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Chapter 1 

Introduction

1.1 Overview of the problem and solutions

A seismic wavefield is a continuous multi-dimensional signal of time and space. Data 

recorded in a reflection seismic survey are the result of sampling a continuous wavefield 

at discrete spatial positions. The sampling theorem (Oppenheim et al., 1983) tells us that a 

continuous wavefield should be sampled at a rate greater than the Nyquist rate such that 

the continuous wavefield may be reconstructed from the sampled (recorded) wavefield. 

However, perfect wavefield sampling may never happen in the real world. Seismic data 

are always spatially incomplete to some degree since the receiver coverage is necessarily 

limited in areal extend. This incompleteness can be divided into three categories: lack of 

areal extent, sparse areal sampling, and irregular gaps in the recording array (Thorson, 

1984). Cable length truncation is an example of the first category. The sparsity is often 

due to economical reasons. Field obstacles, dead traces, and cable feathering (particularly 

for marine surveys) can also result in irregular data gaps.

The incompleteness of the recorded wavefield creates problems for multi-channel 

processing steps such as suppression of coherent noise (multiples and ground roll), mi­

gration and inversion. Imaging for Amplitude Variation with Offset (AVO) or Amplitude 

Variation with Angle (AVA) analysis is an example where well sampled data are required 

in order to retrieve accurate estimates of AVO/ AVA signatures. AVO or AVA techniques 

can be used for quantitative seismic discrimination of lithologies and fluids, therefore, 

they provide an additional interpretive dimension to seismic data analysis. In particular, 

they permit us to move beyond the traditional structural interpretation into technologies

1
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1.1. OVERVIEW OF THE PROBLEM AND SOLUTIONS

capable of retrieving physical rock properties.

Since the early 1980s, the seismic exploration community started to use seismic am­

plitude analysis, namely AVO/AVA analysis, to estimate hydrocarbon indicators and to 

predict lithology. It has also become an essential tool in the hydrocarbon exploration in­

dustry to evaluate risk during exploration and development stages. AVO refers to the 

phenomena that amplitude of seismic reflections varies depending on the incidence an­

gle and physical parameters above and below the reflecting interface. Equations used to 

describe this dependency become the models for AVA analysis, i.e., (Shuey, 1985). The 

name of AVO is often used instead of AVA since in very simple geological settings, off­

set (source-receiver distance) and angle of incidence are related by a simple equation 

(Castagna and Smith, 1994). Also, seismic data are collected directly at specified offsets 

not angles.

Conventionally, AVO/AVA analysis is applied to normal-moveout (NMO) corrected 

common midpoint panels (CMP). One pitfall of this approach is that NMO cannot handle 

structural dips and therefore, the AVO/AVA analysis could lead to erroneous interpre­

tations (Resnick et al., 1986). To apply AVA techniques to the case where reflectors have 

dips or structural complexity, full prestack migration should be used to produce migrated 

data for AVA analysis.

As traditional migration for imaging structures, migration for AVO analysis can be 

implemented in a variety of ways. However, in general, formulations of migration for 

AVO analysis differ from the traditional migration in two important ways (Mosher et al.,

1996). First, the migration is performed on prestack data and individual offset informa­

tion is preserved in the output data. Rather than producing a single migrated section, the 

downward continued wavefield is kept as a prestack data volume. Second, it is essential 

to use an amplitude-preserving type of migration operator 1, otherwise AVO analysis is 

doomed to failure.

All migration algorithms require a properly sampled wavefield as the input to ex­

trapolate into the subsurface wavefield. For example, Kirchhoff migration, based on high

'The migration must be capable of undoing all the amplitude distortions produced by wave propagation 
between sources and receivers. A migration method capable of undoing such distortions and thus producing 
angle-dependent reflection coefficient at analysis points in a lossless, isotropic, elastic earth is called a "true- 
amplitude migration" (Gray, 1997).

2
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1.1. OVERVIEW OF THE PROBLEM AND SOLUTIONS

frequency asymptotic (ray) approximations, can produce both reflection coefficients and 

angle dependent reflectivity at any locations in the image. Therefore it can be used for 

AVO analysis in areas of moderate structural complexity (Tygel et al., 1999). Kirchhoff 

migration can be described as a process of summing through the discrete sampled data 

along the trajectories defined by travel times. It relies on the constructive and destructive 

interference of amplitudes migrated with a suite of restricted offset ranges to reproduce 

a correctly imaged reflector. If the spatial sampling is incomplete, Kirchhoff migration 

may produce unreliable amplitude responses. Fidelity of AVO analysis of prestack mi­

grated gathers can, therefore, be severely compromised. Conventional solutions for deal­

ing with sparse sampling are ilex binning 2 and normalization (Zheng et al., 2001). For 

example, normalize each trace in an input CMP gather by the gather fold (number of 

traces contributing to the gather) before migration or normalize traces in a specified off­

set range by the fold within that range. The latter permits to balance the energy of each 

offset contribution. Normalization can also be applied after migration by what is known 

as the hit count method  (Zheng et al., 2001). Canning and Gardner (1998) described the 

concept of area weighting, specifically for the case of common offset and common az­

imuth subsets of the data volume. However, simple binning and normalization schemes 

are often not sufficient to handle severely sparse data sets.

Wave equation migration method is another type of migration method based directly 

on the solution of the acoustic wave equation. It is well known for its capacity of being 

able to handle structural imaging in complex geological settings. Wave equation migra­

tion can be used to produce angle domain common image gathers that can be used for 

AVA analysis (de Bruin et al., 1990; Prucha et al., 1999; Mosher and Foster, 2000; Sava 

et al., 2001; Rickett, 2002; Sava and Fomel, 2003). Wave equation migration makes the 

assumption of the complete coverage of the recording geometry, missing data are often 

treated as zeros and the use of the incorrect wavefield can induce artifacts in migrated 

data and distort migrated amplitudes.

Though all direct migrations suffer from the incomplete sampling problem, least- 

squares migration can mitigate sampling artifacts by posing the imaging problem as an 

inverse problem and use a numerical approach to obtain a solution (Nemeth et al., 1999;

2Basically, this is a nearest neighbor interpolation scheme

3
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1.1. OVERVIEW OF THE PROBLEM AND SOLUTIONS

Duquet et al., 2000; Kuehl and Sacchi, 2002; Kuehl, 2002; Kuehl and Sacchi, 2003). In least- 

squares migration, standard migration is regarded as the adjoint of a seismic modeling 

operator which is an approximation of the process that governs the wave propagation 

in the subsurface and it can be further modified to approximate the inverse operator. In 

particular, Nemeth et al. (1999) used Kirchhoff migration as the adjoint of the model­

ing operator. Duquet et al. (2000) developed a different regularization scheme where an 

offset smoothing constraint is used for least-squares common offset Kirchhoff migration. 

Kuehl and Sacchi (2002; 2003) proposed least-squares DSR (double square root) migra­

tion. The least-squares migration is constrained by a ray parameter dependent smooth­

ing regularization that increases the robustness of the inversion. The constraint penalizes 

discontinuities and rapid amplitude changes that most likely stem from imaging artifacts 

and acquisition related noise.

In general, least-squares migration can reconstruct an image which can then be used 

to model well sampled data for AVO/AVA analysis. The disadvantage of this type of 

methods is that their implementations often involve iterative solutions of the linear equa­

tion, which can make them time-consuming. In addition, least-squares migration meth­

ods will fail if the velocity model used for the migration/de-migration operators is not 

known with sufficient detail.

A more popular strategy to deal with the problem of incomplete sampling is to regu­

larize the survey by interpolating/extrapolating the recorded wavefield prior to migra­

tion. Reconstruction before migration will precondition the measured wavefield for the 

migration process. Thus preventing problems associated to data sampling.

Several interpolation/reconstruction schemes have been proposed. For example, one 

group of methods are based on continuation operators. In particular, shot continuation 

(Bagaini and Spagnolini, 1993; Mazzucchelli et al., 1998) and offset continuation (Bolondi 

et al., 1982; Ronen, 1987; Bagaini and Spagnoliniz, 1996; Fomel, 2003) can be used to pre­

dict missing shots or missing offsets using the specified velocity model. These methods 

suffer from irregularities in the input geometry. Inversion (Chemingui, 1999) can be used 

to deal with problems induced by irregular input geometries but in general this can lead 

to computational expensive procedures.

Coherent dip interpolation methods (Larner et al., 1981) search multi-channel data

4
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1.1. OVERVIEW OF THE PROBLEM AND SOLUTIONS

for locally coherent dips and interpolate amplitudes linearly along those dip directions in 

the time-space domain. This family of methods do not handle multi-dips crossing events 

very well in the time-space domain. Pieprzak and McClean (1988) proposed a method 

that can deal with multi-dips, by involving an intelligent data adaptive procedure for 

picking dips in small overlapping spatio-temporal gates. Unfortunately, this approach 

to wavefield interpolation is prohibitively expensive for 3-D surveys. An automatic dip 

picking program is an obvious necessity for 3-D surveys where large amounts of data are 

acquired 3 (Pieprzak and McClean, 1988). However, an automatic search technique may 

provide misleading directions if noise is present (Spitz, 1991).

Another group of methods often used by industry are based on linear prediction. 

Spitz (1991) has introduced anti-alias f - x  interpolation schemes with prediction filters. 

In f - x  interpolation the underlying signal model is a superposition of complex sinusoids 

in the f - x  domain; this is equivalent to a superposition of linear events in the t-x domain 

(Sacchi and Kuehl, 2001). Claerbout (1992) proposed a method to interpolate aliased 

data using 2-D prediction error filters in the t-x domain. Crawley et al. (1999) described 

a method to further improve the accuracy of the interpolation for non-stationary data, 

however, is relatively more expensive. A similar method can also be developed in the 

f - k  domain (Gulunay and Chambers, 1996; Guo et al., 1996; Gulunay and Chambers,

1997). The advantage of applying trace interpolation in the Fourier domain is the effi­

ciency of the fast Fourier transform (FFT) and the fact that the solution of linear equations 

that appears in f - x  interpolation becomes complex division in the f - k  domain (Gulunay, 

2003). The above prediction error filter (PEF) type of interpolation methods are effective 

in dealing with aliased data since the information at low frequency is used to construct 

high frequencies. However, this is only possible if the data consists of a superposition of 

complex harmonics in the f - x  domain. This limits the application of these methods to 

small spatio-temporal windows where the aforementioned assumption is satisfied.

The Radon transform can be used for trace interpolation. Lu (1985) used a semblance- 

scaled local slant stack to handle conflicting dips and to generate higher resolution out­

put data. Kao (1997) applied a special slant stack and a novel iterative signal extraction 

scheme on traces in a small spatial window. The slant stack is modified to take advantage 

3Typical 3-D survey involves processing data sets that can occupy several Terabytes of disk space!!

5
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1.1. OVERVIEW OF THE PROBLEM AND SOLUTIONS

of the alias resisting property of a-trimmed mean. Yilmaz and Taner (1994) proposed a 

method where aliasing is suppressed by modifying the decomposed data (before inverse 

slant stacking) using fuzzy number theory. Hugonnet (1997) proposed to use a sparse 

Radon decomposition to attenuate spatial aliasing. The least-squares nonuniform Radon 

transform was used for trace interpolation by Schonewille and Duijndam (1998). Trad 

(2001) and Trad et al. (2002) proposed an interpolation method with high-resolution 

time-variant Radon transforms.

Fourier based interpolation methods make assumptions that the wavefield to be inter­

polated is spatially band limited. They have attractive computational properties but also 

have limitations with respect to regularizing aliased data. If the NMO velocity is known, 

the NMO process can be used to shrink the spatial bandwidth of the seismic wavefield 

before interpolation (Jakubowicz, 1994). The non-uniform FFT can be used to handle the 

irregular input geometry (Duijndam et al., 1999; Schonewille, 2000; Zwartjes and Duijn­

dam, 2000). Zwartjes and Duijndam (2000) have proposed a Fourier reconstruction for 

sparse seismic data based on the high resolution Fourier transform proposed by Sacchi 

and Ulrych (1996) and Sacchi et al. (1998). In this method, the Fourier transform of 

the unknown sampled wavefield is retrieved via inversion. The inverted Fourier coeffi­

cients are used to perform the synthesis of data at new spatial positions. Liu and Sacchi 

(2001; 2003) have proposed a Fourier domain reconstruction method where band limited 

reconstruction is formulated as a minimum-norm least-squares type problem where an 

adaptive spectral weighted norm regularization term is used to constrain solutions. The 

method incorporates both bandwidth and spectrum shape of the data as a prior knowl­

edge into the band limited data reconstruction problem , and often yields a better solution 

than the conventional band limited data reconstruction. The algorithm is implemented 

using a preconditioned conjugate gradients (CG) method and FFTs, thus, is very efficient 

tool to be used to interpolate large volumes of 3-D prestack data sets. In addition, com­

putational efficiency allows the method to be easily expanded to a higher dimensional 

interpolation scheme. The multi-dimensional scheme has an advantage as it allows the 

method to exploit the multi-dimensional nature of the seismic wavefield for an optimal 

seismic data reconstruction.

6

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1.2. OUTLINE

1.2 Outline

This thesis starts with an introduction to the problem of sampling and signal reconstruc­

tion in problems of 1-D and multi-dimensional band limited signals. In particular, sam­

pling and reconstruction issues of the multi-dimensional band limited seismic wavefield 

are discussed. In the Chapter 3, 1-D and multi-dimensional minimum weighted norm 

interpolation (MWNI) methods for seismic data reconstruction are presented in great de­

tails. In addition, the extension to 2-D and 3-D interpolation schemes is analyzed with 

real and simulated data.

In Chapter 4 ,2-D/3-D wavefield MWNI schemes are applied to synthetic data to test 

its effectiveness for wave equation AVA imaging. In Chapter 5, two field data examples 

are presented where 3-D and 4-D MWNI methods are applied to real world problems. 

The first data set consists of a 3-D common azimuth prestack volume where 3 indepen­

dent spatial coordinates are simultaneously interpolated. The second example, is a 3-D 

data prestack data volume with 4 independent spatial coordinates (2 midpoint and 2 

offsets) or in other words a multi-azimuth interpolation.

Finally, Chapter 6 summarizes the main points of this thesis and suggests future re­

search avenues to further improve the reconstruction of prestack seismic data.

7
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Chapter 2

Band limited wavefield 
reconstruction

Geophysical signals are continuous functions of time and /o r space. In the seismic experi­

ment, a source of energy is used to generate waves that propagate into the earth's interior. 

Reflections, generated at geological interfaces, are recorded and processed to estimate a 

model of the subsurface. The recorded wavefield is the sampled version of the continu­

ous wavefield. The sampled version has two meanings here. First, it indicates that the 

recorded wavefield is the discrete representation of the continuous wavefield. Second, 

it means that the recorded wavefield is always incomplete to some degree, due to, for 

example, the finite aperture of the receiver array and missing intermediate receivers. The 

sampling process, therefore, leads to two questions. Firstly, can the continuous wave­

field be properly sampled in a way such that it can be fully reconstructed based on the 

discrete wavefield? Secondly, if the sampled wavefield is an incomplete sequence, can 

the full discrete wavefield be completely or partially reconstructed based on the available 

information?

The first question concerns the periodic sampling of a continuous signal. A problem 

well-studied by the seismic acquisition community. A detailed study can be found in Ver­

meer (1990). The answer to the question is well known, that is, it is possible to uniquely 

reconstruct a continuous signal from its samples if the continuous signal is band limited. 

Sections 2.1 and 2.2 provide a review of the sampling and reconstruction process for 1-D 

and multi-dimensional continuous band limited signals.

The second question concerns the discrete to discrete seismic data reconstruction

8

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2.1. SAMPLING AND RECONSTRUCTION OF 1-D CONTINUOUS SIGNALS

problem in which case the reconstruction can be posed as an inverse problem. The in­

verse problem is often ill-posed. In fact, other constraints besides the band limited as­

sumption must be considered in order to obtain a unique and stable signal reconstruction 

(Jain and Ranganath, 1981). This problem is examined in Chapter 3.

2.1 Sampling and reconstruction of 1-D continuous signals

A discrete representation of a continuous-time1 signal is typically obtained through pe­

riodic sampling 2. The periodic sampling process can be mathematically represented by 

two stages (Oppenheim and Schafer, 1989). The first stage is to multiply the continuous 

function xc(t) by a periodic impulse train

OO

s ( t )=  S { t - n T ) ,  (2.1.1)
n~ —oo

where S(t) is the unit impulse function and T is the sampling period. Consequently,

OO

xs(t) =  Xc(t) ^ 2  S(t — nT)  (2.1.2)
n= —oo

oo

= X c ( n T ) 5 ( t  -  n T ) . (2.1.3)
n = —oo

The resulting signal x s(t) is a continuous signal, but it only has non-zeros values at inte­

ger multiples of T. The latter can be converted to a discrete sequence, x(n), indexed by 

the integer temporal sample n:

x(n) =  x c(n T ) , —oo < n < o o . (2-1.4)

The periodic sampling process is depicted in Figure 2.1.

We denote X c(Cl) the continuous Fourier transform of x c(t) defined by:

/
O O

xc(t)e~jntd t , (2.1.5)
-OO

Continuous-time signals (hereafter referred to as continuous signals) are defined for a continuous inde­
pendent variable.

2The same analysis is valid for spatial signals.

9
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2.1. SAMPLING AND RECONSTRUCTION OF 1-D CONTINUOUS SIGNALS

j ----------- — ------ ----------- — — ► t ------— — — — ------ — — ► t
0 T 2T 3T 4T 5T 6T 7T 0 T 2T 3T 4T 5T 6T 7T

(c) (d)

Figure 2.1: The periodic sampling process of a 1-D continuous signal, (a) A continuous signal 
xc(t). (b) Periodic impulse train s(t). (c) The signal xs(t). (d) The discrete sequence x(n).

and, the inverse Fourier transform:

x c(t) = 7r  X c(Q)ejatdn .  (2.1.6)
J  —  oo

The Fourier transform of the periodic impulse train s(t) is also a periodic impulse train 

(Oppenheim et al., 1983):

o  oo

s(fi) =  y  E  S( n - k n s) (2.1.7)
fc=—oo

where =  2ir/T  is the sampling frequency in radian per second. Therefore, the Fourier

transform of xs(t) can be represented as

10
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2.1. SAMPLING AND RECONSTRUCTION OF 1-D CONTINUOUS SIGNALS

x s(0) =  (2.1.8)
Z7T

1 r°° 2ir ^2.
=  —  /  X c( S l - T ) —  S ( r - M l a)dr

Z 7 r J - ° °  1  fc=—oo
1 0 0  / ‘ OO

=  s  M  X c ( f i  -  t ) $ ( t  -
, t/ —ook=— oo

 ̂ oo

=  T £  (2.1.9)
k=— oo

where the symbol * is used to denote convolution. We now define X ( cj), the discrete 

Fourier transform of the sequence x(n),

OO

X(u)  = x (n )e~jwn • (2.1.10)
n~ —oo

The inverse discrete-time Fourier transform is given by

x(n) = ± [  (2.1.11)
27r J2tt

It can be shown that

Xs(fi)= X (a ,) |u =n r .  (2.1.12)

Consequently, from equation (2.1.12) and (2.1.9) we can arrive to the following expres­

sion:

X ( u) = ± j r x c( % - 2- f ) .  (2.1.13)
k=—oo

Equation (2.1.9) shows that the Fourier transform of the sampled data is produced by 

superimposing copies of Xc((i) that are shifted by integer multiples of the sampling 

frequency Figure 2.2 depicts the frequency-domain representation of the sampling 

operator. Figure 2.2a shows a continuous signal x c(t). Figure 2.2b represents the spec­

trum of the continuous signal xc(t) that is band limited to the interval —Qn  to fljv- 

Figure 2.2c shows the spectrum of the periodic sampling operator with sampling fre­

quency Qs = 27t/Ti > 2Q/v, and Figure 2.2d shows the spectrum of the sampled signal.

