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Abstract

Motivated by the soaring production cost, intensive competitions and public atten-

tions on environmental issues, how to reduce the operational cost, raise the profit

and enhance the operational safety attracts tremendous interests in the chemical

and petroleum industry. Since the regulatory control strategy may not achieve such

rigorous requirements, higher level process control activities, such as production

planning, real time optimization (RTO) and multi-variable control are more fre-

quently taken into account. Moreover, to attain the better performance, process

control engineers often consider plant-wide operations rather than unit-based ac-

tions. As a result, both dynamic and discrete optimization techniques for the large

scale problem nowadays play a more important role in the industry than before.

Even the classical optimization based techniques, such as model predictive control

(MPC), have seen considerable successes in many practical applications. However,

they are still suffering from computational issues in the circumstances of a large-scale

plant, complex dynamic system or the short sampling time period. Furthermore,

these traditional optimization techniques usually employ the deterministic formu-

lations, but often become unsuitable for uncertain dynamics. Hence, this thesis

is mainly concerned with developing computationally effective algorithms to solve

practical problems arising from those high level process control activities and highly

affected by the disturbances.

Approximate dynamic programming (ADP) is one of the most efficient computa-

tional frameworks to handle large-scale, stochastic dynamic optimization problems.

While a large number of successful cases based on ADP have been reported, several

critical issues, including risk management, continuous state space representation

and the stability of the control policy, prohibit its application in process control. To

overcome these shortcomings,

• We developed a systematic approach to extract the probabilistic model from



the operational data of a plant-wide system and proposed a risk-sensitive RTO

approach based on ADP.

• An innovative procedure for designing control Lyapunov function (CLF) and

robust control Lyapunov function (RCLF) is presented for a nonlinear control

affine system under the input and state constraints.

• Based on the well-designed RCLF, a mixed control strategy, combining the

advantages of MPC and ADP, is proposed to handle the stability issue of the

ADP control scheme.

In addition to dynamic optimization, another focus of this research is the dis-

crete optimization. Considering mixed integer linear programming (MILP) becomes

increasingly common in the planning and scheduling of the chemical production, it

is worthwhile to explore a more efficient algorithm for solving this NP hard problem.

A modified Benders decomposition approach, featured by its tighter cutting plane,

is presented to accelerate the solution procedure.

All the proposed approaches are demonstrated and evaluated by several bench-

mark examples. The comparisons with previous works also show the superiority of

the suggested methods.
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Chapter 1

Introduction

The objective of this thesis is to develop some computationally efficient frameworks

for scheduling, real time optimization (RTO), and advanced process control prob-

lems. To this end, modified approximate dynamic programming (ADP) strategies

and an improved cutting plane approach are brought forward in this research.

1.1 Motivation

Process control activities can be classified in the form of a hierarchy [108] as

shown in Fig. 1.1. Although each level executes various functions, more and

more leading companies in the oil and chemical industries are prone to integrate

those high level activities, including the plant-wide advanced control, real-time

optimization and production scheduling together to form a unified solution [47].

In this integrated framework, one needs to solve a large-scale optimization problem

with time constraints. For instance, the plant-wide RTO considers the economic

objectives of the entire process which may be governed by more than 200 differential

and algebraic equations (DAE) [54]; the advanced controller, even the unit-based,

should offer reliable and effective actions to regulate highly nonlinear plant to track

its setpoint in the presence of state or input constraints and reject those outer

disturbances and the model mismatch, within a few seconds or minutes; To solve

the scheduling problem is very time consuming or even infeasible using the routine

methods and current computational resources, no matter working out the production

plan over the future 10 to 20 years or the management of a fleet with thousands of

drivers in the dynamic environment [96].

The cutting-edge techniques in these areas are revisited here and their compu-

tational inefficiency are illustrated as follows:

1
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Figure 1.1: Hierarchy of process control activities
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1. Model predictive control (MPC): MPC is one of the most celebrated advanced

control techniques in the industry because it is fully capable of regulating the

highly interactive multi-variable process subject to constraints. In general, it

relies on the linear dynamic model, but in order to achieve good performance,

the more accurate first principle model should be adopted and long predic-

tion and control horizons are needed. Moreover, there has been a trend to

extend the unit-based MPC to the plant-wide application [23]. The result-

ing optimization problem is a large-scale nonlinear program, whose on-line

computation is non-trivial. Indeed, several large-scale nonlinear programming

(NLP) solvers, such as IPOPT [124] and SNOPT [42], have been developed

to advocate such plant-wide optimization. However, owing to the presence of

model uncertainty, disturbances and measurement noise in practice, the so-

phisticated MPC schemes, such as Min-Max MPC [1, 45, 75, 70] or stochastic

MPC [27], may need to be implemented online, which is NP-hard in general.

Hence, the pursuit of the computational ability will be endless.

2. Steady state and Dynamic RTO: Currently, the steady state RTO dominates

the applications in the industry due to its simplicity. However, the steady

state RTO overlooks the dynamic transitions, which may last quite a few

hours in some cases, thus leading to a sub-optimal solution. Moreover,

it can be of no use in periodic operational systems, such as simulated

moving beds (SMBs) [122], where the steady steady is never or seldom

reached. Consequently, a number of researchers have realized that the

steady state RTO is insufficient for complex chemical processes [14, 110,

121]. The dynamic RTO considers the transition process by employing

the dynamic system model and adjusts setpoints more frequently, thereby

improving the economic performance. Nevertheless, similar with MPC, dealing

with large-scale nonlinear system and predicting its evolvement in a long

horizon is computationally demanding and may be not achievable by the

current hardware and software resources [65].

3. Mixed integer linear programming (MILP): The MILP has received much

attention in the field of scheduling and planning research where both the

discrete and continuous variables coexist. The formulation of MILP is similar

to that of linear programming (LP), except the integer decision variables.

3



Unfortunately, solving MILP is considerably more difficult than solving LP.

It is generally a NP-hard problem, which means that possibly no polynomial-

time algorithm exists to get the solution. The Branch-and-Bound, one of

the most prevalent approaches, divides the solution space into many branches

according to the value of the integer variables, and the bound of each branch

is calculated to determine whether to reject this branch or do the deeper

exploration. Although this method does not need to enumerate all possible

solutions (nodes), checking a small fraction is still time consuming for the

large-scale problem.

Recently, the approximate dynamic programming (ADP) was introduced into

the process control field by [69, 71] to alleviate the computational complexity in

solving complex dynamic optimization problems. Whereas dynamic RTO as well as

the advanced control strategies are formulated as a multi-stage decision problem,

dynamic programming (DP) achieves the same goal by solving a single-stage

optimization problem, thus saving computational time significantly. However, DP

also suffers from the “curse of dimensionality” [7], which means that the optimization

becomes much more complicated as the number of the variables increases. The ADP

circumvents these computational issues by replacing the true value function, i.e. how

much reward or cost we can expect under a particular policy starting from state x,

with an approximate one. Therefore, it may be one of the most suitable frameworks

to obtain a nearly optimal solution for complex dynamic optimization problems.

In solving a large-scale MILP problem, the decomposition technique plays a

significant role in improving the performance of conventional Branch-and-Bound.

Because of the separable and sparse nature of those large-scale formulations, the

whole problem usually can be divided into several sub-systems and solved separately.

The sub-systems in essence generate simplified polyhedral approximations to the

feasible region of the original problem, thus providing strong bound to facilitate

the Branch-and-bound approach [39]. Although it is implemented in an iterative

fashion, the total computing time can be far less than the conventional method.

Although ADP and decomposition method have a potential for solving large-

scale and complex optimization problems that emerge in the high level process con-

trol activities, both of them still encounter challenges for the practical applications,

which are discussed in the following.

4



1.2 Issues of the Existing Methods

In this section, outstanding issues of the existing ADP and decomposition ap-

proaches are discussed.

1.2.1 Issues in Current ADP Methodologies

As an efficient computational tool, ADP has been actively explored in the Machine

Learning (ML) community during the last few decades, with various names, such

as Reinforcement Learning (RL) and Neuro-dynamic programming. The rationale

behind it is training each agent to learn the optimal action by reward and punish-

ment through the experience, historical data or simulations, without specifying the

relation of action and outcome directly[115].

In another direction, the scholars in operations research also recognize the

importance of the ADP to solve the complicated planning problem, such as resource

allocation, aircraft scheduling and network management. Usually, such kind of

problem has a considerable number of decision variables and interacts with the

highly dynamic environment. Solving the Bellman optimality equation explicitly

in that case is intractable, whereas the simulation based method can approximate

and infer the value function for the entire state space, thereby quickly yielding an

sub-optimal solution. A complete tutorial on related work and contributions can be

found in [96].

While the ADP is proposed by those computer or operation scientists to address

the computational problems in conventional DP, i.e. the “curse of dimensionality”,

there are still some critical issues rendering this methodology impractical in the

process control applications.

1. State representation: Different from most of tasks in the computer sci-

ence and operations research, the number of possible state and input in the

process control domain is infinite because the regulated plant is continuous.

Moreover, some complicated processes usually are described by high dimen-

sional equations, further raising the difficulties of the DP approach. Although

the Hamilton-Jacobian-Bellman (HJB) equation is the counterpart of DP in

continuous-time equation, this partial differential equation is difficult to solve.

Discretization is the possible choice only for the low dimensional scenario, but

infeasible for the real system. So far, the function approximation is one of the
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most promising ways to derive the value function over the continuous space.

However, how to choose the basis function and control the approximation error

are still open questions.

2. Closed-loop stability: Although some ADP control strategies have been

reported for their successful applications, most of them cannot explicitly

demonstrate their stability in control. The conventional DP based regulation

approach attains the optimal control law, whose value function is also a control

Lyapunov function, thus guaranteeing the stability. On the other hand, the

general ADP scheme does not have this property. The traditional model-

based stability analysis is not applicable to the model-free version of the ADP.

Even though the ADP can improve the control performance in some cases,

any methodology in the absence of stability is not acceptable in the industry.

Thus, it is worthwhile to establish the stability analysis for the ADP control

scheme.

3. Exploration vs. Exploitation: One of challenges in ADP is the dilemma

between exploration and exploitation. In order to get more profits, the agent

will select the best action based on the current experience; however, this greedy

choice may lose the opportunity to learn the new knowledge and find the better

actions in the future. Some sophisticated methods to balance these two aspects

can be found in [4, 5, 20, 36].

However, the divergence between the chemical industry and computer science

just lies in the attitude to the exploration. To pursue the better performance,

the computer scientists are more likely to explore unknown states or inputs

region even undertaking some risks. On the contrary, chemical engineers,

who emphasize the safety, cannot accept such risks. Hence, it is necessary to

develop a risk-sensitive exploration scheme for the ADP.

4. Data quality: The data collected from the historical operations is usually

corrupted by the measurement noise and concentrated within some particular

regions of the state space. The direct use of these data without any pre-

processing may lead to large errors in the approximation. Moreover, most

of function approximation based ADP strategies cannot reliably generalize

the approximate value function given the sparse data area. Therefore, the
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application of the learned value function in these regions should be very

cautious.

1.2.2 Issues in Current Decomposition Methods for Scheduling
Problem

Although many commercial softwares have been released to handle large-scale MILP

problems, the state-of-the-art decomposition method, which highly relies on the

structure of the problem itself, is still worth further studying to speed up the

algorithm. The typical decomposition methods, including Danzig-Wolfe [29] and

Benders partition [9], share a similar idea. It first divides the original formulation

into master problem (MP) and sub-problems (SPs), then start solving the MP and

send its primal or dual solution to each sub-block. The cutting planes, generated

from the SPs, are added to the MP to refine its feasible area sequentially. By

repeating this procedure, one can finally obtain the exact solution. This framework is

neat but more thorough research should be done to improve the quality of constraints

and reduce the quantity of total cutting planes. Clearly, the deep cuts contribute to

accelerating the algorithm; however, how to determine and find such qualified cut

is non-trivial. Some works can be referred [25, 34], but more efficient mechanism is

still needed.

In summary, this research devotes to overcoming the disadvantages mentioned

above, which make the ADP and decomposition approaches more suitable for the

process control activities.

1.3 Outline of the Thesis

The remainder of this thesis is organized as follows:

In Chapter 2, the fundamental concepts about Markov chain model and approx-

imate dynamic programming are introduced. Several classical methodologies for DP

and ADP are illustrated to compare their pros and cons, respectively.

In Chapter 3, in order to enhance the stability of advanced control techniques, we

present a fractional programming formulation and its solution strategy for the design

of general form of control Lyapunov function (CLF) and quadratic robust control

Lyapunov function (RCLF) to (1) guarantee the closed-loop stability of a control

affine system in a specified region of state space; and (2) enlarge the the region of

attraction (ROA). Without restrictive assumptions found in previous approaches,
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the fractional programming problem is reformulated in a recursive manner. Instead

of considering the true point-wise objective function, its bound is constructed and

updated continuously to assist the optimization. Several examples, including CSTR

and two tank systems are used to demonstrate the effectiveness of this design

method.

Throughout chapters 4,5 and 6, we present the tailored ADP and decomposition

approaches for scheduling, RTO and advanced control, respectively.

In Chapter 4, in the presence of the well designed RCLF, a mixed control

strategy, combining the merits of ADP and MPC, is proposed to improve the

control performance. Given the simulations or historical operational data, the state

space is divided into several parts and their local value function approximators

are constructed, respectively, to reduce the estimation error. The nearly optimal

action is selected greedily based on the parameterized value function. In order to

avoid aggressive control actions in the unexperienced regions of the state space or

make the exploration safe, the regulator can be switched to the MPC at the right

moment. The RCLF, as an attractor, exists both in ADP and MPC formulations

to guarantee the stability. The CSTR example with outer disturbances is used to

test this framework.

In Chapter 5, a novel algorithm for constructing a probabilistic model based

on historical operation data and performing dynamic optimization for plant-wide

control applications is developed. The proposed approach consists of applying a

self organizing map (SOM) for identifying representative plant operation modes

based on a discounted infinite horizon cost and ADP techniques for learning an

optimal policy. A quantitative measure for risk is defined in terms of transition

probability, and a systematic guideline for striking balance between risk and profit

in decision making is provided with a mathematical proof. The efficacy of the

proposed approach is illustrated on an integrated plant consisting of a reactor,

a storage tank, and a separator with a recycle loop and the Tennessee Eastman

challenge problem. The algorithm is useful for learning an improved policy and

reducing risk in plant operation when the plant-wide first principle model is difficult

to obtain and uncertainties affect operation performance significantly.

In Chapter 6, since the mixed integer linear programming (MILP) model plays an

important role in the scheduling and planning problem and Benders decomposition

can handle such kind of formulation with special structure more efficiently, we
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present a novel strategy for speeding up the classical Benders decomposition for

large-scale MILP problems. The proposed method is particularly useful when the

optimality cut is difficult to obtain. A ratio of distances from a feasible point to

an infeasible point is used as a metric to determine the tightest constraint, thus

improving the convergence rate. Application of the proposed approach to a multi-

product batch plant scheduling problem shows substantial improvement both in the

computational time and the number of iterations.

Finally, Chapter 7 summarizes the contribution of this thesis and discusses

possible future studies.
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Chapter 2

Markov Decision Process and
Approximation Dynamic
Programming

2.1 Markov Decision Process

Markov decision process (MDP) [98] is a general modeling framework for multi-

stage optimal control problems under uncertainty. The elements of a Markov chain

model consist of: state, action, reward and transition probability. Given these

fundamental concepts, we can describe the general Markov decision process, i.e. at

each of discrete time steps, the state xt is observed and used to select an action ut,

which then causes the system to change the state to xt+1 with some probabilities

and emits a bounded reward or cost, r(xt, ut).

Note that one of the most significant assumption of the MDP is that system en-

dows the Markov property. Namely, its dynamics is probabilistic under uncertainty

and

p(xt+1|xt, ut) = p(xt+1|xt, ut, xt−1, ut−1, . . . , x1, u1) (2.1)

which indicates that the probability of being in state xt+1 at time t + 1 is only

determined by state xt and the action ut implemented at time t. Hence, the

transition probability from state i to state j, under the control policy π, can be

directly expressed as pπ
ij . This premise can considerably simplify our optimization

framework because the solver only needs to consider the current state, not the

history. Fortunately, this assumption holds in many practical cases because an

augmented state can be defined to incorporate all useful historical information to

determine the future state. For instance, the general discrete time nonlinear system
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(2.2) meets this assumption:

xt+1 = f(xt, ut, wt) (2.2)

where xt, ut and wt are state, input and disturbance at time t, respectively.

The objective of the optimization is to find a policy that maximizes the total

reward received or minimizes the total cost all over the whole time horizon. Here

the policy is a mapping from the current state to action. Then, in order to evaluate

how good the policy is, the value function should be calculated for each state.

Specifically, the MDP can be categorized into two cases: finite-horizon and

infinite-horizon problems [98].

In the infinite-horizon case, the discount factor γ ∈ (0, 1) is usually introduced

to ensure the expected total reward to be finite, which gives a trade-off between

immediate and delayed reward.

Jπ(x0) = E

{ ∞∑

t=0

γtr(xt, ut)

∣∣∣∣∣ x = x0

}
(2.3)

Or in another way, without the discount factor, the absorbing state can be proposed:

Definition 1. (Absorbing state xb): A state is called absorbing if it is impossible to

leave this state under the policy π, namely, pπ
ii = 1 and pπ

ij = 0 for i 6= j.

The MDP will never terminate until it reaches the absorbing state. From the

initial state x0, assume that process terminates in the nth time period under the

policy π, then the value function of x0 is

Jπ(x0) = E {r(x0, u0) + r(x1, u1) + r(x2, u2) + . . . + r(xn−1, un−1) + Jxb
} (2.4)

where Jxb
is the terminal reward/cost. It is worth noting that even if we employ the

absorbing state as the stopping criterion, the MDP can still be viewed as an infinite

horizon scheme. In that case, the system always transfers to the same state with

zero cost.

For the finite-horizon problem, in order to guarantee the expected N steps

rewards to be optimal, the value function for each state should be time varying.

This topic is beyond the scope of this research. Hence, it will not be mentioned in

the thesis. In the following sections of this chapter, we restrict our attentions to the

infinite-horizon problem with discount factor.
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No matter finite or infinite horizon cases, the value function always determines

a partial ordering over policies, whereby π1 ≥ π2 if and only if Jπ1(x) ≥ Jπ2(x), ∀x.

An optimal policy, π∗, achieves Jπ∗(x) ≥ Jπ(x) ∀π, x. All optimal policies share the

same optimal value function, J∗(x) = maxπ Jπ(x).

2.2 Dynamic Programming

In a very few cases dynamic optimization of MDP can be solved analytically, for

example, the Ricatti equations for optimal control of linear systems with quadratic

costs [10]. Application of MDP to the general case is feasible through dynamic pro-

gramming (DP), which involves iteratively solving the following Bellman optimality

equation:

J∗(xt) = max
ut

E {r(xt, ut) + γJ∗(xt+1(xt, ut))} (2.5)

where J∗ denotes the optimal value function. The Bellman optimality operator

T : <N → <N is defined for vector f ∈ <N , such that

Tf(s) = max
u
{r(x, u) + γ

∑

x′
p(x′|x, u)f(x)} (2.6)

where x′ is the nest stage state from state x using action u. Then, (2.5) indicates

that the optimal value function is the fixed point of the Bellman optimality operator.

Namely,

Proposition 2. [10] TJ∗(x) = J∗(x)

Solving (2.5) directly is nontrivial, however, some recursive formulations can be

employed to obtain the solution efficiently.

2.2.1 Policy Evaluation

Before solving the Bellman equation and calculate the optimal value function, we

first investigate how to determine the value function for a specified policy. This is

named as policy evaluation in the dynamic programming literature.

Assume that there is a sequence of functions J0, J1, . . . , Jn, which maps the

state into a value under a control policy π. The initial function J0 can be specified

arbitrarily. Then, the next is obtained by using the operator T π to update previous
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J for every state:

Jk+1(xt) = E {r(xt, ut) + γJk(xt+1)} (2.7)

= r(xt, ut) +
∑
xt+1

P π
xtxt+1

γJk(xt+1) (2.8)

Let k →∞, one can prove the following proposition that the sequence will finally

converge to a fixed point, which is the value function under policy π.

Proposition 3. [10] Jπ(x) = limk→∞(T π
k J)(x)

2.2.2 Policy Improvement

Once the value function for a policy is obtained, one can apply the policy improve-

ment procedure to get the new control input for each state.

For instance, to the state xt, the action of policy π is ut which yields the action

value function Qπ(xt, ut). Now, let us consider a better policy κ in terms of getting

rewards, which is exactly the same with π except changing the input to at for state

xt. It means that

Qκ(xt, at) = E{r(xt, at) + γJπ(xt+1)} > Qπ(xt, ut) (2.9)

Then one can prove that Jπ(x) 6 Jκ(x) holds for every state [115].

The above single state conclusion actually can be extended to the full state and

action space. In fact, based on a known policy π, we can make use of Bellman

optimality operator to achieve the best input greedily:

κ(xt) = arg max
ut

E{r(xt, ut) + γJπ(xt+1)} (2.10)

where E means expectation. It is not difficult to check that Eq.(2.10) results in the

input u satisfying Eq.(2.9). Thus, by employing this operator to all states, called a

sweep, we can get a new policy that is better than the previous one.

2.2.3 Policy Iteration

Once the original policy is improved, the evaluation step is adopted to get the new

value function again. By repeating this procedure, the value function will finally

converge to the optimal one. The Fig 2.1 [115] illustrates the framework of policy

iteration.
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Figure 2.1: Graphical metaphor of policy iteration algorithm.

2.2.4 Value Iteration

If we skip policy evaluation and keep on using Bellman operator in the policy

improvement step, then the improving process will continue until every state achieves

its best value. It is called value iteration. The equation is:

J(xt) = max
ut

E{r(xt, ut) + γJ(xt+1)} (2.11)

One can prove the following proposition for the convergence of value iteration.

Proposition 4. J∗ = limN→∞ TNJ0, given any initial guess J0.

Compared with the policy iteration approach, this scheme omits the policy

evaluation step, which saves much time on getting the exact value function for

each policy. However, given the finite policy space, policy iteration can generate a

finite sequence of control law with monotonicity to achieve an optimal one, whereas

the value iteration converges in an infinite number of iterations [10]. Hence, how to

select the scheme should depend on the structure of the problem and the requirement

of the accuracy.

Though DP has been widely recognized as a feasible mean of solving general

stochastic optimal control problems, many practical applications cannot be ad-

dressed with DP because of the following two major issues: 1) the computational

requirement grows exponentially in the number of state variables, which is referred

to as “curse-of-dimensionality,” and 2) the system dynamics or the model, is difficult

to obtain. Therefore, we need to introduce the framework of approximate dynamic

programming.
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2.3 Approximate Dynamic Programming

Approximate dynamic programming (ADP) is a body of theories developed to

address the modeling and computational issues of DP [69, 12, 115, 96]. In ADP,

the optimal (or nearly optimal) value function/action value function is obtained by

iteratively improving the initial estimate of the value function/action value function

based on a set of sampled state points visited by simulation or real-operation data.

One of the simplest methods in ADP is the temporal difference [115] learning of

order 0 (TD(0)), which performs an update as follows:

J̃(xt) ← J̃(xt) + α[r(xt, ut) + γJ̃(xt+1)] (2.12)

where ← means that the righthand side is used as a target for an update of the

left-hand side. The α ∈ (0, 1) is the learning factor. The TD can be used for both

model based and model free control. However, researches have developed a number

of particular methods for these two cases. Thus, in the following parts, we will

discuss them, respectively. Note that the policy gradient method, which searches

the parameterized control strategy in the policy space directly [116], is also a useful

approach for ADP with remarkable success in some applications. However, this

thesis does not cover the related field.

2.3.1 Model-based ADP

Generally, the model is in favor of the application of the DP. Algorithms mentioned

above can be used to get the optimal solution straightforwardly. However, the

remaining problems for these model based methods include how to construct the

accurate model and solve Bellman optimality equation efficiently, especially for the

large- scale system. People in Artificial Intelligence (AI) community developed

a class of methodologies named model-based reinforcement learning (RL). For

example, the model is frequently updated from online experience in Dyna algorithm

to improve the prediction [114]. Considering that the conventional MDP requires to

know the exact state transition distribution, which is an idealized assumption, the

Bayesian RL [95] considers the probability of possible unknown parameters instead

of all transition dynamics to circumvent this premise. The prior distribution is

used to reduce the trial and the posterior distribution is updated iteratively via

the interactions between the agent and environment. The artificial neural networks
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(ANNs) is also brought up to model the complex nonlinear system to facilitate RL

[50].

Due to the difficulties of solving the Bellman equation, it is necessary to

figure out some approaches to estimate the value function quickly at the cost of

some reasonable accuracy loss. The real time dynamic programming (RTDP) [6]

asynchronously updates the states that are encountered during trial-based MDP

simulations. Thus, the RTDP may generate a good policy by only exploring a

small fraction of the whole states. The nonparametric instance-based interpolation

such as k-nearest neighbor [71] is used to estimated the value function of each

state point. However, it needs to maintain all historical data, rendering a huge

challenge to the memory system and slowing down the computation. The parametric

methods generalize the sampled value function to the whole state space. Most of

attentions focus on the linear approximators and it is believed that the choice of

the representative regressor functions is the key to the successful application [66].

Thus, several kinds of basis function, such as radial-basis functions (RBFs), tile

coding, decision trees, have been studied. The evolutionary selection of the basis

is also developed to enable the efficient individual learning [128]. The gradient

descent/ascent method or least square [19], combined with TD, is applied to estimate

the parameters. However, the complete convergence theory for these function

approximation methods is not well-established. Since an arbitrary small change in

the value of an action may lead it to be selected or not, this discontinuity is believed

to be the main obstacle to prove the convergence of function approximation methods

[12].

2.3.2 Model-free ADP

One of the advantages of ADP in solving the Bellman equation is that it can

be extended to the case where transition probability or process model is totally

unknown. This is possible by encoding the optimal value function with state and

action pair as follows:

Q∗(xt, ut) = E

{
r(xt, ut) + γ max

ut+1

Q∗(xt+1, ut+1)
}

(2.13)

where the optimal value function and the optimal action-value function have the

following relationship:

J∗(x) = max
u

Q∗(x, u) (2.14)
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Then we shall introduce two important model free ADP or RL approaches: Q-

learning and SARSA.

SARSA

The TD prediction method can be extended to the state action value function. After

every transition from state xt to xt+1, the following update is applied:

Q(xt, ut) ←− Q(xt, ut) + α[r(xt, ut) + γQ(xt+1, ut+1)−Q(xt, ut)] (2.15)

where α is the learning rate; ut+1 is chosen according to the current control policy

and state xt+1. Since SARSA always attempts to evaluate the policy that is being

used, it is an on-policy method. Its control algorithm can be constructed as follows:

Step 1: Initialize the Q(x, u) for each state action pair.

Step 2: Initialize the state x in the beginning of each episode.

Step 3: Select the input u according to the state action value function Q.

Step 4: Take the u and receive the r and observe the new state x′.

Step 5: Choose the u′ according to the Q.

Step 6: Update the Q by (2.15).

Step 7: x ← x′, u ← u′ and return to Step 4, until this episode is terminated.

Step 8: Return to Step 2, until the whole learning process is terminated.

Clearly, in order to achieve the optimal Q, a large number of episodes should

be run to visit all state-action pairs many times. It is also worthwhile noting that

we do not always choose the input greedily in Step 3. The philosophy behind

it is to strike the balance between exploration and exploitation. Although the

greedy input can achieve the best performance according to the current knowledge

(exploitation), sometimes we still need to try some other inputs (exploration) to

broaden the understanding of the system. The typical method to balance exploration

and exploitation is the ε-greedy. For more detail, readers can refer to [115].

