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Abstract 

The health monitoring of critical structures plays a crucial role in locating damage positions 

timely and preventing catastrophic failures. Much attention has been devoted to exploiting 

piezoelectric sensors/actuators to develop techniques of recording elastic wave signals to 

realize structural health monitoring (SHM). This thesis is to conduct a systematic 

investigation of the dynamic behaviour of piezoelectric sensors and their application in 

quantitative crack identification in SHM systems.  

A typical SHM system contains piezoelectric sensors bonded to a host structure to be 

monitored. This structure is subjected to a dynamic excitation which will induce elastic wave 

propagation in it. When the wave encounters cracks, it will be scattered and the scattered 

wave will be recorded by the piezoelectric sensors. The recorded signals contain the 

information of the cracks thus can be used to identify the parameters of the cracks.  

In this study, theoretical modelling and simulation are conducted to investigate the load 

transfer between the sensor and the host structure, the dispersion relation of wave 

propagation, and the multiple scattering of elastic waves. In addition, a crack identification 

technique is investigated using the voltage signals based on optimization method. Four 

aspects of the work were accordingly studied and examined. Firstly, a new model is 

developed for surface-bonded piezoelectric thin-sheets with bending effect. The coupled 

electromechanical behaviour and the effect of bending upon load transfer and local stress 

field are studied. Secondly, a new analytical treatment is provided for wave propagation in 

layered piezoelectric structures, including dispersion characteristics and harmonic wave 

propagation. The two lowest wave modes of the guided wave in such structures are analyzed. 
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Thirdly, a new semi-analytical solution is determined for the complicated dynamic 

interaction between piezoelectric sensors and cracks using pseudo incident wave method and 

superposition. This method has the advantages of the reliability of analytical solutions and 

the flexibility of typical numerical methods, and finds explicit relations between the voltage 

output of the piezoelectric sensor and the crack parameters. Inversely, by integrating this 

relation and known voltage data into an optimization process, a novel crack identification 

technique is established. This technique quantitatively identifies the position, the length and 

the orientation of typically embedded cracks effectively. 

The methods proposed in this thesis can be used to understand the dynamic behaviour 

of piezoelectric based SHM systems, multiple scattering of elastic waves and provide 

insights into developing new methods for quantitative crack identification.  
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Chapter 1: Introduction and objectives  

This chapter is divided into three sections. Section 1.1 presents the background and 

motivation of the thesis topic. Section 1.2 provides a comprehensive literature review of 

multiple scattering of elastic waves and crack identification methods. Section 1.3 introduces 

the research objectives and summarizes the structure of this thesis. 

 

1.1 Background and motivation 

The health monitoring of critical parts of engineering structures plays a significant role in 

locating the damage position timely, evaluating the reliability and safety effectively as well 

as preventing catastrophic failures (Boller, 2000; Chang et al., 2011). There were many 

major accidents due to lacking or poor structure health monitoring (SHM). Clearly, it is of 

significant social and economic values to study SHM techniques. SHM has attracted 

considerable interest among scientific research communities. Just taking SHM application in 

aerospace as an example, NASA has undertaken the program of "Integrated vehicle health 

management (IVHM)" and Boeing has conducted a project on Airplane Health Management 

(AHM) system. Other related technologies have been tested and used in DALTA Ⅱ 

composite rocket engine box, F-22, F-35 and other aircraft structures. Based on previous 

studies, it has been established that the goal of SHM is to achieve long-term, real-time, 

automatic monitoring, and to provide detection results directly. However, most of the 

traditional monitoring methods involve human intervention, thus not practical for 

inaccessible cases such as aircraft and buried pipelines. In these cases, the health monitoring 
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system requires performing on in-service structures in isolated environments without manual 

interference.  

A typical in-service SHM system is shown in Fig. 1.1, which mainly consists of a 

control centre (computer), a signal generator, a power amplifier, actuators/sensor systems, 

data acquisition, and damage identification methods, etc. In the scope of mechanical 

engineering, the efforts mainly focus on two parts: damage identification methods and 

actuator/sensor systems, specifically, (1) the development of reliable damage identification 

methods to detect damage features from the recorded signals; (2) the construction of 

automated health monitoring actuator/sensor systems and the work mechanism to achieve 

corresponding damage identifications. In the following section 1.1.1, a comprehensive survey 

of major damage identification methods is presented; and in section 1.1.2, piezoelectric smart 

sensor systems for SHM are examined. 

 

 

Fig. 1.1: A typical in-service (online) SHM system 

1.1.1 Damage identification methods 

Damage in materials or structures will change the global or local parameters, such as local 

stiffness, stress distribution or electro-mechanical impedance and so on. Damage 

identification methods are the bridge to connect these changes in signals with the structural 
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health conditions, and the tools to figure out the physical meaning of these changes (Su and 

Ye, 2009).  

After decades of study, various damage identification methods have been developed for 

the health monitoring of different kinds of materials and structures, e.g. space vehicles and 

infrastructure. Many wave fields are used as monitoring signals to identify damage. The 

major fields for damage identification include the electromagnetic field (e.g. eddy current, 

radiography), thermal field (e.g. thermography), mechanical field (e.g. vibration and 

ultrasonic) and the combination of them. Each kind of them has its advantages and 

disadvantages for damage identification and the choice should be made per the sensitivity for 

the damage or relevant structural parameters among others.  

The eddy-current-based detection and radiography-based detection are two of the 

mostly widely used electromagnetic testing methods. The eddy currents are closed loops of 

electrical current in materials or structures, which will be distorted if there are damages 

(Staszewski et al., 2004). Interruptions in the flow of eddy currents and changes in 

electromagnetic impedance, caused by damages, can be detected with proper equipment. 

There are many related research works in this area (Banks et al., 2002; Li et al., 2016; Ren et 

al., 2013; Sodano, 2007). Eddy-current-based damage identification is simple to implement 

and not expensive. However, it is limited to conductive materials and power-consuming. 

Besides, the signals are extremely complicated to interpret to identify damage. Radiography 

is an imaging method based on electromagnetic radiation, such as gamma-Rays or X-Rays. 

