2 - 1/2)%
3
Py = zy—sy’ +y;
Py, = Py
3
Py = (:vy—§y2+y)+2(y—w/2—1/2)2;
Py = Psg;
1
Py = (sy+3y°+y) —5E+y+1)%
1
Py = (wy+§y2+y);
Pi3 = Py;
Py = Py
3 1
Poy = (& —ay+3y*+y) - sle+y+1)° -2y -2/2+1/2)%
3
P, = (x2—xy+§y2+y)~2(y——x/2+1/2)2;
3
Py = (fv2~xy+§y2+y);
3 1
Py = (@*—ay+3y°+y) - @ +y+ D5
3
Py = (—zy+ 51/2 +y) —2(y — z/2 + 1/2)%
3
Psy = (—wy+§y2+y);
Pz = Pey;
P64 - P61- 85
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To compute the wavelets, we shall use the discrete L, inner product defined
by (3.16) to determine the coefficients in (3.19). Let’s recall the definition of
the wavelet in (3.22)

(3.33) ;,j’ = ;,j'ﬁ,j'(x) + Z ﬂ;,j/,p,j¢}a,j($), j'=0,z,y,
PeNg,j=0,z,y

where vertex g is the mid-point of two vertices in A, in level 0 mesh. Recall
that for a regular triangular mesh, level 0 mesh has the mesh size 1, and after
the refinement, the level 0 mesh becomes level 1 mesh with the mesh size
hy=1/2.

5.7 18 required to be orthogonal to {¢%;}(pen,,j=0,0y) With respect to the
discrete inner product (-,-)p,n1) for Vi. To find the suitable coefficients in

(3.33) for wavelets, we need the following inner products,
<¢]i>',j'7 ¢0P,j>D2(1)a P e {q7Nq}7 Pe qua jlvj =0,z,y.

Let’s recall the definition of the discrete L, inner product (-, ) p,1) in level

1 before we carry out the computation.

(3.34) (f,9) Do) == i Z Z or,p;Pr,p)
TeT1 PEN(T),j=0,1,2
where
flz) = Z Z aT,P,j¢1T,P,j(x)
TeT1 PEN(T),j=0,1,2
and

9@) =Y. Y. Brridre,()

TeT1 PeEN(T),j=0,1,2
Here, 7; is the triangulation of level 1, and A/ (T) is the set of three vertices
of the triangle 7. Therefore, we shall write the basis functions in (3.33) and
{63} Pen, j=0,ay In terms of the local basis functions in V;, and use their
coefficients to compute the discrete inner product (-, -) D2(1)"
In Figure 3.8, we shall compute 9 wavelets sitting on ¢1, g2, ¢3, and their
dilations and shifts form the wavelet basis. First, we give the explicit forms of

nine wavelets in the following,
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Y
P; (0,1)
ad P, (1,1
Wl e .(;_”_ ______ o’ ] w6
| 195 A
P, v P, P, (1,00
7 e} o X
P Eq4 ,/’ ' q1
w3 7’—, ——————— .——-———-:;(5 --------- Iw5
:qs L7 96
' .
I
PS w4 P6

Figure 3.8: Computation of the wavelets

-1
Yo = ry (=830 + 4900 — PO + 200, + 40byo + bz — 20p, )

-1

;3,93 = 7(_2¢;3,x + ¢1O,:c + ¢}’3,x)7
1

;3)y = 5 (2¢;3ay + 2¢1070 - ¢10,£E + ¢1O;y - 2¢%33:0 - ¢1P3,Z + ¢})3ay)’
-1

20 = ?(—8@;2,0 + 4660+ G5+ $0,y +40p,0 — Dby — Phay)s
1

;27"‘6 = 5 (2¢;2,.’E + 2¢1O)0 + ¢1O’y - 2¢1P270 + ¢}327y)’
1

;271/ = —2. (2¢;21y + 2¢1070 + ¢%)az - 2¢1P270 + ¢}:>2’z)’
-1

o = ry (—8¢g10 +460,0 + 200, — P,y + 46b,0 — 20p,0 + Dy )
-1

;1,11 = 7(_2¢;1,(E - 2¢loy0 - ¢lo)z + ¢107y + 2¢1P1,0 - ¢}31,$ + ¢}311y)’
-1

1 _ 1 1 1

by — o (_2¢q1,y + ¢O,y + ¢P1,y)'

Next, we illustrate how to obtain the wavelets by using an example for

computing 1, , in Figure 3.8.
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Let
¢¢}3,x($) = ;3,95 ;3@ + Z :3113,j¢}—",j(x)'

Pe{o,P;;},j:O,.’L‘,y

Then v,l)(}&x shall be orthogonal to six basis functions in level 0, i.e.,

— 0 0 0 0 0 0
V = {¢O,O7 (bO,x’ ¢07y7 ¢P3707 ¢P37z7 ¢P3,y}.