17



Q-learning [127]

The primary difference between the Q-learning and SARSA is their updating rule:

Q(xt, ut) ←− Q(xt, ut) + α[r(xt, ut) + γ max
ut+1

Q(xt+1, ut+1)−Q(st, ut)] (2.16)

The ut+1 in (2.16) may be different from the true ut+1 applied in the control policy

because sometimes the non-greedy action may be chosen by the policy (e.g ε-greedy).

Thus, Q-learning is the off-policy method, which is easy to analyze and prove the

convergence. The algorithm is very similar with SARSA, except the updating

formulation. Both SARSA and Q-learning will converge to the optimal policy if

all state-action pairs are visited infinitely often.
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Chapter 3

Control Lyapunov Function
Design

Stability is the first priority in industrial control applications. Hence, even the

ADP has shown considerable potentials to improve control performance, it cannot

be employed to regulate plants reliably until its rigorous stability analysis is well

established. With the model, considering that the Lyapunov function is the most

powerful tool to guarantee the control stability, this chapter dedicates to develop

the design procedure for that function to assist further applications of the ADP.

3.1 Background

Although nonlinear models are commonly used to describe chemical process dy-

namics, design of controllers that stabilize such systems is not an easy task and has

attracted much attention in the last several decades. Due to its generality, Lyapunov

theory has served as the main tool for designing stable controllers [111], and two

distinct design philosophies exist in Lyapunov based strategies. The first class of

methodologies designs control Lyapunov function (CLF) and controller separately,

where the CLF is first constructed and subsequently used to choose a control law

[113, 53]. The second methods design the CLF and controller simultaneously, and

among them is the classical Back-stepping design[62].

Simultaneous design methods may require restrictive assumptions for the model

form [64]. In the separate design approaches, a large number of previous studies

are concerned with improving control algorithms itself [33, 84, 134]. However,

the main bottleneck to the success of these methods lies in the construction of
∗A full version of this chapter has been submitted to the Journal of Process Control
†Abbreviated sections of this chapter were presented at DYCOPS [129], July 5-7, 2010
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CLF. Moreover, the region of attraction (ROA), an invariant set characterizing the

stabilizable area around the equilibrium, needs further investigation to guarantee the

local stabilization, because global stabilization is too strict for practical applications.

Many previous studies have focused on enlarging ROA or improving decay rate

in CLF design. One simple approach is to obtain a quadratic CLF by solving the

Riccati equation associated with the linearized model. This often leads to a small

ROA due to approximation errors. A polynomial CLF can be constructed by the

sum of squares (SOS) programming [118]. This method involves nonconvex bilinear

matrix inequality constraints and often yields local optimal solutions. A simulation-

based approach is proposed to select a qualified CLF and an initial condition for

the bilinear search strategy [120]. The derivation from density function to CLF

is analyzed under certain assumption [99] and searching that function is a convex

optimization problem solved by SOS [97]. However, all these SOS based methods

can handle polynomial systems only, which are not suitable for highly nonlinear

systems including a chemical reactor with temperature-dependent kinetics. SOS

programming is extended to non-polynomial systems by variable transformation

with algebraic constraints [91]. This method, however, neglects non-polynomial

constraints, thereby probably resulting in a CLF incompatible with the original

system.

Linear parameter varying (LPV) or quasi-LPV embedding approaches represent

a nonlinear system by linear dynamics depending on scheduling variables and yield a

CLF by solving a linear matrix inequality (LMI) problem for a large number of points

in the scheduling variable space [52]. A nonlinear system can also be represented by a

polytopic linear differential inclusion [18], and a quadratic Lyapunov function can be

obtained using LMI. However, these approximate models may incorporate dynamics

which do not belong to the original system and yield conservative solutions.

In chemical process operations, the range of initial states, usually determined by

upstream units, can be estimated in advance. Once the ROA includes the region,

which may be far from the equilibrium, stabilizing control is achieved. However,

there are few studies solving this problem explicitly in the literature because even

a CLF with the largest ROA may not contain the required state area. To this end,

this work is mainly concerned with developing a systematic method to construct a

CLF that stabilizes the states in a specified region without restrictive assumptions

on the polynomial system as previous approaches. Construction of a CLF that has
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a ROA including the subset of state space is formulated as a constrained fractional

programming problem. Since the objective and constraints are non-convex and

non-smooth, a derivative-free, coordinate search method is proposed to find a sub-

optimal solution. We also show that optimization along the coordinate can be

implemented efficiently by making use of piece-wise linear property of the problem.

The grid point checking for the moderate-size system is implemented as in [55] to

guarantee the state points of our interest be included in the ROA. The proposed

scheme can significantly reduce the number of checking points in the state space

compared with the method in [55]. In addition, the proposed scheme is applicable

to a wide class of CLFs, not restricted to the quadratic or polynomial form.

Furthermore, note that the disturbances, measurement noise and model mis-

match widely exist in the real plant, it is necessary to extend the control Lyapunov

function method to the stochastic cases. Namely, the Lyapunov function should

provide a guideline to lead the process to approach the equilibrium even if the

model cannot represent the reality and the disturbances occur unfavorably. To this

end, [38] proposes the robust control Lyapunov function (RCLF) method. More-

over, given a prior RCLF, the concept “inverse optimal robust stabilization” [38]

is presented to show the optimality of the “pointwise min-norm control law” for

some meaningful Hamilton-Jacobi-Isaacs (HJI) differential game with guaranteed

stability.

Nevertheless, constructing such RCLF is also an intractable task and deserves

to be studied further, but very few literatures concern with the direct design

method. The Lyapunov redesign procedure is discussed in [59]. The key idea

of this approach is to employ the CLF as its RCLF by neglecting the uncertain

structures. The success of this method depends on so-called matching condition, in

which “the uncertainties enters the system through the same channel as the control

variables”[38]. Clearly, this condition restricts the applicable scope of the Lyapunov

redesign, which motivates people to consider this problem in the different viewpoint.

Consequently, a more attractive methodology, “robust backstepping” for the system

in strict feedback form or lower triangular form becomes the breakthrough in the

nonlinear control history. Starting from the RCLF for a rather simple subsystem, a

recursive design procedure is repeated to extend this function to the entire system.

The quadratic RCLF over a set of transformed coordinates is proposed first, but

[37] points out that such kind of control law suffers from the “hardening”, i.e. the
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feedback control gain will increase to infinity once the system states follow some

particular trajectories, thereby resulting in the high magnitude chattering. Also in

the same work, a new RCLF was presented for the softer robust control policy to

alleviate the control effort but keep the performance of the stabilization.

Although the robust backstepping can derive the control policy and RCLF

simultaneously, it is restricted to the system with strict feedback form. In order to

overcome this limitation, we employ the similar idea with the CLF design to propose

a systematic method to establish the RCLF. Since the uncertainties or disturbances

render the formulation more complex and difficult to obtain the optimal solution for

the common form RCLF compared with the deterministic case, we only consider the

quadratic RCLF in this research. In addition, considering that the non-vanishing

nature of the disturbances lead the system hardly to stay in the equilibrium, we

need to define a residual set, in which the state can fluctuate but never escape.

Thereafter, how to characterize and bound this region should be also brought into

the design procedure.

The rest of the paper is organized as follows: Section 3.2 provides preliminaries

on CLF. Section 3.3 and 3.4 present the problem formulation for the CLF and

RCLF, respectively. Section 3.5 and 3.6 present the derivative-free optimization

approach to the fractional optimization. Sections 3.7 and 3.8 discuss some imple-

mentation issues and properties of the algorithm, respectively. Section 3.9 presents

the continuous feedback control law for control affine systems with infinity norm

bounded input. Section 3.10 presents two simulation examples, and concluding

remarks are provided in Section 3.11.

3.2 Preliminaries

3.2.1 Control Lyapunov Function

Consider the nonlinear time-invariant affine in the input dynamical system given by

ẋ(t) = f(x(t)) + g(x(t))u(t) (3.1)

with state x(t) ∈ <n, f(x(t)) ∈ <n, g(x(t)) ∈ <n×m, and bounded control input

u(t) ∈ <m with ui ≤ ui ≤ ui where i = 1, . . . , m. ui and ui are the lower and upper

bound of the ith component of the control signal, respectively.

Without particular claim, we assume that {0} is the equilibrium point in this

chapter, then a function V : <n → < is a control Lyapunov function if V is positive
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except V (0) = 0 and the following inequality holds [3]:

inf
ui≤ui≤ui

∂V

∂x
· (f(x) + g(x)u) < 0 ∀x 6= 0, i = 1, . . . , m (3.2)

Condition (3.2) usually is hard to be satisfied in the entire state space. Hence,

the Σ is defined to characterize regions where Lyapunov function can decay:

Σ =
{

x

∣∣∣∣ inf
ui≤ui≤ui

∂V

∂x
· (f(x) + g(x)u) < 0, i = 1, . . . , m

}
(3.3)

3.2.2 Region of Attraction

Since the global asymptotic stability cannot be achieved for most nonlinear sys-

tems with input constraints, region of attraction (ROA) is analyzed for the local

asymptotic stability. For any initial state xi ∈ Σ, the asymptotic stability can be

guaranteed if the closed-loop state trajectory does not escape from Σ [84]. Hence,

an invariant set of Σ is employed to estimate its region of attraction (ROA) such

that there always exists a certain input trajectory that leads the system to a desired

equilibrium point, assumed as {0}, for any initial point in the ROA. Specifically, we

want to find the maximum value of r > 0 satisfying

V (x̃) 6 r → lim
t→∞ |x(t, x̃)| = 0 (3.4)

where x(t, x̃) is the state at time t with initial state of x̃. Then this invariant set,

Ω = {x|V (x) 6 rmax} ⊂ Σ, serves as an estimate of the ROA.

3.2.3 Robust Control Lyapunov Function (RCLF)

Due to the disturbance and model mismatch, stabilizing the process in a certain

steady state without any offset is non-trivial. However, in such scenario, some

control strategies can be applied to guarantee the final states within the neighbor

region of the equilibrium rather than the fixed state. Hence, the robust control

scheme of the nonlinear system in the presence of the uncertainties is the more

practical choice for the real application. We first introduce several fundamental

definitions and then investigate the concept of robust stabilization.

Definition 5. [73](K function) A continuous function f : R+ → R+ is said to be a

K function if it is continuous, strictly increasing and f(0) = 0. It is called of class

K∞ if, in addition, it is unbounded.
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Definition 6. [73] (L function) A continuous function f : R+ → R+ is said to be

a L function if it is continuous, strictly decreasing and limt→∞ f(t) = 0.

Definition 7. [73] (KL function) A continuous function f : R+×R+ → R+ is said

to be a KL function if f(·, t) ∈ K for each fixed t ∈ <+ and f(r, ·) ∈ L for each fixed

r ∈ <+,

Let χ represents the state space and given a disturbance constraint W , we say

the disturbance w(x, t) : χ × < → < is admissible if ∀x ∈ χ and ∀t, w(x, t) ∈ W.

Then, the following definition can be presented.

Definition 8. [38] To control the system f , let Θ be a compact set containing

the equilibrium. The control to f is robustly globally uniformly asymptotically

stable with respect to Θ (RGUAS-Θ) when there exists β ∈ KL such that for all

admissible disturbances, and initial conditions (x0, t0), all solutions (x0, t0) ∈ χ×<,

all solutions x(t) exist for all t > t0 and satisfy

|x(t)|Θ 6 β(|x0|Θ, t− t0) (3.5)

for all t > t0, where the notation |.|Θ represents the Euclidean point to set distance

function.

Here Θ indicates that the system will converge to the residual set around

the equilibrium rather than a point because of the non-vanishing nature of the

disturbances. We called the system robustly stabilizable when there exist the

admissible control and compact set Θ such that this control solution to system is

RGUAS-Θ.

Now, it is ready to introduce the RCLF. Let ν(χ) denote a set of functions

V : χ×< −→ <+ such that there exist class K∞ functions α1 and α2 satisfying:

α1(||x||) 6 V (x, t) 6 α2(||x||) (3.6)

for all (x, t) ∈ χ×<.

Definition 9. [38] A function V ∈ ν(χ) is called a robust control Lyapunov function

(RCLF) for the control affine system:

ẋ = f(x) + ∆f + (g(x) + ∆g)u(t) x ∈ <n, u ∈ U ⊂ <m,∆f,∆g ∈ W (3.7)
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provided that there exists CΘ ∈ <+ and a time invariant positive function αV , such

that

inf
u∈U

sup
∆f,∆g

∇V (x)[f(x) + ∆f + (g(x) + ∆g)u] + αV (x) < 0 (3.8)

whenever V (x) > CΘ. The ∆f and ∆g are bounded uncertainties in set W. To

each component, there are |∆fj | 6 ∆j, |∆gij | 6 Υij. U characterizes the admissible

input set. αV (x) is often viewed as the margin of negativity. CΘ is the set level of

residual set.

The global robust stability is difficult to satisfy for most of systems subject to

input constraints. Hence, it is necessary to analyze the local robust stability. Define

the region ΓR, such that

ΓR := {x| inf
u∈U

sup
∆f,∆g

∇V (x)[f(x) + ∆f + (g(x) + ∆g)u] < 0} (3.9)

Then we need to find a new set Ω with the largest level CΩ, such that if V (x) < CΩ

then x ∈ ΓR. The estimation of ROA for rclf:V is Ω\Θ.

Comparing the (3.3) with (3.8), it can be observed that the RCLF considers the

worst effect of the uncertainties to the stability. This is conservative but logical

because the derived Lyapunov function and control law should guarantee absolute

stability around the equilibrium in the presence of any disturbance signal within the

bound. Thus, the decay area of the RCLF should be much smaller than that of the

CLF and more difficult to obtain. In the following of this research, we restrict our

attention on an easier case, the quadratic robust control Lyapunov function.

In the Definition 9, we also suppose that the bounds of uncertainties, i.e. ∆j

and Υij are known. However, this assumption may not be easy to satisfy in practice.

Further research about quantifying a tight bound of uncertainties is deserved to be

explored in the future.

3.2.4 Small Control Property

Small control property is useful in proving the existence of a continuous control law

given a CLF [113, 76]. A CLF for Eq. (3.1) has the small control property if for any

ε > 0, there is a δ satisfying:

0 6= ||x|| < δ ⇒ ∃||u|| < ε,
∂V

∂x
· (f(x) + g(x)u) < 0 (3.10)

, where || · || can be any norm.
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It is guaranteed that there exists a stable feedback policy, which is smooth at

<n − {0}, given a CLF [3]. In addition, if the CLF has the small control property,

one can always find a control law that is continuous in ∀x ∈ <n.

3.3 Control Lyapunov Function (CLF) Construction

Constructing a CLF with the largest possible ROA for all the states may yield a

small ROA, thus limiting its application to practical problems. Oftentimes, it is

only necessary to guarantee the stability for certain operating regions. Motivated

by this, this section proposes an optimization based approach to obtain a CLF given

a subset of states, which we refer to a target region.

For simplicity, and without loss of generality, the target region can be defined as

a polytope Ψ = {x|Lx < H} with constant matrix L and vector H. The objective

is to design a CLF, the ROA of which includes the target region, and the following

form of CLF is employed:

V (x) =
l∑

k=1

αkφk(x) = αT φ(x) (3.11)

where α is the parameter vector and φ(x) is the basis function vector. In order to

make this scheme general, there are no more restrictions on the basis function, such

as semi-definiteness [55] or polynomial form, other than φk(0) = 0 and ∂φk(x)
∂x |0 = 0.

According to the positive definiteness requirement of CLF, we also specify a region

Ξ satisfying:

Ψ ⊂ Ξ and 0 ∈ Ξ (3.12)

Then the family of possible CLFs is: {V |V (x) > 0, x ∈ Ξ, x 6= 0}.
Given V , consider the following optimization problem:

Problem 1

max
x,x̂

V (x̂)
V (x)

s.t.
∂V

∂x
f(x) +

∂V

∂x
g(x)u ≥ 0 x 6= 0, ∀ui ≤ ui ≤ ūi, i = 1, . . . , m

V (x) > 0 x 6= 0

x̂ ∈ Ψ, x ∈ Ξ

Problem 1 yields x̂, the farthest point from the origin in the target region, and

x, the closest point to the origin in the “no-decay” region based on the Lyapunov
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function measure, and thus characterizing the ROA of given CLF. If the objective

value is less than unity (i.e., V (x̂) < V (x)), the target region is included in the ROA.

Hence, the design of a CLF that has a ROA including ∀x̂ ∈ Ψ can be formulated as

Problem 2, if such α exists. This is illustrated in Fig. 3.1.

Problem 2

Solve for α subject to

Φ(α) = max
x,x̂

V (x̂)
V (x)

< 1 (3.13)

∂V

∂x
f(x) +

∂V

∂x
g(x)u ≥ 0 x 6= 0, ∀ui ≤ ui ≤ ūi (3.14)

V (x) > 0 x 6= 0 (3.15)

x̂ ∈ Ψ, x ∈ Ξ (3.16)

The constraint (3.14) characterizes state points where Lyapunov function cannot

decay. It should be also noted that Eq. (3.14) is affine in u and only the minimum

value of the left-hand side needs checking. Hence, only the lower and upper bounds

of u are considered.

Figure 3.1: Illustration of Problem 1

One may consider using minimax techniques to obtain α, but it is difficult due

to the non-differentiable nature of the constraint function. For example, convex
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approximation of minimax objective function is proposed in [60], but this method

cannot deal with constraints on outer variables α. An interior point method

is presented to solve continuous minimax optimization with constraints on outer

parameters [103]. This, however, cannot handle coupled constraints like Eq. (3.14),

where α and x exist together. Sampling state points and formulating it as LMI

may yield a large-scale optimization problem. Furthermore, sampling is non-trivial

because the shape of ROA cannot be determined in advance.

3.4 Robust Control Lyapunov Function (RCLF) Design

Due to the conservativeness of the RCLF formulation, a straightforward goal of the

design algorithm is to construct the RCLF with largest ROA. Furthermore, note that

the Θ in Definition 8 determines an special set within which the state can fluctuate

around the equlibrium, a small enough Θ can definitely improve the accuracy of the

control. Thus, the presented design procedure should respect to both of aims, i.e.

enlarging Ω and reducing Θ.

Assumed that the equilibrium is {0}, given a quadratic function with its set level

C, i.e. xT Px = C, its volume is proportional to C√
|P | [18]. Both the ROA and final

region Θ correspond their own C, which are defined as CΩ and CΘ, respectively.

Then, the ROA and Θ can be depicted as:

Ω : {x|xT Px 6 CΩ} Θ : {x|xT Px 6 CΘ} (3.17)

In order to integrate the two-fold objectives together, the following objective

function for RCLF design is considered:

Φ(P ) =
CΩ/

√
|P |

CΘ/
√
|P | =

CΩ

CΘ
(3.18)

where CΩ and CΘ are determined by P . The (3.18) gets around the calculation of

|P |, which is favorable to the optimization. Clearly, the best RCLF, owning the

largest ROA and the smallest residual set Θ, should attain the maximum Φ(P ).

Let us first consider the value of CΩ. The estimation of the ROA for a given

RCLF: V = xT Px can be determined by the following optimization formulation:

CΩ = min
x

xT Px (3.19)

s.t. inf
u∈U

sup
∆f,∆g

∇V (x)[f(x) + ∆f + (g(x) + ∆g)u] > 0 (3.20)
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The constraint (3.20) derived from (3.78) characterizes the undecay point according

to the Lyapunov function. Note that the function αv in (3.78) has to be removed in

this inequality, because the margin, αv should be zero to find strict non-decayable

point. By capturing the closest point in terms of Lyapunov measure satisfying

(3.20), an ellipsoidal is derived within which any state is stabilizable.

As for the CΘ, considering that the tolerable control error usually varies from

different applications, thus we allow the Θ to tightly cover a user-specified region,

in particular, a polyhedron: {0} ∈ Θ̃ by solving the following optimization problem:

CΘ = max
x̃

x̃T Px̃ (3.21)

s.t. x̃ ∈ Θ̃ (3.22)

The resulting x̃ determines the CΘ and it is not hard to see that Θ̃ ⊆ Θ because

of the set level CΘ > CΘ̃. Due to the positive definiteness of P and polyhedron

Θ̃, (3.21) is a concave quadratic programming problem and the global optimal is

attained in the vertex of the polyhedron.

Note that (3.19) and (3.21) are defined over the x and x̃, respectively, thus, we

can combine those equations together according to the (3.18) to build the measure

of the RCLF: Φ(P ), which is a volume ratio of the ROA and residual set Θ.

Problem 3

Φ(P ) =
minx xT Px

maxx̃ x̃T Px̃
(3.23)

s.t. inf
u∈U

sup
∆f,∆g

∇V (x)[f(x) + ∆f + (g(x) + ∆g)u] > 0 (3.24)

x̃ ∈ Θ̃ (3.25)

xT Px > max
x̃

x̃T Px̃ (3.26)

The new constraint (3.26) guarantees that any feasible x should be outside the Θ.

Given the matrix P , the optimization over x̃ should be implemented first to derive

the constraint (3.26), then the x can be calculated, successively.

To seek the optimal P which attains the largest Φ(P ), one also needs to solve

the following formulation:

Problem 4

max
P

Φ(P ) (3.27)

s.t. P Â 0 (3.28)
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Here the constraint (3.28) indicates that P should be positive definite. The objective

function of this max-min formulation is point-wise, thus hard to find the optimal

solution. Before we develop the solving procedure, one of issues in the Problem 1

should be addressed first. The operators inf and sup in the constraint (3.24) are

unfavorable to the optimization. However, given the boundary of the uncertainties

and inputs, one can derive the following theorem:

Theorem 10. With the admissible input set Uj := {uj 6 uj 6 uj , j = 1, 2, . . .m},
the constraint (3.24) can be expressed explicitly and it is piecewise linear over the

single element of P .

Proof. Substituting the RCLF: V = xT Px into (3.24) and replacing {∆f,∆g} by

their bounds provided by Definition 9, there are

0.5{ inf
uj∈Uj

sup
∆f,∆g

∂V

∂x
(f(x) + ∆f) +

∂V

∂x
(g(x) + ∆g)u} (3.29)

= 0.5{ min
uj∈Uj

max
∆f,∆g

∂V

∂x
(f(x) + g(x)u) +

∂V

∂x
(∆f + ∆gu)} (3.30)

= min
uj∈Uj

max
∆f,∆g

xT P (f(x) + g(x)u) + xT P (∆f + ∆gu) (3.31)

= min
uj∈Uj

xT P (f(x) + g(x)u) +
n∑

j=1

∆j |
n∑

i=1

xiPij |+
n∑

i=1

m∑

j=1

Υij |(xT P )iuj | (3.32)

=
n∑

j=1

∆j |
n∑

i=1

xiPij |+ xT Pf(x) + min
uj∈Uj

(xT Pg(x)u +
n∑

i=1

m∑

j=1

Υij |(xT P )i||uj |)

(3.33)

= min
uj∈Uj

m∑

j=1

{ n∑

i=1

(xT P )ig(x)ijuj +
n∑

i=1

(Υij |(xT P )i|)|uj |
}

+
n∑

j=1

∆j |
n∑

i=1

xPij |+ xT Pf(x) (3.34)

where the subscript i and ij represent the ith term of a vector and the item in the

ith row, jth column of a matrix, respectively. The Υij and ∆j are the bound of

disturbances.

It is worthwhile to point out that the value of different input can be determined

separately. We further assume that uj > 0 because the positive input is usually

allowable even under the physical limitation. Then, three terms,
∑n

i=1(x
T P )ig(x)ij ,

∑n
i=1 Υij |(xT P )i| and uj determine the form of uj in (3.34), which is problem-

specific. To further investigate, different scenarios will be discussed, respectively.
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For uj > 0, this is the simple case because the absolute operator can be left out.

Then,

min
uj

n∑

i=1

(xT P )ig(x)ijuj +
n∑

i=1

(Υij |(xT P )i|)|uj | (3.35)

= min
uj

(
n∑

i=1

(xT P )ig(x)ij +
n∑

i=1

Υij |(xT P )i|)uj

It is not hard to derive the input:

uj =
{

uj if
∑n

i=1(x
T P )ig(x)ij +

∑n
i=1 Υij |(xT P )i| > 0

uj if
∑n

i=1(x
T P )ig(x)ij +

∑n
i=1 Υij |(xT P )i| < 0

(3.35) also can be shown as a compact form:

(u− u)
2

∣∣∣∣∣
n∑

i=1

Υij |(xT P )i|+ |(xT P )ig(x)ij |
∣∣∣∣∣

+
(u + u)

2

(
n∑

i=1

Υij |(xT P )i|+ |(xT P )ig(x)ij |
)

(3.36)

For uj < 0, the case is more complicated since other terms need to be considered.

Note that
∑n

i=1(Υij |(xT P )i|)|uj | is always positive, the sign of
∑n

i=1(x
T P )ig(x)ij

directly determines the sign of uj .

uj > 0 if
∑n

i=1(x
T P )ig(x)ij 6 0 (3.37)

uj 6 0 if
∑n

i=1(x
T P )ig(x)ij > 0 (3.38)

Based on the optimal conditions (3.37) and (3.38), the (3.34) can be written as:

min
uj

n∑

i=1

(xT P )ig(x)ijuj +
n∑

i=1

(Υij |(xT P )i|)|uj | (3.39)

= min
uj

{−
∣∣∣∣∣

n∑

i=1

(xT P )ig(x)ij

∣∣∣∣∣ +
n∑

i=1

(Υij |(xT P )i|)} |uj | (3.40)

Then, the input is

uj =





uj if
∑n

i=1 Υij |(xT P )i| − |
∑n

i=1(x
T P )ig(x)ij | < 0,

∑n
i=1(x

T P )ig(x)ij > 0
uj if

∑n
i=1 Υij |(xT P )i| − |

∑n
i=1(x

T P )ig(x)ij | < 0,
∑n

i=1(x
T P )ig(x)ij 6 0

0 if
∑n

i=1 Υij |(xT P )i| − |
∑n

i=1(x
T P )ig(x)ij | > 0

The result of (3.34) is

min
uj

n∑

i=1

(xT P )ig(x)ijuj +
n∑

i=1

(Υij |(xT P )i|)|uj | (3.41)

=
Wj

2

(
n∑

i=1

Υij |(xT P )i| − |(xT P )ig(x)ij |
)
− Wj

2

∣∣∣∣∣
n∑

i=1

Υij |(xT P )i| − |(xT P )ig(x)ij |
∣∣∣∣∣
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where

Wj =
{ −uj if

∑n
i=1(x

T P )ig(x)ij > 0
uj if

∑n
i=1(x

T P )ig(x)ij < 0

In (3.35), (3.36), and (3.41), one can see that the function in each absolute value

is linear to each single element of P . Hence, the whole function is still piecewise

linear over the single element of P .

This theorem shows the piecewise linear property of constraint (3.24) for single

parameter, which plays an important role in our optimization procedure. The

max operator in the constraint is left out and corresponding inputs are determined

explicitly to favor the following optimization.

Moreover, we note that the significance of constraint (3.24) is twofold. Given the

RCLF, i.e. P , inequality (3.24) characterizes the region of state in which the RCLF

can dissipate. From another viewpoint, if the state x is fixed, (3.24) can determine

a group of RCLF’s that can stabilize the state x.

3.5 Derivative-free Optimization Approach for CLF

For searching the suitable α satisfying all constraints in Problem 2, we need to

handle the point-wise, fractional function Φ(α) and non-convex, non-differentiable

constraints of Eq. (3.14). Hence, a derivative-free optimization method is pro-

posed. Starting with the initial guess of α and its corresponding objective value

h0 = maxx,x̂

∑l
k=1 αkφk(x̂)∑l
k=1 αkφk(x)

, the solver repeatedly samples the parameter space and

calculates its objective function until Eq. (3.13) is satisfied.

Clearly, this sample and accept/reject procedure may waste lots of efforts to

check the αi but without any improvement. Thus, it falls into the brute force

approach, which is not applicable even for a two-dimensional system. The smarter

algorithm proposed in this chapter employs a recursive coordinate search manner.

