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ABSTRACT 

 

Landslides include various forms of geological mass movements such as falls, 

slides and flows under the force of gravity. Predictions of landslide kinematics 

and dynamics require knowledge of flow behaviour and mathematical modeling. 

Research into the flow behaviour of granular materials has revealed the existence 

of rate-dependent collisional behaviour at high shear rates and void ratios as well 

as rate-independent frictional behaviour at low shear rates and void ratios. 

However, the results of high stress shear experiments on small particles indicate 

that shear rate has no effect on flow behaviour. Following this finding, most 

geotechnical analyses of landslides have considered mainly frictional flow 

behaviour. Since the collisional behaviour of granular materials depends on 

particle inertia, both shear rate and particle mass (or particle density and diameter) 

are equally important in its occurrence. In this research, the relevance of rate-

dependent collisional behaviour at high stress was re-investigated using 

simulation experiments on large size particles. The results indicate that rate-

dependent flow behaviour is more likely to occur in rapid-flow landslides 

involving large particles, such as debris avalanches and rock avalanches. The 

critical state framework which captures the frictional behaviour was extended to 

capture rate-dependent collisional behaviour by adding shear rate as an additional 

state variable, based on the pioneering work of Campbell. The extended 

framework was used for flow classification, study of flow progress, and 

constitutive modeling. The effect of particle shape on granular flow behaviour and 

the extended critical state framework was reviewed using simulation experiments. 



 

Selected unified constitutive models proposed by Savage and Louge were 

evaluated using the extended critical state framework. In this research, new 

unified constitutive model is developed. The new model combines the frictional 

and collisional stress contributions using weighting functions called stress 

coefficients to determine the total stress. The stress coefficients are 

interdependent and are determined using empirical equations and detailed 

theoretical analyses. The new model is used to predict the extended critical state 

framework and implemented in the numerical model for inclined flows. The 

model performs well in capturing the extended framework and flow profiles of 

dense granular inclined flows on flat-frictional and rough bases. 
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CHAPTER ONE      

 

INTRODUCTION 

 

1.1 Statement of Problems 

 

Flow-like landslides include rapid and massive debris flows, snow avalanches, 

debris avalanches, and rock avalanches (Hungr et al., 2001).  These events are 

catastrophic to the environment. Many parts of Canada face some form of 

avalanche or debris flow hazards. Since 1840, debris flows and avalanches in 

Canada have resulted in more than 600 deaths and caused billions of dollars in 

damage. They are registered as one of the most significant natural hazards in the 

country. They are also common problems in the U.S., China, and other parts of 

the world.  

 

In mitigating these natural hazards, precise prediction of landslide kinematics and 

dynamics plays a vital role. This requires knowledge of flow physics (as applied 

to landslides) and expressing it mathematically using a constitutive equation. 

Although fundamental work has been done with regard to this problem, the 

understanding of flow processes is still incomplete. It can be said that the extreme 

regimes of flows (frictional, collisional, viscous, and turbulent) are fairly well 

understood with respect to flow mechanism, flow behavior, and theories to 

explain their behavior using mathematical modeling have been developed. 

However, the biggest challenge is the understanding of intermediate flows, where 

more than one flow regime (or flow mechanism) exists simultaneously making 

the flow process more complicated. Understanding flow behaviour and 

constitutive modeling of intermediate flow characteristics is a current research 

topic of great interest in the study of granular flows (Da Cruz et al., 2005; Jop et 

al., 2006; Lu et al., 2007; Lee & Huang, 2010; Berzi et al., 2011). In practice, the 

mechanism of flow and energy dissipation in granular flow varies with both space 
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and time, implying that understanding their transitional (intermediate) regime 

from one mechanism to the other is the key for precise flow prediction.  

 

One of the problems in studying granular flow is to gain an understanding of 

intermediate flow process in relation to the mechanism of flow and energy 

dissipation, the characteristics of flow, and to develop a theory to explain the flow 

process. Similar to the theory of Critical State Soil Mechanics (CSSM) for 

frictional flow and the Kinetic Theory of Granular Flow (KTGF) for collisional 

flow, an equivalent theory to explain the behaviour of intermediate flow is 

required. This has been the subject of considerable interest in granular flow 

research. For flow-like landslides in particular, most geotechnical models assume 

a rate-independent, fully frictional behaviour. Rate-dependent flow behaviour of 

flow-like landslides through the collisional interaction of particles is subjected to 

question seeking experimental proofs. On the other hand, the better performance 

of the velocity-dependent Voellmy model over the Coulomb frictional model with 

regards to dry debris and rock avalanches requires an explanation for the possible 

source of the rate-dependent shear resistance component.   

 

Understanding the characteristics of intermediate flow is important in developing 

a unified constitutive model to predict the full ranges of granular flow behavior. 

There have been encouraging developments in unified constitutive modeling. A 

common limitation observed in many unified constitutive models (Johnson & 

Jackson, 1987; Savage, 1998; Louge, 2003; Berzi et al., 2011) is that the total 

stress is equal to the sum of the frictional and collisional stress components based 

on the ad hoc assumption of Savage (1982). Therefore, the other problem in 

modeling granular flows is the lack of a unified constitutive model that is 

developed based on assumptions tested in physical experiments and numerical 

simulations.  
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1.2 Background of the Study 

 

From small-scale industrial processes to large-scale geological mass flows, 

granular flow has become a current subject of interest. Industrial processes 

involve small size particles flowing under low stress and density, such as the flow 

of food grains and pharmaceutical drugs; while geological mass flows involve a 

mixture of small soil particles and large rock fragments under high stress and 

density. All forms of geological mass movements are termed as landslides, which 

are classified according to various systems (Varnes, 1978; Cruden & Varnes, 

1996; Hungr et al., 2001). This research is limited to dry granular flows and 

focused to obtain a better understanding of the flow behaviour and develop a 

model. Two types of dry granular flow behaviour have been identified in the 

literature, namely rate-independent frictional and rate-dependent collisional flow 

behaviours.  

 

The rate-independent quasi-static deformation of granular particles has been 

successfully studied for several years (Reynolds, 1885; Rowe, 1962; Rowe, 1963; 

Horne, 1965a; Horne, 1965b). Quasi-static deformation is characterized by 

frictional rubbing or sliding of particles against each other with a relatively long 

duration of contact. Quasi-static flow of granular particles has been successfully 

modeled by the Theories of Soil Plasticity and Critical State Soil Mechanics 

(Schofield & Wroth, 1968; Wood, 1990).  

 

When granular materials flow at a sufficiently high rate of deformation, the inertia 

of the particles becomes dominant and causes collisions between particles. The 

collisional flow behaviour was first observed by Bagnold (1954) and further 

studied by Bridgewater (1972), Savage and Sayed (1984), Hanes and Inman 

(1985a, b), Patton et al. (1987), Drake (1988), and Hojin (1989). The collisional 

behaviour is characterized by the instantaneous contact of particles during 

collisions, which allows an exchange of momentum between particles to develop 

resistances against the applied stresses. Empirical models were initially proposed 
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for collisional flows of granular material (Bagnold, 1954; McTigue, 1978). Later, 

the kinetic theory of gases was adopted as the Kinetic Theory of Granular Flow 

(KTGF) to explain the collisional mechanism and to drive constitutive modeling 

(Ogawa, 1978; Ackerman & Shen, 1981; Jenkins & Savage, 1983; Lun et al., 

1984; Jenkins & Richman, 1985). 

 

The study of rate-dependent collisional behaviour was limited to the low stress 

range. Shear experiments conducted to investigate the relevance of collisional 

behaviour at high stresses revealed no shear rate effects (Hungr & Morgenstern, 

1984; Fukuoka & Sassa, 1991; Cagnoli & Manga, 2004). Thus, the collisional 

stresses and energy dissipations have been ignored in commonly used flow-like 

landslide models such as MADFLOW (Chen & Lee, 2000), TITAN2D (Pitman et 

al., 2003), DAN3D (McDougall, 2006), and RASH3D (Pirulli, 2005). However, 

the Coulomb frictional model does not perform better than the velocity-dependent 

Voellmy model in the back analyses of dry debris and rock avalanches (Hungr & 

Evans, 1996; Evans et al., 2001; Hungr et al., 2007; Pirulli, 2009). This becomes a 

challenge on the argument of whether the rate-dependent collisional behavior is 

relevant in granular flows. In addition, the high stress shear experiments which 

showed no shear rate effect on shear resistance were conducted on small diameter 

particles. The behaviour at high stress shear experiments on large diameter 

particles has not yet been investigated.  

 

In the transition of flow between frictional and collisional flow regimes, granular 

particles will undergo frictional and collisional mechanisms simultaneously. 

However, despite the studies of the transitional flow behavior (Sayed, 1981; 

Drake, 1990; Campbell, 2002; Campbell, 2005), there is presently no clear 

understanding on how the two flow mechanisms can act together. The behaviour 

of intermediate (or transitional) granular flow has been explored using physical 

experiments and numerical simulations of granular particles (Savage & Sayed, 

1984; Da Cruz et al., 2005; Campbell, 2002; Campbell, 2005; Lu et al. 2007). 

Modeling of granular flow that accounts for both frictional and collisional stress 
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contributions becomes the latest research area in the study of granular flows. 

Pioneer work was done by Savage (1982), who followed an ad hoc assumption of 

simple stress addition. Several unified models have since been proposed by a 

number of researchers (Nott, 1991; Savage, 1998; Mills et al., 1999; Ancey & 

Evesque, 2000; Louge & Keast, 2001; Louge, 2003; Berzi et al., 2011). However, 

most of these models adopt the same assumption made by Savage (1982).  

 

1.3 Objectives and Methodology 

 

The overall objective of this research is to investigate the flow behaviour of large 

size dry granular particles under high stresses, and to develop a unified 

constitutive model which will capture the full ranges of flow behavior from 

frictional flow to collisional flow. The specific objectives of the research are:  

 

1. Based on low stress experiments, it has been well documented that granular 

flow exhibits rate-dependent collisional behaviour at high void ratio and shear 

rate. However, some high stress shear experiments revealed that there was no 

shear rate effect on the shearing resistance of the material. These experiments 

were conducted on small diameter particles. Since the collisional mechanism 

depends on particle inertia, both shear rate and particle mass (density and 

diameter) are equally important. Therefore, the first objective of the present 

research is to investigate the relevance of rate-dependent collisional behaviour 

for large size particles under high stresses. Due to limitations of resources to 

conduct physical experiments, the investigation will be carried out 

numerically using the discrete element method (DEM). Before the DEM 

model will be used to study flow behavior at high stresses, it will be first 

calibrated using physical experiments at low stresses taken from the literature.   

 

2. The second objective of the research is to develop a unified framework which 

is able to capture rate-independent and rate-dependent deformation behaviours 

of dry granular materials. Campbell (2002) obtained a series of state lines as a 
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function of dimensionless shear rate on the void ratio versus dimensionless 

stress plane. Based on these findings, the critical state framework will be 

extended using characteristic mean shear velocity ( )dγ&  as an additional state 

variable to capture the rate-dependent intermediate and collisional flows. 

Numerical experiments using DEM will be used to provide data for the 

extended framework. The critical state framework has been used to capture 

strain-softening and strain-hardening behaviours and in assessing flow 

liquefaction of granular materials. Similarly, the use of the extended critical 

state framework to capture the frictional, collisional, and intermediate 

granular flows will be investigated. Similar to undrained and drained 

behaviors in quasi-static soil deformations, stress-controlled and volume-

controlled granular flows produce different flow behaviours. The extended 

framework will also be used to describe the progression of flow under these 

two flow conditions. 

 

3. The behaviour of rapid granular flow has been investigated using experiments 

mostly on spherical particles. Some advances have also been made in the 

investigation of non-spherical granular behaviour. DEM simulations of this 

latter type of material depend on how the individual non-spherical particles 

are precisely modeled. The third objective is to investigate the behavior of 

non-spherical particles using DEM simulations. In this research, the ring shear 

test will be simulated using the DEM model for non-spherical particles.  

 

4. Several unified models have been proposed by various researchers since the 

pioneering work of Savage (1982). However, most of the models rely on 

Savage’s (1982) ad hoc assumption, where the frictional and collisional stress 

contributions were directly added to obtain the unified stress. The fourth 

objective of the research is to review the existing unified constitutive models 

and evaluate selected models using an extended critical state framework. 

Additionally, the main limitations of the existing models will be discussed.   
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5. The final objective of this research is to develop a new concept in constitutive 

modeling which will overcome the ad hoc assumption of Savage (1982) and 

other limitations of the existing models. The new concept is based on the 

microscopic description of granular flow mechanisms provided by Sayed 

(1981) and by considering the analogies in the transition of ice to water. The 

frictional and collisional stress components will be combined by weighting 

functions, called stress coefficients, to obtain the unified stresses. The stress 

coefficients will be determined using empirical equations and detailed 

theoretical analyses. 

 

1.4 Organization of the Thesis 

 

Literature reviews on previous studies of dry granular flow are presented in 

Chapter 2. The reviews focus on classification of flow, flow behaviours, and 

constitutive modeling, with emphasis on geological mass flows. Different 

classification systems of landslides are summarized and the behaviour of quasi-

static, collisional, and intermediate flow regimes of dry granular materials are 

reviewed in detail. Recent advances in the understanding of steady fully 

developed (SFD) inclined flows of dense granular particles are also included. The 

Critical State Soil Mechanics (CSSM) and the Kinetic Theory of Granular Flow 

(KTGF) for constitutive modeling of quasi-static and collisional flows 

respectively are reviewed. Finally in Chapter 2, the advances and challenges in 

constitutive modeling of granular flows are discussed. 

 

Chapter 3 summarizes the DEM simulation experiments conducted using the 

commercial software PFC3D v4.0. Simulations were conducted for steady plane 

shear flows, steady ring shear flows, and SFD inclined flows. Model descriptions, 

procedures of simulation experiments, method of measurement of flow 

characteristics, and model calibrations are discussed in detail.  
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The relevance of rate-dependent collisional behaviour in geological mass flows is 

studied in Chapter 4. The study was conducted by performing plane shear 

simulations on large size granular particles at high stress. The range of flow 

depths, flow velocities, and flow densities required for rate-dependent flows were 

assessed and compared with the ranges of values in real life problems.   

 

The extended critical state frame work is presented in Chapter 5. Based on the 

findings of Campbell (2002), the series of state lines in void ratio versus normal 

stress plane are determined as a function of characteristic shear velocity ( )dγ& . The 

state lines are referred to here as supercritical state lines. The rest of the extended 

framework components are also determined and the uses of this framework for 

flow classification, study of flow behaviour, and modeling are investigated. 

Finally, the behaviour of non-spherical particle flows is reviewed using ring shear 

simulations, and the effect of particle shape in the extended critical state 

framework is discussed.  

 

Chapter 6 is devoted to the development of a new constitutive model for dry 

granular flow. Constitutive models from the literature are reviewed, and selected 

models are evaluated using the extended critical state framework presented in 

Chapter 5. A new constitutive model is developed based on the extended critical 

state framework. The model is validated against inclined plane flow simulation 

experiments. 
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CHAPTER TWO      

 

LITERATURE REVIEW 

 

2.1 Types of Granular Flow 

 

2.1.1 Introduction 

 

Granular material encompasses a wide variety of substances, ranging from 

agricultural and industrial materials such as grains, fertilizers and pills to granular 

soils and rock fragments. Granular material could be described in general as a 

conglomeration of discrete macroscopic solid particles that interact with each 

other through rubbing friction and collision. Although many findings have been 

made towards the understanding of the physics of granular material, it is still an 

active research topic due to the complex behaviour of the material. A granular 

material can behave like a solid by interacting through friction when placed at low 

void ratios. However, it can also behave like a liquid or like gas particles when 

deforming by rolling and sliding or colliding with each other, respectively.  

    

An understanding of the flow physics of granular materials can have numerous 

applications in industrial processes and natural gravity driven flows. Industrial 

processes usually involve flows of small size particles under low stresses, while 

geological mass flows occur at higher stresses and involve a wide range of 

particle sizes. All forms of geological mass movements such as falls, slides, and 

flows under the force of gravity are collectively termed landslides (Cruden & 

Varnes, 1996; EPOCH, 1993). The scope of this research is limited to the 

characteristics and modeling of dry flow type landslides.  
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2.1.2 Types of Landslides 

 

A prominent classification system of landslides was proposed by Varnes (1978) 

and later modified by Cruden and Varnes (1996). A similar classification system 

was also developed by EPOCH (1993) to be used in the European community. 

The classification systems are based on the criteria of material types and 

movement mechanisms.  

 

Cruden and Varnes (1996) classified the materials as rock, debris, and earth. 

Debris material is described as soil with more than 20% of the particles greater 

than 2 mm, and earth material is described as soil with less than 20% of the 

particles greater than 2 mm. In addition, they classified the movement 

mechanisms as fall, topple, slide, spread, and flow. The landslides were then 

classified based on the types of materials and movements, such as rock fall, debris 

flow, earth spread, and so on.  

 

Similar classifications of the material and movement types were also followed by 

EPOCH (1993). They classified the materials as rock, debris, and soil; while, they 

classified the movement mechanisms as fall, topple, slide (rotational, 

translational, planar), lateral spreading, flow, and complex. They included rock 

avalanche in their landslide classification system under the complex type of 

movement mechanism.    

 

USGS (2004) provided detailed descriptions of the movement mechanisms with 

schematic illustrations. 
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2.1.3 Flow Type Landslides 

 

From the different types of landslides illustrated in the previous section, Hungr et 

al. (2001) presented a systematic classification for flow type landslides. They 

classified the landslide materials as sorted and unsorted materials. Sorted 

materials include gravel, sand, silt, and clay. Unsorted materials include debris, 

earth, mud, peat, and rock. Hungr et al. (2001) further characterized the landslide 

materials as non-cohesive (gravel, sand, silt, and debris), cohesive (clay, earth, 

and mud), organic (peat), and fragmented (rock).  

 

Based on the above classification of landslide materials, Hunger et al. (2001) 

provided detail classifications of the variety of flow type landslides including 

earth flow, mud flow, debris flow, debris avalanche, and rock avalanche. The 

classification also included the detail descriptions about the degree of saturation 

(as dry, moist, or saturated) and the range of flow rate (as slow, rapid, very rapid, 

or extremely rapid) for each flow type landslide.   

    

A flow velocity scale for landslides was proposed by Cruden and Varnes (1996). 

According to their scale, slow landslide would flow less than 5x10
-6

 m/s, rapid 

landslide would flow less than 0.05 m/s, and extremely rapid landslide would 

flow greater than 5 m/s. On the other hand, Hungr et al. (2001) compiled 

maximum recorded flow velocities for various types of flow type landslides. The 

results show that earth flow could flow up to 0.1 m/s, debris flow could flow up to 

20 m/s, debris avalanche could flow up to 40 m/s, and rock avalanche could flow 

up to 100 m/s. The classification of sediment water flows by Pierson and Costa 

(1987), based on sediment concentration and flow velocity as criteria, also 

suggested similar maximum flow velocities for the above flow type landslides.  

 

Debris flows and debris/rock avalanches are among the catastrophic flow type 

landslides. They move rapidly and usually feature long run-out distances. Based 

on high stress shear experiments (Hungr & Morgenstern, 1984; Fukuoka & Sassa, 
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1991), they have been considered to exhibit only rate-independent frictional 

behaviour. However, the Coulomb frictional model has not performed better than 

the velocity-dependent Voellmy model in the back analyses of dry debris and rock 

avalanches (Hungr & Evans, 1996; Evans et al., 2001; Hungr et al., 2007; Pirulli, 

2009). This research focuses on the investigation of rate-dependent flow 

behaviour in dry debris flows and debris/rock avalanches, and their constitutive 

modeling.  

 

 

2.2 Behaviour of Dry Granular Flow 

 

2.2.1 Introduction 

 

Precise predictions of the kinematics and dynamics of flow type landslides play a 

crucial role in mitigating the resulting hazards. This requires a good knowledge of 

the physics of flow and the ability to express it mathematically using a 

constitutive equation. Although fundamental work has been done on this problem, 

understanding of the flow process is still incomplete. It can be said that the 

extreme regimes of granular flows (i.e., quasi-static regime, fully-collisional 

regime, viscous regime, and turbulent regime) are fairly well understood with 

respect to the mechanism involved, their flow behavior, theories to explain their 

flow, and mathematical modeling. However, intermediate (or transitional) 

granular flow, in which two or more types of flow mechanisms coexist, is still an 

active research topic (Jop et al., 2006). In reality, the mechanism of granular flow 

varies with both space and time; in other words, the flow mechanism is different 

at the initiation, deposition, and flowing stages. The mechanism of granular flow 

is also different at the base, in the middle, and at the surface of the flow. A 

granular flow is a complex process whereby the mechanism of stress generation 

and energy dissipation are variable with respect to space and time, depending on 

the stages of the flow and boundary conditions.  
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2.2.2 Quasi-static Flow Behaviour 

 

The mechanism of quasi-static deformation of granular particles has been studied 

extensively for many years (Reynolds, 1885; Rowe, 1962; Rowe, 1963; Horne, 

1965a; Horne, 1965b; Drescher and De Josselin De Jong, 1972; Howell et. al., 

1999).  

 

During quasi-static shear, particles are driven to each other to form chains of 

contacts among them resulting in contact forces. With further shearing, different 

groups of particles are formed which slide over each other and destroy the chain 

of contacts. This is accompanied by the rotation of individual particles. As the 

deformation continues, particles reorient themselves to form new contact chains, 

and the above mechanism of deformation continues by the formation of new 

groups of particles sliding over each other. This mechanism of deformation and 

contact force distributions have been visualized using photoelastic techniques 

(Drescher and De Josselin De Jong, 1972; Howell et. al., 1999).  

 

Quasi-static flow occurs as a result of relative motion between groups of particles. 

The flow is characterized by a steady-state condition, where stresses and void 

ratio are constant with time. As per Coulomb’s law, shear stress is proportional to 

the normal stress at sliding surfaces and the friction mechanism is independent of 

sliding velocity. The normal stress is transferred through the chain of contacts and 

the shear resistance is entirely derived from the frictional mechanism between 

particles when they slide over each other. The mechanical energy is dissipated by 

friction converting into heat. Quasi-static granular flow has been successfully 

modeled by the theory of soil plasticity and critical state soil mechanics 

(Schofield & Wroth, 1968; Wood, 1990). 
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2.2.3 Collisional Flow Behaviour 

 

When granular materials flow at a sufficiently high rate, the inertia of particles 

becomes dominant, which causes particles to collide during contact. The 

collisional flow mechanism was first observed by Bagnold (1954) and further 

investigated in laboratory experiments by Bridgewater (1972), Savage and Sayed 

(1984), Hanes and Inman (1985a & b), Drake (1988), Hojin (1989), and using 

discrete element simulations such as Luding et al. (1998), Herrmann et al. (2001), 

and Campbell (2002, 2005). 

 

In this type of flow, particles make contact only for a very short period of time 

during collision and may spend time in the air between collisions. A particle may 

collide with only one other particle (binary collision) or with multiple particles at 

any instant in time. The resistances to normal and shear stresses are 

predominantly developed by momentum exchanges through particle collisions. 

The amount of momentum exchange depends on the relative velocities of the 

particles at collision, which in turn is governed by the rate of shearing of the 

material. Hence, unlike the frictional flow mechanism, collisional flow 

mechanism is rate-dependent. In collisional flow, stresses are proportional to the 

square of the shear rate and the square of the particle diameter. Since granular 

particles are inelastic, the kinetic energy of the system gradually dissipates upon 

collision. Collisional granular flow has been successfully modeled by the kinetic 

theory of granular flow (e.g., Lun et al., 1984). 

 

The experimental investigations of rate-dependent collisional flow behaviour, 

however, were limited to small size particles and low stresses. In order to 

investigate the relevance of rate-dependent behaviour in actual flow landslides, 

some experiments were conducted at high stress ranges (Hungr & Morgenstern, 

1984; Kaibori, 1986; Vibert et al., 1989; Fukuoka & Sassa, 1991; Cagnoli & 

Manga, 2004).  
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Hungr and Morgenstern (1984) conducted flume and ring-shear experiments to 

investigate the flow behaviour of granular materials at high velocities. The flume 

experiments were conducted for Ottawa sand and polystyrene beads with uniform 

diameters of 0.7 mm and 1.5 mm, respectively. Flow velocity of up to 6 m/s was 

achieved in the flume experiments, with a typical flow depth of about 10 cm. Due 

to low stresses in the flume experiments, supplementary experiments at higher 

stress range were also conducted using a ring shear apparatus. The ring shear tests 

were carried out on two types of coarse sand (wet and dry), sand-rock flour 

mixtures, and polystyrene beads. The diameter of sand particles ranged from 1.5 

mm to 3 mm, while the rock flour was crushed pure quartz with a mean grain 

diameter of 0.044 mm. The tests were conducted for the range of circumferential 

velocities of 0.1 cm/s to 98 cm/s and normal stresses of up to 200 kPa. 

 

Fukuoka and Sassa (1991) also reviewed previous ring shear tests (Kaibori, 1986; 

Vibert et al., 1989) and conducted additional high-speed high stress ring shear 

tests to investigate the effect of shear rate on the shear behaviour of granular 

material. The type of materials tested included glass beads, Toyoura Standard 

Sand, and river sand. The particle size was generally less than 2 mm and the tests 

were conducted for normal stresses of up to 300 kPa and shear velocity of up to 

100 cm/s. The glass beads did not show any rate-dependence behavior, and the 

slight variations of friction angle in the various types of sand were attributed to 

changes in grain-size distribution due to grain-crushing during the shear test.    

 

Cagnoli and Manga (2004) conducted shear tests as well, but on angular pumice 

fragments using Cagnoli’s shear cell. The material was obtained from the 

pyroclastic deposits of Medicine Lake Volcano in northern California, U.S. The 

average density of the material was 550 ± 39 kg/m
3
 and particle sizes ranged from 

8 mm to 9.5 mm, with an average value of 8.75 mm. At high angular speed 

experiments, a thick rigid layer of particles was formed above a thin basal layer of 

colliding particles.  
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Nevertheless, all of the above high stress range experimental results indicated no 

rate-dependent flow behaviour of granular particles. This led researchers to 

believe that the rate-dependent collisional flow mechanism is limited to low 

dense, low stress granular flows such as in industrial processes, and should 

therefore not be considered in the geotechnical analysis of flow type landslides 

(Hungr & Morgenstern, 1984; Sassa, 2000; Cagnoli & Manga, 2004; Wang, 

2008). Following such an argument, the collisional stress generation and energy 

dissipation seemed to be ignored in most commonly used landslide models, such 

as MADFLOW (Chen & Lee, 2000), TITAN2D (Pitman et al., 2003), DAN3D 

(McDougall, 2006), and RASH3D (Pirulli, 2005). The frictional and Voellmy’s 

rheologies have been mostly used to back-analyze dry flows and avalanches.  

 

The rheological study of collisional flows (Bagnold, 1954; Lun et al., 1984) 

indicated that collisional stress is directly proportional to particle density, the 

square of the shear strain rate, and the square of the particle diameter. Even 

though the above high stress experimental investigations were conducted at high 

shear rates, the particles used in the experiments had small sizes (mostly less than 

2 mm) or low density (Cagnoli & Manga, 2004). These experiments seemed to 

examine only the effect of shear rate without considering the effects of particle 

size and density. Hence, the lack of shear rate effects in the above experiments 

may be related to the low values of the above material properties, which have 

equivalent effects with shear rate in the occurrence of rate-dependent collisional 

flows. Therefore this indicates that there is a need to conduct experiments on large 

size particles. However, such experiments require very large shear apparatus that 

is capable to contain a sufficient sample of large size particles. Due to the 

limitation of resources to conduct physical experiments, plane shear numerical 

experiments are conducted in this research. The simulation results and discussions 

are presented in Chapter 4.    

 

Another aspect related to the collisional mechanism in geological mass flows is 

that the Voellmy model is found to make more accurate prediction of flow 



17 

characteristics than the Coulomb frictional model in the back-analysis of a 

number of dry debris and rock avalanche cases (Pirulli, 2009; Hungr et al., 2007; 

Hungr & Evans, 1996; Evans et al., 2001). The Voellmy model is based on the 

simple assumption that the shear stress consists of a dynamic drag component 

proportional to the square of flow velocity and a frictional component 

proportional to the normal stress (Perla et al., 1980). The dynamic drag 

component accounts for all possible sources of velocity dependent resistances and 

would be responsible for the loss of any remaining kinetic energy not dissipated 

by friction. In wet geological mass flows, the dynamic shear component of the 

Voellmy model may be assumed to represent the turbulence of the pore water. In 

dry geological mass flows, however, the use of this model requires an explanation 

for the possible source of the rate-dependent shear resistance component.  

 

Although it is still unclear regarding the relevance of the collisional mechanism 

based on the above discussion, some researchers have already considered the rate-

dependent collisional mechanism acting simultaneously with the rate-independent 

frictional mechanism in the analysis of geological mass flows (Chen, 1988; 

Bartelt et al., 2006; Takahashi, 2007). Geological mass flow is considered to be a 

dense granular flow which derives its shear resistance from both frictional sliding 

and particle collisions. The study and modeling of dense granular flow is a state-

of-the-art research area. Many researchers have proposed various constitutive 

equations that account for both types of resistances (Savage, 1998; Louge, 2003; 

Berzi et al., 2011).  

 

2.2.4 Intermediate (or Transitional
1
) Flow Behaviour 

 

Quasi-static granular flow exists at a state of low shear rate and void ratio, while 

collisional flow exists at a state of high shear rate and void ratio. On the other 

hand, in the progression (or transition) of granular flow from one state to another 

state, granular particles will undergo both frictional and collisional mechanisms 

                                                 
1
 In this thesis, the term transitional flow is synonyms with intermediate flow. 
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simultaneously. However, there is no clear understanding on how these two flow 

mechanisms can act simultaneously in the intermediate flow regime. Even though 

granular flow has been studied extensively in physical experiments (Savage & 

Sayed, 1984; Hanes & Inman, 1985a; Hanes & Inman, 1985b; Patton et al., 1987; 

Ahn et al., 1991; Cassar et al., 2005; Martino & Davies, 2003; Lu et al., 2007; 

Vidyapati et al., 2012) and in numerical simulations (Da Cruz et al., 2005; 

Campbell, 2002; Campbell, 2005; Rognon et al., 2007; Hatano, 2007; Hatano, 

2010; Vidyapati et al., 2012), the understanding of the detailed flow process in the 

intermediate regime is still an active research topic. Experimental and simulation 

studies have been conducted for mono- and poly-disperse spherical particles and 

angular particles to investigate flow behaviour under different conditions.    

 

2.2.4.1 Mono-disperse Spherical Particles 

 

Savage and Sayed’s (1984) annular shear experiments on nearly mono-disperse 

spherical glass and polystyrene beads could be taken as pioneering work in the 

investigation of the progression of flow of spherical particles. Their test results on 

1 mm polystyrene beads indicated that normal and shear stresses are related to the 

square of the shear rate at constant high void ratio conditions, supporting 

Bagnold’s (1954) arguments for his grain inertia regime. At constant low void 

ratio conditions, however, the stresses become weakly dependent (to a lesser 

power than 2) on the shear rate as the flow progresses by decreasing the shear rate 

from higher values to lower values. These observations were attributed to the 

possible increase of enduring contacts between particles at low void ratio and at 

low shear rate, contributing a rate-independent frictional component to the total 

stress. Hence, the total stress, which is the sum of collisional contribution and 

frictional contribution, will depend on a power of the shear rate less than 2. They 

also observed that the shear to normal stress ratio (friction angle) is not strongly 

dependent upon the shear rate at a constant void ratio condition but increases 

slightly as the void ratio increases. Nevertheless, it should be noted that most of 

the experimental data were concerning a collisional regime and thus the results 
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implied that the dynamic friction angle (the friction angle in the collisional 

regime) is nearly rate-independent and greater than the quasi-static friction angle.  

 

Their test results for 1.8 mm glass beads also showed that the stresses are weakly 

dependent (to a power less than 2) on the shear rate at constant low void ratio 

condition, while at constant high void ratio condition, the stresses depend to the 

square of shear rate. The density of the glass beads was about three times as large 

as that of the polystyrene beads. They also attributed the above observation to the 

increased importance of the rate-independent frictional stress contribution at low 

void ratios.  

 

Hanes and Inman (1985a) conducted similar annular shear experiments as Savage 

and Sayed (1984) on glass beads and well-rounded quartz sand. They presented 

the test results in the plots of solid volume fraction versus dimensionless vertical 

and shear stresses, )/( 22dz γρσ &  and )/( 22
dxz γρτ & , where zσ  is vertical normal 

stress, xzτ  is shear stress, ρ  is particle density, γ&  is shear rate and d  is particle 

diameter. They observed that the dimensionless stresses for solid volume fractions 

below about 0.55 are predicted by the kinetic theory (Jenkins & Savage, 1983), 

indicating that the test data represent the collisional regime. With an increase of a 

solid volume fraction, however, the measured dimensionless stresses increase 

rapidly, deviating from the kinetic theory prediction. Hanes and Inman (1985a) 

attributed the difference to the existence of sliding friction between particles in 

addition to collisions at high solid volume fraction. This implied the progression 

of flow from the collisional regime (at a low solid volume fraction) to the 

intermediate regime (at a high solid volume fraction) with the increase of the 

dimensionless stress. Hanes and Inman (1985a, b) also obtained their measured 

dynamic friction angles to be nearly constant (with standard deviations of 

approximately 10% of the mean) over a range of shear rates and applied normal 

stresses for a given material. This is in agreement with the results of Savage and 

Sayed (1984) for collisional flows where stresses are dependent on the square of 

the shear rate.  
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On the other hand, Patton et al. (1987) conducted inclined flow experiments on 

small (0.26mm) and large (2.94mm) glass beads, and plotted the measured 

friction angles with the square of the Froude number and solid volume fraction. 

The results showed that the measured friction angles remain constant for low 

Froude numbers but suddenly increase at high Froude numbers. The constant 

friction angle at low Froude numbers was the same as the quasi-static friction 

angle of the glass beads, which indicates that the Coulomb friction mechanism 

governs flows in this range of Froude numbers. The sudden increase of the 

friction angle indicated the progression of the flow to the intermediate stage and 

then the collisional regime. The agitation of particles and collisions in these 

regimes were also observed. Their results also showed an increase in the friction 

angle with a decrease in solid volume fraction (or increase in void ratio). This 

result is in agreement with Savage and Sayed (1984), where the dynamic friction 

angle increases with the void ratio and it is greater than the quasi-static friction 

angle. Patton et al. (1987) also plotted the dimensionless stress ( ))/( 22dγρσ &  with 

the solid volume fraction and obtained similar results to Hanes and Inman 

(1985a). Similarly, the inclined flow experiments of Ahn et al. (1991) using glass 

beads also revealed similar results in that the friction angle increased as the void 

ratio increased (Savage & Sayed, 1984; Patton et al., 1987). 

 

Cassar et al. (2005) plotted the measured friction angles of spherical glass beads 

from their inclined flow experiments with a dimensionless number, 

zdI σργ /&∝ , and found that the friction angle increases from a quasi-static 

value to a collisional (or dynamic) value as the flow progresses from quasi-static 

to intermediate and then to a collisional regime with the increase of the 

dimensionless number.  

 

Furthermore, the progression of granular flow has been studied in detail using 

Discrete Element Method (DEM) simulations. One fundamental study was 

conducted by Da Cruz et al. (2005), who performed a series of steady plane shear 

flow simulations of rigid disks at various states of normal stress and shear rate. 
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They first identified a single dimensionless number, called the inertial number 

zdI σργ /&= , which relates the ratio of the particle inertia to the total normal 

stress in describing the state of the granular material. They then studied the 

progression of granular flow by varying this dimensionless inertial number. Small 

values of I  correspond to the quasi-static regime which can be described using 

soil mechanics theory, while large values of I  correspond to the collisional 

regime which can be captured using the kinetic theory. When I  increases in the 

intermediate regime (i.e., in the progression of flow from the quasi-static to the 

collisional stage through the intermediate stage), an approximately linear decrease 

of the solid volume fraction and an approximately linear increase of the friction 

angle from the quasi-static friction value were measured. The above two 

behaviours were termed dilatancy and friction laws, respectively. These laws also 

summarize the experimental findings discussed in the previous paragraphs.  

 

Hatano (2007) performed 3D simulations of plane shear flows as an extension of 

the 2D simulations conducted by Da Cruz et al. (2005). Hatano (2007) discovered 

a power relationship between the friction coefficient and the inertial number, in 

contrast to the linear relationship obtained by Da Cruz et al. (2005).  

 

Another fundamental study on all ranges of granular flow was conducted by 

Campbell, who performed a series of steady plane shear flow simulations of 

elastic spheres under constant void ratio (Campbell 2002) and constant normal 

stress (Campbell 2005). He identified a dimensionless stiffness parameter scaled 

with a shear rate ( ))/( 23γρ &dK  and studied the flow progression by presenting his 

results in the solid fraction – dimensionless vertical normal stress ( )Kdz /σ  – 

dimensionless stiffness framework. This framework can be considered an 

extension of a critical state framework by introducing the dimensionless stiffness 

(or inverse of dimensionless shear rate) as an additional variable. At high void 

ratio, stresses are related to the square of the shear rates, like the experimental 

results of Savage and Sayed (1984). On the other hand at low void ratio, stresses 
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become weakly dependent on shear rate, confirming the experimental results of 

Savage and Sayed (1984) on 1.8 mm glass beads. Also under very low void ratio 

conditions, stresses become nearly independent of shear rate as the flow 

progresses from an intermediate regime to a quasi-static regime with the decrease 

of shear rate. Similar behaviour was also observed by Savage and Sayed (1984) in 

their experiments using 1 mm polystyrene beads. 

 

Campbell’s (2002) simulation results suggested that, at constant void ratio, flow 

progression is possible from quasi-static to an intermediate state with an increase 

in shear rate. However, direct progression from quasi-static to collisional flow is 

not evident at a constant void ratio. Campbell’s (2005) simulation results also 

suggested that, at a constant normal stress, granular flow can undergo a full 

progression from quasi-static to intermediate and to collisional regimes.  