To obtain the image of internal structures and to identify inner damages, EM radiation will be 

generated and pass through the structure. In this process, a certain amount of radiation will be 

absorbed, and the absorption rates rely on the composition and density of the structure. Then 
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a detector will capture the radiation passing through the structure and provide a two-

dimensional shadowgraph of the internal structures. Recent research works on radiography-

based damage identification can be found in literature (Durão et al., 2015; Shi et al., 2014; 

Tan et al., 2011). Although radiography-based damage identification can detect surface and 

internal flaws with high resolution, the safety hazard of radiation to human health limits its 

application. 

Thermography can measure temperature information using infrared radiation, which 

will be emitted from any object at a temperature higher than absolute zero (Modest, 2013). 

And it can also be used for damage detection based on the effect of damage on thermal 

conductivity and emissivity of test objectives (Montesano et al., 2014). Various studies have 

been conducted on infrared thermography and its applications on temperature measurement 

and non-destructive testing (Henneke et al., 1979; Munoz et al., 2016). They show that 

thermography-based damage identification is non-contact, ono-invasive and in real time, but 

it only works well in controlled environments because it relies highly on the working 

conditions, e.g. the surrounding airflow, temperature and humidity (Usamentiaga et al., 2014). 

The mechanical field has also been widely used for damage identification. The major 

mechanic-field-based damage identification methods include vibration-based, acoustic-

emission-based (AE-based) and elastic-wave-based, etc., which are summarized in Table 1.1. 

Different methods have their own advantages and disadvantages. Vibration-based damage 

identification works effectively in the case of large damages, while it has little sensitivity to 

small damages as they do not have a significant influence on vibration characteristics.  
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Table 1.1: Major damage identification methods based on mechanical field (Modified from Table 

1.1 in  Su and Ye, 2009). 

Damage 

Identification 

Method 

Mechanism 
Advantage and 

Application 

Disadvantage and 

Limitation 

Vibration-

based 

Damages will reduce 

structural stiffness, shift 

natural frequencies, 

change mode shape and 

curvature, and affect 

damping properties etc.  

1. Easy to implement;  

2. Low cost;  

3. Particularly effective 

for detecting large 

damage1. 

1. Insensitive to small 

damage or damage 

growth; 

2. Difficult to excite high 

frequencies;  

3. Hypersensitive to 

boundary and 

environmental changes. 

Acoustic-

Emission-

based 

Sudden release of strain 

energy generates 

transient waves, whereby 

presence or growth of 

damage can be evaluated 

by capturing damage-

emitted acoustic waves. 

1. Able to detect 

damages in different 

modalities (matrix 

crack, delamination, 

welding flaw and 

corrosion etc.); 

2. Able to predict 

damage growth;  

3. Surface mountable 

and good coverage. 

1. Prone to contamination 

by environmental noise; 

2. Only qualitatively 

detection; complex 

signal, passive method;  

3. High damping ratio of 

the wave, and therefore 

suitable for small 

structures only, also 

locale damage only. 

Elastic-wave-

based 

Elastic waves will be 

reflected and scattered 

by damage, and 

evaluation of damage 

can be achieved by 

scrutinizing the wave 

signals scattered by 

damage. 

1. Cost-effective, very 

fast inspection, 

repeatable; 

2. Sensitive to small 

damage;  

3. Able to detect both 

surface and internal 

damage. 

1. Difficult to simulate 

wave propagation in 

complex structures;  

2. Multiple wave 

modes simultaneously  

3. Complicated multiple 

scattering and dynamic 

interactions. 

                                                 
1 Large damage in this table typically refers to that above several millimeters, while small damage is normally 

hundreds of micrometers to several millimeters. 
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AE-based damage identification simply ‘listens’ for the acoustic waves induced by the 

energy released from active features (e.g. crack growth). Unfortunately, AE systems can only 

qualitatively identify how much damage in a structure, but cannot obtain the quantitative 

results about damage size and position.  

Elastic waves can be reflected and scattered by discontinuities, and the discontinuities 

can then be detected by scrutinizing the scattered wave signals. Compared to vibration 

signals, elastic waves are more sensitive to small damages and the change of material 

parameters because they can be excited in a much higher frequency. Therefore, they have 

become one of the most popular potential signals in the damage identification (Bakker and 

Verweij, 2002; Biemans et al., 1999; Glushkov et al., 2016; Wandowski et al., 2015). Elastic-

wave-based damage identification is cost-effective, fast and repeatable. Plus, it can detect 

varieties of damages like cracks, delamination and corrosion etc. embedded in structures 

under monitoring. 

 Since only longitudinal waves exist in the air and water, the wave propagation law is 

simple. Therefore, the medical imaging and acoustic imaging is well developed with 

extensive applications. However, in the case of solid structures health monitoring, it will be 

challenging to use the elastic waves because their wave propagation law here is complicated. 

The wave reflection will induce complicated mode conversion phenomena, which in turn 

makes signals instinctually interpretable (Achenbach, 2002). In detail, if a simple 

longitudinal wave propagates to an interface, it will be reflected to a longitudinal wave and a 

transverse wave. After several reflections in the solids, the wave propagation will become 
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very complicated. Thus, the mode conversion phenomenon makes it very difficult to detect 

cracks, especially when the multiple scattering is considered. To avoid the calculation of 

complex scattering field, mostly the scanning method is used. The scanning method records 

only two fundamental parameters, echo amplitude and time of flight (pulse transit time of 

waves). The widely used scanning methods in Non-Destructive Testing (NDT) include near 

field point scan (A-scan, B-scan, C-scan etc.) and phase array imaging, as shown in Fig. 1.2.  

 

Fig. 1.2: (a) Near-field point scans; (b) phase array scans (Image used with permission 

from Olympus Corporation) 

However, the scanning method has its disadvantages. The point scans (e.g. A-scan, B-

scan, C-scan etc.) are not efficient, and cannot monitor the structural health in real time. For 

the phase array scans, there are blind positions, as the black sections show in the Fig. 1.2(b). 