Let V' := {¢ls 2, 80,00 0.2 D6.4» PPy 01 OBy ) Dby 4 }» then the orthogonality
between 15 , and V can be written in the matrix form

(V% V) b,m) BT =0,

Where vector 8 := {8l 5. 8,0, 85,00 By Bhy v By Bhuy )

((VT, V1Y p,q)) is a6 by 7 matrix with (7, j) element defined by < f, g >p,q),
where f, g are i-th and j-th elements of the vectors V, V!, respectively.

By the definition of discrete inner product, we shall write all involved
functions in terms of local basis functions to obtain the matrix ((VT, V') p,)).
We shall give an example to compute (¢y; ., 9% o) p,(1) to illustrate how to get
the required discrete inner products.

First, the support of ¢;3,x is composed of six small triangles around the
vertex ¢3, such as Ag3Pwl. ¢g70’s support are six triangles around O with

Py, P, ..., Ps as vertices. It is clear that the overlap of the supports of two

1
93,z

Second, we shall represent two functions ¢}, ,, #¢ , in terms of local basis

functions is the support of 9 i.e., six small triangles around vertex ¢3.

functions. For the derivatives, we focus on the six directional derivatives in
six directions, i.e., 0,7/4,7/2 and their opposite directions. It’s easy to find

that

8 ;3,39 a ;3:1:
8—3:(‘13) =1/h =2, 8y’ (¢3) =0,

and ) )
8¢q3,a: . a¢q3,a:
Bd,,/4 - oz

where d,/; denotes the direction with an anti-clockwise angle n/4 and hy =

(q3)/\/§ = 2/\/§>

1/2. Note that ¢, , has all zeros data for its values and derivatives at vertices
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other than ¢3 and

Ly
Siw o2 1/|dngagawt g3.2] = 1/|g3wl| = 2/\/§
aquZqul,qB,Z
Thus we have the local representation for ‘75;3,9; on its support. We list the

representation for ¢;3,x on Aq2q3wl as follows,

1 1 1
(335) ¢q3,:c|Aq2q31U1 = ¢Aq2q3w1,q3,1 + ¢Aq2q3w1,q3,2'

Next, we shall compute the local representation for ¢¢,,. Note that @,

has all zeros data for its values and derivatives at all vertices other than ¢3. We
thus only interested in the directional derivatives of ¢Oo,o at ¢3 in six directions.
Since we have the explicit expression of ‘1500,07 we may calculate the value

and directional derivatives of ¢% , at ¢3 by

a 0 o 0
dholad) = 1/2, 2222(q8) =1, 2289 = -2,
and 50
630"’ =(1-2)/V2=-1/V2.
/4

Therefore, we write the local representation of qS%,O on Agq2q3wl by

1 1 1
(336) ¢00,0|A42¢13’U11 = §¢£q2q3wl,q3,0 + §¢1Aq2q3w1,q3,1 - §¢}3q2q3w1,q3,2 + Ia
where I includes the basis functions centered not at ¢3.
By (3.35) and (3.36), we get the discrete inner product of ¢y, , and ¢,
on Ag2q3w]l as follows

-1

1 1
(D23.00 D0 0) Da(1) | ag2q301 = hF(0 X 5+ 1 x 5+ 1 x 7) =0.

Likewise, discrete inner products on other 5 sub-triangles in the support

of ¢;3,x can be done. In fact, we only need the information of directional

1

23z and ¢ ¢ at ¢3 in the computing. Taking the summation of

derivatives of ¢

inner products on all sub-triangles, we have

< 1,113,:z’¢%,0>D2(1) =0.
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In a similar way, we get the matrix ((V?,V1)p,)) and list it in the fol-

lowin
i (010 00 0 0)
2/6 0 4/6 2/6 0 0 0
b2 1/6 0 2/6 4/6 0 0 0
000 0 1 0 0
2/6 0 0 0 0 4/6 2/6
\1/6 0 0 0 0 2/6 4/6 )

Null space of the column vectors is the solution for the wavelet 9}, ;, and
existence of the solution is proved previously in Section 3.3. From computa-

tion, we have
-1
B = —5—{—2,0, 1,0,0,1,0}%.