11
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2.1. SAMPLING AND RECONSTRUCTION OF 1-D CONTINUOUS SIGNALS

The spectrum of another periodic sampling operator, but now with sampling frequency 

f ls = 2tv/T 2 < 2flm, is shown in Figure 2.2e. Figure 2.2f shows the spectrum of the 

sampled signal obtained with the second periodic sampling operator. Note that when 

the bandwidth of the signal fljv is less than one half the sampling frequency fls, each 

spectral replica is separated by and no overlap occurs as illustrated in Figure2.2d . 

Therefore, the original continuous signal can be recovered from the sampled signal with 

an ideal low-pass filter. If the bandwidth of the signal is greater than one half the sam­

pling frequency fls, the spectra of the replications are mixed together as illustrated in 

Figure 2.2f. In this case, the sampled version of the signal contains frequencies, which 

are commonly referred as aliases, that are not present in the original signal. Moreover, 

the original continuous signal can no longer be recovered exactly by a low-pass filtering 

operation.

This leads to the Shannon or Nyquist Sampling Theorem which states that for a band 

limited signal with maximum frequency QjV/ the sampling frequency f ls must be greater 

than twice the maximum frequency, i.e.,

n s > 2 flN (2.1.14)

in order to have the signal reconstructed without aliasing. The frequency Oat is com­

monly referred as the Nyquist sampling frequency, and the frequency 2f l ^  is called 

Nyquist rate.

If a continuous signal is sampled correctly according to the sampling theorem, it can be 

reconstructed perfectly from its samples. The perfect reconstruction can also be thought 

of as a two-step process. First, the discrete samples are converted into a continuous 

signal. Given a sequence of sample x(n), a weighted impulse train x s(t) can be formed 

in which the n-th sample is associated with the impulse train at t = nT:

OO

x(n)S(t -  n T ) . (2.1.15)
n ——oo

Then the weighted impulse train x s(t) is filtered through an ideal low-pass filter with 

cutoff frequency 7r/T ,

12
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2.1. SAMPLING AND RECONSTRUCTION OF 1-D CONTINUOUS SIGNALS

xc(t)

(a)
n

(b)

S(Q)
<

J

2ti/Ti
k i t k

----- ►
-f ls 0

(C)
as n

Xs(Q)
1/T1

—fls

S(n) kK

i . i
2tc/T2

*k I i V

----- ►
-2fls - f ls  0 fls 2fls O

1/T2

—fls—On 0 flNfls a

(f)

Figure 2.2: The frequency-domain representation of the periodic sampling operator, (a) A 
continuous-time signal xc(t). (b) The spectrum of the continuous-time signal that is band limited 
to the interval -fl/v to fijv- (c) The spectrum of a periodic sampling function with the sampling 
frequency 0,, = 2n/T\ > 2fl.v- (d) The spectrum of the result of sampling using the sampling 
function as shown in (c). (e) The spectrum of another periodic sampling function with the sam­
pling frequency = 2n/T2 < 2flN. (f) The spectrum of the result of sampling using the sampling 
function as shown in (e).

H ( Q ) (2.1.16)T, |0 | < tr/T  
0, otherwise

such that the Fourier transform of the filter output will be identical to the Fourier trans­

form of the original continuous signal xc(t). Note the filter has a gain T  that needs to 

compensate with the factor 1/T in equation (2.1.9). The corresponding impulse response 

is the inverse Fourier transform of H(Q):

13
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2.1. SAMPLING AND RECONSTRUCTION OF 1-D CONTINUOUS SIGNALS

pn/T
h{t) = T/2tt /  ejntdtt (2.1.17)

J - tc/T
sin(irt/T)

i r t /T

n— ~  oo 
oo

(2.1.18)

=  s in c(^ ). (2.1.19)

This two-step procedure therefore can be described mathematically as

Xr ( t )  =  T  x ( n ) S i n l J { t - ^ ) i T ]  (2.1.20)w  ^  K ' 7T( t - n T ) / T  v ’

= x (n )sinc(— j T" - ) » (2.1.21)
71=1 — 0 0

where a;r (f) is the recovered continuous signal. In general, the continuous signal can be 

reconstructed exactly from x s(t) by means of a low-pass filter with gain T  and a cutoff 

frequency £lc greater than f2jv and less than Cls — fljy. In this case, the impulse response 

is given by

h(t ) = T — s in c ( ^ - ) , (2.1.22)
7r 7r

so that

%r(t) = T  x (n )T— s i n c [ ^ ^ — , (2.1.23)
^ '  7T 7T

71 =  — OO

Using equation (2.1.23), band limited continuous signals can be reconstructed from their 

samples using a linear combination of sine functions, where the sine functions are weighted 

by sample values. Interpolation using the sine function as in equation (2.1.23) is com­

monly referred to as band limited interpolation, since it implements an exact reconstruc­

tion if x(t) is band limited and the sampling frequency satisfies the conditions of the 

sampling theorem (Oppenheim et al., 1983).

An extension to the above reconstruction process is resampling. Consider the process 

where a continuous signal xc has been sampled at a rate of =  1 /T0]d, and discrete

samples are a:0id(n ) =  xc(nTo[d). The discrete-time band limited signal x(n) can be re­

sampled to change its effective sampling rate. The sampling rate can be decreased or

14
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2.1. SAMPLING AND RECONSTRUCTION OF 1-D CONTINUOUS SIGNALS

increased. Decreasing the sampling rate is known as decimation. The original sampling 

rate can be decimated or downsampled by a integer factor of by retaining the A^th 

samples and discarding the remaining samples. Relative to the original sample rate, fl0id/ 

the new sample rate is

finew =  (2.1.24)
Ad

An example of decimation of a sequence by a factor of IVd =  2 is illustrated in Figure

2.3. Figure 2.3a shows the discrete replicated spectrum of x 0\&{ri), X0ia(o;). The spectrum 

of the decimated data Xnew(w) is shown in Figure 2.3b. Note that X0id(w) could have 

been obtained directly from sampling the continuous signal at a new sampling rate. In 

addition, there is a limit to the amount of decimation that can be performed relative 

to the bandwidth of the original signal. Figure 2.3c shows an example where the new 

sampling rate after decimation will result in the aliased spectrum. Therefore, a low- 

pass filter (shaded area) needs to be applied before decimation. Figure 2.3d shows the 

resulting alias-free spectrum after decimation with the low-pass filter. It is clear that high 

frequency components can be lost during the decimation process.

Increasing the sampling rate is often called interpolation. To increase a given sample 

rate or upsample by a factor of N\j, zeros must be inserted between each sample x0ia by 

a factor of N\j to create a new sequence x'ncw(nr) where

x new (n>) =  ^ o id ( n ) ,  when n  =  iVun. (2.1.25)

An example of upsampling by a factor of N\j =  2 is depicted in Figure 2.4. Figure 

2.4a and 2.4b show the original sequence x0id (n) and its spectrum Xold(a;). Figure 2.4c is 

the new sequence x'new(n') obtained by inserting zeros between each sample of x0id(n )- 

The spectrum of x„ew(n), X„ew(w) is shown in Figure 2.4d. Note that the spectrum of 

the zero-padded sequence X^ew(u>) is two times the replication of the spectrum of the 

original sequence since the effective sampling frequency Qnew is increased and the spec­

trum of x0id was already replicated 2 times between 0 radian/second and Qnew. The final 

step is to apply a low-pass filter (shaded area) to X^ew(u>) to simulating the new folding 

(sampling) frequency. The resulting spectrum Xnew(o;) and sequence xnew{n) are shown

15
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2.1. SAMPLING AND RECONSTRUCTION OF 1-D CONTINUOUS SIGNALS

(a)

Xold(co)

-►
a—fiold Qold

Xnew(to)

(b)
- f inew

-fin ew  -fin ew /2  0  -fin ew /2  finew a

Xnew(co)

-fin ew  -fin ew /2  0  -fin ew /2  finew n

Figure 2.3: Decimation by a factor of two. (a) Spectrum and replications of the original sequence, 
(b) Spectrum of the sequence decimated by a factor of 2. (c) An example where low-pass (shaded 
area) filtering is needed before decimation to avoid aliasing, (d) Spectrum of the alias-free deci­
mated signal.

in Figure 2.4f and 2.4e, respectively.

Note that the interpolation and decimation processes discussed above are valid for 

changing the sampling rate by an integer factor. It is important to stress, however, that 

by using combined interpolation and decimation processes, the sampling rate can be 

changed by a non-integer factor (Lyons, 1997).
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2.2. SAMPLING AND RECONSTRUCTION OF MULTI-DIMENSIONAL SIGNALS

(a)

. X o id (n )  

Tnew Told

(b)

X old(co)

ci old f in ew  f2

(C)

X  n e w (n )

A
Tnew Told

(d)
0 n

(e)

X new (n)

Tnew Told
(f)

Xnew(co)

Cl old
— ►

Q new  Cl

Figure 2.4: Interpolation by a factor of two. (a) The original sequence, (b) Spectrum and replica­
tions of the original sequence, (c) The new sequence obtained after zero padding, (d) Spectrum 
of the zero-padded sequence, (e) The interpolated sequence, (f) Spectrum of the interpolated 
sequence obtained by low-pass (shaded area) filtering the spectrum shown in (d).

2.2 Sampling and reconstruction of multi-dimensional signals

A multi-dimensional signal can be modeled as a function of M  > 2 independent vari­

ables. Many theoretical results discussed in this section can be viewed as a straightfor­

ward extensions of the 1-D case discussed in section 2.1. However, there are many other 

important issues that do not appear in the 1-D case (Dudgeon and Mersereau, 1984). For 

simplicity, the sampling and reconstruction problems for 2-D signals are discussed; a 

generalization to higher dimensions is straightforward.

2.2.1 Periodic sam p lin g  w ith  rectangular geom etry

Analogous to the 1-D case, a 2-D discrete sequence can be obtained through periodic 

sampling of the 2-D continuous signal. If we assume periodic sampling with rectangular

17
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2.2. SAMPLING AND RECONSTRUCTION OF MULTI-DIMENSIONAL SIGNALS

2ti/T2

Figure 2.5: Periodic sampling of a 2-D continuous signal with rectangular geometry, (a) Sam­
pling locations on the 2-D plane, (b) Replication of the original spectrum after periodic sampling.

geometry, we need to multiply the continuous signal x c(t\, t^) by a 2-D periodic impulse 

train of the form:

s(ti, t2) =  ^ 2  ^ 2  &{t\ -  n iTi, ti  -  U2T2),
77,2 = —OO ni= — oo

where S(ti, £2) is the 2-D unit impulse function and T\ and T2 indicate the horizontal and 

vertical sampling intervals. The 2-D sampled signal is now given by

OO OO

Xa( t l , t 2 )  =  Xc( t l , h )  Y2 X K h  -  n \ T \, ~  n 2T 2) (2 .2 .1)
712 =  “  OO 711 =  — 0 0  

OO OO

=  E E xc(niTi, 712T2) £(fi — m Ti, £2 — . (2.2.2)
722 =  — OO 721 =  — OO

The result of applying the periodic sampling operator to the continuous signal is x s(t). 

The latter can be converted to a discrete 2-D sequence x(ni,  722)

x(n\, n2) =  x c{n\T\, ri2T2) , —00 < n l, n2 < 00 . (2.2.3)

The sampling grid for this particular problem is depicted in Figure 2.5a.

Now, we define the 2-D Fourier transform of the continuous signal as:

18
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2.2. SAMPLING AND RECONSTRUCTION OF MULTI-DIMENSIONAL SIGNALS

/ OO PO O

/ Xc(t i , t2) exp(—jQ iii -  jO,2t2)dt\dt2 . (2.2.4)
-oo J —oo

in addition, the 2-D inverse Fourier transform is given by

P O O  POO

xc( t i , t 2) = — l  /  Xc(f i i ,0 2)exp(jfiiti +  j d 2t2)dflidQ2 ■ (2.2.5)
J— oo J — oo

The 2-D Fourier transform of the 2-D periodic impulse train is
OO OO

5(fiu  ^ 2) =  E E <5(fii — AjiD î, — £2^ 2) (2.2.6)
f a — — 0 0  k i = — 0 0

where f2„i =  2ir/T\ and fls2 =  27r/T2 are horizontal and vertical sampling frequencies. 

The Fourier transform of x s{h, f2) can be written as a convolution of X c(fh, fi2) with 

5(f2i, fh)- Consequently,

1 -  OO OO

X8(n1,n2) = 7F7F E E ^ 1- ^ 1, 02- ^ 2). (2.2.7)
l l J -  ̂ I. uk 2  =  — 0 0  re i —  — OO

We now write down the Fourier transform of the discrete signal:

OO OO

X(u) 1, U2) =  E E x(ni,  n2) exp(-jw m i -  iw2n2) . (2.2.8)
r i 2 = — 0 0  m = — 0 0

It can be shown that

X 8(Sl\, D2) =  -X’(wi,o;2)|Wi=n1Ti)w2=fi2T2 • (2.2.9)

Substituting equation (2.2.9) into (2.2.7) results in

V,  ̂ 1 1 V '' v "' v  ,u\ — 2irki U)2 ~ 2nk2^^ ( w i , ^ )  =  - -  ^  ^  Xc(----- ------- ,-------- -----). (2.2.10)
—00 fei= —00

Equation (2.2.7) shows that 2-D rectangular sampling of a continues signal, yields a dis­

crete signal with a Fourier spectrum that is a periodic extension of the spectrum of the 

continuous signal. This is illustrated in Figure 2.5b where the continuous signal is band 

limited:

Jfc(n 1, f i 2) = 0  for |fijvi| > Ifljrel > (2-2.11)
2 1 ± 2

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2. SAMPLING AND RECONSTRUCTION OF MULTI-DIMENSIONAL SIGNALS

The band limited spectrum is replicated by the sampling frequencies. Note that when 

the bandwidth of the signal is less than half the sampling frequency, each replicated 

spectrum is separated by horizontal and vertical sampling frequencies without overlap. 

Consequently, it is possible in this case to recover the continuous signal from the discrete 

signal. This leads to the 2-D sampling theorem which states that a band limited contin­

uous signal may be reconstructed from its sample values if the sampling periods T\ and 

T2 are small enough to ensure that the condition given by expression (2.2.11) is true.

To demonstrate this, first, the discrete signal is converted into a weighted 2-D impulse 

train

OO OO
x s(h,  *2) =  E E x(ni,  ri2)6(ti — raiTi, £2 — W2T2) • (2.2.12)

n2=—00 n i=—00
Then, x a(t \ , £2) is filtered through a 2-D ideal low-pass filter, e.g. with cutoff frequencies 

at half the sampling frequency:

ii(c) _  /  T iT *  | f l i |  <  7r/T i, | 0 2 | <  t t /T 2 .
H ( n u Q2) - |  0j otherwise ' (2‘213)

Note that the filter has a gain of T\ T2 to compensate for the factor l/(T i T2) in equation

(2.2.7). The filtering process can be done by convolving x s(h, <2) with the inverse Fourier

transform of the low-pass filter:

r p  r p  p o o  p O O

h { h , t 2) = y y  /  / exp(—jf i i t i  -  j$l2h)dtidt2 (2.2.14)
J — 00 J — 00

s in ^ t i /T ) )  sin(ixt2/T 2)
TTti/T) 1\t2/T2

(2.2.15)

=  sinc(^-)s inc(^ |). (2.2.16)

Finally, the reconstructed signal x r(t \ , £2) can be expressed in terms of x(ni,  722):

xr( t i , t 2) =  ^ 2  z(ni, n2)sinc(tl ^ lTl )smc{t- ^ ' 2T- ) . (2.2.17)
T l2  —  — OO 721=  — OO

In general, the 2-D low-pass filter can be chosen with the cutoff frequency Oci greater 

than f2jvi and less than f2si — fljvi, Hc2 greater than Qn2 and less than Q32 — 0 ^2, in 

which case, the filter impulse response can be written as
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2.2. SAMPLING AND RECONSTRUCTION OF MULTI-DIMENSIONAL SIGNALS

sinc( (2.2.18)

and the reconstructed signal can be expressed as

OO OO
^Cl^c2 * r^cl(^l 

7r2 7rXr ( t l ,  *2) =  :E( n i ’ n 2) T l 7 2“ ~ ]sinc[
7r

(2.2.19)

Note that if the sampling condition (2.2.11) is not satisfied, aliasing will occur: replicas 

of X (fli, SI2) in the periodic extension in (2.2.7) will fold into the region | S I ] |  < ir, 

IH2T2I < 7r. In this case, of course, exact (continuous) signals can not be recovered via the 

reconstruction scheme given by equation (2.2.19).

2.2.2 Periodic sam plin g  w ith  arbitrary sam p lin g  geom etries

Periodic sampling can be defined with arbitrary sampling geometries. A detailed deriva­

tion of periodic sampling of a 2-D continuous signal with arbitrary sampling geometries 

is given by Dudgeon and Mersereau (1984).

In general, if we define two linearly independent vectors v i =  (vu, ^12)' and V2 =  

(r>i2, V22)1, the locations of a doubly periodic set of samples in the (ii, £2)-plane can be 

written as

t\  =  v\\n\  4- vi2ri2 (2 2 201
t2 =  V2\n\  +  7722̂ 2

Using matrix-vector notation, the above equation can be written as

where V =  [vl v2] is a full rank linear operator and is referred to as the sampling matrix. 

Discrete samples of a continuous signal can be obtained with periodic sampling with the 

sampling matrix Y  such that

t  =  V n (2 .2 .21)

s(n) =  zc( y n ) . (2 .2 .22)

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2. SAMPLING AND RECONSTRUCTION OF MULTI-DIMENSIONAL SIGNALS

Figure 2.6: Periodic sampling of a 2-D continuous signal with arbitrary geometry, (a) Sampling 
locations in the (ti, t2)-plane determined by the vectors and v2 which comprise the sampling 
matrix y . (b) Replications of the original spectrum after the periodic sampling.