Meanwhile, both just obtain qualitative information and rough images of damages. Recently, 

advanced signal processing techniques have been applied to deal with the ultrasonic scanning 

data and to further obtain the quantitative results, such as the damage position and size 

(Hoseini et al., 2013, 2012). Still, the scanning process limits its efficiency, and it cannot 

work in real time. 
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 With the rapid increase in computer calculation speed and computing power, elastic 

wave fields can now be simulated and determined quickly through solving the multiple 

scattering problem of elastic wave induced by the interaction among discontinuities in 

structures under monitoring. Specifically, Elastic waves can be generated by exciters or 

transducers and propagate in solid structures. When there are damages, such as cracks in the 

structures, the wave will be reflected or scattered, and the scattered wave will be reflected 

again by sensors/actuators or inhomogeneities. Therefore, the dynamic interaction involves 

multiple scattering of the elastic waves between the damages. By solving the multiple 

scattering problems, the relation between recorded signals and damage parameters can be 

identified, and then quantitative damage identification can be realized by extracting the 

damage size and position information from the received wave signals.   

 Motivated by this idea, this project will develop a novel quantitative damage 

identification method based on multiple scattering of elastic waves. Considering that cracks 

are one of the most common damages in structures, this research will focus on the 

quantitative identification of crack parameters, including number, position, length and 

orientation of cracks. The related specific implementation methods are summarized in section 

1.2.4 in the literature review. 

1.1.2 Layered piezoelectric smart structures 

Although there are various sensors available nowadays for in-service SHM systems, 

piezoelectric sensors have special comparative advantages with their quick response, high 

linearity, small flexible size, and low price (Li and Wang, 2009). Thus, remarkable academic 

interest can be noticed in exploring the techniques of using piezoelectric sensors/actuators to 

construct a self-monitoring smart network for collecting diagnostic elastic wave signals to 
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realize SHM (Crawley and De Luis, 1987; Giurgiutiu, 2005; Na and Lee, 2013; Norris and 

Achenbach, 1982; Wang and Huang, 2004a).  

Relevant works have mostly focused on organizing sensor arrays with traditional 

piezoelectric transducers (Ihn and Chang, 2004; Zhu et al., 2013). Nevertheless, these 

transducers cannot be organized in a high density, and therefore, provide only limited 

information and monitoring capability of damage. Recent developments in micro-fabrication 

and microcircuits packaging technologies make it possible to add pre-designed electrodes on 

the surface of thin-sheet piezoelectrics (Masahiro Inoue et al., 2007; Saadon and Sidek, 2011), 

which enables the generation of general forms of elastic waves and the collection of wave 

signals in a much higher density. Piezoelectric smart layers or sensors can be realized in two 

ways. One is to directly design the active layer by using epoxy medium with bulk ceramic 

fibres (Horner et al., 2002; Wilkie et al., 2000; Bent et al., 1995), such as active fibre 

composite (Hagood et al., 1993) and macro fibre composite (Wilkie et al., 2000) etc. More 

examples of piezoelectric composites and polymers can be found in review papers (Jain et al., 

2015; Ramadan et al., 2014; Williams et al., 2002). This way is relatively difficult to 

manufacture, meanwhile it is very complicated to determine the effect of the active layer on 

elastic waves. The other way is a continuous piezoelectric layer (e.g. bulk piezoceramic) 

coated with pre-designed electrode layers, such as continuous silver coating and interdigital 

electrodes (Hagood et al., 1993) etc.  Fig. 1.3 shows typical examples of flat piezoelectric 

smart layers with pre-designed electrodes. Obviously, the piezoelectric layer with pre-

designed electrodes can already realize collecting point signals of elastic waves in a very 

high density and generate most types of wave modes. The easiest way is to cut the silver 

coating of common used piezoelectric thin-sheets into the intended shape.  
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 These piezoelectric smart layers can be bonded to the critical parts of solid structures 

to monitor their health condition. Thus, this thesis proposes a layered piezoelectric smart 

structure which consists of the structure, the piezoelectric sensor and the pre-designed 

electrodes. The thin piezoelectric layer with pre-designed electrodes will be used to record 

elastic wave signals. The relation between resulting signals and crack parameters can be 

obtained theoretically or numerically by solving the dynamic interaction problems of elastic 

waves in layered piezoelectric smart structures with cracks. This relation can be integrated 

into the time-reversal or optimization process to estimate crack parameters with the measured 

signals recorded by the piezoelectric smart layer.  

 

 

Fig. 1.3: Typical examples of flat piezoelectric smart layers (Deraemaeker and Nasser, 

2010; Hurlebaus and Gaul, 2004) 
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1.2 Literature review  

This section provides a comprehensive survey of the state-of-the-art of related works on 

multiple-scattering-based crack identification, including modelling and simulation of 

piezoelectric sensors/actuators (section 1.2.1), wave propagation in layered piezoelectric 

smart structures (section 1.2.2), dynamic interaction and multiple scattering of elastic waves 

(section 1.2.3), and crack identification based on elastic waves (section 1.2.4). 

1.2.1 Modelling and simulation of piezoelectric sensors/actuators  

Piezoelectric sensors, which can transform mechanical deformation to voltage signals, have 

been widely employed to measure deformation magnitude as well as to record elastic waves. 

Inversely, the piezoelectric actuators under electric field can generate a mechanical 

deformation and elastic waves in host structures. Various factors can influence the efficiency 

of actuators and sensors, including material properties of both the piezoelectric sheets and 

host structure, their structural configuration as well as the applied loads, etc. Developing a 

model for the piezoelectric elements (sensors/actuators or smart layers) to understand the 

electromechanical coupled behaviour between the sensors/actuators and the substrate is a 

prerequisite for achieving the goal of crack identification.  

Scholars have extensively studied the modelling and simulation of piezoelectric 

sensors/actuators, using numerical, analytical and hybrid approaches. For the numerical 

approaches, finite element method (FEM) is one of the most powerful tools to simulate 

piezoelectric sensors/actuators behaviour; there are even several commercial handy software 

and codes such as the popular ANSYS. Despite the convenience, FEM simulation cannot 

explain well the corresponding physical meaning of the numerical results (Huang et al., 

2010). Besides, for the dynamic response of the structures subjected to high-frequency 
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incident waves, small element size and accurate mesh are required, which results in a big 

matrix and a large amount of calculations. The shortcomings of FEM can be fixed by 

combining FEM with analytical approaches: FEM simulation can be applied to the 

piezoelectric elements and the near areas, while analytical approaches for waves in the rest of 

the structures (Huang et al., 2010). However, the difficulty of the hybrid method lies in 

solving the coupled field between their respective solutions along the boundaries, because it 

is a complicated problem per se to satisfy the continuous boundary between the area of FEM 

solution and analytical solution. Fortunately, there are many good analytical models for the 

flat piezoelectric actuators and sensors. The following part reviews and summarizes the 

analytical approaches for modelling piezoelectric sensors/actuators coupled with the host 

structure. 