That is to say, only one parameter of α is considered rather than the whole parameter

set in each iteration. In addition, the new α is accepted as long as the its objective

value is lower than the previous round. Then, the solver will switch the sampling

direction along another coordinate. Through this way, the sampling and search

is implemented only in the one dimension, which is much easier than the whole

space. Even more important, we will show that by taking advantage of the piecewise

linear property, this one dimensional search can refine the sampling space efficiently,
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thereby accelerating the optimization, especially when the derivative information is

not available.

We first employ the subscripts and superscripts to represent the sequence of

parameters and iterations, respectively. Then, the fractional objective function of

Problem 1 is modified by using Dinkelbach’s method [30] to make the iteration task

easier:

Π(x, x̂, α, hi−1) =
l∑

k=1

αkφk(x̂)− hi−1
l∑

k=1

αkφk(x) (3.42)

where i is the iteration index. Then, the following relationship holds:

V (x̂)
V (x)

< hi−1 ¿ Π(x, x̂, α, hi−1) =
l∑

k=1

αkφk(x̂)− hi−1
l∑

k=1

αkφk(x) < 0 (3.43)

Hence, an improved solution for α is achieved if and only if

hi = max
x,x̂

V (x̂)
V (x)

∣∣∣∣
α

< hi−1

which is equivalent to:

max
x,x̂

Π(x, x̂)|{α,hi−1} < 0 (3.44)

We also have Π(α)|{x,x̂,hi−1} ≤ maxx,x̂ Π(α, x, x̂)|hi−1 , which forms a lower bound,

for any α and {x, x̂} respecting Eqs. (3.14) and (3.15). This plays an important

role in accelerating the algorithm since any α rendering Π(α)|{x,x̂,hi−1} > 0 does not

lower the objective value of Problem 1, and thus can be ignored.

It should be also noted that Π(α)|{x,x̂,hi−1}, is linear in each component of α;

therefore, only one element of α, say, αk, is chosen as a decision variable in each

iteration step. This way, the lower and upper bounds of this single parameter can

be estimated easily. Within the confined region, denoted as Λk and satisfying the

positive definiteness, i.e. (3.15), αk is sampled and its corresponding Problem 1 is

solved to estimate ROA and compare it with a target region.

Since solving Problem 1 or Eq. (3.44) is nontrivial for general form of CLF, grid

checking is the most reliable way, but time-consuming. In order to avoid solving

Problem 1 frequently, the number of sample points for αk is reduced by eliminating

the region in αk space with Π(αk)|{x,x̂,hi−1} > 0. However, note that αk in Problem

2 also needs to respect constraints (3.14), a new lower-bound function, Γ, further

considering this constraint, defined in Λk, is designed given any x and x̂:

Γ(αk)|{x,x̂,hi−1} =
{

Π(αk)|{x,x̂,hi−1} if Eq. (3.14) is satisfied for given {x, x̂}
−β Otherwise

(3.45)
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where β is a large positive number. Γ can serve as a lower bound of maxx,x̂ Π(αk, x, x̂)

for any value of αk within Λk. The lower bound is easy to handle than Π(αk)|{hi−1,x,x̂}.

The procedure is depicted in Fig. 3.2. As different pairs of {x, x̂} are obtained in

solving Problem 1 to evaluate h, corresponding Γ functions are also generated. In

order to approach the true objective function more accurately, the Π̃ is constructed

from the upper envelope union of different Γ(αk)|{x,x̂,hi−1} over αk as in Fig. 3.3.

This makes it possible to sample αk leading to an improved solution.
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α
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Γ

Figure 3.2: Construction of lower bound function with β = 1

The piecewise linear structure makes the proposed optimization scheme superior

to the common coordinate descent search in two aspects. First, the solution of

Problem 1, even without improvement, not only rejects the corresponding αk sample,

but also provides a cut that refines the sampling space. Second, the piecewise linear

function can be described with a small number of intersection points, which are

trivial to store and search. The upper envelope of many piecewise linear functions

is also easy to be created.

Once a new value of αk with enough improvement in the objective function

is found, the optimizer switches to another component of α. The algorithm is

terminated when there is no further decrease in the objective value by changing any

of αk. Assuming there are l parameters, the whole procedure is summarized below.

The detailed implementation of each step is further discussed in the next section.
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Figure 3.3: Construction of the upper envelope union of lower bound functions

Step 0: Set k = 1, i = 1, h0 = M , where M is a large positive number.

Step 1: Initialize the lower bound function Π̃ = −β over the feasible section Λk

and sample αk.

Step 2: Given the sampled αk, solve Problem 1 to obtain x, x̂ and hi, then compare

hi with the hi−1. If hi < 1, update αk with the sampled value and return α.

If hi−1 − hi > γ, where γ is a positive threshold, update αk with the sampled

value, set i ← i + 1, k ← k + 1, and go to Step 1. Moreover, if k > l, then set

k = 1.

Step 3: Based on {x, x̂}, compute the piecewise linear function Γ(αk)|{x,x̂,hi−1}
according to Eq. (3.45) and update Π̃(αk) = max(Π̃(αk),Γ(αk)|{x,x̂,hi−1}) in

the feasible region Λk. Let q = minαk
Π̃(αk). If q ≥ ε, where ε is a negative

value close to 0, let k ← k + 1, hi ← hi−1, i ← i + 1 and go to Step 1. In

addition, if k > l, then set k = 1.

Step 4: Refine the set Λk ←− {αk| Π̃(αk) < 0}.

Step 5: Select a new value of αk in Λk and go to Step 2.

If the algorithm terminates without finding a solution, the initial guess should be

changed or the target region be reduced.
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We also note that Step 2 requires solving nonlinear programming and x and x̂

can be searched separately. Since there exists no NLP solver that can guarantee

the global optimum, grid checking is the most reliable approach. A similar idea is

applied successfully in [55], which formulates linear constraints for each mesh point

and solves a large-scale linear or quadratic optimization problem. Compared to this

method, we only need to evaluate Eq. (3.14) for each grid point. Another similar

work is proposed to generate a LMI problem for each point in the scheduling variable

space of LPV system [52].

It is worthwhile to note that grid checking is not necessary if nonlinear program-

ming (NLP) solver finds a solution ({x, x̂}) that makes Π > 0 and the corresponding

α can be ignored. Furthermore, only the points in the subset satisfying V (x) ≤ V (x̂)

needs checking in this scheme. The number of checking points is far less than those of

the previous methods in [55] and [52]. Discussions on the tradeoff between accuracy

and efficiency for gridding can be found in [55].

3.6 Derivative-free Optimization Approach for RCLF

In this section, the iterative coordinate search is modified to design the RCLF.

During the iteration, the solver tries to find a new P that increases the objective

function Φ(P ) compared with the value in the last round. Still, the subscripts and

superscripts denote the sequence of parameters and iterations.

Assume that minx xT Px
maxx̃ x̃T P x̃

= ht−1 is the best solution achieved in iteration t − 1,

then in order to facilitate the optimization, the Dinkelbach’s approach is employed

to modify the fractional objective function of Problem 3:

Π(P, ht−1) = min
x

xT Px− ht−1 max
x̃

x̃T Px̃ (3.46)

One can derive that

minx xT Px

maxx̃ x̃T Px̃
> ht−1 ¿ Π(P, ht−1) = min

x
xT Px− ht−1 max

x̃
x̃T Px̃ > 0 (3.47)

Therefore, the aim of iteration t is to seek a new P such that

Π(P, ht−1) > 0 (3.48)

Since the derivative information of Π(P, ht−1) is not valid, the pattern search

methodology is applied, which samples the P in the parameter space and solve

the Problem 3 to see whether an improvement can be attained. Unfortunately,
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similar with CLF design, the global optimal of Problem 3 should be found by grid

checking and the amount of computational time depends on the number of samples.

The detail of the algorithm is as follows. First of all, the constraint (3.28) can

be solved by linear matrix inequality (LMI) to get the upper/lower bound of the

kth parameter Pk of the matrix, before the tth iteration begins. The sampling space

for this parameter is denoted by Λk. With the sample of Pk, a pair of {x, x̃} is

generated by solving Problem 3 and the following inequality holds for any Pk within

Λk if the triple {x, x̃, Pk} satisfies constraints (3.24) to (3.26):

xT Px− ht−1x̃T Px̃ > Π(Pk, h
t−1) = min

x
xT Px− ht−1 max

x̃
x̃T Px̃ (3.49)

The upper bound of the Π(Pk, h
t−1) over Pk, derived from the left side of (3.49), can

restrict the sampling space because any Pk yielding a negative value in this bound

function will not result in a positive Π, thereby not necessary to sample. Given

{x, x̃}, this upper bound function can be defined in the entire Λk

ϕ(Pk)|{x,x̃} =
{

xT Px− ht−1x̃T Px̃ if (3.24) holds and x̃T Px̃ = maxx̃ x̃T Px̃
β Otherwise

(3.50)

where β is a large enough positive number which does not affect the estimation of

the upper bound in that area.

To distinguish different cases in (3.50), one can easily identify the region of Pk

which renders (3.24) hold because it is piecewise linear over this single parameter

proved by Theorem 10. Moreover, for the low dimensional system and simple

polyhedron Θ̃, the number of vertex is small enough, say Y . Thus, it is not difficult

to pre-divide Λk into Y parts, {τ1, τ2, . . . , τY }. In the part j, ∀Pk ∈ τj , x̃T Px̃

achieves its maximum value in the jth vertex.

Finally, we can also conclude that the ϕ is piecewise linear over its parameter

Pk. Hence, as more samples of Pk are collected, the yielded different piecewise

function ϕ, can be combined together to approximate the true objective value more

accurately. This combined upper bound function Π̃, can be achieved by calculating

the lower envelope of all ϕ. Here we have to point out that the lower envelope can

be obtained efficiently only when the ϕ is the function of single variable. To derive

higher dimensional envelope for multi-variable, one should refer to the computational

geometry, which is too complex for this scheme.

Although there are some differences between the RCLF and CLF design, the

construction of the bound function make them share the same advantage. Namely,
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solving the inner problem not only rejects the corresponding Pk sample point, but

also refines the sample space Λk, thereby enhancing the efficiency of the search. The

whole algorithm is summarized as below:

Step 0: Set t = 1, k = 1, h0 = M , γ, where M and γ are small enough positive

number. Specify the upper limit of the iteration times T . Determine the total

parameter number N .

Step 1: If k > N , set k = 1; If t > T , terminate the algorithm; Otherwise, solve the

LMI for the kth parameter of RCLF, say Pk, to get Λk. Initialize the upper

bound function Π̃ = β over the Λk.

Step 2: Given the sampled value of Pk, solve Problem 3 to obtain the x and x̃.

Then if Φ(P )−ht−1 > γ, update Pk, ht with the sampled value and Φ(P ), set

t ← t + 1,k ← k + 1 and go to Step 1.

Step 3: Based on the current {x, x̃}, compute the piecewise linear function ϕ(Pk)

within Λk. Then, update upper bound function, Π̃(Pk) = min(Π̃(Pk), ϕ(Pk))

and compute q = maxPk
Π̃(Pk). If q ≤ ε, where ε is a positive value close to

0, let ht ← ht−1, t ← t + 1, k ← k + 1 and go to Step 1.

Step 4: Refine the feasible region: Λk ← {Pk|Pk ∈ Λk and Π̃(Pk) > 0}

Step 5: Sample a new value of Pk in Λk and go to Step 2.

This algorithm terminates once the total sampling times exceeds the limit T . In

order to enlarge the ROA and reduce the residual set enough, T needs to be large.

3.7 Efficient Implementation of the CLF Design Algo-
rithm

In this section, we illustrate the implementation detail of the CLF design algorithm,

including how to locate the region of Λk and handle the state constraints. Moreover,

considering that grid-checking to solve Problem 1 is time consuming, an accelerate

step is proposed by appealing to the nonlinear programming.
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3.7.1 Feasible Region for αk

The feasible region Λk is determined in terms of the lower and upper bounds of αk

to respect the following positive definiteness for ∀ x ∈ Ξ:

V (x) =
l∑

t=1

αtφt(x) = αkφk(x) +
l∑

t=1, 6=k

αtφt(x) > 0 (3.51)

The bounds can be derived as the function of x from Eq. (3.51), and the following

optimization problems can be solved:

Problem 5

αk = max
x

−∑l
t=1, 6=k αtφt(x)

φk(x)
s.t. φk(x) ≥ ε

x ∈ Ξ

Problem 6

αk = min
x

−∑l
t=1, 6=k αtφt(x)

φk(x)
s.t. φk(x) ≤ −ε

x ∈ Ξ

where ε is a small positive number. The constraints keep x from the equilibrium

(x0 = {0}) to avoid singularity. Due to these constraints, we should further

guarantee the positive definiteness around the equilibrium. In other words, αk

should keep V (x0) = 0 as the local minimum. Since we require ∂φt(x)
∂x

∣∣∣
x0

= 0, there

also is
l∑

t=1

αt
∂φt(x)

∂x

∣∣∣∣∣
x0

= 0 (3.52)

It is only necessary to have the positive definite Hessian matrix of V :

l∑

t=1

αt




∂2φt

∂x2
1

∂2φt

∂x1∂x2
. . . ∂2φt

∂x1∂xn

∂2φt

∂x2∂x1

∂2φt

∂x2
2

. . . ∂2φt

∂x2∂xn

. . . . . . . . . . . .
∂2φt

∂xn∂x1

∂2φt

∂xn∂x2
. . . ∂2φt

∂x2
n




=
l∑

t=1

αtDt > 0 (3.53)

This inequality is easy to solve with the LMI toolbox in MATLAB. In summary, Λk

can be estimated from Problems 5 and 6 and Eq.(3.53). If a CLF is not positive
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definite for at least one point of x ∈ Ξ, new bounds of αk are obtained by solving

Problems 5 and 6 with that state point as an initial guess.

3.7.2 Acceleration of Step 2

The most time consuming step in the suggested algorithm is Step 2 where Problem 1

is solved to obtain {x, x̂} and check if the sampled αk yields a larger ROA. Hence, if

the sampling range for αk is reduced, the computational requirement can be further

decreased. This section shows that {x, x̂} can be smartly selected to identify the

range of αk that does not decrease the objective function. In this range, αk needs

not sampling further.

Eq. (3.14) characterizes no-decay state points for the given αk, and can be further

written as:

inf
u∈U

∂V

∂x
f(x) +

∂V

∂x
g(x)u (3.54)

= inf
u∈U

αT ∂φ(x)
∂x

(f(x) + g(x)u) (3.55)

= αT ∂φ(x)
∂x

f(x) +
m∑

s=1

inf
us

n∑

j=1

αT ∂φ(x)
∂xj

gjs(x)us (3.56)

= αT ∂φ(x)
∂x

f(x)−
m∑

s=1

(us − us)
2

∣∣∣∣∣∣

n∑

j=1

αT ∂φ(x)
∂xj

gjs(x)

∣∣∣∣∣∣

+
m∑

s=1

(us + us)
2

n∑

j=1

αT ∂φ(x)
∂xj

gjs(x) > 0 (3.57)

where n is the dimension of state; m is the dimension of input; gjs is the jth row

and sth column item of the matrix g(x). The Eq. (3.57) holds because input is

determined by the sign of
∑n

j=1 αT ∂φ(x)
∂xj

gjs(x) in the corresponding channel and

only the lower or upper bound signal are used.

The αk associated with the given state point can be written as a function of x

from the equality part of Eq. (3.54):

αk(x)

=





l∑

t=1, 6=k

αt

[
∂φt(x)

∂xt
, . . . ,

∂φt(x)
∂xn

]
f(x) +

m∑

s=1

us




l∑

t=1, 6=k

n∑

j=1

αt
∂φt(x)
∂xj

gjs(x)








•




[
∂φk(x)

∂x1
, . . . ,

∂φk(x)
∂xn

]
f(x) +

m∑

s=1

us




n∑

j=1

∂φk(x)
∂xj

gjs(x)








−1
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and

us(x) =
{

us if s ∈ ψ1

us if s ∈ ψ2

ψ1 : {s|∑l
t=1

∑n
j=1 αt

∂φt(x)
∂xj

gjs(x)) < 0}
ψ2 : {s|∑l

t=1

∑n
j=1 αt

∂φt(x)
∂xj

gjs(x)) > 0}
ψ1 and ψ2 can be specified by the user. Then, the following nonlinear feasibility

problem is solved to obtain the pair {x, x̂}. The derived lower bound function Γ(αk)

can characterize a segment of αk that needs not sampling further.

Problem 7

αk(x)φk(x̂) +
l∑

t=1, 6=k

αtφt(x̂)− h(αk(x)φk(x) +
l∑

t=1, 6=k

αtφt(x)) > 0 (3.58)

l∑

t=1

n∑

j=1

αt
∂φt(x)
∂xj

gjs(x) 6 0 s ∈ ψ1 (3.59)

l∑

t=1

n∑

j=1

αt
∂φt(x)
∂xj

gjs(x) > 0 s ∈ ψ2 (3.60)

αk(x) ∈ Λk (3.61)

x̂ ∈ Ψ (3.62)

x ∈ Ξ (3.63)

The inequality (3.58) is from the function Π(x, x̂, αk(x))|h in (3.42), which deter-

mines αk(x) that does not decrease the function Φ(α) in (3.13). Without a special

note, the index of h is omitted for simplicity. Due to the continuity of (3.54) over

αk, we can identify the positive range of the resulting piecewise linear function

Π(αk)|{x,x̂,h} and refine Λk further. Eq. (3.61) guarantees that the derived αk is in

the sampling region Λk. Although Problem 7 is nonlinear, searching for a feasible

solution without global optimal requirement is much faster than the grid checking

in Problem 1.

3.7.3 State Constraints

Whereas most existing CLF construction methods do not consider state constraints

explicitly, the proposed approach can be extended to handle the following type of

state constraints, which are common in chemical processes to represent physically

meaningful quantities or safety limits:

xi 6 xi 6 xi i ∈ {1, 2, . . . , n} (3.64)
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where i represents the component of state vector. The constraints may change the

boundary of ROA. Namely, rmax is not only determined by (3.14), but also state

constraints. In that case, the following feasibility problem should be considered,

given a sampled αk:

Problem 8

l∑

t=1

αtφt(x̂)− h
l∑

t=1

αtφt(x) > 0 (3.65)

xi = xi i ∈ G ⊂ {1, 2, 3, . . . , n} (3.66)

xj = xj j ∈ G ⊂ {1, 2, 3, . . . , n} (3.67)

x̂ ∈ Ψ (3.68)

x ∈ Ξ (3.69)

where G is the active constraint set, selected by the user.

In fact, the Problem 8 can be employed to replace Problem 1 in Step2 when state

constraints affect ROA. The (3.65) characterizes αk that cannot improve the ROA

due to constraints for xi, i ∈ G and xj , j ∈ G. The generated {x, x̂} can also be used

to construct the piecewise linear function Π(αk)|{x,x̂,h} and refine Λk. Because of

the simplicity of inequality (3.65) and the fixed value of several variables, Problem 8

is much easier to be solved than Problem 1.

3.8 Guarantee of the Small Control Property

This section provides a sufficient condition for the CLF to have the small control

property so that there exists the continuous control at the origin.

Taylor series expansion of ∂V
∂x around the equilibrium {0} becomes

∂V

∂x
= [x1, x2, . . . , xn]Pv1 + xT

{2}Pv2 (3.70)

where x{2} = [x2
1, . . . , x

t1
1 xt2

2 . . . xtn
n , . . . , x2

n]T ; Pv1 is the Hessian matrix of V ,

Pv1 =




∂2V
∂x2

1
. . . ∂2V

∂x1∂xn

...
. . .

...
∂2V

∂xn∂x1
. . . ∂2V

∂x2
n


 (3.71)

xT
{2}Pv2 is the Lagrange form of the remainder. Thus, there is a point ξ ∈ (0, x)
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such that

Pv2 =




∂3V (ξ)
2!∂3x1

. . . ∂3V (ξ)
2!∂2x1∂xn

∂3V (ξ)
t1!...tn!∂t1+1x1...∂tnxn

. . . ∂3V (ξ)
t1!...tn!∂t1x1...∂tn+1xn

...
. . .

...
∂3V (ξ)

2!∂x1∂2xn
. . . ∂3V (ξ)

2!∂3xn




t1 + t2 + . . . + tn = 2, ti ∈ {0, 1, 2}

Similarly, the nonlinear system can also be expanded as

ẋ = f(x) + g(x)u = [F1(x, u), F2(x, u), . . . , Fn(x, u)]T = Ax + Bu + Cψ + A{2}x{2}
(3.72)

where A = ∂F (x,u)
∂x |x0=0,u0=0, B = ∂F (x,u)

∂u |x0=0,u0=0; Cψ + A{2}x{2} is the Lagrange

form of the remainder:

A{2} =




∂2F1(ξ,ζ)
2!∂2x1

. . . ∂2F1(ξ,ζ)
t1!t2!...tn!∂t1x1...∂tnxn

. . . ∂2F1(ξ,ζ)
2!∂2xn

∂2F2(ξ,ζ)
2!∂2x1

. . . ∂2F2(ξ,ζ)
t1!t2!...tn!∂t1x1...∂tnxn

. . . ∂2F2(ξ,ζ)
2!∂2xn

...
. . . ,

...,
. . .

...
∂2Fn(ξ,ζ)

2!∂2x1
. . . ∂2Fn(ξ,ζ)

t1!t2!...tn!∂t1x1...∂tnxn
. . . ∂2Fn(ξ,ζ)

2!∂2xn




(3.73)

Ci,(n−1)j+k =
∂2Fi(ξ, ζ)

∂xjuk
(3.74)

ψ = [x1u1, x1u2, . . . , x1um, x2u1, . . . , xnum]T (3.75)

where {ξ, ζ} denotes a point between {0, 0} and {x, u}.
Then the following theorem can be established:

Theorem 11. Suppose |∂2Fi(x,u)
∂x2 | 6 M2, |∂

3V (x)
∂x3 | 6 M3 and |∂2Fi(x,u)

∂x∂u | 6 M4 hold

for the system Eq. (3.1) with input constraint and the CLF of Eq. (3.11). If Pv1 is

positive definite and there exists a positive scalar ν rendering Q positive definite:

Q = −(AT Pv1 + Pv1A− νPv1BBT Pv1) > 0 (3.76)

Then V has the small control property.

Proof. For simplicity of notation, we assume that the system has an equilibrium

point x0 at the origin, and x = [x1, x2, x3, . . . , xn]T is the state vector. Let

D := {x| ||x||∞ 6 η}; F (x, u) and V (x) are defined on the set D.

Consider the stabilizable criterion and the control law:

u =
−BT Pv1x

2
(3.77)
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There we have

∂V

∂x
(f(x) + g(x)u) (3.78)

= (xT Pv1 + xT
{2}Pv2)(Ax + Bu + Cψ + A{2}x{2})

= xT Pv1(Ax + Bu) + xT Pv1(Cψ + A{2}x{2}) + xT
{2}Pv2(Ax + Bu + Cψ + A{2}x{2})

= −xT Q

2
x + xT Pv1(Cψ + A{2}x{2}) + xT

{2}Pv2(Ax + Bu + Cψ + A{2}x{2})

Give the Q positive definite, there is a positive scalar K satisfying xT Q
2 x > K||x||22 >

K||x||2∞, then we have:

∂V

∂x
(f(x) + g(x)u) (3.79)

< −K||x||2∞ + xT Pv1(Cψ + A{2}x{2}) + xT
{2}Pv2(Ax + Bu + Cψ + A{2}x{2})

< −K||x||2∞ + ||A{2}||∞||Pv1||∞||x||3∞ +
1
2
||x||3∞||B||∞||C||∞||Pv1||2∞

+||x||3∞
(
||A||∞||Pv2||∞ +

1
2
||Pv2||∞||Pv1||∞||BBT ||∞

)

+
1
2
||x||4∞||B||∞||C||∞||Pv1||∞||Pv2||∞ + ||x||4∞||A{2}||∞||Pv2||∞

< −K||x||2∞ +
(

n2 + n

2
M2||Pv1||∞ +

mnM4

2
||B||∞||Pv1||2∞

)
||x||3∞

+||x||3∞
(

n||A||∞M3 +
1
2
nM3||Pv1||∞||BBT ||∞

)

+
(

n3 + n2

2
M2M3 +

n2m||B||∞||Pv1||∞M3M4

2

)
||x||4∞

The second strict inequality holds because

||x{2}||∞ = ||x||2∞ (3.80)

||ψ||∞ = ||x||∞||u||∞ 6 0.5||x||2∞||B||∞||Pv1||∞ (3.81)

The third strict inequality holds because

||A(2)||∞ = max
16i6n

n2+n
2∑

j=1

|A{2}ij | 6
n2 + n

2
×max

∣∣∣∣
∂2Fi(ξ, ζ)

∂t1x1 . . . ∂tnxn

∣∣∣∣

=
n2 + n

2
M2 (3.82)

||Pv2||∞ = max
16i6 n2+n

2

n∑

j=1

|Pv2ij | 6 n×max
∣∣∣∣

∂3V (ξ)
∂t1x1 . . . ∂tnxn∂xi

∣∣∣∣

= nM3 (3.83)
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and

||C||∞ = max
16i6n

mn∑

j=1

|Cij | 6 mnM4 (3.84)

By further analyzing the third inequality of (3.79), we can see that if

||x||∞ <
−W2 +

√
W 2

2 − 4W1W3

2W1
(3.85)

where

W1 =
n3 + n2

2
M2M3 +

n2m||B||∞||Pv1||∞M3M4

2

W2 =
n2 + n

2
M2||Pv1||∞ +

mnM4

2
||B||∞||Pv1||2∞ + n||A||∞M3

+
1
2
nM3||Pv1||∞||BBT ||∞

W3 = −K

The right hand of (3.79) is negative.

Now given any bound of input µ, from the control law (3.77), there is

||−BT Pv1x

2
||∞ 6 µ ⇒ ||x||∞ 6 2µ

||BT Pv1||∞ (3.86)

Finally, we can define the domain

||x||∞ < min{−W2 +
√

W 2
2 − 4W1W3

2W1
,

2µ

||BT Pv1||∞ , η} (3.87)

such that the output of control law in (3.77) is within the bound and the stabilizable

criterion is negative.

3.9 State Feedback Controller Design Based on CLF

A continuous CLF-based feedback control law for the affine system with 2-norm

bounded input is proposed in [76]. This work modifies the approach to handle the

infinity-norm bounded input. Without loss of generality, the input constraint is

assumed to be ||u||∞ ≤ 1, and let % ⊆ <2 denote the open set:

% = {(â, b̂)| â < |b̂|} (3.88)

where â and b̂ are two scalars.

The following Definition and Lemma are introduced from [76] to prove the control

law.
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Definition 12. K-continuous [76]: A function Z(â, b̂) is said to be K-continuous if

there is a scalar δ > 0 for all ε > 0 such that

[|b̂| < δ, â < δ|b̂|] ⇒ |Z(â, b̂)| < ε (3.89)

Lemma 13. A scalar function:

Z(â, b̂) =




− â+

√
â2+b̂4

b̂(1+
√

1+b̂2)
if b̂ 6= 0

0 if b̂ = 0,

which is defined in %, has the following properties [76]:

1. Z(â, b̂) is K-continuous

2. |Z(â, b̂)| < 1 for all (â, b̂) ∈ %

3. â + b̂Z(â, b̂) < 0 for all (â, b̂) ∈ %

Now define the a(x) and b(x) as:

a(x) =
∂V

∂x
f(x) (3.90)

b(x) = [b1(x), b2(x), . . . , bm(x)] =
∂V

∂x
g(x) (3.91)

In the following, the controller and its property are discussed:

Theorem 14. Given the control Lyapunov function V satisfying small control

property and the feedback law:

ui(x) =
{

Ki(x)bi(x) if |bi(x)| 6= 0
0 if |bi(x)| = 0

It is assumed that |ui| 6 1, ∀ i ∈ {1, 2, . . . , m}. Let Ri(x) = |bi(x)|a(x)∑m
j=1 |bj(x)| and

Ki(x) = −Ri(x)+
√

Ri(x)2+(|bi(x)|)4
|bi(x)|2[1+

√
1+(|bi(x)|)2]

, then the system (3.1) is stable by the input within

the constraint, and the u is continuous at the origin.