 

Moreover, the simulation results of Campbell (2002) indicated that, at constant 

low void ratio where flows are in the intermediate regime, the friction angle 

increases with shear rate from quasi-static value (critical state friction angle) to  

collisional value (dynamic friction angle). Hatano (2010) presented similar 

simulation results as Campbell (2002), and also included measurements of 

granular temperature. Recent experimental and simulation studies in the 

progression of granular flow were conducted by Vidyapati et al. (2012). They also 

confirmed the increase of stresses and friction angle as the flow progresses from 

quasi-static to intermediate regime with the increase of shear rate.  

 

2.2.4.2 Effect of Grain Size Distribution 

 

Savage and Sayed (1984) conducted annular shear tests on a binary mixture of 

spherical polystyrene particles (30% by weight of small particles having a mean 

diameter of 0.55 mm, and 70% by weight of large particles having a mean 

diameter of 1.68 mm) in order to study the effects of non-uniform particle sizes. 

The weighted mean diameter of the mixture was 1.34 mm. The results generally 
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indicate that the stresses are weakly dependent on the shear rates compared to the 

results of mono-disperse polystyrene particles with a similar void ratio. They 

explained their findings as small particles being able to fit in the interstices of the 

large ones, which increases the likelihood of the frictional stress contribution to 

the total stress in the polydisperse particles. Their results also showed that, at 

lower void ratios where the stresses are weakly dependent on shear rate 

(intermediate flow regime), the measured friction angles increase with shear rate.  

 

Rognon et al. (2007) conducted 2D discrete simulations of inclined flows for a 

bidisperse assembly of disks. They found that the inertial number, zdI σργ /&= , 

which describes the shear state of mono-disperse particles (Da Cruz et al., 2005) 

could be extended to the generalized inertial number, zdI σργ /⋅= & , by 

introducing a mass average diameter, d , of the grains to describe the shear state 

of the bidisperse particles. Accordingly, they found that the measured friction 

coefficients of the bidisperse particles related approximately linearly to the 

generalized inertial number, similar to the results of mono-disperse particles (Da 

Cruz et al., 2005). 

 

2.2.4.3 Effect of Particle Shape 

 

Savage and Sayed (1984) also carried out the pioneer work on the shear behaviour 

of angular particles by conducting annular shear experiments of irregular-shaped 

crushed walnut shells of 1.19 mm average particle diameter. The results showed 

that the dimensionless stresses versus dimensionless shear rates data at high void 

ratios are consistent in magnitude with the spherical polystyrene and glass beads 

data. This may imply that, at high void ratios where particles interact fully by 

collision, the particle shape does not affect either the flow mechanism or the 

amount of stress generated. However, at constant low void ratio conditions, the 

stresses are weakly dependent (to a power less than 2) on shear rate, indicating 

significant rate-independent, dry frictional contributions to the total stresses. 
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It should be noted here that at some void ratios where the stresses of angular 

crushed walnut are weakly dependent (to a power less than 2) on the shear rate, 

stresses of spherical polystyrene and glass beads are strongly dependent (to the 

power of 2) on the shear rate. This implies that angular particles require higher 

void ratios than spherical particles to reach full collisional mechanism. Their 

results also showed that, at low void ratios where stresses are weakly dependent 

on shear rates (intermediate regime), the measured friction coefficients (ratio of 

shear to normal stresses) are less than the quasi-static friction angle. This is in 

contrast to the observations of spherical particles where the quasi-static friction 

coefficient is the smallest. They attributed this effect to the interlocking of angular 

particles at a quasi-static state that develops higher shear stress (and hence a high 

quasi-static friction angle) in angular particles.  

 

Martino and Davies (2003) conducted inverted cone and plate rheometer tests on 

cylindrical PVC particles at constant normal stress. Their results showed a 

decrease in friction angle as the flow of the cylindrical particles progresses from a 

quasi-static to an intermediate regime with the increase of shear rate.  

 

Extensive torsional shear cell experiments were also conducted by Lu et al. 

(2007) on angular and spherical quartz sands. Under constant void ratio, results of 

the angular quartz sand showed that the normal and shear stresses decrease with 

an increase of shear rate as the flow progresses from a quasi-static to an 

intermediate regime. The flow continued to progress to the collisional regime with 

further increase of shear rate. Based on this result they concluded that a full 

progression of flow (from quasi-static to intermediate to collisional regimes) is 

possible at constant void ratio which is in contrast to the conclusion reached by 

Campbell (2002). At constant normal stress, on the other hand, results of angular 

quartz sand showed that the void ratio decreases with increase in shear rate as the 

flow progresses from a quasi-static to an intermediate regime.  The flow continues 

to progress to the collisional regime with further increase of shear rate. ‘Shear-
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weakening’ was the term they used for the inverse relation of stresses and void 

ratio with shear rate in the intermediate regime.  

 

2.2.4.4 Flow Mechanics in the Intermediate Regime 

 

In the intermediate flow regime, the granular particles interact by rubbing friction 

(in sliding and rolling over each other) and collisions. Several explanations have 

been provided regarding the combination of the two mechanisms and their 

stresses. Sayed (1981) proposed a microscopic description model for an 

intermediate flow state. The model consists of individual particles interacting with 

each other by collisions, and clusters of particles which undergo frictional 

deformation. The clusters are transient, and form and break in random fashion.  

 

Drake (1990) explained the structural features in granular flows using films taken 

from inclined plane granular flows. He classified the vertical profile of the 

inclined granular flow into frictional and collisional regions. The frictional region 

consists of quasi-static and block-gliding zones, while the collisional region 

consists of grain-layer-gliding, chaotic, and saltational zones. The boundaries 

between the regions and zones are gradational (or gradual). The block-gliding and 

grain-layer-gliding zones are located at the boundary between the frictional and 

collisional regions. In the block-gliding zone, coherent blocks of a few to 

hundreds of particles exist. Within the blocks, particles are typically in contact 

with one or more of their neighbors at all times. At block boundaries, distinct 

collisions between blocks are frequently observed. The grain-layer-gliding zone 

consists of irregular layers of particles that appear to slide over one another. 

However, the appearance of sliding and continuous contact between particles is 

deceptive, because high-speed films revealed that intergranular momentum 

transfer is predominantly collisional both between and within layers. Drake’s 

(1990) explanation gives some insight into how the two flow mechanisms exist in 

intermediate flow and may partly support the descriptive model of Sayed (1981) 

regarding the existence of clusters.  
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Campbell (2002, 2005) explained the reason for frictional stresses to be rate-

independent, collisional stresses to be rate-dependent on the square of the shear 

rate, and intermediate flow has rate-independent and rate-dependent (linearly to 

shear rate) stress components. He classified the flow regimes as elastic-quasi-

static, elastic-inertial, and inertial. He first stated that internal stresses can be 

thought of as the product of transported momentum and transport rate, or 

alternatively the product of force, duration of force, and transport rate. In elastic-

quasi-static shear flow, Campbell (2002, 2005) contended that stresses are 

generated when the shear drives the particles together to form a chain, and then 

compresses, rotates and finally destroys the chain. The degree of compression and 

thus the magnitude of the force is determined by the necessity of conforming to 

shear quasi-statically at the required constant critical void ratio, rendering the 

force rate-independent. On the other hand, chains form as the shear brings the 

particles together at a transport rate proportional to the shear rate, but the chains 

persist for a time proportional to the inverse of shear rate. Hence, the product of 

force, duration of force, and transport rate (and therefore the stress) is independent 

of shear rate.  

 

When the shear rate is large enough (in the elastic-inertial regime), the particle 

momentum becomes significant and the forces generated in the chain will have a 

baseline quasi-static force component (i.e., the force as shear rate is close to zero) 

and an inertia force component (which is proportional to the shear rate). Since the 

chains are generated at a rate proportional to the shear rate and persist for a period 

proportional to the inverse of the shear rate, the product of force duration and 

transport rate is again rate-independent. Thus, the stresses in the elastic-inertial 

regime vary only with the generated chain forces, which have rate-independent 

and linearly rate-dependent components. 

 

Campbell (2002, 2005) further explained that elastic-quasi-static and elastic-

inertial regimes are similar and that their only difference is that the inertial forces 

are negligible in elastic-quasi-static regime. In pure inertial flows, the particles are 
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free of the force chains and the momentum transferred is proportional to the 

impact velocity, which is also proportional to the shear rate. As the rate at which 

particles are driven together is still proportional to the shear rate, the product of 

the transported momentum and the transport rate (or stress) is proportional to the 

square of shear rate.  

 

2.2.5 Inclined Granular Flow Behaviour 

 

Inclined flow characteristics of granular particles have been studied in various 

flow ranges and conditions, such as under thin and thick flow depths, mild and 

steep inclination angles, and smooth and rough inclined bases (Daerr & Douady 

,1999; Pouliquen, 1999; Daerr, 2001; Ancey, 2001; Silbert et al., 2001; Silbert et 

al., 2002; Silbert et al., 2003; Mitarai & Nakanishi, 2005; Delannay et al., 2007; 

Kumaran, 2008). Delannay et al. (2007) reviewed the findings and the state of 

understanding of inclined granular flows in a systematically organized way. They 

summarized the flow characteristics under three different flow conditions: flat-

frictional base; bumpy rigid base; and erodible base. Figure 2.1(a) represents a 

bumpy-rough boundary while Figures 2.1(b) represents a flat-frictional boundary. 

Inclined granular flows are substantially affected by the roughness of the inclined 

base (Silbert et al., 2002; Mitarai & Nakanishi, 2005; Delannay et al., 2007; 

Kumaran, 2008). 

  

                                

                          (a)                                                                         (b) 

FIGURE 2.1: Types of bottom boundaries in inclined flow study: (a) bumpy-

rough boundary, (b) flat-frictional boundary. 
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On a flat-frictional base, inclined flows of spherical particles consist of a thin, 

agitated basal shear layer that supports a thick, less agitated overburden (Louge & 

Keast, 2001; Delannay et al., 2007). The basal shear layer flows with a finite slip 

velocity at the base and at a high shear rate (see the velocity profile of the basal 

shear layer in Figure 2.2b). The basal shear layer is also characterized by smaller 

density and higher granular temperature than the overburden layer, as in Figures 

2.2(a) & (c). Steady fully developed (SFD) flows occur in the range of inclination 

angles between the measured static and sliding friction angles between a grain and 

the base (Delannay et al., 2007). 

 

        

(a)                                                                   (b) 

 

                                                                  (c) 

FIGURE 2.2:  Flow profiles on flat-frictional inclined base: (a) solid volume 

fraction, (b) dimensionless velocity, and (c) dimensionless 

granular temperature. Data obtained from 3D simulation of 

inclined flow (see Sec. 6.4.2.3.3). The flat-frictional base was 

modeled by attaching spheres of similar diameter with the flowing 

particles to the base in a rectangular array arrangement.  
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On a bumpy-rough base, the inclined flow characteristics of a certain spherical 

particle (with given material parameters) depend on angle of inclination )(θ  and 

dimensionless depth of flow (H/d). These variables are used to establish a phase 

diagram of inclined flow for a classification of flow characteristics (Pouliquen, 

1999; Silbert et al., 2001; Silbert et al., 2003). The phase diagram established by 

Silbert et al. (2001) for mono-disperse particles using 2D and 3D discrete 

simulations of inclined flows over a bumpy-rough bed is shown schematically in 

Figure 2.3 for the purpose of discussion. In the phase diagram, three principal 

regions exist, corresponding to “no flow”, “stable flow”, and “unstable flow”. The 

three regions are separated by two angles: rθ , the angle of repose; and maxθ , the 

maximum stability angle, the largest angle for which stable flow is obtained. They 

are shown by solid and dashed lines, respectively, in Figure 2.3. 

 

 

 

FIGURE 2.3: Schematic representation of phase diagram for mono-disperse 

granular inclined flows on a bumpy-rough base (based on Silbert 

et al., 2001). 

 

For rθθ < , granular flow cannot occur, while for maxθθ > , granular flow is 

unsteady. In the region maxθθθ <<r , granular particles flow in a stable steady 

state condition with a constant void ratio throughout the flow depth except for 

close to the base and surface of the flow. The velocity and granular temperature 

profiles of flows in this region are studied by Silbert et al. (2001, 2003). At thick 
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flow depths and steep inclination angles (close to the maxθ boundary), the inclined 

flow of spherical particles has a concave velocity profile and consists of three 

regions (Louge, 2003), as shown schematically in Figure 2.4. The first is a thin 

basal layer, where the solid volume fraction is higher and the granular 

temperature increases sharply with increasing elevation from the bottom 

boundary. The second is a core region, where the solid volume fraction is nearly 

constant and the granular temperature decreases from its maximum value at the 

bottom of the core. The last is a thin collisional surface layer, where the volume 

fraction abruptly vanishes as the free surface is approached.  

Silbert et al. (2003) observed that the solid volume fraction in the core region is 

independent of flow depth and slightly decreases as the inclination angle increases 

(moving to the maxθ boundary). On the other hand, the velocity profile progresses 

to a convex shape and the granular temperature values decrease as the inclination 

angle decreases and/or flow depth decreases (close to the rθ boundary). 

 

 

                      (a)                                             (b)                                  (c) 

 

FIGURE 2.4: Schematic flow profiles for bumpy-rough inclined base: (a) depth 

profile of solid volume fraction, (b) depth profile of granular 

temperature, (c) depth profile of velocity (based on Louge, 2003). 

 

 

 

 

 

 

 



31 

2.3 Constitutive Modeling of Dry Granular Flow 

 

2.3.1 Introduction 

 

Like the understanding of granular flow behaviour, the success of constitutive 

modeling of granular flow has also been limited to extreme flow regimes. Quasi-

static granular flows have been successfully modeled by the Theory of Plasticity 

and Critical State Soil Mechanics (CSSM), while collisional granular flows have 

been successfully modeled by the Kinetic Theory of Granular Flow (KTGF). 

Conversely, a concise theory for characterizing and modeling intermediate flow 

has not yet been established, even though several unified constitutive models have 

been suggested to capture both rate-independent frictional behaviour and rate-

dependent collisional behaviour of granular particles. 

 

2.3.2 Frictional Constitutive Modeling 

 

Quasi-static deformation behaviour of soils is successfully captured by a critical 

state soil mechanics framework (Schofield & Wroth, 1968; Wood, 1990). At 

quasi-static deformation, soil reaches a critical state where it flows steadily at a 

constant void ratio and stress. The locus of void ratios and normal stresses at 

critical states forms a line called the Critical State Line (CSL). The shear and 

normal stresses at critical states are also related by Coulomb’s friction law using 

the critical state friction angle, csµ . Further discussion on the critical state 

framework is presented in Chapter 5.  

 

Savage and Hutter (1989) formulated the depth-averaged model for dry granular 

flows down an inclined plane, assuming shear stress and normal stress at the base 

of flow obeying Coulomb’s friction law. The Savage-Hutter (SH) model was 

extended by Pudasaini and Hutter (2003) to account for complex curved and 

twisted topography. Following the pioneering work of Savage and Hutter (1989), 
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the Coulomb friction law has been implemented in several landslide models, such 

as MADFLOW (Chen & Lee, 2000), TITAN2D (Pitman et al., 2003), DAN3D 

(McDougall, 2006), and RASH3D (Pirulli, 2005), and used for numerical 

analyses of laboratory flume experiments (Hungr, 1995; Gray et al., 1999; 

Wieland et al., 1999; Denlinger & Iverson, 2001; Galas et al., 2007) and flow type 

landslides (Hungr, 1995; Kelfoun & Druitt, 2005; Sheridan et al., 2003). A 

concise summary of depth-averaged model is provided in Pudasaini and Hutter 

(2007).  

 

Voellmy model, which accounts for all possible sources of velocity dependent 

resistance in addition to frictional resistance, is also used in cases where the 

frictional model does not offer a better prediction. The Thurwieser rock avalanche 

in the Italian Alps and the Frank Slide in Canada can be mentioned as good 

examples (Pirulli, 2009; Hungr et al., 2007). Other studies include Hungr and 

Evans (1996) and Evans et al. (2001). 

 

2.3.3 Collisional Constitutive Modeling 

 

Bagnold (1954) was the first to propose an empirical constitutive equation for 

stresses in collisional flows based on experimental results. Later, McTigue (1978) 

attempted to provide improved constitutive relations. On the other hand, Ogawa 

(1978) adopted the kinetic theory of gases for the first time to explain the 

collisional mechanism and to drive constitutive modeling, introducing the variable 

“granular temperature” as being analogous to gas temperature. Granular 

temperature is defined as the average of the square of particle fluctuation 

velocities and measures the fluctuating random motion of particles in a collisional 

flow. The kinetic theory was also adopted by Savage and Jeffrey (1981), Jenkins 

and Savage (1983), Lun et al. (1984), Jenkins and Richman (1985), Lun and 

Savage (1987), Goldhirsch (1999), and Jenkins and Zhang (2002). All of these 

researchers provided constitutive equations that relate stresses with the variables 
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of solid volume fraction, shear rate, and granular temperature, and with the 

material parameters of density, particle diameter, and restitution coefficient.  

 

Savage and Jeffrey (1981) derived the collisional constitutive equations for 

identical, smooth, hard, and elastic spheres. They introduced a dimensionless 

parameter, which is the ratio of the characteristic mean shear velocity ( )dγ& to the 

square-root of granular temperature, and expressed the stresses as integrals 

involving this dimensionless parameter. For moderate and large values of the 

dimensionless parameter, their theory predicts both shear and normal stresses that 

are proportional to the square of particle diameter and the square of shear rate. 

 

Jenkins and Savage (1983) extended the analysis of Savage and Jeffrey (1981) for 

nearly elastic (slightly inelastic) particles by including energy dissipation due to 

inelastic collisions.  

 

Lun et al. (1984) developed two theories: one for the Couette flow of smooth, 

inelastic particles having arbitrary coefficients of restitution, and a second for the 

general flow of particles with coefficients of restitution near 1 (slightly inelastic 

particles). They followed the method of Savage & Jeffrey (1981) for the Couette 

flow study, and compared their theory with Ogawa et al. (1980), Shen (1981), 

Jenkins and Savage (1983), the Chapman-Enskog dense-gas theory, and with 

annular-shear-cell experiments of Savage and Sayed (1980). Their theory of 

Couette flow agreed moderately well with the experimental data. Their theory of 

Couette flow also agreed with Jenkins and Savage (1983) theory, developed for 

slightly inelastic particles, even when the later was used for highly inelastic 

particles. Hence, Lun et al. (1984) pursued the “nearly elastic” approximation of 

Jenkins and Savage (1983) to develop a second theory for general flow fields of 

particles. The generalized theory incorporates kinetic as well as collisional 

contributions to the constitutive equations for stress and energy flux and is thus 

appropriate for dilute as well as dense concentrations of solids. The kinetic 
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contribution was assumed to be negligible in the analysis of Jenkins and Savage 

(1983).  

 

The effect of particle roughness (surface friction) in collisions between particles 

has also been studied by Jenkins and Richman (1985), Lun and Savage (1987), 

and Jenkins and Zhang (2002). In collisions of rough particles, the collisional 

impulse has a tangential component due to surface friction and causes rotation of 

particles. Thus, the mean and the fluctuation motions consist of both the 

translational and rotational components. Previous studies (Jenkins & Richman, 

1985; Lun & Savage, 1987) treated rotational motion in a way similar to 

translational motion by assigning a “roughness coefficient” to relate the tangential 

components of the relative velocities of a point of contact before and after 

collisions (analogous to the “restitution coefficient” which relates the normal 

components of the relative velocities of a point of contact before and after 

collisions) and writing balance equations for angular momentum and rotational 

fluctuation energy. The translational fluctuation energy (or translational granular 

temperature) is produced by the shear work which is given as the product of 

collisional shear stress and shear rate. By the same analogy, rotational fluctuation 

energy (or rotational granular temperature) is produced by rotational work given 

as the product of collisional angular momentum flux (or collisional couple stress) 

and the gradient of angular velocity. The fluctuation energies are dissipated by 

inelastic collisions and surface friction. Later, Jenkins and Zhang (2002) 

introduced an effective coefficient of restitution that combines the dissipation of 

fluctuation energy by inelastic and frictional impacts.  

 

2.3.4 Unified Constitutive Modeling 

 

Like the Theory of Plasticity and Critical State Soil Mechanics (CSSM) for quasi-

static flows and the Kinetic Theory of Granular Flow (KTGF) for collisional 

flows, a concise theory for characterizing and modeling intermediate flow has not 

yet been established. Nonetheless, several unified constitutive models have been 
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suggested to capture both rate-independent frictional behaviour and rate-

dependent collisional behaviour of granular particles (Savage, 1982; Johnson & 

Jackson, 1987; Nott, 1991; Savage, 1998; Mills et al., 1999; Ancey & Evesque, 

2000; Louge & Keast, 2001; Louge, 2003; Lee & Huang, 2010; Berzi et al., 

2011). 

 

Pioneering efforts towards a unified constitutive model were made by Savage 

(1982), who directly added the frictional and collisional stress contributions, each 

calculated as if they acted alone. Later, Johnson and Jackson (1987) and Nott 

(1991) extended the unified model proposed by Savage (1982) to the horizontal 

Couette flows and inclined flows. They assumed that the shear work by the 

frictional stress component directly dissipated to heat, while the shear work by the 

collisional stress component produces granular temperature (fluctuation energy), 

which is then dissipated to heat. However, the above approach is a simplified 

method based on the ad hoc assumption of stress addition, as it is not clear how 

the two stress contributions act together in the intermediate flow regime (Johnson 

& Jackson, 1987). 

 

A more general tensorial expression of a constitutive equation for an intermediate 

flow regime was given by Savage (1998). He first derived the stress-strain 

relationship based on an associated flow rule used in the plasticity theory. By 

introducing strain-rate fluctuation and taking a statistical average, he then 

obtained a rate-dependent, viscous-like relationship between mean stress and 

mean strain rate which works even for low deformation rate (quasi-static) flows. 

Finally, he related the strain rate fluctuation with granular temperature by 

dimensional analysis and cautiously formulated the functions of flow rule so that 

the viscous-like constitutive equation reduces to the kinetic theory model of 

granular flows at high shear rates. 

 

On the other hand, Mills et al. (1999) approached the problem from the 

microscopic interaction of particles during the flow. They explained the 
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coexistence of strong and weak contact force networks in dense granular flow, 

and modeled the flow as a network of transient solid chains (the strong networks) 

immersed in an assembly of particles behaving as a viscous fluid (the weak 

networks). The strong contact network supports the whole deviatoric load (like a 

solid) while the weak contact network contributes to the isotropic pressure (like a 

fluid). A particle may belong to either of the networks at any given time. 

 

A different approach was presented by Ancey and Evesque (2000), who consider 

the possible relationship between quasi-static and collisional stress contributions, 

in contrast to the ad hoc assumption of Savage (1982), and determine their 

amounts by satisfying the balance of energy.  

 

Louge and Keast (2001) and Louge (2003) developed a unified model for dense 

dry granular flows on flat-frictional and bumpy-rough inclines, respectively. Like 

Savage (1982), they expressed the total stress as the superposition of the rate-

independent frictional component and rate-dependent collisional component. 

However, unlike Johnson and Jackson (1987) and Nott (1991), they formulated 

the fluctuation energy equation by allowing both the frictional and collisional 

stress components to produce fluctuation energy. They also used the effective 

restitution coefficient suggested by Jenkins and Zhang (2002) in the fluctuation 

energy balance. Lee and Huang (2010) also used similar equation for fluctuation 

kinetic energy to develop a unified model for granular flow. 

 

Most recently, Berzi et al. (2011) followed the assumption of Johnson and 

Jackson (1987) in the formulation of the fluctuation kinetic energy by taking only 

the collisional stress contribution to produce granular temperature. However, they 

used the collisional constitutive equations proposed by Jenkins and Berzi (2010), 

which incorporates a length scale in the expression for the rate of fluctuation 

energy dissipation by collisions. This length scale is the size of a cluster of 

correlated particles (or chain/correlation length). It accounts for the decrease in 

the collisional energy dissipation due to the presence of a correlated motion of 
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particles that is likely to occur when the flow is dense. Hence, the Berzi et al. 

(2011) model differs from the above models (Louge & Keast, 2001; Louge, 2003; 

Lee & Huang, 2010) in that Berzi et al. (2011) considered the decrease of 

fluctuation energy dissipation due to the presence of particle clusters in dense 

flows while the above models considered the additional fluctuation energy 

production due to the presence of frictional stress contribution in dense flows. 

Hence, the predictions of both types of models should essentially be similar.    

 

There have been developments of unified constitutive models by extending the 

hypo-plasticity theory of frictional behaviour to also capture the rate-dependent 

behaviour of granular materials (Wu, 2006). Elasto-visco-plastic constitutive 

models have also been proposed based on the Goodman-Cowin theory to capture 

the elastic, rate-dependent, and plastic behaviours of dry granular flows 

simultaneously (Wang and Hutter, 1999; Fang et al., 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 

CHAPTER THREE      

 

SIMULATION EXPERIMENTS   

 

3.1 Introduction 

 

The commercial software PFC3D v4.00, based on the Distinct Element Method 

(DEM), was used in the simulation experiments of dry particle flows. The 

particles are assumed to be rigid, contacting each other only at a point, and 

allowed to slightly overlap at their contact points.  

 

The non-linear Hertz-Mindlin contact model is adopted with viscous damping 

applied in both the normal and shear directions at particle contacts in order to 

model inelastic collisions. Forces and relative displacements at a contact are 

related in case of no viscous damping by (PFC3D User’s Manual, 2008) 
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where n
iF  and s

iF  are the total contact normal and shear forces, n
U  is the total 

contact normal displacement, n
K  is the contact secant normal stiffness, in  is a 

unit vector normal to a contact, s
iF∆  is the incremental contact shear force in a 

time step, s
iU∆  is the incremental contact shear displacement, s

k  is the contact 

tangent shear stiffness, and sµ  is the friction coefficient at particles contact. 

Contact stiffnesses for the Hertz-Mindlin model are given by (PFC3D User’s 

Manual, 2008) 
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where ][ AR and ][BR  are radii, ][ A
G and ][B

G  are shear moduli, and ][ Aν and ][Bν  

are Poisson’s ratios of the balls in contact.  

 

In cases involving viscous damping, the damping force is added to the contact 

force given by Eq. (3.1) and acts to oppose motion. Its normal and shear 

components are given by (PFC3D User’s Manual, 2008) 

 

irii uCD = ,                                           (3.3a) 

 

where the subscript i refers to the normal and shear components, 
ir

u  is the relative 

velocity at a contact, and iC  is the damping constant given by (PFC3D User’s 

Manual, 2008) 
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where ε  is the restitution coefficient, ik  is the contact tangent stiffness, and m is 

the effective system mass, which is taken as the ball mass in case of ball-wall 

contact, or given by 
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in the case of ball-ball contact, where 1m  and 2m  are masses of particles forming 

the contact. The viscous damping force is calculated after a sliding check. If the 

contact is sliding, then the viscous shear force is reduced to zero. The sum of the 

contact normal force and the viscous normal force is prevented from becoming 

attractive between the two involved entities. Hence, the magnitude of the viscous 

normal force is limited to n

iF−  (PFC3D User’s Manual, 2008). 

 

3.2 Plane Shear Simulation 

 

3.2.1 Model Description 

 

A series of plane shear simulations were conducted using PFC3D v.4.0 for 

different states of flow. The 3D plane shear model is presented in Figure 3.1. The 

sheared particles are bounded by periodic boundaries on the vertical sides and a 

servo-controlled wall at the top. The model also has top and bottom boundary 

particles arranged in a rectangular array to simulate the roughness of the boundary 

surfaces. The bottom boundary particles move only in the x-direction at a 

prescribed shear velocity during shearing. The top boundary particles move only 

in the vertical direction at an average velocity calculated by taking the measured 

velocities of all particles in that boundary at each time step. The servo-controlled 

wall (above the top boundary particles) also moves only in the vertical direction 

relative to the top boundary particles in order to keep the prescribed vertical 

normal stress constant. Its relative velocity is calculated at each time step using 
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,                                             (3.4) 

 

where a

zσ  is the applied (or prescribed) vertical normal stress, m

z SW hF Aσ = is the 

measured vertical normal stress at the servo-wall for each time step, 
SW

F  is the 

vertical normal force at the servo-wall, 
h

A  is the horizontal area of the servo-wall, 
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t∆  is the time step, n

sumK  is the sum of stiffnesses of the balls contacting the 

servo-wall at each time step, and 
R

f  is a relaxation factor for numerical stability 

(PFC3D User’s Manual, 2008).  

 

Since gravity is the main factor for heterogeneity, the minimum applied vertical 

stress in the laboratory experiments is limited by the value required to neglect the 

effect of gravity on the variation of vertical stress (Savage & Sayed, 1984). 

However, in simulation experiments, gravity can easily be eliminated (Da Cruz et 

al., 2005). The plane shear simulations conducted here were also carried out 

without gravity.  

 

 

 

FIGURE 3.1:  3D Plane shear DEM model using PFC3D v. 4.00 
 

 

3.2.2 Procedures of Plane Shear Simulation 

 

The thickness of the effective shearing zone in a granular flow is around 10d, 

where d is the mean particle diameter (Hanes & Inman, 1985a; Hanes & Inman, 

1985b; Thompson & Grest, 1991). Thus, a total of 912 particles, including the 
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boundary particles, were generated in a 9d x 9d x 10d model with the longest 

dimension in the z-axis. The boundary particles, each having size d, were 

arranged in a rectangular array while the rest of particles were randomly placed 

inside the model. For all plane shear simulations, the initial assembly (or initial 

random arrangement) of the particles was kept identical in order to eliminate the 

probable effect of the initial sample condition in comparing results. The particle 

assembly (or the sample) was then consolidated under a prescribed vertical 

normal stress until the void ratio was reduced to a specific value. Finally, the 

sample was sheared by gradually increasing the shear velocity to a prescribed 

value on the bottom boundary particles. The shearing was then continued for a 

minimum of 4 seconds similar to actual experiments of Savage and Sayed (1984) 

under the prescribed shear velocity, in which flow had reached steady state.   

 

3.2.3 Measurement of Flow Characteristics 

 

Stresses, shear rate, void ratio, coordination number, and sliding fraction were 

measured from a ‘measurement sphere’ which were sampled at specific time 

intervals (usually every 10 time steps) after the flow has reached steady state. The 

detail of the measurement logic can be found in PFC3D v. 4.00 User’s Manual 

(2008). The data from PFC were exported to Excel and the average steady state 

values were calculated. Since PFC calculates only the contact stresses, the kinetic 

stresses are calculated using: 

 

k

ij p S i j
v u uσ ρ ′ ′=                                                   (3.5) 

 

where 
i j

u u′ ′  is the product of fluctuation velocities calculated using Eq. (3.6e) to 

Eq. (3.6h). In most of the simulations, the servo-wall stress differs from the 

prescribed vertical normal stress in less than 1.5%. On the other hand, the sum of 

the vertical normal stresses, one determined from the ‘measurement sphere’ and 

the other calculated using Eq. (3.5), differs from the prescribed value in less than 
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3%, which increases sometimes up to 5% at high void ratios, indicating that the 

plane shear flow tends to be heterogeneous with increases in void ratio.  

 

Furthermore, translational fluctuation velocities and average velocity in the flow 

direction were calculated by dividing the plane shear flow into horizontal layers 

of equal thickness dmax (the diameter of the largest particle in the simulation) 

starting from the bottom but excluding the boundary particles (Lu & Hsiau, 2005; 

Lan & Rosato, 1995). They are calculated for each layer as follows (Gioia et al., 

2006) 
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where xLu is the average velocity of layer L in the flow direction; 
2

xLu′ , 

2

yLu′  and 
2

zLu′  are the average fluctuation velocities of layer L in x, y, and z- 

directions; L

tbm , L

xtbu ,
L

ytbu  & L

ztbu  are the portion of the mass of particle b occupying 
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layer L at time step t and the instantaneous velocities of the corresponding ball in 

x-, y-, & z- directions, respectively. The data were sampled at an interval of 10 

time steps after the flow has reached steady state. The average velocities in y- and 

z- directions are essentially zero because the particles are sheared only in the x-

direction. However, the corresponding fluctuation velocities are different from 

zero. Similar results of average and fluctuation velocities were also reported in 

Natarajan et al. (1995).  

 

The vertical profile of average velocity in the flow direction xLu  is 

approximately linear in all simulation experiments. On the other hand, the 

fluctuation velocities exhibit a non-uniform profile at higher void ratios. Selected 

profiles of solid volume fraction, average velocity in the direction of flow, and 

fluctuation velocities are presented in Figure 3.2 for different flow states. Similar 

non-uniform variations of fluctuation velocities were also observed in previous 

works (Lun, 1996; Da Cruz et al., 2004; Liu & Rosato, 2005; Cleary, 2008). In 

this research, the average fluctuation velocities of a plane shear simulation at 

steady state were calculated by taking the layers (L) in the central uniform portion 

of flow and using Eq. (3.6e) to Eq. (3.6g) below. 

 

A PFC3D code written for plane shear simulation is presented in Appendices A.1 

and A.3.  
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(a) At 25z kPaσ = , 0.73e = , 0.2564 /d m sγ =&  
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(b) At 300z kPaσ = , 0.7295e = , 1.2738 /d m sγ =&  

 

 

   

 

(c) At 10z kPaσ = , 0.9986e = , 1.265 /d m sγ =&  
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(d) At 600z kPaσ = , 0.9926e = , 10.95 /d m sγ =&  

 

 

 

 

(e) At 10z kPaσ = , 1.1996e = , 1.6228 /d m sγ =&  
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(f) At 600z kPaσ = , 1.2038e = , 14.6748 /d m sγ =&  

 

FIGURE 3.2: Profiles of plane shear flow at different flow states. One to two 

layers close to the boundaries are filtered out in the profiles; zσ  is 

the vertical normal stress, e  the void ratio, γ&  the shear rate, and d  

the mean particle diameter. 

 

3.2.4 Model Calibration 

 

Ring shear experiments can be modeled by DEM simulations of plane shear flows 

(Johnson & Jackson, 1987). In this research, the DEM plane shear model was 

calibrated by simulating the annular shear experiments of Savage and Sayed 

(1984).    

 

While Savage and Sayed (1984) conducted annular shear experiments on different 

types of granular materials, their experiments on 1 mm mean diameter spherical 

polystyrene beads are selected in this research to calibrate the DEM model 

(Savage & Sayed, 1984, Figs. 3a, 8a and 8b). The sizes of the beads were between 

0.81 mm and 1.1 mm with a mean diameter of 1 mm, as shown in Figure 3.3. The 

beads had a particle density ( )ρ  of 1095 kg/m
3
.  
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FIGURE 3.3: Grain size distribution of polystyrene beads (taken from Savage & 

Sayed, 1984)
2
  

 

The particles in the simulations were also generated to achieve the same grain size 

distribution and particle density as the polystyrene beads. In order to generate 

particle assemblies of a larger mean diameter, all particles were scaled by the 

same percentage to keep the grain size distribution curve the same. The values of 

the parameters used in the simulation to best fit the experimental results are given 

in Table 3.1. The particle density ( )ρ , modulus of elasticity (E), and Poisson’s 

ratio ( )υ  are close to the actual values of the polystyrene material. Restitution 

coefficient ( )ε  of actual polystyrene beads is estimated to be approximately 0.8 

(Farrell et al., 1986). The restitution coefficient and the static surface friction 

( )sµ  were determined to best fit the experimental results.    

 

TABLE 3.1:  Values of parameters for DEM model 

ρ  (kg/m
3
) E (Pa) υ  ε  sµ  

1095 3.25x10
9 

0.34 0.75 0.6 

 

                                                 
2
 Copyright © 1984 Cambridge University Press. Reprinted with the permission of Cambridge 

University Press. 
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Rowe (1962) studied the theory and conducted the experiments on the 

relationship between sliding surface friction and bulk friction in granular 

particles.  The relationship between sliding surface friction and bulk friction was 

also studied using DEM simulations by Thornton (2000) and Yimsiri (2001).  

Rowe (1962) indicated that the critical state friction angle of granular material in 

general is equal to the inter-particle sliding friction angle (also termed as “true 

friction angle”) plus the additional friction angle due to particles rearrangement 

and fabric development. On the other hand, the DEM simulation studies indicated 

that the bulk friction angle is larger than the inter-particle friction angle for the 

later angle smaller than a threshold value (about 20
0
). For the inter-particle 

friction angle greater than the threshold value, the bulk friction angle becomes 

less than the inter-particle friction angle and the contribution of increasing inter-

particle friction angle to the bulk friction angle becomes small. The findings from 

DEM simulations are partially supported by the experimental data given by 

Skinner (1969), who performed shear box tests on spherical particles with 

different coefficients of inter-particle friction angle. 

 

A selected experiment, shown in Table 3.2 row A, was first simulated using 1 mm 

mean-diameter DEM particles. The simulation result is shown in Table 3.2 row B. 

The same experiment was then simulated using 4 cm mean particle diameter as 

shown in Table 3.2 row C. It is observed that the measured shear rates are scaled 

by the mean particle diameters to give a constant characteristic mean shear 

velocity ( )dγ& , which suggests that the shear experiments were collisional. Hence, 

the rest of the simulations were conducted using 4 cm mean diameter particles to 

explore the rate-dependent flow behaviour for large size particles.  
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 TABLE 3.2: Comparison of physical and simulation experiments for polystyrene 

beads 

Case e ( )z Paσ  )/( 3mkgρ
 

d (mm)
 ( )1

sγ −
&  )/( smmdγ&  

A 0.984 966 1095 1 373.2 373 

B 0.999 950 1095 1 380.1 380 

C 0.999 984 1095 40 9.537 381 

A – experimental result from Savage & Sayed (1984), B – PFC simulation with mean diameter 

equals to 1 mm, C – PFC simulation with mean diameter equals to 40 mm.  