There are mainly three kinds of analytical approaches to model the coupled electro-

mechanical behaviour of the piezoelectric thin sheets attached to the host structure: the pin-

force model, the beam-theory-based model, the elasticity-based model.  

The pin-force model was the most simplified actuator model constructed for a 

piezoelectric layer attached to a cantilever beam based on force balance analysis (BAILEY 

and UBBARD, 1985). This model assumed that the force between the layer and the beam 

was constantly proportional to the voltage applied to the layer. The advantage of this model 

lies in its simplicity and that it works well for thin and soft piezoelectric actuators.  However, 

it is not accurate in other cases.   

The beam-theory-based model, which is more elaborated than the pin-force model, was 

then developed by Crawley and De Luis (1987) for the same piezoelectric structure. The 

cantilever beam was solved using classical Euler–Bernoulli beam theory and the layer is 
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simplified as a one-dimensional element with uniform axial stress across its thickness. It is 

found through this study that the load transfer is mainly achieved by the shear stress near the 

two ends of the layer. In later works, this model is modified by including the bending 

deformation of the actuator (Crawley and Anderson, 1990) and the transverse shear force in 

the beam model (Im and Atluri, 1989). Based on classical beam and plate models, actuators-

induced bending and extension of piezoelectric structures have been extensively studied for 

different geometries and loading conditions (Han and Lee, 1998; Reddy, 1999; Tzou and 

Tseng, 1991). In a recent study, a simple beam model has been used to evaluate the response 

of micro-cantilevered layers containing the effects of buffer layers and electrodes (Peng et al., 

2012). In these studies, since the integrated structures are modelled as beams or plates, the 

local deformation near the actuators tips, which dominate the load transfer, are not properly 

evaluated. 

The above approaches are mostly limited to the global response of the structures, where 

the host structures are modelled as beams, plates or shells. However, the thickness of the 

common used piezoelectric sheets is always very thin (<1 mm), much thinner than that of the 

host medium. In this case, the local stress distribution near piezoelectric sensors/actuators 

plays a crucial role in the load transfer of smart structures. Then the host medium can be 

modelled as a semi-infinite medium (half space) based on the elasticity theory, while the 

modelling of thin piezoelectric sensors/actuators can use the simplified models. Such 

treatment suits for the most commonly used thin-sheet sensors/actuators to simulate their 

deformation in the smart structures. Integrating the simple actuator model into the structures 

can provide a relatively simple but accurate prediction of the response of the smart structures. 

A one-dimensional model of the thin-sheet piezoelectric actuator has been developed by 
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Wang and Meguid (2000) to investigate the load transfer between surface-bonded/embedded 

actuators and a half elastic plane, and to examine the effect of interfacial debonding. This 

article is cited by other 67 papers, and the model is widely used to depict the coupled electro-

mechanical behaviour of a piezoelectric sheet attached to structures. A modified model has 

also been developed to investigate the effect of the adhesive layer between the actuator and 

the substrate by Jin and Wang (2011). However, in these works, the bending deformation of 

the layer has been ignored. This project will develop a modified model of thin-sheet 

piezoelectric actuator bonded to elastic half planes with consideration of the bending 

deformation of the actuator and partial debonding along the interface to study the effect of 

the bending deformation and debonding.  

1.2.2 Elastic wave propagation in layered piezoelectric structures  

The modelling of piezoelectric sensors is one of the most fundamental issues of wave-based 

crack identification using piezoelectric materials, and the other one to realize the crack 

detection is to determine how waves propagate in the structures. Here, the works on the 

eigenvalue solution and general solution of wave propagation in the layered piezoelectric 

structures will be summarized.  

The eigenvalue solution will determine the dispersion relation of wave propagation in 

the layered piezoelectric structures. “Dispersion is the phenomenon of phase velocity of a 

wave depending on its frequency” (Elachi and Zyl, 2006). The dispersion can be described 

using the dispersion curves, which gives the relation of the velocity of a wave to its 

frequency or wave number. The general solution gives the dynamic response of structures 

subjected to a given excitation or a specific incident wave. It can be determined following the 

similar process for dispersion equations. The relation between the eigenvalue solution and 
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the general solution can be understood by referring to the difference between free vibration 

and forced vibration. 

The anti-plane problem of wave propagation in layered structures has been extensively 

studied. Typical works include the dispersion characteristics of Love waves in a piezoelectric 

lamina attached to a half-space (Wang et al., 2001) and the propagation of surface waves in 

piezoelectric coupled solids (Qian et al., 2010). Although SH waves in such structures are 

well understood (Jin et al., 2005; Kielczyński et al., 1990; Liu et al., 2001; Pang et al., 2016), 

because of the complicated mode conversion phenomena induced by reflection and scattering, 

the works on in-plane wave propagation in piezoelectric layers attached to solid structures 

are relatively limited.  

Long wave propagation in layered elastic structures wasfirst investigated by Bromwich 

(1898). This work was then modified by Love (1911) who also considered short waves, of 

which wave lengths were short compared to the thickness of the layer. Achenbach and 

Keshava (1967) studied the dispersion curves of waves in an isotropic elastic layer coupled 

by an isotropic elastic half-space. Vinh et al. (2016) derived the exact dispersion equations of 

Rayleigh waves in an orthotropic elastic layer bonded to an orthotropic elastic semi-infinite 

structure. These works provided exact models for dispersion characteristics of layered elastic 

structures. Wave propagation in layered piezoelectric structures has also been studied with 

the main focus on Lamb wave and surface wave (Datta et al., 1988; Nayfeh, 1995). Lamb 

wave propagation in a dielectric half-space overlaid by a thin piezoelectric layer has been 

studied using a simplified numerical solution of the dispersion curve by segmenting the 

phase velocity spectrum into different ranges (Jin et al., 2002). The Rayleigh waves 

propagating in a layered pre-stressed piezoelectric layered structure have been numerically 
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investigated by Mseddi et al. (2016). The dispersion characteristics of surface waves in a 

piezoelectric layer bonded to a piezo-magnetic semi-infinite host medium (Pang et al., 2008) 

and the wave propagation in double-layered piezoelectric plates  (Cheng and Sun, 1975) have 

also been studied.  