Proof. Given the proper CLF, there are:

inf
u∈U

∂V

∂x
f(x) +

∂V

∂x
g(x)u < 0 ∀x ∈ Σ 6= 0

−→ a(x)−
m∑

j=1

|bj(x)| < 0 ∀x ∈ Σ 6= 0

−→ |bi(x)|a(x)∑m
j=1 |bj(x)| − |bi(x)| < 0 ∀x ∈ Σ 6= 0, i ∈ {1, 2, . . . , m}

−→ Ri(x) < |bi(x)| ∀x ∈ Σ 6= 0, i ∈ {1, 2, . . . , m} (3.92)
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where m is the number of inputs and Σ is the decay region of the given CLF, see

(3.3). Thus, we know that the pair (Ri, bi) is in the set % defined by Eq. (3.88) and

ui can be simplified as:

ui(x) =




− Ri+

√
R2

i +b4i

bi(1+
√

1+b2i )
if |bi(x)| 6= 0

0 if |bi(x)| = 0,

which is similar with Z defined in Lemma 13. According to Lemma 13, there

is Ri + biui(Ri, bi) < 0 for each input component, so a +
∑m

i=1 biui < 0 which

guarantees the Lyapunov function is decreasing while following the state trajectory,

i.e. stability; By the same Lemma, there is also |ui| < 1 satisfying the input

constraint. It only remains to prove the continuity of u. Similar with the proof in

[76], we want to show that for each ε > 0, there is an ε′ such that if 0 < ||x||∞ < ε′

then ||u||∞ < ε.

From the K-continuous property of ui, for the ε and each input component,

there is a δi such that [|bi| < δi, Ri < δi|bi|] ⇒ |ui| < ε. For any δi > 0, we can

select the bound ε′ such that ||x||∞ < ε′ leading |bi(x)| < δi by the continuity of

bi(x). Then we define δ = min{δi}. According to the small control property, the

ε′ is also chosen such that any state in ||x||∞ < ε′ can be stabilized by one of the

inputs within ||u||∞ < δ, i.e.:

a + bu < 0 ⇒ a < δ
m∑

i=1

|bi| ⇒ Ri < δ|bi| ⇒ Ri < δi|bi|

This completes the proof.

Although the Theorem 14 provides a feedback control law that can stabilize the

system even with the input constraints, the modern control system usually employs

the discrete regulation fashion, which is not applicable to this continuous policy.

Fortunately, if the sampling time or holding time is small enough, the CLF/RCLF

based discrete controller can guarantee the system converge to an invariant set

containing equilibrium. In next chapter, we will follow the idea in [83, 84] to prove

this proposition for RCLF controller.
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3.10 Case Study

3.10.1 Case1: Disturbance-free CSTR

Consider the continuous stirred tank reactor example in [84], whose model takes the

form of:

ĊA =
F

V
(CA0 − CA)− k0e

−E/RTRCA (3.93)

ṪR =
F

V
(TA0 − TR) +

−∆H

ρCp
k0e

−E/RTRCA +
Qσ

ρCpV
(3.94)

where 0 < CA0 < 2kmol/m3 and |Qσ| < 0.0167kJ/min are two inputs. The other

parameters are shown in Table 3.1. In this case we supposed that all states are

observed.

Table 3.1: Parameters of the process model
V = 0.1m3 R = 8.314kJ/kmolK
CA0s = 1.0kmol/m3 TA0s = 310.0K
∆H = −4.78× 104kJ/kmol k0 = 72 ∗ 109min−1

E = 8.314× 104kJ/kmol Cp = 0.239kJ/kgK
ρ = 1000kg/m3 F = 0.1m3/min
TRs = 395.33K CAs = 0.57kmol/m3

The control objective is to stabilize the target region of 0.6kmol/m3 < CA <

0.62kmol/m3, 397.5K < TR < 398K and drive the system to the unstable steady

state: TRs = 395.33 K, CAs = 0.57 kmol/m3. Note that the model is not

polynomial, the SOS cannot be applied directly. Here the quadratic CLF is employed

to stabilize the system. Solving the Ricatti equation for the linearized system to get

the initial guess:

Pinitial =
[

14.6402 0.8897
0.8897 0.1041

]

The ROA with the initial CLF is shown in Fig. 3.4. However, it cannot

incorporate the whole target region. A new CLF: V = xT Px, where x =

{Ca−0.57, TR−395.33}, can be calculated by the proposed method. In the nonlinear

search step, for solving Problem1, 15 initial points were selected randomly to help

estimating the global optimal. Moreover, after each optimization step, we also use

grids to check its optimality.

Pfinal =
[

23.433 1.0185
1.0185 0.0532

]
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The ROA and target area for the initial guess Pinitial is shown in Fig. 3.4. For

Pfinal, its ROA and specified region is shown in Fig. 3.5. Figs. 3.6 and 3.7 show that

the system reach the steady state smoothly and Figs. 3.8 and 3.9 show the input

trajectories are within the constraints.

Moreover, it is not difficult to verify that Pv1 = Pfinal for the quadratic CLF.

Assume ν = 1, there is

Q = −(AT Pv1 + Pv1A− Pv1BBtPv1) =
[

328.1626 13.8728
13.8728 0.6224

]

which is a positive finite matrix. Thus, the derived CLF has the small control

property. This conclusion is easy to be checked by the Fig. 3.6 ∼ 3.9.

3.10.2 Case2: CSTR with Bounded Uncertainties

In this case, we still employ the CSTR model. However, the real process can

be affected by many disturbances. Here two sources of uncertainties are mainly

considered: (1) The concentration fluctuation of the inlet flow εCA0. (2) The

disturbance µ affecting ṪR. In summary, the true model can be express as:

ĊA =
F

V
(CA0(1 + ε)− CA)− k0e

−E/RTRCA (3.95)

ṪR =
F

V
(TA0 − TR) +

−∆H

ρCp
k0e

−E/RTRCA +
Qσ

ρCpV
+ µ (3.96)

The input is 0 < CA0 < 2kmol/m3 and |Qσ| < 90kJ/min. Here we also assumed

that all states can be observed.

In order to derive the RCLF, the CSTR model can be rewrote as the typical

control affine system and the terms are:

f = [−F

V
CA − k0e

−E/RTRCA,
F

V
(TA0 − TR)− ∆H

ρcp
k0e

−E/RTRCA]T (3.97)

∆f = [0, µ]T (3.98)

g = [
F

V
, 0; 0,

1
ρcpV

] (3.99)

∆g = [
εF

V
, 0; 0, 0] (3.100)

Here we assume that disturbances are εCA0 ∈ [−0.2CA0, 0.2CA0]kmol/m3, µ ∈
[−3.5, 3.5]K/min. For simplicity, the x = [x1, x2]T = [CA, TR]T and u = [u1, u2]T =

[CA0, Qσ] represent the state vector and input variables, respectively. Let x0 denote
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the equilibrium. Then the constraint (3.24) is:

inf
u∈U

sup
∆f(x),∆g(x)

∇V (x)[f(x) + ∆f(x) + (g(x) + ∆g(x))u] (3.101)

= (x− x0)T Pf + min
u2

(x− x0)T P [0,
1

ρcpV
]T u2 + max

∆f
(x− x0)T P∆f

+
u1 − u1

2
||((x− x0)T P )1

0.2F

V
|+ ((x− x0)T P )1

F

V
|

+
u1 + u1

2
(|((x− x0)T P )1

0.2F

V
|+ ((x− x0)T P )1

F

V
)

= (x− x0)T Pf − 90|(x− x0)T P [0,
1

ρcpV
]T |+ 3.5|((x− x0)T P )2|

+
u1 − u1

2
||((x− x0)T P )1

0.2F

V
|+ ((x− x0)T P )1

F

V
|

+
u1 + u1

2
(|((x− x0)T P )1

0.2F

V
|+ ((x− x0)T P )1

F

V
)

where the sub-index also represents the term in the vector. (3.101) is still a piecewise

function in terms of the single parameter Pij , thereby facilitating our algorithm.

We also define the Θ̃ = {x|0.56kmol/m3 6 x1 6 0.58kmol/m3, 395K 6 x2 6
395.5K}. Then for the quadratic RCLF: V (x) = (x − x0)P (x − x0)T , the initial

guess of P is derived from linearization of the nonlinear system and solving the

Ricatti equation:

Pinitial =
[

20.1669 1.5958
1.5958 0.1844

]

The ROA is shown in Fig. 3.10. There is Φ(Pinitial) = 2.1168. It is important to

note that Θ derived from the problem 3 is required to cover the Θ̃. However, the

true residual set Θ can be smaller than the solution of this problem.
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Figure 3.10: The region of attraction for Pinitial.
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By using the proposed algorithm, the new P is yielded:

Pfinal =
[

51.6785 2.3359
2.3359 0.1245

]

There is Φ(Pfinal) = 18.89. The Ω and the residual set derived from problem 3

is shown in Fig. 3.11. Compare the ROA of these two RCLFs, it is clear that

the proposed method enlarge the stabilizable region dramatically. Due to the non-

convexity of the optimization formulation, we admit that this is not the largest ROA

among all possible RCLFs. Changing the initial guess and increasing the sampling

points in each iteration may improve the solution.
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Figure 3.11: The region of attraction for Pfinal.

Given this RCLF, there always is a feedback control law that can drive this

process towards the specified equilibrium as long as the initial point is within this

ROA, regardless of the uncertainty.

3.10.3 Case3: Coupled Tanks System

Consider the coupled tanks system, which has been studied in [2, 94]. The general

dynamic model of this system can be written as:

ż1 = −a1
√

z1 + a2
√

z2 (3.102)

ż2 = a1
√

z1 − 2a2
√

z2 +
u

C
(3.103)

where z1 = h2 > 0cm, z2 = h1 − h2 > 0cm, 0 6 u 6 50cm3/s is the input. The

aim of the control is keeping the height of tank 2, h2 in the specified value. The

parameters of the system are shown in Table 3.2.
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Table 3.2: Parameters of the process model
a1 = 0.0511

√
cm/s a2 = 0.1234

√
cm/s C = 208.2cm2

Actually, this system can be regulated by backstepping, feedback linearization

or slide mode control. However, the conventional CLF design approach may be

powerless because of the non-integer power and the state constraint. Thus, we

employ this example to show the competence of our algorithm to overcome those

difficulties. Moreover, the non-quadratic CLF is also used here:

V = α1(z1 − z10)(
√

z1 −√z10) + α2(z2 − z20)(
√

z2 −√z20)

+α3(z1 − z10)(z2 − z20) (3.104)

where z10 = 6cm and z20 = 1.0273cm are the specified steady state. It is worthwhile

to note that how to design the formulation of the CLF is a broad topic and

beyond the scope of this paper. Thus, we just specified this form and it is not

difficult to verify that φk({z10, z20}) = 0 and ∂φk
∂z |z10,z20 = 0. Here we consider

two different target region: Ψ1 : {3cm 6 z1 6 3.5cm, 0.8cm 6 z2 6 1cm} and

Ψ2 : {10cm 6 z1 6 10.5cm, 2cm 6 z2 6 2.2cm}
The initial guess of the parameters are

α1 = 15 α2 = 3 α3 = −1 (3.105)

In Figs. 3.12 and 3.13, both target areas are far away from the scope of the ROA for

the initial CLF. Note that in this case, the physical boundary of the z2 constrained

the size of the ROA. By employing the proposed approach, the new parameters to

stabilize Ψ1 are:

α1 = 12.4873 α2 = 42.7937 α3 = −1 (3.106)

We also verify the small control property, there is

Pv1 =
[

3.9255 −1
−1 31.9118

]

and let ν = 1

Q = −(AT Pv1 + Pv1A− Pv1BBtPv1) =
[

0.1027 −0.7045
−0.7045 7.9152

]

which is a positive definite matrix. The Fig. 3.12 showed the ROA for the initial

CLF and the derived CLF. The track of the process under the proposed control law

is also presented.
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Figure 3.12: The comparison of ROA to stabilize Ψ1

By the same way, for Ψ2, there are

α1 = 9.4903 α2 = 40.4300 α3 = −3.3520 (3.107)

To check the small control property:

Pv1 =
[

3.0078 −3.3520
−3.3520 30.1628

]

and let ν = 1

Q = −(AT Pv1 + Pv1A− Pv1BBtPv1) =
[

0.1328 −0.9428
−0.9428 7.7732

]

which is a positive definite matrix. The Fig. 3.13 showed the ROA for the initial

CLF and the derived CLF. The system finally can reach the steady state by the

proposed control algorithm.

3.11 Conclusion

In this work, a systematic design method for the control Lyapunov function (CLF)

and robust control Lyapunov function (RCLF), which can stabilize control affine

system with input and state constraints, is proposed. The problem for obtaining

such a CLF/RCLF is formulated as a min-max style optimization problem and a

derivative-free optimization scheme is proposed to obtain the optimal CLF/RCLF

starting from a simple initial guess. The bounded control law is also modified

to handle infinity norm constraint for the input. The condition for small control

property is also presented. Future work includes further acclerating the optimization

procedure and the design respect to the robust performance.
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Chapter 4

Advanced Control by
Approximate Dynamic
Programming

4.1 Introduction

Currently, as most of processes need to be operated under tighter performance spec-

ifications and more constraints, the nonlinear model predictive control (NMPC) has

become an attractive strategy for nonlinear systems in process industry. Despite

its advantages of using nonlinear models and handling constraints explicitly, con-

ventional NMPC has outstanding issues for practical applications; among them are

excessive online computational burden, stability, and robustness under uncertainty.

In the remainder of this chapter, we will not distinguish two terminologies: NMPC

and MPC. Both of them refer to the same methodology.

Since MPC strategy employs the nonlinear differential algebra equation (DAE)

model in solving a constrained finite horizon optimal control problem for the current

state of the plant at each sampling time, the resulting online optimization problem

becomes a large-scale nonlinear program. This requires excessive computational

time, which renders conventional MPC algorithms unsuitable for many practical

applications. In favor of the online computation, a fast min-max MPC employing

linear programs formulation is developed [81], but it is only applicable for the 1-

norm cost function. Explicit MPC divides the state space into several regions

and computes an explicit control law off-line for each region [8]. It is very

difficult to extend this approach to the high dimension case. A robust constrained
∗A brief version of this chapter has been accepted by the 11th International Conference on

Control, Automation and Systems.
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MPC algorithm with explicit control law is developed, based on the concept of

asymptotically stable invariant ellipsoid [125]. A neuro-fuzzy network is trained to

approximate the input-output relationship of a MPC, thereby arranging the online

optimization to be done off-line [49].

Due to the receding horizon nature of MPC implementation, the closed-loop

stability can be guaranteed under particular conditions only. A significant survey

about the stability issue of the MPC is provided in [80]. A computationally expensive

equality terminal state constraint is added to MPC design [58]. MPC combined

with the terminal penalty instead of the difficult equality constraint is proposed

to ensure that the process finally enters the region of attraction in the absence of

model uncertainty [117]. Sorts of endpoint penalty for the MPC are also developed

in [21, 87, 78], respectively. The LMPC method [84], incorporates the control

Lyapunov function (CLF) as the constraint into the optimization formulation to

guarantee the close-loop trajectory of system dynamics follow the descent direction

of the Lyapunov function. This, however, requires the CLF with large enough region

of attraction (ROA). It is indicated that the prior CLF or the terminal cost, should

be viewed as the approximation of the infinite horizon value function rather than the

penalty [53]. A time varying terminal constraint set also can be used to achieve the

stability in relative short horizon [126]. The input-to-state stability for the hybrid

system is further considered by [68].

As for the model uncertainties, several examples to illustrate non-robust MPC

are provided in the [44]. The plant uncertainties are explicitly incorporated into the

model and the linear matrix inequality (LMI) is used to obtain the solution [63]. In

[67], a piecewise affine control law is derived to maintain the controlled trajectory

in a tube against the disturbances. The worst case MPC is also proposed to reject

the disturbances and applied to a pilot plant [45].

Recently, the approximate dynamic programming (ADP), or called the reinforce-

ment learning in artificial intelligence community, has been extended to the process

control field to overcome the model uncertainty and meet the online computation

requirements [72, 88]. The main idea of the ADP-based control approach is to

encode the multistage objective values under a particular control policy into the

value function because the Bellmans optimality equation gives us a mechanism for

solving the intractable multi-stage optimization problems in a simple and elegant

way. The approximate value function is iteratively updated given the observation
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from operation or simulation until its convergence. The converged value function

is deemed close to the true optimal value function, if the approximation error is

properly controlled in the learning stage. Theoretically, the MPC outperforms the

ADP if the accurate model is known. However, since the accurate model usually

is very difficult to obtain due to the lack of knowledge on the process, the ADP

has tremendous potentials in some practical cases provided the operational data is

enough. Moreover, the ADP only needs to solve the single step optimization, which

can remarkably reduce computational burden compared to MPC.

A major issue in application of ADP to control problems is its closed-loop

stability, which is the most essential requirement of the regulation, is not guaranteed

theoretically in the existing literature. One of the main reasons is because the ADP

is a data-based approach and mainly applied in the model-free applications.

In this work we propose a mixed control strategy where an ADP controller

can be employed reliably to improve the performance of MPC for some particular

states. A robust control Lyapunov function (RCLF) is generated by the proposed

algorithm in last chapter and embed into the MPC scheme. Then, the ADP control

strategy is developed based on the operational data of the MPC policy. Moreover, a

data description technique is introduced to characterize the explored regions in the

state space to prevent undue extrapolation in using the ADP controller and MPC is

employed for the rest of regions. The merit of the proposed method is that the worst

case is only considered for the stability analysis and the performance improvement

in MPC can be achieved via ADP. By exploring the historical data in real time, the

ADP control policy not only can learn the desirable behavior of the current control

law, but also adaptively finds a better control policy.

The rest of this chapter is organized as follows: Section 4.2 gives the control

framework of MPC combined with the RCLF; Section 4.3 develops the ADP and

MPC mixed control strategy; The case study is illustrated in Section 4.4 to show

the performance improvement of this mixed method in contrast to the conventional

MPC. The conclusion is drawn in Section 4.5.

4.2 Main Result

In this chapter, we mainly focus on the control affine system with uncertainties,

such that:

ẋ = F (x, u, ∆f,∆g) = f(x) + ∆f + (g(x) + ∆g)u (4.1)
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where ∆f , ∆g ∈ W are bounded uncertainties. One should note that these

specifications are exactly same with the last chapter for the RCLF design.

4.2.1 The MPC Control Law based on Robust Control Lyapunov
Function

Most of MPC applications suffer from the stability issue because of the incompat-

ibility between the receding horizon scheme and the asymptotic process behavior

under the presence of uncertainties. In order to overcome this shortcoming of the

MPC, the RCLF is combined with the conventional MPC formulation to enhance

its stability. In this section, two of MPC approaches based on the prior RCLF is

presented briefly. A discrete implementation of Lyapunov based controller is first

introduced.

Discrete Implementation of Lyapunov based Control

Given a RCLF, let us first define the Lyapunov derivative LF V :

LF V (x, u, ∆f,∆g) := ∇V (x) • F (x, u, ∆f,∆g) (4.2)

Define the u∗, such that

u∗(x) = arg inf
u∈U

sup
∆f∈W,∆g∈W

∇V (x) • F (x, u, ∆f,∆g) (4.3)

Namely, the u∗ minimizes LF V under the worst uncertainties determined by the

following Lemma. Here the “worst” means the {∆f,∆g}, maximizing LF V (x, u).

Lemma 15. For any state x and input u, the worst uncertainties of ∆f and ∆g

in (3.78) are determined by the sign of each component in ∇V (x) and ∇V (x)u,

respectively.

Proof. Let the ∆f∗(x, u) and ∆g∗(x, u) denote the worst uncertainties maximizing

LF V (x, u), given state x and input u. Then, for each component of uncertainty

vector and matrix, we have

∆f∗(x, u)i = arg max
∆fi

∇V (x)i∆fi (4.4)

and

∆g∗(x, u)ij = arg max
∆gij

∇V (x)i∆gijuj (4.5)
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Also, the bounds of these components are provided in Definition 9. Thus, their

values can be derived explicitly.

∆f∗i =
{

∆i if ∇Vi > 0
−∆i if ∇Vi 6 0

∆g∗ij =
{

Υij if ∇Viuj > 0
−Υij if ∇Viuj 6 0

Then the theorem for discrete controller is proposed as below:

Theorem 16. For the system (4.1) and rclf: V with Ω and residual set Θ, let

initial state x(0) ∈ Ω\Θ. Then, given a set ΠR, such that Θ ⊂ ΠR ⊂ Ω, there

always exist a set ΨR, satisfying ΠR ⊂ ΨR ⊂ Ω, and a positive time τ with

control law: u(t) = u∗(x(0)), such that: (1)LF V (x(t), u(t),∆f,∆g) < 0,∀t ∈ [0, τ),

∀∆f,∆g ∈ W, if V (x(0)) > CΠR
(2) V (x(t)) 6 CΨR

,∀t ∈ [0, τ) if V (x(0)) 6 CΠR
,

where CΠR
and CΨR

are the set level of Π and Ψ, respectively.

Proof. We follow the idea in [83] to prove this theorem. First of all, since

x(0) ∈ Ω\Θ, according to (3.8) and (4.3), one can get

∇V (x(0)){f(x(0)) + ∆f∗(x(0), u∗) + [g(x(0)) + ∆g∗(x(0), u∗)]u∗} < −αV (x(0))
(4.6)

where u∗ := u∗(0). Then, in time point τ1, the Lyapunov derivative for the worst

uncertainties, i.e. LF V (x(τ1), u∗,∆f∗(x(τ1), u∗),∆g∗(x(τ1), u∗)) can be described

as follows:

∇V (x(τ1)){f(x(τ1)) + ∆f∗(x(τ1), u∗) + [g(x(τ1)) + ∆g∗(x(τ1), u∗)]u∗} (4.7)

= ∇V (x(0)){f(x(0)) + ∆f∗(x(0), u∗) + [g(x(0)) + ∆g∗(x(0), u∗)]u∗}+
∇V (x(τ1))f(x(τ1))−∇V (x(0))f(x(0)) + [∇V (x(τ1))g(x(τ1))−∇V (x(0))g(x(0))]u∗

+ [∇V (x(τ1))∆g∗(x(τ1), u∗)−∇V (x(0))∆g∗(x(0), u∗)]u∗

+∇V (x(τ1))∆f∗(x(τ1), u∗)−∇V (x(0))∆f∗(x(0), u∗)

Considering that system (4.1) is continuous and Ω as well as Θ are bounded, there

exists a number K1, for all x(0) ∈ Ω\Θ, ∆f , ∆g ∈ W and t ∈ [0, τ1), satisfying

||x(t) − x(0)|| 6 K1τ1. Since function ∇V • f and ∇V • g are both continuous,
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there are real positive numbers K2 and K3, for all x(0) ∈ Ω\Θ, ∆f , ∆g ∈ W and

t ∈ [0, τ1), such that

||∇V (x(t))f(x(t))−∇V (x(0))f(x(0))|| 6 K2K1τ1 (4.8)

||[∇V (x(t))g(x(t))−∇V (x(0))g(x(0))]u∗|| 6 K3K1τ1 (4.9)

For the continuous function ∇V (x)i, there is also a positive real number Mi, for all

x0 ∈ Ω\Θ, ∆f , ∆g ∈ W and t ∈ [0, τ1), satisfying

||∇V (x(t))i −∇V (x(0))i|| 6 MiK1τ1 (4.10)

Then we need to discuss two cases.

Case1: ∇V (x(0))i∇V (x(t))i > 0. According to Lemma15, ∆f∗(x(t), u∗)i =

∆f∗(x(0), u∗)i and ∆g∗(x(t), u∗)ij = ∆g∗(x(0), u∗)ij . Then,

||∇V (x(t))i∆f∗(x(t), u∗)i −∇V (x(0))i∆f∗(x(0), u∗)i|| 6 Mi∆iK1τ1 (4.11)

||[∇V (x(t))i∆g∗(x(t), u∗)ij−∇V (x(0))i∆g∗(x(0), u∗)ij ]u∗j || 6 MiΥijK1τ1u
∗
j (4.12)

Case2:∇V (x(0))i∇V (x(t))i 6 0. According to Lemma15, the worst uncertainties

switch to the different bound during [0, t], namely, ∆f∗(x(t), u∗)i = −∆f∗(x(0), u∗)i

and ∆g∗(x(t), u∗)ij = −∆g∗(x0, u
∗)ij . However, in this scenario, we have

||∇V (x(0))i +∇V (x(t))i|| 6 |∇V (x(0))i −∇V (x(t))i|| 6 MiK1τ1 (4.13)

Therefore, Eqs. (4.11) and (4.12) still hold.

Combining Eqs. (3.8), (4.8), (4.9), (4.11) and (4.12), the upper bound of (4.7)

can be derived:

∇V (x(t)){f(x(t)) + ∆f∗(x(t), u∗) + [g(x(t)) + ∆g∗(x(t), u∗)]u∗}
< −αV (x(0)) + K2K1τ1 + K3K1τ1 + MT ∆K1τ1 + MT Υu∗K1τ1 (4.14)

To specify the holding time, as long as τ1 < αV (x(0))
K2K1+K3K1MT ∆K1+MT Υu∗K1

, one can

guarantee that ∀t ∈ [0, τ1], LF V (x(t), u∗,∆f∗(x(t), u∗),∆g∗(x(t), u∗)) < 0.

If V (x(0)) 6 CΠR
, we first define dΠ,t = maxu∈U,x(0)∈ΠR,∆f∈W,∆g∈W V (x(t)).

Then due to CΠ < CΓ and the continuity of system, there is a positive time τ2, such

that ∀t ∈ [0, τ2] dΠR,t < CΩ. We can specify τ = min{τ1, τ2} and CΨR
= dΠR,τ .

Then it implies that V (x(t)) 6 CΨR
, ∀t ∈ [0, τ).
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If V (x(0)) > CΠR
, because of CΘ < CΠR

< CΩ and τ < τ1, ∀t ∈ [0, τ), there is

LF V (x(t), u∗,∆f∗(x(t), u∗),∆g∗(x(t), u∗)) < 0

−→ LF V (x(t), u∗,∆f,∆g) < 0,∀∆f,∆g ∈ W

The Theorem 16 claims the existence of holding time τ for the discrete

controller implementation. Moreover, it can conclude that increasing negativity

margin αV or reducing uncertainties bound can directly prolong the allowable

holding time. Alternatively, one can also shrink ΠR or enlarge permissible ΨR

to get longer τ .

Lyapunov based Model Predictive Control (LMPC)

Given a small enough holding time τ , the formulation of Lyapunov based model

predictive control (LMPC) is proposed as below:

min
u(0),u(τ),...,u(hcτ)

hc∑

i=0

x(iτ)T Qx(iτ) + u(iτ)T Ru(iτ) (4.15)

s.t. ẋ = f(x) + g(x)u (4.16)

˙̂x = f(x) + ∆f∗(x(0), u(0)) + (g(x) + ∆g∗(x(0), u(0)))u(0) (4.17)

if V (x(0)) > CΠR
:

V (x̂(τ)) < V (x(0))− εR (4.18)

if V (x(0)) 6 CΠR
:

V (x̂(τ)) 6 CΨR
(4.19)

u(0), u(τ), . . . , u(hcτ) ∈ U (4.20)

where hc is the control horizon; Q and R are strictly positive definite matrix to

weight the cost of the control; U is the admissible input; V is the RCLF; εR is a

small enough positive real number. This formulation is only used for initial states

within the ROA of V .