 

The simulations are compared with the experimental results as shown in Figure 

3.4. Some differences were observed between the simulations and experimental 

results.  The experiments at the void ratio of 0.908 were simulated by an assembly 

of spherical particles with void ratio of 0.825. In addition, the shear rates and the 

shear stresses at the void ratio of 1.17 were not precisely predicted, especially at 

higher stress levels. It was noted in the experimental results of Savage & Sayed 

(1984) that the higher normal stresses at void ratio of 1.17 showed somewhat 

weaker dependence upon shear rate, which was said to be not explainable 

according to the authors, S. B. Savage and M. Sayed. Hence, the shear rate and 

shear stress differences observed at the void ratio of 1.17 in Figure 3.4(a) may be 

partly attributed to the characteristics of the actual experimental results.   

 

Overall the numerical model is able to capture the main characteristics of the 

granular assembly, and the variation of shear and normal stresses with the 

characteristic mean shear velocities compare well with the experimental results.  

Therefore, the DEM model was used to conduct simulation experiments at higher 

stresses.  
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(a) Vertical normal stress versus shear rate 

 

 

(b) Shear stress versus shear rate 

 

FIGURE 3.4: Comparison of experimental and simulation results; simulation 

results are denoted by (S), while experimental results taken from 

Savage & Sayed (1984) are denoted by (E).
3
 

 

                                                 
3
 Copyright © 1984 Cambridge University Press. Reproduced with the permission of Cambridge 

University Press.  
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3.3 Ring Shear Simulation 

 

3.3.1 Model Description 

 

Ring shear simulations were conducted to investigate the effect of particle shape 

on flow behaviours. A ring shear experiment was modeled using PFC
3D

 Version 

4.0, as shown in Figure 3.5.   

 

 
 

FIGURE 3.5:  DEM model for ring shear experiment using PFC3D v. 4.00. 

 

The ring shear was constructed from two concentric cylindrical vertical walls, 

which are frictionless, with top and bottom horizontal clumps acting as rough 

boundary plates. The applied vertical normal stress was kept constant during 

shearing by moving the top servo-controlled clump plate up and down in the 

vertical direction while the particles were sheared by rotating the bottom clump 

plate. The velocity at which the servo-controlled clump plate moved vertically 

was calculated at each time step using the following equation (modified from 

Campbell, 2005) 
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where a

Zσ  is the applied or prescribed vertical normal stress, hSC

m

Z AF=σ  is the 

measured vertical normal stress at the servo-controlled clump plate for each time 

step, SCF  is the measured vertical normal force at the servo-controlled clump 

plate, hA  is the horizontal area of the servo-controlled clump plate, zω  is the 

angular velocity of the bottom clump plate in the z direction, R is the average 

radius of the ring shear ( )( )io RR +
2
1 , and Sf  is a coefficient determined to get the 

measured vertical normal stress at steady state close to the applied (or prescribed) 

vertical normal stress. Their difference is mostly less than 1%.  

 

The ring shear simulations were conducted without gravity to eliminate the effect 

of heterogeneity in the simulations. Simulations were carried out on spherical 

particles with different average radii of the apparatus, sample heights, and 

thicknesses. The results are presented in Table 3.3. The particles had similar grain 

size distribution as the 1 mm mean diameter polystyrene beads used by Savage 

and Sayed (1984), but with different mean diameters of 1 cm and 0.5 cm. A 

general observation is that the results are affected for small sample heights 

(compare the shear stresses for cases 1, 4, 6; 2, 7, 9; and 5, 8), for small radii 

(compare the shear stresses for cases 5, 6, 7; 1, 2, 3), and for small thicknesses 

(compare the void ratios and the shear rates for cases 10 to 13). Based on these 

results, the average radius is selected as 30d, the sample height as 10d after 

consolidation, and the thickness as 8d. It is known that the thickness of an 

effective shearing zone in a granular layer is around 10d, where d is the mean 

particle diameter (Hanes & Inman, 1985a; Hanes & Inman, 1985b; Thompson & 

Grest, 1991).  
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The Savage number ( )Sa  in Table 3.3 is calculated as 

  

Z

d
Sa

σ

γρ 22
&

= .                                                (3.8) 

 

TABLE 3.3:  Ring shear simulations on spherical particles for different ring shear 

sizes. 

Case 
HoxthxRxd 

(cm) 
)(Pazσ  )(Paxzτ  )( 1−sγ&  e  Hs(cm) 1

Sa
−  

1 7.9x4x15x1 1290.2 512.96 29.83 0.922 8.3 13.2 

2 7.98x4x25x1 1289.75 510.56 30.34 0.922 8.3 12.8 

3 7.99x4x41.5x1 1290.41 510.42 31.16 0.923 8.3 12.1 

4 9.9x4x15x1 1292.14 540.8 29.38 0.922 10.4 13.7 

5 11.85x4x12x1 1293.05 559.59 28.74 0.928 12.5 14.3 

6 11.88x4x15x1 1294.03 551.38 28.76 0.92 12.5 14.3 

7 11.81x4x25x1 1293.28 548.76 29.41 0.92 12.5 13.7 

8 14.33x4x12x1 1293.86 568.48 28.06 0.944 15.3 15.0 

9 14.29x4x25x1 1294.87 556.11 28.44 0.915 15.1 14.6 

10 4.87x2x15x0.5 149795 59902 639.6 0.918 5.19 13.4 

11 4.77x3x15x0.5 149753 60182 656.3 0.869 5.07 12.7 

12 4.74x4x15x0.5 149828 59808 665.1 0.845 5.01 12.4 

13 4.73x5x15x0.5 149814 59729 670.5 0.829 4.97 12.2 

Note: Ho refers to sample height after consolidation, Hs refers to sample height at steady state, th is 

thickness of ring cell, σz is the vertical normal stress, τxz is the shear stress, γ&  is the shear rate, e  

is the void ratio, and 1
Sa

− is the inverse of Savage number given in Eq. (3.8). 

 

3.3.2 Procedures of Ring Shear Simulation 

 

A total of 13,330 spherical particles (excluding boundary clumps) were generated 

at random locations, with sizes ranging from 4.1 mm to 5.5 mm (mean ~ 5 mm), 

keeping the grain size distribution curve shown in Figure 3.3. Identical initial 
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assembly (or initial random arrangement) of particles was generated for all 

simulation experiments in order to eliminate the effect of the initial condition in 

comparing the simulation results. To simulate angular particles, the spherical 

particles were replaced by angular particles of the same volume. The sample was 

then consolidated under a prescribed vertical normal stress and then sheared by 

gradually increasing the angular velocity to a prescribed value on the bottom 

clump plate. Shearing continued for a minimum of 2.0 seconds under the 

prescribed angular velocity until the flow reached the steady state condition. 

 

3.3.3 Measurement of Flow Characteristics 

 

Measurements in the ring shear simulations were taken in a similar way as for the 

actual ring shear experiments (Savage & Sayed, 1984). The void ratio was 

calculated by measuring the effective sample height (Hd = Hs - d) from the centre 

of the top clump plate to the centre of the bottom clump plate at steady state, 

while the shear stress was calculated by measuring the torque ( )zT  on the top 

clump plate, and using   

 

( )33
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3

i
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π
τ ,                                                  (3.9) 

 

where iR  and 0R  are the inside and outside radii of the ring shear apparatus. 

Finally, the shear rate was calculated from 

 

d

z

H

R⋅
=

ω
γ& .                                                         (3.10) 
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3.3.4 Model Calibration  

 

For the purpose of the calibration of the numerical model, the ring shear 

experiments conducted by Savage and Sayed (1984) on 1 mm mean diameter 

spherical polystyrene beads (Savage & Sayed, 1984, Figs. 8a & 8b) were first 

simulated. The DEM parameters presented in Table 3.1 were used for a ring shear 

model. The results from the numerical simulations are compared with the physical 

experiments as shown in Table 3.4. Since higher stresses and larger particles are 

of interest here, the simulations were conducted using 5 mm mean diameter 

particles at a vertical normal stress of 150 kPa. The comparison was made based 

on the Savage number. The Savage number is constant for a constant void ratio in 

collisional flow.  

 

As in the case of the plane shear model (see Sec. 3.2.4), the ring shear model also 

approximated the experimental results at a void ratio of 0.908 by the simulations 

at a void ratio of 0.84. The remaining experimental results were approximated by 

the simulations at similar void ratios. 

 

TABLE 3.4: Comparison of ring shear simulations with laboratory experiments 

(Savage & Sayed, 1984, Figs. 8a & 8b) on spherical particles.  

Case d (mm) )(kPazσ  )(kPaxzτ  )/( smdγ& e 1−
Sa  e* 1−

Sa * 

1 5 149.75 70.76 5.97 1.2 3.83 1.17 2.5 – 3.4 

2 5 149.74 69.57 5.69 1.07 4.22 1.07 4.1 – 4.6 

3 5 149.70 67.17 5.01 0.96 5.45 0.984 5.5 – 6.5 

4 5 149.83 59.81 3.32 0.84 12.37 0.908 15 – 18 

*Range of values from the experiments of Savage and Sayed (1984) 

 

A PFC3D code written for ring shear simulation is presented in Appendix A.4.  
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3.4 Inclined Flow Simulation 

 

3.4.1 Model Description 

 

Inclined flow simulations were also conducted using PFC3D v.4.0 for 4 mm and 

40 mm mean diameter particles. The DEM particles had properties presented in 

Table 3.1 with similar grain size distribution as the polystyrene beads used by 

Savage and Sayed (1984). The 3D inclined flow DEM model is presented in 

Figure 3.6. The sheared particles are bounded by periodic boundaries on the 

vertical sides and by the boundary particles arranged in a rectangular array at the 

base. The inclined flow is modeled by assigning acceleration of gravity of sing θ  

and cosg θ−  in the x- and z- directions, respectively, instead of tilting the base 

plane by an angle of θ .  

 

                        

 

FIGURE 3.6: 3D Inclined flow DEM model using PFC3D v. 4.00. 
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3.4.2 Procedures of Inclined Flow Simulation 

 

Particles were generated randomly in a 4d wide (y- direction) by 7d long (x- 

direction) model which was bounded by vertical walls. The boundary particles, 

each having size d, were arranged in a rectangular array. The x- and z- gravity 

forces were then assigned and the particle assembly (sample) was consolidated 

under the force of gravity. Finally, the sample was allowed to shear under the 

force of gravity by replacing the vertical walls with periodic boundaries. The 

shearing was continued until the flow reached a steady state condition. 

 

3.4.3 Measurement of Flow Characteristics 

 

Profiles of solid volume fraction (or void ratio), flow velocity, and granular 

temperature were measured by dividing the inclined flow into layers of equal 

thickness, dmax (the diameter of the largest particle in the simulation), starting 

from the bottom but excluding the boundary particles (Lu & Hsiau, 2005; Lan & 

Rosato, 1995). Flow velocity and granular temperatures were measured for each 

layer using Eq. (3.6a) to Eq. (3.6d). Solid volume fraction was measured for each 

layer using Eq. (3.11) as 

max4 7

L

tb
L t b
s

t

V

v
N d d d

=
⋅ ⋅ ⋅

∑∑
,                                             (3.11) 

 

where L

sv
 
is the average solid volume fraction of layer L, L

tbV  is the portion of 

the volume of particle b occupying layer L at time step t, and tN  is the total 

number of time steps at which the volume summations were made for layer L. 

The volumes of particles were sampled at the interval of 10 time steps after the 

flow reached the steady state condition.  

 

A PFC3D code written for inclined flow simulation is presented in Appendices 

A.2 and A.3.  
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CHAPTER FOUR    

 

RELEVANCE OF COLLISIONAL MECHANISM  

 

4.1 Introduction 

 

As discussed in Chapter 2, the behaviour of dry granular flow has been studied 

extensively using shear and flume experiments. The investigations have revealed 

a rate-dependent collisional flow mechanism at high shear rate and high void ratio 

in addition to the well-known rate-independent frictional mechanism at low shear 

rate and low void ratio. This leads to the classification of granular flows into 

frictional, collisional, and intermediate regimes based on the flow mechanisms. 

  

However, the physical experiments were conducted with small size particles and 

showed rate-dependent collisional flow behaviour only at low stresses. Attempts 

to observe this behavior at high stresses were not successful. (Detailed discussions 

of the experiments in the literature are presented in Chapter 2.) As none of the 

experiments showed rate-dependent flow behavior at high stresses, it was 

concluded that the rate effect may be limited to low stresses and the collisional 

mechanism discussed above may not be applicable to geotechnical problems such 

as debris flows and avalanches. In this regard, many state-of-the-art models for 

flow type landslide analysis (such as MADFLOW, TITAN2D, DAN3D and 

RASH3D) consider the basal friction angle as the main resistance parameter. 

Voellmy model, which accounts for all other possible sources of velocity 

dependent effects in addition to the frictional resistance, is also used for cases 

where the frictional model does not provide a good prediction. For instance, the 

Thurwieser rock avalanche is an example in this case (Pirulli, 2008). 

 

It is postulated in this research that the lack of a shear rate effect at high stresses 

may be due to the use of small size particles (< 2 mm) in the experiments. 
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Although the particles were sheared at high rates (which occurs in actual flow 

slides), the rates were not sufficient to initiate the collisional mechanism for small 

particles at high stress. As observed in Bagnold’s scaling, the stresses in 

collisional flow are proportional to the square of the shear rate and the square of 

the particle diameter. Thus, the particle diameter should be large enough in order 

to produce rate-dependent behaviour at high stress even if the material is sheared 

at high rate.  

 

Therefore, the main objective of this chapter is to demonstrate the occurrence and 

relevance of rate-dependent collisional flow behaviour at high stresses for large 

particles. Using DEM simulations of plane shear flows, the ring shear 

experiments of Savage and Sayed (1984) on 1 mm mean diameter spherical 

polystyrene beads are extended to higher stresses for both small and large 

particles. Comparisons are then made between simulations of small and large 

particles at high stresses to show how the rate-dependent mechanism will likely 

occur in practice with the increase of particle diameter. Its relevance in debris 

flows and avalanches are further investigated by assessing a range of values of 

vertical stress, flow velocity, and particle diameter required for rate-dependent 

flows.  

 

4.2 Existence of Collisional Mechanism at High Stresses 

 

Physical shear experiments on large size particles require a much larger shear 

apparatus than normally available. Therefore, numerical experiments were used in 

this research.  The DEM plane shear model presented in Sec. 3.2 was calibrated 

by simulating the annular shear experiments of Savage and Sayed (1984) at low 

stresses before conducting simulation experiments on large size particles at high 

stresses.    

 

The shearing experiments of Savage and Sayed (1984) are extended to higher 

stresses for 4 cm mean diameter particles using the calibrated DEM model, with 
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the results presented in Figure 4.1. They show that stresses continue to depend on 

the square of the shear rate and particle diameter exhibiting collisional flow 

behaviour for void ratios equal to 1.2, 1.095, 0.995, and 0.825. The additional 

simulation experiments conducted at a lower void ratio of 0.7 also show the 

dependency of stresses on shear rate, even though it is weak compared to the 

cases of higher void ratios. The less dependency on shear rate is due to the 

contribution of rate-independent frictional stress at lower void ratios, which 

changes the flow to intermediate flow. Therefore, the existence of a rate-

dependent flow, either collisional or intermediate, at higher stresses is evident 

here. 

 

Similar variations of stresses with shear rate, as shown in Figure 4.1, were also 

observed by others (e.g., Campbell, 2002; Ji & Shen, 2005; Yan & Ji, 2009). The 

results are used here to assess the relevance of rate-dependent behaviour in actual 

debris flows and avalanches by observing the range of stresses, flow rate, and 

void ratio. 

 

 

(a) Vertical normal stress versus characteristic mean shear velocity in log scale 
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(b) Shear stress versus characteristic mean shear velocity in log scale 

 

FIGURE 4.1: Variation of stresses with the characteristic mean shear velocity; 

Open symbols represent laboratory experiments from Savage and 

Sayed (1984)
4
. The solid line in (a) has slope of 1H:2V.                              

 

4.3 Relevance of Collisional Mechanism in Flow Type Landslides 

 

In general, the occurrence/relevance of rate-dependent flow behaviour at a given 

stress or void ratio depends on the particles inertia, i.e., the mass of particles 

(diameter and density of particles) and the rate of flow.  

 

Small particles require a high flow rate to achieve a given rate-dependent flow 

state. For example, at the pure collisional flow state of ( 0.995, 965 )ze Paσ≈ ≈  

shown in cases A to C of Table 4.1, 1 mm mean diameter particles require a high 

shear rate of 373.2 s
-1

 compared to 4 cm mean diameter particles, which require a 

shear rate of only 9.537 s
-1

. The required flow rate for small particles will increase 

even more to achieve a rate-dependent flow state at higher stress. In the above 

                                                 
4
 Copyright © 1984 Cambridge University Press. Reproduced with the permission of Cambridge 

University Press. 
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example, for instance, the 1 mm mean diameter particles require a very high shear 

rate of 1998 s
-1

 to achieve a collisional flow state of the same void ratio but with a 

higher stress of ~ 25 kPa, as shown in case D of Table 4.1. The required flow rate 

is much higher than the anticipated values in actual flow type landslides and may 

explain why the shear rate effect was not observed by Fukuoka and Sassa (1991) 

and others, such as Hungr and Morgenstern (1984), Kaibori (1986), and Vibert et 

al. (1989). They used small diameter particles (< 2 mm) in their experiments to 

observe the shear rate effect at high stresses up to 375 kPa. 

 

In order to see the rate-dependent behaviour in their range of stresses, larger 

particles should be used. In case E of Table 4.1, for example, the required shear 

rate decreases to 50 s
-1

 with the increase of the mean diameter to 4 cm, in order to 

achieve the above-mentioned high stress flow state of ( 0.995, 25 )ze kPaσ≈ ≈ . It 

should be noted that the density of the polystyrene beads 3( 1095 / )kg mρ =  is 

much less than the density of actual soil material 3( 2650 / )kg mρ ≈ . Case F of 

Table 4.1 shows that, to achieve the above-mentioned high stress flow state, the 

required flow rate will further reduce if the actual soil particle density is used.  

 

TABLE 4.1: Comparison of experiments and simulations for polystyrene beads 

Case e  ( )z Paσ  d (mm)
 ( )1

sγ −
&  ( )3/kg mρ  1

Sa
−  )/( smmdγ&  

A 0.984 966 1 373.2 1095 6.334 373 

B 0.999 950 1 380.1 1095 6.008 380 

C 0.999 984 40 9.537 1095 6.175 381 

D 0.993 24120 1 1998 1095 5.518 1998 

E 0.985 24906 40 49.52 1095 5.797 1980 

F 0.988 25115 40 31.97 2650 5.795 1278 

Case A – based on physical experiment by Savage & Sayed (1984), Cases B-F are based on PFC 

simulations. 
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The relevance of the rate-dependent flow behaviour in actual flow landslides can 

be studied in more detail by examining the depths of flow, velocities, and void 

ratios required to produce the rate effect. In this section, the relevance of rate-

dependent behaviour is assessed in debris, rock, and snow avalanches flowing at a 

void ratio of 0.995.  

 

The simulation results in log log( )z dσ γ− &  plot are changed to log log( )H ud−  

plot, as shown in Figure 4.2, to assess the ranges of flow depths and velocities at a 

void ratio of 0.995. This is accomplished as follows. 

 

The depth variations of velocity and density in inclined plane flow have been well 

studied using laboratory flume experiments (e.g., Johnson, 1987; Drake, 1988; 

Ahn, 1989; Azanza et al., 1999; Ancey, 2001) and simulation experiments (e.g., 

Silbert et al., 2001; Silbert et al., 2002; Silbert et al., 2003; GDR MiDi, 2004; 

Mitarai & Nakanishi, 2005; Delannay et al., 2007). For dense granular flows, it is 

reasonable to assume a uniform density profile and a linear velocity variation with 

depth. Hence, the flow depth (H) can be calculated from the vertical-normal stress 

using  

 

z sv gHσ ρ= ,                                                  (4.1) 

 

where sv  is the depth-average solid volume fraction. On the other hand, the 

depth-average velocity ( )u  which acts at the mid-depth of the flow can be 

determined from the shear rate using 

 

( / 2)

u

H
γ =& .                                                     (4.2) 
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The maximum mean velocities in debris and rock avalanches could reach up to 40 

m/s and 100 m/s, respectively (Pierson & Costa, 1987; Hungr et al., 2001), while 

for a dense snow avalanche it is estimated to be 50 m/s (Vilajosana et al., 2007).  

 

 

(a) 

 

 

 (b) 

FIGURE 4.2:  Simulation results at a void ratio of 0.995; (a) vertical stress versus 

characteristic mean-shear velocity, (b) flow depth versus flow 

velocity times mean diameter    
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If we consider avalanches with rounded granular materials having similar 

properties as the polystyrene beads, Figure 4.2 (b) can be used to estimate the 

flow depths of avalanches flowing at a void ratio of 0.995 for different mean flow 

velocities. For example, a 5 cm mean diameter rock avalanche flowing at 40 m/s 

will attain a flow thickness of ~ 3 m, as shown in Figure 4.2 (b). On the other 

hand, a snow avalanche with 1 mm size particles flowing at the same mean 

velocity will exhibit flow thickness of only ~ 20 cm, as shown in Figure 4.2 (b). If 

this snow avalanche is required to flow at higher thickness, the velocity must 

increase. However, the average flow velocity of snow avalanches is about 40 m/s.  

 

The above examples demonstrate that rate-dependent behaviour is more relevant 

in avalanches involving large particles. Coarse avalanches may undergo the 

collisional flow mechanism under reasonable flow depths. With decreased particle 

size, however, smaller flow depth is required to achieve rate-dependent flow 

states at a similar void ratio. For very small particles, such as 1 mm size particles 

as shown in the above example, the required flow depths will be too small to 

occur in practice, which suggests that the rate-dependent flow may not be relevant 

for such small granular materials.    
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 CHAPTER FIVE      

 

EXTENDED CRITICAL-STATE FRAMEWORK 

 

5.1 Introduction 

 

In Critical State Soil Mechanics (Schofield & Wroth, 1968; Wood, 1990), quasi-

static deformation of soils is captured by a framework which is based on the 

critical state concept. The critical state framework uses void ratio, mean effective 

stress and deviatoric stress space to define the state of a material.  When it was 

proposed in the 1960, it was the first model that integrated volume change into the 

calculation of shear deformation and failure.   

 

The concept of critical void ratio was first introduced by Casagrande (1936). In 

drained direct shear tests, he observed that dense sands dilated with an increase in 

shear deformation and the shear strength decreased after reaching a peak value.  

On the other hand loose sands contracted and the shear strength continued to 

increase until the shear strain was very large.  Both loose and dense sands reached 

the same constant void ratio and shear strength values at large deformation if they 

were consolidated under the same initial confining pressure. This final constant 

void ratio was called the “critical void ratio”, and the corresponding state as the 

“critical state”. In critical state, soil continues to deform under constant void ratio, 

constant mean effective stress, and constant deviatoric stress and a unique 

relationship exists among these variables.   

 

The “critical state line” of a soil refers to the critical void ratios, mean effective 

stresses, and shear strengths attained by a material at its critical states. It can be 

presented in the void ratio (e) – mean effective stress (p) plane and in the 

deviatoric stress (q) – mean effective stress (p) plane, which constitute the 

frameworks of critical state soil mechanics. The schematic representation of a 
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critical state line is shown in Figure 5.1. The equations of the critical state line 

(CSL) in these two planes are given by  

 

loge pλ= Γ −         (for CSL in e-p plane),                             (5.1) 

q Mp=         (for CSL in q-p plane).                             (5.2) 

 

The constants M, Γ, and λ represent basic soil properties. 

 

At critical state, a soil material continues to deform by transforming the 

mechanical energy to heat energy by friction. If Figure 5.1(b) is re-plotted in a 

shear strength versus vertical normal stress plane, the slope of the critical state 

line will give the internal friction angle of the material at critical state. This 

critical state friction angle is a material property which can be determined from 

shear experiments and it is a key input in the constitutive model.  

 

 

                                 (a)                                                             (b) 

FIGURE 5.1:  Schematic representation of critical state line: (a) in e-p plane, (b) 

in q-p plane. 

   

The traditional critical state concept, its framework and models are developed for 

quasi-static deformation. For granular material under rapid moving conditions, 

several experiments (e.g., Savage & Sayed, 1984) and simulations (e.g. Campbell, 

2005) have suggested, directly or indirectly, that the critical state depends on the 
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rate of shearing of the material. Hence, the shear rate should be included in 

addition to the void ratio and stresses in defining the critical state.  

 

When granular material is rapidly sheared, the momentum of the particles will 

have additional contribution to the shearing resistance of the material. Since 

momentum is related to the relative velocities of the particles, the shearing 

resistance then depends on the rate of shearing. The critical state concept and 

framework can be extended to include the rate of shearing, which will be referred 

to as the extended critical state, for a rapidly flowing granular material. 

 

In the following sections, the extended critical state framework is reviewed by 

including an additional shear rate variable called the characteristic mean shear 

velocity dγ&  (Lun et al., 1984). Although different parts of the extended 

framework have been published in the literature, a concise summary of the full 

extended framework is presented in this chapter based on the results of the 

numerical simulation experiments conducted in this research. It should be noted 

that the effect of shear rate was investigated in detail mainly for spherical 

particles. Hence, the extended critical state framework reflects only spherical 

granular particle behaviour. In the last section of this chapter, the effect of 

angularity on the extended framework is discussed.   

 

The extended critical state frame work will be used to evaluate the existing and 

proposed unified constitutive models in Chapter 6.  

 

5.2 The Extended Critical State Framework 

 

5.2.1 Void Ratio – Vertical Normal Stress Plane 

 

In addition to the critical state line, a series of other state lines were plotted by 

Campbell (2005) as functions of the dimensionless stiffness (inverse of 

dimensionless shear rates) in the solid fraction versus the dimensionless vertical 
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normal stress. These state lines are also presented in Figure 5.2 based on the 

current simulation results in the void ratio versus the vertical normal stress plane. 

The effect of shear rate can be observed by comparing Figure 5.1(a) with Figure 

5.2(a). The comparison reveals the series of critical state lines as functions of the 

characteristic mean shear velocity. The classical critical state line in the CSSM 

belongs to the quasi-static soil deformation and is found to be the lower boundary 

state line. The series of lines corresponding to different characteristic velocities 

are referred here as supercritical state lines.  

 

The relationship between critical void ratio and vertical normal stress is well 

established in CSSM for identifying the contractive (wet) and dilative (dry) 

behaviours (states) of soils in assessing flow liquefaction. Similarly, the extended 

framework shown in Figure 5.2 is useful for granular flow classification to 

differentiate quasi-static, collisional, and intermediate flow regimes. The quasi-

static flow regime is captured by the critical state line. On the other hand, the 

supercritical state lines consist of the intermediate (or transitional) and collisional 

flow regimes. The boundary between these regimes can be identified by first 

predicting the collisional regimes using the kinetic theory of granular flows 

(KTGF - dashed, blue lines in Figure 5.2b), and then by drawing a boundary line 

(CIBL) connecting the points at which the KTGF lines start to deviate from the 

numerical simulation experiments (dotted, red line) as shown in Figure 5.2(b).  It 

is because the KTGF assumes collisional state even when in the actual case the 

particles start to develop frictional/sliding contacts below the CIBL. This results 

in the discrepancy between the KTGF line and the response from numerical 

experiment.   

 

For quasi-static deformation, the critical state line is usually approximated by a 

straight line in the log ze σ−  plot, whereas the supercritical state lines can be 

represented by two curves that meet around the collisional-intermediate boundary 

line (CIBL). This line would have a general equation of the form similar to the 

critical state line equation given in Eq. (5.1) except for having a positive slope 
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log ze κ σ= Ω + ,                                                (5.3)  

 

where Ω  is the void ratio intercept at 1Z Paσ = , and κ is the slope of the line. 

The values of Ω  and κ are estimated to be 0.85 and 0.005, respectively, in this 

case from Figure 5.2(b). The parameters of the critical state line, Γ and λ , are 

also estimated to be 0.85 and 0.027, respectively, by fitting a straight line through 

the critical state points. 

 

 

(a) 

 



73 

 

(b) 

 

FIGURE 5.2: Void ratio versus vertical normal stress: (a) critical and supercritical 

state lines, (b) kinetic theory prediction and flow classification. + 

are obtained using 1 cm particles while the remaining symbols 

represent data obtained from 4 cm particles, Kinetic Theory (KT) 

is based on Lun et al. (1984) equation using 0.61m

Sv =  and 

0.81ε =  (ε  of particles was 0.75 in the simulation experiments), 

CS is the critical state, CSL is the critical state line, and CIBL is 

collisional-intermediate boundary line. 

 

 

5.2.2 Shear Stress – Vertical Normal Stress Plane 

 

The supercritical state lines can be plotted as shear stress versus vertical normal 

stress as shown in Figure 5.3. The regions ‘b’ and ‘c’ in Figure 5.3(a) are enlarged 

and shown in Figures 5.3(b) & (c), respectively.  
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(a) 

 

 

(b) 
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(c) 

 

FIGURE 5.3: (a) Shear stress versus vertical normal stress, (b) the enlarged view 

of region ‘b’, (c) the enlarged view of region ‘c’. 

 

The series of the state lines are also observed in the above framework as functions 

of the characteristic mean shear velocity, and the critical state line defines the 

lower flowing state boundary, as shown in Figure 5.3(a). At constant vertical 

normal stress, the shear stress or friction angle increases with the characteristic 

mean shear velocity. The increasing trend of the friction angle is more clearly 

seen in the friction coefficient versus the characteristic mean shear velocity plot in 

Figure 5.4(a).  

 

The critical state friction angle can be determined from the slope of the CSL 

which is approximated by a straight line in the shear stress versus vertical normal 

stress plot. Conversely, the supercritical state lines are convex with decreasing 

slopes (or decreasing friction coefficients) as the vertical normal stress increases 

(see Figure 5.3). In order to clearly see this variation, the friction coefficients are 

plotted against the vertical normal stresses for different characteristic velocities as 

shown in Figure 5.4(b). The friction coefficients decrease with increase in the 
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vertical normal stress except at critical states, where they are more or less constant 

and attained the lowest value.       

 

 

(a) 

 

(b) 

FIGURE 5.4:  Variation of friction coefficient with (a) the characteristic mean 

shear velocity (b) the vertical stress 
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The variations of the friction coefficient with respect to the changes in vertical 

normal stress and characteristic mean shear velocity can be expressed using a 

single dimensionless variable I, 
zI dγ ρ σ= & , as proposed by Da Cruz et al. 

(2005), see Figure 5.5. The friction coefficient increases from its minimum value 

csµ  at quasi-static state to its maximum value cµ  at collisional state with the 

increase of I. 

 

 

FIGURE 5.5:  Friction coefficient versus the dimensionless variable I. 

 

5.2.3 Void Ratio - Granular Temperature Plane 

 

At high void ratios and low stresses, granular material may flow in a collisional 

state. This process has been studied by adopting a granular kinetic theory based 

on the kinetic theory of gases (e.g., Lun et al., 1984). In granular mechanics, the 

granular temperature ( )T  is a key variable which is introduced to measure the 

energy state of the material. In pure collisional flow, T is related to the 

characteristic mean shear velocity and void ratio as 
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  2( , ) ( )T f e dε γ= ⋅ & ,                                                (5.4) 

 

where ( , )f e ε  is a function of the void ratio and the restitution coefficient of 

particles ε. 

 

Since the extended critical state framework comprises the rate-dependent 

collisional and intermediate regimes, an additional plane is required to include 

granular temperature in the extended framework. The variation of the granular 

temperature with respect to void ratio is presented in Figure 5.6 for different 

characteristic mean shear velocities. It is observed that for a given characteristic 

mean shear velocity, the granular temperature is more or less constant in the 

collisional regime for void ratios less than 1.2 (where the simulation experiments 

were conducted) but increases with the decrease of void ratio in the intermediate 

regime. Similar variations in the granular temperature were also reported by Lois 

et al. (2005), Da Cruz et al. (2005), Kumaran (2009), and Reddy and Kumaran 

(2010). Da Cruz et al. (2005) obtained an increase in the dimensionless 

fluctuation velocity ( / )xu dγ′ &  with a decrease in the dimensionless variable I  of 

the intermediate flow regime. He also found that I  decreases with decrease in the 

void ratio in the intermediate regime.  

 

For high void ratios in the collisional regime, Lun et al. 1984 showed (using the 

kinetic theory) that the granular temperature starts to increase with the increase of 

void ratio due to the contribution of the kinetic motion of the particles to the 

fluctuation energy of the material. However, it is considered here that the granular 

temperature is approximately constant in the collisional flow regime for the range 

of void ratios that are commonly encountered in flow type landslides.      
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FIGURE 5.6:  Variation of granular temperature with void ratio. 

 

 

5.3 Effect of Particle Shape on Extended Critical State 

Framework 

 

As presented in the previous sections, the flowing rate of spherical granular 

particles is the key variable in extending the critical state framework to capture 

rapid granular flow states (i.e., collisional and intermediate flow states). The 

stresses and friction coefficient have been observed to increase with the 

characteristic mean shear velocity, as shown in Figure 5.2(a) and 5.4(a). The 

pioneering work of Bagnold (1954) suggested that, at a constant void ratio, 

stresses increase quadratically with the characteristic velocity in the collisional 

regime. Laboratory ring shear experiments of Savage and Sayed (1984) also 

supported Bagnold’s (1954) results at a high void ratio (in collisional flow 

regimes); however, their results also showed that the stresses increase weakly 

with the characteristic velocity (to the power of characteristic velocity less than 2) 

at a low void ratio (in an intermediate flow regime) due to the contribution of 
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stresses from the rate-independent frictional mechanism. As presented in Chapter 

2, several other shear and flume experiments are also available to show the 

increase in stresses with the shearing rate for spherical particles in both 

intermediate and collisional flow regimes.   

 

On the other hand, there are some shear experiments on non-spherical particles 

that show inverse relationship between stresses and shear rate. For example, 

Martino and Davies (2003) conducted shear experiments using an inverted cone 

and plate rheometer on 3.5 mm wide and 4 mm long cylindrical PVC granules 

under low stresses (< 1 kPa) and shear rates (< 35 s
-1

). The results showed a 

decrease in shear stress with an increase in shear rate when the flow progressed 

from a quasi-static to an intermediate flow regime under a constant vertical 

normal stress condition. The recent experimental work conducted by Lu et al. 

(2007) also revealed an inverse relationship of void ratio (in stress controlled 

condition) and stress (in volume controlled condition) with shear rate for angular 

particles for intermediate flow. The tests were conducted for small diameter (< 

2mm) angular and spherical quartz sand under low stresses (< 15 kPa) using a 

cylindrical shear cell.   

 

In the subsequent sections, the effect of the decrease in resistance due to an 

increase in the shearing rate for non-spherical particles will be investigated at high 

stresses based on DEM simulation of the ring shear experiments. The effect of 

angularity on the extended critical state framework will also be discussed.  

 

5.3.1 Behaviour of Non-Spherical Particles at High Stress 

 

Angular particles of the type shown in Figure 5.7 were used to study the effect of 

angularity on granular flow behaviour. The angular particle was created by 

clumping three spherical particles together with their centroids at (d/8, 0, 0), 

(7d/8, 0, 0), and (d/2, 0, √3d/2), where d is the diameter of the particles. This type 

of angular particle was selected after some trials with different kinds of angular 
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particles (formed by clumping two or three spherical particles) to capture the 

decreasing effect of shear rate on stresses and friction coefficients. The angular 

particles had sizes ranging from 4.1 mm to 5.5 mm (mean ~ 5 mm), keeping the 

grain size distribution curve shown in Figure 3.3. They had also properties shown 

in Table 3.1, similar to the spherical particles. The details of the ring shear 

simulation have been discussed in Section 3.2. 

 

 

 

FIGURE 5.7:  DEM model of angular particle. 

 

The ring shear simulation results on 5 mm mean diameter angular particles at a 

constant vertical normal stress of 150 kPa are presented in Figure 5.8. The results 

of ring shear simulations on the same mean diameter spherical particles are also 

presented for comparison.  

 

The results show that, for angular particles, the friction coefficient (or the shear 

stress since the normal stress was held constant) decreases with the increase of the 

characteristic mean shear velocity as the flow progresses from a quasi-static to an 

intermediate regime. This result is in agreement with Martino and Davies (2003). 

The friction coefficient then starts to increase with further increase in the 

characteristic velocity when the flow continues to progress to the collisional 

regime. Conversely, the friction coefficient of spherical particles remains nearly 

constant for a characteristic velocity of up to 0.85 m/s and then starts to increase 

with the further increase of the characteristic velocity.  
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(a) 

 

 

(b) 

 

FIGURE 5.8: Simulation results of ring shear model. 
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Angular particles attain a higher critical state friction angle than spherical 

particles due to interlocking effect (Savage & Sayed, 1984). When angular 

particle flow progresses from quasi-static to intermediate regimes, the decrease in 

friction angle due to the loss of interlocking (because of the increase of void ratio, 

as shown in Figure 5.8b) will be higher than the increase in friction angle due to 

collisional interaction, resulting in the net decrease in friction angle. With further 

increases in shear rate, however, the flow progresses to the collisional regime with 

greater contribution of shearing resistance from collisional interaction.  At this 

point, the net friction angle starts to increase.  

 

On the other hand, the void ratio in angular particles increases continuously with 

the characteristic velocity, as shown in Figure 5.8(b). This may imply that vertical 

normal stress will continuously increase with the characteristic velocity under 

constant void ratio. Similar behaviour of stresses and void ratios with shear rates 

were observed in Savage and Sayed (1984) shear experiments on crushed walnut 

shell particles and Campbell (2011) plane shear simulations of ellipsoidal 

particles. However, the above observation is in contrast to the findings of Lu et al. 

(2007), who reported decrease in the stress (for constant void ratio) and the void 

ratio (for constant normal stress) with the shear rate in the intermediate regime, 

followed by their increase with the shear rate in the collisional regime. This 

difference may be due to: 

 

(a) the angular particles used here could not capture the irregular shapes of 

actual particles, especially the sharp edges and corners which have 

significant effects in interlocking, and/or 

 

(b) different type of shear apparatus (cylindrical shearing device) used in the 

shear experiments of Lu et al. (2007). 