These works provided useful information about the characteristics of elastic waves in 

layered structures but were mostly from complicated numerical solutions. For cases where 

the layers are very thin, the approximate dispersion relation for wave in such thin layers 

bonded to semi-infinite structures have been studied by modelling the layer as a thin plate 

(Achenbach and Keshava, 1967; Tiersten, 1969), or by expanding the displacements and 

stresses of the layer into Taylor series along thickness of the layer (Vinh and Linh, 2012; 

Pham and Vu, 2014). Achenbach and Keshava obtained the approximate dispersion curves of 

free waves based on the Mindlin’s plate theory (Achenbach and Keshava, 1967), but this 

model was for an elastic layer instead of piezoelectric layer. Vinh et al. developed a third 

order approximate equation for the dispersion relation of Rayleigh waves (Vinh and Linh, 

2012), and then established a modified fourth order model (Pham and Vu, 2014). These two 

models provided good approximate solutions but can only determine the surface wave mode.  

It is, therefore, the objective of the current study to develop a simplified yet accurate 

dispersion equation of wave propagation in layered structures with an elastic substrate and a 

surface-bonded piezoelectric layer as sensors, and then study wave propagation in this 

structure under in-plane harmonic loads with the transverse inertia considered. The thickness 

of such a piezoelectric layer is usually small (0.1-0.5 mm), and, thus, a simplified theoretical 

model can be developed by modelling the piezoelectric layer as an electro-elastic film. This 

assumption reduces the complex problem to the non-trivial solution of binary quadratic 



17 

 

equations. To validate the current model, the dispersion curves of the wave are determined 

and compared with exact models. Two major wave modes are discussed in detail, and the 

influence of the material and geometric properties of the structures is studied. 

1.2.3 Dynamic interaction and multiple scattering of elastic waves 

Elastic wave, which can be generated by actuators or transducers and propagate in solid 

structures, will interact with obstacles (e.g. cracks, inhomogeneities and sensors), and these 

dynamic interactions will result in scattered waves. If the objects are far from each other 

enough or the difference of the material properties is very small, then single scattering is a 

good approximation for the elasto-dynamic problem. Otherwise, the elastic wave propagates 

back and forth between two or more scatters; this physical phenomenon is called multiple 

scattering of elastic waves.  

Multiple scattering of elastic waves is a complex and difficult frontier problem to 

resolve. The main numerical methods are T-matrix methods (Waterman, 1965), boundary 

element methods (BEM) (Cruse, 1972), and finite difference time domain method (FDTD) 

(Botteldooren, 1995). The T-matrix method was firstly provided by Waterman (1965) to 

study the electromagnetic scattering problem. This method is also called null field method 

(Martin, 2006). The matrix elements can be determined by matching boundary conditions for 

solutions of governing equations. BEM, also called the boundary integral equation method or 

boundary integral method (Cruse, 1972; Zhao et al., 2016), is a computational method of 

determining the associated system of linear partial differential equations through the 

discretization of an mathematically equivalent “integral equation that is defined on the 

boundary of the domain and an integral that relates the boundary solution to that in domain” 

(Ang, 2014, 2007). FDTD is a numerical elasto-dynamic modelling technique to find 
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approximate solutions of differential equations governing the dynamic behaviour of 

structures in the time domain (Botteldooren, 1995; Hosokawa, 2015; Sun and Wu, 2007).  

These numerical methods have been successfully used to solve dynamic interaction 

problems of cracks and other inhomogeneities in an elastic medium and multiple scattering 

of elastic waves in structures. Typical examples include the dynamic interaction between 

cracks using the integral transform method (Itou, 1980), and BEM (Gross and Zhang, 1988; 

Zhang, 1992; Zhang and Achenbach, 1989). Examples also include the dynamic interaction 

between inhomogeneities using the T-matrix approach (Varadan et al., 1978), boundary 

integral equation method (Lee and Mal, 1995; Schafbuch et al., 1990). These methods are all 

based primarily on boundary integral equations, result in a system of equations which are 

highly singular, so they are less accurate and less efficient compared to analytical solutions 

(Wang et al., 2015).  

Analytical or semi-analytical study of multiple scattering of elastic waves is very 

attractive because it provides reliable and accurate analytical solutions allows by avoiding 

complicated numerical integrations in BEM, but it is limited to solving only the multiple 

scattering of inhomogeneities in regular shapes, such as through-thickness cracks, penny-

shaped cracks, circular inhomogeneities, and piezoelectric thin-sheet. For the dynamic 

interaction of these regular shaped scatters, analytical or semi-analytical solutions can be 

found with solutions of scattered field of a single scatter and pseudo incident wave (PsIW) 

method.  The PsIW method was firstly provided by Wang and Meguid (1997) for solving 

multiple scattering problems in an infinite elastic medium with a through-thickness crack and 

an circular fibre subjected to anti-plane loadings. The proposed PsIW method reduces the 

complicated multiple scattering problem to a self-consistent solution of scattered waves from 
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a single crack/inhomogeneity problem. Then, this method was used to determine the 

interactions between piezoelectric actuators (Wang and Huang, 2001, 2006a), wave 

propagation in an infinite host structure with a crack (Wang and Huang, 2004b), and dynamic 

interactions among a large number of circular inhomogeneities (Wang and Wang, 2016). 

From these studies, we can see, instead of simulating the response of such complicated 

systems using purely numerical or analytical methods, the current technique will take 

advantage of the accuracy and reliability of analytical solutions and the flexibility of 

numerical methods. Using this method, the multiple scattering problem is reduced to the 

coupled solution of scattered waves of single inhomogeneity, for which analytical solutions 

or simpler numerical solutions could be derived. By considering the consistency condition 

between different inhomogeneities, the steady state dynamic solution of multiple interaction 

problems can be formulated in terms of coupled single inhomogeneity solutions (Wang et al., 

2015). 