In this formulation, the one step estimation of worst state x̂(τ) in terms of V

is maintained. Since the Theorem16 guarantees that the Lyapunov derivative is

negative during t ∈ [iτ, (i + 1)τ), ∀∆f,∆g ∈ W, provided that the holding time is

small enough, the constraint (4.18) is easy to be satisfied. εR is employed to force

V decreasing fast. Although this constraint only renders the Lyapunov function
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along the process trajectory decline in one step, the robust stability is still reserved

because only the first action is implemented and the control action sequence will

be re-calculated in the new state. Moreover, considering that worst case occurs

rarely in practice and the multi-step prediction of the worst scenario is very time

consuming and inaccurate, there is no reason to spend many computations on the

conservative solution. Constraint (4.19) is also derived from Theorem16 to ensure

Ψ be an invariant set. Solving this formulation online, it yields an input to drive

the system finally falling into the region ΨR from any initial state within the ROA.

However, parameters τ , εR, CΠR
and CΨR

should be well-tuned to guarantee the

performance, which may not be easy.

Unconstrained receding horizon control

Despite employing the RCLF as the hard constraint guarantees the stability for

the nonlinear control in the presence of disturbances, this scheme suffers at least

two drawbacks: The first, adding more constraints renders the optimization more

difficult to be solved; secondly, it can not stabilize the state outside the ROA. To

address these issues, the unconstrained finite horizon optimal control framework is

proposed in [53]. This method uses a prior CLF as the terminal cost to approximate

the tail of the infinite horizon cost-to-go function and it is shown that the stability

can be guaranteed if the system can enter the ROA in the last stage of the control

horizon and that CLF is an appropriate upper bound of the real cost-to-go. For the

system with uncertainties, no conclusion is made to guarantee the robust stability

for the states outside the ROA. However, treating RCLF as the terminal cost is still

useful to enhance the stability.

min
u(0),u(τ),...,u(hcτ)

V (x((hc + 1)τ)) +
hc∑

i=0

x(iτ)T Qx(iτ) + u(iτ)T Ru(iτ) (4.21)

s.t. ẋ = f(x) + g(x)u (4.22)

u(0), u(τ), . . . , u(hcτ) ∈ U (4.23)

where V is a CLF. Although the formulation (4.21) is not computationally expensive,

to determine a suitable V as a terminal cost is not trivial. An excessively large V

dominates the optimization and degrades the control performance. People who

interests the detail work of CLF based unconstrained NMPC can refer to [53].
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4.2.2 The Hybrid Control Strategy

Value Function Approximation

Despite the considerable success achieved by the MPC for the control of plant in the

chemical industry, there is still some room to be improved especially when the initial

state is outside of the ROA. In that case, the MPC needs the long controlled and

predictive horizon to guarantee the final state enter the ROA, whereas increases

the number of decision variables. The resulting formulation is computationally

prohibitive, large-scale nonlinear program.

In order to reduce the computational complexity of MPC, an approximate

dynamic programming (ADP) scheme is proposed in this work. As mentioned in

the introduction part, the dynamic programming (DP) is an effective algorithm to

generate the optimal control law by computing the optimal value function J∗(x)

for each state and has two major advantages over MPC; the online computational

requirement of DP is much less than that of MPCs, and a closed-loop optimal

control policy can be derived using DP for systems with uncertainties [72]. Classical

DP algorithms, including value iteration and policy iteration, require all possible

states to be involved in iteratively solving for the optimal value function. The

computational burden exponentially increases in state dimensions, which makes it

difficult to apply these algorithms to continuous state systems. Central to the DP is

obtaining the optimal value (cost-to-go) function, which is usually too complex to be

figured out exactly for nonlinear system with constraints. Thus an approximation

scheme is a practical choice to solve DP.

Let us first consider the true optimal value function. With the presence of the

disturbances, the practical process should be described as a stochastic system. The

optimal control policy should minimize the expected cost over the infinite horizon:

J∗(x(0)) = min
u(iτ)

E{
T∑

i=0

r(x(iτ), u(iτ), w(iτ))} (4.24)

where r(x, u) is the stage-wise cost; T is the terminal step; τ is the holding time

of discrete controller; J∗(x0) is the optimal value function for state x0; w is the

random disturbance. Here we assume the existence of the terminal state, thereby

only considering the un-discounted case. Based on the Bellman optimal principal,

in any tth step, the (4.24) can be rewrote as:

J∗(x(tτ)) = min
u(tτ)

E{r(x(tτ), u(tτ)) + J∗((t + 1)τ)} (4.25)
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where x((t + 1)τ) is the successive state of x(tτ) under the input u(tτ). Note that

the expectation operator inside the minimization is a major source of computational

complexity. Hence, we employ the post-decision state xp to avoid the minimization

over the expectation. Specifically, the xp indicates the state after the external input

acts on the system immediately but before the uncertainties are realized. For the

discrete control affine system with uncertainties,

x((t + 1)τ) = fd(x(tτ)) + ∆fd(x(tτ)) + gd(x(tτ))u + ∆gd(x(tτ))u (4.26)

The xp(tτ) and x((t + 1)τ) can be expressed by decomposing the (4.26)

xp((t + 1)τ) = fd(x(tτ)) + gd(x(tτ))u (4.27)

x((t + 1)τ) = xp((t + 1)τ) + ∆fd(x(tτ)) + ∆gd(x(tτ))u (4.28)

Then, we define the optimal value function on the post-decision state:

J∗(xp((t + 1)τ)) = E{J∗(x((t + 1)τ))|xp((t + 1)τ)} (4.29)

Based on (4.29), optimal input is much easier to be calculated:

u∗(tτ) = arg min
u(tτ)

E{r(x(tτ), u(tτ)) + J∗(x((t + 1)τ))} (4.30)

= arg min
u(tτ)

r(x(tτ), u(tτ)) + E{J∗(x((t + 1)τ))} (4.31)

= arg min
u(tτ)

r(x(tτ), u(tτ)) + J∗(xp((t + 1)τ)) (4.32)

Here we suppose that the stage-wise cost is deterministic.

As a result, different from the traditional function approximation scheme, we

need to construct the approximator to approach the value function of the post-

decision state. Given the simulation or operational data, every trajectory leading to

the ROA provides several sample states. Suppose that there is a sequence of data

under a fixed control law π,

{x(0), u(0)}, {x(τ), xp(τ), u(τ)}, . . . , {x(Tτ), xp(Tτ), u(Tτ)} (4.33)

where terminal step T depends on the earliest time of process entering the ROA;

The superscript p indicates the post-decision state, derived from the nominal model.

Since the initial state x(0) is determined, the post-decision state sequence begins at

the second sampling time and we define the instance based post-decision state value

function for xp((T − 1)τ) as:

Ĵπ(xp((T − 1)τ)) = x((T − 1)τ)T Qx((T − 1)τ) + u((T − 1)τ)T Ru((T − 1)τ)(4.34)
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where k 6 T − 1. The recursive formulation is:

Ĵπ(xp(kτ)) = x(kτ)T Qx(kτ) + u(kτ)T Ru(kτ) + Ĵπ(xp((k + 1)τ)) (4.35)

where Q and R are the weighting matrix for the state and input, respectively. The

terminal cost, namely, the value function of states in the ROA is specified as zero,

which means no stage-cost incurred after step T . That is because the regulator can

be switched to the LMPC after that time point, with guaranteed stability.

The choice of the appropriate basis function has received much attention in

approximating value function because it fundamentally determines the error of the

approximate function. In the proposed approach, the whole post-decision state space

is divided into finite number of regions which is implicitly defined by a data clustering

method. A local approximator for the state region corresponding to each cluster is

estimated. The advantage of this scheme over the conventional global approximation

lies in its accuracy. Moreover, considering that some of states are never related

according to the available control policy, incorporating all these states into the

same approximation framework is not reasonable. For each cluster, the polynomial

function is adopted as the basis because it is shown that the solution of Hamilton-

Jacobi-Bellman (HJB) equation can be accurately represented by polynomials via

the Taylor series [22]. As most of existing methodologies, we also consider the linear

approximate value function:

J̃π(x) =
k∑

h=0

mh∑

j=1

θhj

n∑

i=1

xαi
i (4.36)

where k is the highest order of the polynomial; mh is the total number of different

h degree monomials; n is the number of state dimensions; θhj is the coefficient; xi

denotes the ith component of the state vector. Also, there is
∑n

i=1 αi = h. For

simplicity, we assume that the equilibrium is {0}. Since the instance based value

function and the post-decision state can be derived for each data, the parameter θ

is estimated off-line by the least square method.

Support Vector Data Description (SVDD)

Usually, the function approximation based controller encounters two issues [71]. The

first, the errors of the approximation is hard to control. Whether the approximation

is reliable in those unexperienced region is not fully predictable. Moreover, the

pure ADP controller may be aggressive and more likely to drive the system to the
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boundary of the feasible region, where the system is running with high risks but the

value function is supposed to be small according to the J̃ . A similar problem has

been reported in [71] where the nonparametric local averager is used to estimate

the value function. They ascribed it to the excessive extrapolation and designed the

data density penalty to control the value function in those unexperienced region.

Secondly, the unstable trajectory also provides the useful information to keep

process from the risk but hard to be incorporated into the approximation scheme

because the choice of the suitable value function for these regions is not an easy

task. Assigning a constant, high value for the regions in the unstable trajectories

may render the resulting approximator non-smooth, thereby amplifying the error.

In order to address these problems, we introduce the support vector data

description (SVDD) to characterize those reliable region, i.e. the sampled and stable

area. The SVDD is developed mainly for the one class classification to distinguish

target and outlier data. In its scheme, the stable and sampled states are labeled

as “target” and the unstable data is viewed as “outlier”. The aim is to develop a

suitable hypersphere to contain all those targets and exclude outliers. To this end,

an optimization problem is solved to yield the hypersphere [119]:

min
R,ξi,ζl,a

R2 +
∑

i

ξi +
∑

i

ζl (4.37)

s.t. ||zi − a||2 6 R2 + ξi (4.38)

||zl − a||2 > R2 − ζl (4.39)

ξi > 0 ζl > 0 (4.40)

where R is the radius of the hypersphere; zi and zl are the target and outlier data,

respectively; ξ and ζ are the slack variables which allow a few of samples be identified

incorrectly; a is the center of the hyperplane. To determine whether a new data

z to be an outlier or target, it is only necessary to compare ||z − a|| with R. In

practice, for the purpose of making the data description more flexible, it is common

to use kernel function, such as Gaussian, to replace the inner product. Details for

implementation of SVDD can be found in [119].

Control Scheme

Once the sampled and stable area is determined by SVDD, the corresponding

boundary constraints can be added to the Bellman equation to select the optimal
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input. The formulation of this optimization can be derived as:

min
u,i

J = r(x, u) + J̃i(xp) (4.41)

s.t. ẋp = f(x) + g(x)u (4.42)

||xp − ai||2 6 R2
i (4.43)

u ∈ U (4.44)

i ∈ {1, 2, 3, . . . , M} (4.45)

where U is the admissible input. J̃i, ai and Ri are the approximate value function

for the previous control law, hypersphere’s center and radius for the ith cluster,

respectively. M is the total number of clusters. A kernel function in SVDD can

be used to substitute for the inner product in constraint (4.43). Since the value

function is constructed based on the post-decision state space, only the nominal

model is employed to predict the process dynamics.

It is worth noting that (4.41) is not a common optimization problem, because

the J̃i and constraint (4.43) can vary with the cluster i. However, since we can

make the one step prediction to find all possible xp, it is not difficult to test all

possible successive clusters, usually in a small proportion of M , and select the

optimal solution. Moreover, we can also borrow the idea from classical “Branch

and Bound” method. Namely, Li = minxp J̃i(xp) for each cluster is pre-calculated

as the lower bound value function. Then one can rearrange the cluster index by the

ascending order of Li, i.e. L1 < L2 . . . , < LN . Then, in the online calculation, we

need to solve (4.41) for all clusters sequentially and maintain the best solution J ,

until Li > J .

If the optimization problem (4.41) is feasible, the new post-decision state will

be in the reliable region under the yielded input. In case the (4.41) is infeasible,

which means no subsequent state in the reliable region, the unconstrained NMPC

can be used to determine the input. Thus, we call this a hybrid control strategy.

The detail of this scheme is as follows:

Step 1: If the current state is within ROA, employ the LMPC until the process

enters Θ; otherwise go to Step2.

Step 2: Calculate all possible successive clusters and incorporate them by set S.

Step 3: Initialize a large enough objective function J ; set i = 0.
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Step 4: Repeat i ← i + 1 until i ∈ S. If i > |S|, go to step 8, where |S| is the

number of elements in S.

Step 5: If Li < J , solve the optimization problem (4.41) for cluster i; Otherwise,

terminate the procedure and return the optimal input.

Step 6: If (4.41) is infeasible, return to Step 4.

Step 7: If (4.41) is feasible for cluster i with the solution J i, ui, such that J i < J ,

let J ← J i, u ← ui. Go to Step 4.

Step 8: After checking all successive clusters, if there is no feasible solution, the

unconstrained NMPC should be used; otherwise, return the optimal input u.

Online learning vs. Off-line learning

The ADP algorithm, no matter model free or model based, is featured by its online

learning scheme. Although this scheme can adjust the controller’s behavior quickly

to accommodate the dynamic environment, it may not be suitable to the process

industry. Specifically, the parameters of the value function in the online learning

keep on changing and are considerably affected by the new data. As a result, the

control performance may fluctuate dramatically due to the disturbances. Moreover,

the learning factor is also hard to be determined because the performance of the

algorithm is sensitive to its choice.

On the contrary, off-line is chosen in our case because its stable performance.

Note that DP can be used to improve the control policy by the Bellman optimality

operator, once the sufficient data is gathered under the current control law, above

value function approximation and update procedure actually can be applied again

to refine the control strategy further. Even this method is slower than the online

learning, the performance of the plant is kept constant during the time between

two learning iterations, which is much favorable to the process industry. Moreover,

as more data is collected, the transition probability and stage-wise cost can be

estimated more accurately. Thus, the corresponding control law is more reliable.

4.3 Case Study

The CSTR model is studied for the stabilization of uncertainty system, with the

exactly same scenario with the last chapter. The control objective is to drive the

71



system to the unstable steady state: x0 = [TRs : 395.33 K, CAs : 0.57 kmol/m3].

The parameters are shown in Table 4.1. We mainly consider two sources of noises:

(1) the concentration fluctuation of the inlet flow εCA0 and (2) the disturbance µ in

ṪR. Thus, the true model is:

ĊA =
F

V
(CA0(1 + ε)− CA)− k0e

−E/RTRCA (4.46)

ṪR =
F

V
(TA0 − TR) +

−∆H

ρCp
k0e

−E/RTRCA +
Qσ

ρCpV
+ µ (4.47)

Table 4.1: Parameters of the process model
V = 0.1m3 R = 8.314kJ/kmolK
CA0s = 1.0kmol/m3 TA0s = 310.0K
∆H = −4.78× 104kJ/kmol k0 = 72 ∗ 109min−1

E = 8.314× 104kJ/kmol Cp = 0.239kJ/kgK
ρ = 1000kg/m3 F = 0.1m3/min
TRs = 395.33K CAs = 0.57kmol/m3

4.3.1 MPC Design

As mentioned before, the states within the ROA can be stabilized by LMPC directly.

Different from DP, the MPC is a receding horizon framework. Therefore, we assume

the control horizon as hc = 5 and holding time τ = 0.04 min in this example. Let

x = [CA, TR], then one can employ the following optimization:

min
u(0),u(τ),...,u(5τ)

5∑

t=0

(x(tτ)− x0)T W (x(tτ)− x0) + u(tτ)T Ru(tτ) (4.48)

s.t. ẋ = f(x) + g(x)u (4.49)

˙̂x = f(x) + ∆f∗(x(0), u(0)) + (g(x) + ∆g∗(x(0), u(0)))u(0) (4.50)

if V (0) > CΠR
: V (x̂(τ)) 6 V (x(0))− εR (4.51)

if V (0) 6 CΠR
: V (x̂(τ)) 6 CΨR

(4.52)

u(0), u(τ), . . . , u(5τ) ∈ U (4.53)

W =
[

200 0
0 3

]

R =
[

10 0
0 0.01

]

where W and R are the weights for the state and input; V (x) = (x−x0)T P (x−x0)

is the pre-designed RCLF in the last chapter. An important issue in the LMPC
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Figure 4.1: The evolvement of process under the LMPC

control scheme is the choice of parameters including τ, εR, CΠR
, CΨR

as mentioned

in Theorem16. With a reasonable sampling time τ , a smaller CΨR
is more favorable

to the control in terms of the accuracy. In the implementation for this example, the

εR, CΠR
and CΨR

are specified as 0.02, 0.05 and 0.1 respectively. The Fig. 4.1

shows the effect of the LMPC control, in which the process can be driven to the ΨR

successfully.

The LMPC can only guarantee the robust stability for states within ROA.

However, the regulation of system starting from states outside the ROA is more

challengeable. For those states, the objective of the control is driving the process into

the ROA safely, quickly and economically. The possible options are unconstrained

MPC or ADP frameworks.

We first construct the unconstrained MPC. The RCLF in last chapter can be

employed as the terminal penalty in the objective function:

min
u(0),...,u(8τ)

8∑

t=0

(x(tτ)− x0)T W (x(tτ)− x0) + u(tτ)T Ru(tτ) + ωV (x(9τ))

(4.54)

s.t. ẋ = f(x) + g(x)u (4.55)

u(tτ) ∈ U (4.56)

where ω = 5 is the weight of the terminal cost; hc = 8 is the control horizon.

Without the control Lyapunov function constraint, the sampling time is released as

∆t = 0.1 min. Note that although the nominal model is hired in this formulation, the

extened Kalman filter (EKF) can be applied to estimate the unknown parameters
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Figure 4.3: The concentration fluctuation of the inlet flow (%)

in this case. However, without the Gaussian distribution assumption, it is hardly to

track the signal of the µ and ε accurately.

The simulations for unconstrained MPC have run a large number of times with

different disturbance scenarios. Unfortunately, even with the end point penalty,

the system cannot be stabilized for some states outside of ROA because of (1)

disturbance (2) input constraint (3) limitation of the optimization solver. Moreover,

for the stabilized cases, the control performance also can be improved. Hence, the

ADP control strategy is designed in the next section based on the data provided by

the MPC cases to further reduce the control cost and drive the process to the ROA

faster.
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4.3.2 ADP Regulator Design

ADP controller is mainly to improve the control performance and stability for the

initial state outside the ROA. We first collect the data from the unconstrained

MPC by running the plant 100 times with various scenarios, i.e. initial states and

disturbances. The value function for each state in the stable trajectory is calculated

as illustrated above. Any states within ROA can be viewed as the terminal state,

with value function zero.

The K-mean is applied in the data set to construct 10 clusters, see Fig.4.4. To

balance the simplicity and approximation accuracy, 3rd order polynomial is applied

for the nth cluster n ∈ {1, 2, . . . , N}, i.e.

J̃MPC
n (x) = θn1(x1 − x01)3 + θn2(x2 − x02)3 + θn3(x1 − x01)2(x2 − x02) (4.57)

+ θn4(x2 − x02)2(x1 − x01) + θn5(x1 − x01)2 + θn6(x2 − x02)2

+ θn7(x1 − x01)(x2 − x02) + θn8(x1 − x01) + θn9(x2 − x02) + θn10

where θ are unknown parameters, identified from the MPC data by the least square.

x1 is the CA and x2 is the TR. x0 = [x01, x02]T is the equilibrium. The K-mean is

applied in the data set to construct 10 clusters, see Fig. 4.4.

It is common that some of data points are within the ROA because the post-

decision state is being dealt with. One interesting issue is that most of data in

those unstable trajectories is aggregated in the cluster 1 and 6. As a result, it is

not necessary to derive their approximators and those regions should be forbidden
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Figure 4.5: Approximate value function of the MPC control policy

in the optimization formulation. The SVDD is adopted in this scheme to detect the

reliable region and isolate those unstable states.

Although the local value function scheme can promote the accuracy of the

approximation dramatically, there is still a practical issue impeding the application.

Due to the disturbance, the sampled value function may show considerable diversity

for the closer state point under the similar input. These non-smooth data poses

difficulty on the approximation. Thus, before calculating the parameters, the data

should be pre-processed to reflect the expected value function for each sample state.

To this end, the k-nn averager is introduced.

k-nn sample average: Given the operational data and the instance based value

function ĴMPC(x), the smoothed value function is

J̄MPC(x) = β0Ĵ
MPC(x) +

k−1∑

i=1

βiĴ
MPC(Xi) (4.58)

where the Xi is the ith nearest stable state to the current x; βi is their weight,

usually determined by the distance. Then the J̄MPC can be used as the target

value function, approximated by the J̃MPC .

The Fig. 4.5 shows the reliable approximate value function of the MPC control

law in the region {0.8kmol/m3 6 x1 6 1.1kmol/m3, 383K 6 x2 6 391K}. Some

states with zero value function in this area only means that it is outside the reliable

region, whose value function can not be inferred.
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4.3.3 Control Result for ADP1

By the investigation of operational data, it is found that stabilizing the state in the

region {0.6kmol/m3 6 x1 6 1.1kmol/m3, 385K 6 x2 6 390K} by MPC is very

expensive. Therefore, 60 different initial states in these areas are sampled to test

proposed NMPC and ADP hybrid controller, named ADP1. The optimal control

action of ADP1 is determined by using Bellman optimality operator to the value

function estimated from the MPC data. The holding time is set τ = 0.1 min as well.

The comparison of ADP1 and pure MPC is illustrated in Table 4.2.

Table 4.2: Comparison of ADP1 and MPC. The improvement for each test is
JMPC−JADP1

JMPC

Controller Unstable cases Average Improvement
MPC 9 N/A
ADP1 9 4.58%

The Fig. 4.6 shows an example trajectory of ADP1 and MPC. In the early stages,

the ADP1 employs almost same actions with the MPC, however, it diverges from the

MPC trajectory in t = 3 and goes towards the ROA directly. Although the system

eventually reaches the ROA under both types of controller, the ADP1 can drive

system into the ROA much faster, thereby saving more cost. Fig. 4.7 illustrates all

improvement ratio based on the stable scenarios in the 60 tests, where the negative

value indicates that the ADP controller is inferior to the MPC in that case. It is

also possible because the ADP controller focuses on the optimization of the expected

performance, which may result in the loss for some special cases.

4.3.4 Control Result for ADP2

Since DP is featured by its policy improving procedure, one of raised questions is

whether one can repeat the whole algorithm based upon the data from ADP1 to

yield a better control law. In order to answer this question, the data from the 60

test set under the controller ADP1 is gathered and re-clustered in the state space,

see Fig. 4.8. Since the initial states and their trajectories in the previous test are

concentrated on the particular region, the number of nodes is smaller than ADP1.

Totally 7 clusters are used to separate the state space and the 5th node is full of

unstable data, see Fig. 4.8. Also, the SVDD determines the reliable zone. The 3rd

order polynomial approximator is used for estimating value function of each cluster.
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Figure 4.7: The improvement ratio of ADP1 compared with MPC
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Figure 4.9: Approximate value function of the ADP1 control policy

The Fig. 4.9 shows the approximate value function of the ADP1 control law in

the region {0.8kmol/m3 6 x1 6 1.1kmol/m3, 383K 6 x2 6 391K}. Compare the

Fig. 4.5 and Fig. 4.9, one can see that the approximate value function of ADP1

is higher than the MPC in part of state space. This is not surprising because the

mixed strategy may drive the process into some unexperienced region under the

NMPC policy, such as {0.9kmol/m3 6 x1 6 0.95kmol/m3, 384K 6 x2 6 385K},
and these new sample data in the extreme region may pull up the whole estimated

value function. Moreover, the function approximation scheme, highly depending on

the sample data, cannot guarantee the monotonic decreasing of the value function

for every state by policy improvement.
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Figure 4.10: The trajectories of MPC, ADP1 and ADP2

Using the Bellman optimality operator again to improve the ADP1, the new

control law ADP2 is yielded. A new set of scenarios, totally 60 different initial states

with different disturbances, is tested for comparison of MPC, ADP1 and ADP2. The

results are displayed in Table 4.3. It is shown that the ADP2 can further reduce the

operational cost as well as keeping the similar unstable ratio with the MPC. Some

tougher scenarios, such as initial states sampled far away from ROA, are tested in

this set, thus leading to more unstable cases and ADP1’s performance is degraded.

Fig. 4.10 shows example trajectories for MPC, ADP1 and ADP2. One can see that

the ADP2 makes better actions in some stages than ADP1. Figs. 4.11 and 4.12

illustrate the improving ratio based on the stable scenarios of these three control

schemes.

Table 4.3: Comparison among MPC, ADP1 and ADP2
Controller Unstable cases Average Improvement
MPC 18 N/A
ADP1 20 2.67%
ADP2 17 6.03%

4.4 Concluding Remarks

In this chapter, we present an integrated control framework for the nonlinear system

with uncertainty. An ADP and MPC mixed control strategy are employed to achieve

robust stability and performance improvement. The CSTR example demonstrates

the efficiency of the proposed control framework and compared with the conventional
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Figure 4.11: The improvement ratio of ADP1 compared with MPC (new test)
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Figure 4.12: The improvement ratio of ADP2 compared with MPC
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MPC. The future work includes the adaption of the approximate value function

online and the extension to the general nonlinear system control.
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Chapter 5

Probabilistic Modeling and Real
Time Optimization for
Plant-wide Operation

5.1 Background

With an ever increasing need for improving process efficiency and product quality

in today’s complex manufacturing environment, real-time optimization (RTO) is

considered an essential technique for the operation of complex chemical plants. The

role of RTO is to coordinate operating conditions (e.g., set points) of all units in a

plant so that the plant remains near an economic optimum in the face of disturbances

and other external/internal changes.

Steady-state model-based RTO has been the most prevalent technique due to its

simplicity and suitability for online optimization [28, 79, 82]. However, steady-

state RTO may leave significant room for performance improvement because it

ignores the dynamic degrees of freedom such as unused capacity of a buffer tank and

provides infeasible operating strategies during certain time periods. On the other

hand, full-scale dynamic plant-wide models were used for rigorous online dynamic

optimization based on a nonlinear programming method [13]. This approach may

not be scalable to practical plant-wide optimization problems due to its excessive

computational requirements. Alternatively, the idea of using linear model predictive

control (MPC) formulation has been suggested [132]. However, this approach is

restricted to relatively simple plants, such as an oil blending plant, where a linear
∗A full version of this chapter has been published in the Computers and Chemical Engineering

[130].
†An abbreviated version of this chapter was presented at 58th Canadian Chemical Engineering

Conference (CSChE), 2008, Ottawa.
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model is suitable to describe the plant and the settling time is relatively small. One

common difficulty associated with the model-based methods is obtaining a reliable

plant-wide dynamic model in the form of algebraic/differential equations, apart from

its relevance to online optimization.

Another key issue of a model-based approach is that uncertainties from various

sources can seriously degrade the performance. For example, model uncertainty

can lead to RTO solutions that are far from the true plant optimum, or even an

infeasible solution with respect to actual process constraints. Furthermore, once

such solutions implemented and early symptoms go unnoticed, abnormal situations

may arise and lead to significant periods of off-spec products or plant shutdowns.

In most RTO systems, model uncertainty is addressed through some form of online

model updating. This can be too late to contain the abnormal situations or prevent

substantial loss of profitability. Several approaches have been proposed to handle

uncertainties more systematically within RTO. Results analysis uses multivariable

statistical hypothesis testing to decide if RTO predictions represent statistically

valid changes with respect to the current plant operation [85]. This approach

cannot explicitly address the effect of measurement uncertainty because it is a

post-optimization evaluation method. Stochastic optimization-based approach was

developed to incorporate uncertainty into the optimization formulation by using

recourse functions and chance constraints [133]. Though this class of methods has

been adopted for several applications [107, 74], uncertainties are incorporated into

either steady state models or process constraints only. Recently, a measurement-

based approach was developed that adjusts a model relating manipulated inputs to

necessary conditions of optimality [56]. The procedure requires physical insight and

experience about the process for successful implementation.