 

The drawback of Lu et al. apparatus is that the shearing velocity varies radially 

resulting in lower rate of shearing closer to the center (quasi-static condition) and 
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higher rate of shearing closer to the outer boundary undergoing possible rate-

dependent flow mechanisms. Therefore, different flow mechanisms may develop 

in different regions inside a single experiment which means that the particles are 

not uniformly sheared. This drawback makes interpretation of the results difficult.  

 

Although Lu et al. (2007) provided a detailed explanation to justify why their 

results were not affected by the shear apparatus, very few simulation experiments 

were conducted by modeling their apparatus shown in Figure 5.9 (by modifying 

the ring shear model setting 0=iR ) to investigate the effect of the cylindrical 

shear apparatus. The radius of the apparatus, )( 0R , was selected to be 22d in 

order to test the same amount of particles (13,330) as in the ring shear simulations 

at the same sample height of 10d after consolidation.  

 

 
 

FIGURE 5.9:  Cylindrical shear apparatus model. 

 

The simulation results are presented in Table 5.1. It can be seen that the same 

effect of shear rate on void ratio and friction coefficient is observed as the ring 

shear simulations. Hence, the simulation results of both the ring and the 

cylindrical shear models suggest that the void ratio (for constant vertical normal 
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stress) and the vertical normal stress (for constant void ratio) increase 

continuously with shear rate at least for the type of angular particles tested in this 

research, as shown in Figure 5.7. The reason for not observing the decreasing 

effect of shear rate as reported by Lu et al. (2007) may be due to the difficulty in 

modeling precisely the actual angular particles, especially the sharp edges and 

corners. The angular particle model may be improved by constructing it from 

several smaller spherical particles.  This will require a very high-speed computer 

to run and is left for future study.  

 

TABLE 5.1:  Summary of cylindrical shear model results. 

Case )(kPazσ  ωz (sec
-1

) )(kPaxzτ  e  µ  

1 148.99 0.75 91.61 0.856 0.615 

2 149.57 5 88.27 0.886 0.59 

3 149.63 15 86.68 0.898 0.579 

4 149.43 30 87.66 0.907 0.587 

 

5.3.2 Implications of Decrease in Resistance  

 

Further studies are required to understand the behaviour of different types of non-

spherical particles before generalizing their effect on the extended critical state 

framework. Limited experimental and simulation investigations such as Savage 

and Sayed (1984) for crushed walnut particles, Martino and Davies (2003) for 

cylindrical PVC particles, Lu et al. (2007) for irregular-shaped beach sand, 

Campbell (2011) for ellipsoidal particles, and the simulation results in this 

research have revealed various flow behaviours depending on the type of non-

spherical particles.  

 

In general, the decrease in shearing resistance for non-spherical particles may 

imply a flow state below the conventional critical state line in both log ze σ−  and  
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xz zτ σ−  plots. For example, if the shear strength decreases with shear rate as the 

flow progresses from a quasi-static to an intermediate regime at constant vertical 

normal stress (as seen in the ring shear simulations conducted in this research), 

the supercritical state lines in the intermediate regime may fall below the critical 

state line in the xz zτ σ−  plane as shown in Figure 5.3. Hence, the critical state line 

will no longer be the lowest boundary state line. On the other hand, if stresses 

decrease with shear rate as the flow progresses from a quasi-static to an 

intermediate regime at a constant void ratio (as seen in Lu et al., 2007), the 

supercritical state lines in the intermediate regime may lie to the left side of the 

critical state line in the log ze σ− plot, which makes the CSL line again no longer 

be the lowest boundary state line.  

 

5.4 Coordination Number and Sliding Fraction  

 

The dependency of stresses and friction coefficient on shear rate in rapid granular 

flows can be explained by exploring two important micro-level variables called 

coordination number and sliding fraction. Coordination number is the average 

number of contacts per particle in a time step. Sliding fraction is the fraction of 

slipping contacts out of the total contacts in a time step. These variables were 

calculated in the plane shear simulations of spherical particles conducted in this 

research. The results are used in this section to explain the dependency of stresses 

and friction coefficient on shear rate. 

 

In general, stresses in granular flow depend on the amount of particle contacts and 

contact intensities. The amount of particle contacts is quantified by the variable 

coordination number, while the contact intensity is directly related to the shear 

rate of flow.  

 

At constant shear rate, the stresses mainly depend on the coordination number. It 

is observed in Figure 5.10(a) that, at constant shear rate, the decrease of void ratio 
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increases the coordination number. The increase of coordination number (due to 

the decrease of void ratio) in turn increases the stresses as observed in Figure 

5.10(b). The increase of contacts (or the coordination number) improves contact 

chains in the frictional mechanism and increases the amount of momentum 

transfer in a collisional mechanism, thereby increasing the stresses.  

 

At constant void ratio, on the other hand, the coordination number may increase 

or decrease with the shear rate depending on the state of granular flow. Aarons 

and Sundaresan (2006) explained that the increase in shear rate will increase the 

collision frequency but will also cause more frequent breaking up of the force 

chains. Thus, the variation of the coordination number with the shear rate depends 

on the relative importance of these two effects. The increase of the coordination 

number with the shear rate at constant void ratios in Figure 5.10(a) (except at the 

void ratio of 0.7) is attributed to the increase in collision frequency with the shear 

rate, as the flows were mostly collisional and the force chains are not significant. 

This increase in the coordination number causes the stresses to increase in the 

same fashion as shown in Figure 4.1. However, the coordination number depends 

less on the shear rate compared to the stresses (compare the slopes in Figure 4.1a 

and Figure 5.10a). This might be attributed to the additional contribution to the 

stresses from the increase of contact intensity (contact force intensity) due to the 

increase of the shear rate, making the stresses more dependent on the shear rate. 

At a void ratio of 0.7, however, the coordination number decreases slightly with 

the increase in shear rate as shown in Figure 5.10(a). It is because the increase of 

the coordination number due to the increase of collision frequency cancelled the 

decrease of the coordination number due to more frequent breaking up of the 

force chains. However, the stresses corresponding to the void ratio of 0.7 

increases with the shear rate as shown in Figure 4.1. This increase in stresses 

might be due to the additional contribution of stresses from the increase of contact 

intensity (or contact force intensity) due to an increase in the shear rate.  
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Finally, at constant normal stress, the coordination number is observed to 

decrease with the increase of shear rate as shown in Figure 5.10(b). The increase 

of shear rate is accompanied by the increase of void ratio in order to keep the 

normal stress constant. The increase of void ratio reduces the coordination 

number so that the normal stress is not allowed to increase due to the increase of 

shear rate.    

  

 

(a) 

 

(b) 

FIGURE 5.10: Coordination Number (CN) versus characteristic velocity: (a) at 

constant void ratio, (b) at constant vertical normal stress 
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In addition to the dependency of normal and shear stresses on shear rate as 

discussed above, the ratio of these stresses (shear stress to normal stress ratio, or 

friction coefficient) also depends on shear rate. In general, the friction coefficient 

increases with the progression of flow from the quasi-static regime (lowest value, 

µcs) to the collisional regime (highest value, µc) due to the increase of shear rate 

under both constant void ratio and constant normal stress conditions. The 

graphical presentation of the friction coefficient behaviour is shown in Figure 5.5. 

This behaviour of friction coefficient might be attributed to the effect of amount 

of particles sliding in a granular flow.   

 

The variations of the calculated sliding fractions with the shear rates are presented 

in Figure 5.11 under constant void ratio and normal stress conditions. The 

variation of the sliding fractions is similar to the friction coefficients under both 

conditions (e.g. compare Figure 5.4a with Figure 5.11b).   

 

The sliding fraction is stated as an indicator of mobilization of friction by Da. 

Cruz et al. (2005). The increase in sliding fraction would mean more mobilization 

of friction in the granular material, thereby increasing the mobilized shear 

strength. Both the normal and shear stresses are affected equally due to the change 

in contact numbers and intensities. However, shear stress is increasing at a higher 

rate than the normal stress due to the increase of sliding fraction, and hence 

increases the friction coefficient.  

 

The continuous increase in the sliding fraction with shear rate in the quasi-static 

and intermediate regimes may indicate the breaking up of clusters and blocks of 

particles, whereby the granular material is being mobilized. After all clusters and 

blocks of particles are broken down and force networks eliminated, collisional 

flow will develop where the sliding fraction will no longer increase so that the 

maximum mobilization of strength is achieved.  

 



90 

 

(a) 

 

  

(b) 

 

FIGURE 5.11:  Sliding Fraction (SF) versus characteristic velocity: (a) at constant 

void ratio, (b) at constant vertical normal stress. 
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CHAPTER SIX     

 

CONSTITUTIVE MODELING  

 

6.1 Introduction 

 

Citing the high stress shear experiments (Hungr & Morgenstern, 1984; Fukuoka 

& Sassa, 1991; Cagnoli & Manga, 2004) discussed in Chapter 2, many 

geotechnical scientists believe that flow type landslides have frictional flow 

behavior that can be captured by the Coulomb shear stress to normal stress 

relationship. Hence, the run-out predictions of many geological mass flows have 

been performed by implementing the Coulomb friction constitutive law (Savage 

& Hutter, 1989; Hungr, 1995; Kelfoun & Druitt, 2005; Sheridan et al., 2003). In 

the cases of the Coulomb equation not performing well, the Voellmy model, 

which accounts for possible sources of velocity dependent resistance in addition 

to frictional resistance, has been used to obtain better predictions (Hungr & 

Evans, 1996; Evans et al., 2001; Hungr et al., 2007; Pirulli, 2009).  

 

Some other researchers are contended with considering geological mass flow 

being a dense flow which derives its shear resistance from both frictional rubbing 

and particle collisions. Many of these researchers have proposed constitutive 

equations that account for both types of resistance contributions (Savage, 1998; 

Louge, 2003; Berzi et al., 2011).  

 

Although the findings of the shear tests under high stress reveals the limitation of 

the collisional flow mechanism, based on the analyses in Chapter 4, it is seen that 

the contribution of the collisional flow mechanism could be significant in very 

rapid avalanches involving large particles. A mass flow usually goes through the 

stages of initiation, transition, and deposition. The collisional mechanism could be 

significant in the transition stage where the flowing velocity is normally high. The 
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use of Voellmy model as opposed to the Coulomb frictional model for a better 

flow prediction provides further evidence for the existence of rate-dependent 

behaviour. It was suggested by Wang (2008) that the turbulence term in the 

Voellmy model may arise out of the loss of kinetic energy in granular flows 

which is not accounted for by frictional energy dissipation. Hence, the loss of 

kinetic energy due to inelastic particle collisions may explain the existence of the 

turbulence term in Voellmy model. Therefore, there is a need to develop a 

constitutive model that encompasses frictional sliding and particle collisions from 

quasi-static and collisional flow regimes.   

 

In the subsequent sections, three selected unified constitutive models proposed by 

Savage (1982), Savage (1998), and Louge (2003) are evaluated by predicting the 

extended critical state framework presented in Chapter 5 under high stresses. The 

constitutive models are discussed in Chapter 2. A new unified model is proposed 

in this chapter that superposes both frictional and collisional stress contributions 

using appropriate weighting functions instead of directly adding them as per the 

assumption of Savage (1982). The proposed unified model is implemented in the 

numerical model for inclined flows and is used to predict the different types of 

inclined flow profiles discussed in Chapter 2.  

  

6.2 Evaluation of Existing Unified Constitutive Models 

 

6.2.1 Savage (1982) Model 

 

The prominent approach for unified constitutive modeling of frictional-collisional 

granular flows was by directly adding the frictional and collisional stress 

contributions, as originally proposed by Savage (1982). Many researchers 

followed a similar approach in proposing unified models (Johnson & Jackson, 

1987; Louge, 2003; Berzi et al., 2011). However, the approach is a simplified one 

which is based on an ad hoc assumption of stress addition because it is not clear 

how the two stress contributions act together. Nevertheless, since this model has 
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been used extensively in the literature to predict granular flows, it is evaluated 

here by predicting the extended critical state framework presented in Chapter 5.  

 

According to this model, the total stress is expressed as 

 

/f k c

x x xσ σ σ= + ,                                                 (6.1a) 

 

/f k c

z z zσ σ σ= + ,                                                 (6.1b) 

 

/f k c

xz xz xzτ τ τ= + ,                                                 (6.1c) 

 

where x- and z- axes define the plane of flow and aligned in parallel and normal 

directions to the flow, respectively, xσ  & zσ  are the total normal stresses, xzτ is 

the total shear stress, f

xσ  & f

zσ  are the frictional normal stresses, /k c

xσ  & /k c

zσ  are 

the kinetic/collisional normal stresses, f

xzτ  is the frictional shear stress, and /k c

xzτ  is 

the collisional shear stress. 

 

The kinetic/collisional stress contribution can be determined by using either the 

Bagnold dispersive stress equation or the kinetic theory of granular particles. The 

main difference between the two models of kinetic/collisional stress is the 

presence of the additional variable called ‘granular temperature’ in the kinetic 

theory model. Since granular temperature also constitutes the extended critical 

state framework presented in Chapter 5, the kinetic/collisional stress contribution 

is determined from the kinetic theory model proposed by Lun et al. (1984) and 

simplified by Ahn (1989) for two-dimensional steady flows, as follows 

 

/ /

1

k c k c

x z g Tσ σ ρ= = ,                                                (6.2a) 

 

/

2

k c

xz g d Tτ ρ γ= & ,                                                  (6.2b) 
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( ) 2

1 0, 4S S Sg v v v gε η= + ,                                              (6.2c) 

 

( )
( )

28 64
2 05 25

0

5 1 1 3 1 3 2 12
,

96 2 2 2
S s s

g v v v g
g

π η η
ε η

η η η η π

  − −
= + + +  

− − −   
,                  (6.2d) 

 

( )1
2

1η ε= + ,                                                    (6.2e) 

 

where T is the translational granular temperature, ρ  is the particle density, γ&  is 

the shear rate (or velocity gradient), d is the particle diameter, Sv  is the solid 

volume fraction which is related to the void ratio as (1 ) /S Se v v= − , and ε  is the 

restitution coefficient. We use the radial distribution function 0g  proposed by 

Johnson and Jackson (1987) as shown in Eq. (6.2f) in order to limit the solid 

volume fraction below its maximum close packing value, m

Sv  

 

( )
0 1/3

1

1 m

S S

g
v v

=
−

.                                               (6.2f)  

 

For homogeneous steady plane shear flow, the expression for granular 

temperature can be derived from the fluctuation kinetic energy equation. The 

extended critical state framework is established by determining each flow-state 

from homogeneous, steady plane shear flow simulations. In such flows, the 

balance of mass and momentum are automatically satisfied, while the balance of 

fluctuation kinetic energy is given as 

 

/3
2

k c s
xz

qdT

dt z
ρ τ γ

∂
= ⋅ − − ϒ

∂
& ,                                        (6.2g) 
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where t is time, 
s

q  is the flux of fluctuation kinetic energy, and ϒ  is the rate of 

dissipation of fluctuation kinetic energy per unit volume due to the inelastic 

collisions. Their constitutive equations for the collisional part of the processes are 

proposed by Lun et al. (1984) and simplified for two-dimensional steady flows by 

Ahn (1989) as 

 

3/2

3 4
s

s

vT
q d g T g T

z z
ρ

∂∂ 
= − + 

∂ ∂ 
,                                  (6.2h) 

 

3/2

5g T
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ϒ = ,                                                   (6.2i) 
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( ) 2

5 0

48
, (1 )s sg v v gε η η

π
= − .                                       (6.2l) 

 

We follow the assumption of Johnson and Jackson (1987) that only the work of 

kinetic/collisional shear stress produces granular temperature while the frictional 

shear work directly dissipates into heat. Since there is no flux of fluctuation 

energy in homogeneous steady plane shear flow (see Eq. 6.2h), the fluctuation 

energy balance reduces to 

 

/0 k c

xzτ γ= ⋅ − ϒ& ,                                              (6.2m) 

 

and the granular temperature is derived from this as 
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22

5

( )
g

T d
g

γ= & .                                                 (6.2n) 

 

On the other hand, the frictional stress contribution can be determined based on 

the critical state line equation and the Coulomb friction law as shown in Eq. (6.3)  

          

log f

cs ze λ σ= Γ −  ,                                             (6.3a) 

 

f f

xz cs zτ µ σ= ⋅  ,                                                 (6.3b) 

 

where cse is the critical state void ratio, λ  is the slope of the critical state line in 

log f

cs ze σ−  plot, Γ  is the void ratio at 1f

z Paσ = , and csµ is the critical state 

friction coefficient.    

 

The Savage (1982) model is used to predict the extended critical state frame work 

as shown in Figure 6.1. The values of model parameters used in the predictions 

are presented in Table 6.1.  

 

TABLE 6.1: Values of parameters used in Savage (1982) model. 

m

Sv  ε  Γ  λ  csµ  

0.61 0.81 0.85 0.027 0.34 

 

The parameters Γ , λ , and csµ  were determined from the simulation experiments. 

On the other hand, the maximum close packing solid volume fraction and the 

restitution coefficient were determined to best predict the simulation results.  

 

The maximum close packing solid volume fraction mainly influences the 

prediction of supercritical state lines (Figures 6.1a & b), while the restitution 

coefficient affects the prediction of the entire framework presented in Figure 6.1. 
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It should be noted that the restitution coefficient of the DEM-model particles used 

in the simulation experiments was 0.75. 

 

In general, the unified constitutive equation derived by directly adding the 

frictional and collisional stress contributions as originally proposed by Savage 

(1982) predicts the general trends of the critical state lines and friction 

coefficients, as shown in Figures 6.1(a) to 6.1(c). It should be noted that, similar 

to the model prediction in Figure 6.1(c), the measured friction coefficients also 

tend to be constant at high values of I, which are more clearly seen in Figure 5.4.  

 

Conversely, the model has a major limitation in predicting the trend of granular 

temperature for the transitional regime, as shown in Figure 6.1(d). The granular 

temperature increases in the transitional regime, while the model predicts it to be 

constant following the trend in the collisional regime. In explaining the reason for 

this major limitation, the shear work due to the frictional stress contribution is 

assumed to dissipate by particle friction while the shear work due to the 

kinetic/collisional stress contribution is assumed to dissipate by particle collision 

(Johnson & Jackson, 1987). Hence, only the kinetic/collisional stress component 

can be used in the equation of fluctuation kinetic energy balance. This will give a 

granular temperature expression similar to the case of pure collisional flow. 

Therefore, in the above unified theory, only the expression of stress is changed by 

adding both stress contributions together, while the granular temperature equation 

derived from the kinetic theory for pure collisional flow is still used to predict the 

granular temperature of all flow regimes.  
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(a) 

 

 

(b) 
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(c) 

 

(d) 

 

FIGURE 6.1: Prediction of the Savage (1982) model: (a) void ratio versus vertical 

normal stress; (b) void ratio versus shear stress; (c) friction 

coefficient versus dimensionless variable I, dashed line is using 

0.81ε =  and solid line is using 0.75ε =  while both predictions of 

friction coefficient are for 0.247dγ =& ; (d) void ratio versus 

granular temperature. 
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6.2.2 Savage (1998) Model 

 

Savage (1998) followed a different approach to derive a unified constitutive 

model for granular flows. In contrast to the previous model (Savage, 1982), 

whose prediction is influenced by the restitution coefficient and maximum close 

packing solid volume fraction, the prediction of the Savage (1998) model is 

influenced by the critical state friction angle and maximum close packing solid 

volume fraction. The restitution coefficient has been considered as a main 

parameter for determining the collisional stress component in most of the unified 

constitutive models available in the literature (Nott, 1991; Ancey & Evesque 

,2000; Louge, 2003; Berzi et al., 2011).  Because of this main difference of the 

Savage (1998) model from the others, it has been selected in this research to study 

its performance in predicting the extended critical state framework.  

 

Savage (1998) also expressed the total normal stresses as given in Eq. (6.1a) & 

(6.1b). However, he provided a different equation for the frictional normal stress 

component, commenting that Eq. (6.3a) is not appropriate for low stress levels. 

But, the Savage (1998) model is implemented here for high stress level problems, 

and hence Eq. (6.3a) is used instead in this study. Savage also provided an 

equation for the kinetic/collisional normal stress component as 

 

 ( )/ / 1 2k c k c

x z Sv G Tσ σ ρ= = + ,                                        (6.4a) 

 

( )

( )
2

16 7

16 1

S S

m

S S

v v
G

v v

−
=

−
.                                               (6.4b) 

 

Savage (1998) also derived the equations for the total shear stress and granular 

temperature as 
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where ζ  is the shear viscosity, and A & D are coefficients which depend on the 

critical state friction angle. They were presented graphically by Savage (1998), in 

which both were observed to increase with the increase of the critical state friction 

angle. 

 

The predictions of the Savage (1998) model are presented in Figure 6.2, and the 

values of the model parameters used in the predictions are given in Table 6.2. The 

maximum close packing solid volume fraction and the critical state friction angle 

were determined to obtain the best predictions of the simulation results. In 

contrast to the Savage (1982) model where the restitution coefficient mainly 

influences the prediction of the entire critical state framework, the critical state 

friction angle has the main influence in the Savage (1998) model for the 

predictions of supercritical state lines, friction coefficient, and granular 

temperature.  

 

TABLE 6.2: Values of parameters used in the Savage (1998) model 

m

Sv  csφ  Γ  λ  

0.65 23
0 

0.85 0.027 
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(a) 

 

 

(b) 
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(c) 

 

(d) 

FIGURE 6.2: Prediction of the Savage (1998) model: (a) void ratio versus vertical 

normal stress; (b) void ratio versus shear stress; (c) friction 

coefficient versus dimensionless variable I; (d) void ratio versus 

granular temperature. 
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The Savage (1998) model predicts the trends of supercritical state lines, shown in 

Figures 6.2(a) & (b). However, this model has also a major limitation similar to 

the Savage (1982) model in predicting the trend of granular temperature for the 

intermediate regime, as shown in Figure 6.2(d). In addition, the Savage (1998) 

model gives a constant friction angle independent of the shearing rate, as shown 

in Figure 6.2(c), which depends only on the critical state friction angle. It can be 

derived from Eq. (6.4c) & (6.4d) that the ratio of the total shear stress to total 

normal stress (friction coefficient) is equal to AD , where the parameters A and 

D are functions of the critical state angle. This implies that, in Savage (1998) 

model, the friction coefficient doesn’t depend on shear rate, and it is a function of 

its value at critical state. 

 

6.2.3 Louge (2003) Model 

 

The main difference in the Louge (2003) approach for deriving a unified 

constitutive model is that he considered that the shear works of both frictional and 

collisional stresses would produce granular temperature before changing to heat 

and thus he included them in the fluctuation kinetic energy balance. As a normal 

practice, the kinetic energy produced by the frictional stress work is assumed to 

dissipate directly to heat. Hence, the frictional kinetic energy balance (using only 

the frictional stress work) and the fluctuation kinetic energy balance (using only 

the kinetic/collisional stress work) are written separately (e.g., Johnson & 

Jackson, 1987). 

 

In his model, the restitution coefficient in the fluctuation kinetic energy balance 

was then replaced by the effective restitution coefficient (Jenkins & Zhang, 2002) 

to capture the fluctuation energy dissipation associated with inelastic and 

frictional impacts during contacts of particles at collisions (see Sec. 2.3.3). 

 

He also used the assumption of stress addition to derive the total stress, as in Eq. 

(6.1). He invoked the theory of Jenkins (1993) to model the rate-dependent stress 
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component. However, the Lun et al. (1984) model is used in this research (Eqs. 

6.2a & b) instead for the sake of comparison with the above models. The 

frictional stress component is also modeled in this research using Eq. (6.3). 

 

Based on Louge’s (2003) approach, the balance of fluctuation kinetic energy for a 

homogenous steady plane shear flow given in Eq. (6.2m) would change to 

 

/0 ( )f k c

xz xzτ τ γ= + ⋅ − ϒ& .                                             (6.5a) 

 

Substituting Eq. (6.2b), Eq. (6.2i), and Eq. (6.3b) into Eq. (6.5a) will give 

 

2 3/2

2 5( ) ( ) 0f

cs zg T d d g Tρ γ µ σ γ ρ+ − =& & .                               (6.5b) 

 

Eq. (6.5b) is solved numerically in the prediction of the extended critical state 

framework. It is interesting to note that Eq. (6.5b) will reduce to Eq. (6.2n) for the 

case of collisional flow regime in which the frictional stress contribution is 

negligible. However, the granular temperature result of Eq. (6.5b) will be 

different from Eq. (6.2n) in the intermediate flow regime where both frictional 

and collisional stress contributions are important. This could be considered as the 

main improvement of Louge (2003) model over the Savage (1982) model where 

the granular temperature expression for collisional flow is used to predict the 

granular temperatures of the entire granular flow regimes. 

 

Figure 6.3 presents the predictions of the Louge (2003) model for the extended 

critical state framework. Similar values of model parameters given in Table 6.1 

are also used here in the predictions of the Louge (2003) model. 
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(a) 

 

 

(b) 
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(c) 

 

(d) 

 

FIGURE 6.3:  Prediction of the Louge (2003) model: (a) void ratio versus vertical 

normal stress; (b) void ratio versus shear stress; (c) friction 

coefficient versus dimensionless variable I  for 0.443 m/sdγ =& ; 

(d) void ratio versus granular temperature. 
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As shown in Figure 6.3(d), the inclusion of the frictional shear work in the 

fluctuation kinetic energy equation, as proposed by Louge (2003), enables his 

model to capture the trend of granular temperature in the intermediate flow 

regime. This can be considered as the main improvement over the previous two 

models. The slopes of the granular temperature lines in the intermediate regime 

decrease with the increase of the characteristic mean shear velocity as shown in 

Figure 6.3(d). It is interesting to note that this trend is also reflected in the 

prediction of the Louge (2003) model. Louge and Keast (2001) also showed that 

the production of fluctuation kinetic energy by the work of frictional shear stress 

is necessary for the existence of Steady Fully Developed (SFD) flows down a flat-

frictional inclined surface for most situations of practical interest. 

 

In general, the Louge (2003) model performs well in capturing the entire extended 

critical state framework.   

 

6.3 The Proposed Unified Constitutive Model 

 

A prominent approach in developing a unified model has consisted of the direct 

addition of frictional and collisional stress contributions, as demonstrated by the 

models presented in the previous sections. The approach is a simplified ad hoc 

assumption, as it is not clear how the two stress contributions act together.  

 

Different approaches for developing unified models have been also presented in 

the literature, some of which are discussed in Chapter 2 (Mills et al., 1999; Ancey 

& Evesque, 2000). Mills et al. (1999) approached the problem from the 

microscopic interaction of particles during the flow. They explained the co-

existence of strong and weak contact force networks in a dense granular flow and 

modeled the flow as a network of transient solid chains (strong networks) 

immersed in an assembly of particles behaving as a viscous fluid (weak 

networks). The strong contact network supports the whole deviatoric load (like a 
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solid) while the weak contact network contributes to the isotropic pressure (like a 

fluid). A particle may belong to either of the networks at any given time. 

 

Our approach to the unified constitutive modeling of granular flows is also by 

exploring the microscopic interaction of particles, similar to Mills et al.’s (1999) 

approach. However, we consider the co-existence of frictional and collisional 

mechanisms instead, as proposed in the microscopic description of granular flows 

by Sayed (1981). As shown in Figure 6.4, the clusters of particles in the 

intermediate flow regime would undergo a frictional mechanism, yielding the 

rate-independent stress component while the remaining scattered particles (or 

colliding particles) interact only by collisions with themselves and with the 

clusters and contribute the rate-dependent stress component. The clusters of 

particles exist in the transient form in which they are formed and break up in 

random fashion. A given particle may be involved in either of the flow 

mechanisms at a time. As discussed in Chapter 2, the clusters of particles (or 

blocks) were also observed in the high-speed motion pictures taken from inclined 

chute flows of spherical particles (Drake, 1990). 

 

In the subsequent sections, a unified constitutive model is developed for a dry 

granular flow by exploring the particle interactions inside a flow based on the 

microscopic description proposed by Sayed (1981), as discussed above, and by 

considering some analogies in the transition of ice to water. The constitutive 

equation involves an empirical equation for a stress-coefficient which is suggested 

based on the experimentally observed variations of granular temperature with 

void ratio at different constant-shear-rates.  
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                      (a)                                                                              (b) 

                     

                                                                              

 

 

                     (c)                                                                              (d)                                                             

 

FIGURE 6.4:  Proposed microscopic description of granular flow with increase of 

shear rate and void ratio; (a) quasi-static regime, (b) & (c) 

intermediate regimes, and (d) fully collisional regime (based on 

Sayed, 1981). 

 

 

 

6.3.1 The Basis of the Proposed Model 

 

A state of granular flow is described by the two state variables of void ratio e , 

and characteristic mean shear velocity, dγ& . If a unit volume of granular particles 

at an intermediate flow state ( ),e dγ&  is considered, it can be inferred from the 

microscopic description of Sayed (1981) discussed above that both frictional and 

collisional flow mechanisms exist simultaneously in the unit volume. However, 

Particles in contact with their 

neighbors 
Column Cluster 

Particle clusters 

z 

x 

Similar to gas molecules 
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the exact states at which these mechanisms exist (i.e., the critical state void ratio 

and shear rate, &cs cse γ& , of the frictional state and the collisional void ratio and 

shear rate of the collisional state, &c ce γ& ) are not clearly known. Since their 

detailed specification is important for constitutive modeling, it is essential to 

describe the microscopic description one step further, as follows. 

 

All states of granular flow can be represented in a void ratio – normal stress – 

mean shear velocity framework, as shown in Figure 5.2. It is obvious that the state 

of the frictional flow lies on the critical state line (CSL). On the other hand, the 

state of the collisional flow can be anywhere above the collisional-intermediate 

boundary line (CIBL). We made our first assumption here that the collisional 

mechanism in the unit volume of granular particles at the intermediate flow state 

would exist at the CIBL. We support our assumption by considering the 

analogous transition of ice to water. 

 

During the transition of ice to water, the supplied heat (external energy) will be 

fully used to transform ice just to water by breaking up molecular bonds. It will 

not be used to increase the temperature of the water until all ice changes to water. 

The state of the water (0 °C as expressed by its temperature) during the phase 

change is the lowest bound state of water (namely, water exists at temperature of 

0 °C and above). By the same analogy, in the intermediate granular flow, the 

applied external energy, through shear work, will be fully devoted to transform 

the clusters of particles (like “ice”) to independent solid particles (like “water”) by 

breaking up the force network. The individual solid particles will interact only by 

collision and will attain the lowest bound collisional state, i.e., the state at CIBL. 

They will progress to the higher collisional state above the CIBL after all particles 

clusters are transformed to independently interacting particles.  

 

In general, the intermediate flow state is assumed to be composed of the frictional 

state component at the CSL and the collisional state component at the CIBL, as 

shown in Figure 6.5.   
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FIGURE 6.5: Intermediate flow state and its quasi-static and collisional 

components. 

 

 

6.3.2 Model Formulations 

 

Referring to Figures 6.5 & 6.6, the particle clusters exist at a state of ( ),cs cse dγ&  

and the colliding particles exist at a state of ( ),c ce dγ&  while all the particles in the 

unit volume exist at an average intermediate flow state of ( ),e dγ& . The total stress 

in the unit volume may then be given by  

 

( ) ( ) ( )/

2 1, ,f k c

x x cs x c ce d F e F e dσ γ σ σ γ= ⋅ + ⋅& & ,                                 (6.6a) 

 

( ) ( ) ( )/

2 1, ,f k c

z z cs z c ce d F e F e dσ γ σ σ γ= ⋅ + ⋅& & ,                                 (6.6b) 

 

( ) ( ) ( )/

2 1, ,f k c

xz xz cs xz c ce d F e F e dτ γ τ τ γ= ⋅ + ⋅& & ,                                 (6.6c) 
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where F1 & F2 are the fractions of volumes (or volumes, because a unit total 

volume is considered) occupied by particles in the collisional and frictional 

mechanisms, respectively, the frictional stresses are the stresses in the particle 

clusters, and the kinetic/collisional stresses are the stresses in the colliding 

particles. The sum of the volume fractions is equal to unity. In a quasi-static flow, 

F1 is zero and the total stress is reduced to the frictional stress. In a fully 

collisional flow, F1 is equal to unity and the total stress is reduced to the 

kinetic/collisional stress. 

 

 

FIGURE 6.6:  Representation of a unit-volume of particles at an intermediate 

flow state. 

 

The governing equations of flow (continuity, momentum, and energy equations) 

are expressed in terms of flow state variables ( , )e dγ& . Thus, in order to implement 

the above proposed model into flow equations, the frictional and 

kinetic/collisional stress components have to be expressed as functions of ( , )e dγ& .    

 

The frictional, vertical normal stress component can be derived from the critical 

state line equation provided in Eq. (6.3a) as 

 

( ) 10
cse

f

z cse λσ
Γ−

= .                                                 (6.7a) 

 

Eq. (6.7a) can be re-written as  

 



114 

( ) ( )10 10 10 10
cs cs cse e e e ee

f f

z cs ze eλ λ λ λσ σ
Γ− − −Γ−

= = ⋅ = ⋅ ,                            (6.7b)     

 

where  

( ) 10
e

f

z
e λσ

Γ−

= .                                                 (6.7c) 

 

Eq. (6.7c) is obtained by substituting 
cs

e  with e  in Eq. (6.7a). Hence, the 

frictional vertical normal stress component in Eq. (6.6b), ( )f

z cseσ , can be 

expressed in terms of ( )f

z eσ  using Eq. (6.7b) as     

 

                 ( ) ( )10
cse e

f f

z cs ze eλσ σ
−

= ⋅ .                                            (6.7d) 

 

Then, the frictional shear stress component in Eq. (6.6c), ( )f

xz cseτ , is expressed in 

terms of ( )f

xz eτ  by taking the product of the critical state friction coefficient and 

Eq. (6.7d) as  

 

( ) ( )10
cse e

f f

xz cs xze eλτ τ
−

= ⋅ ,                                         (6.7e) 

 

where            ( ) ( )f f

xz cs cs z cse eτ µ σ= ⋅    &   ( ) ( )f f

xz cs ze eτ µ σ= ⋅ .                      (6.7f) 

 

For the kinetic/collisional part, the vertical normal and shear stress components 

can be obtained from Lun et al. (1984) kinetic theory (Eq. 6.2a & 6.2b), which are 

re-written below  

 

/

1( , ) ( ) ( , )k c

z
e d g e T e dσ γ ρ γ= ⋅ ⋅& & ,                                        (6.8a) 

 

   /

2( , ) ( ) ( , )k c

xz
e d g e d T e dτ γ ρ γ γ= ⋅ ⋅ ⋅& & & .                                  (6.8b) 
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Eqs. (6.8a) & (6.8b) can also be expressed in terms of the collisional state 

( ),c ce dγ&  by substituting e  with 
c

e  and γ&  with 
c

γ&  as 

  

/

1( , ) ( ) ( , )k c

z c c c c c c
e d g e T e dσ γ ρ γ= ⋅ ⋅& & ,                                       (6.8c) 

 

/

2( , ) ( ) ( , )k c

xz c c c c c c ce d g e d T e dτ γ ρ γ γ= ⋅ ⋅ ⋅& & & .                                 (6.8d) 

 

Hence, the kinetic/collisional vertical normal stress component in Eq. (6.6b), 

/ ( , )k c

z c c
e dσ γ& , can be expressed in terms of / ( , )k c

z
e dσ γ&  using Eq. (6.8a) & (6.8c) 

as   

 

/ /1

1

( ) ( , )
( , ) ( , )

( ) ( , )

k c k cc c c c
z c c z

g e T e d
e d e d

g e T e d

γ
σ γ σ γ

γ

⋅
=

⋅

&
& &

&
.                             (6.8e) 

 

Similarly, the kinetic/collisional shear stress component in Eq. (6.6c), 

/ ( , )k c

xz c c
e dτ γ& , can be expressed in terms of / ( , )k c

xz
e dτ γ&  using Eq. (6.8b) & (6.8d) as 

 

    
2/ /

2

( ) ( , )
( , ) ( , )

( ) ( , )

c c c c ck c k c

xz c c xz

g e d T e d
e d e d

g e d T e d

γ γ
τ γ τ γ

γ γ
=

& &
& &

& &
.                         (6.8f) 

 

The total stresses in Eq. (6.6) are then expressed as  

 

( ) ( ) ( )/ /

2 3, ,f k c f k c

x x x x xe d e e d β βσ γ β σ β σ γ σ σ= ⋅ + ⋅ = +& & ,                     (6.9a) 

 

( ) ( ) ( )/ /

2 3, ,f k c f k c

z z z z ze d e e d β βσ γ β σ β σ γ σ σ= ⋅ + ⋅ = +& & ,                     (6.9b) 

 

( ) ( ) ( )/ /

2 1, ,f k c f k c

xz xz xz xz xze d e e d β βτ γ β τ β τ γ τ τ= ⋅ + ⋅ = +& & ,                      (6.9c) 
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where f

xβ σ  & f

zβ σ  are the modified frictional normal stresses, /k c

xβ σ  & /k c

zβ σ  

are the modified kinetic/collisional normal stresses, f

xzβτ  is the modified frictional 

shear stress, and /k c

xzβτ  is the modified collisional shear stress; while, 1β , 2β  & 3β  

are the stress coefficients given by 

 

2

1 1

2

( ) ( , )

( ) ( , )

c c c c c
g e T e d

F
g e T e d

γ γ
β

γ γ
=

& &

& &
,                                           (6.9d) 

 

2 1(1 ) 10
cse e

F λβ
−

= − ⋅ ,                                                  (6.9e) 

 

1
3 1

1

( ) ( , )

( ) ( , )

c c c c
g e T e d

F
g e T e d

γ
β

γ

⋅
=

⋅

&

&
.                                             (6.9f) 

  

The stress coefficients were arbitrarily set equal to unity in the previous 

constitutive equations (Johnson & Jackson, 1987; Savage, 1998; Louge, 2003). 