However, the pseudo-incident wave technique in these studies was all applied to the 

dynamic interactions in infinite mediums. For the dynamic interaction problems in layered 

structures, the scattered waves of cracks will be reflected by interfaces between layers, 

resulting in complicated displacement and stress components along the interfaces, which 

cannot be solved by using the pseudo-incident wave technique directly.  

Therefore, based on their works, this project will study the dynamic interaction of a 

surface-bonded piezoelectric smart sensor with embedded cracks in a half-space elastic 

medium, i.e. the effect of cracks upon the surface wave signals. This problem will be solved 

by using the pseudo-incident wave technique and proper superposition.  
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1.2.4 Crack identification based on elastic waves 

As summarized in the previous damage identification methods, the sensing technologies for 

in-service SHM systems using mechanical signals are classified into two major types of 

approaches: the vibration-based and the wave-based (Su et al., 2006; ZOU et al., 2000). The 

disadvantage of the vibration-based method lies in its relative insensitivity to local small 

damage which cannot change its vibration characteristics and its hypersensitivity to 

environmental and boundary changes. Therefore it lacks reliability and accuracy in 

estimating small damages (Zhu et al., 2013). However, these shortcomings can be fixed by 

elastic waves thanks to their sensitivity to small local damages and changes of material 

properties, and the wave-based method offers special opportunities to identify small local 

cracks.  

The key issue in crack detection using wave-based method is the extraction of health 

information, such as crack position etc., from the measured signals. With a series of 

advancements related to material science and other interdisciplinary fields, different 

diagnosis algorithms have been developed. There are mainly four kinds of approaches to 

identify cracks from the measured signals.  

The preliminary method of interpreting elastic wave signals is to extract the health 

information by comparing the characteristic parameters or feature indexes of damaged 

structures with those of corresponding undamaged ones (Ludwig and Lord, 1996; Schulz et 

al., 1999). These parameters to be used for interpretation could be wave velocity, signal 

amplitude, time of flights (TOF), mechanical impedance, etc., in time/frequency domain. The 

limitation of this method is that it requires that we have the results of the undamaged 
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structure first and that it cannot establish a direct physical connection between the measured 

sensor signals and the crack parameters.  

The second approach is the ultrasonic scan, as introduced in the section 1.1.1. It 

requires the use of a sensor array to scan the target structures. The working mechanism is 

simple and can image embedded cracks. However, this method requires scanning every point 

in the area of interest, so it is not efficient and cannot work for real-time structural health 

monitoring.  

The third method is time-reversal technique. It is built based on the linearity of elastic 

waves. Through inversion calculation of the measured signals, the back-propagating elastic 

waves could be determined and then crack characteristics can be identified. This method has 

been widely used in geological exploration (Meng et al., 2006; Sun and McMechan, 1986). 

However, the time-reversal technique requires many sensors to obtain the comprehensive 

profile of the major signals, and cannot get a clear imaging because of the mode conversion 

of the longitudinal wave and the transverse wave.  

The fourth method is to optimize objective functions of measured signals and 

corresponding empirical or calculation results, which are related to the crack and structural 

parameters. General used optimization methods are intelligence algorithm e.g. the artificial 

neural network (ANN), topology optimization e.g. level-set method (Liu et al., 2016; Liu and 

Yu, 2017) and traditional optimization methods e.g. Broyden–Fletcher–Goldfarb–Shanno 

(BFGS) algorithm.  

Intelligence algorithms, such as the artificial neural network (ANN) and particle swarm 

optimization (PSO), are typical techniques for extracting health information of structures to 

be monitored after the algorithm has been well trained (De Fenza et al., 2015; Su et al., 2006). 
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Topology optimization could identify the irregularly shaped damages. Bellis and Bonnet 

(2013) provided a qualitative crack identification approach using elasto-dynamic topological 

derivative and Sun et al. (2013) presented a novel multiple flaw identification method using 

an enhanced artificial bee colony (EABC) algorithm and extended finite element method 

(XFEM). However, the intelligence algorithms require a huge amount of training data and 

cannot give a direct physical meaning between the input and output. Meanwhile, the 

topology optimization is not efficient and cannot realize the real-time detection. To keep the 

detection efficiency, as well as to avoid the use of many training data, traditional 

optimization methods can be applied to identify cracks quantitatively by combining with the 

theoretical elasto-dynamic solutions. Specifically, the relation between the scattered wave 

signals and crack parameters can be solved in the associated multiple scattering problems. 

This relation can be integrated into a traditional optimization algorithm to identify the 

unknown crack parameters from measured signals at selected locations. Bao and Wang (2009) 

presented a framework to identify a crack in infinite elastic structures subjected to a 

longitudinal incident wave using BFGS algorithm with the strain signals around the crack, 

and then multiple cracks detection was conducted following the same process in their later 

work (Bao and Wang, 2011). 

This project will study the quantitative crack identification method based on traditional 

optimization technique and multiple scattering of elastic waves. The dynamic response and 

scattered wave field will be theoretically predicted for given structural and crack parameters 

and specific external loads by solving the associated multiple scattering problems. Inversely, 

the position, the length and the orientation of embedded cracks will be estimated through 
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local optimization of the difference of measured response data and calculated parameter-

related data. 

 

1.3 Research objectives and outline 

The main objective of the current project is to conduct a systematic investigation of the 

dynamic behaviour of piezoelectric smart structures and its application on quantitative crack 

identification in SHM systems. This structure is subjected to a dynamic excitation which will 

induce elastic wave propagation in it. When the wave encounters cracks, it will be scattered 

and the scattered waves will be recorded by the piezoelectric smart sensors. The recorded 

signals contain the signature of the cracks thus can be used to identify the parameters of the 

cracks.   

 A typical piezoelectric smart structure is suggested in Fig. 1.4. It consists of 

homogeneous isotropic elastic structures attached with a thin piezoelectric smart layer with 

uniform thickness h . It is assumed that the poling direction of the smart layer is along the z-

axis, perpendicular to the x–y plane. Since the host substrate is much thicker than the 

piezoelectric layer, it can be idealized as a half-space (Qian and Hirose, 2012). The thickness 

of the electrodes is in the scale of micrometer or even nanometer, so the effect of the 

electrodes can be ignored when we study the wave propagation in the substrate. To describe 

the structure, a global Cartesian coordinate system (y, z) is illustrated in Fig 1.4., and n local 

Cartesian systems ( , ), 1,2,...,i iy z i n  are used to characterize the cracks. The half-lengths 

and the orientation angles of the cracks are assumed to be ic  and  1,2,..., ,i i n   respectively. 
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The centre of the ith crack is assumed to be located at  ,c c

i iy z  in the global Cartesian 

coordinate. 