In general, there are two standard approaches to address the problem of

multi-stage decision making under uncertainty. The first is multistage stochastic

programming with recourse and the second is dynamic programming (DP). The

stochastic programming usually recast the problem as a superstructure of large-

scale deterministic equivalents corresponding to all the realizable scenarios [17].

Whereas this approach has been used to solve two-stage problems with relatively

small number of scenarios, the computational complexity increases exponentially

with the number of stages and the number of uncertain parameters, limiting its

general appeal. DP offers a unified approach to solving problems of stochastic
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dynamic optimization [10]. Based on the principle of optimality [7], the DP

algorithm decomposes a stochastic dynamic optimization problem into a sequence

of single-period subproblems that are solved recursively backward in time. Central

to the methodology is the “value” function, which is obtained via solving Bellman’s

equation. The domain of the value function is the state space of the system to be

controlled, and DP algorithms compute and store a table consisting of one value per

state. Unfortunately, the size of a state space typically grows exponentially in the

number of state variables. Known as the “curse of dimensionality”, this phenomenon

renders DP intractable for the problems of practical scale.

Recently, the approach of approximate dynamic programming (ADP) has re-

ceived much attention in the community of operations research [109] and has been

introduced to process systems engineering field [69]. In most ADP methods, the

value table is constructed only for a small subset of states and a function approx-

imator is used to estimate values for unvisited states. The sample points are de-

termined by running simulations with some known or random policies. The goal of

this contribution is to develop a novel ADP-based RTO framework suitable for a

large-scale plant under uncertainty. The proposed method constructs a probability

transition matrix to describe plant-wide dynamics as a Markov Decision Process

(MDP), which is a general mathematical formulation of multi-stage decision mak-

ing problems under uncertainty. Hence, the approach is particularly relevant for a

process where a plant-wide dynamic model, either it is empirical or first-principle,

is difficult to obtain and uncertainty has a significant impact on profitability and

reliability of the process operation.

This chapter is organized as follows. In Section 5.2, a brief review on self-

organizing map is provided. Section 5.3 explains the proposed modeling approach,

which consists of construction of Markov chain model using a self-organizing map

(SOM). After establishing a discrete state model and its transition probability,

further model refinement step identifying outliers is introduced. Section 5.3 also

explains the proposed value function-based optimization framework where a failure

node is designed to strike a balance between profitability maximization and risk

management. Section 5.4 illustrates comparison studies of different RTO strategies

applied to a reactor-storage-separator system connected via a material recycle

loop and Tennessee Eastman challenge problem. Finally, Section 5.5 provides the

conclusions of this study.
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5.2 Preliminary

5.2.1 Self-organizing Map

Self-organizing map (SOM) is a unsupervised learning approach developed by

Kohonen for nonlinear dimension reduction, data clustering and visualizing without

any prior knowledge. In this thesis, we mainly focus on the application of SOM for

high dimensional data clustering. Since the SOM usually consists in several neurons

in two dimension grid, each neuron can be viewed as the cluster for the data. The

whole structure is a two-layer neural network: input layer and output layer. Each

neuron in these layers has two important values: the position in the grid and the

weight in the data space. In the SOM process, there are three phases: competition,

cooperation and synaptic adaption.

In the competitive stage, each node is given an initial weight randomly. Then,

for the data set, each data is assigned to the node with minimal distance (usually

Euclidean metric) between the data vector and weight of the node. This node is

called the best matching unit (BMU).

In the cooperative phase, the objective is to determine the correlation among

each node. In this part, we define the neighborhood function hj,i for node i and j:

hj,i = exp
−d2

i,j

2σ2(t)
(5.1)

σ2(t) = σ2
0 exp

−t

τ
(5.2)

di,j = ||ri − rj || (5.3)

where t is the number of iterations; τ is the time constant to control decay rate. ri

is the position of cluster i in the discrete lattice.

In the final stage, the weight of each node is updated by the input data. The

data x is first assigned to the node and then not only this node, but also the

neighboring nodes’ weight are adapted by this input vector according to the following

formulation:

wj(t + 1) = wj(t) + η(t)hj,i(x)(x− wj(t)) (5.4)

where wj(t) is the weight of node j at iteration t; η(t) is the learning rate at iteration

t; i(x) is the BMU for the data x. According to this way, the node can span across

the whole space and be adjusted by the data. As the increase of the index t, the

neighborhood function decreases exponentially, which guarantees the convergence

of the algorithm.
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5.3 Proposed RTO Framework

5.3.1 Construction of Markov Chain Model

The first step in the proposed approach is to model underlying behavior of plant-wide

dynamics under uncertainties as a series of “representative” discrete states evolving

over time without any predetermined equations. The underlying idea is similar to

cell mapping [48, 46], which approximates system’s dynamics as transitions between

discrete points. In order to characterize such representative states, we cluster process

data using SOM [61]. SOM classifies data set into different groups such that each

observation is assigned to a single class and the observations within a class are

more similar, in some metric, to each other. Though such classification can be

achieved by other clustering methods including K-means, fuzzy C-means, etc., there

are some advantages in using SOM. SOM creates an ordered set of states in one

or more dimensions. This offers topological structure of data, which means data

points that are closer to each other in high dimensional space will be projected to the

neighboring clusters (or nodes) in low dimensional space. This property can simplify

the procedure of searching for neighboring data points in the proposed framework,

which will be discussed later. Moreover, the clustered and ordered data sets are more

interpretable than those clustered points in other clustering methods. A successful

application of SOM with cell mapping for extracting transition dynamics of a film

deposition process has also been reported [89].

By assuming all states of the plant can be observed, the historical data set is

divided into representative nodes, the probability transition matrix P and one step

reward are computed. It is also assumed that each unit can take a finite number of

set-point values. Under a particular action vector u (i.e., a particular set points),

the transition probability from a discrete node i to j is estimated as

P u
ij =

Nu
ij∑nT

k=1 Nu
ik

(5.5)

where Nu
ij is the number of switches from the states belonging to the node i to those

belonging to j under action u and nT is the total number of discrete nodes.

The one step reward Ru
ij denotes the reward incurred during the transition from

i to j under action u. The expected reward over the entire data points moving from

node i to node j under action u is computed as follows:

Ru
ij =

∑
xij

r(xij , u)

M
(5.6)
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where x is the state point that made a transition from node i to j under action u

and M is the total number of transitions.

To check the model, the whole historical data can be divided into the training

part and validation part. The derived transition probability is used to predict the

successive node in the validation data set to check its accuracy.

A special node, F , is also designed to represent “failure states” such as shutdown,

reaction termination, constraint violation, etc. As system reaches these states,

operation stops and needs restarting. Hence, this node actually behaves like an

absorbing state meaning that the system stays at the same state with probability of

one. Moreover, a negative value should be assigned to this node due to the loss of

economic performance. In a later section, we will show that this additional design

assists the ADP scheme in providing a risk-averse policy.

Once the representative states and their transition probabilities are obtained,

the optimal value for each cluster is computed by iteratively solving the following

Bellman equation:

V ∗(i) = max
u

E {Rij(i, u) + γV ∗(j)} (5.7)

where i, j ∈ {1, 2, . . . , nT } are the nodes obtained from SOM and j is a successor

node of i.

5.3.2 Model Refinement

Treating Outliers

Though a probabilistic model and its associated value function can be derived

from historical data by the simple steps described in the previous section, the

main premise was that the data points belonging to a same node will show a

similar performance. However, this assumption may not hold for systems with

complex dynamics. Furthermore, assigning data points to a certain cluster near the

boundaries is non-trivial and may affect the model accuracy.

Since the goal of RTO is to improve plant-wide performance, the process state

characterization should be linked with some performance index. For example, a

certain process state associated with process shutdown should not be classified into

the same group with a process state under normal operations simply because those

two process states are “close” in terms of Euclidean distance metric. In the proposed

method, the value under a certain policy (i.e., Q value) associated with a process

state serves as a metric to determine the similarity among the process states.
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In order to identify a group of data points with distinctive values from the

majority of data points inside each node, Q value of each process state (xt) and

action (ut) pair is first estimated using

Q(xt, ut) = r(xt, ut) + γV ∗(j) (5.8)

where j is a cluster containing xt+1 and V ∗(j) is the value obtained by solving

Eq. (5.7). Depending on the transition probability and single-stage reward r, each

data point inside the same node can take a different Q value. Inside each cluster,

subsets of data under the same actions (set points) are examined to detect the

“outliers.” The outliers are defined as the data points with Q values falling outside

the following range [123]:

[Q1 − 1.5 · IQR, Q3 + 1.5 · IQR] (5.9)

where Q1 and Q3 denote the first and the third quartiles, respectively. IQR is the

interquartile range defined as

IQR = Q3 −Q1 (5.10)

Since the outliers based on Q values reveal the “uniformity” of data points in each

cluster, the trade-off between the numbers of nodes and outliers is used in refining

the SOM structure including the number of clusters and grid size. In order to

keep the generalization capability, a minimum number of data points is specified in

each node first, and the number of outliers is minimized in determining the optimal

structure of SOM.

As the outliers are detected successively in each node, simple hyper-spheres

are constructed to represent the area of outliers for fast classification in real-time

applications. The center of each hyper-sphere is the current outlier, and the radius

is the distance between the outlier and its nearest “normal” data point. Any data

point falling into the sphere is treated as the outlier of each cluster as seen in Fig. 5.1.

It should be also noted that the closest normal data point can be found in a different

cluster when the outlier lies near the boundary. This can render the hyper-sphere

construction step computationally expensive. However, the topology preservation

of SOM can reduce the computation dramatically because only the data points in

neighboring nodes can be examined. For example, if the clusters are arranged in a

6×10 grid, any node has six neighbors at most as seen in Fig. 5.2. This can save
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about 75% of computation compared to the exhaustive search if the number of data

points is the same for all the nodes.

cluster 1

cluster 2

outlier region 1

outlier region 2

outlier region 3

state 2

state 1

Figure 5.1: Domain of outliers: stars denote outliers and the other points are normal
data.

Update of Q Values for Outliers

Since the probabilistic model is not valid for outliers any more, a model-free approach

is employed to estimate a new value for each outlier. Once the radius and centroid of

hyper-sphere is defined, the data points belonging to the area are counted and their

action-values Q(x, u) are computed by the following model-free update scheme:

Q(xt, ut) ← Q(xt, ut) + α {r(xt, ut) + γQ(xt+1, ut+1)−Q(xt, ut)} (5.11)

where α ∈ [0, 1) is a step-size parameter. Eq. (5.11) is referred to as SARSA [102]

mentioned in Chapter 2. It updates Q values from a state trajectory in the absence

of a model. Then the average of Q values of all outliers in the region represents the

Q value of the outlier region in a cluster.

The model refinement step can be performed both off-line (i.e., using the

historical data only) and online (i.e., when the optimizer is put to work). The
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Figure 5.2: Cluster positions of SOM in 2-D (6×10) grid. SOM projects closer data
points in higher dimension onto neighboring nodes.

transition matrix, optimal value for each node, and action-values for outliers are

updated online as a new observation is available at each time step. The following

steps are taken:

• If a new observation belongs to an outlier region, update its Q function by

Eq. (5.8).

• If a new observation belongs to a node, Eq. (5.11) is used to update the

Q value and determine if the new data point should be classified as an

outlier. If it is an outlier, create a new outlier region. Otherwise, update

the transition matrix, one-step reward, and the corresponding value function

after a predefined number of operation episodes are completed.

Remark: Although conventional DP can handle millions of state points [10],

the “curse of dimensionality” still defies its applications to practical problems

with continuous state space. Unlike simple discretization of the continuous state

space, the proposed scheme dramatically reduces the number of state points and

alleviate the “curse of dimensionality” by representing the continuous state space as

discrete nodes. Moreover, the model-free scheme for handling sparse data regions

is not limited by the state dimension. However, the number of nodes and storage

requirement of historical data will increase with the data dimension. In such a case,

data compression techniques such as principal component analysis (PCA) will be

useful as shown in [89]
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5.3.3 Online Implementation

General Procedure

With the learned value (Ṽ ∗) and action-value functions (Q̃∗), the online decision is

implemented as follows:

1. Given a process state at current time (xt), find its Best Matching Unit (BMU)

using the trained SOM.

2. Compute the distance to the center of each outlier inside the BMU.

3. Compare the distance with corresponding radius.

4. If the data falls into an outlier domain, calculate the action (set point of each

unit) according to

u∗t = arg max
ut

Q̃∗(xt, ut) (5.12)

Since the number of data points in outlier domains may be small in the

beginning, the sample-based model-free learning may still require further

information for better decision making. For further information gathering in

the outlier regions, ε-greedy method is employed [115]. When the system stays

in an outlier domain, the probability of performing exploration is set as a small

number ε. If we determine to explore, a random action will be selected among

the candidates with an equal probability for each. This strategy is useful for

relatively small action space. With a large number of action candidates or

for risk-sensitive processes, a small action set with high profits and low risks

should be selected instead.

5. If the data is classified as a normal data in the BMU, calculate the action

according to

u∗t = arg max
ut

E
{

r(xt, ut) + γṼ ∗(j)
}

(5.13)

where j is a cluster to which xt+1 belongs. At the next sample time calculate

the Q value of (xt, u
∗
t ) by Eq. (5.11) and determine if it is an outlier.

Effect of the Failure-node on Policy Selection

In chemical process optimization, it is more desirable to prevent abnormal situations

rather than simply maximize the averaged total reward. Only a few in the literature

discuss the risk-sensitive decision making within the setting of dynamic optimization.
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[40] employs the error state to denote risky cases and the most profitable policy in

the set of policies whose probability of entering undesirable states less than a pre-

set value. However, the weighting factors for the risk and reward terms should be

adapted online in this approach. This trial-and-error approach is not acceptable in

chemical process operations.

As discussed in Section 5.3.1, our proposed method designs a special node, F ,

to represent failure states. Since DP computes a greedy policy with respect to total

reward, a negative value VF assigned to the node F will derive a policy striking

a balance between total reward and the risk of entering undesirable states. This

property can prevent the process states violating some important constraints or

more important, avoiding the instability. However, one cannot arbitrarily assign a

large negative value to VF because it may lead to a very conservative policy. In this

section, a systematic guideline on how to assign VF is provided.

First, a quantified risk term under a policy π is defined as the discounted sum

of probability for entering F :

W π =
∞∑

k=1

Pkγ
k (5.14)

where γ is the discount factor; Pk is the probability of reaching F in k steps.

Then, the value of any state under policy π is given as

V π =
∞∑

k=1

Pkγ
kVF +

∞∑

k=1

γk−1

(
1−

k∑

`=1

P`

)
r̂k (5.15)

where r̂k is the expected reward in kth step, on the condition that process doesn’t

enter F .

For simplicity in the proof of Theorem 18, the average reward Rπ is also defined

as

Rπ =

∑∞
k=1 γk−1

(
1−∑k

`=1 P`

)
r̂k

∑∞
k=1 γk−1

(
1−∑k

`=1 P`

) (5.16)

Rπ also satisfies

r ≤ Rπ ≤ r (5.17)

where r and r are lower and upper bounds of single-stage reward, respectively.

Given VF , the proposed method strikes a balance between the reward and the

risk. Without loss of generality, we consider the case where the optimizer compares

two different policies, π with a higher risk and κ with a lower risk. Two difference
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quantities are defined as

δ = W π −W κ > 0 (5.18)

β = Rπ −Rκ (5.19)

where δ is the difference in the risk terms of two policies; β is the difference between

their average rewards. From Eq. (5.17), the maximum of β is r̄ − r.

We first derive the upper bound of the W under a control policy,

Lemma 17.

W π =
∞∑

k=1

Pkγ
k < γ

Proof. Define the probability of reaching failure node at ith sample time as P (i).

Since Pk is the probability of entering the failure node in k sample times,

Pk = P (k)
k−1∏

m=1

(1− P (m)) , k ≥ 2 (5.20)

Then a finite sum of n terms is considered as follows:

n∑

k=1

Pkγ
k =

n−1∑

k=1

Pkγ
k + Pnγn

=
n−1∑

k=1

Pkγ
k +

n−1∏

m=1

(1− P (m))P (n)γn

6
n−1∑

k=1

Pkγ
k +

n−1∏

m=1

(1− P (m))γn (5.21)

=
n−2∑

k=1

Pkγ
k +

n−2∏

m=1

(1− P (m))P (n− 1)γn−1 +
n−1∏

m=1

(1− P (m))γn

<
n−2∑

k=1

Pkγ
k +

n−2∏

m=1

(1− P (m))P (n− 1)γn−1 +
n−2∏

m=1

(1− P (m))(1− P (n− 1))γn−1

=
n−2∑

k=1

Pkγ
k +

n−2∏

m=1

(1− P (m))γn−1 (5.22)

Comparing Eqs. (5.21) and (5.22) and repeating the same procedure yield

n∑

k=1

Pkγ
k < P1γ + (1− P1)γ2 < γ

Letting n →∞ proves Lemma 17.

With the above, the optimizer selects a better policy between π and κ as follows:
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Theorem 18. If β < 0, the optimizer will select the policy κ. If β > 0 and δ

satisfies

δ >
γ −W π

D
(5.23)

where D is a user-specified parameter, the optimizer will select the policy κ given

the following value function of the failure node:

VF ≤ (D + 1)r −Dr̄

γ(1− γ)
(5.24)

Proof. In order to prove Theorem 18, Eq. (5.15) is rewritten by exchanging the

summation indices and using notation W :

V π(s) = W πVF +

{
1

1− γ
−

∞∑

k=1

k∑

`=1

γk−1P`

}
Rπ

= W πVF +

{
1

1− γ
−

∞∑

`=1

∞∑

k=`

γk−1P`

}
Rπ

= W πVF +
{

1
1− γ

−
∑∞

`=1 γ`P`

γ(1− γ)

}
Rπ

= W πVF +
{

1
1− γ

− W π

γ(1− γ)

}
Rπ (5.25)

Similarly, the value function under policy κ is given by

V κ(s) = W κVF +
{

1
1− γ

− W κ

γ(1− γ)

}
Rκ (5.26)

Using δ and β in Eqs. (5.18) and (5.19), Eq. (5.25) can be written as

V π(s) = (W κ + δ)VF +
{

1
1− γ

− W κ + δ

γ(1− γ)

}
(Rκ + β) (5.27)

Eq. (5.27) - Eq. (5.26) gives

V π(s)− V κ(s) = δVF +
β

1− γ
− (W κ + δ)β + δRκ

γ(1− γ)

= δVF +
β

1− γ
− W πβ + δRκ

γ(1− γ)
(5.28)

Eq. (5.28) shows that the selection of a policy relies on VF , δ, β, and W . Each case

is examined in the followings:

• β < 0: From Lemma 17, we have

β

1− γ
− W πβ

γ(1− γ)
< 0 (5.29)
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Considering Eq. (5.24), we also have

δVF − δRκ

γ(1− γ)
< 0 (5.30)

Substitution of Eqs. (5.29) and (5.30) into Eq. (5.28) yields V π(s)−V κ(s) < 0

and thus the policy κ is selected.

• β > 0: This is a non-trivial case because the policy π has a higher probability

of leading the process to the undesirable state while the expected reward is

also higher than that of κ.

From Eq. (5.28), we have

V π(s)− V κ(s) = δ

{
VF +

β

δ(1− γ)
− W πβ + δRκ

δγ(1− γ)

}

= δ

{
VF −

[
Rκ

γ(1− γ)
−

(
1

1− γ
− W π

γ(1− γ)

)
β

δ

]}
(5.31)

Let us consider the minimum achievable value of Rκ

γ(1−γ) −
(

1
1−γ − W π

γ(1−γ)

)
β
δ

for any state. From Eq. (5.23), let δ approach the lower bound γ−W π

D which is

always positive showed by Lemma 17. As for β, let β = r̄− r from Eqs. (5.17)

and (5.19). Moreover, let Rκ = r. The minimum is achieved as

min
[

Rκ

γ(1− γ)
−

(
1

1− γ
− W π

γ(1− γ)

)
β

δ

]
=

(D + 1)r −Dr̄

γ(1− γ)
(5.32)

Given the range of VF in Theorem 17, it always satisfies V π(s)−V κ(s) < 0.

Thus, optimizer will select the policy κ.

The implication of Theorem 18 is that when the policy with a higher risk, π,

has a lower profit, the less risky and more profitable policy κ is selected. When π

has a higher profit compared to κ, VF is selected at the upper bound of Eq. (5.24)

with the user-defined value of D. In this case, the less risky policy κ is selected if

the risk difference δ is greater than the right hand side of Eq. (5.23).

D is a scaling factor for the difference between the discount factor and the risk.

The larger D implies a lower threshold, which chooses a safer policy. If one has the

information on the bounds of the risk term, as in the chance constraint of stochastic

programming [40, 133], the lower bound of D can be given as

D >
γ −Wmax

Wmax −Wmin
(5.33)
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where Wmin ≤ Wµ ≤ Wmax and µ is any feasible policy. Choosing D satisfying

Eq. (5.33) guarantees that any policy π with a higher risk than Wmax will not be

selected. For example, consider a policy π that satisfies W π > Wmax. Then, we

have

δ = W π −Wmin ≥ Wmax −Wmin ≥ (γ −W π)(Wmax −Wmin)
γ −Wmax

≥ γ −W π

D
(5.34)

Wmax can be specified easily by a user because it reflects the conservativeness of

operation. Wmin can be simply computed offline by the conventional DP with the

stage-wise reward of:

r(xt, ut) =
{ −1 if xt+1 belongs to the failure node.

0 otherwise
(5.35)

and

Wmin = − max
u0, u1, ...

E

[ ∞∑

t=0

γtr(xt, ut)
∣∣ x0

]
(5.36)

Detailed procedure of computing Wmin using DP can be found in [40].

5.4 Case Study

In this section two examples are provided to illustrate the efficacy of the proposed

framework. The first example considers an integrated process studied in [121] that

involves a CSTR, a storage tank, and a flash tank with a material recycle stream.

Then, the Tennessee Eastman challenge process [31] is tested in the second example.

5.4.1 Reaction-storage-separation Network

Problem Description

An integrated process composed of a CSTR, a storage tank, and a flash tank with

a material recycle stream is shown in Fig. 5.3. A fresh feed stream F0 consisting of

pure component 1 is fed to the reactor, where two irreversible reactions 1 k1−→ 2 k2−→ 3

take place to produce the desired product 2 and undesired product 3. The reactor

product stream FR enters the storage tank, of which the downstream flow enters the

flash tank. The most volatile component 1 goes up to the overhead and is condensed

into liquid returning to reactor via the recycle loop. The component 3 is assumed

nonvolatile. The material balance is described by the following 12 equations:

ḢR =
1

ρAR
(F0 + D − FR)

97



ẋ1R =
F0(x10 − x1R) + D(x1D − x1R)

ρARHR
− k1x1R

ẋ2R =
−F0x2R + D(x2D − x2R)

ρARHR
+ k1x1R − k2x2R

ẋ3R =
−(F0 + D)x3R

ρARHR
+ k2x2R

ḢM =
1

ρAM
(FR − FM )

ẋ1M =
FR

ρAMHM
(x1R − x1M )

ẋ2M =
FR

ρAMHM
(x2R − x2M )

ẋ3M =
FR

ρAMHM
(x3R − x3M )

ḢB =
1

ρAB
(FM −B −D)

ẋ1B =
1

ρABHB
[FM (x1M − x1B)−D(x1D − x1B)]

ẋ2B =
1

ρABHB
[FM (x2M − x2B)−D(x2D − x2B)]

ẋ3B =
1

ρABHB
[FM (x3M − x3B) + Dx3B]

where HR, HM , and HB represent liquid levels of reactor, storage tank, and the

flash tank respectively. xij represents the molar liquid fraction of each component i

in stream j. In the recycle flow the following constant relative volatility expression

is used for equilibrium relationship:

y1D =
x1D

x2D + x1D

y2D =
x2D

x2D + x1D

x1D =
αAy1D

1 + (αA − 1)y1D + (αB − 1)y2D

x2D =
αBy2D

1 + (αA − 1)y1D + (αB − 1)y2D

Tables 5.1 and 5.2 show operation ranges and nominal parameter values, and

Table 5.3 shows the operation constraints. Though high yields can be theoretically

achieved by maintaining a high ratio of the recycle flow to the fresh feed flow, high

recycle-to-feed ratio can induce a large variation in the process even with a small

change in the feed stream. This “snowball effect” makes the plant-wide optimization

challenging.

A model predictive controller (MPC) is designed to stabilize the liquid level of

each unit while keeping the component ratio of each production within the operation
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Table 5.1: Operation ranges of reaction-storage-separation network
Variables Range
FR [8,47]
FM [8,47]
B [0.67,3]
F0 1.66
D [8,45]

Table 5.2: Nominal parameters of reaction-storage-separation network model
Parameters Value
Liquid density ρ = 1
Rate constant k1 = 0.0167 k2 = 0.0167
Vessel area AR = 5 AM = 10 AB = 5
Relative volatilities of A αA = 90
Relative volatilities of B αB = 1

Table 5.3: Operation constraints of reaction-storage-separation network
Variables Lower bound Upper bound
x2R 0 0.3
x3R 0 0.025
x1B 0 0.5
x3B 0.5 1

Reactor
Storage

Tank
Separa-

tor

F0, x10 FR, x1R

x2R, x3R

FM, x1M

x2M, x3M

B, x1B

x x

D, y1D, y2DD, x1D, x2D

x2B, x3B

Figure 5.3: Schematic of the reaction-storage-separation network.
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range. A successive linearization-based MPC is used where the nonlinear model is

linearized at each time and the resulting quadratic programming (QP) is solved. In

order to find a feasible solution, the operation range is treated as soft constraints

and the violation of each constraint, i.e. ε, is penalized:

min
u

h∑

i=1

(Hsp −Hi)T (Hsp −Hi) + 103εT ε (5.37)

subject to

∆umin < ∆u < ∆umax (5.38)

umin < u < umax (5.39)

Hmin < H < Hmax (5.40)

where h, u and H denote the prediction horizon, flow rate and liquid level

respectively. The detailed design of MPC is shown in Table 5.4.

Table 5.4: Design of MPC for level control in reaction-storage-separation network
Controlled variables HR, HM , HB

Manipulated variables FR, FM , D, B
Sample time 5 min
Predictive horizon 8
Control horizon 6
max ∆u FR: 3, FM : 3, D: 3, B: 0.3
min ∆u FR: -3, FM : -3, D: -3, B: -0.3

The objective of plant-wide optimization is to maximize the production of desired

product formulated as

max
Hsp,i

∞∑

i=0

0.9i




60i∑

t=60(i−1)+1

B(t)x2B(t)


 (5.41)

The decision variables are the level set points in each unit. i ∈ {0, 1, 2, · · · }
is the time index where the set point is computed. The time interval of dynamic

optimization is set as 60 minutes as suggested in [121]. The set point space is

discretized by 4× 4× 4 grids for simplicity. For each unit, the level set point can be

10, 15, 20, and 25. It is noted that the proposed approach can also handle a large

action space as opposed to conventional multi-stage dynamic optimization methods

(e.g., MPC) thanks to the single-stage optimization formulation.
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Collecting Historical Data

In order to show performance improving capability of the proposed scheme, closed-

loop data sets under the conventional steady state RTO and a linearized model-

based dynamic RTO proposed in [121] were collected separately. In each episode

of simulation, the fresh feed flow (F0), reaction constants (k1 and k2), and relative

volatility (αA and αB) were altered between lower and upper bounds randomly at

every 50–200 minutes. Figure 5.4 shows one sample realization of F0. The lower and

upper bounds of F0, k, and α were [1.46 1.86], [0.012 0.021], and [80 90], respectively.