An example showing the sampling locations in the (ti, ^ -p la n e  is provided in Figure 

2.6a.

We now define the Fourier transform of a continuous signal x c in a vector form as

/ OO

a;c(t) exp(— (2.2.23)
-OO

and, similarly, the discrete Fourier transform as

*(<■>) =  E  x(n) exp(—joj'n). (2.2.24)
n

Let oo =  V 'n , it can be shown (Dudgeon and Mersereau, 1984) that the sampled signal 

has a spectrum that is the periodic extension of the original spectrum:

X(W) = \dkv\  E XcCVr,_1(w -  27rk)). (2.2.25)
k

or, alternatively

x { Y 'n )  =  \ d k v \  ^ Xc(° ~  y k )  (2226)
k

where U is a matrix that satisfies
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2.2. SAMPLING AND RECONSTRUCTION OF MULTI-DIMENSIONAL SIGNALS

U 'V  =  2?rl (2.2.27)

and I is a 2 x 2 identity matrix. Note in this case, the periodicity in the Fourier domain

vectors u i  and U2 representing the two independent directions in which Xc(0 ) will repli­

cate. This is illustrated in Figure 2.6b.

At this point, consider the continuous signal x c(t) band limited to a band B. If there is no 

aliasing, equation (2.2.26) becomes

Therefore, X c(tl) can be recovered from the and consequently, the band limited

continuous signal a:c(t) can be recovered from the sampled sequence x(n). In this case, 

equation (2.2.28) can be rearranged as

By taking the inverse Fourier transform of both sides of equation (2.2.29) and expressing 

X (y ;D) in terms of the sample values x{n\, n2), it can be shown that the continuous 

signal is recovered through the following equation:

is the interpolation function that allows the reconstruction of values of z c(t) at the points 

in between the sample locations given by t  =  Y n -

Note that to avoid aliasing U should be chosen so that there is no overlap among the 

replicated versions of Xc(fl). The choice of U determines the sampling matrix Y through 

equation (2.2.27). In general, U is not unique and this allows any band limited signal to

is described by the general matrix U, which can be thought of as a set of two periodic

x ( Y 'n )  =  ^ y [ * c ( f i )  (2.2.28)(2.2.28)

for values of lying in the square centered on the origin with sides of length 27t.

otherwise (2.2.29)

(2.2.30)
n

where

I  exp(jfl't)dCl
J b

(2.2.31)
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2.3. CONTINUOUS SEISMIC WAVEFIELD SAMPLING AND RECONSTRUCTION

be represented with several sampling geometries. However, it is often desirable to use a 

minimal sampling set for efficient sampling. It can be shown that the density of samples 

per unit area is given by 1/ ] det V  |. Minimizing this quantity is equivalent to minimizing 

| det U|. Consequently, the most efficient sampling scheme for a band limited signal is 

to choose the periodicity matrix U which has the smallest value of | detU | and which 

avoids aliasing for the particular shape of the signal's baseband B .

Rectangular sampling and hexagonal sampling are two commonly used sampling 

strategies. The rectangular sampling strategy has been discussed in section 2.2.1. The 

details of the hexagonal sampling are discussed by Dudgeon and Mersereau (1984) and 

Hindriks and Duijndam (2000). Hexagonal sampling poses advantage over the rectan­

gular sampling. It can be shown (Petersen and Middleton, 1962) that there is no more 

efficient sampling scheme for circularly band limited signals than hexagonal sampling.

2.3 Continuous seismic wavefield sampling and reconstruction

Seismic wavefields are a multi-dimensional continuous signal of time and space. There­

fore, the sampling process discussed in section 2.1 and 2.2 can be applied to the seismic 

wavefield sampling problem. In this section, some of properties of the continuous seis­

mic wavefield are first reviewed. Then, sampling matrices are derived to describe the 2-D 

seismic wavefield sampling in the shot-receiver and midpoint-offset domain. Finally, the 

reconstruction of the continuous wavefield is briefly discussed.

2.3.1 Properties o f th e con tin u ou s se ism ic  w avefield  

Coordinate transformation

The continuous seismic wavefield can be denoted as w(t, x s, x r ), where x s represents 

the shot vector (xs, ys) and x r represents the receiver vector (xr, yr). Alternatively, it can 

be described in terms of the midpoint vector x m(xm, yrn) and the offset vector x 0(x0, y0), 

i.e., w(t, x m , x 0), via the following linear coordinate transformation

X m  =  ( X s + X r)/2
x 0 =  (xs -  x r)

Considering the 2-D seismic survey for a single seismic line where ys =  yr =  0, the
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2.3. CONTINUOUS SEISMIC WAVEFIELD SAMPLING AND RECONSTRUCTION

wavefield can be simplified to a function of three independent variables w(t, x a, x r) or 

w(t, xm, x0). The coordinate transformation, in this case, is simplified to

X<m — (x3 T
Xq Xg Xf

and

(2.3.2)

xs — Xfn T Xol*2i
Xr ~  Xm Xoj2

The Jacobian determinant of the transformation

(2.3.3)

d X m / d x s dXm /dXr 1/2 1/2
d x 0j d x s dXm/dXr 1 - 1

=  1

indicates the area that is invariant under the transformation. 

The double Fourier transform of any panel w(t, x\)

/ oo poo
/  w(t, xi)  exp(— j2n f t )  exp(—j2irkiXi) dt dx\ (2.3.4)

- o o  J— OO

leads to the 2-D f - k  spectrum, where hi, i =  s, r, m, o is the wavenumber in source, 

receiver, midpoint or offset, respectively. The wavefield is now characterized by a 3-D 

Fourier transform

/ oo poo poo
I I w(t, x s, x r) exp[—j 2n ( f t  + ksx s +  krx r)] dt dxs dxr (2.3.5)

-oo J  —oo J —oo

or

/ oo poo poo
/ / w{t, xm, Xo) exp[-j2ir{ft + kmxm +  k0x 0)] dt dxm dxQ

-oo J —oo J —oo
(2.3.6)

leads to the 3-D f - k  spectrum in the (/, k3, kr) or (/, km, k„) domain. The coordinate 

transformations defined by equation (2.3.2) and (2.3.3) correspond to the following coor­

dinate transformations in the wavenumber domain:

km =  ks +  kr C? 'i 7\
k0 = (ks -  kr)/2and

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.3. CONTINUOUS SEISMIC WAVEFIELD SAMPLING AND RECONSTRUCTION

ks — km/2 -|- k0
kr =  km/2 — ka '

The Jacobian determinants of the transformations (2.3.7) and (2.3.8) are equal to 1. Hence, 

similar to the transformations defined by equations (2.3.2) and (2.3.3), the area is invariant 

under the transformations.

Spatial bandwidth limitation

A monochromatic plane wave traveling at apparent velocity Vi along the X{ axis defines 

a straight line in the frequency-wavenumber (/, ki) domain:

h  = f/Vi,  i = s , r . (2.3.9)

Consequently, the energy distribution of the continuous wavefield in the (/, ki) domain 

is bounded by lines

ks,r,o =  ±//Vmin and km =  ±2 //V min , (2.3.10)

where Vniin denotes minimum apparent velocity. This property is also referred to as 

spatial bandwidth limitation (Berkhout, 1994). If W (f ,  ks, kr) =  0 for /  > f max, then 

there exist maximum wavenumbers |fcs,r |max =  /max/Vmin- Similar reasoning applies to 

(kmi ko). Thus.

|^s|max =  |^r|max =  |^o|max =  /max/Lmin (2.3.11)

and

|&m|max =  2/max/Lmin ■ (2.3.12)

The energy distribution in the (/, ki), i = s, r, o, m  domain is illustrated in Figures 2.7a 

and 2.7b.

The properties given by (2.3.11) and (2.3.12) also define a square shape of energy dis­

tribution in the cross-section (ks, kr) or a diamond shape in the cross-section (km, k0) 

of a common frequency panel. This is illustrated in Figures 2.7c and 2.7d. In partic­

ular, waveforms traveling at the minimum apparent velocity Vmin have energy only at
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kmax

fmax
km =2 f /  Vmin

(b)

kmax
ks,r,o

fmax
ks,r,o=f /  Vmin

(a)

ks=f /  Vmin

kr=f / Vmin

(C)

ko=f /  Vmin

km=2f I Vmin

(d)

Figure 2.7: (a) Energy distribution in (/, ks), (/, K) and (/, k0). (b) Energy distribution in 
(/, km). (c) Cross-section (ks, kr) of a common frequency panel, (d) Cross-section (km, kQ) of 
a common frequency panel. Modified after Vermeer (1990).

km =  0, k 0 = i f /Vmin/ therefore, they correspond to points B and D in Figures 2.7c and 

2.7d. Back scattered waves traveling at the minimum velocity Vmjn has energy only at 

km — ± 2 //V min, ka = 0, therefore, they correspond to points A and C.

2.3.2 S am p lin g  m atrix for the con tin u ou s se ism ic  w avefie ld

Recording the continuous wavefield can be described as a discrete sampling process of 

the continuous wavefield3. The process is analogous to the multi-dimensional sampling 

process discussed in section 2.2. The sampling theorem states that sampling frequen­

cies should be high enough to ensure aliasing-free sampling, therefore, the continuous 

wavefield should be sampled with the sampling frequency greater than the Nyquist rate 

defined by the bandwidth of the continuous wavefield:

3Many other effects of recording action are discussed by Vermeer (1990), e.g. receiver response, source 
wavelet and strength, shot and receiver pattern, additive ambient noise. Only the effects related to the 
discrete sampling process will be discussed here.
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x6
Si

S2

S iS2

Xo

Figure 2.8: Regular off-end shooting geometry, shots moving from right to left. Top:(a:s, xr) co­
ordinate system, each dot represents a trace in this system, Middle: Shots and receive r positions 
along seismic line, Bottom: (xm, x0) coordinate system, each dot represents a trace in this system. 
(After Vermeer (1990))

A x s < 

A x r < 

A x 0 <

and

1
A t<  — ,

/max
i Fmin

2|A;S| max /max
1 Fmin

2|fcr|max /max
1 ^min

2|&0|max /max

1 Fmin-  = - p - . (2.3.13)
•̂ l̂ mlmax max

Here, A t  denotes the sampling interval in time and Axi  denotes the sampling period or 

interval along the Xi axis.
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Xr

Vsr2

-»-------  Xs
Vsr1

Xo

Vmol

Vmo2

Xm

Figure 2.9: The sampling matrices in the shot-receiver domain and midpoint-offset domain. 
The shot-receiver domain sampling matrix is Y sr = [vsri vsr2] and the midpoint-offset domain 
sampling matrix is V mo = [vmol vmo2].

Sampling naturally happens in the shot-receiver domain, and can be transformed into 

the midpoint-offset domain via coordinate transformations. The wavefield in the shot 

receiver and midpoint offset domain is illustrated in Figure 2.8. Figure 2.9 depicts sam­

pling matrices in the shot-receiver domain Y sr =  [vsri v sr2] and midpoint-offset domain 

Y m o  =  [v m o i  v m o 2 ] . According to equation (2.2.20), locations of the 2-D periodic sam­

pling in the (x s, xr) plane can be written as

x  _  h u ia  m  0
/ max v  ■ 2.3.14)

xr = 0 + f min 2/max

In equation (2.3.14), note that the sampling periods along the x s and xr axises are chosen 

to be the maximum aliasing-free sampling periods. The sampling matrix, therefore, is

VI  sr [ v sri Vs r 2 ]

Ynin/ /max 
0

(2.3.15)

(2.3.16)
Ynin/ /max

In the midpoint-offset domain, 2-D sampling is defined on the (x m, x0) plane. Substitut­

ing equation (2.3.14) into equation (2.3.2),
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Xrn. —

Xn =

1 Vmin . 1 Yninn\ +  - - — n 2
2 /max
Vnin

2 /„
Ynin ni -  - —  n2 .

/max /max

Therefore, the sampling matrix in the midpoint/offset domain can be written as

(2.3.17)

(2.3.18)

Y mo  =  [ Vmol V mo2 ] (2.3.19)

_  ’ Vmin/2 /max Vmin/2/max 1 (0 'Z
~~ V  ■ / f  —V  - I f  ‘'m in / Jmax >mm/Jmax

According to equation (2.2.27), with the sampling matrices Ysr ar*d Y mo, the general 

matrices U ,r and Umo can be written as (Appendix B):

U .

=  27r

[ Uarl USr2 ] 

/m ax/V nir 0
/max /  Vm

(2.3.21)

(2.3.22)

and

Um o — [ u mol Umo2 ]

/m ax/Y am  
/m ax/21/nir

= 271 f m a x / V r
- /m a x /2 V r

max/ Kmm 
min

(2.3.23)

(2.3.24)

Therefore, the periodicity of the spectrum of the sampled wavefield is described by the 

general matrix U s?. in the ( k s , k r ) domain and U mo in the ( k m , k a) domain. This is il­

lustrated in Figure 2.10. In particular, Figure 2.10a shows the spectrum of the sampled 

wavefield in the cross-section (k s , k r ) of the common frequency panel at /  =  /max- The 

shaded square area indicates the spectrum of the original continuous wavefield and it 

is separated by two periodicity vectors u s and ur without overlapping with its replicas. 

Figure 2.10b shows the spectrum of the sampled wavefield in the cross-section ( k m , k a) of 

the common frequency panel at /  =  /max- The shaded diamond area indicates the spec­

trum of the original continuous wavefield and it is separated by two periodicity vectors 

um and u0 without overlapping with its replicas. Note that although the spectrum of the
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ks

ks=frrV ax / Vi nin

U

Usr1 Kr=fmax /  V

Figure 2.10: The periodicity of the spectrum of the sampled wavefield in the (ka, kr) domain 
and (km, k0) domain, (a) The cross-section (ks, kr) of the common frequency panel at /  = f max. 
The shaded square area indicates the spectrum of the original continuous wavefield and it is sep­
arated by the two periodicity vectors u.,ri and u sr2. (b) The cross-section (km, k0) of the common 
frequency panel at /  = f max. The shaded diamond area indicates the spectrum of the original 
continuous wavefield and it is separated by the two periodicity vectors umoi and um02.

original continuous wavefield is not aliased by its replicas, the (km, k„) spectrum inside 

the dash-line box is composed of the spectrum of the original continuous wavefield and 

its replicas. Consequently, the properly sampled data in the shot-receiver domain may 

appear to be aliased in the midpoint-offset domain depending on the bandwidth of the 

original spectrum. This leads to a sampling paradox discussed in (Vermeer, 1990).

2.3.3 R econstruction  o f the con tin u ou s se ism ic  w avefie ld

The reconstruction of the continuous seismic wavefield can be done in a way analogous 

to the reconstruction of multi-dimensional signals discussed in section 2.2. In particular, 

the reconstruction of the original continuous wavefield can be done in both the shot- 

receiver domain and midpoint-offset domain. If the Nyquist sampling rate is satisfied, 

the reconstruction result from two different domains should be the same. In other words, 

the continuous wavefield can be reconstructed exactly from the sampling data in both the 

shot-receiver domain and midpoint-offset domain. Obviously, 2-D low-pass filters used 

for the shot-receiver domain and midpoint-offset domain data reconstruction may have
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X„

X0

h o * o * o » o » o * o » o » o * o * o l
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'<► o •  o •  o •  o •  o •  o •  o •  o •  o •  o' #

tJV'

Figure 2.11: To de-aliasing in CMPs and COPs, the new traces marked with small circles need 
to be interpolated. The interpolation can be done in the shot-receiver domain with a horizontal 
(shot direction) low-pass filter or in the midpoint-offset domain with a diamond shape low-pass 
filter as shown in Figure 2.10.

different shapes (i.e. a square shape or a diamond shape).

It is important to stress that the 2-D reconstruction of the continuous wavefield should 

not be affected by the sampling paradox. As long as the original spectrum is not over­

lapped by its replicas (i.e. as the case shown in Figure 2.10), the total wavefield is properly 

sampled in (t, a:s, xr) and therefore also in (t , xm, x0)- The 2-D reconstruction can then 

be used to obtain the continuous wavefield. However, the fact remains that even if the 

total wavefield is properly sampled, any individual common offset pannels (COP) and 

common midpoint pannels (CMP) may be undersampled. To achieve proper sampling in 

any one of the individual gathers, the missing data in the midpoint-offset domain needs 

to be reconstructed. An example is shown in Figure 2.11 where the original data (denoted 

with black dots) are properly sampled in the shot and receiver domain. The small circle 

mark indicates the new traces that one needs to generate to avoid aliasing in common- 

offset or common-midpoint individual gathers; this can be simply done by applying a 

diamond shape interpolation filter (as shown in Figure 2.10) in the midpoint-offset do­

main or a horizontal (shot direction) low-pass filter in the shot-receiver domain.
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2.4 Summary

This chapter reviews periodic sampling of a continuous signal and band limited recon­

struction of a continuous signal from its discrete representation (sampling). In particular, 

the recorded seismic data can be regarded as a discrete representation of a continuous 

wavefield. It is possible to uniquely reconstruct a band limited continuous wavefield 

from the discrete sampling if the continuous wavefield is sampled with the sampling fre­

quency greater than the Nyquist sampling rate defined by the bandwidth of the continu­

ous wavefield. In other words, the continuous wavefield can be fully reconstructed if the 

sampled wavefield is not aliased. For 2-D wavefield reconstruction, the reconstruction 

can be done in both the shot-receiver and midpoint-offset domain. It is important to stress 

that a multi-dimensional wavefield may be properly sampled in the multi-dimensional 

domain but poorly sampled (aliased) in individual domains which lead to a sampling 

paradox. A multi-dimensional band limited reconstruction scheme will not be affected 

by the sampling paradox.
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Chapter 3

MWNI of seismic data

3.1 Introduction

The goal of the geophysical exploration is to reconstruct a subsurface image of Earth 

from the seismic data recorded on the acquisition at the surface. A continuous seismic 

wavefield is a multi-dimensional signal of time and space. To uniquely represent the con­

tinuous wavefield from recorded data, the wavefield should be sampled at a rate higher 

than its Nyquist rate. However, recorded seismic data are always spatially incomplete to 

some degree: The receiver coverage is necessarily limited in areal extent; sparse sampling 

often happens in 3-D surveys due to economic reasons; irregular gaps are often present 

in recorded data due to field obstacles and other reasons. In addition, recorded data 

will contain addictive noise. In this case, the problem of reconstruction of the continuous 

wavefield has no unique solution and can only be dealt with in discrete time or space. The 

inverse theory provides a formalism to deal with these problems. In fact, inverse theory 

is also used in many seismic data reconstruction methods, for example, prediction error 

filtering interpolation (Spitz, 1991; Claerbout, 1992), wave equation based interpolation 

(Ronen, 1987). Similarly, the band limited data interpolation/extrapolation problem can 

also be posed as an inverse problem where from inadequate and incomplete data one 

attempts to recover the band limited seismic wavefield (Cary, 1997; Hindriks et al., 1997; 

Duijndam et al., 1999; Schonewille, 2000).