If we change V' to be {¢ls0, 95 0, 86 z» D6 y» Dby0 Py z> Pbs > then the

associated matrix ((VT,V')p,q)) becomes

(12 1. 0 0 0 0 0 )
0 0 4/6 2/6 0 0 0
| U8 026 460 0 0
/2 0 0 0 1 0 0
0 0 0 0 0 4/6 2/6
\-1/8 0 0 0 0 2/6 4/6

For this case, 130 = V'87, where 8 = 31{-8,4,-1,2,4,1,-2}.

It’s worth to point out that the above two matrices for ((VT,V1)p,q)) are
the same except for the first column. Therefore, in the following, we shall only
list the first column of the associated matrix ((VT,V')p,(1)) to compute other

wavelets.

Let V! := {¢23., 96,0 B0 20 $6.4> PPs.00 Pbs.zr Py }» and the first column of
the matrix ((VT,V1)p,u) is {-1,1/6,-1/6,1,1/6,—1/6}F. Thus, ¢}y, =
V1T, with B8 = 1{2,2,-1,1,~-2,-1,1}.

In the following, we give {12, ;, %51 ; }i=0,2y-
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1-) ’7/&}2 0*
Let Vl {¢ 2,00 ¢1O,07 ¢1O,z7 ¢1O,y7 QS}_)z’O, ¢}32,:m ¢]j32,y7 }7 and
V = {00, 80.5) 804 2,00 8P, 2> B, 4 }- The first column of the associated

matrix ((VT,V1)p,m)) is {1/2,1/8,1/8,1/2,—1/8,—1/8}T. Then

q20 — VI,BT
where
-1
B = —8-—{—8,4, 1,1,4,-1,—1}.
2) 1}21.

Let V! = {é3 1, $6.0) 90 2> ¢0,y7 bb,.00 By 21 P, 4 > and the first column of the
associated matrix ((V7,V1)p,q)) is {-1,-1/6,-2/6,1,—1/6,—2/6}7. Then

q2w = V IBT
where
1
B = 5{2,2,0,1,——2,0, 1}.
3-) ;2’y

Let V! = {#g5.4, 96,0 BO,2» D6.4> Pyr.00 Dby @y 4 1> and the first column of the
associated matrix ((V7T,V1)p,a)) is {—1,—2/6,-1/6,1,~2/6,—1/6}T. Then
. VllBT

q2,y

where
1
8= 5{2,2,1,0, —2,1,0}.

4.) 1/1;1,0:
Let’ Vl = {(bél,()? ¢1O,07 ¢1O,:1:7 ¢1O,y7 ¢}31,0’ ¢}—-’1,z7 ¢1P1,y) }7 a'nd
= {00,0) 80,25 B0 g D100 Dby 23 OB, 4> }- The first column of the associated

matrix ((VT,V1)p,q)) is {1/2,1/8,0,1/2,—1/8,0}T. Then
q1 0= lﬁT

where
-1
/B = —8-{_8, 4a 27 _1’ 4—7 —2’ 1}
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5.) 31@:
Let V' = {01 2, 80,0, 80 2> B0 4> B, 0> By 20 DBy > }» a0d the first column of the
associated matrix ((VT,V1)p,)) is {-1,-1/6,1/6,1,-1/6,1/6}. Then

;171; = VIIBT’
where
-1
B = -2—{—2, -2,-1,1,2,-1,1}.
6.) ;1,3,3

Let Vl = {¢;1,y) ¢1O,Oa ¢10,:m ¢1O,y7 ¢}-’1 ,0) ¢}31,:w ¢}31 Y0 }’ and the first column of the
associated matrix ((VT,V1)p,a)) is {0,1/6,2/6,0,1/6,2/6}7. Then

wél,y = VIIBT7

where
-1
/3 = 7{_27 0, 07 ]-7 07 Oa 1}
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Appendix A

Additive Schwarz-Type

Preconditioner for Hermite

Cubic Splines

Due to its built in parallelism as well as simple implementation, additive
Schwarz type preconditioner has been received more and more attention re-
cently [6, 29, 53, 57]. In Appendix A, we shall construct the additive Schwarz
preconditioner for the Hermite cubic splines and prove that the preconditioned
system has the uniformly bounded condition number. Hermite cubic splines are
well known in the field of the approximation [20, 34], and their C! continuity
and high order approximation property make them attractive in practice.