The total simulation runs for steady state RTO and the dynamic RTO were 50

and 440 respectively, with each episode running for 1200 minutes. The dynamic

RTO solved the following optimization problem and computed the corresponding

set point trajectory every 60 minutes:

max
ui

20∑

i=1

60i∑

t=60(i−1)+1

B(t)x2B(t) (5.42)

subject to

∆umin < ∆u < ∆umax (5.43)

umin < u < umax (5.44)

Hmin < H < Hmax (5.45)

The prediction and control horizons were set as 20 and 10 respectively. For fair

comparison, a set point closest to the one computed by the steady state RTO or

dynamic RTO was implemented.

Markov Chain and Value Function Learning

In learning SOM, the grid structure 6×10 was selected based on the outlier criterion

with the minimum number of 10 data points in each cluster. The number of outliers

was 5.7% of the total number of data points. The single-stage reward and the

transition matrices were calculated as described in Section 5.3.1. A special node

was also added to represent failure states, where the storage tank is totally drained.

Thus, the final transition matrix for each group of data has the size of 60× 61.

To specify the value, VF , for the failure node, the upper (r̄) and lower (r) bounds

of single-stage reward were estimated from the data as 132 and 28.6 respectively.
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Figure 5.4: A sample realization of uncertainties in the fresh feed flow rate of
reaction-storage-separation network.

In order to specify D, with γ set as 0.9, Wmin was computed as 0, and Wmax was

set as 0.25. Then D should be greater than 2.6 by Eq. (5.33). Given a possible

plant-model mismatch, the lower bound of risk may be greater than 0. Thus, D was

specified as 4. Finally, VF was calculated as -4277 by Eq. (5.24). All parameters for

proposed RTO are shown in Table 5.7.

Simulation Result

Although the soft-constraint MPC can balance the set point tracking and constraint

violation, inappropriate set points lead to frequent constraint violations. Whereas

both steady-state and dynamic RTO’s leave the risk management to MPC, the

proposed scheme reduces the frequency of constraint violations and increases the

expected rewards at the RTO level. Hence, the ratio of constraint violation and the

total reward accumulated over 1200 minutes are used as comparison criteria.

For online testing of three different RTO schemes, a hundred fresh disturbance

scenarios were used. The test results are shown in Table 5.5. Compared to the

dynamic and steady-state RTO’s, the proposed method reduced the number of

constraint violations and obtained a comparable level of productivity. Though the

production under the proposed RTO scheme is not superior to that of dynamic

RTO’s, the small difference in the production (0.4%) is acceptable considering the

significant reduction of constraint violations. Moreover, due to the model mismatch

in MPC controller, no method could prevent constraint violations completely.
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Fig. 5.5 shows the responses of x3R under a same disturbance sequence. Under

the steady-state and dynamic model-based RTO methods, x3R violates the upper

bound of 0.025. The proposed RTO could always keep the x3R within the bounds

regardless of the uncertainties. Figs. 5.6 and 5.7 show the prescribed set points by

RTOs and the corresponding production respectively. Figs. 5.8–5.10 show the state

trajectories of x1M and x3R under different RTO schemes. Whereas the steady-state

RTO and dynamic RTO violate the constraint and drive the system to the failure

state, the proposed RTO detects the latent risk earlier and selects proper set points

to keep the process away from the failure state.

Table 5.5: Production and constraint violation ratio in reaction-storage-separation
network

Steady state RTO Dynamic RTO Proposed RTO
Constraint violation ratio 0.39 0.36 0.24
Average production‡ 1549 1612 1604
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Figure 5.5: Sample responses of x3R under three different RTO schemes. The dashed
line is the constraint.

5.4.2 Tennessee Eastman Challenge Process

Problem Description

The Tennessee Eastman (TE) challenge process [31] is a realistic simulation of an

integrated chemical plant that has been widely used in the real time optimization

and fault detection studies. The Fortran code represents this process is available, but
‡ 1

100

∑100
i=1

∑1200
t=0 Bi(t)x2B,i(t)
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Figure 5.6: Sample responses of HR under three different RTO schemes. The dashed
line is the set point trajectory calculated by each RTO scheme.
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Figure 5.7: A sample plot of production under three different RTO schemes.
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Figure 5.8: State transitions under steady state RTO.
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Figure 5.9: State transitions under dynamic model-based RTO.
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Figure 5.10: State transitions under proposed RTO.

not published. However, we know that all models can be expressed as the first order

nonlinear differential equation. In another word, it satisfies the Markov property.

The whole system consists in an exothermic two-phase reactor, a flash separator,

a condenser, a reboiled stripper, and a recycle compressor. There are 41 measured

outputs with added measurement noise. The 19 composition measurements are

sampled at two different rates with time delay. Totally 12 manipulated variables

can be used to regulate the process. The P&ID of the TE process is shown in

Fig. 5.11.

The TE process produces two products (G and H) and one undesired byprod-

uct(F) from four reactants (A, C, D and E), according to the following four reactions:

A + C + D −→ G Product1

A + C + E −→ H Product2

A + E −→ F Byproduct

3D −→ 2F Byproduct

[31] provides six specified operating modes in terms of the ratio of two products

G and H. In this work, we consider the mode 1 where G:H mass ratio is 50:50. The

objective of plant-wide optimization is to minimize the following operation cost:

∞∑

i=0

γi(−ri) (5.46)
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Figure 5.11: The Tennessee Eastman Process [31]

where ri is the operation cost per stage. The operation cost is defined in the TE

simulator [31] as

−r =purge cost× purge rate + product stream cost× production rate+

compressor cost× compressor work + steam cost× steam rate

Many optimization schemes for TE process have been proposed with satisfactory

results, e.g., see [43, 54, 32]. However, many of these schemes are focused on the

conventional steady-state RTO. In addition, previous dynamic RTOs for TE process

require an accurate plant-wide model or ignore disturbances, which limits their

applications. Considering that the TE process is governed by the first order DAEs,

it can be viewed as a Markov decision process. Thus, the proposed RTO method

can be used to learn from the closed-loop data and bring evolutionary improvements

of performance based on existing policies.

The nonlinear MPC controllers proposed by [101] are used as local controllers

for closed-loop simulations. Since there is no available information for the selection

of set points, five sets of set points were chosen within acceptable regions as shown

in Table 5.6.
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Table 5.6: Candidate sets of set points for TE process optimization
Set point 1 2 3 4 5

Production rate (kmol/h) 339 339 339 339 339
Reactor pressure (kPa) 2400 2420 2405 2390 2400
A in react feed (mol%) 36.4 36.4 36.4 33.4 34.4
E in react feed (mol%) 17 15 17.5 17 17

B in purge (mol%) 15.9 19.9 16.8 16.5 17
G in product (mol%) 53.7 53.7 53.7 53.7 53.7

Separator liquid level (%) 50 60 45 58 65
Stripper liquid level (%) 50 60 45 58 80

Disturbance

In the original problem, there are 15 disturbances [31]. In this work, only three of

them are considered: A feed loss, A, B, C feed composition in stream 4, and drift

in reaction kinetics. The reason is that more disturbances may result the system

highly instable under the controller provided by [101]. Although the disturbance

sequences provided by the TE simulator are fixed, the random open-close signals as

in Fig. 5.12 are employed. Therefore, the behavior of system is still stochastic.
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Figure 5.12: Switch signals for a disturbance input

Collecting Historical Data

Under the five different sets of set points, closed-loop simulations were performed

146,156,139,160, and 144 times respectively. For better perturbation, 225 different

sequences with set point changes were also tested. In each episode of closed-

loop simulations, total simulation duration was 3.5 hours and the time interval
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for optimization was set as 24 minutes. As a result, a total of 7864 data points were

collected for Markov chain modeling.

Since the number of initial policies was too small to explore the large state

space, five different ADP policies with different SOM structures were employed for

further explorations. The initial policies derived from the original data set did not

perform well, sometimes even worse than the steady-state RTO. This is mainly

because the initial data points were coming from 5 scenarios with fixed set point,

thus, hardly to describe the dynamics of the process properly. Moreover, the sparse

data distribution leaves small room for exploration, and the resulting transition

probability may not be accurate for deriving an improved policy. However, one

advantage of the proposed scheme is that further refinement of model and policy is

still possible by exploring the state space under the ADP policies. Thus, the first

ADP policies were employed to generate more data and were continually updated

until no appreciable improvement was observed.

Markov Chain and Value Function Learning

Based on the original data set, five different SOM structures with 54, 42, 43, 40,

and 60 clusters were employed to obtain five more different policies for exploration.

In the actual learning step, 6 × 10 grid was chosen based on the outlier criterion

with the minimum number of ten data points in each cluster.

The upper bound of shutdown ratio was specified as 25%, and the minimum

risk was calculated by conventional DP as 4.32% based on transition probability

matrix. Given the inequality of Eq. (5.33) and the model uncertainty, D was set as

4. The value for the failure node was obtained as VF = −222470 with r = −3827

and r = −7066. The learning parameters of ADP-based RTO is shown in Table 5.7.

Table 5.7: Learning parameters for the proposed RTO. N is the number of data in
the outlier region.

Parameters Reactor-storage-separator Tennessee Eastman
γ 0.9 0.9
SOM structure 6 ×10 6 × 10
VF -4277 -3708
D 4 4
ε 0.4 0.15
α 1

N+1
1

N+1
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Simulation Result

A hundred fresh disturbance switch sequences were used to test and compare

different operating policies. Three important variables were considered for plant

shutdown: reactor pressure, separator liquid level, and stripper liquid level. (See

Table 5.8).

Table 5.8: Constraints considered in TE process
Process variable Lower bound Upper bound
Reactor pressure none 2950 kPa

Separator liquid level 1% 100%
Stripper liquid level 1% 100%

The constraint violation ratio and operation costs are shown in Table 5.9. The

first 5 results with fixed setpoint show that an aggressive operation manner has

the lower cost but higher violation ratio. The first ADP policies, policy 1–5, are

worse than the best steady policy (set point 4). However, ADP-based policy based

on these initial data from the random policies as well as static set point policies

yielded the best performance with the minimum number of constraint violation and

mild operation cost. This shows that the data-driven based optimization scheme

has evolutionary learning capability as more data points are available. Compared

to the other policies, the learned policy finds the best tradeoff between the risk and

the profitability. Further reduction on the cost may be achieved if the |VF | decreases

appropriately, considering that the bound (5.24) is not very tight.

Table 5.9: Comparison of RTO performances
Policy Constraint violation ratio (%) Operation cost/ 3.5 hrs [$]

Setpoint1 46 623.2
Setpoint2 62 611.9
Setpoint3 52 620.2
Setpoint4 27 636.0
Setpoint5 33 646.2

Policy1 (6× 9) 38 630.2
Policy2 (6× 7) 42 630.0
Policy3 (4× 8) 32 636.0
Policy4 (5× 8) 37 637.0
Policy5 (6× 10) 41 630.4

Final policy (6× 10) 17 649.1

Figs. 5.13 - 5.15 show a sample of test results. Since the original MPC controller

has very small weights on the levels of stripper and separator compared to the
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production term, the liquid levels under the MPC do not follow the set points

perfectly. This setting may lead the system to shutdown under the disturbances. In

this case, both of the tanks are almost drained during 1.5–2.5 hours. The proposed

RTO scheme increases the set points of the tank levels accordingly at the cost of

production amount. Fig. 5.16 also shows the state transitions during 1.5–2.0 hours.
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Figure 5.13: Reactor pressure and level
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Figure 5.14: Separator pressure and level, stripper level, and operation cost.

5.5 Summary

Dynamic optimization based on a Markov chain model and approximate dynamic

programming can provide a more robust and risk-averse policy compared to other
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Figure 5.15: G and H in product.
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Figure 5.16: State transitions during 1.2− 2.0 hour.
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deterministic model-based approaches. The proposed approach can be applied to

a class of dynamic optimization problems where a process model is difficult to

obtain, which is likely for large-scale problems, and uncertainties affect operations

significantly. The other advantage is that proposed scheme only solves a single stage

optimization problem, thus reducing online computational burden significantly. A

systematic guide for deriving a reward-to-go of the undesirable state was provided

by considering the failure node as an absorbing state. Case studies on an integrated

plant and the TE process show improved operations under the proposed scheme

compared to the other conventional RTO strategies.

It is worth noting that all the state variables were assumed to be observed

directly, which does not hold for many practical cases. However, previous work by

[86] showed that such a Markov chain model can be constructed with observed data

only, possibly using a higher-order one. Moreover, modeling such a process as a

partially observed Markov decision process (POMDP) can be worth investigating

further in such a case .
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Chapter 6

Decomposition Strategy for
Large Scale Scheduling
Problems

6.1 Background

Proper production planning, storage location, transportation and scheduling are

critical to energy saving and productivity enhancement of chemical process indus-

tries in the global economy. Since these real world optimization problems often

lead to mixed integer linear models, development of new algorithms that allow for

the solution to mixed integer linear programming (MILP) in acceptable times has

recently attracted much attention. Though commercial softwares, such as CPLEX,

provide effective platforms to solve MILP, there are still certain problems for which

those softwares require an excessive amount of time to yield the optimal solution.

Benders decomposition was originally developed for solving “mixed-variables

programming” problems where the decision variables can be decomposed into easy

and complicating variable sets, which are mutually exclusive [9]. If the complicating

variables, e.g., integer variables, are fixed at certain values, the remaining problem

becomes a linear programming, which is relatively easy to solve. In his seminal

work, [9] solved a small-sized MILP with 29 continuous variables and 27 integer

variables.

Since the original decomposition strategy is not necessarily limited to MILP,

Benders decomposition has also been suggested as a solution procedure for a broad

range of optimization problems. For instance, “L-shaped” method based on Benders

cut was first applied to stochastic programming [112]. The nested Benders method
∗A full version of this chapter has been submitted to the Computers and Chemical Engineering
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can handle the case where the deterministic equivalent linear program to a stochastic

program is very large [16]. In solving dynamic programming, Benders cut is

employed to mitigate the “curse of dimensionality” [92]. Benders decomposition

is generalized to the problem whose subproblem could be nonlinear [41], and its

convergence properties are provided [106]. A Benders hierarchical decomposition

approach is also proposed to handle non-convexity for power transmission network

design [15].

In particular, a class of MILP problems with “ladder-structure” constraints can

be effectively solved by Benders decomposition. It first decomposes the original

formulation into the master problem (MP) involving complicating variables and

several sub-problems (SPs) having relatively easy variables only, and solves them

in an iterative manner. The solution of MP is used as the parameter vector of the

SPs, and the resulting solution of each SP determines a new cutting plane, i.e., a

constraint added to the MP. It is proven that repeating this procedure can eventually

find the optimal solution [57]. For a certain class of problems such as network design

and multi-commodity scheduling, this method has shown its efficacy and achieved

remarkable successes [77].

However, previous studies also show that Benders decomposition converges very

slowly for certain applications. Thus, how to speed up the Benders decomposition

algorithm has attracted much attention last several decades. There are two different

kinds of approaches to enhance the convergence rate. The first methodology

notices that the most computational burden comes from MP involving complicating

variables. Since the MP is usually an integer programming (IP) problem, which is

not tractable, the focus has been on solving IP approximately. One simple approach

is to find a feasible integer solution instead of an optimal one [26]. Genetic algorithm

along with a heuristic method is also applied to obtain a feasible solution of MP

[93].

Another way to circumvent the difficulty in solving MP is reducing the number of

iterations by seeking for a better cut. A well known method falling into this category,

called Pareto-optimal cut, finds the cutting plane that is not dominated by other

constraints [77]. This way, the tighter cut can decrease the number of iterations

by restricting the objective value of MP more efficiently. Since it mainly focuses

on the case where a SP has the multi-bounded-optimal solution, it is applicable to

some special examples including network optimization problems. Furthermore, it
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cannot handle infeasible SPs. It is also noted that a host of infeasible points can be

generated by solving MP repeatedly. This eventually leads to generation of many

feasibility cuts from SPs, which becomes computationally expensive [104, 100, 90].

The maximum feasible subsystem cut generation strategy is proposed to over-

come the feasibility issue [104]. Because an infeasible linear programming problem

can be relaxed to have a feasible solution, this method makes the minimum number

of modifications to its infeasible solution space and yields a new optimality cut in

each iteration step. Nevertheless, it is difficult to quantify or prove mathematically

how the new constraint can improve the efficiency. Compared with the conventional

Benders decomposition, which only generates one constraint from each SP in every

iteration step, the covering cut bundle (CCB) strategy yields more constraints at

a time [105]. Although this method can reduce the number of iterations thereby

saving much time in their example, the potential risk lies in the increment of the

time in each iteration step. How to balance them is still an open question. A local

branching technique replaces some of the feasibility cuts with local cuts [100]. All

these works are concerned with generating a tighter cutting plane to enhance the

algorithmic efficiency in solving MP.

The second category of approaches considers the cases where the structure of

SPs is extremely complex. This arises when the original formulation can be only

decomposed into MP and one SP. Consequently, this SP may become a large-scale

LP problem. Since commercial solvers usually employ the interior point method for

large-scale LPs, whose solution is not an extreme point, Benders decomposition may

converge to a wrong solution. To address this issue, a condition is provided that

guarantees the convergence for inexact cuts [131].

In this chapter, the first category is considered where SPs become infeasible given

the solution of MP. A novel Benders decomposition approach is proposed where a

bilinear optimization problem is solved sequentially to assist in selecting the tightest

constraint for the region located by specified point among all suitable cutting planes.

This method can be particularly relevant in chemical engineering applications, which

often have to consider the continuous and integer decision variables. In addition,

in those problems, these two sorts of variables usually can be divided into several

exclusive set. We notice that [35, 25] have proposed similar ideas with our method,

however, [35] decides to minimize the cardinality heuristically to find a better cut

and [25] devotes to search the facets of of the polyhedron passing through the project
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point. Both of them are different from our algorithm in essence.

This chapter is organized as follows: the preliminary of the conventional Benders

decomposition method is reviewed in Section 6.2; next a new strategy for choosing

constraints is discussed in Section 6.3. Then a scheduling of multi-product batch

plants example is presented in Section 6.4 to show the computational efficiency of

the proposed method. Finally, the concluding remarks are provided in Section 6.5.

6.2 Preliminary

Consider the following MILP problem where the constraint matrix has the ladder

block structure:

max
x,y

cT x + fT y (6.1)

s.t. Ax 6 b

Bx + Dy 6 d

x ∈ Z+, y > 0

where y > 0 means each component of y is non-negtive.

Problem (6.1) has the ladder block form where the complicating variables (x)

exist in both constraint blocks and other variables (y) are shown in the “sub-block.”

Thus Benders decomposition can be applied by dividing the original formulation

into MP and SP.

Master problem (MP):

max
x,z

cT x + z (6.2)

s.t. Ax 6 b

x ∈ Z+, z 6 W

where W is a large enough positive number to bound the z. Let {x̂, ẑ} denote a

solution to MP. Then SP becomes

Subproblem (SP):

z(x̂) = max
y

fT y (6.3)

s.t. Dy 6 d−Bx̂

y > 0
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If x̂ is not a feasible solution for the original problem, (6.3) does not have a

feasible solution. Hence, the following dual problem is considered:

z(x̂) = min
p

pT (d−Bx̂) (6.4)

s.t. DT p > f

p > 0

There are two possibilities in solving the dual SP. First, the solution from the MP

makes the primal SP feasible then a bounded solution is obtained by the solution of

the dual SP. In this case we compare z(x̂) and z. If z(x̂) < ẑ, the new constraint,

named optimality cut pT (d − Bx) > z needs to be added to the MP. Otherwise, it

indicates that the true solution is found. Second, if the primal SP is infeasible, (6.4)

becomes unbounded. The solver will return an extreme ray r of the dual solution

space. In this case, the feasibility cut rT (d−Bx) > 0 is added to the MP to remove

the infeasible solutions of MP. The procedure is briefly described in Fig. 6.1. Here

multiple subproblems is formulated if decision variables can be divided into several

blocks according to the ladder structure.

Master Problem 

(MP) 

Subproblem 

1 

Subproblem 

i 

Subproblem 

n 

x̂

x̂
x̂

constraint constraint 

constraint 

Figure 6.1: Iterative scheme of Benders decomposition.

Since p and r are the extreme point and ray of the feasible region, respectively,

we may enumerate and add all of them to the MP. Then, the true value can be

obtained in one step. However, considering the number of these constraints, it is

practical to employ a “delayed” constraints generation strategy. That is, only a

constraint which can reject the current solution of the MP is added in order to

introduce the smallest number of constraints and save computational time.
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6.3 The Tightest Cut Generation Strategy for Speeding
up Benders Decomposition

For (6.2), given a set of cuts generated by SP, denoted by P and p1, p2 ∈ P , the

constraint pT
1 (d−Bx) is said to dominate pT

2 (d−Bx), if pT
1 (d−Bx) < pT

2 (d−Bx)

for ∀ x. The Pareto-optimal method always chooses the cut that no other cuts

can dominate. This method is for the case where the optimality cut is readily

available and the SP has multiple solutions. However, each iteration step in Benders

decomposition gets a feasibility cut instead of the optimality cut most of the times,

which is the major reason for slow convergence rate. This section proposes a faster

method that finds the tightest feasibility cut for some regions in each iteration step.

Feasibility cut is defined in the subspace determined by the MP, and it is used

to eliminate infeasible solutions in the MP. By adding these constraints continually,

the MP can gradually characterize the true boundaries corresponding to the feasible

region of the original problem. However, each feasibility cut generated from the

extreme ray can only dominate a small area. Hence, if one can select those tight

cuts, which construct the boundary related to the final integer solution, the number

of iteration steps can be reduced dramatically. By comparing the two constraints of

MP in Fig. 6.2, we can see that the line connecting the infeasible and feasible points

must cross a true boundary, a hyper-plane. Therefore, the tightest constraint can be

obtained by computing the distance between the feasible point and the intersection

point. Only the hyperplane with the minimum distance to feasible points is added

to the MP.

It is also worthwhile to note that the distance is not a necessary condition to

determine the tightest constraint because different feasible points return various

cutting planes according to their distances as shown in the feasible point 2 of Fig. 6.2.

Hence, the proposed approach samples several feasible points and renders the cutting

plane as close as possible to these points.

6.3.1 Determination of the Tightest Cutting Plane for One Feasible
Point

Explicit computation and comparison of distances require solving a nonlinear

programming problem, which is unacceptable in large-scale MILPs. However, once

the feasible and infeasible points are fixed, all possible cuts will be crossed by the

line linking these two points, and the minimum distance ratio λ is relatively easy to
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Figure 6.2: The line linking feasible and infeasible points

compute by the following optimization formulation:

λ =
Distance from the feasible point to the intersection at a cut

Distance from the feasible point to the infeasible point

Problem 1:

min
r,λ

λ (6.5)

s.t. rT (d−Bxf −Bx̄λ) = 0 (6.6)

rT D > 0 (6.7)

r(j) 6 M (6.8)

r, λ > 0 (6.9)

where xf and xi represent the feasible and infeasible points, respectively. M is a big

enough number. x̄ = xi − xf is the vector from the feasible point to the infeasible

point, and r(j) is the jth component of the vector r.

Let us now consider the constraint (6.6). Any positive λ satisfying this equality

represents the distance ratio given by r. The intersection point can be expressed as

xt = xf + λx̄, and plugging it to the feasibility cut equation yields this constraint.

The constraints (6.7) and (6.8) imply that r should be a ray of the dual sub-

problem. Since r is a vector, we specify the upper bound of its element as a
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reasonably large number M to avoid numerical artifacts and infinite magnitude.

The solution of Problem 1 corresponds to the minimum distance ratio λ, thereby

constructing the tightest boundary of the region located by the specified feasible

point.

The above formulation is a bilinear optimization problem, which conventional

LP solvers cannot solve. However, λ can be written as

λ =
rT (d−Bxf )

rT Bx̄
(6.10)

Eq. (6.10) yields fractional programming, which is also difficult to solve. Hence,

an iterative scheme called Dinkelbach’s method [30] is employed to get the optimal

value of λ. Assume that we have an initial guess 0 < λ0 < 1, then consider the

following problem:

L = min
r

rT (d−Bxf )− λ0r
T Bx̄ (6.11)

s.t. rT D > 0 (6.12)

r(j) 6 M (6.13)

r > 0 (6.14)

In order to discuss some properties of the above formulation, the following lemma

is introduced:

Lemma 19. Suppose λ0 corresponds to the distance ratio of the ray that leaves out

xi from the feasible region. Let r1 be the solution to (6.11) and assume the objective

function is negative. Then,

1. rT
1 (d−Bxi) < 0 always holds.

2. r1 has a smaller distance ratio than λ0.

Proof. Since no constraint derived from the ray can cut out xf , it follows that

rT
1 (d − Bxf ) > 0. λ0 < 1 also holds because it corresponds to the ray cutting out

xi.

From the objective function, we have

rT
1 (d−Bxf )− λ0r

T
1 Bx̄ < 0

→(1− λ0)rT
1 (d−Bxf ) + λ0r

T
1 (d−Bxi) < 0

→rT
1 (d−Bxi) < −(1− λ0)rT (d−Bxf )

λ0
6 0 (6.15)
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Moreover, there is

rT
1 Bx̄ = rT

1 (d−Bxf )− rT
1 (d−Bxi) > 0 (6.16)

If the objective (6.11) is negative, the following inequality also holds:

λ1 =
rT
1 (d−Bxf )

rT
1 Bx̄

< λ0 (6.17)

This means that the objective value corresponding to r1 of Problem 1 is smaller

than λ0.

In order to get the tightest cut, the iteration on λ is performed until (6.11)

becomes zero, meaning there is no superior cut. In addition, it is also guaranteed

that λ decreases monotonically and converges [30].

Remark 1: M only affects the magnitude of ray, not the direction. Theoreti-

cally, the performance of the cut is not influenced by its value, but a large value of

M can allow the solver to handle more digits.

Remark 2: The initial guess λ0 can be obtained by calculating the λ of the

extreme ray provided by CPLEX.

Remark 3: During this procedure, rays r1, r2, . . . , rn and their corresponding

cuts are generated successively. Though only the final constraint is the tightest one

for a given feasible point, other constraints are stored in the pool for generating

feasible points in the next step.

Remark 4: Once the optimal solution is found, the resulting cut is the tightest

one. However, If the size of (6.11) is large and takes much time to solve, one can

set a finite number of iterations for λ and proceed with an improved λ value to save

the computing time. In that situation, we only get a tighter cut for this feasible

point. For simplicity, we assume that the optimal λ is always obtained in this paper.

Actually, significant improvement is achieved just after one iteration.

6.3.2 Selection of the Feasible Point

Sequential search

Similar with the approach in [105], the proposed framework can generate several

tightest cuts C1, C2, . . . , CK and their rays R1, R2, . . . , RK by selecting a series

of feasible points x1
f , x2

f , . . . , xK
f in each iteration. Since the selection of cuts

depends on the location of feasible points, a systematic procedure is necessary for

specifying feasible points.
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We propose a scheme to search feasible points sequentially. After the initializa-

tion of the first feasible point x1
f , its successor point is located in a different region

where the previous selected feasibility cuts cannot bound tightly. For example, let

us consider searching for the feasible point xk
f . It is noted that Dinkelbach’s method

can generate many cutting planes, denoted by L1, L2, . . . , Ln−1, Ln, which corre-

spond to the rays r1, r2, . . . , rn−1, rn for the previous feasible point xk−1
f . Though

other constraints are not tighter than Ln according to the xk−1
f , they are still stored

in the constraints pool because there may be a cutting plane in the pool, say L1,

which is tighter than Ln for other feasible points. Hence, in order to explore prop-

erties of those planes further, we search for a new feasible point xf for which L1 has

a smaller value of λ than Ln.