The inverse problem is often ill-posed and, as it is well known, it can be honored by 

many solutions. In this case, a regularization strategy can be used to retrieve a unique 

and stable solution. Criteria to choose a suitable regularization strategy in the context of
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interpolation and extrapolation have been discussed by several researchers (Cabrera and 

Parks, 1991; Sacchi and Ulrych, 1996; Hindriks et al., 1997; Sacchi et al., 1998; Duijndam 

et al., 1999; Zwartjes and Duijndam, 2000). For example, minimum norm spectral reg­

ularization can be used when seismic data are assumed to be bandlimited in the spatial 

wavenumber domain (Duijndam et al., 1999). Similarly, a regularization derived using 

the Cauchy criterion can be used to obtain a high resolution (sparse) discrete Fourier 

transform that can be used to perform the synthesis of data at new spatial positions (Sac­

chi and Ulrych, 1996; Sacchi et al., 1998; Zwartjes and Duijndam, 2000). Liu and Sacchi 

(2001; 2003) have proposed a MWNI algorithm where band limited interpolation is for­

mulated as a minimum-norm least-squares problem where an adaptive discrete Fourier 

transform (DFT)-weighted norm regularization term is used to constrain the solution. 

The method permits one to incorporate the a priori spectral signature of the unknown 

wavefield.

In this chapter, the MWNI algorithm (Liu and Sacchi, 2001; Liu and Sacchi, 2003) is 

developed to perform multi-dimensional reconstruction of seismic wavefields. Numer­

ical examples with synthetic and field data are used to demonstrate the merits of the 

proposed interpolation scheme.

The 1-D interpolation problem is analyzed first. The extension to higher dimensions is 

proposed in section 3.3 of this chapter. By 1-D interpolation, interpolation is understood 

in the f - x  domain along the spatial dimension x. In other words, a seismic gather in 

the t-x domain is first transformed to the frequency domain and, then, interpolation is 

carried out along the spatial dimension x for each temporal frequency / .  This thesis 

addresses the reconstruction problem along spatial dimensions since reflection seismic 

data are nearly always adequately sampled in time.

3.2 Interpolation of band limited data

3.2.1 Basic d efin ition s and prob lem s set up

The discrete-time or space problem of interpolation/extrapolation involves an infinite 

length signal x(n) indexed on integer variable — oo < n < oo; for which its Fourier 

transform can be defined as
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x(n)

> n
1 n(1)n(2)n(3) n(N) M

Figure 3.1: The band limited interpolation/extrapolation problem: the given time samples are 
*n(i)> xn(2), x n(3)> ■■■> x n ( N )  arid are located in the interval [1, M\. The remaining samples in this 
interval are to be estimated.

where /  = e  [—0.5, 0.5] denotes the normalized frequency in Hz. The sequence is band 

limited to a support region 0  ( a subset of [—0.5, 0.5]) if X ( f )  = 0 for those frequencies 

that do not belong to 0 .  Note that 0  may consist of a series of intervals. Figure 3.1 

shows the typical situation in the discrete-time, band limited interpolation/extrapolation 

problem. Only finite number of samples of x(n):  x n^ ,  x n(2), x n(3)> ■ ■ ■ > x n(N) are known 

and their locations are indicated by n (l), n(2), n(3), . . . ,  n ( N ) .  The rest of samples are 

to be estimated.

If the given samples of interest are included in the range 1 -  M as  shown in Figure 

3.1, the problem of estimating these M  values (samples) can be expressed using finite 

dimensional vectors and matrices.

We will denote x  the length-M vector of data sampled on a regular grid x\,  X2, X3,  . . . ,  xm-  

The observations are given by the elements of the vector y =  [®n(i)i xn(2), xn(3)> • • ■ > xn^ ) ] T 

where the set N  =  {n(l), n (2), n(3), . . . ,  n(N)}  is used to indicate the position of the 

known samples or observations. We now define the sampling matrix T with elements 

Ti,j =  $n(i),j> where 6 indicates the Kronecker operator. It is quite simple to show that

OO
X ( f )  = £  x(n)e-#* fn (3.2.1)

and the inverse Fourier transform is defined as

(3.2.2)
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3.2. INTERPOLATION OF BAND LIMITED DATA

the complete data and the observations are connected by the following linear system

y =  T x . (3.2.3)

For example, if we assume that the complete data consist of M  =  5 consecutive samples 

x =  [aci, X2, X3, X4, xa}T, whereas the observations (available data) are given by samples 

at positions M  = {2, 3, 5}, that is y  — [x2, xs, x$\T. Then, equation (3.2.3) becomes

/  xi \
X2 \  /  0 1 0 0 0 \  X2
^3 I =  I 0 0 1 0 0 J X3
£5 /  \  0 0 0 0 1 /  X4

\  x5 }

Note that the sampling operator T has the following property:

(3.2.4)

TT =  IiJV ) (3.2.5)

where 1^ denotes the N  x N  identity matrix. It can also be shown that T t T 7̂  1 M .

Define the Discrete Fourier Transform (DFT) and the Inverse Discrete Fourier Trans­

form (IDFT) as follows:

M
X k =  4 =  ^  xm e-*27r(m- 1) {k-i)/M  ̂ k = h " ^ M

* m=l

x r, 0i 2tt (m—1) (k—\)/M , m  = 1, . . . ,  M .
k=1

The following compact notation will be used for the DFT and IDFT, respectively:

(3.2.6)

(3.2.7)

X  =  Fx (3.2.8)

x =  F ^ X  (3.2.9)

where the superscript H is used to denote the Hermitian transpose. Notice that F is the 

DFT unitary matrix with inverse given by F _1 =  FH.

The length-M signal will be said to be band limited (or DFT-limited) if its DFT van­

ishes outside of the support K, a set of integer index {A;i, &2, ks, • • • , kj} ,  which is a
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Discrete

Discrete

'i¥

► n
M

(b)

Continuous

Discrete
A

—4—A-

(0

■V n

Figure 3.2: (a) An infinite sequence and its discrete time Fourier transform spectrum, (b) A finite 
sequence and its DFT spectrum.

subset of [1, M]. Figure 3.2b depicts a finite sequence and its DFT. Unlike an infinite 

sequence which has continuous frequencies (shown in Figure 3.2a), the DFT of an finite 

sequence has discrete frequencies. Applying an M-point DFT to M  values of x(n) means 

that it is considered as a sequence that is periodic with period M  so that x(n) = x ( n + r M ) 

for any integer value of r.

3.2.2 M in im um  w eig h ted  norm  in version  o f the sam plin g  operator

The signal reconstruction or interpolation problem given by equation (3.2.3) entails the 

solution of an under-determined system of equations (more unknowns than observa­

tions). It is clear that the problem does not have a unique solution. In general, one way of 

solving this type of problems is by restricting the class of solutions by providing suitable 

prior information. For example, a solution can be sought such that the model norm is 

minimum among all the possible solutions. In the absence of errors, the inversion can be 

reduced to solving the following constrained minimization problem:
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A

► k
M

2C= {ki,k2 ,k3...kJ}

Figure 3.3: The weighting function P% is defined with the same support and similar shape as the 
DFT-limited sequence which also defines the weighted norm

Minimize

Subject to T x =  y

where ||.||w  is used to indicate a weighted norm. Following Cabrera and Parks (1991), 

the following wavenumber domain norm is selected:

where are spectral domain weights with support and shape similar to those of the sig­

nal to interpolate; the set of indexes K are used to indicate the region of spectral support 

of the signal. This is illustrated in Figure 3.3. It is understood that the Pk ^  0 for k G K. 

The coefficient Pk represents the spectral power at wavenumber index k.

Now introduce the following diagonal matrix A with elements given by

Similarly, define the pseudoinverse of the diagonal matrix A, as the matrix A^ with ele­

ments given by

keK k

(3.2.10)

k e ) C  
k^JC  ' (3.2.11)

(3.2.12)

The wavenumber domain norm can now be expressed as
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3.2. INTERPOLATION OF BAND LIMITED DATA

||x||yv =  A* X . (3.2.13)

After combining equations (3.2.8) and (3.2.13), the following expression can be arrived:

||x||fv =  x ^ F ^ A ^ F x

=  x H Q* x  (3.2.14)

where the matrix Qt =  FH A.t F is a circulant matrix (Strang, 1986). The pseudoinverse 

of the matrix Qt is also a circulant matrix Q =  F ^  A F. For example, let cm be the inverse 

DFT of the diagonal elements of the matrix A, Q is a circular convolution filtering matrix

Cl CM C M -1 ' ■ C2 '

C2 C\ CM ■ c 3

C3 C2

.  CM C M -1 ' C1 .

Both Q and Q* are band limiting operators. In other words, they annihilate any spec­

tral component k £ K.

The minimum norm solution is found by minimizing the following cost function:

J = ^t (Tx -y )  + IMIvv-

In the above equation A denotes the vector of Lagrange multipliers. Minimizing J  with 

respect to x  subject to T x  — y  =  0 leads to the following solution (see Appendix C):

x = QTt  (TQ T 7 ) - 1 y . (3.2.15)

In the previous derivation the matrix (TQ Tt ) is assumed to be invertible. If this is not 

the case, the inverse can be replaced by the Moore-Penrose pseudoinverse (Cabrera and 

Parks, 1991).

The above solution is designated as Minimum Weighted Norm Interpolation (MWNI). 

We will reserve the name Minimum Norm Interpolation (MNI) for the case where Q is a 

band-pass filter with spectral weights P |  =  1, k € JC. In other words, we constrain the 

solution to the class of band limited signals with spectral components i n k  e K, and we 

made no attempt to impose an a priori spectral shape.
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3.2. INTERPOLATION OF BAND LIMITED DATA

Consider the special case when Q is an all-pass filtering matrix with DFT coefficients 

Afc =  1 for all k =  1, . . .  M.  In this case, A =  I, and after invoking the orthonormality of 

the DFT operator we obtain the following expression:

In the example provided by equation (3.2.4), the minimum norm solution becomes:

In other words, missing samples were filled in with zeros. This proves that without any 

constraints, the minimum norm type of method yields a solution with minimum energy.

3.2.3 Inversion  o f T  in  the presence o f n o ise

When the observations contain additive noise rather than trying to fit exactly all the ob­

servations, the observations can be fit in the least-squares sense. In this case a cost func­

tion that combines a data misfit function in conjunction with the model norm is mini­

mized:

where p2 is the trade-off parameter of the problem. Notice that minimizing J  is equiva­

lent to find the least-squares solution of the following over-determined system of equa­

tions

where according to our previous definitions, the matrix of weights W  is given by

Unfortunately, the augmented matrix of the problem is rank deficient, and, therefore, 

equation (3.2.19) does not have a unique solution. The latter can be solved by choosing, 

among all possible least-squares solutions, the one with minimum Euclidean norm. This 

can be done with the aid of the Singular Value Decomposition (SVD) (Golub and Reinsch, 

1970) of the augmented matrix. In particular, the (N  +  M)  x M  augmented matrix

x =  T T(T T T)_1y  =  T Ty . (3.2.16)

( o \
X2

x  =  T Ty =  z 3 (3.2.17)
0V x5 J

J  =  IITX — y ||2 +  P2||x llvv > (3.2.18)

(3.2.19)

W  =  A fl/ 2F . (3.2.20)
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- (  p w

is decomposed into the product of three matrices: L =  Y D U  T, where y  is an orthogonal 

(N  + M ) x  (N  +  M)  matrix of left singular vectors, U is an orthogonal M  x  M  matrix of 

right singular vectors, and D is a diagonal (N  + M)  x  M  matrix of singular values. The 

least-squares solution to equation (3.2.19) is then

x =  U D ^ Y d  (3.2.21)

where

d = ( o ) ‘ (32'22)

The matrix LTD 1Y is the generalized inverse of the rectangular matrix L. Since L 

is rank deficient, the SVD will give the least-squares solution whose Euclidean norm is 

smaller than all other least-squares solutions (Campell and Meyer, 1979). Alternatively, 

the method of CG can be used. For rank-deficient problems, the solution to which the 

CG method converges depends upon the initial approximation adopted. If the initial 

approximation is chosen to be x =  0, then CG converges to the minimum-norm least-

squares solution (Hestenes, 1975). One advantage of using the CG method is that the

computational cost of the algorithm heavily depends on matrix times vector operations. 

These operations can be efficiently performed using the FFT.

In the numerical implementation, equation (3.2.19) is modified with the following 

change of variable: z =  W x. The augmented system becomes

T W O -  <32-23>
The trade-off parameter can be set to p = 0 and the number of iterations in the CG method 

play the role of regularization parameter (Flansen, 1998). Finally,

T W 1z « y  (3.2.24)

is solved with CG and and the algorithm is stopped when a maximum number of itera­

tions is reached or a desired misfit is achieved. The CG method often converges in less 

than 20 iterations.
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z° =  0;
So =  y -  Tzo =  y; A
r o =  Po =  t*(y -  tz o ) =  T*y;
Qo =  T p 0;
7o =  (ro> r o);

for i =  0 : niter
Ot+i =  7o/(qi,Qi);
®i+1 ~  T Oj-f-lPj!
Sj+i — s % cni- ;
Fj+i =  T*si+i;
7 i+ l =  (r i+ l ) r *+l)i 
if 7i+i < tol * |jy III 

break; 
end;
Pi+i =  n + i h i \
P i + i  =  t j  +  A + i p * ;  

q*+i T p j_ j_ i )

end

Table 3.1: Conjugate gradient algorithm for non-square matrix.

A CG algorithm for non-square matrix is shown in Table 3.1 (Hestenes and Stiefel,
A A $

1952). Where T  and T  are forward and adjoint operators respectively:

T  =  TA fl/2F  (3.2.25)

and

T  * =  F HAtl/2T T . (3.2.26)

As discussed before, the main computational burden of CG methods is the matrix-vector 

products with the system matrix. For the MWNI algorithm, matrix-vector operations
A A £

involving operators T  and T  can be done very efficiently: The forward operation (ap­

plying T) is to apply the FFT, multiply by diagonal weights and truncate; The adjoint 

operation (applying T*) is to pad with zero, multiply by diagonal weights and apply the 

inverse FFT. Note that when coding the CG algorithm, it's important to test if T  and T* 

are indeed an adjoint operator pair. According to the definition of the adjoint operator, 

the operator and its adjoint satisfy

< d, T*f > = <  Td, f  >, (3.2.27)
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for any vector d and f. A dot product test (Claerbout, 1992) can be carried by loading 

d and f  with random numbers. If T* and T  has been properly implemented, equation 

(3.2.27) should be satisfied down to the least significant digit.

At this point a few comments are in order. The transition from equation (3.2.19) to 

(3.2.23) is only valid for a full rank matrix W . Solving for a band limited solution (k e 

K), however, permits one to claim that solving equation (3.2.23) is equivalent to solving 

equation (3.2.19) even when the rank of W  is not full (see Appendix D).

3.2.4 A  com parison  o f h ig h  reso lu tion  Fourier transform  approach and M W N I

There is certain similarity between the MWNI method and the high resolution Fourier 

transform (HRFT) approach proposed by Sacchi and Ulrych (Sacchi and Ulrych, 1996). 

This section compares the MWNI and HRFT methods.

In HRFT method, one estimates DFT coefficients based on the available data:

1 M
V" =  -755 n = l , . . . , J V  (3.2.28)

^  ife

where M  > N.  Note that the IDFT of the estimated DFT coefficients gives the unknown

data xm. The above equation gives rise to a linear system of equations:

y =  F ^ X  (3.2.29)

A
where F  is a IV x M  matrix, as opposed to the M x M matrix F ^  in equation (3.2.9). The 

linear equation in (3.2.29) is inverted using the Bayesian approach (e.g. Tarantola (1987)) 

by seeking the maximum of the posteriori probability density function (pdf):

p(X |y)ocp(y|X )p(X ) (3.2.30)

where the data likelihood is given by

p(y|X) cx e x p ( - i  (F ^ X  -  y ^ - V t ^ X  -  y)) (3.2.31)

and a prior distribution of the model is given by the Cauchy pdf

a  , , X k x * •
1 +  ^ f
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The MAP (maximum a posteriori) solution that maximizes the posteriori probability 

ln(p(X|y) also minimizes the following cost function

Jcg(X) = ||X ||C +  A lly  -  F^X lli , (3.2.33)

where

||X ||c =  ^ l n ( l  +  ^ ^ ) .  (3.2.34)

The regularizer ||X ||C imposed by the Tong tailed' Cauchy distribution is a measure of 

the sparseness of spectral powers. The constant ac controls the amount of sparseness that 

can be attained by the inversion. Taking derivative of J Cfl(X) and equating to zero yields 

the following result

X =  (AQ 1 +  F F ^ ^ F y  (3.2.35)

which is equivalent to

X  =  QF(AI +  F'ffQ F)-1y , (3.2.36)

where A =  and Q is a M  x M  diagonal matrix with elements given by

=  1 +  * =  (3-2-37)

The Cauchy-Gauss model leads to a algorithm that resembles the minimum norm solu­

tion of equation (3.2.29) when ac is large compared to spectrum amplitudes we are seek­

ing. In the contrary case, when ac is small, the algorithm will seek a DFT with a sparse 

distribution of spectral amplitudes, leading to an enhancement of the spectral perks and 

reducing windowing effects or sidelobes (Sacchi and Ulrych, 1996).

The proposed MWNI algorithm is different than the HRFT approach using sparse­

ness constraints. First of all, our new algorithm does not assume a sparse distribution 

of spectral amplitudes. The latter is only valid for estimating the DFT of a process that 

consists of a finite number of spectral lines (Sacchi et al., 1998). The norm in equation 

(3.2.34) and the norm utilized in this thesis (equation (3.2.10)) are different. The Cauchy 

criterion was proposed as a mean of estimating sparse (high resolution) spectral esti­

mators for waveforms that can be approximated by plane waves. In this case, a sparse 

spectrum is the appropriate model for data that consists of a superposition of a few plane 

waves. In this thesis, however, we have proposed a more general norm that is capable
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of handling non-sparse spectral models. This is important at the time of dealing with 

multi-dimensional seismic data. In this scenario, the common assumption of a superpo­

sition of a few plane waves is doomed to failure. Windowing can be used as a way of 

validating the aforementioned model. However, we have preferred an alternative proce­

dure where sparseness is not invoked. It is true that both the MWNI and HRFT lead to 

very similar algorithms. However, in the HRFT approach, the amplitude of the Fourier 

Transform, \Xk\2, plays the role of a data dependent diagonal regularization matrix as 

shown in equation (3.2.37). In the present formulation (MWNI), on the other hand, an 

estimator of the power spectrum of the data is used to capture the spectral variability of 

the unknown signal. In the next section we propose a procedure to estimate the power 

spectrum of the unknown data.