However, the above derivations may show that the stress coefficients are inter-

dependent and may have values other than unity. 

 

The stress coefficients depend on the unknowns 
cs

e , 
c

e , 
c

γ& , and F1 in addition to 

the average void ratio and shear rate ( , )e γ&  at which the intermediate flow exists. 

Thus, additional four equations are required in order to determine the stress 

coefficients and hence the total stress at a given state of ( , )e γ& . The additional 

equations are derived in the subsequent paragraphs.  

 

An intermediate flow regime is considered to exist between two limiting solid 

volume fractions, which are the maximum close packing solid volume fraction, 

m

s
v , and the random loose packing solid volume fraction, *

s
v  (e.g., Ancey & 

Evesque, 2000; Berzi et al., 2011). The frictional stress contribution vanishes for 
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solid volume fractions less than *

s
v  (Johnson, 1987; Savage, 1998; Berzi et al., 

2011). Thus, the random loose packing solid volume fraction demarcates the 

collisional-intermediate boundary. Even though the collisional-intermediate 

boundary line (CIBL) discussed in Section 5.2.1 has generally a positive slope, its 

slope is so small that it can be ignored for the range of stresses in practice. Thus, 

CIBL can be considered as a horizontal line that passes through a random loose 

packing solid volume fraction, *

s
v . Therefore, by invoking the assumption stated 

in Section 6.3.1, the first equation can be derived as 

 

( )*min ,c

s s s
v v v= ,                                            (6.10a) 

 

where                     
1

1

c

s

c

v
e

=
+

,           * 1

1
sv

e∗
=

+
,          

1

1
sv

e
=

+
.                 (6.10b) 

 

One can also derive a second equation that relates the solid volume fractions in 

the unit volume of intermediate state in the same way the stresses are related in 

Eq. (6.6) as   

 

2 1

cs c

s s s
v F v F v= ⋅ + ⋅ ,                                             (6.11a) 

 

where                                        
1

1

cs

s

cs

v
e

=
+

.                                                  (6.11b) 

 

The critical state void ratio could then be derived from Eq. (6.10) & (6.11) as 

 

( )
1

1 1 1
11 1 1

1
1

min ,
cs

e e e

F
e

F∗+ + +

−
= −

−
.                                    (6.12a) 
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For e e
∗≥ , the kinetic/collisional volume fraction 1 1F =  and the above equation 

gives a value of 
cs

e e= . However, the critical state void ratio is in the range of 

m

cs
e e e

∗≤ ≤ , where (1 ) /m m m

s s
e v v= −  is the minimum close packing void ratio. 

Thus, Eq. (6.12a) is limited to 

 

( )
* 1

1 1 1
11 1 1

1
min , 1

min ,
cs

e e e

F
e e

F∗+ + +

 − = −
 − 

.                             (6.12b) 

 

A third equation can also be derived by considering that the kinetic energy in the 

unit volume of the intermediate flow state is contributed in the same way as the 

stresses are contributed in Eq. (6.6). The rate of kinetic energy provided by the 

total shear stress in the unit volume of the intermediate flow state, 

/

2 1( ) ( , )f k c

xz cs xz c c
F e F e dτ τ γ γ ⋅ + ⋅ ⋅ & & , consists of the rate of the kinetic energy 

contributions from the colliding particles, /

1 ( , )k c

xz c c c
F e dτ γ γ ⋅ ⋅ & & , and from the 

particle clusters, 2 ( )f

xz cs cs
F eτ γ ⋅ ⋅  & . Hence, the rate of kinetic energy balance will 

take the form 

 

/

2 1( ) ( , )f k c

xz cs xz c c
F e F e dτ τ γ γ ⋅ + ⋅ ⋅ & &   =  2 ( )f

xz cs cs
F eτ γ ⋅ ⋅  &   + 

                                     /

1 ( , )k c

xz c c c
F e dτ γ γ ⋅ ⋅ & & .                           (6.13a) 

 

Therefore, the shear rates are related through the shear stresses as 

 

/

2 1( ) ( , )f k c

xz cs xz c c
cs c

xz xz

F e F e dτ τ γ
γ γ γ

τ τ

⋅ ⋅
= ⋅ + ⋅

&
& & & .                            (6.13b) 

 

Alternatively, the kinetic energy balance can be expressed in terms of the stress 

coefficients using Eq. (6.9d to f) as  
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/

2 1( ) ( , )f k c

xz xz
cs c

xz xz

e e dβ τ β τ γ
γ γ γ

τ τ

⋅ ⋅
= ⋅ + ⋅

&
& & & .                            (6.13c) 

 

c
e can be determined from Eq. (6.10) by assuming that the colliding particles in 

the unit volume of the intermediate flow state will remain at the state of 

collisional-intermediate boundary (Sec. 6.3.1). Similarly, 
cs

γ&  can be determined 

by assuming that the particle clusters in the unit volume will remain at the state of 

quasi-static - intermediate boundary. This boundary can be determined by 

observing the behaviour of flow progression from quasi-static to intermediate 

regimes. A progression of granular flow occurs with shear rate in both conditions 

of constant void ratio and constant normal stress. It can be conveniently presented 

using a single dimensionless variable, called the inertial number, zI dγ ρ σ= & , 

as proposed by Da Cruz et al. (2005). For example, the behaviour of the friction 

coefficient during flow progression is presented in Figure 5.5 using the variable I. 

At quasi-static state, the friction coefficient is rate independent. It starts to 

increase with shear rate at the boundary of quasi-static and intermediate regimes. 

 

Defining the inertial number corresponding to the quasi-static and intermediate 

boundary as * *

cs cs xzI dγ ρ τ= &  using the shear stress, the shear rate of particle 

clusters 
cs

γ& in Eq. (6.13) can be taken as the shear rate of flow at the quasi-static -

intermediate boundary *

cs
γ& .  

 

The fourth equation required to complete the formulation of the constitutive 

model is derived by developing an empirical equation for the shear stress 

coefficient, 1β , in predicting the granular temperature. A series of plane shear 

simulations were conducted to produce experimental measurements of granular 

temperature at different flow states ( ),e dγ& , as presented in Figure 5.6. The 

expression for the granular temperature is derived by assuming that only the 

kinetic/collisional shear work produces fluctuation energy (similar to the 
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assumption of Johnson and Jackson, 1987), and by substituting the modified 

kinetic/collisional shear stress of Eq. (6.9c), i.e., 1 2g d Tβ ρ γ⋅ & , in the energy 

equation Eq. (6.2m) as 

 

22
1

5

( )
( )

( )

g e
T d

g e
β γ= & .                                               (6.14) 

 

An empirical equation, given by Eq. (6.15), is suggested for 1β  in order to predict 

the measured granular temperatures presented in Figure 5.6 using Eq. (6.14). It 

reads  

 

( ) ( )

( )

3

3

1 2 4 5

1

1 2

( ) max 0, exp ( ) /

( )

m e e

e e

m

m m d m e e m

m m d

γ
β

γ

∗

∗

∗−

−

 + + ⋅ ⋅ − 
 =
+

&

&
,              (6.15) 

 

where 1,5im =  are constants that will be determined by fitting experimental results. 

For e e
∗≥ , the stress coefficient 1 1β =  and Eq. (6.14) will reduce to a pure 

collisional flow case (Eq. 6.2n). However, for intermediate flows ( e e
∗< ), the 

expression for 1β  is proposed based on the assumption that the increase of the 

measured granular temperature is proportional to the ratio of the total stress to the 

kinetic/collisional stress component. Hence, the empirical equation for 1β  consists 

of the terms 5exp(( ) / )e e m
∗ −  and 3

2 ( )
m

m dγ& , which are analogous to the 

frictional and kinetic/collisional stress equations. The constant m1 is introduced to 

avoid an undefined value of 1β  at 0dγ =& , and hence will be assigned a small 

value. 

 

Once the kinetic/collisional shear stress coefficient, 1β , is determined from Eq. 

(6.15), the kinetic/collisional volume fraction F1 is determined by substituting Eq. 
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(6.14) and 2

2 5( ) ( ).( )c c c cT g e g e dγ= &  into Eq. (6.9d) and solving it simultaneously 

with Eq. (6.13c). This yields 

 

4/91/3
2/3 * *

1 2 2 5 2

1 2/3
* 1/9 2 2

2 5 5

min( ( ), ( )) ( ) ( )

( ) min( ( ), ( ))

f

xz xz cs xzF g e g e g e d e I

g e g e g e d

ργ τ β τ τ
β

ργ

   −   =
  

&

&

.     (6.16) 

 

The frictional stress coefficient, 2β , is then determined from Eqs. 6.9(e) and 

6.12(b). The kinetic/collisional normal stress coefficient is also determined from 

Eqs. 6.9(f) and 6.13(c) as 

 

2/3
1/3 * *

1 1 1 5 2

3 * 2/3 2 2

1 1 2 5 5

min( ( ), ( )) ( ) ( )

( ) ( ) min( ( ), ( ))

f

xz xz cs xzF g e g e g e d e I

g e g e g e g e d

ργ τ β τ τ
β

β ργ

 − =
&

&
.         (6.17) 

 

6.3.3 Flow Chart of the Proposed Model 

 

The calculation steps using the proposed model are shown in the following flow 

chart. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For Flow State 

( ),e dγ&  

Input parameters: Γ , λ , csµ , ε , m

sv , *
e , *

csI , d, 

and m1 to m5 which will be determined by curve 

fitting 

Start 
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Calculate 1β  from Eq. (6.15) 

 

 

Calculate 1F  from Eq. (6.16)  

 

( )f

xz eτ  is given 

in Eq. (6.7f) 

/ ( , )k c

xz e dτ γ&  is given 

in Eqs. (6.8b) 

( ),xz e dτ γ&  is given 

in Eq. (6.9c) 

2β  is given in 

Eq. (6.9e) 

cse  is given in 

Eq. (6.12b) 

 

Calculate 2β  from Eq. (6.9e) 

 

Calculate 3β  from Eq. (6.17) 

 

Calculate total stresses 

from Eq. (6.9)    

 ( )f

xz eτ  is given 

in Eq. (6.7f) 

( )f

z eσ  is given 

in Eq. (6.7c) 

/ ( , )k c

z e dσ γ&  is given 

in Eqs. (6.8a)  

/ ( , )k c

xz e dτ γ&  is given  

 in Eqs. (6.8b) 
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6.4 Verification of the Proposed Unified Constitutive Model 

 

6.4.1 The Extended Critical State Framework 

 

The proposed unified constitutive model in Sec. 6.3 is used to predict the 

extended critical state framework presented in Chapter 5. The model parameters 

used in the calculations are given in Table 6.3. 

 

TABLE 6.3: Values of parameters used in the proposed model. 

Γ  λ  csµ  ε  
m

Sv  e
∗  

*

csI  m1 m2 m3 m4 m5 

0.85 0.027 0.34 0.81 0.61 0.85 10
-5 

0.01 250 0.5 1 0.027 

 

The constants 1,5im =  of the empirical equation for 1β  were determined by curve 

fitting the granular temperature measurements, as shown in Figure 6.7(a). 

Following the determination of 1β , the proposed constitutive model is used to 

predict the stresses and friction coefficient in the extended critical state 

framework. The predictions of the entire extended critical state framework are 

presented in Figure 6.7. 

 

 
(a) 
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(b) 

 

 

(c) 
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(d) 

FIGURE 6.7: Predictions of the proposed constitutive model: (a) granular 

temperature, (b) vertical normal stress, (c) shear stress, and (d) 

friction coefficient for 0.247dγ =& . 

 

In general, the proposed model captures the extended critical state framework by 

predicting granular temperature, stresses, and friction coefficient as shown in 

Figure 6.7. The model predictions have agreed well with the simulation 

experiments, except some over prediction of normal and shear stresses at high 

stress levels and high characteristic velocities.  

 

6.4.2 Inclined Flows 

 

6.4.2.1 Governing Equations 

 

Johnson (1987) and Nott (1991) implemented the Savage (1982) model in the 

governing equations of flow and solved for inclined plane geometry using a finite 

difference numerical scheme. A similar approach is also followed in this research 

to implement the proposed constitutive model for inclined flows.  
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The general forms of the mass, momentum, and fluctuation energy equations are 

presented, respectively as 

 

0
d

u
dt

ρ
ρ+ ∇ ⋅ = ,                                                (6.18a) 

 

du
b

dt
ρ ρ σ= + ∇ ⋅ ,                                               (6.18b) 

 

/3
2

:k c

s

dT
u q

dt
ρ σ= ∇ − ∇ ⋅ − ϒ ,                                       (6.18c) 

 

where u is the velocity, b is the specific body force, σ  is the total stress, /k cσ  is 

the kinetic/collisional stress component (the last terms of Eq. 6.9a to 6.9c), qs is 

the flux of fluctuation kinetic energy, and ϒ  is the rate of dissipation of 

fluctuation energy per unit volume due to the inelastic collisions. For steady, fully 

developed (SFD), two-dimensional inclined flows, the derivatives parallel to the 

inclined plane are zero. Therefore, the continuity equation is automatically 

satisfied and the momentum and fluctuation energy equations are reduced to 

 

cosz
sv g

dz

σ
ρ θ

∂
= ,                                               (6.19a) 

sinxz
sv g

dz

τ
ρ θ

∂
= ,                                             (6.19b) 

 

( )/

10 k c s
xz

q

z
β τ γ

∂
= ⋅ ⋅ − − ϒ

∂
& ,                                          (6.19c) 

 

where g  is the acceleration of gravity and θ  is the inclination angle of inclined 

flow. The constitutive equations for stresses, flux of fluctuation energy, and rate 

of energy dissipation per unit volume due to inelastic collisions are presented in 

Eq. (6.9), Eq. (6.2h), and Eq. (6.2i), respectively.  
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The stress and energy boundary conditions at the bottom solid surface (Z = 0) and 

top free surface (Z = 1) are derived by Johnson (1987), as shown below in Eq. 

(6.20) and Eq. (6.21), respectively. Z is defined as z/H where z is the axis normal 

to the flow and H is the total flow depth.  
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At Z = 1 
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cos
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π
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,                                       (6.21a) 
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sin
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v Z
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π
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 =
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,                                       (6.21b) 

 

0
s

q = .                                                           (6.21c) 

 

where ϕ  is the specularity coefficient
5
 at the bottom surface, 

sl
u  is the slip 

velocity at the bottom surface, δ  is the angle of friction at the bottom surface, 
w

ε  

is the restitution coefficient at the particle to bottom surface collision, and 

( 1)
s

v Z =  is the solid volume fraction at the free surface. The second term of Eq. 

                                                 
5
 Specularity coefficient represents the fraction of tangential momentum change of particles to 

their momentum after collision at the bottom boundary. 
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(6.20a) is the shear stress at the boundary due to collisions between the particles 

and the bottom surface. In principle, the stresses at the free surface are zero. 

However, it implies that the density is also zero which contradicts the practical 

condition. Hence, Equations 6.21(b) & (c) were derived by assuming the stress at 

the free surface is provided by the weight of the topmost layer of particles 

(Johnson, 1987). It should be noted that Eqs. (6.20) & (6.21) are modified by 

introducing the stress coefficients 1β  and 2β  based on the proposed constitutive 

equation, Eq. (6.9). 

 

Substituting the constitutive equations (Eq. 6.9) and boundary conditions (Eq. 

6.20 & Eq. 6.21) into the equations of motion (Eq. 6.19) yields 

 

For 0 < Z < 1 (between the bottom boundary and the free surface) 

 

( )
1 2/3

( 1)

2 3 1 6
ˆˆ s

m
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g T v dZ πβ σ β =
+ = +∫ ,                               (6.22a) 
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2 2
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At Z = 0 (at the bottom boundary surface) 
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( 1)

2 3 1 6

0
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At Z = 1 (at the top free surface) 
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3 4

ˆ
ˆ 0s

dvdT
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where the dimensionless variables are given by 

 

z
Z

H
= ,  

1/2
ˆ

( sin )

u
u

gH θ
= ,  ˆ

cos

T
T

gd θ
= ,  ˆ

cos

f
f z
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A restriction of ˆ 0du dZ ≥  is imposed for the momentum equations in the 

direction of shear, i.e. Eq. (6.22b), Eq. (6.22e), and Eq. (6.22h). Shear rate cannot 

be negative because it will yield the kinetic/collisional shear stress negative, 

which implies that the stress would aid motion instead of resisting. 
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6.4.2.2 Numerical Solutions 

 

The flow depth, Z, of inclined flow is divided into N nodes of N-1 equal segments. 

The equations of motions presented in Eq. (6.22) are then discretized using the 

finite difference technique. For interior nodes, the differential equations are 

discretized using central difference approximations. An example is shown in Eq. 

(6.23) for the first and second derivatives of dimensionless granular temperature 

at interior node i  

 

1 1
ˆ ˆˆ

2

i i
T TdT

dZ Z

+ −−
=

⋅ ∆
,                                              (6.23a) 

 

2

1 1

2 2

ˆ ˆ ˆˆ 2

( )

i i i
T T Td T

dZ Z

+ −− +
=

∆
,                                         (6.23b) 

 

where 1/ ( 1)Z N∆ = −  is the distance between consecutive nodes. For the bottom 

surface boundary, the differential equations are discretized using forward 

difference approximations, as shown in Eq. (6.24) for the case of the derivative of 

the dimensionless granular temperature at the bottom boundary node 1  

 

1 2 3
ˆ ˆ ˆˆ 3 4

(2 )

T T TdT

dZ Z

− + −
=

∆
.                                          (6.24) 

 

Finally for the top surface boundary, the differential equations are discretized 

using backward difference approximations, as shown in Eq. (6.25) for the case of 

the derivative of the dimensionless granular temperature at the free surface node 

N  

 

 1 2
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(2 )
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∆
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On the other hand, the integrals in the governing equations are approximated by 

the trapezoidal rule. An example is given in Eq. (6.26) for solid volume fraction,  

 

( )
1

1 1

2

10

i i

N

Z
s s s

i

v dZ v v
+

−
∆

=

= +∑∫ .                                       (6.26) 

 

The discretized governing equations form a set of 3N nonlinear algebraic 

equations  

 

 1,3 0
m N

E = = .                                                 (6.27) 

 

The systems of nonlinear equations are solved based on a modified form of the 

Newton-Raphson method. Starting with guessed values of the variables at the 

nodes 
1,i Ns

v
=

, 1,
ˆ
i NT = , and 1,

ˆ
i N

u = , the new values of the variables at each iteration are 

calculated using Eq. (6.28)  

 

1var var (var )new old oldJ E α−= − ⋅ ⋅ ,                                   (6.28a) 
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m N

m n

n N

E
J

=

=

∂
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∂
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where 1,3var
n N=  stands for the variables 

1, 1, 1,
ˆˆ( , , )

i Ns i N i N
v u T

= = = , J is the Jacobian 

matrix of E, and α is a modified factor which is introduced in this research to 

reduce the increment values 1 (var )oldJ E− ⋅  so that the new calculated values are 

non-negative (var 0)new ≥ .   

 

The iteration of the numerical solution continues until convergence is achieved. 

Two criteria are set for convergence in this research. The first criterion requires 
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that the largest value of the magnitudes of the residuals must be less than a 

tolerance value 1R  as 

 

( )( )1,3 1max var
m N

E R= < .                                             (6.29a) 

 

The second convergence criterion is similar to Mohan et al. (1997), which is 

presented as 

 

( )
3

2

2

1

( var / )
N

m m

m

E A R
=

<∑ ,                                            (6.29b) 

 

where ( )varmE is the residual of the m
th

 equation, Am is the magnitude of the 

largest element of the m
th 

row of the Jacobian matrix, and 2R  is a tolerance value.  

 

The developed numerical model for inclined flow is written in a MATLAB 

program and presented in Appendix B. 

 

6.4.2.3 Model Predictions 

 

Profiles of dense granular flow depend on the roughness of the basal boundary 

surface (see Sec. 2.2.5). The proposed model is used to predict the simulation 

experiments of inclined flows on a bumpy-rough boundary conducted by Silbert 

et al. (2001) and on a flat-frictional boundary conducted in this research.    
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6.4.2.3.1 Inclined Flow on a Bumpy-Rough Boundary   

 

Silbert et al. (2001) conducted inclined flow simulations of thick piles of mono-

disperse spherical particles on a bumpy-rough boundary. The simulation results 

for H=40d and 026θ =  are chosen in this research for the verification of the 

proposed model. The values of parameters used in the simulation experiment and 

in the unified model are presented in Table 6.4. The simulation results and the 

model predictions are compared in Figure 6.8.  

 

The comparison shows that the proposed model captures the typical behaviours of 

inclined granular flows on a rough boundary, which are characterized by low 

granular temperature, high solid volume fraction, and low slip velocity at the 

rough base, as discussed in Sec. 2.2.5. These flow profiles were mainly captured 

by using a high coefficient of specularity ( )ϕ  for the rough bottom boundary. The 

restitution coefficient used in the model was lower than the value used in the 

simulation experiment, in order to obtain better predictions. It is also interesting to 

note the variation of kinetic/collisional volume fraction (F1) over the depth of 

flow. It reveals the three distinct regions of dense granular flow over rough 

boundary, as discussed by Louge (2003), namely the thin basal frictional region, 

the middle core region, and the thin top collisional region. In general, the 

variation of F1 follows the variation of granular temperature.  
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TABLE 6.4: Simulation and Model Parameters 

Parameter 
Simulation 

Experiment 
Model 

H/d of flow 40 40 

Inclination angle of plane 26
0 

26
0
 

Particle density  2500 kg/m
3
 

Particle diameter  1 mm 

Restitution coefficient (ε 

and εw) 
0.88 0.6 

Friction angle 

5.0=sµ  (static 

friction coefficient 

between particles) 

024.5
cs

φ δ= =  

Γ  N/A 0.9 

λ  N/A 0.035 

Specularity coefficient ( )ϕ  N/A 0.7854 

m

Sv  N/A 0.61 

m1, m2, m3, m4, m5 N/A 0.01, 250, 0.5, 1, 0.035 

e
∗

 
N/A 0.9 

*

cs
I

 
N/A 10

-5 

Tolerance value, R1 N/A 0.01 

Tolerance value, R2 N/A 1.69E-06 

 

 

 
 

(a) 
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(b) 

 

 

 
 

(c) 
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(d) 

FIGURE 6.8: Prediction of inclined flow over rough boundary using the proposed 

unified model (data was taken from Silbert et al., 2001).
6
 

 

 

 

6.4.2.3.2 Inclined Flow of 4 mm Mean Diameter Particles on Flat-Frictional 

Boundary   

 

Inclined flow simulations of 4 mm mean diameter, slightly dispersed spherical 

particles were conducted in this research for a flat-frictional base which consisted 

of fixed particles arranged in a rectangular array (see Chapter 3). The simulation 

data are used here for verification of the proposed model. The values of 

parameters used in the simulation and in the model are presented in Table 6.5, 

while the simulation data and the model predictions are compared in Figure 6.9.  

                                                 
6
 Reprinted excerpt (extracted simulation data) with permission from L. E. Silbert, D. Ertas¸, G. S. 

Grest, T. C. Halsey, D. Levine, and S. J. Plimpton, Phys. Rev. E 64, 051302 (2001). Copyright 

(2001) by the American Physical Society. http://link.aps.org/abstract/PRE/v64/e051302 

 

Readers may view, browse, and/or download material for temporary copying purposes only, 

provided these uses are for noncommercial personal purposes. Except as provided by law, this 

material may not be further reproduced, distributed, transmitted, modified, adapted, performed, 

displayed, published, or sold in whole or part, without prior written permission from the American 

Physical Society. 
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The proposed model has also captured the typical behaviours of inclined granular 

flows on a flat-frictional boundary, which is characterized by high granular 

temperature, low solid volume fraction, and large slip velocity at the frictional 

base, as discussed in Sec. 2.2.5. These flow profiles were mainly captured by 

using a low coefficient of specularity for the less roughness of the base. The 

restitution coefficient used in the model was also lower than the value used in the 

simulation experiment to obtain better prediction. The variation of the 

kinetic/collisional volume fraction (F1) over the depth of the flow is also observed 

to be similar with the variation of granular temperature.  

 

TABLE 6.5:  Simulation and Model Parameters 

Parameter 
Simulation 

Experiment 
Model 

H/d of flow 19 19 

Inclination angle of plane 23
0 

23
0
 

Particle density 1095 kg/m
3
 1095 kg/m

3
 

Particle diameter 4 mm 4 mm 

Restitution coefficient (ε 

and εw) 
0.75 0.65 

Friction angle 

6.0=sµ  (static 

friction coefficient 

between particles) 

022.5
cs

φ δ= =  

Γ  N/A
 

0.9 

λ  N/A 0.035 

Specularity coefficient ( )ϕ  N/A 0.2443 

m

Sv  N/A 0.61 

m1, m2, m3, m4, m5 N/A 0.01, 250, 0.5, 1, 0.035 

e
∗

 
N/A 0.9 

*

cs
I

 
N/A 10

-5 

Tolerance value, R1 N/A 0.001 

Tolerance value, R2 N/A 1.77E-07 
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(a) 

 

 
 

(b) 
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(c) 

 

 
 

(d) 

 

FIGURE 6.9: Prediction of inclined flow of 4 mm diameter particles over flat-

frictional boundary using the proposed unified model. 
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6.4.2.3.3 Inclined Flow of 4 cm Mean Diameter Particles on a Flat-

Frictional Boundary 

 

Simulation experiments were also conducted on 4 cm mean diameter, slightly 

dispersed spherical particles in order to observe the flow behaviour of large 

particles at higher stress (see Chapter 3). The simulation data are used here to 

verify the proposed unified model. The values of the parameters used in the 

simulation and in the model are presented in Table 6.6. The simulation results and 

the model predictions are compared in Figure 6.10.  

 

The 4 cm diameter particles exhibit similar flow behaviours to the 4 mm diameter 

particles, and are captured by the proposed unified model. Moreover, a variation 

of F1 similar to the granular temperature is also observed here. Low value of the 

specularity coefficient ( )ϕ  was also used in modeling the flow of the 4 cm 

diameter particles, in order to represent the less roughness of the base. The 

restitution coefficient used in the model was closer to the actual value in the 

simulation experiment.  
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TABLE 6.6: Simulation and Model Parameters 

Parameter 
Simulation 

Experiment 
Model 

H/d of flow 27 27 

Inclination angle of plane 23
0 

23
0
 

Particle density 1095 kg/m
3
 1095 kg/m

3
 

Particle diameter 4 cm 4 cm 

Restitution coefficient (ε 

and εw) 
0.75 0.7 

Friction angle 

6.0=sµ  (static 

friction coefficient 

between particles) 

022.5
cs

φ δ= =  

Γ  N/A
 

0.9 

λ  N/A 0.035 

Specularity coefficient ( )ϕ  N/A 0.2443 

m

Sv  N/A 0.61 

m1, m2, m3, m4, m5 N/A 0.01, 250, 0.5, 1, 0.035 

e
∗

 
N/A 0.9 

*

cs
I

 
N/A 10

-5 

Tolerance value, R1 N/A 0.001 

Tolerance value, R2 N/A 2.03E-07 

 

  

 
 

(a) 
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(b) 

 

 
 

(c) 
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(d) 

 

FIGURE 6.10: Prediction of inclined flow of 4 cm diameter particles over flat-

frictional boundary using the proposed unified model. 

 

 

6.4.2.4 Performance of Proposed Model for Inclined Flow  

 

In general, the proposed unified model successfully captures the typical inclined 

flow profiles on flat-frictional and bumpy-rough boundaries. As reviewed in 

Chapter 2, the density, velocity, and granular temperature profiles of inclined 

flows depend mainly on the roughness of bottom boundary. The proposed model 

used low and high values of the parameter, specularity coefficient ( )ϕ , in order to 

represent the moderately rough and rough bottom boundaries. The restitution 

coefficients in the simulation experiments of inclined flow were high. However, 

slightly lower values of restitution coefficients were used in the proposed model 

in order to obtain a best fit of the experimental results. The other feature of the 

proposed model is that it is able to calculate the profile of the collisional volume 

fraction ( )1F  which helps to identify quasi-static, collisional, and intermediate 

flow states. It also indicates the relative progress of intermediate flow states 

towards the collisional or quasi-static states. The depth profile of 1F  was similar 

to the profile of the granular temperature.       
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CHAPTER SEVEN     

 

CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 Summary 

 

In general, the research work presented in this thesis is categorized under the field 

of study for the investigation of granular flow behaviour and the development of a 

unified constitutive model to capture the complex behaviour of granular materials. 

This research is focused to dry granular materials in order to devote all the effort 

for a better understanding of how granular particles interact without considering 

the effect of interstitial fluid. To this end, it has been well understood that the 

flow interaction of granular particles consists of rate-independent rubbing friction 

and rate-dependent collisions. Nevertheless, the challenge is that the occurrence 

of the above flow or deformation mechanisms depends on the stress, density, 

particle size, and rate at which the granular material deforms. Some industrial 

processes, such as the processing of food grains and pharmaceutical particles, 

involve small size particles flowing under low stress and density. On the other 

hand, geotechnical problems, such as flow type landslides, occur under high stress 

and density, and involve a mixture of small soil particles and large rock 

fragments. The occurrence of rate-dependent collisional behaviour in geotechnical 

problems of granular flows has been a subject of interest for many years.  

 

Shear experiments conducted by geotechnical scientists (Hungr & Morgenstern, 

1984; Sassa, 2000) revealed the lack of rate dependent behaviors of granular flow 

at high stresses. As a result, many geotechnical flow analyses models (TITAN2D, 

DAN3D, RASH3D) do not include the collisional flow mechanism. On the 

contrary, the models have not been performing satisfactorily in predicting some 

dry debris flows and avalanches by considering only the rate-independent 

frictional mechanism (Hungr & Evans, 1996; Evans et al., 2001; Hungr et al., 
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2007; Pirulli, 2009). Instead, the velocity dependent Voellmy model produced 

better predictions. In wet flows, the velocity dependent shear stress component of 

the Voellmy model has been attributed to capture the stress produced due to the 

turbulence of the pore water. In dry mass flows, however, the use of Voellmy 

model requires an explanation for the possible source of the rate-dependent shear 

resistance component. Moreover, the shear experiments conducted by 

geotechnical researchers were limited to small size particles, even though they 

covered the range of stresses and flow rates at which actual landslides would 

occur.  

 

As the occurrence of collisional flow mechanism depends on particle inertia, both 

the flow rate and particle mass (or particle size and density) are equally important 

in the investigation of rate-dependent granular flow behaviour. Therefore, 

additional investigation on the relevance of collisional behaviour for large 

diameter particles is necessary to determine the consideration of collisional stress 

contribution in landslide analysis models. The occurrence of collisional behaviour 

at high stresses may also explain the better performance of Voellmy model in 

predicting dry debris flows and avalanches.  

 

In this research, the occurrence of rate-dependent collisional flow behaviour for 

large size granular particles was assessed by conducting plane shear simulations 

at high stresses and flow rates. Detailed assessment of the relevance of collisional 

behaviour in snow, debris, and rock avalanches were also conducted for different 

flow depths, velocities, and void ratios that are required to produce the rate-

dependent flow behaviour in the avalanches. By extending the plane shear 

simulations of large diameter particles to all ranges of stresses, void ratios, and 

flow rates, the critical state soil mechanics framework established for frictional 

flow behaviour has been extended, as originally presented by Campbell (2005), to 

capture the rate-dependent flow behaviour of granular materials.  The extended 

framework has been shown to be effective in capturing the flow behaviours, 

understand flow progress, and develop and evaluate unified constitutive models.  
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The rate-dependent behaviour of granular material has been investigated mostly 

by conducting shear experiments and simulations on spherical particles. Some 

experiments on non-spherical particles have exhibited differences in the rate-

dependent flow behaviour from the spherical particles. In this research, ring shear 

simulations of non-spherical particles were also conducted to observe the type of 

rate-dependent flow behaviours observed from physical experiments. As well, the 

general effects of particle shape on the extended critical state framework have 

been discussed.     

 

Pure frictional and pure collisional granular flows have been successfully 

modeled using the theory of plasticity and kinetic theory of granular flow 

(KTGF), respectively. For intermediate flows, however, several unified models 

have been proposed to capture the simultaneous occurrence of the rate-

independent frictional behaviour and the rate-dependent collisional behaviour in a 

flow. Most of the models are based on the assumption of Savage (1982), who 

proposed the total stress is equal to the sum of the frictional and the collisional 

stress. Understanding how the stress contributions from the two simultaneously 

occurring flow mechanisms combine to give a total stress is the main challenge in 

the development of a unified constitutive model for granular flows.  

 

In this research, the unified models proposed by Savage (1982, 1998) and Louge 

(2003) have been selected for evaluation by predicting the extended critical state 

framework discussed above. The Savage (1982) model was chosen because it 

provided the basis for the most improved models developed after his original 

model. The Savage (1998) model was selected because it is not influenced by a 

restitution coefficient, which differentiates it from other unified models. On the 

other hand, Louge (2003) model was selected because it presents a different 

approach by considering that the shear works of both frictional and collisional 

stress contributions would produce granular temperature before changing to heat.       
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A new unified constitutive model has been also developed in this research by 

exploring the particle interactions inside a flow based on the microscopic 

description proposed by Sayed (1981), and by considering the analogy of the 

transformation from ice to water. The constitutive equation involves an empirical 

equation for a stress-coefficient which is suggested based on the experimentally 

observed variations of granular temperature with void ratio at different shear 

rates. The constitutive model was applied to predict the extended critical state 

framework and was also implemented in the equations of motion and solved for 

inclined granular flows. Equations of motion and boundary conditions similar to 

Johnson (1987) and Nott (1991) were used in this research, and the numerical 

model was used to predict inclined flow simulation experiments conducted by 

Silbert et al. (2001) and in this research. 

 

7.2 Conclusions 

 

As summarized in the previous section, the objectives of this research are focused 

on the relevance of rate-dependent collisional flow behaviour in geotechnical 

granular material flows, the review of the flow behaviour of geotechnical granular 

materials with the extension of critical state framework, and the development of a 

unified constitutive model for dry granular flows. The main findings of the 

research are outlined below. 

 

1. Rapid flow landslides involving large-size particles, such as debris and rock 

avalanches, may be characterized by rate-dependent behaviour due to the 

collisional interaction of the particles in the flow in addition to the rubbing or 

sliding of particles over one another with long enduring contact. With the 

decrease in particle sizes, less flowing depths (or less confining stresses) are 

required to achieve the rate-dependent collisional interaction of particles.  

 

2. As originally presented by Campbell (2005), a series of state lines have been 

obtained as a function of the dimensionless shear rate by plotting the rate-
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dependent flow states in a void ratio versus a normal stress plot in the critical 

state framework. Following this finding, the entire critical state framework is 

extended in this research to capture rate-dependent flow states in addition to 

the rate-independent critical states by considering the characteristic shear 

velocity, ( )dγ& , as a state variable in addition to the existing variables of void 

ratio, normal stress, and shear stress. In addition to the conventional critical 

state line, series of state lines are formed as functions of dγ&  in the void ratio 

versus vertical normal stress and shear stress versus vertical normal stress 

plots in the critical state framework. The series of state lines are referred to in 

this research as supercritical state lines. In the extended framework, the 

critical state line is the lowest bound state line. An additional plane is 

introduced in the framework by plotting the void ratio versus granular 

temperature as a function of dγ& . The conventional critical state framework has 

been used to identify contractive and dilative behaviours of soils and assessing 

flow liquefaction. Similarly, the extended critical state framework is useful for 

flow classification as quasi-static, collisional and intermediate regimes and for 

understanding flow progress. The extended framework is also useful in 

developing and evaluating unified constitutive models.  

 

3. The flow behaviour of granular material and the extended critical state 

framework have been studied by using mainly the experimental results of 

mono-disperse spherical particles. Some experimental studies are available in 

the literature to investigate the flow behaviour of non-spherical particles. Ring 

shear simulations were also conducted in this research to observe the effects 

of particle shape in flow behaviour as obtained in physical experiments. The 

simulations reproduced some of the behaviour of non-spherical particles 

obtained in the experiments. In order for the simulations to fully capture the 

experimental results, the shape of individual particle used in the experiment 

must be synthesized precisely as a DEM particle, including the sharp edges 

and corners which are key features for particle interlocking that governs the 

behaviour of non-spherical particles.  
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4. The evaluation of selected unified models proposed by Savage (1982, 1998), 

and Louge (2003) was performed by predicting the extended critical state 

framework using the models. The main limitation obtained was that the 

Savage (1982, 1998) models did not capture the void ratio versus granular 

temperature plot of the extended critical state framework. The models 

predicted the granular temperatures in the collisional regime but showed that 

the trend of granular temperature would be unaffected as the flow progresses 

to the intermediate regime, while the measured values increased. In the 

Savage (1982) model, only the equations for the stresses are changed by 

combining the frictional and collisional stress contributions, whereas the 

equation for granular temperature remained unchanged from its expression in 

a pure collisional flow case. Thus, the granular temperature equation derived 

from kinetic theory was used to predict the entire flow. The Louge (2003) 

model, however, overcomes the above limitation by deriving the granular 

temperature assuming both frictional and collisional stress components would 

produce fluctuation energies before dissipating to heat, and substituting the 

total stress in the fluctuation energy equation.     

 

5. Most of the existing constitutive models for granular materials mainly consist 

of simple additions of the frictional and collisional stress contributions based 

on the assumption of Savage (1982). A new unified constitutive model is 

developed in this research to overcome the assumption. The model combines 

the frictional and collisional stress contributions by using weighting functions, 

which are referred to in this research as stress coefficients. The frictional and 

collisional stress coefficients are inter-dependent. The model also overcomes 

the limitations of Savage’s (1982, 1998) models in predicting granular 

temperatures. The assumption made by Louge (2003), which considers the 

frictional stress component in calculating the granular temperature, may be 

subject to criticism. In this research, the granular temperature equation is 

derived by taking conventional fluctuation energy equation (Johnson & 

Jackson, 1987), which considers only that the work of collisional shear stress 
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produces granular temperature, while the work of frictional shear stress 

directly dissipates to heat. The new proposed model captures the extended 

critical state framework and it is able to successfully predict the typical 

profiles of inclined flows over flat frictional and rough boundaries. 