Given

λ1 =
rT
1 (d−Bxk

f )

rT
1 Bx̄

(6.18)

λn =
rT
n (d−Bxk

f )
rT
n Bx̄

, (6.19)

and

λ1 > λn ⇐⇒ 1− λ1 < 1− λn, (6.20)

consider the following inequalities:

1− λ1

1− λn
6 α (6.21)

→rT
1 (Bxi − d)

rT
1 Bx̄

rT
n Bx̄

rT
n (Bxi − d)

6 α (6.22)

→rT
n Bx̄rT

1 (Bxi − d) 6 αrT
1 Bx̄rT

n (Bxi − d) (6.23)

→{rT
n B(rT

1 (Bxi − d))− αrT
1 B(rT

n (Bxi − d))}xi 6

{rT
n B(rT

1 (Bxi − d))− αrT
1 B(rT

n (Bxi − d))}xk
f (6.24)

where α is a user-specified threshold.

The inequality (6.24) is a linear constraint in xf , which is easy to solve using

CPLEX. For any feasible point satisfying this constraint, the plane L1 is tighter

than Ln according to the resultant xf . In order to check if L1 can cut the infeasible

region, it is only necessary to find if there is a xf for which L1 is tighter than

previous constraints C1, C2, . . . , Ck−1. Hence, the identified point is set as the

kth feasible point.
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Searching in the equipotential hyperplane

Though feasible points can be found in the whole feasible region, it is more efficient

to focus on some special region than others. For instance, the area with larger

objective value of MP is more important than the smaller one because the solver

needs to check points to solve for the maximum solution to MP. Sampling feasible

points and adding more cuts in that region to characterize the tight boundary can

prevent the solution of MP from falling into infeasible regions of the original problem,

thereby decreasing the total number of iterations.

Suppose the current MP generates the objective value V . A new set of con-

straints can be appended to identify feasible points on an equipotential hyperplane,

where every point has the same objective value V for MP. Let us first consider the

formulation of MP:

max
x,z

cT x + z (6.25)

s.t. Ax ≤ b

pT
h (d−Bx) > z {h = 1, 2, 3, . . .} (6.26)

qT
l (d−Bx) > 0 {l = 1, 2, 3, . . .} (6.27)

x ∈ Z+, z ≥ 0

where (6.26) and (6.27) are the optimality and feasibility cuts added in the previous

iterations, respectively. For the purpose of characterizing feasible points on the

equipotential hyperplane in the x space, the following set of constraints, which

determine the value of z, is appended:

pT
h (d−Bxf ) > z {h = 1, 2, 3, . . .} (6.28)

cT xf + z = V (6.29)

Axf 6 b (6.30)

Bxf + Dy 6 d (6.31)

z > 0, y > 0 (6.32)

The optimality cuts of (6.28) are related to the value of z, and Eq. (6.29) guarantees

that the objective value of MP for xf is V . Eqs. (6.30) and (6.31) confine xf to be

a feasible point of the original problem.
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Formulation for selecting feasible points

In all, to search for the kth feasible point, given a new plane L from the constraints

pool, the following formulation is solved:

Problem 2:

Axf 6 b (6.33)

Bxf + Dy 6 d (6.34)

pT
h (d−Bxf ) > z {h = 1, 2, 3, . . .} (6.35)

cT xf + z = V (6.36)

{RiT B(rT (Bxi − d))− αrT B(RiT (Bxi − d))}xi 6 (6.37)

{RiT B(rT (Bxi − d))− αrT B(RiT (Bxi − d))}xf i ∈ {1, 2, . . . , k − 1}
xf > 0, y > 0, z > 0 (6.38)

where r is the ray related to the cutting plane L chosen from the constraints pool.

Though new constraints are appended to the original LP relaxed problem,

computational burden will not increase significantly considering there are only a

few optimality cuts in this kind of problems. Moreover, Problem 2 is solved much

faster without the objective function, and the solver will yield xf , y and z that

satisfy the constraints of Problem 2.

If there is a feasible solution to Problem 2, it indicates at least one feasible point

can be found for which L is tighter than any other constraints C1, C2, . . . , Ck−1.

In other words, it actually locates the region where C1, C2, . . . , Ck−1 cannot

characterize the true boundary. Given this new feasible point, one can apply the

procedure introduced in the previous section to yield a new cutting plane. If there

is no feasible solution, L can be removed from the constraints pool and the next

cutting plane is checked until the entire constraints in the memory are checked.

6.3.3 Constraints Selection

Though the above procedure can yield the tightest constraint for each feasible point

and a systematic method to generate feasible points is provided, two issues still

remain: how many constraints and which constraints should be appended to MP.

Whereas conventional Benders decomposition generates only one cutting plane for

each sub-block in each iteration, the bundle cutting plane generation scheme [105]

yields multiple constraints in each iteration step to reduce the total number of
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iterations. We borrow this idea that adding more than one constraints to MP

at a time to improve the performance. Though directly incorporating all the

generated constraints looks attractive, it actually increases the number of constraints

dramatically and slows down the computational time of each step. Therefore, it is

necessary to develop a method that selects suitable constraints among all the tight

cutting planes generated in the last section.

Suppose there are K available feasible points. The above procedure can be

applied to each point, and one can obtain at most n different cutting planes. For

each plane i and feasible point j, there is a λij , defined as

λij =
Distance from the feasible point j to the intersection at a cut i

Distance from the feasible point j to the infeasible point

For simplicity, we can only calculate the following value to rank these cuts in

terms of the tightness over all the feasible points:

λi =
n∑

j=1

1− λij

1− λjj
(6.39)

The reason here we employ 1−λ, not λ directly, is that the λjj becomes 0 if a vertex

of the subspace is sampled as a feasible point. Though (6.39) provides a measure to

assess the tightness of each constraint over the sampled feasible points, the ranking

based on λi can change significantly depending on the locations of sampled feasible

points.

In order to choose a manageable number of meaningful cuts, the following

procedure is suggested with a new metric, %:

Step 1: Compute (6.39) for cuts C1, C2, . . . , and CK . Choose the maximum one

as the reference constraint Cb and append it to MP

Step 2: Compare Cb with the other cutting planes based on the metric %, called

“maximum difference.” Then the cuts with large enough differences, greater

than a user-defined threshold γ, are selected.

In Step 2, given a constraint Cc, a new metric, the maximum difference between Cb

and Cc is defined as:

%(xp) =
dpq

dpxi

=
Distance from xp to xq

Distance from xi to xp
(6.40)

%max = max
xp

% (6.41)
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where xp is the point on the plane Cc and xq is the crossing point of vector xpxi

and the plane Cb. If the %max is larger than γ, there is a region where Cc is much

tighter than Cb, see Fig. 6.3. Hence, the cutting plane Cc should also be appended

to MP.
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Figure 6.3: Comparison of two constraints

The following formulation can be solved to compute the maximum value of %:

Problem 3:

max
xp,z, %

% (6.42)

s.t. z + cT xp = V (6.43)

Axp 6 b (6.44)

pT
h (d−Bxp) > z {h = 1, 2, 3, . . .} (6.45)

qT
l (d−Bxp) > 0 {l = 1, 2, 3, . . .} (6.46)

rT
c (d−Bxp) = 0 (6.47)

% = rT
b (d−Bxp)

rT
b B(xi−xp)

(6.48)

xp > 0, z > 0 (6.49)

where V is the current value of objective function; rb and rc are the rays related to

cut Cb and Cc, respectively. Same with the last section, the new point xp is also
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restricted on the equipotential hyperplane. Constraints (6.44) to (6.46) characterize

the current feasible region of MP and (6.47) confines the point on the cutting plane

Cc. Eq. (6.48) can be derived from the definition of %.

%(xp) =
dpq

dpxi

=
|xq − xp|
|xi − xp| =

rT
b B(xq − xp)

rT
b B(xi − xp)

=
rT
b (d−Bxp)

rT
b B(xi − xp)

(6.50)

Eq. (6.40) is also a fractional programming problem, which can be solved in the

same manner proposed in Section 6.3.1. Similar with Problem 1, optimal solution

is not required. Once the % becomes larger than a threshold, the iteration can be

terminated and the constraint is added to MP.

Alternatively, the Problem 3 can also be solved through non-recursive manner.

Note that the term rT
b Bxp exists both in the numerator and denominator, the new

non-fractional LP formulation can be constructed depending on parameters rT
b d and

rT
b Bxi. Due to constraints (6.41) ∼ (6.47), the optimal solution may be searched

and compared over the disjunctive set.

6.3.4 Algorithm

The whole procedure can be summarized as follows:

Step 1: Solve MP to get x̂ and ẑ.

Step 2: Substitute x̂ into each dual sub-problem and solve each block.

Step 3: For the sub-block which has a bounded solution, just obtain the optimality

cut. For the sub-block which has an unbounded solution, obtain the extreme

ray from LP solver (e.g., CPLEX) and compute λ0.

Step 4: If there is zi(x̂) > ẑi for each block i, the final solution is obtained and the

algorithm is terminated; otherwise, go to Step 5.

Step 5: For the unbounded dual SP, x̂ is the infeasible point. Let j = 1, initialize

the feasible point x1
f and set the total number of feasible points as K.

Step 6: Solve the formulation Problem 1 with xj
f to get the tightest cut Cj .

Also put extra cutting planes generated from Dinklebach’s method into the

constraint pool. If j = K, go to Step 8.

Step 7: Set j = j + 1. Plug the cut from constraint pool into Problem 2 until

a new feasible point is found. Meanwhile, any cuts rendering Problem 2
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infeasible can be removed from the pool. If the pool is empty and no feasible

point is found, re-initialize a new feasible point xj
f . Then go back to Step 6.

Step 8: Solve Problem 3, select several constraints and add them to MP. Go back

to Step 1.

6.3.5 Computational Burden

Since this work primarily focuses on reducing computational time of Benders

decomposition, this section discusses the computational burden of each step in detail.

In Step 1, the MP is solved by commercial software such as CPLEX. This is the

most time consuming part of this algorithm because the integer variables are usually

involved in this problem. Compared to the original whole-scale MILP, the number

of both variables and constraints of MP is reduced dramatically. Nevertheless, it

may take several minutes to hours to solve even a small-scale MILP. The endeavor

of this paper is reducing the number of iterations in this step.

In Step 2, each sub-problem is solved directly. Usually, only the LP model

should be considered in this part. Thus, the amount of computational time is not

comparable to Step 1. Since no inexact cut is considered in this method, the Simplex

method is used to get the exact optimal solution for each subproblem.

In Step 6, the bilinear optimization is solved sequentially. Note that the number

of variables and constraints of this bilinear problem is similar to that of the sub-

problem; therefore, the computational time for each iteration is relatively small.

In Step 7, although more than one constraint are added to the original LP relaxed

problem, the solver only needs to return the feasible solution, which can be found

only in a few simplex iterations.

In Step 8, it is worthwhile to note that most of constraints come from MP,

which is far smaller than the original LP. Hence, the optimal % can be obtained very

quickly. In order to compare other cutting planes in the pool with the reference

cut, Problem 3 should be solved K − 1 times. Therefore, it is necessary to limit the

number of K to balance the efficiency and representativeness of the feasible points.

In summary, the algorithm aims to reduce the number of Benders iteration

steps at the expense of solving three extra LP based problems. With proper tuned

parameters, the total computational time can be reduced dramatically.
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6.4 Case Study

In this chapter, a scheduling problem for multi-product, multipurpose batch plants is

considered. The original mathematical formulation is proposed in [51]. The process

is represented by a state task network shown in Fig. 6.4. A small modification is

introduced to improve the efficiency. The original formulation considers the task

and unit separately, thereby solution space involves 3-D integer variables. However,

since each task is not performed at all the units, several variables are 0. In order to

make use of this prior knowledge and reduce the complexity of the model, the task

and unit are combined and only the 2-D variables are considered. For the details

of the problem, see [51]. The indices are defined in Table 6.1, and the parameters

and variables are introduced in Tables 6.2 and 6.3.

Product 1 

Reaction 2 

Int BC 

Reaction 1 

Feed B 

Feed C 

Reaction 3 

Impure E 

Separation 

Product 2 

Hot A 

Heating 

Feed A 

50% 20% 

90% 

10% 

80% 

50% 

60% 

40% 

40% 

Figure 6.4: State task network of the case study

Table 6.1: Indices
I Tasks
J Units
N Event points
S States

The data is also from [51] and shown in Tables 6.4 and 6.5.
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Table 6.2: Parameters
Price(s) Price of product produced by unit s
ρp(s, i) Proportion of state s produced by task i
ρc(s, i) Proportion of state s consumed from task i
stmax(s) Maximum storage capacity for state s
V min(i) Minimum capacity of the unit processing task i
V max(i) Maximum capacity of unit processing task i
H Time horizon

Table 6.3: Varables
wv(i, n) Binary variables that assign the task i at time point n
d(s, n) Amount of state s being delivered at time point n
b(i, n) Amount of materials undertaking task i at time point n
st(s, n) Amount of state s at time point n
Tf(i, n) Finishing time of task i at time point n
Ts(i, n) Starting time of task i at time point n

Table 6.4: Data 1
Task Capacity Processing time
Heating 100 1.0
Reaction 1 in reactor 1 50 2.0
Reaction 2 in reactor 1 50 2.0
Reaction 3 in reactor 1 50 1.0
Reaction 1 in reactor 2 80 2.0
Reaction 2 in reactor 2 80 2.0
Reaction 3 in reactor 2 80 1.0
Separation 200 1.5

Table 6.5: Data 2
State Storage capacity Initial amount Price
Feed A Unlimited Unlimited 0
Feed B Unlimited Unlimited 0
Feed C Unlimited Unlimited 0
Hot A 100 0 0
Int AB 200 0 0
Int BC 150 0 0
Impure E 200 0 0
Product 1 Unlimited 0 10.0
Product 2 Unlimited 0 10.0
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In order to maximize the profit, the following MILP formulation is solved.

max
∑
s,n

Price(s)d(s, n) (6.51)

s.t.
∑

i

wv(i, n) ≤ 1 ∀n (6.52)

st(s, n) = st(s, n− 1)− d(s, n) (6.53)

+
∑

i

ρp(s, i)b(i, n− 1)−
∑

i

ρc(s, i)b(i, n)

1 < ∀n ∈ N, ∀s ∈ S

st(s, n) ≤ stmax(s) ∀n ∈ N, ∀s ∈ S (6.54)

V min(i)wv(i, n) ≤ b(i, n) ≤ V max(i)wv(i, n) (6.55)

∀i ∈ I,∀n ∈ N

Tf(i, n) = Ts(i, n) + α(i)wv(i, n) + β(i)b(i, n) (6.56)

∀i ∈ I,∀n ∈ N

Ts(i, n + 1) ≥ Tf(i, n)−H(1− wv(i, n)) (6.57)

∀i ∈ I,∀n ∈ N

Ts(i, n + 1) ≥ Tf(i′, n)−H(1− wv(i′, n)) (6.58)

∀i, i′ ∈ I,∀n ∈ N

Ts(i, n + 1) ≥ Ts(i, n) ∀i ∈ I,∀n ∈ N (6.59)

Tf(i, n + 1) ≥ Tf(i, n) ∀i ∈ I,∀n ∈ N (6.60)

Ts(i, n + 1) ≤ H ∀i ∈ I,∀n ∈ N (6.61)

Tf(i, n + 1) ≤ H ∀i ∈ I,∀n ∈ N (6.62)
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The parameters are

αi = (2/3)T̄ (i) (6.63)

βi = (2/3)T̄ (i)/(V max(i)− V min(i)) (6.64)

where the T̄ is the mean processing time of task i. wv(i, n) is equal to 1, if the task

i is assigned to the time point n.

6.4.1 Implementation Issue

In the above formulation, the integer variables wv(i, n) are involved in MP and the

other continuous variables can be assigned to a single SP. However, having one SP

is not efficient in using Benders decomposition in general. Here we employ the idea

presented in [104] that the wv(i, n) and b(i, n) are combined into the same master

group. Then the variables d(s, n) and st(s, n) are in SP1 and Tf(i, n) and Ts(i, n)

are in SP2. In this case, the original problem is split into three blocks each of which

is much easier to solve.

The conventional Benders decomposition is applied first. We found that most

of the cuts were feasibility cuts, that is, the solver cannot find the feasible point

for the original problem in the MP subspace. As a result, the Pareto-optimal cut

method is not applicable in this case. On the other hand, the algorithm proposed

in this chapter is suitable to handle feasibility cuts.

The implementation of both common Benders decomposition and the proposed

method employs the heuristic strategy proposed in [100]. The procedure can be

divided into two stages. In the first stage, the integer constraints are relaxed and

a LP model is solved by Benders decomposition. Since this relaxed LP formulation

is not very large to the commercial software, it can be solved quickly and some

optimality cuts are added to the MP. Once the MP yields the optimal LP relax

solution, the algorithm will switch to the second stage, i.e., the integer constraints

are considered again.

The initial feasible points for the proposed method are obtained randomly

by solving the relaxed LP formulation of the original problem with equipotential

constraints and random objective function. Note that Problem 2 may not have a

feasible solution despite enumerating the whole cutting pool. In this case, a random

feasible point should be used.

Both the conventional Benders decomposition and proposed approach are tested
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in the same environment. The model is described by AMPL and solved by CPLEX

(ver. 11.0.1). The computational platform is the IBM X-series 3550 with eight Intel

Xenon processors running at 3.1GHz with 32 GB of RAM. The operating system is

Windows Server 2003 R2 Enterprise x64 Edition with Service Pack 2.

The number of time points n and time horizon H are changed to test these

algorithms in different cases. Since the 3-D variables are replaced by 2-D variables,

the quantity of constraints and variables are reduced considerably. Thus, only the

n > 10 cases are considered here because solving small scale examples using CPLEX

is trivial and cannot show the difference between the proposed method and classical

Benders decomposition. Usually, for the same n, the smaller H requires more

computational time. The number of constraints and variables are also illustrated

in Table 6.6. Although the problem may not be a large-scale LP, we note that the

IP part makes the problem structure-dependent and more complex than solving LP

only.

6.4.2 Discussions on Results

The main results are shown in Table 6.6. The CPU time 1 is for the classical Benders

decomposition and CPU time 2 represents the computation time of the proposed

method. Moreover, given that some of parameters in the proposed algorithm should

be well-tuned, we also show their effects on computation time by varying those

parameters one by one.

There are two important criteria for comparison. The first is CPU time and

the other is the number of iterations. Both of them can show the efficiency of an

algorithm. The number of iterations directly reflects the effectiveness of the selected

cuts. However, the computation time within each iteration also varies depending on

the selected cuts. Sometimes, a tighter cut may require longer computation time

for MP. Therefore, the amount of CPU time is also significant to test the proposed

approach. As shown in the Table 6.6, the proposed method outperformed Benders

decomposition for all cases in these two tests. This is because the classical method

just employs the extreme ray given by CPLEX, but the proposed method selects

the ray for the tightest constraint in terms of the specified point.

In Table 6.7, we change K, the number of feasible points in each iteration. We

select ten feasible points instead of five. For some cases, the performance is not

improved remarkably compared with the case of K = 5. Note that the number
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of feasible points should be selected considering the trade-off between reduction in

iteration numbers and total time of solving Problems 1–3, which is case-specific.

Then, we try two different values (0.1 and 0.5) for α in Problem 2 and the result

is shown in Table 8. Note that α is the threshold for searching new feasible points.

Increasing this value will find more feasible points. However, for the case of α = 0.5,

many new feasible points yield weak differences in λ, and these points do not improve

computational efficiency compared to the case of α = 0.1. In the comparison, α of

0.5 showed similar performance for n = 13, but inferior performance for the smallest-

scale case, n = 10. A further investigation on adaptive way of adjusting α based on

differences in λ would be beneficial in the future.

Next, the parameter of γ is changed. This value directly affects the number of

constraints appended to MP. Here we decrease the value from 0.4 to 0.2 and its

result is shown in Table 6.9. As γ is reduced, more constraints will be added to MP.

Even the number of iterations is reduced, the total computation time may not be

shortened because the computing time for MP is increased due to a large number

of constraints. It indicates that excessive number of cuts is not a good choice.

Finally, random initial feasible points are also changed to see the sensitivity of

the proposed approach. Its result is shown in Table 6.10. As with most optimization

algorithms, the initial value plays an important role in total computing time.

Inappropriate selection may slow down the proposed method. How to locate these

initial feasible point is still an open question and worth further investigation.

6.5 Summary

In this chapter, a new computational strategy is provided to accelerate Benders

decomposition, especially when only feasibility cuts are available. Since the line

linking the infeasible and feasible points is supposed to cross the boundary of feasible

region, the distance between the infeasible point and the intersection is employed

to determine the tightest cutting plane. To avoid solving nonlinear programming,

a bilinear optimization scheme is proposed and addressed efficiently. A classical

scheduling problem is studied for comparison, and the proposed approach shows

significant improvement in saving computational time and reducing the total number

of iterations. This approach still has room for further improvement. A systematic

guideline for choosing feasible points may improve performance of the proposed

approach.
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Chapter 7

Conclusion and Future Work

7.1 Major Contributions

Motivated by the great demands of computational abilities in high level process

control activities, this thesis is concerned with developing computationally efficient

framework to deal with the advanced process control, plant-wide dynamic optimiza-

tion and large-scale mixed integer linear programming (MILP). The current opti-

mization based methods, such as MPC and D-RTO, highly rely on the traditional

DAE model and require considerable computing power for the online calculations.

In some cases, especially for the large-scale nonlinear system with strong uncertain-

ties, these methodologies may be computationally impractical. The approximate

dynamic programming (ADP), well-developed in the computer science and opera-

tion researches (OR), is one of the most promising frameworks to alleviate the needs

of computations and the “curse of dimensionality”. Although it has achieved some

success in the Artificial Intelligence (AI) and OR communities, very few applications

are reported in the process control. Thus, one of the contributions of this work is

to tailor the conventional ADP approach to suit the characteristics of the process

control. Another work is focused on improving the current decomposition method

to facilitate solving of MILP.

In Chapter 3, to guarantee the stability of the proposed control technology, a

control Lyapunov function (CLF) design method is developed. Most of previous

work on CLF design focus on the polynomial system, which is rare in the process

control. The other general design methods, devoted to enlarging its region of

attraction (ROA) and building upon the convex optimization, resulting in a large-

scale linear/quadratic programming or linear matrix inequality (LMI) formulation.

The proposed optimization formulation is mainly concerned with the stabilization
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of the user specified region under the input and state constraints, thus particularly

suitable for the process control practice. An innovative coordinate search method is

proposed to seek the sub-optimal solution for the non-convex and non-differentiable

optimization problem. Furthermore, this scheme is also extended to the design of

robust control Lyapunov function (RCLF).

In Chapter 4, the proposed RCLF is combined with the MPC and ADP to

guarantee the stability. The ADP controller is constructed based on the historical

operational data and the polynomial approximator is applied to approach the value

function of the existing control policy. By means of the Bellman operator, the better

control actions can be inferred through the value function both in the experienced

region and their neighbourhoods. In the meantime, for the purpose of avoiding too

aggressive regulations, the feasible region of the ADP is strictly characterized and

the other areas in the state space are controlled by the MPC. As a result, a Lyapunov

based mixed control strategy is presented to handle the continuous nonlinear system

with uncertainties.

In Chapter 5, we presented the ADP based RTO. Usually, the classical DP

style methods suffer from continuous variables and high-dimensional state space

in the process control. On the contrary, the suggested scheme makes full use of

the operational data to transfer the continuous and large-scale system to a discrete

Markov chain model, which facilitates the application of DP. Though some previous

paper have recognized the importance of incorporating the “risk” in the MDP

framework, this study first designs the “risk state” artificially and provides the

rigorous mathematical derivation to lead a tradeoff between the profits and risks,

particularly useful to the process control.

In Chapter 6, we review the current decomposition methods for the MILP and

point out that the key factor affecting the computational time is the quality and

quantity of the cutting plane. In view of this, we proposed a systematic scheme

to select the tightest constraint based on the points in the feasible region. Clearly,

so called tightest constraints vary from the different feasible points. Hence, further

investigations provide a new criterion to choose a number of tightest cutting planes,

generated from various feasible points, and speed up the algorithm. The comparison

results show that the new method overrides the conventional Benders decomposition

and the sensitivity of parameters to the computational time is also checked.
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7.2 Future Work

The work of this thesis explored the development and application of efficient

optimization techniques in the process control. A number of challenges still remain

and deserve further investigation in the future. Some possible directions are listed

as follows:

• Online learning scheme: One of the merits of the ADP is its online learning

scheme. The coefficient of the approximator can be updated according to the

new arrival data. Theoretically, based on this scheme, the derived control

policy can adjust to the change of the environment timely. However, without

the variation of the environment, our experiments show that the performance

may be degraded if the online learning takes the place of the batch learning.

This phenomenon is not surprising because the batch learning employs the

least square which approximates each state equally, whereas the online learning

weights the current state more. As a result, the control law is always in

favor of some particular states and ineffective in other states. Moreover, the

convergence property of the online learning is still an open research problem.

The unexpected fluctuation of the cost and production is not acceptable in the

process industry. To enjoy the benefits of the online learning, it is necessary to

develop more reliable weighting procedure and figure out the strict condition

of the convergent learning.

• Partially observed Markov decision process (POMDP). Any ADP approaches

suggested in this thesis assume that all states can be observed immediately.

Unfortunately, this premise does not hold in most of practical cases. For

instance, to know the concentration, the sample of the reactants should be

sent to the analyzer and it usually takes a long time to get result. Moreover,

some of states, are not even observable. Thus, the ADP for POMDP directs a

way for the future research. Actually, in the process control research, people

have already noticed this issue and several soft sensor methods are proposed

including Kalman filter (KF), extended Kalman filter (EKF), particle filter,

unscented Kalman filter (UKF). Once the unknown state is estimated, the

problem can be solved as before. Another way to solve the POMDP stems

from machine learning. Given the calibration data, the distribution of the

unknown state can be derived. The Bellman optimal equation thus needs to
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modify the probability of the successive state by taking this distribution into

account. It renders the computation more complicated even for a small size

problem.

• Further application of the proposed coordinate search method. In chapter 4,

a CLF/RCLF design framework is proposed to handle the non-convex, non-

differentiable optimization. In essence, this method can be extended to the

general medium sized minimax problem. A potential application is to solve

the Hamilton-Jacobin-Bellman (HJB) equation approximately. Considering

the HJB equation:

∂J∗(x, t)
∂t

+ min
u

(r(x, u) +
J∗(x, t)

∂t
f(x, u)) = 0 (7.1)

subject to the system dynamics ẋ = f(x, u) and boundary condition J(x, T ) =

D(x). Since this partial differential equation (PDE) does not have the

smooth solution in general, a well-designed approximation is acceptable for

the optimal control. At beginning, the J(x, t) can be parameterized by the

linear approximation, for example, J = [x, t]ω[x, t]T . Then we try to minimize

the Bellman residual:

min
ω

max
x,t

∣∣∣∣
∂J∗(x, t, ω)

∂t
+ min

u
(r(x, u) +

J∗(x, t, ω)
∂t

f(x, u))
∣∣∣∣ (7.2)

s.t. J(x, T, ω) = D(x) (7.3)

ẋ = f(x, t) (7.4)

However, this minimax formulation is very challenging to our coordinate search

approach. Hence, further improvement should be considered to handle such

problem.

• Decomposition based MPC and ADP. The effectiveness of the model based

ADP highly depends on the structure of the model. Hence, exploring the

individual structure of each model will be beneficial to the ADP. Note that

the decomposition method just takes advantage of the sparse and factorable

nature of the model, borrowing this idea into the ADP is also an attractive

choice. The similar work has been done in the adaptive aggregation [11], in

which the highly related states are clustered together. In addition, the plant-

wide MPC can also make use of this decomposition method to simplify its

computations [24, 23].
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