The present work does not attempt to invert the non-uniform DFT (Hindriks et. al., 

1997). The MWNI implementation utilizes FFTs and therefore an important gain in effi­

ciency is achieved when interpolating data that depends on more than one spatial dimen­

sion. For irregularly sample data, data should be regularized first, For example, binning 

data with smaller bin size; assuming regularly spaced traces and ignoring variations in 

their true location.

3.2.5 A dap tive estim ation  o f the w e ig h tin g  operator

To obtain the matrix of weights W , in practice, one should know the power spectrum of 

the complete data P%. Unfortunately, the complete data x is the unknown of the prob­

lem. The latter can be overcome by defining an iterative scheme to bootstrap the spectral 

weights from the data. The numerical implementation uses the modified periodogram 

of the data (Bingham et al., 1967) so that only the broad shape of the estimated spec­

trum is kept from the previous iteration. The process can be implemented in both the 

time domain and the frequency domain. In frequency domain, the estimated DFT coeffi­

cient is convolved with DFT of a standard positive and even window wm (e.g. a hanning 

window). The result is then squared to obtain the weighting function:

P 2 = \Wk ® X k\2 (3.2.38)

where © denotes the circular convolution. Alternatively, the same end can be reached by
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GIVEN SA M PLES 
Xn(1),Xn(2),Xn(3) Xn(N)

I

Xm

Wm

OPTIONAL

BANDWIDTH

PERIODOGRAM
SPECTRUM

MWNI

Figure 3.4: Modified periodogram is used to iteratively bootstrap the spectral weights from the 
data.

multiplying the estimated x by the window function

hm = Wm^m (3.2.39)

and the weighting function in this case is

P k = \ H k \2 - (3.2.40)

The algorithm is initialized with the band limiting operator with spectral weights P% =  

1, k € K, once x  is solved the solution is used to recompute using equation (3.2.38) or 

(3.2.40). Figure 3.4 shows a block diagram of the system describe here.

Alternatively, it is possible to adopt a non-iterative strategy similar to the one proposed 

by Herrmann (2000) for the computation of the high resolution parabolic Radon trans­

form. The method is well documented in Hugonnet et. al (2001). The power spectrum 

P% required to interpolate spatial data at a temporal frequency /  can be estimated from

the already interpolated data at frequency /  — A /. Figure 3.5 shows a block diagram

illustrate this scheme. Such a scheme is often effective in dealing with situations where 

the data exhibit a mild degree of spatial alias at high frequencies.
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GIVEN SA M PLES 
Xn(1),Xn(2),Xn(3),...,Xn(N) AT f

Xm AT f

OPTIONAL
BANDWIDTH

MWNI

PERIOD OGRAM ^ 
SPEC TR U M  O F Xm 

AT f-A f

Figure 3.5: The power spectrum P% required to interpolate spatial data at a temporal frequency 
/  can be estimated from the already interpolated data at the frequency /  — A/.

In particular, in situations with aliasing produced by non-conflicting dips, the weight­

ing operator computed from the non-aliased low frequencies serves to attenuate the alias­

ing that might arise at high frequency. The assumption at the time of adopting such a 

scheme is that the power spectrum of the data at frequency /  — A / is similar in shape to 

the power spectrum of the data at frequency / .  This assumption is often valid when A/  

is small. This is achieved, in general, by padding the data with zeros before applying the 

Fourier transform.

3.2.6 1-D  reconstruction exam ples

Reconstruction along one spatial coordinate is illustrated with a synthetic shot gather. 

Figure 3.6a shows a complete shot gather with 46 traces. The synthetic data were mod­

eled with a ray tracing algorithm for laterally invariant media; the AVO (Variation of 

Amplitude with Offset) effect is added using Shuey's equation (Shuey, 1985). A total of 

18 traces were removed from the original data including some near-offset traces (Fig­

ure 3.6b). The incomplete data set is used as the input to our reconstruction algorithm. 

The data set is first transformed to the temporal frequency domain. The reconstruction 

is then performed along the spatial coordinate (receiver position) for each temporal fre-
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quency. Figure 3.6c shows the reconstruction using the MWNI algorithm introduced in 

this paper. The modified periodogram was used to iteratively estimate the matrix of 

weights. The reconstruction fills all gaps including near offset traces. The reconstruc­

tion error is portrayed in Figure 3.6d. For comparison, we also tried to reconstruct the 

data using the Minimum Norm Interpolation (MNI) algorithm. The reconstructed data 

and the reconstruction error panel are shown in Figures 3.6e and 3.6f. Numerical exper­

iments have found that the MNI algorithm has difficulties at the time of interpolating 

large gaps. For the MNI method a frequency dependent bandwidth is utilized. The max­

imum wavenumber at frequency /  is estimated using the formula kmax = f / V m\n, where 

ymin is the minimum apparent velocity in the data (Duijndam et al., 1999).

Figure 3.7 shows the comparison of spectral weights P |  at the temporal frequency 

component /  =  23 Hz for both methods (MNI and MWNI). Figure 3.7a shows the con­

stant weighting function used by the MNI method. Figure 3.7b portrays the power spec­

trum of the incomplete data (zeros were placed at missing positions). These are also 

initial weights utilized in the MWNI method. Figures 3.7c and 3.7d show the spectral 

weights after the second iteration and the sixth (final) iteration, respectively. The spec­

trum of the final estimate of the interpolated data is portrayed in Figure 3.7e. Finally, 

the power spectrum of true (complete) data is displayed in Figure 3.7f. There is good 

agreement of the spectral signatures of the interpolated and original data.

Figure 3.8 shows a 1-D synthetic example of MWNI, HRFT and MNI methods in 

presence of noise. Figure 3.8a shows a synthetic ray tracing modeled shot gather with 

a small amount of random noise. Total 18 traces are removed from the shot and the in­

complete shot gather (Figure 3.8b) is used to test reconstruction algorithms. Figure 3.8c 

shows the reconstruction using the MWNI algorithm. The modified periodogram (equa­

tion 3.2.38) was used to iteratively estimate the matrix of weights. The reconstruction 

error is portrayed in Figure 3.8d. For comparison, we also tried to reconstruct the data 

using the HRFT algorithm and the MNI algorithm. The MNI algorithm has difficulties 

when interpolating large gaps. The MWNI and HRFT algorithms both managed to re­

trieve comparable interpolation results. However, numerical experiments have shown 

that the HRFT tends to produce spectral models that are too sparse and tends to produce 

large interpolation errors when dealing with data that do not fit the sparse spectral model
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Figure 3.6: 1-D synthetic example of MWNI and MNI methods, (a) Original synthetic shot 
gather, (b) Incomplete shot gather obtained by removing 19 traces from the complete shot gather 
in (a), (c) Reconstruction using the MWNI algorithm, (d) Reconstruction error after interpolation 
with the MWNI method, (e) Reconstruction using MNI. (f) Reconstruction error after interpola­
tion with the MNI method.
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Figure 3.7: Analysis of the spectral weights P% at frequency component /  = 23 Hz. (a) Unitary 
spectral weights used by the MNI method, (b) Power spectrum of the incomplete data, miss­
ing samples were filled in with zeros, (c) Spectral weights at the second iteration of the MWNI 
method, (d) The weighting function at the last iteration of the MWNI method, (e) The spectrum 
of reconstructed data using MWNI. (f) The spectrum of the original (complete) data.
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(seismic events with curvature in t  — x).

Figure 3.9 compares the reconstructed power spectrum at the temporal frequency 

component /  =  15.6 Hz for all the aforementioned methods (MWNI, HRFT and MNI). 

Figure 3.9a shows the power spectrum of the reconstructed data using the MWNI method. 

Figure 3.9b portrays the power spectrum of the reconstructed data using the HRFT ap­

proach. The spectrum of the reconstructed data using MNI method is portrayed in Figure 

3.9c. Finally, the power spectrum of the true (complete) data is displayed in Figure 3.9d. 

There is good agreement of the spectral signatures of the interpolated and original data 

in Figures 3.9a and 3.9d. The spectrum obtained using the HRFT approach (Figure 3.9b) 

is better than the spectrum obtained using the MNI method (Figure 3.9c), however, as 

mentioned before interpolation with the HRFT tends to produce spectral estimates that 

are too sparse.

The interpolation of a real marine shot gather using the MWNI method is portrayed 

in Figure 3.10. Figure 3.10a shows a window of incomplete data from the original shot 

gather. The interpolated data at twice the original sample rate is portrayed in Figure 

3.10b. In this example, spectral weights are determined using the non-iterative scheme 

described in section (3.2.5). The same scheme is utilized in all remaining examples.

3.3 Multi-dimensional MWNI

3.3.1 N -D  M W N I algorithm

The 1-D MWNI algorithm (Liu and Sacchi, 2001; Liu and Sacchi, 2003) can be extended 

to higher dimensional algorithms using the properties of Kronecker product of matrices 

(Davis, 1979). Let A, B, C, D  be n x n matrices and let ® denote the kronecker product. 

Then

If a denotes lexicographic ordering of the elements of A  into a vector and D  =  B A C , 

then

(A 0  B )t =  A T ® B t 

(A 0  B )(C  ® D) =  A C  ® B D

(A <g> B )-1 =  A -1 ® B -1 .

(3.3.1)

(3.3.2)

(3.3.3)

d =  (CT ® B)a. (3.3.4)
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Figure 3.8: 1-D synthetic example of MWNI, HRFT, and MNI methods in the presence of noise(a) 
Original synthetic shot gather, (b) Incomplete shot gather obtained by removing 18 traces from 
the complete shot gather in (a), (c) Reconstruction using the MWNI algorithm, (d) Reconstruction 
error after interpolation with the MWNI method, (e) Reconstruction using the HRFT approach, 
(f) Reconstruction error after interpolation with the HRFT method, (g) Reconstruction using MNI. 
(h) Reconstruction error after interpolation with the MNI method. Error panels were multiplied 
by 2 for better visualize differences.
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Figure 3.9: Comparison of the reconstructed power spectrum at frequency component /  = 
15.6 Hz for MWNI, HRFT and MNI Methods, (a) Power spectrum of the reconstructed data using 
the MWNI method, (b) Power spectrum of the reconstructed data using the HRFT approach, (c) 
Power spectrum of the reconstructed data using the MNI method, (d) Power spectrum of the 
original (complete) data.

For example, we assume that the matrix A represents 2-D seismic data with its columns

as the first dimension and rows as the second dimension. Applying the 2-D Fourier

transform to the matrix is to apply the DFT to both columns and rows of the matrix x, the 

result is

A = F j A I f  (3.3.5)

where A denotes the 2-D Fourier transform of A, and F 2 denotes DFT matrices along 

the first and the second dimensions respectively. According to equation (3.3.4) and (3.3.5), 

if let we denote a  lexicographic ordering of the elements of A, then

a  =  (F2 ® F j) a, (3.3.6)
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Figure 3.10: 1-D interpolation of a real marine shot gather, (a) Incomplete data from a real marine 
shot gather, (b) Interpolated data using the MWNI method. Sampling rate is doubled and all gaps 
has been filled.
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where a  is lexicographic ordering of the elements of 2-D DFT of a.

Similar to 1-D interpolation, the N-D interpolation is also carried out along the spatial 

dimensions for each temporal frequency / .  We will denote x the length-M lexicographic 

ordering of the elements of N-D regularly sampled data xi, x%, £3 , . . .  xm- The lexico­

graphic ordering of the elements of N-D observations are given by the length-JV vector 

y =  [3n(i)> *n(2)i *n(3)> • ■ ■ xn(N)]T  where the set M  =  {n(l), n(2), n(3), . . . ,  n(N)}  is 
used to indicate the position of the known samples or observations. We now define the 

sampling matrix T  with elements =  Sn(i)j, where 6 indicates the Kronecker operator.

The N-D sampling problem, therefore, can be represented as a linear system of equations

y =  T x .  (3.3.7)

The reconstruction/interpolation problem is an inverse problem where from incomplete 

data y we attempt to recover the well sampled data x. The MWNI solution of the problem 

can be obtained by minimizing following objective function

J  =  IITx - y | |2 +  p2llx llvv» (3-3.8)

where || • || stands I2 norm, p2 is a specified weighting factor controlling the trade off 

between the data misfit and model norm, and | |x| | w is the DFT-domain weighted norm

lw ? nd  A* Fn d  ■ (3.3.9)

where FND =  F N 0  F JV_1 • ■ ■ 0  F j is the compact notation for the N-D DFT, =  

)...  F ^  ̂ F ?  is the compact notation for the N-D IDFT, and is the Moore-Penrose¥#<
inverse of A. Matrices and A are diagonal matrices with entries

=  <“ 'w >

where Pk2 are spectral domain weights with support and shape similar to the lexico­

graphic ordering of the elements of N-D power spectrum of the data to interpolate and

and
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Kn d  denotes indexes of pass-band of the data. It can be show that solution of minimiz­

ing the cost function in (3.3.8) can be numerically achieved by using the CG method to 

solve

and stop the algorithm when a maximum number of iterations is reached or a desired 

misfit is achieved.

3.3.2 M u lti-d im en sion a l M W N I o f se ism ic  w avefield

The MWNI method is similar to band limited data reconstruction that makes assumption 

that seismic data to be reconstructed is band limited in the wavenumber domain. In the 2- 

D seismic survey, any seismic trace in the prestack volume is a member of CSP (common 

shot panel), CRP (common receiver panel), CMP (common midpoint panel), and COP 

(common offset panel) as depicted in Figure 2.8 and prestack seismic data are often band 

limited in multiple domains. A 2-D MWNI algorithm can be used for reconstruction of 

2-D seismic data in the shot-receiver or midpoint-offset domain. Indeed, it can be shown 

that any two coordinates from x s, xr, xm, xQ form a pair of independent vectors v i, V2 

for the 2-D sampling matrix V in equation (2.2.21). Therefore any two coordinates can be 

chosen as the domain for MWNI interpolation. Obviously, seismic data in the different 

domains should show different band limited properties, as shown in Figure 2.10, spec­

trum patterns are different in the shot-receiver and midpoint-offset domain. However, 

the support of the bandwidth of the spectrum is invariant in the different domains. Of 

course, 2-D wavefield can be processed by a 1-D reconstruction. For 1-D, band limiting 

filtering in the shot domain (or the midpoint domain) does not lead to the same results 

as the application of the band limiting filter in the receiver domain (or the offset domain) 

(Vermeer, 1990). In addition, 2-D reconstruction of the complete wavefield often yields a 

better reconstruction compared to 1-D reconstruction. 1-D reconstruction processes each 

dimension (plane) separately and does not know anything about continuation of struc­

tures in the neighboring dimension (plane). Thus 1-D reconstruction can not detect weak

(3.3.12)

where

z = A ^ 2F n d k (3.3.13)
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structures that cross different dimensions and there fore is often inadequate for the 2-D 

wavefield. The idea also applies to higher dimension reconstruction. In general, an N-D 

reconstruction algorithm should be used to reconstruct N-D wavefield.

The situation is more complicated for 3-D surveys due to additional dimensionality. 

The poststack 3-D wavefield is a function of time, inline and crossline. The 2-D MWNI 

algorithm can therefore be used to reconstruct the wavefield along inline and crossline 

directions. The prestack 3-D wavefield can be represented as a function dependent upon 

traveltime t and source and receiver locations, i.e. x s, x s, xr, yr (Vermeer, 1998). There 

are many types of 3-D field layout (i.e. swath, orthogonal, Flexi-Bin or Bin Fractiona­

tion, and Mega-Bin) (Cordsen et al., 2000). In general, 3-D surveys record only a portion 

of a 5-D wavefield with line spacings that are greater than station spacings. Many dif­

ferent 3-D subsets can be extracted from the acquired under-sampled wavefield such as 

common source and receiver gathers, common midpoint and offset gathers, common az­

imuth gather, cross spreads, etc. Figure 3.11 illustrates some of different 3-D subsets. The 

trace at midpoint M  equals the distance to the center O of the cross-spread. The trace at 

M  is a part of a common source, common receiver, common offset, and common azimuth 

gather.

Therefore, multi-dimensional MWNI can be used to interpolate a 3-D prestack vol­

ume in multiple domains which are results of sampling of independent vectors, i.e. 

x s, Vs, xr, yr. One of the simplest case is a 3-D common azimuth survey. In this case, a 3- 

D MWNI algorithm can be used for seismic data reconstruction in the common crossline- 

midpoint, inline-midpoint and offset domain.

In the next section, 2-D MWNI reconstruction examples are shown for both synthetic 

and real data sets. More synthetic examples are shown in the next chapter where MWNI 

algorithm is used to reconstruct prestack seismic wavefield for AVA imaging. In chapter 

5 ,3-D and 4-D reconstruction algorithms are used in field data examples.

3.3.3 2-D  reconstruction exam ples

The effectiveness of the 2-D MWNI method is first demonstrated using the Marmousi 

data set. The spatial dimensions to interpolate are source and receiver positions. It is im­

portant to stress that similar results could be obtained by interpolating in midpoint-offset
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common source

V receiver line

midpoint coverage 

common azimuth

/  common receiver

maximum 
inline offset

Figure 3.11: Properties of the cross-spread (after Vermeer (1998)). The trace at midpoint M  
equals the distance to the center O of the cross-spread. The trace at M  is a part of a common- 
source, common-receiver, common offset, and common-azimuth gather.

coordinates. Marmousi data set consists of total 240 shots with 96 receiver positions per 

shot. The original shots and receivers were sampled every 25 meters. We simulate a sur­

vey with shot and receiver intervals of 75 meters such that only 80 shots with 36 traces 

per shot are assumed to be known and the rest are to be interpolated. The comparison 

of part of the original and new sampling geometry is shown in Figure 3.12 where the 

x-marks indicate the positions of the available traces, whereas the dots indicate the posi­

tions of the traces to be interpolated. The seismic traces from the new survey are inputs 

to our interpolation algorithm. We first perform the Fourier transform along the time 

axis. Reconstruction is then carried at temporal frequencies along two spatial (shot and 

receiver) coordinates simultaneously. The reconstruction of 240 shots took 41 minutes on 

a 1 GHz Pentium III computer. All missing traces have been reconstructed. The details 

of the reconstruction at shot positions 3075 m, 3100 m and 3125 m are shown in Figure 

3.13-3.16. Figure 3.13 portrays the complete shots, Figure 3.14 portrays incomplete shots, 

Figure 3.15 and Figure 3.16 show the reconstructed shot records and reconstruction er­

rors, respectively. The f - k  spectra of original, decimated and reconstructed shot gather
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Figure 3.12: Source and receiver position map where the x-marks indicate the positions of the 
available traces; the dots indicate the positions to be interpolated.

at 3125 m are shown in Figure 3.17a-3.17c respectively. The decimated shot gather has 

been filled with zero traces at the missing trace positions. This results in replicas of the 

spectrum.