 

Fig. 1.4: Schematics of a piezoelectric smart structure for crack identification 

When the width of the structure is significant compared with the thickness of the 

piezoelectric layer, there will be stress concentration at two tips of the piezoelectric layer. In 

this case, the constraint from the surrounding medium will limit the deformation near the tip 

in the direction perpendicular to y-z plane. In this case, the plane strain problem of the 

coupled dynamic behaviour of the structure under harmonic in-plane loading of frequency   

will be investigated. Here, the field variables, including displacement, strain and stress, are 

all in the form of ( , , ) ( , ) .
i t

A x y t A x y e


  For convenience, 
i te 

 term will be omitted in the 

following discussion and only the magnitude (x,y)A  will be considered.  

In this study, theoretical modelling and simulation will be conducted to investigate the 

load transfer along the piezoelectric-host interface, the dispersion characteristics and the 

dynamic interaction with cracks. In addition, a novel quantitative crack identification method 

will be investigated based on optimization of the objective function of the recorded surface 

signals and solutions of the corresponding multiple scattering problem. In this thesis, the 



25 

 

models are developed for the case of structures with homogeneous isotropic materials. In 

detail, we carry out the study with the following steps:  

1. Static model: modelling and simulation of the surface-bonded piezoelectric actuator with 

bending effect. The coupled electromechanical behaviour and load transfer between the 

piezoelectric actuator and the host structure will be provided. 

2. Wave modes and propagation: dispersion characteristics and wave propagation in the 

layered piezoelectric structure. This step is to determine the low order guided wave 

modes and how waves propagate under specific harmonic in-plane loading in the 

structure 

3. Dynamic interaction: multiple scattering of elastic waves induced by the dynamic 

interaction between the piezoelectric layer and embedded cracks. The dynamic response 

of the structure could be predicted theoretically and the effect of the embedded cracks 

upon the surface signals will be determined. 

4. Crack identification: crack identification based on the multiple scattering solutions and 

optimization method. The surface signals will be used to estimate the embedded cracks in 

the structure through local optimization of the difference of response data and theoretical 

prediction. 

Corresponding to these four steps, this thesis will be organized in the following six 

chapters. The first chapter and the last chapter are the introductions and the conclusion 

respectively, while the four chapters in-between (Chapter 2 to Chapter 5) correspond to these 

four steps presented above respectively. 
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Chapter 2: Modelling of piezoelectric thin-sheets with bending 

effects  

The current chapter developed a new two-dimensional analytical model for surface bonded 

thin-sheet piezoelectric actuators, which contains both the axial and bending deformations. 

The static electromechanical response of the actuator is studied under different mechanical 

and geometrical conditions to evaluate the effect of bending. An imperfectly bonded 

interface is proposed to simulate debonding and to study its effect on the actuation process. 

This chapter starts with a brief introduction, followed by the formulation of the problem, 

results and discussion, and conclusions. 

The results and conclusions on the effect of bending will be used to guide the 

modelling and simulation of piezoelectric thin sheets surface-bonded to thick host structures 

in the following chapters. One dimensional model is generally accurate for the perfect-

bonding case while this beam-based model (including bending effect) should be adopted 

when debonding happens or the signals near tips of actuators/sensors are used. 

 

2.1 Introduction 

The most commonly used piezoelectric sensors/actuators are in the form of thin-sheets, 

embedded or bonded to the host structure. In the modelling of thin-sheet piezoelectric 

actuators the effect of bending of the actuator itself is usually ignored (Banks et al., 1996; 

Boller, 2000; Gandhi and Thompson, 1992). In the study of such actuators, two fundamental 

issues need to be evaluated. The first is the electromechanical modelling of the actuator and 
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the second is the bonding condition at the actuator-host interface. Since the actuation is 

achieved by the load transfer through the interface, local stress field near the interface is very 

important in the process, which is significantly affected by the property of the actuators and 

the bonding condition (Denoyer and Kwak, 1996; Kwak and Sciulli, 1996; Park et al., 2000; 

Rabinovitch and Vinson, 2002).  

The study of the behaviour of piezoelectric actuators bonded to electromechanical 

structures has received significant attention from the research and industrial communities in 

the area of smart structures. The literature review of modelling piezoelectric 

sensors/actuators is summarized in section 1.2.1, in which the methods for modelling 

piezoelectric sensors/actuators are mainly the pin-force model (Bailey and Ubbard, 1985) and 

the beam or plate theory based model (Crawley and De Luis, 1987; Peng et al., 2012). In 

those studies, since the integrated structures are modelled as beams or plates, the local stress 

fields near the ends of the actuators, which dominate the load transfer, are not properly 

evaluated.  

Another important issue in the modelling of piezoelectric structures is the bonding 

condition of piezoelectric actuators. Existing studies show that the existence of interfacial 

debonding at the actuator-host interface can significantly affect the vibration response of 

laminated beams (Kim and Jones, 1996; Tylikowski, 2001). The effect of actuator bonding 

condition on the closed-loop vibration control of smart beams has been studied and the result 

indicates that the efficiency of control can be significantly reduced by interfacial debonding 

(Sun et al., 2001). The sensitivity of the control process to the existence of interfacial 

debonding has also been used to detect interfacial damage in piezoelectric structures, based 

on the observation that small interfacial damage can result in a detectable unstable response 
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of the control system (Sun and Tong, 2003). Recently, a modified structure model is used to 

simulate a partially debonded piezoelectric actuator in smart composite laminates by using 

layer-wise displacement fields (Huang et al., 2015), which indicates a significant reduction in 

actuation ability of the actuator for both harmonic and transient response of the structure. 

Although it is well understood that the local stress distribution near piezoelectric 

actuators plays a very important role in the load transfer of smart structures, the 

corresponding study is mostly limited to the global response of the structures, as mentioned 

above. This is because the complicated geometries of the actuators are difficult to deal with, 

and therefore, simplified structural models are usually used in the analysis of the problems. 