This Appendix is divided into three parts. In section A.2, we sketch the
basic framework of the additive Schwarz preconditioner. Hermite cubic splines
and their properties shall be briefly reviewed in section A.3. Finally, we con-
struct the nested finite element spaces with Hermite cubic splines, and show
that the condition number of the preconditioned system by the additive Schwarz
preconditioner for the Hermite cubic splines is uniformly bounded in section
A4
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A.1 Abstract additive Schwarz preconditioner

In this section, we introduce the notation, and the basic concepts of the ad-
ditive Schwarz precndtioner we may use later. We are following the setting
introduced in [7, 29].

Let Sg € S; C --- C S, = S be a nested sequence of finite dimensional
Hilbert spaces and

n
S=>"5
=0
where n is a positive integer.
Let a(-,-) : S x .S — R be a positive definite and symmetric bilinear form
with the properties
a(v,w) = a(w,v) Vv,w € S,

and
a(v,v) > 0.

Define A: S — S, and
a(v,w) = (Av,w) VYv,w € S,

where (-, -) is the scalar product in S.

Let each subspace S;, j = 1,...,n, equipped with a positive definite and
symmetric form b;(v,w) = (Bjv,w), v,w € S; with B; : S; — S;. Finally,
we define the operator I; : S; — S to be the nature injection operator, and its
transpose is denoted by I ]t

The abstract additive Schwarz preconditioner can be written as
n
_ ~17t
J=0

Remark 1. In practice, a(+, -) usually is the bilinear form introduced from
the given second order elliptic problem, and A corresponds to the stiffness
matrix. [; is referred to as the transformation matrix for the basis in S; and the

basis in S. I} is the transpose of I;. b;(-, -) is closely related to the scalar product
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in S;, and B; usually can be represented as a diagonal matrix. Therefore, the
additive Schwarz preconditioner (A.1) can be easily implemented.
Once we have a sequence of nested subspaces, we may estimate the maxi-

mum and minimum eigenvalues by the following theorem

Theorem A.1. The mazimum and minimum eigenvalues of BA can be char-

acterized by

a(v,v)
A BA) := max — ’
max( ) 0#£veS mln,,:z;_tzo Ijv;, v;€S; Z?:O bj ('Uj, v].) ’

and

a(v, v
Amin(BA) := min — (v,v) - )
0#vesS mlnvzz;‘:o Iv5,v;€8; Zj:o bj (Uj7 vj)

Proofs of the theorem can be found in several sources [7, 29, 41].

We may find that whether the additive Schwarz preconditioner works well
or not is depending on the ratio (the condition number) of A ax t0 Apin in the

Theorem A.1.

A.2 Hermite cubic splines

Recall that the Hermite cubic splines ¢; and ¢, be given by

$10 := (z+1)*(1 — 2z) for z€[-1,0],

$1(z) ;== ¢u:=(1-2)%2x+1) for z€]0,1],
0 for zeR\[-1,1],
and
$20 :=z(z+1)* for z€[-1,0],
$2(z) == 4 @or :=z(xz—1)* for z€][0,1],
0 for zeR\[-1,1].
Then

$1(7) =6(), 10G) =0, ¢20) =0, ¢1(j)=6(), j €2,

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where

] 0, 0£7€Z
(5(3)::{ ’ )
I, 7=0

Applications of the Hermite cubic splines in solving ODE numerically can be
found in [34].
On a mesh with 0 < g < x; < - -+ < zyxy = 1, we may scale and shift ¢, ¢,

to construct the basis functions for the finite dimensional space as follows

b10(;EE=) for x € [xio1, i),

zi—xi 1
¢1:(x) == ¢11(%) for z €[z, i),
0 for x € R\ [zi—1, Zit1),
and
$20(;55) for z € [zi1,mi),
$2i(2) = ¢ (G2 EHE for x € [m;, mi41),
0 for z € R\ [zi—1,Ziv1],

where 1 =0,..., N.
We may verify that ¢1(z;) = 6(i — 7), ¢1:(z;) = 0, das(z;) = 0, ¢ (z;) =
6(i —5)/(xi — zim1), 4,5 =0,...,N.