We also simulate a survey where 80% traces are randomly removed from the original 

Marmousi shot records. The comparison of part of the original and new sampling ge­

ometry is shown in Figure 3.18 where the x-marks indicate the positions of the available 

traces, whereas the dots indicate the positions of the traces to be interpolated. 2-D MWNI 

are carried at temporal frequencies along two spatial (shot and receiver) coordinates si­

multaneously. All missing traces have been reconstructed. The details of the reconstruc­

tion at shot positions 3075 m, 3100 m and 3125 m are shown in Figure 3.19-3.21. Figure 

3.19 portrays incomplete shots, Figure 3.20 and Figure 3.21 show the reconstructed shot 

records and reconstruction errors, respectively. The f - k  spectra of original, decimated 

and reconstructed shot gather at 3125 m are shown in Figure 3.22a, 3.22b and 3.22c, re­

spectively.

We also illustrate the reconstruction of a real 3-D poststack data cube using the 2-D 

MWNI algorithm. In this case the interpolation is carried out along inline and crossline
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Figure 3.13: Three shots at 3075 m, 3100 m and 3125 m are extracted from the Marmousi data set.

coordinates. Figure 3.23a shows a complete 3-D poststack data cube that consists of 51 

inlines and 31 crosslines. The decimated poststack data cube (Figure 3.23b) is obtained 

by removing every second trace along both inline and crossline directions. The incom­

plete data cube is used as the input to the MWNI reconstruction algorithm. Figure 3.23c 

shows the cube after reconstruction. Detailed panels showing true complete data, re­

constructed data and reconstruction errors for inline No. 39 and crossline No. 19 are pro­

vided in Figures 3.24 and 3.25, respectively. Notice that the proposed interpolation has 

also attenuated the random noise. The degree of noise attenuation versus fidelity of the 

reconstruction is regulated by the number of iterations of the CG solver.

3.4 Summary

The seismic data reconstruction problem can be posed as an inverse problem where from 

incomplete data one seeks the complete wavefield. The problem, however, is ill posed 

and a prior information should be used to constrain the solution. In this chapter, we have 

formulated a band limited data reconstruction algorithm that is capable of incorporating
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Figure 3.14: Marmousi shots at 3075 m, 3100 m and 3125 m after decimation. The original sam­
pling rates along shot and receiver directions are decimated by a factor of 3.

a priori spectral weights to control the bandwidth and, in addition, the spectral shape 

of the reconstructed data. The minimum weighted norm interpolation method can be 

used to interpolate (including increasing sampling rate and gap filling) and extrapolate 

the multi-dimensional wavefield. The method has been shown to perform better than 

the standard MNI.

In the presence of additive noise, we have found that a minimum weighted norm, 

least-squares solution can be efficiently computed using the method of conjugate gra­

dients. It is important to stress that the computational cost of the CG method heavily 

depends on matrix times vector operations. These operations can be efficiently imple­

mented using the Fast Fourier Transform (FFT). Additional efficiency can be obtained by 

truncating the number of CG iterations. As pointed out by Hansen (1998) the number of 

iterations plays a role similar to a trade-off parameter. Consequently, by truncating the 

number of iterations, additive noise can be attenuated.

The computational cost of the method makes the MWNI attractive for multi-dimensional 

interpolation.
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Trace Number 
150

Figure 3.15: Reconstructed shot records at 3075 m, 3100 m and 3125 m using the 2-D MWNI 
algorithm.

Trace Number
0 50 100 150 200 250

Figure 3.16: Reconstruction errors of the three shot records at 3075 m, 3100 m and 3125 m.
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Figure 3.17: (a) The f-k spectrum of the original shot gather at 3125 m. (b) The f-k spectrum 
of the same shot gather after decimation (Notes the decimated shot data has been filled with 
zero traces in the missing trace positions), (c) The f-k spectrum of the same shot gather after 
interpolation.
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Figure 3.18: Source and receiver position map where the x-marks indicate the positions of the 
available traces; the dots indicate the positions to be interpolated.
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Figure 3.19: Incomplete shots at 3075 m, 3100 m and 3125 m. Total 80% traces have been ran­
domly removed from the original shots (in Figure 3.13).
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Figure 3.20: Reconstructed shot records at the shot positions of 3075 m, 3100 m and 3125 m using 
the 2-D MWNI algorithm.

T race  N um ber

Figure 3.21: Reconstruction errors at the shot positions of 3075 m, 3100 m and 3125 m.
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Figure 3.22: (a) The f-k spectrum of the original shot gather at 3125 m. (b) The f-k spectrum 
of the same shot gather after removing 80% traces, (c) The f-k spectrum of the same shot gather 
after interpolation.
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Figure 3.23: (a) A complete 3-D poststack data cube, (b) Decimated cube; every second line is 
removed, (c) Reconstructed cube using the MWNI method.
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Figure 3.24: (a) Original data along the inline No. 39 (marked as line A in Figure 3.23). (b) 
Reconstructed data using the MWNI method, (c) Reconstruction error.
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Figure 3.25: (a) Original data along crossline No. 19 (marked as line B in Figure 3.23). (b) Recon­
structed data using the MWNI method, (c) Reconstruction error.
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Chapter 4

2-D/3-D wavefield reconstruction for 
AVA imaging

Seismic data are often sparsely and irregularly sampled along spatial coordinates. This 

produces problems for multi-channel processing techniques which often require regu­

lar and dense sampling. Imaging for AVO or AVA analysis is a motivating example to 

demonstrate the problem. One way to solve this problem is to interpolate prestack seis­

mic wavefield before AVA imaging as discussed in the introduction chapter of this thesis. 

In this chapter, some aspects of AVA imaging is briefly discussed. The effectiveness of 

MWNI interpolation strategy is then tested at the time of reconstructing data for 2-D/3-D 

wave equation AVA imaging (Mosher et al., 1997; Prucha et al., 1999).

4.1 Wave equation AVA imaging

4.1.1 Introduction

Wave equation AVA imaging can be seen as one of the steps in the process of prestack 

seismic inversion. Seismic inversion has the goal of prediction of rock and fluid proper­

ties from seismic data. It is an essential tool in the petroleum industry for hydrocarbon 

detection. Traditional poststack inversion methods involve stack followed by inversion, 

allowing only the estimation of acoustic impedance, which is not sufficient for estimat­

ing fluid content (Russell, 2003). The AVO method allows us to simultaneously estimate 

Vp, VS/ and p, thus inferring fluid and /o r lithology indicators. The AVO/AVA method is 

traditionally applied to NMO corrected prestack CDP gathers. To apply AVO/AVA tech-
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nique to the case where reflectors have dips or structural complexity, prestack migration 

(i.e. the wave equation AVA imaging method) can be used to produce migrated data for 

AVA analysis.

A step-wised inversion strategy based on the primary wavefield representation has 

been proposed by Berkhout and Wapenaar (Berkhout and Wapenaar, 1990) to invert for 

subsurface properties. The inversion process consists of three stages:

• Surface related preprocessing

• Reflectivity imaging

• Target-related postprocessing

The first stage involves the surface related preprocessing, the output of which can be 

considered as deconvolved 'primary' data that have been recorded on a non-reflecting, 

homogeneous data acquisition surface. For example, non-primary reflection events such 

as surface related multiple and surface wave are considered to be noise and will be sup­

pressed during this stage.

The second stage requires knowledge of a subsurface macro model which may be 

inferred from preprocessed data or some heuristic relations. The process involves back- 

propagating the multi-offset surface wavefield into the subsurface reflector where the 

angle dependent reflectivity is estimated. Wave equation AVA imaging can be used 

to produce the angle dependent reflectivity (Prucha et al., 1999). Traditionally, seismic 

imaging by (time or depth) migration aims at producing a subsurface reflector map by 

back-propagating the surface wavefield. The amplitude information in the reflector map 

does not necessarily provide quantitative information about the reflection strength. The 

objective of seismic imaging for AVA analysis is both structure imaging and recovery of 

angle-dependent reflection coefficients. In other words, in addition to a structure map 

of subsurface, the amplitude information of the output of seismic imaging by migration 

should carry qualitative information about relative reflection strength which is related to 

the incidence angle and physics parameters at reflecting interface. These type of migra­

tion methods are often referred to as true-amplitude migration.
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Figure 4.1: Energy partition for a compressional wave (P wave) impinging on a plane interface 
in an elastic continuum at angle 7. Both reflected and transmitted compressional and shear waves 
result.

In the last stage, the angle dependent reflectivity is inverted to P- and S-velocity and 

density information (Vp,Vs,p) using expression for the angle-dependent reflection coef­

ficients, trend information from the macro model and, if available, crossplots between 

Vp,Vs,p in the target zone. The expression for the angle-dependent reflection coefficients 

is, in practice, an approximated version of Zoeppritz's equations through various lin­

earization methods, i.e. Shuey linearized equations (Shuey, 1985). Zoeppritz's equations 

(Aki and Richards, 1980) satisfy boundary conditions for the continuity of normal and 

tangential stresses and displacements of plane waves at a plane interface between two 

elastic media halfspaces. Figure 4.1 depicts the energy partition at such an interface. The 

elastic model conversions between compressional (P) and shear (S) as waves undergo 

scattering at an interface is the main derive for AVA phenomena. Finally, the velocity 

and density information in the target zone is then used for estimation of local rock and 

fluid properties.

The three step procedure is an acoustic version of the seismic inversion scheme (Berkhout 

and Wapenaar, 1990). For accurate estimation of the shear velocity, elastic inversion 

(Berkhout and Wapenaar, 1990) has to be carried out which requires seismic data sets that 

contain both P and S-wave data, such as those acquired with multi-component sources 

and receivers. However, the majority of seismic data is often recorded simply as a single
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component pressure wave. So in practice, P-wave reflection coefficients are used in the 

vast majority of cases.

4.1.2 A n gle  dom ain  com m on im age gathers b y  w ave equation  m eth od s

This section concerns wave equation migration of compressional waves for angle depen­

dent subsurface reflectivity. The methodology of estimating angle-domain common im­

age gathers will be discussed. In the wave equation migration, the recorded 2-D and 3-D 

data are first organized in the midpoint-offset (m — h) domain. The measured data at the 

surface (z =  0) are recursively downward continued using the DSR (double square root) 

operator (Claerbout, 1985). Once the complete wavefield has been reconstructed within 

the target volume, an imaging condition is applied to compute the subsurface structural 

image1. The aforementioned procedure can be summarized with the following working 

flow

Downward Continuation: P(u,  m, h, z  +  Az) =  DS1ZP(w, m, h, z)

Imaging: I (m, z) = XP(co, m, h, z)

where X synthesizes the imaging condition as an operator that entails integration over 

the frequency and offset. The application of the aforementioned method to 3-D migration 

involves a quite demanding computational task. It is also clear that regularly sampled 

data along offset and midpoint vectors (m =  (mx, m y), and h  =  (hx, hy)) are required. 

Biondi and Palacharla (1996) presented a reformulation of the DSR operator that is valid 

for common azimuth data. This method permits to handle 3-D data in a more efficient 

manner. In this case, the DSR downward operator requires 3-D FFTs rather than 4-D FFTs 

per frequency slice like the more demanding full DSR operator.

The procedure outlined above is only valid for computing structural images of the 

subsurface. In order to estimate angle dependent gathers we combine common azimuth 

DSR downward continuation with a ray parameter domain imaging transformation (Mosher 

et al., 1997; Prucha et al., 1999; Kuehl, 2002; Kuehl and Sacchi, 2002):

1This is the angle independent image that defines the boundaries of reflecting interfaces.
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Downward Continuation: P(u), m, hx, z) = V S P c a P (w, m, hx, z — 8z)

Imaging: / ( m, 2) =  AP(u ,  m , hx, z ) ,

where A  synthesizes the slant stack operator (summation along lines of constant ray 

parameter phx = khx/w)- In the offset wavenumber/frequency domain, the process is 

the radial trace transform that maps (khx, w) to (phx, w). The radial trace transform is 

depicted in Figure 4.2.

Spatial interpolation is needed to render data to a form that makes Fourier domain 

downward continuation applicable. In our examples we have adopted the MWNI method 

proposed by Liu and Sacchi (2001) to resample the data to a regular geometry before DSR 

(Common Azimuth) AVA imaging. In Wang et al. (2003), rather than attempting to in­

terpolate the data before migration, Least-squares migration is used to fit the migrated 

image to the observations (recorded traces).

The resulting gathers in the midpoint/offset ray parameter domain can be trans­

formed to angle of incidence by a simple expression (Prucha et al., 1999):

2 sin(0) cos(4>)
Phx 7 7 ic(z, m)

where 0 is the angle of incidence, (f> denotes the structural dip in the in-line direction and 

c(z, m) the migration velocity. With the aid of the above expression p—gathers can be 

converted to angle gather for subsequent AVA analysis.

4.1.3 True am plitude w eig h tin g

Amplitude weighting was applied according to Sava et al. (2001). In the frequency 

wavenumber domain, these weights are well approximated by a diagonal operator and 

they are computed by evaluating the Jacobian of the transformation from the temporal 

frequency (a>) to the vertical wavenumber (kz), that is <kj/dkz. Since ray parameter imag­

ing is carried out for a constant offset slowness, the dispersion relation for kz is expressed 

as a function of p h (Kuehl and Sacchi, 2003):
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max

Figure 4.2: The radial trace transform (RTT) maps the (k^, w) space into the (ph, u>) space (Mod­
ified after Kuehl (2002)). Only planes khy = 0 and phy = 0 are shown. The RTT extracts wavefield 
amplitudes along radial lines in the (khx> w) space and maps the result into the {phx, w) domain. 
In practice, the limited offset wavenumber range due to a finite recording aperture and the finite 
frequency band (shaded area) causes truncation effects in the (phx, w) space. The maximum unbi­
ased offset ray parameter is denoted by p™£x. In three dimensions the transformation maps cones 
in the (k/,, u>) space to cylinders in the (p/,, w) domain and vice versa.

kz — ksz +  krz — y ( g )
;\2 |km - w p h|2 l ( w \ 2 |km +  wph|2

4 +  V \ c J  4
(4.1.1)

The imaging Jacobian can be shown (Sava et al., 2001) to take the form:

du
dkz Ph

dkz
dui

P  h

I  _  cph • Ph
c 4

U3 _w_ \ +  ckm -ph (  CJ
ckaz ckr

U)
cksz ckj<

- l
(44-2)

For horizontal interfaces ksz = krz — — °sg, where 9 is the specular incidence angle, the 

Jacobian simplifies to (Wapenaar et al., 1999):

J  =
1 _  sin2 6 \  2 n 1

c c J cos 9 2 cos 9 (4.1.3)

All involved quantities are understood to be evaluated locally at the target reflector.

4.2 Synthetic examples of MWNI for AVA imaging

In this section, the effectiveness of MWNI strategy is tested at the time of reconstructing 

data for 2-D/3-D wave equation AVA imaging.
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The first example is a 2-D synthetics data set based on a simple, horizontally layered 

model. As discussed in the introduction of this thesis, for 1-D earth models without any 

dips, simple techniques, such as geometrical spreading followed by NMO correction, 

can be used to generate offset (angle) dependent gathers suitable for AVO/AVA analysis. 

However, the simple data tests provide us more insides on impact of MWNI on migration 

and AVA analysis on an unevenly sampled data set. The second example is the Marmousi 

data set. The Marmousi dataset is a quite realistic dataset built on a variable velocity 

and density model (Marmousi model). However, the complexity of the model makes it 

difficult to analyse AVA behavior on CIGs. Most of events on CIGs are superpositions 

of reflection due to many different reflectors. To compare the result with the theoretical 

AVA, a relatively well-isolated reflector has been picked to demonstrate the benefit of 

MWNI for migration and AVA imaging. The last example in this section is a common 

azimuth synthetic dataset based on a simple, horizontally layered model. The data set is 

used to test the effectiveness of 3-D MWNI algorithm to improve 3-D common azimuth 

migration or AVA analysis.

4.2.1 2-D  Synthetic data exam ples  

Horizontal layered model

We first test our algorithm on a simple, horizontally layered model. The horizontally 

layered model consists of four reflecting interfaces. The acoustic model parameters in 

terms of compressional velocities and densities range from 1900 m /s  to 2500 m /s  and

Velocity (m/s) Density (g/cm3) Thickness (m)
2000 2.25 500
2350 1.6 300
1900 2.3 300
2500 1.7 300
2500 2.0 Half-space

Table 4.1: Parameters for the horizontally layered model with 4 reflecting interfaces. The pa­
rameters have been chosen such that the absolute magnitude of the normal incidence reflection 
coefficient does not exceed 0.1. This model is considered a low contrast medium. Polarity rever­
sals (180° phase changes) in the AVA occur for the first three reflectors. The last reflector exhibits 
a constant AVA characteristic.
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from 1.6 g /cm 3 to 2.25 g /cm 3 , respectively. More details of the model is specified in 

Table 4.1. All interfaces are well separated. A ray tracing technique is used to generate the 

synthetic data set. The ray-tracer takes advantage of the fact that, in a stratified medium, 

the ray parameter is constant for a particular ray. Angle dependent reflection coefficients 

are modeled with the acoustic reflection coefficients expression:

m  = w y2cos7 - w v ^ - ^ Sin7 _ (4 2 1}
P2V2 cos 7 +  pi y/v± -  V2 sin 7 

where V\ and V2 are the velocities, p\ and P2 are the mass densities of the upper and lower 

half-space, respectively, and 7 is the angle of incidence. For interfaces with a change of 

density only the reflection coefficient is angle independent and equation (4.2.1) is simpli­

fied to

R( l )  = ■ (4-2.2)
P2 +  Pi

Note that the acoustic reflection coefficients are used in all the synthetic examples in the 

thesis for mathematic simplicity. However, in dealing with real world data, Zoeppritz's 

equations or their approximation should be used. The geometrical spreading has been 

calculated assuming a cylindrical wavefront resulting in a 1/ y/r amplitude scaling, where 

r is the distance traveled by the ray. Note that transmission losses are neglected in the 

synthetics.

In Figure 4.3a, we show the CMP data at 750 m which exhibit a clear amplitude variation 

versus offset (AVO). The offsets for the CMP range from 0 to 1280 m incrementing by 

20 m. Figure 4.3b shows the same CMP after randomly removing 90% of the live traces. 

The incomplete CMPs (total 100) are used as the input for the reconstruction. We first 

perform the Fourier transform along the time axis. The reconstruction is then carried 

at temporal frequencies along two spatial (CMP and offset) coordinates simultaneously. 

The output offset ranges from 0 m to 1200 m for each CMP incrementing by 10 m. Figure 

4.3c shows the reconstructed CMP at 750 m using MWNI.