 

7.3 Recommendations for Further Research 

 

1. The assessment of the relevance of rate-dependent collisional flow behaviour 

in geotechnical granular material flows was accomplished in this research 

using simulation experiments of plane shear flows. The lack of rate-dependent 

behaviour in previous laboratory experiments is attributed to the small particle 

sizes used in the experiments. Thus, the behaviour of large-size particles was 

investigated here using simulation experiments, as financial constraints 

limited the researcher’s ability to purchase or manufacture a large-size ring 

shear apparatus. The assessment of rate-dependent flow behaviour by 

conducting laboratory experiments on large-size particles is left for future 

studies.  

 

2. The rate-dependent flow behaviour of granular material is investigated mostly 

by using mono-disperse spherical particles. Some experiments and 

simulations on poly-disperse and non-spherical particles indicate their 

significant effects on flow behaviours. Geotechnical granular materials are 

characterized by poly-dispersity and non-spherical shapes. Future studies of 

the above type of materials in physical laboratory experiments and DEM 

simulations are required for a deeper understanding of the behaviour of 

geotechnical granular flows.    

 

3. Unified constitutive models proposed by various researchers to date are 

evaluated using the flow behaviour of mono-disperse spherical granular 

materials. Future research work should strive to improve existing constitutive 

models to capture the flow behaviour of a wide variety of granular materials.     
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APPENDIX A   PFC CODES FOR FLOW 

SIMULATIONS 
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A.1 PFC CODE FOR PLANE SHEAR FLOW SIMULATION 

 

Set Safety_fac  0.25 ; (Safety_fac is a PFC command used to reduce the computed  

                                    critical time step at the start of each cycle. Default value is 

                                    0.8 but recommended to use lower value when using the  

                                    Hertz contact model, especially under rapidly changing  

                                    conditions) 

 

; INPUTS 

 

def wall_inputs 

d_      = 0.04              ; (Average particle diameter) 

nx_    = 9                   ; (Model size in x-direction, 9d) 

ny_    = 9                   ; (Model size in y-direction, 9d) 

nz_    = 10                 ; (Model size in z-direction, 10d including the boundary  

                                    particles)      

s_      = 10000.0        ; (Prescribed vertical normal stress) 

_alpha = 1.0              ; (It is
R

f , see Eq. 3.4) 

end  

 

wall_inputs 

 

def ball_inputs 

n_          = 750                  ; (number of particles excluding the boundary particles) 

fb_         = 0.6                                     ; (Friction coefficient at contact, µs) 

pois_      = 0.34                                   ; (Poisson’s ratio) 

shea_r    = 3.25e9/2.0/(1 + pois_)       ; (Shear modulus) 

dampc_ = 0.75                                    ; (Restitution coefficient, ε) 

den_      = 1095.0                                ; (Particle density, ρ) 

velo_     = -18.0                                   ; (Shearing velocity, see Figure 3.1) 

incr_      = 3.0                                      ; (Shear velocity applied in 3 increments) 

mc_modify1  = 15                              ; (see gradual_shearing function below)  

mc_modify2  = 5000                          ; (see further_shearing function below) 

cyc_        = 500                                   ; (measurement sphere is updated every 500 

                                                              cycles, see gradual_shearing and 

                                                              further_shearing functions) 

T_L = 2001                          ; (The initial ID no. for the top boundary particles) 

T_U = T_L + nx_*ny_ - 1   ; (The final ID no. for the top boundary particles) 

B_L = 1001                         ; (The initial ID no. for the bottom boundary particles) 

B_U = B_L + nx_*ny_ - 1  ; (The final ID no. for the bottom boundary particles) 

end  

 

ball_inputs 

 

def other_operations 

x_ = nx_*d_ 
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y_ = ny_*d_ 

z_ = nz_*d_ 

t_   = 0.00015                    ; (Spacing b/n walls in the model to avoid their contact)          

x_t = x_ - t_ 

y_t = y_ - t_ 

x_half = x_/2.0 

y_half = y_/2.0 

z_half = z_/2.0 

r_ = d_/2.0  

z_d = z_ - d_ 

r_m = z_half - 1.25*d_     

end 

 

other_operations 

 

; MODEL CONSTRUCTION 

  

plot add wall blue 

plot add ball yellow   range id 1         n_  

plot add ball green     range id T_L    T_U   

plot add ball red        range id B_L    B_U 

plot add measure blue                                               ; (plot measurement sphere)                                  

plot show 

 

; Construction of walls, id 1 is not used 
wall id 2 face  (x_    0.0    0.0)  (x_   0.0     2.0)  (x_    y_     2.0)    (x_    y_     0.0)      

wall id 3 face  (x_t   t_      z_)  (t_   t_       z_)  (t_    y_t     z_)    (x_t   y_t     z_)  

wall id 4 face  (0.0   0.0    2.0)  (0.0  0.0     0.0)  (0.0   y_     0.0)    (0.0   y_     2.0)   

wall id 5 face  (0.0   0.0    0.0)  (0.0  0.0     2.0)  (x_    0.0    2.0)    (x_    0.0    0.0) 

wall id 6 face  (0.0   y_     0.0)  (x_   y_      0.0)  (x_    y_     2.0)    (0.0   y_     2.0)   

 

; Assigning wall frictions (frictionless walls considered) 

wall id 2 fric 0.0 

wall id 3 fric 0.0 x  x_half  y  y_half  z  z_  

wall id 4 fric 0.0 

wall id 5 fric 0.0 

wall id 6 fric 0.0 

 

; Construction of boundary particles 

def rough_surfacetop 

zz =  z_ - r_ 

yy = -r_ 

loop m (1, ny_) 

yy = yy + d_ 

xx = -r_ 

loop n (1, nx_) 



170 

xx = xx + d_ 

i = 2000 + (m-1)*nx_ + n 

command 

ball hertz id i x xx y yy z zz rad r_ 

endcommand 

endloop 

endloop 

end 

 

rough_surfacetop 

 

prop dens den_ poiss pois_ shear shea_r range id T_L T_U 

prop xvel 0.0 yvel 0.0 zvel 0.0 xspin 0.0 yspin 0.0 zspin 0.0 range id T_L  T_U 

fix xspin yspin zspin x y z range id T_L  T_U 

 

def rough_surfacebottom 

zz =  r_ 

yy = -r_ 

loop m (1, ny_) 

yy = yy + d_ 

xx = -r_ 

loop n (1, nx_) 

xx = xx + d_  

i = 1000 + (m-1)*nx_ + n 

command 

ball hertz id i x xx y yy z zz rad r_ 

endcommand 

endloop 

endloop 

end 

 

rough_surfacebottom 

 

prop dens den_ poiss pois_ shear shea_r range id B_L  B_U 

prop xvel 0.0 yvel 0.0 zvel 0.0 xspin 0.0 yspin 0.0 zspin 0.0 range id B_L  B_U 

fix xspin yspin zspin x y z range id B_L  B_U 

 

; Generation of particles 
set random 

gen hertz id 1         25 rad 0.008125  0.008125    x 0.0 x_ y 0.0 y_ z d_ z_d   

gen hertz id 26       88 rad 0.0085          0.0085    x 0.0 x_ y 0.0 y_ z d_ z_d  

gen hertz id 89     250 rad 0.009              0.009    x 0.0 x_ y 0.0 y_ z d_ z_d  

gen hertz id 251   381 rad 0.0095          0.0095    x 0.0 x_ y 0.0 y_ z d_ z_d  

gen hertz id 382   512 rad 0.01                  0.01    x 0.0 x_ y 0.0 y_ z d_ z_d  

gen hertz id 513   650 rad 0.0105          0.0105    x 0.0 x_ y 0.0 y_ z d_ z_d  

gen hertz id 651   750 rad 0.01104      0.01104    x 0.0 x_ y 0.0 y_ z d_ z_d  



171 

 

prop dens den_ poiss pois_ shear shea_r range id 1 n_ 

ini rad mult 2 range id 1 n_ 

Cycle 4000 

Solve 

measure id 1 x x_half y y_half z  z_half  rad r_m 

plot add measure blue 

print measure 1 

 

; CONSOLIDATION  

 

; Assigning particle properties 
prop fric fb_ 

prop damp 0.0 

damp local 0.0 

 

free z range id T_L  T_U      ; (free the top boundary particles for vertical motion) 

 

; Defining servo-controlled wall and assigning vertical normal stress 

def servo 

while_stepping 

swall_stress = w_zfob(find_wall(3))/(x_*y_) 

sum_kn = 0.0 

cp = contact_head 

loop while cp # null  

if c_ball2(cp) = find_wall(3) 

sum_kn = sum_kn + c_hn(cp) 

end_if 

cp = c_next(cp)  

end_loop 

udz = _alpha*x_*y_/(tdel * sum_kn)*(swall_stress - s_) 

 APV_ = 0.0 

loop mQ(T_L, T_U) 

APV_ = APV_ + b_zvel(find_ball(mQ))/(T_U - T_L + 1.0) 

endloop 

w_zvel(find_wall(3)) = udz + APV_ 

loop mr(T_L, T_U) 

b_zvel(find_ball(mr)) = APV_ 

endloop  

end 

 

servo 

 

; Defining Measurements 
his swall_stress                                                        ;  (History 1) 

his APV_                                                                 ;  (History 2) 



172 

 

 

def volume_calculation 

vol_me = 0.0 

loop ac (1, n_) 

vol_me = vol_me + 4.0/3.0*pi*(b_rad(find_ball(ac)))^3.0 

endloop 

end  

 

volume_calculation 

 

def Height_  

Height_ = w_z(find_wall(3)) 

Void_R = (x_*y_*(w_z(find_wall(3))-d_) - (vol_me + 

nx_*ny_*4.0/3.0*pi*r_^3))/(vol_me + nx_*ny_*4.0/3.0*pi*r_^3) 

end 

 

his Height_                                     ;   (History 3) 

his Void_R                                        ;   (History 4) 

 

History measure s11  id 1                  ;   (History 5)            

History measure s12  id 1                  ;   (History 6) 

History measure s21  id 1                  ;   (History 7) 

History measure s22  id 1                  ;   (History 8) 

History measure s13  id 1                  ;   (History 9) 

History measure s31  id 1                  ;   (History 10) 

History measure s23  id 1                  ;   (History 11) 

History measure s32  id 1                  ;   (History 12) 

History measure s33  id 1                  ;   (History 13) 

History measure ed11 id 1                 ;   (History 14)                            

History measure ed12 id 1                 ;   (History 15) 

History measure ed21 id 1                 ;   (History 16) 

History measure ed22 id 1                 ;   (History 17) 

History measure ed31 id 1                 ;   (History 18) 

History measure ed13 id 1                 ;   (History 19) 

History measure ed23 id 1                 ;   (History 20) 

History measure ed32 id 1                 ;   (History 21) 

History measure ed33 id 1                 ;   (History 22) 

History measure coord id 1                ;   (History 23) 

 

def VoidRatio_2  

VoidRatio_2 = m_poros(find_meas(1))/(1.0 - m_poros(find_meas(1))) 

end 

 

History VoidRatio_2                          ;   (History 24) 
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History measure sliding_fraction id 1 ;   (History 25) 

 

; Consolidating  
Cycle 5000 

Solve 

 

; SHEARING 

 

; Assigning viscous damping coefficients to particles 
Damp viscous notension on  

 

def damcoef 

damcoef = abs(ln(dampc_)/sqrt(pi^2.0+(-1*ln(dampc_))^2.0)) 

end 

 

Damp viscous normal damcoef shear damcoef  

 

; Recording shearing time 
set time 0.0 

 

def real_time  

real_time = time  

end  

 

his real_time                                ; (History 26)                         

 

; Replacing vertical walls with periodic boundaries 
del wall 2 4 5 6 

set periodic on 0.0 x_ 0.0  y_ 0.0 5.0 

 

; Shearing by increasing the shear velocity gradually 

def Gradual_shearing 

vxx  = 0.0 

loop mm (1,incr_) 

vxx  = vxx  + velo_/incr_ 

command 

prop xvel vxx range id B_L B_U 

fix x range id B_L B_U 

endcommand 

loop cb (1, mc_modify1) 

z_newm = w_z(find_wall(3))/2.0  

r_newm = z_newm - d_ 

if r_newm < x_half 

command 

measure id 1 x x_half y y_half z z_newm rad r_newm 

endcommand 
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else 

command 

measure id 1 x x_half y y_half z z_newm rad x_half 

endcommand 

endif 

 

command 

print measure 1 

cyc cyc_ 

endcommand 

endloop 

endloop 

end 

 

Gradual_shearing 

 

; Further shearing after the required shearing velocity is reached 

def Further_shearing 

loop ms (1, mc_modify2) 

z_newm = w_z(find_wall(3))/2.0  

r_newm = z_newm - d_ 

if r_newm < x_half 

command 

measure id 1 x x_half y y_half z z_newm rad r_newm 

endcommand 

else 

command 

measure id 1 x x_half y y_half z z_newm rad x_half 

endcommand 

endif 

command 

print measure 1 

cyc cyc_ 

endcommand 

endloop 

end 

 

Further_shearing 

 

; Measurements of solid fraction, and average and fluctuation velocities after 

flow is reached steady state 

 
Call PFC_CODE_FOR_SOLIDFRACTIONANDVELOCITY_MEASUREMENTS.TXT 

Further_shearing 
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A.2 PFC CODE FOR INCLINED FLOW SIMULATION 

 

Set Safety_fac  0.35 ; (Safety_fac is a PFC command used to reduce the computed  

                                    critical time step at the start of each cycle. Default value is 

                                    0.8 but recommended to use lower value when using the  

                                    Hertz contact model, especially under rapidly changing  

                                    conditions) 

 

; INPUTS 

 

def wall_inputs 

d_     = 0.04                       ; (Average particle diameter) 

nx_    = 7                           ; (Model size in x-direction, 7d) 

ny_    = 4                           ; (Model size in y-direction, 4d) 

nz_    = 50                         ; (Model size in z-direction, 50d including the boundary  

                                            particles)         

incl_  = 23                         ; (Angle of inclined plane, θ) 

end  

 

wall_inputs 

 

def ball_inputs 

n_     = 825                                       ; (Number of particles)  

fb_    = 0.6                                        ; (Friction coefficient at particles contact) 

pois_  = 0.34                                     ; (Poisson’s ratio) 

shea_r = 3.25e9/2.0/(1 + pois_)        ; (Shear modulus) 

dampc_ = 0.75                                  ; (Restitution coefficient) 

den_   = 1095.0                                 ; (Particle density) 

gravx_ = 9.81*sin(pi/180*incl_)      ; (Gravity in x-direction) 

gravz_ = -9.81*cos(pi/180*incl_)    ; (Gravity in z-direction) 

cyc_        = 5000000                         ; (Number of cycles during shearing) 

B_L = 2001                                      ; (The initial ID no. for the bottom boundary 

                                                            particles) 

B_U = B_L + nx_*ny_ - 1               ; (The final ID no. for the bottom boundary 

                                                            particles)    

end  

 

ball_inputs 

 

def other_operations 

x_ = nx_*d_ 

y_ = ny_*d_ 

z_ = nz_*d_ 

t_ = 0.00015                      ; (Spacing b/n walls in the model to avoid their contact) 

x_t = x_ - t_ 

y_t = y_ - t_ 
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r_ = d_/2.0  

z_d = z_ - d_ 

end 

 

other_operations 

 

; MODEL CONSTRUCTION 

  

plo add wall blue 

plo add ball yel   range id 1 n_ 

plo add ball red   range id B_L  B_U 

plot show 

 

; Construction of walls, id 1 is not used 
wall id 2 face  (x_    0.0    0.0)  (x_   0.0    10.0)  (x_    y_    10.0)    (x_    y_    0.0)      

wall id 3 face  (x_t   t_      z_)   (t_   t_       z_)     (t_    y_t     z_)     (x_t   y_t     z_)  

wall id 4 face  (0.0   0.0   10.0)  (0.0  0.0     0.0)  (0.0   y_     0.0)    (0.0   y_   10.0)   

wall id 5 face  (0.0   0.0    0.0)  (0.0  0.0    10.0)  (x_    0.0   10.0)    (x_    0.0   0.0) 

wall id 6 face  (0.0   y_     0.0)  (x_   y_      0.0)  (x_    y_    10.0)    (0.0   y_   10.0)   

 

; Assigning wall frictions (frictionless walls considered) 
wall id 2 fric 0.0 

wall id 3 fric 0.0  ; x  x_half  y  y_half  z  z_  

wall id 4 fric 0.0 

wall id 5 fric 0.0 

wall id 6 fric 0.0 

 

; Construction of boundary particles 

def rough_surfacebottom 

zz =  r_ 

yy = -r_ 

loop m (1, ny_) 

yy = yy + d_ 

xx = -r_ 

loop n (1, nx_) 

xx = xx + d_  

i = 2000 + (m-1)*nx_ + n 

command 

ball hertz id i x xx y yy z zz rad r_ 

endcommand 

endloop 

endloop 

end 

 

rough_surfacebottom 
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prop dens den_ poiss pois_ shear shea_r range id B_L  B_U 

prop xvel 0.0 yvel 0.0 zvel 0.0 xspin 0.0 yspin 0.0 zspin 0.0 range id B_L  B_U 

fix xspin yspin zspin x y z range id B_L  B_U 

 

; Generation of particles 
set random 

gen hertz id 1          27 rad 0.008125  0.008125  x 0.0 x_ y 0.0 y_ z d_ z_d   

gen hertz id 28        98 rad 0.0085        0.0085    x 0.0 x_ y 0.0 y_ z d_ z_d  

gen hertz id 99      275 rad 0.009           0.009     x 0.0 x_ y 0.0 y_ z d_ z_d  

gen hertz id 276    419 rad 0.0095        0.0095    x 0.0 x_ y 0.0 y_ z d_ z_d  

gen hertz id 420    563 rad 0.01                0.01    x 0.0 x_ y 0.0 y_ z d_ z_d  

gen hertz id 564    716 rad 0.0105        0.0105    x 0.0 x_ y 0.0 y_ z d_ z_d  

gen hertz id 717    825 rad 0.01104     0.01104   x 0.0 x_ y 0.0 y_ z d_ z_d  

 

prop dens den_ poiss pois_ shear shea_r range id 1 n_ 

 

ini rad mult 2 range id 1 n_ 

Cycle 15000 

Solve 

 

; CONSOLIDATION 

 

; Assigning particle properties 
prop fric fb_ 

set gravity gravx_ 0  gravz_ 

prop damp 0.0 

damp local 0.0 

 

; Consolidating  
Cycle 25000 

Solve 

 

; SHEARING 

 

; Assigning viscous damping coefficients to particles 
Damp viscous notension on  

 

def damcoef 

damcoef = abs(ln(dampc_)/sqrt(pi^2.0+(-1*ln(dampc_))^2.0)) 

end 

 

Damp viscous normal damcoef shear damcoef  

 

; Recording shearing time 
set time 0.0 
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def real_time  

real_time = time  

end  

 

his real_time                                        ; (History 1)                         

 

; Replacing vertical walls with periodic boundaries 
del wall 2 3 4 5 6 

set periodic on 0.0 x_ 0.0  y_ 0.0 10.0 

 

; Measurements of solid fraction, and average and fluctuation velocities  

 
Call PFC_CODE_FOR_ SOLIDFRACTIONANDVELOCITY _MEASUREMENTS.TXT 

 

; Shearing 
cyc cyc_ 
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A.3 PFC CODE FOR MEASUREMENTS OF SOLID FRACTION, 

AVERAGE FLOW VELOCITY, AND FLUCTUATION VELOCITIES 

 

; Solid fraction, average and velocity fluctuations after dividing the flow into  

  layers of equal thickness, d_max (diameter of the largest particle) 

 

; This program is for flow depth of up to 10 layers  

 

; The red-bold lines are used only for plane shear simulations 

 

Def Full_Ht   

mc_modify2  = 1300                                         

d_max = 2*b_rad(find_ball(750))         ; (The diameter of the largest particle) 

end  

 

Full_Ht 

 

Def Depth_ 

 

Depth_  = w_z(find_wall(3))                 ; (The height of flow, H) 

 

; For Layer 1 

 
zb_             = 0.0*d_max + d_ 

zt_              = 1.0*d_max + d_ 

W1_           = 0.0 

W1_Vx      = 0.0 

W1_Vx2    = 0.0 

W1_Vy2    = 0.0 

W1_Vz2    = 0.0 

W1_VxVz = 0.0                                                  

 

loop aa (1, n_) 

 

hb_     = b_z(find_ball(aa)) + b_rad(find_ball(aa)) - zb_ 

 

if hb_ > 0.0 

if hb_ < 2.0*b_rad(find_ball(aa)) 

W1_     = W1_     + (abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W1_Vx   = W1_Vx   + 

b_xvel(find_ball(aa))*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W1_Vx2  = W1_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W1_Vy2  = W1_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 
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W1_Vz2  = W1_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W1_VxVz = W1_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*(abs(hb_))^2.0*(3.0*b_rad(find_

ball(aa)) - hb_) 

end_if  

end_if 

 

if hb_ >= 2.0*b_rad(find_ball(aa)) 

if hb_ <= d_max 

W1_     = W1_     + 4.0*(abs(b_rad(find_ball(aa))))^3.0 

W1_Vx   = W1_Vx   + b_xvel(find_ball(aa))*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W1_Vx2  = W1_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W1_Vy2  = W1_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W1_Vz2  = W1_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W1_VxVz = W1_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*4.0*(abs(b_rad(find_ball(aa))))^

3.0 

end_if 

end_if 

 

if hb_ > d_max 

if hb_ < d_max + 2.0*b_rad(find_ball(aa)) 

ht_     = zt_     - b_z(find_ball(aa)) + b_rad(find_ball(aa)) 

W1_     = W1_     + (abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W1_Vx   = W1_Vx   + 

b_xvel(find_ball(aa))*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W1_Vx2  = W1_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W1_Vy2  = W1_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W1_Vz2  = W1_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W1_VxVz = W1_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*(abs(ht_))^2.0*(3.0*b_rad(find_

ball(aa)) - ht_) 

end_if  

end_if 

 

endloop 

 

; For Layer 2 
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zb_            = 1.0*d_max + d_ 

zt_             = 2.0*d_max + d_ 

W2_           = 0.0 

W2_Vx      = 0.0 

W2_Vx2    = 0.0 

W2_Vy2    = 0.0 

W2_Vz2    = 0.0 

W2_VxVz = 0.0 

 

loop aa (1, n_) 

 

hb_     = b_z(find_ball(aa)) + b_rad(find_ball(aa)) - zb_ 

 

if hb_ > 0.0 

if hb_ < 2.0*b_rad(find_ball(aa)) 

W2_     = W2_     + (abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W2_Vx   = W2_Vx   + 

b_xvel(find_ball(aa))*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W2_Vx2  = W2_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W2_Vy2  = W2_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W2_Vz2  = W2_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W2_VxVz = W2_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*(abs(hb_))^2.0*(3.0*b_rad(find_

ball(aa)) - hb_) 

end_if  

end_if 

 

if hb_ >= 2.0*b_rad(find_ball(aa)) 

if hb_ <= d_max 

W2_     = W2_     + 4.0*(abs(b_rad(find_ball(aa))))^3.0 

W2_Vx   = W2_Vx   + b_xvel(find_ball(aa))*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W2_Vx2  = W2_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W2_Vy2  = W2_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W2_Vz2  = W2_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W2_VxVz = W2_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*4.0*(abs(b_rad(find_ball(aa))))^

3.0 

end_if 

end_if 
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if hb_ > d_max 

if hb_ < d_max + 2.0*b_rad(find_ball(aa)) 

ht_     = zt_     - b_z(find_ball(aa)) + b_rad(find_ball(aa)) 

W2_     = W2_     + (abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W2_Vx   = W2_Vx   + 

b_xvel(find_ball(aa))*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W2_Vx2  = W2_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W2_Vy2  = W2_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W2_Vz2  = W2_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W2_VxVz = W2_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*(abs(ht_))^2.0*(3.0*b_rad(find_

ball(aa)) - ht_) 

end_if  

end_if 

 

endloop 

 

; For Layer 3 
 

zb_             = 2.0*d_max + d_ 

zt_              = 3.0*d_max + d_ 

W3_           = 0.0 

W3_Vx      = 0.0 

W3_Vx2    = 0.0 

W3_Vy2    = 0.0 

W3_Vz2    = 0.0 

W3_VxVz = 0.0 

 

loop aa (1, n_) 

 

hb_     = b_z(find_ball(aa)) + b_rad(find_ball(aa)) - zb_ 

 

if hb_ > 0.0 

if hb_ < 2.0*b_rad(find_ball(aa)) 

W3_     = W3_     + (abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W3_Vx   = W3_Vx   + 

b_xvel(find_ball(aa))*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W3_Vx2  = W3_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W3_Vy2  = W3_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W3_Vz2  = W3_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 
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W3_VxVz = W3_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*(abs(hb_))^2.0*(3.0*b_rad(find_

ball(aa)) - hb_) 

end_if  

end_if 

 

if hb_ >= 2.0*b_rad(find_ball(aa)) 

if hb_ <= d_max 

W3_     = W3_     + 4.0*(abs(b_rad(find_ball(aa))))^3.0 

W3_Vx   = W3_Vx   + b_xvel(find_ball(aa))*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W3_Vx2  = W3_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W3_Vy2  = W3_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W3_Vz2  = W3_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W3_VxVz = W3_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*4.0*(abs(b_rad(find_ball(aa))))^

3.0 

end_if 

end_if 

 

if hb_ > d_max 

if hb_ < d_max + 2.0*b_rad(find_ball(aa)) 

ht_     = zt_     - b_z(find_ball(aa)) + b_rad(find_ball(aa)) 

W3_     = W3_     + (abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W3_Vx   = W3_Vx   + 

b_xvel(find_ball(aa))*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W3_Vx2  = W3_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W3_Vy2  = W3_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W3_Vz2  = W3_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W3_VxVz = W3_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*(abs(ht_))^2.0*(3.0*b_rad(find_

ball(aa)) - ht_) 

end_if  

end_if 

 

endloop 

 

; For Layer 4 
 

zb_            = 3.0*d_max + d_ 

zt_             = 4.0*d_max + d_ 
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W4_           = 0.0 

W4_Vx      = 0.0 

W4_Vx2    = 0.0 

W4_Vy2    = 0.0 

W4_Vz2    = 0.0 

W4_VxVz = 0.0 

 

loop aa (1, n_) 

 

hb_     = b_z(find_ball(aa)) + b_rad(find_ball(aa)) - zb_ 

 

if hb_ > 0.0 

if hb_ < 2.0*b_rad(find_ball(aa)) 

W4_     = W4_     + (abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W4_Vx   = W4_Vx   + 

b_xvel(find_ball(aa))*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W4_Vx2  = W4_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W4_Vy2  = W4_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W4_Vz2  = W4_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W4_VxVz = W4_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*(abs(hb_))^2.0*(3.0*b_rad(find_

ball(aa)) - hb_) 

end_if  

end_if 

 

if hb_ >= 2.0*b_rad(find_ball(aa)) 

if hb_ <= d_max 

W4_     = W4_     + 4.0*(abs(b_rad(find_ball(aa))))^3.0 

W4_Vx   = W4_Vx   + b_xvel(find_ball(aa))*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W4_Vx2  = W4_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W4_Vy2  = W4_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W4_Vz2  = W4_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W4_VxVz = W4_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*4.0*(abs(b_rad(find_ball(aa))))^

3.0 

end_if 

end_if 

 

if hb_ > d_max 

if hb_ < d_max + 2.0*b_rad(find_ball(aa)) 
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ht_     = zt_     - b_z(find_ball(aa)) + b_rad(find_ball(aa)) 

W4_     = W4_     + (abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W4_Vx   = W4_Vx   + 

b_xvel(find_ball(aa))*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W4_Vx2  = W4_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W4_Vy2  = W4_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W4_Vz2  = W4_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W4_VxVz = W4_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*(abs(ht_))^2.0*(3.0*b_rad(find_

ball(aa)) - ht_) 

end_if  

end_if 

 

endloop 

 

; For Layer 5 
 

zb_             = 4.0*d_max + d_ 

zt_              = 5.0*d_max + d_ 

W5_           = 0.0 

W5_Vx      = 0.0 

W5_Vx2    = 0.0 

W5_Vy2    = 0.0 

W5_Vz2    = 0.0 

W5_VxVz = 0.0 

 

loop aa (1, n_) 

 

hb_     = b_z(find_ball(aa)) + b_rad(find_ball(aa)) - zb_ 

 

if hb_ > 0.0 

if hb_ < 2.0*b_rad(find_ball(aa)) 

W5_     = W5_     + (abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W5_Vx   = W5_Vx   + 

b_xvel(find_ball(aa))*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W5_Vx2  = W5_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W5_Vy2  = W5_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W5_Vz2  = W5_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 
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W5_VxVz = W5_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*(abs(hb_))^2.0*(3.0*b_rad(find_

ball(aa)) - hb_) 

end_if  

end_if 

 

if hb_ >= 2.0*b_rad(find_ball(aa)) 

if hb_ <= d_max 

W5_     = W5_     + 4.0*(abs(b_rad(find_ball(aa))))^3.0 

W5_Vx   = W5_Vx   + b_xvel(find_ball(aa))*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W5_Vx2  = W5_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W5_Vy2  = W5_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W5_Vz2  = W5_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W5_VxVz = W5_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*4.0*(abs(b_rad(find_ball(aa))))^

3.0 

end_if 

end_if 

 

if hb_ > d_max 

if hb_ < d_max + 2.0*b_rad(find_ball(aa)) 

ht_     = zt_     - b_z(find_ball(aa)) + b_rad(find_ball(aa)) 

W5_     = W5_     + (abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W5_Vx   = W5_Vx   + 

b_xvel(find_ball(aa))*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W5_Vx2  = W5_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W5_Vy2  = W5_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W5_Vz2  = W5_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W5_VxVz = W5_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*(abs(ht_))^2.0*(3.0*b_rad(find_

ball(aa)) - ht_) 

end_if  

end_if 

 

endloop 

 

; For Layer 6 
 

zb_           = 5.0*d_max + d_ 

zt_            = 6.0*d_max + d_ 
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W6_           = 0.0 

W6_Vx      = 0.0 

W6_Vx2    = 0.0 

W6_Vy2    = 0.0 

W6_Vz2    = 0.0 

W6_VxVz = 0.0 

 

loop aa (1, n_) 

 

hb_     = b_z(find_ball(aa)) + b_rad(find_ball(aa)) - zb_ 

 

if hb_ > 0.0 

if hb_ < 2.0*b_rad(find_ball(aa)) 

W6_     = W6_     + (abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W6_Vx   = W6_Vx   + 

b_xvel(find_ball(aa))*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W6_Vx2  = W6_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W6_Vy2  = W6_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W6_Vz2  = W6_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W6_VxVz = W6_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*(abs(hb_))^2.0*(3.0*b_rad(find_

ball(aa)) - hb_) 

end_if  

end_if 

 

if hb_ >= 2.0*b_rad(find_ball(aa)) 

if hb_ <= d_max 

W6_     = W6_     + 4.0*(abs(b_rad(find_ball(aa))))^3.0 

W6_Vx   = W6_Vx   + b_xvel(find_ball(aa))*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W6_Vx2  = W6_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W6_Vy2  = W6_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W6_Vz2  = W6_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W6_VxVz = W6_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*4.0*(abs(b_rad(find_ball(aa))))^

3.0 

end_if 

end_if 

 

if hb_ > d_max 

if hb_ < d_max + 2.0*b_rad(find_ball(aa)) 
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ht_     = zt_     - b_z(find_ball(aa)) + b_rad(find_ball(aa)) 

W6_     = W6_     + (abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W6_Vx   = W6_Vx   + 

b_xvel(find_ball(aa))*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W6_Vx2  = W6_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W6_Vy2  = W6_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W6_Vz2  = W6_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W6_VxVz = W6_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*(abs(ht_))^2.0*(3.0*b_rad(find_

ball(aa)) - ht_) 

end_if  

end_if 

 

endloop 

 

; For Layer 7 
 

zb_             = 6.0*d_max + d_ 

zt_              = 7.0*d_max + d_ 

W7_           = 0.0 

W7_Vx      = 0.0 

W7_Vx2    = 0.0 

W7_Vy2    = 0.0 

W7_Vz2    = 0.0 

W7_VxVz = 0.0 

 

loop aa (1, n_) 

 

hb_     = b_z(find_ball(aa)) + b_rad(find_ball(aa)) - zb_ 

 

if hb_ > 0.0 

if hb_ < 2.0*b_rad(find_ball(aa)) 

W7_     = W7_     + (abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W7_Vx   = W7_Vx   + 

b_xvel(find_ball(aa))*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W7_Vx2  = W7_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W7_Vy2  = W7_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W7_Vz2  = W7_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 
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W7_VxVz = W7_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*(abs(hb_))^2.0*(3.0*b_rad(find_

ball(aa)) - hb_) 

end_if  

end_if 

 

if hb_ >= 2.0*b_rad(find_ball(aa)) 

if hb_ <= d_max 

W7_     = W7_     + 4.0*(abs(b_rad(find_ball(aa))))^3.0 

W7_Vx   = W7_Vx   + b_xvel(find_ball(aa))*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W7_Vx2  = W7_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W7_Vy2  = W7_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W7_Vz2  = W7_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W7_VxVz = W7_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*4.0*(abs(b_rad(find_ball(aa))))^

3.0 

end_if 

end_if 

 

if hb_ > d_max 

if hb_ < d_max + 2.0*b_rad(find_ball(aa)) 

ht_     = zt_     - b_z(find_ball(aa)) + b_rad(find_ball(aa)) 

W7_     = W7_     + (abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W7_Vx   = W7_Vx   + 

b_xvel(find_ball(aa))*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W7_Vx2  = W7_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W7_Vy2  = W7_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W7_Vz2  = W7_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W7_VxVz = W7_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*(abs(ht_))^2.0*(3.0*b_rad(find_

ball(aa)) - ht_) 

end_if  

end_if 

 

endloop 

 

; For Layer 8 
 

zb_           = 7.0*d_max + d_ 

zt_            = 8.0*d_max + d_ 
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W8_           = 0.0 

W8_Vx      = 0.0 

W8_Vx2    = 0.0 

W8_Vy2    = 0.0 

W8_Vz2    = 0.0 

W8_VxVz = 0.0 

 

loop aa (1, n_) 

 

hb_     = b_z(find_ball(aa)) + b_rad(find_ball(aa)) - zb_ 

 

if hb_ > 0.0 

if hb_ < 2.0*b_rad(find_ball(aa)) 

W8_     = W8_     + (abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W8_Vx   = W8_Vx   + 

b_xvel(find_ball(aa))*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W8_Vx2  = W8_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W8_Vy2  = W8_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W8_Vz2  = W8_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W8_VxVz = W8_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*(abs(hb_))^2.0*(3.0*b_rad(find_

ball(aa)) - hb_) 

end_if  

end_if 

 

if hb_ >= 2.0*b_rad(find_ball(aa)) 

if hb_ <= d_max 

W8_     = W8_     + 4.0*(abs(b_rad(find_ball(aa))))^3.0 

W8_Vx   = W8_Vx   + b_xvel(find_ball(aa))*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W8_Vx2  = W8_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W8_Vy2  = W8_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W8_Vz2  = W8_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W8_VxVz = W8_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*4.0*(abs(b_rad(find_ball(aa))))^

3.0 

end_if 

end_if 

 

if hb_ > d_max 

if hb_ < d_max + 2.0*b_rad(find_ball(aa)) 
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ht_     = zt_     - b_z(find_ball(aa)) + b_rad(find_ball(aa)) 

W8_     = W8_     + (abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W8_Vx   = W8_Vx   + 

b_xvel(find_ball(aa))*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W8_Vx2  = W8_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W8_Vy2  = W8_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W8_Vz2  = W8_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W8_VxVz = W8_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*(abs(ht_))^2.0*(3.0*b_rad(find_

ball(aa)) - ht_) 

end_if  

end_if 

 

endloop 

 

; For Layer 9 
 

zb_             = 8.0*d_max + d_ 

zt_              = 9.0*d_max + d_ 

W9_           = 0.0 

W9_Vx      = 0.0 

W9_Vx2    = 0.0 

W9_Vy2    = 0.0 

W9_Vz2    = 0.0 

W9_VxVz = 0.0 

 

loop aa (1, n_) 

 

hb_     = b_z(find_ball(aa)) + b_rad(find_ball(aa)) - zb_ 

 

if hb_ > 0.0 

if hb_ < 2.0*b_rad(find_ball(aa)) 

W9_     = W9_     + (abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W9_Vx   = W9_Vx   + 

b_xvel(find_ball(aa))*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W9_Vx2  = W9_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W9_Vy2  = W9_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W9_Vz2  = W9_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 
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W9_VxVz = W9_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*(abs(hb_))^2.0*(3.0*b_rad(find_

ball(aa)) - hb_) 

end_if  

end_if 

 

if hb_ >= 2.0*b_rad(find_ball(aa)) 

if hb_ <= d_max 

W9_     = W9_     + 4.0*(abs(b_rad(find_ball(aa))))^3.0 

W9_Vx   = W9_Vx   + b_xvel(find_ball(aa))*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W9_Vx2  = W9_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W9_Vy2  = W9_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W9_Vz2  = W9_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W9_VxVz = W9_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*4.0*(abs(b_rad(find_ball(aa))))^

3.0 

end_if 

end_if 

 

if hb_ > d_max 

if hb_ < d_max + 2.0*b_rad(find_ball(aa)) 

ht_     = zt_     - b_z(find_ball(aa)) + b_rad(find_ball(aa)) 

W9_     = W9_     + (abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W9_Vx   = W9_Vx   + 

b_xvel(find_ball(aa))*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W9_Vx2  = W9_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W9_Vy2  = W9_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W9_Vz2  = W9_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W9_VxVz = W9_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*(abs(ht_))^2.0*(3.0*b_rad(find_

ball(aa)) - ht_) 

end_if  

end_if 

 

endloop 

 