Now we introduce one lemma on the Hermite cubic splines.

Lemma A.1. Let v = agd11(z) + a1610(z — 1) + Bodao () + Bidar(z — 1), then

we have
(A.2) CIHUH%2(0,1) < 0—’3 +af + ,33 + 67 < 02”””%2(0,1)7
(A.3) Cs(B5 + B7) < 1Vl12,0,0);
and
(A.4) [[v']|220,1) < Callvl]L0,1)

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where Cy, Cy, C3 and Cy are four constants independent of v, and Ly norm

on the interval I C [0,1] is defined to be ||v]|r,r) = ([} |v(z)[2dz)'/2.
Proof. Let the vector a := (ayg, a1, By, £1)¢, then

||U||%2(0,1) = o' Da,

where
1309 =11 13
35 70 210 420
9 13 -13 1
D= 70 35 420 210
-1 13 1 -1
210 420 105 140
13 11 -1 1

420 210 140 105

Note that D is symmetric and positive definite (i.e., its eigenvalues are strictly

positive and bounded). Then (A.2) holds true.

Likewise, we have

1W'I17,0,1) = @' Drcx,

where

6 -6 -1 -1

5 5 10 10

=6 6 1 1

D,=| 3 5 1 10

=1 1 2 -1

10 10 15 30

-1 1 =1 2

10 10 30 15

Note that D, — 0.082D, is symmetric and with the eigenvalues nonnegative,
where D, is a diagonal matrix with the diagonal entries (0,0, 1,1). Then (A.3)
follows if we set C5 = 0.082.

Last inequality (A.4) is true because

10| Lo0,1) < Calof + of + B + B7).

If we note that D;’s maximum eigenvalue is bounded, then, by (A.2), (A.4)
holds.

This completes the proof. O
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A.3 Additive Schwarz preconditioner for the

Hermite cubic splines

For the given second order elliptic model two points boundary value problem
—(p(z)u(z)) + ¢(z)u(z) = f(z), z€(0,1),

with the boundary conditions

we may define the bilinear form a(-,-) to be

a(v, w) =/0 p(x)v'(x)w'(x)dx—f—/o q(z)v(z)w(z)dz, v,w € Hy(0,1),

where p(z) > 0,¢(z) > 0 for z € (0,1), and H}(0, 1) is the usual Sobolev space
with the norm, semi-norm denoted by || - ||1, | - |1, respectively. It’s well known

that

a(v,v) = [Jv]f;.

Here and in what follows, we use X ~ Y to denote the equivalence of
the two terms X and Y (X,Y can be bounded each other by multiply by
some constants independent of the mesh.), and let C, C;(i = 1,2...) denote the
generic constants independent of the mesh.

For H}(0,1), H! semi-norm is an equivalent norm to H! norm.

The Galerkin method is to seek an element u in H{(0,1) , such that
(A.5) a(u,v) = (f,v) Vv € Hy(0,1),

where (v,w) := f01 v(z)w(z)dz is the traditional inner product for the real-
valued function space L»(0,1).
If we have a finite dimensional subspace S C H}(0,1), then the finite

element method is to seek an element u, € S such that
(A.6) a(un,v) = (f,v) YveS.
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Now we construct the finite element space based on the Hermite cubic
splines. For the convenience of statement, we focus on the uniform mesh, al-
though quasi-uniform mesh also admits the additive Schwarz preconditioner
for the Hermite cubic splines.

Let ¢¢,(z) := be(27z — k),e = 1,2, where j, k, known as scales and shifts,
are both nonnegative integers. Then we may check that supp(¢5,) = [k—1,k+
1]/29.

Let the finite dimensional space S; be the linear span of the basis functions

{5k}, k=1, 2 —1fore=1,and k =0,..., 2" for e = 2. Then

S=5.,=)Y_5; ScH)01).