Next, we migrate the complete, incomplete and reconstructed datasets with a wave equa­

tion DSR AVA migration algorithm (Prucha et al., 1999). In Figure 4.4a-4.4c, we show mi­

grated ray parameter CIGs at 750 m obtained with the original data, incomplete data and
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Figure 4.3: (a) CMP gather at 750 m generated by a ray-tracing code. The code models (cylindri­
cal) geometrical spreading but no transmission effects. The offset for the particular CMP ranges 
from 0 m to 1280 m incrementing by 20 m. (b) The same CMP after randomly removing of 90% 
the data, (c) The reconstructed CMP using WMNI, the reconstructed offset ranges from 0 m to 
1200 m incrementing by 10 m.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

^



4.2. SYNTHETIC EXAMPLES OF MWNI FOR AVA IMAGING

reconstructed data, respectively. In all migrated CIGs, the apparent AVP of the migrated 

CIG is slightly compromised by finite aperture effects. The wavelet broadening (disper­

sion) toward high ray parameters seen for the first reflector is explained by the frequency 

tapering effect inherent in the radial trace transform. In addition, the CIG obtained with 

the incomplete data appears to be more noisy than the CIGs obtained with the original 

data and reconstructed data. The latter are overall cleaner and exhibit a smooth AVP. 

The AVA curves for the four reflectors from the above CIGs are extracted and portrayed in 

Figure 4.5a-4.5d. The amplitude picking procedure involves the definition of windows 

on the CIGs and the determination of the absolute values within these windows. The 

inverse ray parameter imaging Jacobian J ~ x is applied before final AVA plots. Note that 

since the absolute values have been picked sign changes appear as cusps in the AVA 

curves. For all four reflectors, AVA curves obtained from the incomplete data is distorted 

and the AVA curves obtained from the reconstructed data closely match the one obtain 

ed from the completed data. In addition, AVA curves obtained from the reconstructed 

and completed data agree with the theoretical AVA trend for a large range of incidence 

angles except the fact that finite recording aperture effects caused the AVA of all reflectors 

to eventually taper off to zero.

The above examples demonstrate that when surface wavefield is well sampled, the 

AVA imaging algorithm gives a reliable AVA estimation in a low contrast layered media. 

Incomplete sampling (removal of data) introduces errors to both estimated CIGs and pick 

ed AVA curves. Those errors are often referred to as acquisition footprints noise and can 

be minimized if a well sampled simulated wavefield (using MWNI algorithm) is used as 

the input to the migration/inversion algorithm.

4.2.2 T he M arm ousi data set

In this section, the performance of the 2-D MWNI algorithm is demonstrated with the 

Marmousi synthetic data set. The Marmousi model is a very realistic and complex model 

based on a geological profile through the North Quenguela Trough in the Cuanza Basin 

in Angola (Versteeg, 1993). The model was generated by the French Petroleum Institute, 

and was released to the public for the purpose of testing migration and velocity estima­

tion techniques.
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Figure 4.4: (a) Migrated CIG at 750 m of original data, (b) Migrated CIG of incomplete data, (c) 
Migrated CIG of reconstructed data.
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Figure 4.5: (a) Theoretical (Green) and extracted AVA curves from the migrated angle gather for 
the first reflector (Black: original complete data, Blue: incomplete data, Red: after interpolation), 
(b) Theoretical and extracted AVA curves for the second reflector, (c) Theoretical and extracted 
AVA curves for the third reflector. Since the absolute values have been picked sign changes appear 
as cusps in the AVA curves, (d) Theoretical and extracted AVA curves for the fourth reflector. 
Note all picked values have been scaled with the inverse of the ray parameter imaging Jacobian 
for horizontal interfaces.
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Figure 4.6: The Marmousi compressional velocity field. Velocities range from 1500 to 5500m/s. 
The Marmousi model is structurally complex, with many thin layers broken by several major 
faults and an unconformity surface. The folded carbonate sedimentation series at about 2.5 km 
form the structural hydrocarbon trap.

According to Versteeg (1994), geologic history underlying the model consists of two 

distinct phases. The first phase corresponds to a continuous sedimentation of marls and 

carbonates. These deposits were folded at the end of the sedimentation and then eroded 

with the erosion surface being flat. The resulting anticlinal structure forms the hydro­

carbon trap. The second phase began with the deposition of isopachous saliferous evap- 

oritic series. On this series a clayey-marly series rich in organic matter was deposited 

and these sediments are followed by deposit of shaly-sandy detrital sediments that are 

strongly affected by slanting growth faults caused by lateral salt creep due to the over­

burden pressure. The imaging targets are salt structure related traps and the deeper 

anticlinal structures.

The Marmousi data set is produced with a marine data acquisition which is simulated 

using a 2-D acoustic finite-difference modeling, with variations in both acoustic velocity 

and density (Figure 4.6 and Figure 4.7). The synthetic data set consists of 240 shots with 

96 traces/shots. The initial offset is 200 m, the shot and receiver spacing is 25 m. The first 

shot is at position X = 3000 m, the last shot at X = 8975 m. Two reconstruction examples
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Figure 4.7: The Marmousi density field. The Marmousi data set is based on a variable-velocity 
and density model making it well suited for acoustic AVP/AVA studies.

on the Marmousi data set are shown in section 3.3.3. In this section, the complete (orig­

inal), incomplete and reconstructed data sets are further tested with the AVA imaging 

algorithm. In the first example discussed in the section 3.3.3, a new survey with 75 m 

shot-receiver sampling interval is simulated. The downsampled (incomplete) wavefield 

is then used as the input for the MWNI algorithm to reconstruct the complete wavefield. 

The complete (original), incomplete and reconstructed data sets are migrated with split- 

step DSR AVA migration algorithm (Prucha et al., 1999). Figures 4.8-4.10 show both the 

stacked image and migrated CIG at CMP location 7500 m using the three different data 

sets. The migration with the complete data set yields the stacked image and migrated 

CIG portrayed in Figure 4.8. The coarse sampling of the decimated wavefield results in 

severely aliased events in both the stacked image and the CIG (Figure 4.9). In Figure 4.10, 

we observe that the migration with the reconstructed wavefield yields an overall better 

stacked image without visible signs of aliasing. The continuity of events in the CIG is 

also improved.

As discussed before, the complex structure of the Marmousi model makes it difficult 

to analysis AVA behavior on CIGs. Two criteria are therefore used to guided the process

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2. SYNTHETIC EXAMPLES OF MWNI FOR AVA IMAGING

H orizontal d is ta n c e  (km )

■8SWBI

R a y  p a r a m e te r  (m u  s /m )  
0 300 600

0-t1-------- 1--------- 1-----

Figure 4.8: Migrated image of the Marmousi model and CIG at CMP location 7500 m. All the 
data were used in the migration.

of selection of the depth point whose AVA is to be estimated (Kuehl and Sacchi, 2003). 

First, the depth point should be located in the upper half of the model so as to ensure the 

sufficiently ray parameter/angle range coverage. Secondly, as events on CIGs are often 

the superpositions of reflection due to many different reflectors, a relative well isolated 

reflector should be chosen to compare the inverted AVA to the theoretical AVA of the 

picked reflection events.

The target reflector is chosen at CMP location 7500 m. The picked target phase in the 

CIG is the peaks at 880 m depth in Figure 4.8-4.10. In Figure 4.11, the reflection coeffi­

cient based on the acoustic approximation shows an increasing trend with the angle of 

incidence on the theoretical AVA curve. Despite its roughness, the AVA curve picked 

on the migrated CIGs obtained with the complete data agrees with the theoretical AVA 

trend. The AVA curve picked on the migrated CIG from the reconstructed wavefield 

(red) is much closer to the original one (black) when compared to the one picked on the 

migrated CIG (blue).

In the second example discussed in the section 3.3.3, a new survey is simulated where 

80% traces are removed from the original Marmousi shot records. The incomplete wave­

field is then used as the input for the MWNI algorithm to reconstruct the complete wave-
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Figure 4.9: Migration of the Marmousi model and CIG at CMP location 7500 m using the deci­
mated data.
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Figure 4.10: Migration of the Marmousi model and CIG at CMP location 7500 m using the recon­
structed data.
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Figure 4.11: Theoretical (Green) and extracted AVA curves from the migrated angle gather 
(Black: original complete data, Blue: decimated data, Red: after interpolation).
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Figure 4.12: Migration of the Marmousi model and CIG at CMP location 7500 m using incom­
plete data where 80% original traces are removed .
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Figure 4.13: Migration of the Marmousi model and CIG at CMP location 7500 m using the recon­
structed data.
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Figure 4.14: Theoretical (Green) and extracted AVA curves from the migrated angle gather 
(Black: original complete data, Blue: incomplete data, Red: after interpolation).
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field and the complete (original), incomplete and reconstructed data sets are further 

tested with the split-step DSR AVA migration algorithm (Prucha et al., 1999). Figures 

4.12-4.13 show both the stacked image and the migrated CIG at CMP location 7500 m 

using incomplete and reconstructed data sets. The incomplete sampling of the seismic 

wavefield results in acquisition footprint noises in both the stacked image and the CIG 

(Figure 4.12). In Figure 4.13, we observe that the migration with the reconstructed wave­

field yields an overall cleaner stacked image and migrated CIG. The continuity of events 

in the CIG is also improved.

In Figure 4.14, the AVA curve picked on the migrated CIG from the reconstructed 

wavefield (red) is closer to the original one (black) when compared to the one picked on 

the migrated CIG (blue) of incomplete wavefield.

4.2.3 3-D  C om m on A zim u th  Synthetic data set

The 3-D MWNI algorithm is tested on a 3-D common azimuth synthetic data set. The 

data set is modeled with a constant (compressional) velocity model (V) =  2500 m /s). 

The density model consists of a single interface where the density above and below the 

interface are 1.7 g/cm 3 to 2.0 g /cm 3, respectively. Details including the layer thicknesses 

are specified in Table 4.2. A ray tracing technique is used to generate the synthetic data 

set. The geometrical spreading has been calculated by assuming a spherical wavefront 

resulting in a 1 /r amplitude scaling, where r  is the distance traveled by the ray. The 

synthetic data include total 40 xline CMPs and 301 inline CMPs. The xline and inline 

CMP intervals are 10 m and 5 m, respectively. The CMPs have a nonuniform number of 

offsets range from 0 to 1000 m. In Figure 4.16a, we show a CMP at inline 750 m xline 

30 m position. The amplitude variation is due to the geometrical spreading effect only. 

We have randomly removed 90% of the traces in the synthetic data set (The incomplete

Velocity (m / s) Density (g/cm3) Thickness (m)
2500 1.7 100

2500 2.0 Half-space

Table 4.2: Parameters for the horizontally layered model with single reflecting interfaces. The 
reflector exhibits a constant AVA characteristic.
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Figure 4.15: Distribution of offsets for the 3-D synthetic data used to test our interpolation algo­
rithm.

CMP at the same position is shown in Figure 4.16b). The offset distribution in each CMP 

bin of incomplete data is illustrated in Figure 4.15. The incomplete data are used as 

the input for the reconstruction. We first perform the Fourier transform along the time 

axis. The reconstruction is then carried at temporal frequencies along three spatial (xline 

CMP, inline CMP and offset) coordinates simultaneously. The output offset ranges 0 m to 

1000 m incrementing by 10 m for each CMP. Figure 4.16c shows the reconstructed CMP 

at the same position using MWNI.

Next, we migrate the complete, incomplete and reconstructed data sets with a 3-D 

common azimuth wave equation DSR AVA migration algorithm. The stacked image for 

xline CMP 30 m (inline CMP ranges from 750 m to 1000 m) obtained with the original 

data, incomplete data and reconstructed data are shown in Figure 4.17a-4.17c, respec­

tively. Note both Figure 4.17a and 4.17c show uniform reflection strength at the reflector. 

In Figure 4.18a-4.18c, we show CIGs at inline CMP 750 m xline CMP 30 m position ob­

tained with the original data, incomplete data and the reconstructed data, respectively. 

Clearly, the migrated CIG of incomplete data (in Figure 4.18b) is bore with acquisition 

footprint noise. The amplitude is not continuous along the ray parameter axis. On the 

other hand, the migrated CIG of reconstructed data is significant cleaner and exhibits the 

smooth AVP. We have extracted AVA curves for the reflector from the above CIGs (Fig­

ure 4.19). Note that the AVA curve obtained from the incomplete data (in Figure 4.19b)
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Figure 4.16: The CMP at inline 750 m and xline 30 m position of original data (a), incomplete 
data (b) and reconstructed data (c).
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does not agree with the theoretical AVA trend at all and the AVA curve obtained from re­

constructed data (in Figure 4.19c) matches the one obtained from original data (in Figure 

4.19a) and agrees with the theoretical AVA trend for a large range of incidence angles.

4.3 Summary

Wave equation AVA imaging can be seen as a preprocessing step for AVA inversion. 

Wave equation downward continuation makes use of the Fourier transform and thus 

requires well sampled data as inputs. When seismic data are regularly and densely sam­

pled, the wave equation AVA imaging algorithm yields reliable AVA estimation. On the 

other hand, an inadequate sampling interval and missing traces (gaps) will result in an 

incorrect surface wavefield. Examples in this chapter show that the incorrect wavefield 

introduces noises and aliasing events in both the migrated image and angle domain CIGs. 

Consequently, the fidelity of AVA analysis on those CIGs is compromised.

MWNI scheme has been successfully applied to 2-D and 3-D synthetic data set for 

prestack interpolation. MWNI preconditions the surface wavefield for the wavefield AVA 

imaging. Examples show that with MWNI of prestack wavefield, acquisition artifacts are 

minimized in both the migrated image and angle domain CIGs, and migrated amplitudes 

are reliable for further AVA analysis.
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Figure 4.17: The stacked image for xline 30 m obtained with original data (a), incomplete data 
(b) and reconstructed data (c).
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Figure 4.18: The migrated CIG at xline 30 m inline 750 m position obtained with original data 
(a), incomplete data (b) and reconstructed data (c).
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Figure 4.19: The AVA curves extracted from the migrated CIG at xline 30 m inline 750 m position 
obtained with original data (a), incomplete data (b) and reconstructed data (c).
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Chapter 5

Field data example

In Chapters 2 and 3 a reconstruction scheme for band limited seismic data that enables us 

to precondition seismic data for imaging and, in particular, for the estimation of common 

image gathers for AVO/AVA analysis was proposed. We have also demonstrated with 

synthetic examples that MWNI does not alter the amplitude character of the reflections. 

The latter is an extremely important point to take into consideration when preprocessing 

with AVO/AVA applications in mind.

In this Chapter we apply MWNI to two field data experiments. In the first case we 

analysis a 3-D survey from the Erskine area (Alberta, Canada). This is a typical orthog­

onal 3-D survey from the Western Canadian Sedimentary Basin (WCSB). It depicts quite 

well the type of problems encountered when imaging seismic data for AVO/AVA analy­

sis in the WCSB.

The second example is a data set from an undisclosed area. This test was carried to 

analyse the feasibility of using MWNI to reconstruct the full prestack data volume prior 

to processing as a means to decrease sampling artifacts in the subsequent processing flow.

The 3-D and 4-D interpolation are carried out along the vector of spatial coordi­

nates u for each temporal frequency oj. In other words, we denote the seismic data 

at one monochromatic temporal frequency component as D(u, ui), where, for instance 

u  =  [xm, ym, Xh] defines a constant azimuth 3-D data volume in terms of the two mid­

point positions xm, ym and the inline offset Xh, similarly, u =  [xs, ys, xr, yr] denotes a

4-D data volume defined in terms of source and receiver positions. Bear in mind that 

N-D refers to the number of spatial dimensions of the reconstruction problem. Therefore
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we have

N  = 3 Interpolation of 3-D prestack common azimuth volumes 
N  =  4 Full spatial interpolation (multi-azimuth interpolation)

5.1 3-D spatial interpolation: Erskine data set

In this section, the MWNI algorithm is used to interpolate a 3-D prestack common az­

imuth data set acquired in the Erskine (Southern Alberta, Canada). The target of the 

survey is gas sand in the Leduc formation. Some of acquisition parameters of the Erskine 

3-D data are:

• time sampling interval: 2 ms;

• number of samples per trace: 1000;

• inline CDP interval: 33.5 m;

• crossline CDP interval: 50.29 m;

• nominal fold: 20;

• datum elevation: 840 m;

• N /S  inlines: #1-157 E/W  crosslines: #1-40;

• CDP bins: 33.5 x  50.29 m;

• Primary sort direction: N /S  azimuth: 180.587860.

Note that All traces with azimuth other than 180 degree have been thrown away to 

form the Erskine 3-D common azimuth data set.

In addition, the following processing steps have been applied to the data set prior to 

interpolation:

• spherical divergence;

• deconvolution;

• surface consistent statics;
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5.1. 3-D SPATIAL INTERPOLATION: ERSKINE DATA SET

• bandpass filtering (10/15 Hz- 65/80 Hz).

The field data set is acquired with a orthogonal geometry where source and receiver 

lines are laid out orthogonal to each other. Because the receives cover a large area, this 

method is sometimes referred to as the patch method (Cordsen et al., 2000). In an or­

thogonal design, active receiver lines form a rectangular patch surrounding each source 

point location; creating a series of cross-spreads that overlap each other. The patch of­

ten has a longer axis in the inline direction. The distinction between narrow and wide 

azimuth surveys is made on the basis of the aspect ratio of the recording patch. The 

aspect ratio is defined as the cross-line dimension of the patch divided by the inline di­

mension. Recording patches with an aspect ratio less than 0.5 are considered narrow 

azimuth, while recording patches with an aspect ratio greater than 0.5 are wide azimuth. 

Large-aspect-ratio (i.e. 0.6 to 1.0) patch leads to a good azimuth distribution which in­

creases the ability to detect azimuth-dependent variations that arise from the dip and /o r 

anisotropy.

The original Erskine data set contains 157 inlines and 40 crosslines with offsets aligned 

along the inline direction. The offset distribution in each CMP bin is illustrated in Figure 

5.1. Figure 5.2a shows the original sparse offset sampling geometry in the crossline- 

midpoint offset domain for inline #6 (only parts of the crossline midpoints are shown) 

and Figure 5.2b shows the offset sampling geometry after interpolation. Prestack in­

terpolation is simultaneously applied along three dimensions, namely: inline-midpoint, 

crossline-midpoint and offset. Figure 5.3a shows original CMPs for inline #6 and crosslines 

#15-18. The reconstructed result is shown in Figure 5.3b. Notice that the MWNI recon­

struction has managed to reconstruct the missing traces. Traditional resampling methods 

like f - x  interpolation (Spitz, 1991) cannot handle these type of situations. They are only 

valid approaches for resampling from a regular geometry to another regular geometry; 

consequently, irregularly sampled data and large gaps cannot be interpolated. It is also 

important to mention that most interpolation methods operate quite well on small win­

dows of individual seismic gathers. This is because they are often built upon the assump­

tion of predicability of linear events (Spitz, 1991; Soubaras, 1995; Sacchi and Kuehl, 2001; 

Gulunay, 2003). The linear event model is only valid within small data windows. This is 

why for realistic data reconstructions it is necessary to go beyond the linear event model.
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5.2. 4-D MWNI, APPLICATION TO 3-D MULTI-AZIMUTH DATA SET (WCSB)

0 1000 2000 3000 4000
Inline (m)

Number of offsets

0 10 20 30 40

Figure 5.1: Distribution of offsets for the Erskine 3-D data set used to test our interpolation 
algorithm.