; For Layer 10 
 

zb_              = 9.0*d_max + d_ 

zt_               = 10.0*d_max + d_ 
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W10_           = 0.0 

W10_Vx      = 0.0 

W10_Vx2    = 0.0 

W10_Vy2    = 0.0 

W10_Vz2    = 0.0 

W10_VxVz = 0.0 

 

loop aa (1, n_) 

 

hb_     = b_z(find_ball(aa)) + b_rad(find_ball(aa)) - zb_ 

 

if hb_ > 0.0 

if hb_ < 2.0*b_rad(find_ball(aa)) 

W10_     = W10_     + (abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W10_Vx   = W10_Vx   + 

b_xvel(find_ball(aa))*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W10_Vx2  = W10_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W10_Vy2  = W10_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W10_Vz2  = W10_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*(abs(hb_))^2.0*(3.0*b_rad(find_ball(aa)) - hb_) 

W10_VxVz = W10_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*(abs(hb_))^2.0*(3.0*b_rad(find_

ball(aa)) - hb_) 

end_if  

end_if 

 

if hb_ >= 2.0*b_rad(find_ball(aa)) 

if hb_ <= d_max 

W10_     = W10_     + 4.0*(abs(b_rad(find_ball(aa))))^3.0 

W10_Vx   = W10_Vx   + 

b_xvel(find_ball(aa))*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W10_Vx2  = W10_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W10_Vy2  = W10_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W10_Vz2  = W10_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*4.0*(abs(b_rad(find_ball(aa))))^3.0 

W10_VxVz = W10_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*4.0*(abs(b_rad(find_ball(aa))))^

3.0 

end_if 

end_if 

 

if hb_ > d_max 
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if hb_ < d_max + 2.0*b_rad(find_ball(aa)) 

ht_     = zt_     - b_z(find_ball(aa)) + b_rad(find_ball(aa)) 

W10_     = W10_     + (abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W10_Vx   = W10_Vx   + 

b_xvel(find_ball(aa))*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W10_Vx2  = W10_Vx2  + 

(abs(b_xvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W10_Vy2  = W10_Vy2  + 

(abs(b_yvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W10_Vz2  = W10_Vz2  + 

(abs(b_zvel(find_ball(aa))))^2.0*(abs(ht_))^2.0*(3.0*b_rad(find_ball(aa)) - ht_) 

W10_VxVz = W10_VxVz + 

b_xvel(find_ball(aa))*b_zvel(find_ball(aa))*(abs(ht_))^2.0*(3.0*b_rad(find_

ball(aa)) - ht_) 

end_if  

end_if 

 

endloop 

 

end  

 

; History of measurements 
 

His Depth_ 

His W1_  

His W1_Vx  

His W1_Vx2 

His W1_Vy2 

His W1_Vz2 

His W1_VxVz 

His W2_  

His W2_Vx  

His W2_Vx2 

His W2_Vy2 

His W2_Vz2 

His W2_VxVz 

His W3_  

His W3_Vx  

His W3_Vx2 

His W3_Vy2 

His W3_Vz2 

His W3_VxVz 

His W4_  

His W4_Vx  

His W4_Vx2 

His W4_Vy2 
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His W4_Vz2 

His W4_VxVz 

His W5_  

His W5_Vx  

His W5_Vx2 

His W5_Vy2 

His W5_Vz2 

His W5_VxVz 

His W6_  

His W6_Vx  

His W6_Vx2 

His W6_Vy2 

His W6_Vz2 

His W6_VxVz 

His W7_  

His W7_Vx  

His W7_Vx2 

His W7_Vy2 

His W7_Vz2 

His W7_VxVz 

His W8_  

His W8_Vx  

His W8_Vx2 

His W8_Vy2 

His W8_Vz2 

His W8_VxVz 

His W9_  

His W9_Vx  

His W9_Vx2 

His W9_Vy2 

His W9_Vz2 

His W9_VxVz 

His W10_  

His W10_Vx  

His W10_Vx2 

His W10_Vy2 

His W10_Vz2 

His W10_VxVz 
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A.4 PFC CODE FOR RING SHEAR FLOW SIMULATION 

 

Set Safety_fac  0.35 ; (Safety_fac is a PFC command used to reduce the computed  

                                    critical time step at the start of each cycle. Default value is 

                                    0.8 but recommended to use lower value when using the  

                                    Hertz contact model, especially under rapidly changing  

                                    conditions) 

 

; INPUTS 

 

def Apparatus_dimensions_inputs 

d_           = 0.005                                   ; (Average particle diameter) 

nr_          = 4.0                                       ; (Ring thickness,4d) 

t_            = nr_*d_                                ; (Ring thickness) 

nz_          = 12.0                                     ; (Initial ring height,12d) 

H_          = nz_*d_                                ; (Initial ring height) 

rad_avg  = 30.0*d_                               ; (Average ring diameter, (Ri + Ro)/2) 

rad_in     = rad_avg - t_/2.0                   ; (Inside ring diameter, Ri) 

rad_out   = rad_avg + t_/2.0                  ; (Outside ring diameter, Ro) 

end  

 

Apparatus_dimensions_inputs 

 

def balls_and_clumps_inputs 

n_             = 6665                                   ; (Number of particles) 

rad_mult  = 2.0                        

pois_        = 0.34                                     ; (Poisson’s ratio of particles) 

shea_r      = 3.25e9/2.0/(1 + pois_)        ; (Shear Modulus of particles) 

fb_           = 0.6      ; (Friction coefficient at particles contact) 

den_        = 1095.0                                 ; (Particles density) 

dampc_   = 0.75                                     ; (Restitution coefficient, ε) 

frac_cl     = 1.0                                       ; (Fraction of angular particles over total 

                                                                 particles (spherical + angular); in this 

                                                                 case all particles are angular) 

if n_*frac_cl - int(n_*frac_cl) >= 0.5 

n_cl       = int(n_*frac_cl) + 1 

else  

n_cl       = int(n_*frac_cl) 

end_if 

n_cl2     = n_cl + 2 

n_ball    = n_ - n_cl 

end  

 

balls_and_clumps_inputs 

 

def wall_inputs 
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z_   = 20.0*H_                                       ; (Height of vertical walls) 

s_   = 150000.0      ; (Prescribed vertical normal stress) 

_alpha = 4.25                                         ; (the coefficient Sf , see Eq. 3.7) 

end  

 

wall_inputs 

 

def other_operations_and_inputs 

nrad_out    = -1.0*rad_out 

r_               = d_/2.0  

H_d           = H_ - d_ 

AA_          = pi*(rad_out^2.0 - rad_in^2.0)   

Rad_Velo  = 20.0                                  ; (Prescribed angular velocity, ωz) 

incr_          = 4.0                                    ; (Angular velocity applied in 4 

increments) 

cyc_          = 3000000                            ; (See further_shearing at the end) 

end 

 

other_operations_and_inputs 

 

; MODEL CONSTRUCTION 

  

Plot add wall blue 

Plot add ball yellow    range  id 1 n_  

Plot add clump green  range  id 1 2 

 

def plot_clumps 

if n_cl > 0.0 

command 

Plot add clump red range  id 3 n_cl2  

endcommand 

end_if 

end 

 

plot_clumps 

 

Plot show 

 

; Construction of vertical cylindrical walls 
wall id 1  type cyl end1 0.0 0.0 0.0 end2 0.0 0.0 z_  rad rad_in  rad_in 

wall id 2  type cyl end1 0.0 0.0 0.0 end2 0.0 0.0 z_  rad rad_out rad_out 

 

; Assigning of wall frictions (frictionless walls considered) 
wall id 1 fric 0.0 

wall id 2 fric 0.0 
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; Construction of boundary plates 

def rough_topsurface 

T_L = 10001                             ; (The initial ID no. for the top boundary particles) 

T_U = 10000                             ; (The final ID no. for the top boundary particles) 

zz =  H_ - r_ 

rr = rad_out + r_ 

loop m (1, nr_) 

rr = rr - d_ 

PL_ =(rr^2.0 - r_^2.0)^0.5 

ratio_ = r_/PL_ 

incr1_ = 2.0*atan(ratio_) 

num_  = int(2.0*pi/incr1_) 

incr2_ = 2.0*pi/num_ 

loop n (1, num_) 

teta_ = incr2_*(n-1) 

xx    = rr*cos(teta_) 

yy    = rr*sin(teta_) 

a_ = T_U + n 

command 

ball hertz id a_ x xx y yy z zz rad r_ 

endcommand 

endloop 

T_U = T_U + num_ 

endloop 

n_contact_balls = T_U - T_L + 1 

end 

 

rough_topsurface 

 

; Assigning properties for top boundary particles 
prop dens den_ poiss pois_ shear shea_r range id T_L  T_U  

prop fric fb_ 

 

; Changing top boundary particles into clump/plate 

def making_topclump 

z_1 = H_ - d_ 

z_2 = H_ 

command 

clump add id 1 range z z_1 z_2 

endcommand 

end 

 

making_topclump 

 

; Assigning properties for top boundary clump 
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clump prop permanent full on update_cycle 1 xvel 0.0 yvel 0.0 zvel 0.0 xspin 0.0 

yspin 0.0 zspin 0.0 range id 1 

clump fix xspin yspin zspin x y z range id 1 

 

def rough_bottomsurface 

B_L = 20001                       ; (The initial ID no. for the bottom boundary particles) 

B_U = 20000                      ; (The final ID no. for the bottom boundary particles) 

zz =  r_ 

rr = rad_out + r_ 

loop m (1, nr_) 

rr = rr - d_ 

PL_ =(rr^2.0 - r_^2.0)^0.5 

ratio_ = r_/PL_ 

incr1_ = 2.0*atan(ratio_) 

num_  = int(2.0*pi/incr1_) 

incr2_ = 2.0*pi/num_ 

loop n (1, num_) 

teta_ = incr2_*(n-1) 

xx    = rr*cos(teta_) 

yy    = rr*sin(teta_) 

b_ = B_U + n 

command 

ball hertz id b_ x xx y yy z zz rad r_ 

endcommand 

endloop 

B_U = B_U + num_ 

endloop 

end 

 

rough_bottomsurface 

 

; Assigning properties for bottom boundary particles 

prop dens den_ poiss pois_ shear shea_r  range id B_L  B_U  

prop fric fb_ 

 

; Changing bottom boundary particles into clump/plate 

def making_bottomclump 

z_1 = 0.0 

z_2 = d_ 

command 

clump add id 2 range z z_1 z_2 

endcommand 

end 

 

making_bottomclump 
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; Assigning properties for bottom boundary clump 
clump prop permanent full on update_cycle 1 xvel 0.0 yvel 0.0 zvel 0.0 xspin 0.0 

yspin 0.0 zspin 0.0 range id 2 

clump fix xspin yspin zspin x y z range id 2 

; Generation of particles 
set random 

 

Def Filtering_balls 

_brad = fc_arg(0) 

_xpos = fc_arg(1) 

_ypos = fc_arg(2) 

_zpos = fc_arg(3) 

_rxy = sqrt(_xpos*_xpos+_ypos*_ypos) 

if (_rxy+_brad) > rad_in  

if (_rxy+_brad) < rad_out 

_skip = 0 

else 

_skip = 1 

end_if 

else 

_skip = 1 

end_if 

Filtering_balls = _skip 

END 

 

gen hertz id 1            222   rad 0.001015625  0.001015625  x nrad_out  rad_out y 

                                           nrad_out  rad_out z d_ H_d  Filter Filtering_balls  

gen hertz id 223        778   rad 0.0010625    0.0010625    x nrad_out  rad_out y 

                                           nrad_out  rad_out z d_ H_d  Filter Filtering_balls  

gen hertz id 779      2222   rad 0.001125     0.001125     x nrad_out  rad_out y  

                                           nrad_out  rad_out z d_ H_d  Filter Filtering_balls  

gen hertz id 2223    3388   rad 0.0011875    0.0011875    x nrad_out  rad_out y 

                                           nrad_out  rad_out z d_ H_d  Filter Filtering_balls  

gen hertz id 3389    4554   rad 0.00125      0.00125      x nrad_out  rad_out y  

                                           nrad_out  rad_out z d_ H_d  Filter Filtering_balls  

gen hertz id 4555    5776   rad 0.0013125    0.0013125    x nrad_out  rad_out y  

                                           nrad_out  rad_out z d_ H_d  Filter Filtering_balls  

gen hertz id 5777    6665   rad 0.00138      0.00138      x nrad_out  rad_out y  

                                           nrad_out  rad_out z d_ H_d  Filter Filtering_balls  

 

prop dens den_ poiss pois_ shear shea_r range id 1 n_ 

ini rad mult rad_mult range id 1 n_ 

Cycle 4000 

Solve 

 

; Replacing spherical particles with angular particles 
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def Clump_replacement 

if n_cl > 0.0 

command 

clump template make angular_particle 3 radii 0.003 0.003 0.003 pos (0.00075, 

0.0, 0.0) (0.00525, 0.0, 0.0) (0.003, 0.0, 0.0052)  

clump replace 1 angular_particle frac_cl  

clump prop permanent full on update_cycle 1                     

endcommand 

end_if 

end 

 

Clump_replacement 

 

cyc 10000 

solve 

 

; CONSOLIDATION 

 

; Assigning particle properties 
prop fric fb_ 

prop damp  0.0 

damp local 0.0 

 

clump free z range id 1               ; (free the top boundary plate for vertical motion) 

 

; Defining servo-controlled plate and assigning vertical normal stress 

def servo 

while_stepping 

swall_stress  = cl_zfob(find_clump(1))/AA_ 

fra_ction = (swall_stress - s_)/s_ 

if abs(fra_ction) < 1.0 

udz = _alpha*Rad_Velo*rad_avg*fra_ction 

else 

udz = _alpha*Rad_Velo*rad_avg*fra_ction/abs(fra_ction) 

endif 

cl_zvel(find_clump(1)) = udz  

end 

 

servo 

 

; Defining Measurements 

his swall_stress                                                      ; (History 1) 

his udz                                                                    ; (History 2) 

 

def Volume_calculation 

V_b  = 0.0 
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V_cl = 0.0 

if n_ball > 0.0 

loop q (1, n_ball) 

V_b = V_b + 4.0/3.0*pi*(b_rad(find_ball(q)))^3.0  

endloop 

end_if 

if n_cl > 0.0 

loop p (3, n_cl2) 

cl_volgiven(find_clump(p)) = 0.0 

V_cl = V_cl + cl_vol(find_clump(p)) 

endloop 

end_if  

end 

 

volume_calculation 

 

def Height_     

Height_    = cl_z(find_clump(1)) + d_/2.0 

w_VPos     = cl_z(find_clump(1)) + r_ 

Void_R     = (AA_*(w_VPos -   d_) - (V_b + V_cl + 

n_contact_balls*4.0/3.0*pi*r_^3.0))/(V_b + V_cl + 

n_contact_balls*4.0/3.0*pi*r_^3.0) 

Void_R1    = (AA_*(w_VPos - 2*d_) - (V_b + V_cl))/(V_b + V_cl)  

shear_rate = cl_rzvel(find_clump(2))*rad_avg/(w_VPos - d_) 

end 

 

his Height_                                                               ; (History 3) 

his Void_R                                                               ; (History 4) 

his shear_rate               ; (History 5) 

 

; Consolidating 
Cycle 500000 

Solve   average 0.045 maximum 0.045 

 

; SHEARING 

 

; Measuring shear stress 

def Shear_stress   

Shear_stress  = 3.0*cl_zmom(find_clump(1))/(2.0*pi*(rad_out^3.0 - rad_in^3.0)) 

end 

 

his Shear_stress                                                         ; (History 6) 

 

; Recording shearing time 
set time 0.0 
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def real_time  

real_time = time  

end  

his real_time                                                               ; (History7) 

                         

; Assigning viscous damping coefficients to particles 
Damp viscous notension on  

 

def damcoef 

damcoef = abs(ln(dampc_)/sqrt(pi^2.0+(-1.0*ln(dampc_))^2.0)) 

end 

 

Damp viscous normal damcoef shear damcoef  

 

; Shearing by increasing the angular velocity gradually 

def Gradual_shearing 

loop mm (1,incr_) 

wzz = wzz + Rad_Velo/incr_ 

command 

clump prop zspin wzz range id 2 

clump fix  zspin     range id 2 

cyc 5000 

endcommand 

endloop 

end 

 

Gradual_shearing 

 

; Further shearing after the required angular velocity is reached 

def Further_shearing 

command 

cycle  cyc_ 

endcommand 

end 

 

Further_shearing 
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APPENDIX B   MATLAB CODE FOR INCLINED 

FLOW 

 

 



 

function [] = Existing_Model()

 

 

%INPUT PARAMETERS

 

Iteration_ = 1000 ;   

 

NewtonRaphsonModifier = 0.05 ;   % It is α, see Eq. 6.28(a)

 

 

s    = 0.78539816 ;                         % It is the specularity coefficient, φ

 

ew   = 0.6 ;                                     % Wall-ball restitution coefficient     

 

e    = 0.6 ;                                       % Ball-ball resitution coefficient

 

nu   = (1+e)/2 ;

 

 

del  = 24.5 ;                                    % Friction angle at the boundary, δ

 

fi   = 24.5 ;                                      % Critical state friction angle, ϕcs

 

den  = 2500 ;                                  % Particle density

 

t    = 26.0;                                       % Angle of inclined plane, ϴ

 

n    = 40;                                         % No. of nodes, N

 

dZ   = 0.025641;                            % 1/(n-1), Z=z/H varies from 0 to 1

 

h    = 39.0;                                     % h is H/d

 

dia  = 0.001;                                  % Particle diameter

 

gra  = 9.81;                                    % Acceleration of gravity

 

vm   = 0.61;                                   % Maximum close packing solid volume 

fraction

 

 

m1   = 0.01;

 

m2   = 250;

 

m3   = 0.5;
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m4   = 1;

 

m5   = 0.035;

 

v1   = 0.5263;                               % Random loose packing solid volume 

fraction

 

I    = 0.00001;                              % It is the I value at the quasi-static - 

intermediate boundary 

 

 

AA = n + 1;

 

BB = 2*n;

 

CC = 2*n + 1;

 

DD = 3*n;

 

 

gv = dlmread('INITIALVALUES.txt','\t')      % Importing initial guessed values  

 

format long

 

 

for hp = 1:Iteration_

 

% EVALUATED FUNCTIONS

 

% Scaling factor for velocity inputs

 

kd       =  sqrt(gra*sin(pi/180*t)/(h*dia))*dia;

 

% Kinetic theory functions of void ratio

 

go          =@(v) (1-(v/vm)^(1/3))^-1;

 

dgo        =@(v) go(v)^2*(3*vm*(v/vm)^(2/3))^-1;

 

ddgo      =@(v) 2/(3*vm)*go(v)*dgo(v)*(v/vm)^(-2/3) - 2*go(v)^2/(9*vm^2)*

(v/vm)^(-5/3);

 

dddgo    =@(v) 2/(3*vm)*(go(v)*dgo(v)*-2/3*(v/vm)^(-5/3)/vm + (v/vm)^(-2

/3)*(dgo(v)^2+go(v)*ddgo(v))) - 2/(9*vm^2)*(2*go(v)*dgo(v)*(v/vm)^(-5/3) + 

go(v)^2*-5/3*(v/vm)^(-8/3)/vm);
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g1          =@(v)  v*(1+4*nu*v*(1-(v/vm)^(1/3))^-1);

 

dg1        =@(v) (1 + 4*nu*(2*v*(1-(v/vm)^(1/3))^-1 + v^2*(3*vm*(v/vm)^

(2/3)*(1-(v/vm)^(1/3))^2)^-1));

 

g2          =@(v) 5*pi^.5/96*(1/(nu*(2-nu)*go(v)) + 8/5*(3*nu-1)/(2-nu)*v + 

64/25*nu*((3*nu-2)/(2-nu)+12/pi)*v^2*go(v));

 

dg2        =@(v) (5*pi^.5/96*(-1*dgo(v)/(nu*(2-nu)*go(v)^2) + 8/5*(3*nu-1)/(2-

nu) + 64/25*nu*((3*nu-2)/(2-nu)+12/pi)*(2*v*go(v)+v^2*dgo(v))));

 

g3          =@(v) 25*sqrt(pi)/(16*nu*(41-33*nu))*(1/go(v)+12/5*nu*(1+nu*

(4*nu-3))*v + 16/25*nu^2*(9*nu*(4*nu-3)+4/pi*(41-33*nu))*v^2*go(v));

 

dg3        =@(v) 25*sqrt(pi)/(16*nu*(41-33*nu))*(-1*dgo(v)/go(v)^2+12/5*nu*

(1+nu*(4*nu-3)) + 16/25*nu^2*(9*nu*(4*nu-3)+4/pi*(41-33*nu))*(2*v*go(v)

+v^2*dgo(v)));

 

ddg3      =@(v) 25*sqrt(pi)/(16*nu*(41-33*nu))*((-1*ddgo(v)*go(v)^2+2*go

(v)*dgo(v)^2)/go(v)^4 + 16/25*nu^2*(9*nu*(4*nu-3)+4/pi*(41-33*nu))*(2*go

(v)+4*v*dgo(v)+v^2*ddgo(v)));

 

g4          =@(v) 15*sqrt(pi)/4*(2*nu-1)*(nu-1)/(41-33*nu)*(1/(v*go(v))

+12/5*nu)*(2*v*go(v)+v^2*dgo(v));

 

dg4        =@(v) 15*sqrt(pi)/4*(2*nu-1)*(nu-1)/(41-33*nu)*((1/(v*go(v))

+12/5*nu)*(2*go(v)+4*v*dgo(v)+v^2*ddgo(v)) - (2*v*go(v)+v^2*dgo(v))*(go

(v)+v*dgo(v))/(v*go(v))^2);

 

ddg4      =@(v) 15*sqrt(pi)/4*(2*nu-1)*(nu-1)/(41-33*nu)*(-2*(go(v)+v*dgo

(v))/(v*go(v))^2*(2*go(v)+4*v*dgo(v)+v^2*ddgo(v))+(1/(v*go(v))+12/5*nu)*

(6*dgo(v)+6*v*ddgo(v)+v^2*dddgo(v)) ...

               -(2*v*go(v)+v^2*dgo(v))*(((2*dgo(v)+v*ddgo(v))*(v*go(v))^2-

2*v*go(v)*(go(v)+v*dgo(v))^2)/(v*go(v))^4));

 

g5       =@(v) 48/pi^.5*(1+e)/2*(1-(1+e)/2)*v^2*(1-(v/vm)^(1/3))^-1;

 

dg5      =@(v) 48/pi^.5*(1+e)/2*(1-(1+e)/2)*(2*v*(1-(v/vm)^(1/3))^-1 + v^2*

(3*vm*(v/vm)^(2/3)*(1-(v/vm)^(1/3))^2)^-1);

 

% Collisonal shear stress coefficient B1

 

B1           =@(v,r)  ((m1+m2*(r*kd)^m3) + m4*max(0,(v-v1)/abs(v-v1))*exp

(((1-v1)/v1-(1-v)/v)/m5))/(m1+m2*(r*kd)^m3);

 

dB1v       =@(v,r)  (m4*max(0,(v-v1)/abs(v-v1))*exp(((1-v1)/v1-(1-v)/v)/m5))/

(m1+m2*(r*kd)^m3)/(m5*v^2);
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dB1u       =@(v,r,dr) max(0,(v-v1)/abs(v-v1))*-1*m4*exp(((1-v1)/v1-(1-v)/v)

/m5)*m2*m3*(r*kd)^(m3-1)/(m1+m2*(r*kd)^m3)^2*(dr*kd);

 

B1b         =@(v,r)    B1(v,r);      % It is B1 used in the boundary conditions. 

dB1bv     =@(v,r)    dB1v(v,r);

dB1bu     =@(v,r,dr) dB1u(v,r,dr);

 

g2B1       =@(v,r)    g2(v)*B1(v,r);

 

dg2B1v   =@(v,r)    dg2(v)*B1(v,r) + g2(v)*dB1v(v,r);

 

dg2B1u   =@(v,r,dr) g2(v)*dB1u(v,r,dr);

 

% Collisional volume fraction Fc (or F1)  .....(A)

 

B2_x      =@(v,x)   (1-x)*10^(1/m5*((1-v)/v-((1-x)/(v-x*v1)-1))) ;

 

ss_x       =@(v,r,x)   B2_x(v,x)*tan(pi/180*fi)*10^(((1-v1)/v1-(1-v)/v)/m5) + 

B1(v,r)^1.5*den*g2(v)^1.5/g5(v)^0.5*(r*kd)^2;

 

options   = optimset('TolFun',1e-50,'display','off','LargeScale','off');    

 

ForFc    =@(v,r,x)    B1(v,r) - (x^(2/3)*g5(v)*g2(v1))^(1/3) * (r*kd*sqrt(den)

*ss_x(v,r,x) - B2_x(v,x)*tan(pi/180*fi)*10^(((1-v1)/v1-(1-v)/v)/m5)*I*sqrt

(ss_x(v,r,x)))^(4/9) / ...

                      (g2(v)*g5(v1)^(1/9)*(den*(r*kd)^2)^(2/3));                                            

           

                                                        

% SHEAR RATES AND THEIR DIFFERENTIALS FOR B1 AND B2 

CALCUALTIONS

     

rN    =@(n)    (3*gv(2*n,1)-4*gv(2*n-1,1)+gv(2*n-2,1))/(2*dZ);

 

drNN  =        3/(2*dZ);

 

drN1  =       -4/(2*dZ);

 

drN2  =        1/(2*dZ);

 

 

ri    =@(n,i)  (gv(n+i+1,1)-gv(n+i-1,1))/(2*dZ);

 

dri1  =       1/(2*dZ);

 

dri_1 =      -1/(2*dZ);
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r1    =@(n)    (-3*gv(n+1,1)+4*gv(n+2,1)-gv(n+3,1))/(2*dZ);

 

dr11  =      -3/(2*dZ);

 

dr12  =       4/(2*dZ);

 

dr13  =      -1/(2*dZ);   

 

 

% Collisional volume fraction Fc (or F1)  .....(B)

 

Fc(1,1)   =   max(0,(gv(1,1)-v1)/abs(gv(1,1)-v1))*fsolve(@(x) ForFc(gv(1,1),r1

(n),x),0.0,options) +  max(0,(v1-gv(1,1))/abs(v1-gv(1,1)));

 

Fc(n,1)   =   max(0,(gv(n,1)-v1)/abs(gv(n,1)-v1))*fsolve(@(x) ForFc(gv(n,1),rN

(n),x),0.0,options) +  max(0,(v1-gv(n,1))/abs(v1-gv(n,1)));

 

for az      = 2:n-1

 

Fc(az,1)  =   max(0,(gv(az,1)-v1)/abs(gv(az,1)-v1))*fsolve(@(x) ForFc(gv(az,

1),ri(n,az),x),0.0,options) +  max(0,(v1-gv(az,1))/abs(v1-gv(az,1))); 

 

end

 

B2              =@(v,f)      (1-Fc(f,1))*10^(1/m5*((1-v)/v-((1-Fc(f,1))/(v-Fc(f,1)

*v1)-1))) ;

 

ss               =@(v,r,f)      B2(v,f)*tan(pi/180*fi)*10^(((1-v1)/v1-(1-v)/v)/m5) + 

B1(v,r)^1.5*den*g2(v)^1.5/g5(v)^0.5*(r*kd)^2;

 

dB2v_dxv  =@(v,dxv,f)  10^(1/m5*((1-v)/v-((1-Fc(f,1))/(v-Fc(f,1)*v1)-1)))*(-1

*dxv+(1-Fc(f,1))*log(10)*1/m5*(-1/v^2+(dxv*(v-Fc(f,1)*v1)+(1-Fc(f,1))*(1-

v1*dxv))/(v-Fc(f,1)*v1)^2));

 

dssv_dxv   =@(v,r,dxv,f)  dB2v_dxv(v,dxv,f)*tan(pi/180*fi)*10^(((1-v1)/v1-

(1-v)/v)/m5) + B2(v,f)*tan(pi/180*fi)*10^(((1-v1)/v1-(1-v)/v)/m5)*log(10)/

(m5*v^2) + ...

                        dB1v(v,r)*den*g2(v)*(r*kd)^2*sqrt(B1(v,r)*g2(v)/g5(v)) + B1

(v,r)*den*(r*kd)^2*(3/2*g2(v)^0.5*dg2(v)*sqrt(B1(v,r)/g5(v)) + g2(v)^1.5/g5

(v)*(dB1v(v,r)*g5(v)^0.5/(2*B1(v,r)^0.5)-dg5(v)*B1(v,r)^0.5/(2*g5(v)^0.5)));

 

FordFcv    =@(v,r,dxv,f)  dB1v(v,r) - B1(v,r)*((2/3*Fc(f,1)^(-1/3)*dxv*g5(v)

+Fc(f,1)^(2/3)*dg5(v))/(3*Fc(f,1)^(2/3)*g5(v)) - dg2(v)/g2(v) + ...

                        4*(r*kd*sqrt(den)*dssv_dxv(v,r,dxv,f)-I*(0.5*ss(v,r,f)^(-0.5)

*dssv_dxv(v,r,dxv,f)*B2(v,f)*tan(pi/180*fi)*10^(((1-v1)/v1-(1-v)/v)/m5)+ ss

(v,r,f)^(0.5)*(dB2v_dxv(v,dxv,f)*tan(pi/180*fi)*10^(((1-v1)/v1-(1-v)/v)/m5) ...
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                        + B2(v,f)*tan(pi/180*fi)*10^(((1-v1)/v1-(1-v)/v)/m5)*log(10)/

(m5*v^2))))/(9*(r*kd*sqrt(den)*ss(v,r,f)-B2(v,f)*tan(pi/180*fi)*10^(((1-v1)

/v1-(1-v)/v)/m5)*I*ss(v,r,f)^0.5)));

 

                    

dFcv(1,1)   =   max(0,(gv(1,1)-v1)/abs(gv(1,1)-v1))*fsolve(@(dxv) FordFcv(gv

(1,1),r1(n),dxv,1),0.0,options);

 

dFcv(n,1)   =   max(0,(gv(n,1)-v1)/abs(gv(n,1)-v1))*fsolve(@(dxv) FordFcv(gv

(n,1),rN(n),dxv,n),0.0,options);

 

for az = 2:n-1

 

dFcv(az,1)  =   max(0,(gv(az,1)-v1)/abs(gv(az,1)-v1))*fsolve(@(dxv) FordFcv

(gv(az,1),ri(n,az),dxv,az),0.0,options); 

 

end

 

 

dB2u_dxu   =@(v,dxu,f)  10^(1/m5*((1-v)/v-((1-Fc(f,1))/(v-Fc(f,1)*v1)-1)))*

(-1*dxu+(1-Fc(f,1))*log(10)/m5*((dxu*(v-Fc(f,1)*v1)-(1-Fc(f,1))*(v1*dxu))/

(v-Fc(f,1)*v1)^2));

 

dssu_dxu    =@(v,r,dr,dxu,f)  dB2u_dxu(v,dxu,f)*tan(pi/180*fi)*10^(((1-v1)

/v1-(1-v)/v)/m5) + den*g2(v)^1.5/g5(v)^0.5*(3/2*B1(v,r)^0.5*dB1u(v,r,dr)*

(r*kd)^2 + B1(v,r)^1.5*2*(r*kd)*(dr*kd));

 

FordFcu     =@(v,r,dr,dxu,f)  dB1u(v,r,dr) - B1(v,r)*((2*dxu)/(9*Fc(f,1)) - 4/3*

(dr*kd)/(r*kd) + 4/9*(sqrt(den)*((dr*kd)*ss(v,r,f)+(r*kd)*dssu_dxu(v,r,dr,dxu,

f)) - ...

                           I*tan(pi/180*fi)*10^(((1-v1)/v1-(1-v)/v)/m5)*(dB2u_dxu(v,

dxu,f)*sqrt(ss(v,r,f))+B2(v,f)*dssu_dxu(v,r,dr,dxu,f)/(2*sqrt(ss(v,r,f)))))/((r*kd)

*sqrt(den)*ss(v,r,f)-B2(v,f)*tan(pi/180*fi)*10^(((1-v1)/v1-(1-v)/v)/m5)*I*sqrt

(ss(v,r,f))));

 

dFcu(1,1)   =    max(0,(gv(1,1)-v1)/abs(gv(1,1)-v1))*fsolve(@(dxu) FordFcu(gv

(1,1),r1(n),dr11,dxu,1),0.0,options);  

 

dFcu(1,2)   =    max(0,(gv(1,1)-v1)/abs(gv(1,1)-v1))*fsolve(@(dxu) FordFcu(gv

(1,1),r1(n),dr12,dxu,1),0.0,options);  

 

dFcu(1,3)   =    max(0,(gv(1,1)-v1)/abs(gv(1,1)-v1))*fsolve(@(dxu) FordFcu(gv

(1,1),r1(n),dr13,dxu,1),0.0,options);  

 

dFcu(n,3)   =    max(0,(gv(n,1)-v1)/abs(gv(n,1)-v1))*fsolve(@(dxu) FordFcu(gv

(n,1),rN(n),drNN,dxu,n),0.0,options);   
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dFcu(n,1)   =    max(0,(gv(n,1)-v1)/abs(gv(n,1)-v1))*fsolve(@(dxu) FordFcu(gv

(n,1),rN(n),drN1,dxu,n),0.0,options);  

 

dFcu(n,2)   =    max(0,(gv(n,1)-v1)/abs(gv(n,1)-v1))*fsolve(@(dxu) FordFcu(gv

(n,1),rN(n),drN2,dxu,n),0.0,options);  

 

 

for az = 2:n-1

 

dFcu(az,1)  =    max(0,(gv(az,1)-v1)/abs(gv(az,1)-v1))*fsolve(@(dxu) FordFcu

(gv(az,1),ri(n,az),dri1,dxu,az),0.0,options);  

 

dFcu(az,2)  =    max(0,(gv(az,1)-v1)/abs(gv(az,1)-v1))*fsolve(@(dxu) FordFcu

(gv(az,1),ri(n,az),dri_1,dxu,az),0.0,options);  

 

end

 

% Frictional normal & shear stresses coefficient B2

 

%B2        =@(v,f)         is calculated above

 

dB2v       =@(v,f)         10^(1/m5*((1-v)/v-((1-Fc(f,1))/(v-Fc(f,1)*v1)-1)))*(-1

*dFcv(f,1)+(1-Fc(f,1))*log(10)*1/m5*(-1/v^2+(dFcv(f,1)*(v-Fc(f,1)*v1)+(1-Fc

(f,1))*(1-v1*dFcv(f,1)))/(v-Fc(f,1)*v1)^2));

 

dB2u       =@(v,co,f)      10^(1/m5*((1-v)/v-((1-Fc(f,1))/(v-Fc(f,1)*v1)-1)))*(-1

*dFcu(f,co)+(1-Fc(f,1))*log(10)/m5*((dFcu(f,co)*(v-Fc(f,1)*v1)-(1-Fc(f,1))*

(v1*dFcu(f,co)))/(v-Fc(f,1)*v1)^2));

 

 

NfB2       =@(v,f)         B2(v,f)*10^(((1-v1)/v1-(1-v)/v)/m5)/(den*gra*dia*cos

(t*pi/180));    

 

dNfB2v   =@(v,f)         10^(((1-v1)/v1-(1-v)/v)/m5)*(dB2v(v,f) + B2(v,f)*log

(10)/(m5*v^2))/(den*gra*dia*cos(t*pi/180)); 

 

dNfB2u   =@(v,co,f)      10^(((1-v1)/v1-(1-v)/v)/m5)*dB2u(v,co,f)/

(den*gra*dia*cos(t*pi/180));

 

% Collisonal normal stress coefficient B3

 

dssv       =@(v,r,f)     dB2v(v,f)*tan(pi/180*fi)*10^(((1-v1)/v1-(1-v)/v)/m5) + 

B2(v,f)*tan(pi/180*fi)*10^(((1-v1)/v1-(1-v)/v)/m5)*log(10)/(m5*v^2) + ...

                       dB1v(v,r)*den*g2(v)*(r*kd)^2*sqrt(B1(v,r)*g2(v)/g5(v)) + B1(v,

r)*den*(r*kd)^2*(3/2*g2(v)^0.5*dg2(v)*sqrt(B1(v,r)/g5(v)) + g2(v)^1.5/g5(v)*

(dB1v(v,r)*g5(v)^0.5/(2*B1(v,r)^0.5)-dg5(v)*B1(v,r)^0.5/(2*g5(v)^0.5)));

 

211



dssu       =@(v,r,dr,co,f)  dB2u(v,co,f)*tan(pi/180*fi)*10^(((1-v1)/v1-(1-v)/v)

/m5) + den*g2(v)^1.5/g5(v)^0.5*(3/2*B1(v,r)^0.5*dB1u(v,r,dr)*(r*kd)^2 + B1

(v,r)^1.5*2*(r*kd)*(dr*kd));

 

B3         =@(v,r,f)     Fc(f,1)^(1/3)*g1(v1)*g5(v)*(ss(v,r,f)*(r*kd)*sqrt(den) - 

B2(v,f)*tan(pi/180*fi)*10^(((1-v1)/v1-(1-v)/v)/m5)*I*sqrt(ss(v,r,f)))^(2/3)/(B1

(v,r)*g1(v)*g2(v)*g5(v1)^(2/3)*den*(r*kd)^2) ;

 

dB3v     =@(v,r,f)     B3(v,r,f)*((dFcv(f,1)/(3*Fc(f,1)) + dg5(v)/g5(v)) - (dB1v

(v,r)*g1(v)*g2(v)+B1(v,r)*g1(v)*dg2(v)+B1(v,r)*dg1(v)*g2(v))/(B1(v,r)*g1(v)

*g2(v)) + ...

                       2*(r*kd*sqrt(den)*dssv(v,r,f)-I*(0.5*ss(v,r,f)^(-0.5)*dssv(v,r,f)

*B2(v,f)*tan(pi/180*fi)*10^(((1-v1)/v1-(1-v)/v)/m5)+ ss(v,r,f)^(0.5)*(dB2v(v,

f)*tan(pi/180*fi)*10^(((1-v1)/v1-(1-v)/v)/m5) ...