4=0

We may write the basis function in a vector by ®; := {;}, where ¢; 0, =
?7,0, k= O, ...,2j - 1, Pjok—1 = QS}’IC, k= ]., ...,2j - 1, and QDj,2j+1_1 = izj.
The corresponding stiffness matrix is generated by A := (a(¢n k1, Pni2)),

and the transformation matrix I; can be obtained from the so called refinement

equations
1
O(z) = Z Ry ®(2z — k),
k=—1

where the vector of functions ® is defined to be (¢°(z), #'(x))” and the ma-
trices

103 1 0 1 -3

-1t 0 1 11

8 8 2 8 B

In other words, every basis function ¢;; can be written as a linear com-
bination of no more than 6 basis functions in {¢;1x}. Therefore, S; C Sj1.

Moreover, we have the 272 by 29! transformation matrix 7}, such that
t __ t
®; = @5, 715

Thus, I; can be written as

Ij = n—lTn—2"'Tj7'a 7=0,..,n-1,
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and I, is just the 27t! by 2"*! identity matrix. Furthermore

(A.7) ® =0 j=0,..,n.

For any element v; € S;, we may write it as a linear combination of the

basis functions, i.e.
29+l

U= D UikPik
k=0

Denote by v; the vector of the coefficients {v;x} associated to v; € S;.

Then by Lemma A.1, we have
hiviTvi = [[][7,0,1);

where v;, Twj, is the usual vector product and h;, known as the mesh size of
Sy is 279,

Let’s take a look at I; again. For a given v; € S, we associate it with its
coefficient vector vj, and I;v; € S,. Here I; is an injection mapping v; € S;
naturally into S,,. With some ambiguity, we use the same notation I; in (A.7) as
a transformation matrix mapping a vector in R¥™ to R""". More precisely,
if v, is the vector of coefficients of v; with the basis functions in S, (i.e.,
v; = Bt v,), then

Vn = I;vj.
Thus, vectors v;, v, can be think of as two representations of the same function
in S in terms of bases in S}, S, respectively. I;, as a transformation matrix,

connects such basis change. It’s important in the numerical implementation.

Let the bilinear form b;(-,-) on S; be
bj(vj, w;) = hy'viTws,  vj,w; € S;.

Then B; !, written in the matrix form, is a 271 by 2/*! identity matrix multipl
- y ply

by hy' =27,
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Now the additive Schwarz preconditioner can be defined in the matrix form
by

B=) 27LI].
7=0

Remark 2. The computational work for Bv,, can be calculated as O(2"+1)
if we note that the computational work for T;v; is O(27*!), and 27! is the
dimension of the space S;.

After we introduce the additive Schwarz preconditioner, we may estimate
the maximum and the minimum eigenvalues of the product of the matri-
ces B and A. By Theorem A.1, we need to estimate the ratio of a(v,v) to
Mily=5"_; I;v;, v;€S; Z?:o 2viTv;.

For Hermite cubic splines, we have the following theorem,

Theorem A.2. For the finite dimensional space {S;} generated by the Hermite
cubic splines, we have
a(v, v)

Amax = max =0(1)
. . n . T )
0#£veS mlnv:E;}:O Livj, v;€S; Ejzo 2]Vj Vj

and

a(v,v)

=0(1).

Amin := min
: _ T
0£VES Milly=3>"_ L0, v; €S, Z]’:o 29v;Tv;

Before we prove the theorem, we need three Lemmas. Let Q; : S, — S;,j >

0 (Q-1 = 0) be the orthogonal projection operator, i.e.,
(Qjv, w;) = (v, w;), Yw; €S,

where v is an element in S,. Then for the sequence of subspaces {S;} , we

have

Lemma A.2. Forv € S, we have

n
lo]f = > #I1(Q5 — @5-1)ol1Z,.
3=0

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



As a result of norm equivalence, it’s well known in the literature. It’s proofs

may be found in [21, 41].

Lemma A.3. For anyv; € S;, 7 =0,1,...,n, we have

2i+1
(A.8) I3, 2 D vihy =270Vt
k=0
and
2j+1
(A.9) 195112, < C > (vjs/hj)*hj = CPvitv;,
k=0

Proof. If we note that ||¢¢,||1,0,1) = h; = 277, and ||(¢%)'||Lo0,1) < C27, then
(A.8, A.9) can be obtained directly by Lemma A.1. (A.8) usually is referred
to as the stability of the Hermite cubic splines in the sense of L,, and (A.9) is

the inverse inequality. O
The next Lemma is a Cauchy-Schwarz type inequality,
Lemma A.4.
/01 vj (2w (z)de < C27H2(R7 [uj||,) (R Hlvwlla),  Vo; € S, w € Sk
Proof. For the case k = j, by Cauchy-Schwarz inequality
/Olvé(w)wk(m)dx < vjllzallwillz, < Cr5HIvslle) (A vkl z,),

where we use the inverse inequality in the last step.