The MWNI does not make any assumption about the linearity of events in the data and 

therefore, breaking down the data into small windows is not necessary.

To continue w ith our experiment, 3-D common azimuth wave equation DSR AVA 

migration is applied to both original and interpolated data sets. Figure 5.4a-5.4b show 

migrated images for crossline #36 and inline #71; in both cases data before interpolation 

were used in the migration. Note that the irregular and sparse data sampling results in 

images of poor quality. Migrated images obtained with interpolated data are portrayed 

in Figures 5.4c-5.4d. The impact of interpolation before AVA imaging can also be seen in 

the ray parameter CIG domain. CIG gathers for crossline #36 and inline #71 are shown 

in Figures 5.5a and 5.5b, respectively. Migration with interpolated data as input yields a 

CIG gather (Figure 5.5b) with reduced artifacts and better event continuity.

5.2 4-D MWNI, application to 3-D multi-azimuth data set (WCSB)

In this section, a 4-D MWNI scheme is used to interpolate a multi-azimuth 3-D land data 

set from the WCSB provided by the Encana Corporation.

The data set was acquired using the mega-bin acquisition scheme. The mega-bin
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Figure 5.2: (a) The map of the incomplete geometry for inline #6 (Note only parts of the crossline 
midpoints are shown), (b) The complete geometry after interpolation for inline #6.

method was developed by Goodway and Ragan (1995) from Encana. The technology is 

designed to improve upon traditional 3-D seismic resolution by providing a clearer, high- 

resolution image of geological formations. The higher resolution produced by mega-bin 

is due to spatial sampling and acquisition design enhancements. This technique, coupled 

with wave-field interpolation (i.e. premigration f - x  interpolation), results in superior 

statistics for processing that gives a higher quality 3-D seismic image.

Figure 5.6 shows a window of shot distribution of the survey used to acquire the 3-D 

data set. Shot and receiver geometries of the survey are also illustrated in Figure 5.7a 

and 5.7c, respectively. The original shot spacing along the inline and crossline direction 

is 140 m. The receiver spacing is 70 m along the inline direction and 140 m along the 

crossline direction. Note that many shots and receivers are missing in the real geometry. 

Shot and receiver geometries of the interpolated output are shown in Figure 5.7b and 

5.7d, respectively. Note that after interpolation, the shot spacing along the inline direction 

is reduced to 70 m and the shot spacing along the crossline direction remains the same. 

Both inline and crossline receiver spacings are reduced to 35 m after interpolation. Also 

note that original geometries produce a bin size of (70 m x 70 m) while new geometries 

produce a smaller bin size of (17.5 m x 17.5 m).
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Figure 5.3: (a) Original traces in four adjacent CMPs corresponding to inline #6 and crosslines 
#15 — 18. (b) Reconstructed CMPs.
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Figure 5.4: (a) The migrated image for crossline #36 without interpolation, (b) The migrated 
image for inline #71 without interpolation, (c) The migrated image for crossline #36 with interpo­
lation. (b) The migrated image for inline #71 with interpolation.

Before interpolation, the data have been datumed to the same depth. Both data with 

and without NMO correction are used as the input for interpolation. The interpolation 

began by dividing the whole survey area into many sections, the 4-D MWNI is applied 

along x s, ys, xr, yr coordinates in each section. Figure 5.8 shows the output shot geome­

try in one section. There are approximately 8 x 8 shots in each section.

Figure 5.9 shows a comparison of inline receivers before (Figure 5.9a) and after (Fig­

ure 5.9b) interpolation without NMO correction. The inline receiver sampling rate is 

doubled after interpolation. Part of the data (in the window) are zoomed and shown 

in Figure 5.10. Crossline receivers before and after interpolation are shown in Figure
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R ay  p a ra m e te r  (m u s /m ) (b) R ay  p a ra m e te r  (m u s/m )

-  —"

Figure 5.5: Ray parameter domain CIGs obtained with the undersampled data (original prestack 
volume) (a) and the reconstructed data (b).

5.11a and Figure 5.11b, respectively. Note that after interpolation, the receiver sampling 

along crossline is reduced to 35 m from 140 m. The data in the window of Figure 5.11 are 

zoomed and shown in Figure 5.12.

Figure 5.13a and 5.13b show a comparison of inline receivers before (Figure 5.13a) 

and after (Figure 5.13b) interpolation where NMO correction has been applied before in­

terpolation to reduced the wavenumber bandwidth. Crossline receivers before and after 

interpolation with NMO correction are shown in Figure 5.13c and 5.13d, respectively.

A comparison of a 3-D cube of final stacks with and without interpolation is shown in 

Figure 5.14. Finally, the data are migrated using prestack Kirchhoff time migration. The 

crossline migrated images without and with interpolation are shown in Figure 5.15a and 

5.15b, respectively. Part of the images are zoomed and shown in Figure 5.16. Note the 

improved spatial resolution in the migrated image with interpolation.
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Figure 5.6: Window showing the distribution of shots for the data used to test 4-D MWNI algo­
rithm
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Inline

140m

Figure 5.7: The input and output geometry of the 4-D interpolation, (a) The original shot ge­
ometry. (b) The output shot geometry, (c) The original input receiver geometry, (d) The output 
receiver geometry.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.2. 4-D MWNI, APPLICATION TO 3-D MULTI-AZIMUTH DATA SET (WCSB)

8*70m
70m

Figure 5.8: The output shot geometry in one section of interpolation. There are approximately 
8 x 8  shots in each section.
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Figure 5.10: Inline receiver interpolation (zoomed),
receiver line with a sampling interval of 35 m.

(a) The original receiver line with a sampling interval of 70 m. (b) The interpolated
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Crossline Receivers (Ax = 140m)

Figure 5.11: Crossline receiver interpolation, (a) The original receiver line with a sampling interval of 140 m. (b) The interpolated
receiver line with a sampling interval of 35 m.
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Figure 5.12: Crossline receiver interpolation (zoomed), (a) The original receiver line with a sampling interval of 140 m. (b) The
interpolated receiver line with a sampling interval of 35 m.
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5.2. 4-D MWNI, APPLICATION TO 3-D MULTI-AZIMUTH DATA SET (WCSB)
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Figure 5.13: Interpolation of inline and crossline receivers with NMO (zoomed), (a) Original 
inline receivers with a sampling interval of 70 m. (b) Interpolated inline receivers with a sampling 
interval of 35 m. (c) Original crossline receivers with a sampling interval of 140 m. (d) Interpolated 
crossline receivers with a sampling interval of 35 m.
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5.2. 4-D MWNI, APPLICATION TO 3-D MULTI-AZIMUTH DATA SET (WCSB)

(a)

(b)

Figure 5.14: 3-D cubes of final stacks, (a) The original 3-D cube of the stack without interpolation, 
(b) The 3-D cube of the stack with interpolation.
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5.2. 4-D MWNI, APPLICATION TO 3-D MULTI-AZIMUTH DATA SET (WCSB)

Figure 5.15: Migrated crossline using the original data (a) and the interpolated data (b).
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5.2. 4-D MWNI, APPLICATION TO 3-D MULTI-AZIMUTH DATA SET (WCSB)

j _____________|____________ |____________ |____________ |____________ |____________ |___________

(b)

Figure 5.16: Migrated crossline (zoomed) using the original data (a) and the interpolated data 
(b).
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Chapter 6

Discussion and Conclusions

Data recorded in a reflection seismic survey is a discrete version of a continuous wave- 

field. To uniquely characterize the continuous wavefield from the recorded data, the 

wavefield should be sampled at a rate higher than its Nyquist rate. However, recorded 

seismic data are always spatially incomplete to some degree. In this case, the problem of 

reconstruction can be dealt in the discrete space domain with inverse theory.

This thesis proposed a minimum weighted norm interpolation algorithm where band 

limited interpolation is formulated as a minimum norm least squares type problem where 

an adaptive DFT-weighted norm regularization term is used to constrain solutions. The 

method permits one to incorporate the a priori spectral signature (bandwidth and the 

signal spectrum shape) of the unknown wavefield.

Numerical examples w ith synthetic and field data are used to demonstrate the mer­

its of the proposed interpolation scheme. It is found that the minimum weighted norm 

interpolation algorithm often yields a better solution than a regular minimum norm in­

terpolation algorithm.

The MWNI is efficiently implemented with the preconditioned CG and the FFT. The 

computational efficiency makes it attractive to interpolate huge 3-D prestack datasets and 

to deal with higher dimensional interpolation problems where other interpolation meth­

ods become prohibitive. The innovative multi-dimensional schemes are proposed which 

allow the method to exploit the multi-dimensional nature of the seimsc data wavefield 

for and optimal seimic data reconstruction. The 3-D and 4-D MWNI schemes have been 

successfully applied to 3-D common-azimuth and multi-azimuth field data reconstruc-
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tion problems.

The incompleteness of the recorded wavefield creates problems for multichannel pro­

cessing steps such as suppression of coherent noise (multiple and ground roll), migration 

and inversion which often require regular and dense sampling. The proposed algorithm 

can be used to render seismic data into a form that makes is more suitable multichannel 

processing algorithms. In this thesis, we have particularly demonstrated the effective­

ness of the 2-D/3-D MWNI scheme at the time of preconditioning seismic data for wave 

equation AVA imaging. Examples with synthetic and real 3-D data show an important 

reduction of sampling artifacts both in the stacked image and in individual AVA gathers 

by using MWNI before AVA imaging.

The proposed MWNI algorithm is different from the high resolution DFT approach 

using sparseness constraints. Also, present work does not attempt to invert the non- 

uniform DFT (Duijndam et al., 1999; Schonewille, 2000; Zwartjes and Duijndam, 2000), 

the MWNI implementation utilizes FFTs and therefore an important gain in efficiency is 

achieved when interpolating data that depend on more than one spatial dimension. For 

irregularly sample data, the data should be regularized first. For example, binning data 

with into small bins; assuming regularly spaced traces and ignoring variations in their 

true location. Note that binning data with a smaller bin size will increase the data volume 

to be interpolated. In this case, methods like the pruning FFT may be used to further cut 

the computation time.

Aliasing is always a challenge that needs to be faced when dealing with Fourier based 

interpolation methods. The anti-alias iterative strategy introduced in Chapter 3 can be 

only used to deal with mild aliasing. An anti-aliasing f - k  domain Fourier reconstruction 

method was discussed by Gulunay (2003), where an anti-aliasing filter derived from the 

non-aliased low frequency part of the data is incorporated in the aliased high frequency 

reconstruction. Such strategy can also be used to derive weights for the MWNI algorithm 

and finally, enable us to interpolate aliased data. However, this strategy requires regu­

larly spaced inputs and it is only valid on small windows where the assumption of linear 

events is valid. By doing so, the efficiency and flexibility achieved by MWNI is greatly 

compromised.
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Appendix A

Table of Symbols

SYMBOL name or discription

1-D, 2-D, 3-D, 4-D one, two, three, four-dimensional

adj adjoint

HRFT high resolution Fourier transform

h wavenumber corresponding to Xi, i = s, r, m, o

1 I max maximum wavenumber ki corresponding to / max and Vmax

MNI minimum norm interpolation

MWNI minimum weighted norm interpolation

n integer variable

ni, n2 n for two dimensions

n vector of integer variables

N-D N-dimensional

NMO normal moveout

P(-) probability density function

Pi spectral domain weights

Q circulant convolution filtering matrix

s(t), s ( t l , t2) periodic impulse train

s(n), s(nu n2) continuous Fourier transform of s(t), s ( t i , t2)

t time variable

h ,  t2 independent variables for 2-D signals

t vector of time variables
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SYMBOL name or discription

T (1) sampling period 

(2) superscript for transpose

t u t 2 horizontal and vertical sampling intervals

T sampling operator

u general matrix defining for periodicity of 2-D functions 

in the Fourier domain

Vu V2 medium velocities

V apparent velocity in (t, X{), i = s, r, m, 0

Vnin minimum phase velocity of events

V sampling matrix for 2-D function with arbitrary 

sampling geometries

w continuous seismic wavefield

Wm positive and even window, e.g. a hanning window

w Fourier transform of continuous seismic wavefield w

w weighting matrix

WCSB Western Canadian Sedimentary Basin

x(n), x (n i ,n 2), x(n) discrete sequence

x c(t),  x c( h , t 2), xc(t) continuous function

samples of complete (unknown) data

XT(t), Xr (t \ ,  t 2) reconstructed continuous function

Xs(t), Xs { t \ , t 2) sampled continuous function

X(u),  X(UUCJ2), X ( u ) DTFT of x(n), x (n i ,n2), x(n)

x c( n ) ,x c(n1}n2) , x c(n) continuous Fourier transform of x c(t), xc(t \ , t2), xc(t)

xk DFT of the samples of complete data xm

X S(Q), O2) continuous Fourier transform of x s(t), x s{t\ , t2)

X vector of complete data

X estimation of x

midpoint vector (xm, ym)

X 0 offset vector (x0, y„)

X r receiver vector (xr,yr)
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SYMBOL name or discription

shot vector (xs,ys)

X vector of DFT of complete data

(xmt Vm) midpoint coordinates

0 o, Vo) offset coordinates

5 Vr) receiver coordinates

(xs,ys) shot coordinates

y vector of incomplete data

S(t), S(t i , t2) unit impulse function

7 angle of incidence

K region of spectral support

A diagonal matrix

P trade off parameter

Pit P2 medium density

<yc scale parameter

variance of noise

U) angular frequency defined by DTFT

U)l, C02 ui for two dimensions

C0 vector of angular frequencies defined by DTFT

n frequency variable defined by continuous Fourier transform

fll, 02 0  for two dimensions

nc cutoff frequency for low-pass filter

Ojv Nyquist sampling frequency

sampling frequency

n vector of frequency variables defined by continuous Fourier

transform

II-IU a weighted norm
* (1) convolution 

(2) superscript for conjugate transpose

t superscript for pseudoinverse

® kronecker product
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Appendix B

Sampling in shot-receiver and 
midpoint/offset domain

The wavefield sampling in the shot-receiver domain/midpoint-offset domain can be rep­

resented by a sampling matrix. The sampling matrix defines the general matrix that de­

scribes the periodicity of the spectrum of the sampled wavefield according to equation 

(2.2.27). In this appendix, we derive general matrices for the sampling matrices Y sr and 

Y mo defined by equations (2.3.15) and (2.3.19).

Giving sampling matrices Y sr defined by equation (2.3.15), we can write general ma­

trices U sr of frequency panel according to equation (2.2.27):

U . =  27r(Ysr) - 1)'

27T, . 1„  (adj(Y ,r)y ,detV.

where adj denotes adjoint matrix. Since

(B.0.1)

(B.0.2)

d e t  Y s r  — (YrunZ/max)"* (B.0.3)

and

YninZ/max
0

0

hmin/Ziradj(Y«0 =

substitute equation (B.0.3) and (B.0.4) into equation (B.0.1), we have

(B.0.4)

V sr  =  27T
/maxZYnin 0

0 /m ax /Y r
(B.0.5)
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Similarly, given V mo defined by equation (2.3.19) Since

d ef  Y mo =  — (Ym in//m ax)

and

we have

adj (Y m o)

V m o =  ^

-Kmn// ,
-K n in /2 /r

max
max

- W / r

l^min/2/i
max
max

/m ax/lrn in  /m ax/^min  
/m ax/2Vm in /max/2Vmin
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Appendix C

The method of Lagrange Multipliers

The minimum norm solution is found by minimizing the following cost function:

J  = AT( T x - y )  +  ||x ||^; (C.0.1)

subject to

T x -  y =  0 (C.0.2)

In the above equation A denotes the vector of Lagrange multipliers. Notes that if when 

the constraints T x -  y =  0 are satisfied then J  =  | |x | |^  and the minimum of J  will also

give the minimum of HxHyy. J  is minimized by differentiating with respect to x, which

give us

2Qfx +  T t A =  0. (C.0.3)

Therefore

x =  (2Q t)-1T TA (C.0.4)

=  ^ Q T t a . (C.0.5)

Substitute x  from equation (C.0.5) to equation (C.0.2), we have

A =  —2(TQ TTr 1y (C.0.6)

substitute A in equation (C.0.6) back into equation (C.0.5), we have

x =  Q Tt  (T Q T 7’) - 1 y (C.0.7)

as shown in equation (3.2.15).
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Appendix D

Reduction to standard form

The original cost function to minimize (as shown in equation (3.2.18)) is

J = IITx -y | l2 + P2Hxllvv> (D.0.1)

where p2 is the trade-off parameter of the problem. Minimizing J  is equivalent to find 

the least-squares solution of overdetermined system of equation

( / » w ) x f s ( o )  < w u >

as shown in equation (3.2.19), where the matrix of weights W  is given by

W  = At1/2 F  . (D.0.3)

If W  is well posed, then let z =  W x, equation (D.0.1) can be rewritten as

J = | | T W - 1z - y | | 2 +  p2| |z | |^ .  (D.0.4)

Define T  =  T W  1, the problem is now in its standard form (Haber, 1997). Minimize this 

new objective function is equivalent to find the least-squares solution of overdetermined 

system of equation

( T ) - - ( ; )
However, we have defined W  as a band limiting operator, it has a non-empty null

space, the set {xo : W x  =  0}, where Q denotes the null vector. Let z =  W x, and W* be

the pseudo-inverse of W , the solution of x can be divided into two parts, xjv which is in
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the active space of W , and x 0 which is in the null space of W :

x =  xw  +  xo (D.0.6)

=  W fz +  W 0z0 , (D.0.7)

where W 0 denotes matrix which contains the null space of W , i.e. W W 0 =  0. Substitute 

equation (D.0.7) into equation (3.2.19) gives:

( p| , ) [ W W w 0z0] « ( S )  (D.0.8)

This is equivalent to these two systems equations:

TW^z +  T W 0z0 =  y  (D.0.9)

p{ W W *z +  W W 0z0) =  pW W fz =  0 (D.0.10)

First, W  is underdetermined therefore W W * is identity matrix. Also, The fact that we 

are solving for a band limited solution (k G 1C), means that

xo =  W 0z0 =  0

Therefore, equation (D.0.2) can be transform into

( T M s ) -
which is shown in equation (3.2.23). In this case, we are equivalently minimizing a objec­

tive function

J  =  | | T W t z - y ||2 +  P2| N | ^ .  (D.0 .12)

Define T  =  T W t, the problem is now in its standard form.
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