                       + B2(v,f)*tan(pi/180*fi)*10^(((1-v1)/v1-(1-v)/v)/m5)*log(10)/

(m5*v^2))))/(3*(r*kd*sqrt(den)*ss(v,r,f)-B2(v,f)*tan(pi/180*fi)*10^(((1-v1)

/v1-(1-v)/v)/m5)*I*ss(v,r,f)^0.5)));

 

dB3u     =@(v,r,dr,co,f)  B3(v,r,f)*(dFcu(f,co)/(3*Fc(f,1)) - (dB1u(v,r,dr)*

(r*kd)^2 + B1(v,r)*2*(r*kd)*(dr*kd))/(B1(v,r)*(r*kd)^2) + 2/3*(sqrt(den)*

((dr*kd)*ss(v,r,f)+(r*kd)*dssu(v,r,dr,co,f)) - ...

                       I*tan(pi/180*fi)*10^(((1-v1)/v1-(1-v)/v)/m5)*(dB2u(v,co,f)*sqrt

(ss(v,r,f))+B2(v,f)*dssu(v,r,dr,co,f)/(2*sqrt(ss(v,r,f)))))/((r*kd)*sqrt(den)*ss(v,r,

f)-B2(v,f)*tan(pi/180*fi)*10^(((1-v1)/v1-(1-v)/v)/m5)*I*sqrt(ss(v,r,f))));

          

g1B3     =@(v,r,f)     g1(v)*B3(v,r,f);

 

dg1B3v   =@(v,r,f)     dg1(v)*B3(v,r,f) + g1(v)*dB3v(v,r,f);

        

dg1B3u   =@(v,r,dr,co,f)  g1(v)*dB3u(v,r,dr,co,f)  ; 

 

    

%JACOBIAN MATRIX

 

%At First Node

 

%Energy equation

 

J(1,1)     = dg3(gv(1,1))*(-3*gv(2*n+1,1)+4*gv(2*n+2,1)-gv(2*n+3,1))/(2*dZ)-

h*(1-ew^2)*gv(2*n+1,1)*pi*3^.5/4/vm*(go(gv(1,1))+gv(1,1)*dgo(gv(1,1))) ...

             + 2/3*h^2*tan(t*pi/180)*(s)*pi*3^.5/4/vm*gv(n+1,1)^2*(B1b(gv(1,1),

r1(n))*(go(gv(1,1))+gv(1,1)*dgo(gv(1,1))) + gv(1,1)*go(gv(1,1))*dB1bv(gv

(1,1),r1(n))) ...

             + g4(gv(1,1))*gv(2*n+1,1)*-3/(2*dZ) + dg4(gv(1,1))*gv(2*n+1,1)*(-3

*gv(1,1)+4*gv(2,1)-gv(3,1))/(2*dZ);

 

J(1,2)     = g4(gv(1,1))*gv(2*n+1,1)*4/(2*dZ);
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J(1,3)     = g4(gv(1,1))*gv(2*n+1,1)*-1/(2*dZ);

 

J(1,2*n+1) = g3(gv(1,1))*-3/(2*dZ)-h*(1-ew^2)*pi*3^.5*gv(1,1)*go(gv(1,1))

/4/vm + g4(gv(1,1))*(-3*gv(1,1)+4*gv(2,1)-gv(3,1))/(2*dZ);

 

J(1,2*n+2) = g3(gv(1,1))*2/dZ;

 

J(1,2*n+3) = g3(gv(1,1))*-1/(2*dZ);

 

J(1,n+1)   = 2/3*h^2*tan(t*pi/180)*(s)*B1b(gv(1,1),r1(n))*pi*3^.5*gv(1,1)*go

(gv(1,1))/4/vm*2*gv(n+1,1) + 2/3*h^2*tan(t*pi/180)*(s)*dB1bu(gv(1,1),r1(n),

dr11)*pi*3^.5*gv(1,1)*go(gv(1,1))/4/vm*(gv(n+1,1))^2;

 

J(1,n+2)   = 2/3*h^2*tan(t*pi/180)*(s)*dB1bu(gv(1,1),r1(n),dr12)*pi*3^.5*gv

(1,1)*go(gv(1,1))/4/vm*(gv(n+1,1))^2;

 

J(1,n+3)   = 2/3*h^2*tan(t*pi/180)*(s)*dB1bu(gv(1,1),r1(n),dr13)*pi*3^.5*gv

(1,1)*go(gv(1,1))/4/vm*(gv(n+1,1))^2;

 

%Z-Momentum equation

 

J(2,1)     = 1/h*(dNfB2v(gv(1,1),1)+dg1B3v(gv(1,1),r1(n),1)*gv(2*n+1,1))-

dZ/2;

 

for mm = 2:n-1;

  

J(2,mm) = -dZ;

 

end

 

J(2,n)     = -dZ/2 - 1/h*pi/(9*vm)*(gv(n,1)/vm)^(-1/3);

 

J(2,2*n+1) = 1/h*g1B3(gv(1,1),r1(n),1);

 

J(2,n+1)   = 1/h*(dNfB2u(gv(1,1),1,1) + dg1B3u(gv(1,1),r1(n),dr11,1,1)*gv

(2*n+1,1));

 

J(2,n+2)   = 1/h*(dNfB2u(gv(1,1),2,1) + dg1B3u(gv(1,1),r1(n),dr12,2,1)*gv

(2*n+1,1));

 

J(2,n+3)   = 1/h*(dNfB2u(gv(1,1),3,1) + dg1B3u(gv(1,1),r1(n),dr13,3,1)*gv

(2*n+1,1));

 

%X-Momentum equation 

 

if NfB2(gv(1,1),1)*tan(fi*pi/180)/tan(t*pi/180) <=  (2/3*(h/tan(t*pi/180))^.5*

213



(s)*B1b(gv(1,1),r1(n))*pi*3^.5*gv(1,1)*go(gv(1,1))/(4*vm)*gv(2*n+1,1)^.

5*gv(n+1,1)+NfB2(gv(1,1),1)*tan(del*pi/180)/tan(t*pi/180));

    

    J(3,1)     = dNfB2v(gv(1,1),1)*tan(fi*pi/180)/tan(t*pi/180)+ dg2B1v(gv(1,1),

r1(n))*gv(2*n+1,1)^.5/(h*tan(t*pi/180))^.5*(-3*gv(n+1,1)+4*gv(n+2,1)-gv

(n+3,1))/(2*dZ) ...

    -dNfB2v(gv(1,1),1)*tan(del*pi/180)/tan(t*pi/180)-2/3*(h/tan(t*pi/180))^.5*

(s)*pi*3^.5*gv(2*n+1,1)^.5*gv(n+1,1)/(4*vm)*(B1b(gv(1,1),r1(n))*(gv(1,1)

*dgo(gv(1,1))+go(gv(1,1))) + gv(1,1)*go(gv(1,1))*dB1bv(gv(1,1),r1(n)));

 

    J(3,2*n+1) = g2B1(gv(1,1),r1(n))/(h*tan(t*pi/180))^.5*(-3*gv(n+1,1)+4*gv

(n+2,1)-gv(n+3,1))/(2*dZ)/(2*gv(2*n+1,1)^.5)-2/3*(h/tan(t*pi/180))^.5*(s)

*B1b(gv(1,1),r1(n))*pi*3^.5*gv(1,1)*go(gv(1,1))/(4*vm)*gv(n+1,1)/(2*gv

(2*n+1,1)^.5);

    

    J(3,n+1)   = g2B1(gv(1,1),r1(n))*gv(2*n+1,1)^.5/(h*tan(t*pi/180))^.5*-3/

(2*dZ) + (-3*gv(n+1,1)+4*gv(n+2,1)-gv(n+3,1))/(2*dZ)*gv(2*n+1,1)^.5/(h*tan

(t*pi/180))^.5*dg2B1u(gv(1,1),r1(n),dr11) + dNfB2u(gv(1,1),1,1)*(tan

(fi*pi/180)/tan(t*pi/180) - tan(del*pi/180)/tan(t*pi/180)) -  2/3*(h/tan

(t*pi/180))^.5*(s)*pi*3^.5*gv(1,1)*go(gv(1,1))/(4*vm)*gv(2*n+1,1)^.5*(B1b

(gv(1,1),r1(n)) + gv(n+1,1)*dB1bu(gv(1,1),r1(n),dr11));

    

    J(3,n+2)   = g2B1(gv(1,1),r1(n))*gv(2*n+1,1)^.5/(h*tan(t*pi/180))^.5*4/

(2*dZ)  + (-3*gv(n+1,1)+4*gv(n+2,1)-gv(n+3,1))/(2*dZ)*gv(2*n+1,1)^.5/

(h*tan(t*pi/180))^.5*dg2B1u(gv(1,1),r1(n),dr12) + dNfB2u(gv(1,1),2,1)*(tan

(fi*pi/180)/tan(t*pi/180) - tan(del*pi/180)/tan(t*pi/180)) -  2/3*(h/tan

(t*pi/180))^.5*(s)*pi*3^.5*gv(1,1)*go(gv(1,1))/(4*vm)*gv(2*n+1,1)^.5*gv

(n+1,1)*dB1bu(gv(1,1),r1(n),dr12);

    

    J(3,n+3)   = g2B1(gv(1,1),r1(n))*gv(2*n+1,1)^.5/(h*tan(t*pi/180))^.5*-1/

(2*dZ) + (-3*gv(n+1,1)+4*gv(n+2,1)-gv(n+3,1))/(2*dZ)*gv(2*n+1,1)^.5/(h*tan

(t*pi/180))^.5*dg2B1u(gv(1,1),r1(n),dr13) + dNfB2u(gv(1,1),3,1)*(tan

(fi*pi/180)/tan(t*pi/180) - tan(del*pi/180)/tan(t*pi/180)) -  2/3*(h/tan

(t*pi/180))^.5*(s)*pi*3^.5*gv(1,1)*go(gv(1,1))/(4*vm)*gv(2*n+1,1)^.5*gv

(n+1,1)*dB1bu(gv(1,1),r1(n),dr13);

    

else

    

    J(3,n+1)   = -3/(2*dZ)*g2B1(gv(1,1),r1(n))*gv(2*n+1,1)^.5/(h*tan(t*pi/180))

^.5 + (-3*gv(n+1,1)+4*gv(n+2,1)-gv(n+3,1))/(2*dZ)*gv(2*n+1,1)^.5/(h*tan

(t*pi/180))^.5*dg2B1u(gv(1,1),r1(n),dr11);

    

    J(3,n+2)   =  4/(2*dZ)*g2B1(gv(1,1),r1(n))*gv(2*n+1,1)^.5/(h*tan(t*pi/180))

^.5 + (-3*gv(n+1,1)+4*gv(n+2,1)-gv(n+3,1))/(2*dZ)*gv(2*n+1,1)^.5/(h*tan

(t*pi/180))^.5*dg2B1u(gv(1,1),r1(n),dr12);

 

    J(3,n+3)   = -1/(2*dZ)*g2B1(gv(1,1),r1(n))*gv(2*n+1,1)^.5/(h*tan(t*pi/180))
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^.5 + (-3*gv(n+1,1)+4*gv(n+2,1)-gv(n+3,1))/(2*dZ)*gv(2*n+1,1)^.5/(h*tan

(t*pi/180))^.5*dg2B1u(gv(1,1),r1(n),dr13);

    

    J(3,1)     = (-3*gv(n+1,1)+4*gv(n+2,1)-gv(n+3,1))/(2*dZ)*dg2B1v(gv(1,1),r1

(n))*gv(2*n+1,1)^.5/(h*tan(t*pi/180))^.5;

   

    J(3,2*n+1) = (-3*gv(n+1,1)+4*gv(n+2,1)-gv(n+3,1))/(2*dZ)*g2B1(gv(1,1),

r1(n))/(2*gv(2*n+1,1)^.5)/(h*tan(t*pi/180))^.5;

    

end

 

%At Last Node

 

%Energy equation 

 

J(3*n-2,3*n)    = 3/(2*dZ)*g3(gv(n,1)) + g4(gv(n,1))*(3*gv(n,1)-4*gv(n-1,1)

+gv(n-2,1))/(2*dZ);

 

J(3*n-2,3*n-1)  = -4/(2*dZ)*g3(gv(n,1));

 

J(3*n-2,3*n-2)  = 1/(2*dZ)*g3(gv(n,1));

 

J(3*n-2,n)      = (3*gv(3*n,1)-4*gv(3*n-1,1)+gv(3*n-2,1))/(2*dZ)*dg3(gv(n,1)) 

+ dg4(gv(n,1))*gv(3*n,1)*(3*gv(n,1)-4*gv(n-1,1)+gv(n-2,1))/(2*dZ) ...

                  + g4(gv(n,1))*gv(3*n,1)*3/(2*dZ);

 

J(3*n-2,n-1)    = g4(gv(n,1))*gv(3*n,1)*-4/(2*dZ);

 

J(3*n-2,n-2)    = g4(gv(n,1))*gv(3*n,1)*1/(2*dZ);

 

%Z-Momentum equation

 

J(3*n-1,n)      = 1/h*(dNfB2v(gv(n,1),n) + gv(3*n,1)*dg1B3v(gv(n,1),rN(n),n) - 

pi/(9*vm)*(gv(n,1)/vm)^(-1/3));

 

J(3*n-1,3*n)    = 1/h*g1B3(gv(n,1),rN(n),n);

 

J(3*n-1,2*n)    = 1/h*(dNfB2u(gv(n,1),3,n) + dg1B3u(gv(n,1),rN(n),drNN,3,n)

*gv(3*n,1));

 

J(3*n-1,2*n-1)  = 1/h*(dNfB2u(gv(n,1),1,n) + dg1B3u(gv(n,1),rN(n),drN1,1,n)

*gv(3*n,1));

 

J(3*n-1,2*n-2)  = 1/h*(dNfB2u(gv(n,1),2,n) + dg1B3u(gv(n,1),rN(n),drN2,2,n)

*gv(3*n,1));

 

%X-Momentum equation
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if NfB2(gv(n,1),n)*tan(fi*pi/180) <= tan(t*pi/180)*pi/6*(gv(n,1)/vm)^(2/3);

 

   J(3*n,n)      = dNfB2v(gv(n,1),n)*tan(fi*pi/180) + (gv(3*n,1)/h)^.5*tan

(t*pi/180)^.5*dg2B1v(gv(n,1),rN(n))*(3*gv(2*n,1)-4*gv(2*n-1,1)+gv(2*n-

2,1))/(2*dZ) ...

                   - tan(t*pi/180)*pi/(9*vm)*(gv(n,1)/vm)^(-1/3); 

 

   J(3*n,3*n)    = g2B1(gv(n,1),rN(n))*(tan(t*pi/180)/h)^.5*(3*gv(2*n,1)-4*gv

(2*n-1,1)+gv(2*n-2,1))/(2*dZ)/(2*gv(3*n,1)^.5);

   

   J(3*n,2*n)    = dNfB2u(gv(n,1),3,n)*tan(fi*pi/180) + g2B1(gv(n,1),rN(n))*

(gv(3*n,1)*tan(t*pi/180)/h)^.5*3/(2*dZ) + (3*gv(2*n,1)-4*gv(2*n-1,1)+gv

(2*n-2,1))/(2*dZ)*(gv(3*n,1)*tan(t*pi/180)/h)^.5*dg2B1u(gv(n,1),rN(n),

drNN);

   

   J(3*n,2*n-1)  = dNfB2u(gv(n,1),1,n)*tan(fi*pi/180) + g2B1(gv(n,1),rN(n))*

(gv(3*n,1)*tan(t*pi/180)/h)^.5*-2/dZ    + (3*gv(2*n,1)-4*gv(2*n-1,1)+gv(2*n-

2,1))/(2*dZ)*(gv(3*n,1)*tan(t*pi/180)/h)^.5*dg2B1u(gv(n,1),rN(n),drN1);

 

   J(3*n,2*n-2)  = dNfB2u(gv(n,1),2,n)*tan(fi*pi/180) + g2B1(gv(n,1),rN(n))*

(gv(3*n,1)*tan(t*pi/180)/h)^.5/(2*dZ)   + (3*gv(2*n,1)-4*gv(2*n-1,1)+gv(2*n-

2,1))/(2*dZ)*(gv(3*n,1)*tan(t*pi/180)/h)^.5*dg2B1u(gv(n,1),rN(n),drN2);

   

else

    

    J(3*n,2*n)   =  3*g2B1(gv(n,1),rN(n))*(gv(3*n,1)*tan(t*pi/180)/h)^.5/(2*dZ)  

+ (3*gv(2*n,1)-4*gv(2*n-1,1)+gv(2*n-2,1))/(2*dZ)*(gv(3*n,1)*tan(t*pi/180)

/h)^.5*dg2B1u(gv(n,1),rN(n),drNN);

    

    J(3*n,2*n-1) = -4*g2B1(gv(n,1),rN(n))*(gv(3*n,1)*tan(t*pi/180)/h)^.5/

(2*dZ)  + (3*gv(2*n,1)-4*gv(2*n-1,1)+gv(2*n-2,1))/(2*dZ)*(gv(3*n,1)*tan

(t*pi/180)/h)^.5*dg2B1u(gv(n,1),rN(n),drN1);

 

    J(3*n,2*n-2) =  1*g2B1(gv(n,1),rN(n))*(gv(3*n,1)*tan(t*pi/180)/h)^.5/

(2*dZ)  + (3*gv(2*n,1)-4*gv(2*n-1,1)+gv(2*n-2,1))/(2*dZ)*(gv(3*n,1)*tan

(t*pi/180)/h)^.5*dg2B1u(gv(n,1),rN(n),drN2);

    

    J(3*n,n)     =  dg2B1v(gv(n,1),rN(n))*(gv(3*n,1)*tan(t*pi/180)/h)^.5*(3*gv

(2*n,1)-4*gv(2*n-1,1)+gv(2*n-2,1))/(2*dZ);

    

    J(3*n,3*n)   =  g2B1(gv(n,1),rN(n))*(tan(t*pi/180)/h)^.5/(2*gv(3*n,1)^.5)*

(3*gv(2*n,1)-4*gv(2*n-1,1)+gv(2*n-2,1))/(2*dZ); 

    

 

end
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%At Middle Nodes

 

%Energy equation

 

for i = 2:n-1;

    

    b = 3*i-2;

    

    J(b,i)   = ddg3(gv(i,1))*(gv(i+1,1)-gv(i-1,1))/(2*dZ)*gv(2*n+i,1)^.5*(gv

(2*n+i+1,1)-gv(2*n+i-1,1))/(2*dZ) ...

               + dg3(gv(i,1))/(2*gv(2*n+i,1)^.5)*((gv(2*n+i+1,1)-gv(2*n+i-1,1))/

(2*dZ))^2 + dg3(gv(i,1))*gv(2*n+i,1)^.5*(gv(2*n+i+1,1)-2*gv(2*n+i,1)+gv

(2*n+i-1,1))/dZ^2 ...

               + h*tan(t*pi/180)*dg2B1v(gv(i,1),ri(n,i))*gv(2*n+i,1)^.5*((gv(n+i+1,

1)-gv(n+i-1,1))/(2*dZ))^2 - h^2*dg5(gv(i,1))*gv(2*n+i,1)^1.5 ...

               + ddg4(gv(i,1))*((gv(i+1,1)-gv(i-1,1))/(2*dZ))^2*gv(2*n+i,1)^1.5 + 

dg4(gv(i,1))*3/2*gv(2*n+i,1)^0.5*(gv(i+1,1)-gv(i-1,1))/(2*dZ)*(gv(2*n+i+1,1)

-gv(2*n+i-1,1))/(2*dZ) ...

               + dg4(gv(i,1))*gv(2*n+i,1)^1.5*(gv(i+1,1)-2*gv(i,1)+gv(i-1,1))/dZ^2 

+ g4(gv(i,1))*gv(2*n+i,1)^1.5*-2/dZ^2;

 

    J(b,i+1) = dg3(gv(i,1))*gv(2*n+i,1)^.5*(gv(2*n+i+1,1)-gv(2*n+i-1,1))/

(2*dZ)^2 + dg4(gv(i,1))*gv(2*n+i,1)^1.5*2*(gv(i+1,1)-gv(i-1,1))/(2*dZ)*1/

(2*dZ) ...

               + g4(gv(i,1))*3/2*gv(2*n+i,1)^0.5*1/(2*dZ)*(gv(2*n+i+1,1)-gv

(2*n+i-1,1))/(2*dZ) + g4(gv(i,1))*gv(2*n+i,1)^1.5*1/(dZ^2);

    

    J(b,i-1) = dg3(gv(i,1))*gv(2*n+i,1)^.5*(gv(2*n+i+1,1)-gv(2*n+i-1,1))/

(2*dZ)^2*-1 + dg4(gv(i,1))*gv(2*n+i,1)^1.5*2*(gv(i+1,1)-gv(i-1,1))/(2*dZ)*-

1/(2*dZ) ...

               + g4(gv(i,1))*3/2*gv(2*n+i,1)^0.5*-1/(2*dZ)*(gv(2*n+i+1,1)-gv

(2*n+i-1,1))/(2*dZ) + g4(gv(i,1))*gv(2*n+i,1)^1.5*1/(dZ^2);

    

    J(b,2*n+i)   = dg3(gv(i,1))*(gv(i+1,1)-gv(i-1,1))/(2*dZ)*(gv(2*n+i+1,1)-gv

(2*n+i-1,1))/(2*dZ)/(2*gv(2*n+i,1)^.5) ...

    + g3(gv(i,1))*((gv(2*n+i+1,1)-gv(2*n+i-1,1))/(2*dZ))^2*(-gv(2*n+i,1)^-1.5

/4) + g3(gv(i,1))/(2*gv(2*n+i,1)^.5)*(gv(2*n+i+1,1)-2*gv(2*n+i,1)+gv(2*n+i-

1,1))/dZ^2 ...

    + h*tan(t*pi/180)*g2B1(gv(i,1),ri(n,i))*((gv(n+i+1,1)-gv(n+i-1,1))/(2*dZ))

^2/(2*gv(2*n+i,1)^.5) - h^2*g5(gv(i,1))*1.5*gv(2*n+i,1)^.5 + g3(gv(i,1))*gv

(2*n+i,1)^.5*(-2/dZ^2) ...

    + dg4(gv(i,1))*((gv(i+1,1)-gv(i-1,1))/(2*dZ))^2*3/2*gv(2*n+i,1)^0.5 + g4(gv

(i,1))*3/2*1/2*gv(2*n+i,1)^-0.5*(gv(i+1,1)-gv(i-1,1))/(2*dZ)*(gv(2*n+i+1,1)-

gv(2*n+i-1,1))/(2*dZ)...

    + g4(gv(i,1))*3/2*gv(2*n+i,1)^0.5*(gv(i+1,1)-2*gv(i,1)+gv(i-1,1))/dZ^2;

 

    J(b,2*n+i+1) = dg3(gv(i,1))*(gv(i+1,1)-gv(i-1,1))/(2*dZ)*gv(2*n+i,1)^.5/
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(2*dZ) + g3(gv(i,1))/gv(2*n+i,1)^.5*(gv(2*n+i+1)-gv(2*n+i-1))/(2*dZ)^2 ...

        + g3(gv(i,1))*gv(2*n+i,1)^.5/dZ^2 + g4(gv(i,1))*3/2*gv(2*n+i,1)^0.5*1/

(2*dZ)*(gv(i+1,1)-gv(i-1,1))/(2*dZ);

    

    J(b,2*n+i-1) = dg3(gv(i,1))*(gv(i+1,1)-gv(i-1,1))/(2*dZ)*gv(2*n+i,1)^.5/

(2*dZ)*-1 + g3(gv(i,1))/gv(2*n+i,1)^.5*(gv(2*n+i+1)-gv(2*n+i-1))/(2*dZ)^2*-

1 ...

        + g3(gv(i,1))*gv(2*n+i,1)^.5/dZ^2 + g4(gv(i,1))*3/2*gv(2*n+i,1)^0.5*-1/

(2*dZ)*(gv(i+1,1)-gv(i-1,1))/(2*dZ);

    

    J(b,n+i+1)   = h*tan(t*pi/180)*g2B1(gv(i,1),ri(n,i))*gv(2*n+i,1)^.5*2*(gv

(n+i+1,1)-gv(n+i-1,1))/(2*dZ)^2    + h*tan(t*pi/180)*gv(2*n+i,1)^.5*((gv

(n+i+1,1)-gv(n+i-1,1))/(2*dZ))^2*dg2B1u(gv(i,1),ri(n,i),dri1);

    

    J(b,n+i-1)   = h*tan(t*pi/180)*g2B1(gv(i,1),ri(n,i))*gv(2*n+i,1)^.5*2*(gv

(n+i+1,1)-gv(n+i-1,1))/(2*dZ)^2*-1 + h*tan(t*pi/180)*gv(2*n+i,1)^.5*((gv

(n+i+1,1)-gv(n+i-1,1))/(2*dZ))^2*dg2B1u(gv(i,1),ri(n,i),dri_1);

    

end

 

%Z-Momentum equation

 

for i = 2:n-1;

    

    c = 3*i-1;

 

    J(c,i)      = 1/h*(dNfB2v(gv(i,1),i)+gv(2*n+i,1)*dg1B3v(gv(i,1),ri(n,i),i)) - 

dZ/2;

    

    for nn = i+1:n-1;

   

    J(c,nn)     = -dZ;

   

    end

 

    J(c,n)      = -dZ/2 + 1/h*-pi/(9*vm)*(gv(n,1)/vm)^(-1/3);

    

    J(c,2*n+i)  = 1/h*g1B3(gv(i,1),ri(n,i),i);

    

    J(c,n+i+1)  = 1/h*(dNfB2u(gv(i,1),1,i) +gv(2*n+i,1)*dg1B3u(gv(i,1),ri(n,i),

dri1,1,i));

    

    J(c,n+i-1)  = 1/h*(dNfB2u(gv(i,1),2,i)+gv(2*n+i,1)*dg1B3u(gv(i,1),ri(n,i),

dri_1,2,i));

    

end
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%X-Momentum equation

 

for i = 2:n-1

    

    d = 3*i;

    

    sum1 = 0;

  

    for kk = i:n-1

    

    sum1 = sum1 + dZ/2*(gv(kk,1)+gv(kk+1,1));

    

    end

    

if NfB2(gv(i,1),i)*tan(fi*pi/180) <= (h*tan(t*pi/180)*sum1 + tan(t*pi/180)

*pi/6*(gv(n,1)/vm)^(2/3));

    

    J(d,i)     = dNfB2v(gv(i,1),i)*tan(fi*pi/180) + (gv(2*n+i,1)*tan(t*pi/180)/h)^.

5*dg2B1v(gv(i,1),ri(n,i))*(gv(n+i+1,1)-gv(n+i-1,1))/(2*dZ) ...

               - h*tan(t*pi/180)*dZ/2;

           

   for ll  = i+1:n-1

  

   J(d,ll)     = -h*tan(t*pi/180)*dZ;

  

   end

 

   J(d,n)      = -h*tan(t*pi/180)*dZ/2 - tan(t*pi/180)*pi/(9*vm)*(gv(n,1)/vm)^(-1

/3);

   

   J(d,2*n+i)  = g2B1(gv(i,1),ri(n,i))*(tan(t*pi/180)/h)^.5*(gv(n+i+1,1)-gv(n+i-

1,1))/(2*dZ)/(2*gv(2*n+i,1)^.5);

   

   J(d,n+i+1)  = dNfB2u(gv(i,1),1,i)*tan(fi*pi/180)  + g2B1(gv(i,1),ri(n,i))*(gv

(2*n+i,1)*tan(t*pi/180)/h)^.5/(2*dZ)    + (gv(2*n+i,1)*tan(t*pi/180)/h)^.5*(gv

(n+i+1,1)-gv(n+i-1,1))/(2*dZ)*dg2B1u(gv(i,1),ri(n,i),dri1);

   

   J(d,n+i-1)  = dNfB2u(gv(i,1),2,i)*tan(fi*pi/180) + g2B1(gv(i,1),ri(n,i))*(gv

(2*n+i,1)*tan(t*pi/180)/h)^.5/(2*dZ)*-1 + (gv(2*n+i,1)*tan(t*pi/180)/h)^.5*

(gv(n+i+1,1)-gv(n+i-1,1))/(2*dZ)*dg2B1u(gv(i,1),ri(n,i),dri_1);

   

else

    

   J(d,n+i+1)  = g2B1(gv(i,1),ri(n,i))*(gv(2*n+i,1)*tan(t*pi/180)/h)^.5*1/(2*dZ)  

+ (gv(2*n+i,1)*tan(t*pi/180)/h)^.5*(gv(n+i+1,1)-gv(n+i-1,1))/(2*dZ)*dg2B1u

(gv(i,1),ri(n,i),dri1);
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   J(d,n+i-1)  = g2B1(gv(i,1),ri(n,i))*(gv(2*n+i,1)*tan(t*pi/180)/h)^.5*-1/(2*dZ) 

+ (gv(2*n+i,1)*tan(t*pi/180)/h)^.5*(gv(n+i+1,1)-gv(n+i-1,1))/(2*dZ)*dg2B1u

(gv(i,1),ri(n,i),dri_1);

 

   J(d,i)      = dg2B1v(gv(i,1),ri(n,i))*(gv(2*n+i,1)*tan(t*pi/180)/h)^.5*(gv

(n+i+1,1)-gv(n+i-1,1))/(2*dZ);

   

   J(d,2*n+i)  = g2B1(gv(i,1),ri(n,i))*(tan(t*pi/180)/h)^.5/(2*gv(2*n+i,1)^.5)*

(gv(n+i+1,1)-gv(n+i-1,1))/(2*dZ);

   

end

 

end

 

%GOVERNING EQUATIONS

 

% At First Node 

 

%Energy equation

 

E(1,1)         = g3(gv(1,1))*(-3*gv(2*n+1,1)+4*gv(2*n+2,1)-gv(2*n+3,1))/

(2*dZ) - h*(1-ew^2)*gv(2*n+1,1)*pi*3^.5*gv(1,1)*go(gv(1,1))/(4*vm) ...

               + 2/3*h^2*tan(t*pi/180)*(s)*B1b(gv(1,1),r1(n))*pi*3^.5*gv(1,1)*go

(gv(1,1))*gv(n+1,1)^2/(4*vm) + g4(gv(1,1))*gv(2*n+1,1)*(-3*gv(1,1)+4*gv

(2,1)-gv(3,1))/(2*dZ);

  

%Z-Momentum equation

 

    sum2 = 0;

   

    for km = 1:n-1

    

    sum2 = sum2 + dZ/2*(gv(km,1)+gv(km+1,1));

    

    end

    

E(2,1)         = 1/h*(NfB2(gv(1,1),1)+g1B3(gv(1,1),r1(n),1)*gv(2*n+1,1)-pi/6*

(gv(n,1)/vm)^(2/3)) - sum2;

 

%X-Momentum equation 

 

if NfB2(gv(1,1),1)*tan(fi*pi/180)/tan(t*pi/180) <=  (2/3*(h/tan(t*pi/180))^.5*

(s)*B1b(gv(1,1),r1(n))*pi*3^.5*gv(1,1)*go(gv(1,1))/(4*vm)*gv(2*n+1,1)^.

5*gv(n+1,1)+NfB2(gv(1,1),1)*tan(del*pi/180)/tan(t*pi/180))

 

E(3,1)         = NfB2(gv(1,1),1)*tan(fi*pi/180)/tan(t*pi/180)+ g2B1(gv(1,1),r1

(n))*gv(2*n+1,1)^.5/(h*tan(t*pi/180))^.5*(-3*gv(n+1,1)+4*gv(n+2,1)-gv(n+3,
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1))/(2*dZ) ...

               - NfB2(gv(1,1),1)*tan(del*pi/180)/tan(t*pi/180) - 2/3*(h/tan

(t*pi/180))^.5*(s)*B1b(gv(1,1),r1(n))*pi*3^.5*gv(2*n+1,1)^.5*gv(n+1,1)*gv

(1,1)*go(gv(1,1))/(4*vm);

 

else 

    

E(3,1)         = (-3*gv(n+1,1)+4*gv(n+2,1)-gv(n+3,1))/(2*dZ)*g2B1(gv(1,1),r1

(n))*gv(2*n+1,1)^.5/(h*tan(t*pi/180))^.5;

 

end

 

%At Last Node

 

%Energy equation 

 

E(3*n-2,1)    = (3*gv(3*n,1)-4*gv(3*n-1,1)+gv(3*n-2,1))/(2*dZ)*g3(gv(n,1)) + 

(3*gv(n,1)-4*gv(n-1,1)+gv(n-2,1))/(2*dZ)*gv(3*n,1)*g4(gv(n,1));

 

%Z-Momentum equation

 

E(3*n-1,1)    = 1/h*(NfB2(gv(n,1),n) + g1B3(gv(n,1),rN(n),n)*gv(3*n,1) - pi/6*

(gv(n,1)/vm)^(2/3));

 

%X-Momentum equation

 

if NfB2(gv(n,1),n)*tan(fi*pi/180) <= tan(t*pi/180)*pi/6*(gv(n,1)/vm)^(2/3);

    

E(3*n,1)      = NfB2(gv(n,1),n)*tan(fi*pi/180) + g2B1(gv(n,1),rN(n))*(gv(3*n,

1)/h)^.5*tan(t*pi/180)^.5*(3*gv(2*n,1)-4*gv(2*n-1,1)+gv(2*n-2,1))/(2*dZ) ...

                - tan(t*pi/180)*pi/6*(gv(n,1)/vm)^(2/3) ;

 

else

 

E(3*n,1)      = g2B1(gv(n,1),rN(n))*(gv(3*n,1)*tan(t*pi/180)/h)^.5*(3*gv(2*n,

1)-4*gv(2*n-1,1)+gv(2*n-2,1))/(2*dZ);

 

end

 

%At Middle Nodes

 

%Energy equation

 

for i = 2:n-1

    

    b = 3*i-2;

    

221



    E(b,1)   = dg3(gv(i,1))*(gv(i+1,1)-gv(i-1,1))/(2*dZ)*gv(2*n+i,1)^.5*(gv

(2*n+i+1,1)-gv(2*n+i-1,1))/(2*dZ) ...

             + g3(gv(i,1))/(2*gv(2*n+i,1)^.5)*((gv(2*n+i+1,1)-gv(2*n+i-1,1))/

(2*dZ))^2 + g3(gv(i,1))*gv(2*n+i,1)^.5*(gv(2*n+i+1,1)-2*gv(2*n+i,1)+gv

(2*n+i-1,1))/dZ^2 ...

             + h*tan(t*pi/180)*g2B1(gv(i,1),ri(n,i))*gv(2*n+i,1)^.5*((gv(n+i+1,1)-

gv(n+i-1,1))/(2*dZ))^2 - h^2*g5(gv(i,1))*gv(2*n+i,1)^1.5 ...

             + dg4(gv(i,1))*gv(2*n+i,1)^1.5*((gv(i+1,1)-gv(i-1,1))/(2*dZ))^2 + g4

(gv(i,1))*3/2*gv(2*n+i,1)^0.5*(gv(2*n+i+1,1)-gv(2*n+i-1,1))/(2*dZ)*(gv(i+1,

1)-gv(i-1,1))/(2*dZ) ...

             + g4(gv(i,1))*gv(2*n+i,1)^1.5*(gv(i+1,1)-2*gv(i,1)+gv(i-1,1))/dZ^2;

         

end

 

%Z-Momentum equation

 

for i = 2:n-1;

    

    c = 3*i-1;

 

    sum3 = 0;

   

    for kr = i:n-1

    

    sum3 = sum3 + dZ/2*(gv(kr,1)+gv(kr+1,1));

    

    end

    

    E(c,1)   = 1/h*(NfB2(gv(i,1),i)+gv(2*n+i,1)*g1B3(gv(i,1),ri(n,i),i)-pi/6*(gv

(n,1)/vm)^(2/3)) - sum3;

    

end

 

%X-Momentum equation

 

for i = 2:n-1

    

    d = 3*i;

    

    sum4 = 0;

   

    for kl = i:n-1

    

    sum4 = sum4 + dZ/2*(gv(kl,1)+gv(kl+1,1));

    

    end
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if NfB2(gv(i,1),i)*tan(fi*pi/180) <= (h*tan(t*pi/180)*sum4 + tan(t*pi/180)

*pi/6*(gv(n,1)/vm)^(2/3));

    

     E(d,1)   = NfB2(gv(i,1),i)*tan(fi*pi/180) + g2B1(gv(i,1),ri(n,i))*(gv(2*n+i,1)

*tan(t*pi/180)/h)^.5*(gv(n+i+1,1)-gv(n+i-1,1))/(2*dZ) ...

                - h*tan(t*pi/180)*sum4 - tan(t*pi/180)*pi/6*(gv(n,1)/vm)^(2/3);

           

else

    

     E(d,1)   = g2B1(gv(i,1),ri(n,i))*(gv(2*n+i,1)*tan(t*pi/180)/h)^.5*(gv(n+i+1,

1)-gv(n+i-1,1))/(2*dZ);

   

end

 

end

 

 

%SOLUTION

 

stopp = abs(E(1,1));

 

for bm = 2:3*n;

 

stopp = max(stopp,abs(E(bm,1)));      % Finding the largest value of the 

magnitudes of the residuals

 

end

 

 if stopp < 0.01;                                  % 0.01 is the tolerance R1

 

 break;

 

 else

 

JI=inv(J);

 

Inc=JI*-E;

 

gv = gv + Inc*NewtonRaphsonModifier

 

 end;

 

end

 

gv

 

Fc
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E

 

stopp

 

hp

 

%CRITERION TWO

 

absJ     = abs(J);

 

TabsJ    = transpose(absJ);

 

MTabsJ   = max(TabsJ);

 

TMTabsJ  = transpose(MTabsJ);

 

sum5  = 0;

 

for z1 = 1:3*n

 

sum5 = sum5 + (E(z1,1)/TMTabsJ(z1,1))^2;

 

end

 

criteria_ = sum5^0.5                         % Calculation of the second tolerance R2

 

end
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