For the case j < k, we consider one sub-interval, say (m/27, (m +1)/29) in
the mesh for S;. Furthermore, let oy = v;(m/27), @y = v;((m + 1)/29), 8, =
hvi(m/27), B = h;vj((m + 1)/27). Then, on the interval (m/27, (m + 1)/27),

vj can be written as
1 1 2 2
Vj = Q19; + 205 i1 + 5105 mi1 + B2Bmar-
Let a =m/27,b = (m+ 1)/27. Then
b b
/ vj(@)wy,(z)de = vjwgl] —/ v (z)w(z)dz.
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First, we estimate the term vjwy|} by

surl) < (@) + W) (wr(a))? + (w0
<

-1/2 -1/2
Clilzatarh; *) (ol Laiyhic ).
Since by the Lemma A.1 (after a scale), we have
((vj(a))” + (v(0))*)h; < ClISIIL, 0,

and
((wi(a))® + (wr(0))*) e < Cllw|Z (0

Hence, by inverse inequality,

—-1/2 —-1/2 -3/2 -1/2
(10l zatamyhy ) (lwillzaesy b 2) < C (B2 1[05] | Laay) (B 2|0k ] | Laarty)
< C(hi/hs)* (W7 H15]|Lota) (B Hokllzagag)-

Note that h; = 277, b, = 27, Then
vywela < C27V MR Juj]]1,) (i vwl | 1.)-

Second, we estimate the term — fab ] (z)wi ().

b
- / i@ wr(@)] < Clvf|zaa | [wel Lo
aQ
< Chj_zuvj”Lz(a,b)||wk||L2(a,b)
S C2_Ij—kl/2(h‘j—1“vj||L2(a,b))(h;1||'Uk||L2(a,b)).

If we add up the estimates on all intervals and apply the Cauchy-Schwarz

inequality, then Lemma A.4 follows. Thus completes the proof. 0O

Now we give the proof of Theorem

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[theoremA .2]

Proof of Theorem A.2.

Let v = Y77 ;v;, then we have

a(v,v) = CllV|[Z,0,)

= CQ_ v 2 )
k=0

Jj=0

< C 3 27 MR g 1,) (B okl 2,)
Jk=0

< (B lvgllz.)?

J=0

Z2jvavj. (by lemma A.3)
j=0

12

Since the splitting of v is arbitrary, this implies that

(A.10) a(v,v) < C min s Z2jvavj.
7 ]=O

v=2§‘=0 Livj,v;
Now let v; = (Q; — @j-1)v, 7 =0,...,n, then by Lemma A.2, we have
(A.11) a(v,v) ~ Z4j||vj|l%2 ~ Z2jvavj.
i=0 =0
Combing (A.10) with (A.11) yields that
a(v,v) ~ min viTv;.
( ) U:Z;___O Ijv;,v;€8; ]2:; J J

Thus completes the proof. (]

Remark 3. For quasi-uniform mesh, note that h; ~ 279, j =0,...,n. Then
we can obtain the same result on the additive Schwarz preconditioner for the

Hermite cubic splines using the same proof in the note.
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Finally, we show the numerical results of the additive Schwarz precondi-

tioner for the model problem
'U,"(iL') = f(II?) S (07 1)’

with the boundary conditions

The bilinear form arising from the elliptic problem is a(v, w) = fol V' (z)w'(z)dz,
and thus A is the stiffness matrix with (ky, k) entry fol Ok (T)Pn 1, (T)d.
To obtain better results on the condition number, we normalize @;;,j =

0,..,n, k=0,...,27%1 — 1, such that

1
| 1es@pds =2
0

The additive Schwarz preconditioner is given in (A.1). The condition numbers
with respect to different n are listed in the following table. The numerical

results confirm the claims in theorem A.2.

n| 6 7 8 9 10 11 12
k|4.62 471 478 483 4.86 4.89 4.89

Table A.1: Condition numbers(x) of BA with different n
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