Such treatments can reasonably describe the general behaviour of smart structures but cannot 

provide a precise description of the local stress distribution in the structures, especially when 

local damage such as interfacial debonding occurs. It should be noted, however, that for the 

most commonly used thin-sheet actuators, simple models can be used to simulate their 

deformation in the smart structures. Integrating the simple actuator model into the structures 

can provide a relatively simple but accurate prediction of the response of the smart structures. 

A one-dimensional model of thin-sheet piezoelectric actuators has been developed (Wang 

and Meguid, 2000) to study the load transfer between surface-bonded/embedded actuators 

and a half elastic plane and the effect of interfacial debonding. A modified model has also 

been developed to study the effect of the adhesive layer between the actuator and the host 

(Jin and Wang, 2011). In these works, the bending deformation of the actuator has been 

ignored. 

The objective of the current study is to develop a modified model of thin-sheet 

piezoelectric actuators bonded to elastic half planes, including the bending deformation of 
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the actuators and partial debonding along the interface. The current actuator model is an 

extension of the work given in Wang and Meguid, (2000) with added bending effects. In the 

previous model, the actuator is simulated by an electro-elastic line subjected to a transverse 

electric field along its poling direction. In the current model, both the axial and bending 

deformations of the actuator are considered to study the actuation process and load transfer 

from the actuator under different conditions. Numerical simulation is conducted to evaluate 

the effects of the geometry, the material mismatch, and the debonding upon the local stress 

transfer with the influence of bending deformation of the actuator. 

 

2.2 Statement and formulation of the problem 

The problem envisaged is a piezoelectric actuator, in the form of thin sheets, bonded to a 

homogeneous and isotropic elastic half plane, subjected to plane strain deformation, as 

illustrated in Fig. 2.1. The host structure is modelled as a semi-infinite plane, which 

corresponds to the case where the thickness of the host is much larger than that of the 

actuator. The geometry of the actuator is defined by its length and thickness, denoted as 2c 

and h, respectively. As commonly used the poling direction of the actuator is along the z-axis 

in the thickness direction. A voltage (V) is applied between the upper and the lower 

electrodes of the actuator and generates an electric field  / /zE V h V V h     across 

thickness of the actuator with h being the thickness of the actuator. To distinguish the 

actuator and the host medium, in the following discussion, subscript p and superscript s will 

be used to represent the piezoelectric actuator and host substrate, respectively. It should be 

noted that the following formulation of this problem is for structures of unit width. 
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To evaluate the effect of imperfect bonding conditions, it is assumed that the actuator is 

debonded in the central part from the host medium in the range of ,y b  where b  is the half 

length of the debonded part. It is further assumed that the debonding will form an interfacial 

crack, within which the surface traction is zero. This assumption ignores the effect of 

possible contact of the crack surfaces. 

 

 

Fig. 2.1:   Schematics of the actuator configuration. 

2.2.1 The actuator with bending 

For a typical thin-sheet actuator, the thickness is usually small compared with its length. As a 

result, the displacement and stress field in the actuator can be simplified by considering only 

the low order distribution along the thickness direction. The axial stress and displacement of 

the actuator can both be assumed to be linear across the thickness, and the transverse stress in 

the actuator is ignored. The interfacial shear and normal stresses at the actuator-host interface 

are denoted as   and  , as shown in Fig. 2.2. 

These assumptions can be represented by represented by using an electro-elastic 

Bernoulli-Euler beam, subjected to an electric field zE  and distributed axial and transverse 



31 

 

forces, / h  and  , as shown in Fig. 2.2. Considering the equilibrium of the actuator results 

in the following equations 

/ / 0yd dy h                              (2.1) 

 2 2/d M dy    (2.2) 

where y  is the average axial stress and M is the bending moment. The shear force Q of the 

beam satisfies  

 / 0, / 0.dM dy Q dQ dy       (2.3) 

 

 

Fig. 2.2 The actuator and the host medium. 

 

For the case where the actuator is debonded in y b , the axial boundary conditions of 

the actuator at y b  and y c  are 

 0, ; / ,y yy c T h y b        (2.4) 

where T  is the axial compressive force in the debonded part. The bending moment and the 

transverse shear force at the tip of the actuator are both zero to satisfy the free boundary 
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condition. At the ends of the debonding part, the transverse force in the z-direction must be 

zero to ensure equilibrium. Under the assumption of small deflection, the transverse shear 

force can then be assumed to be zero at the ends of the debonding part. These boundary 

conditions can be expressed as 

 0, ; ,bM y c M M y b      (2.5) 

 0, ; 0,Q y c Q y b      (2.6) 

where bM  is the unknown bending moment at the end of the debonded part of the actuator, 

y b . By integrating Equations (2.1) and (2.2), the average axial stress and bending moment 

in the actuator are determined in terms of the shear stress   and the normal stress   as 

( )
( ) /

y

y
b

y d T h
h

 
                                                   (2.7) 

 ( ) ( )
y

b
b b

M y d d M


           (2.8) 

The mechanical and electrical properties of piezoceramic materials can be described 

fully by the equation of motion 

 
,ji j j if u     (2.9) 

Gauss’s law 

 
, 0i iD    (2.10) 

And the constitutive equations 

                ,c e E D e E         (2.11) 

where 
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  , , ,

1
,

2
ij i j j i i iu u E V       (2.12) 

In these equations,  ,     and  u  are the stress, the strain and the mechanical 

displacement, if  and   are the body force and the mass density, while  D ,  E  and V 

represent the electric displacement, the electric field intensity and the potential, respectively.  

 c  are the stiffness parameters for a constant electric potential,  e  are the piezoelectric 

constants, and     are the dielectric constants for zero strains. 

According to the electro-elastic line actuator model (Wang and Meguid, 2000), the 

effective material constants of the actuator model under plane strain condition are given by 

 
2 2

13 13 33
11 13 33 33

33 33 33

, ,
c c e

E c e e e
c c c

          

where the direction of polarization is designated as being the z-axis. 

Using the constitutive relations of the actuator, its axial stress and the bending moment 

can be related to the axial strain y , the electric field zE  and the transverse deflection of the 

layer zu  as 

( ) ( )y p y zy E y eE        (2.13) 

2

2

z
p

d u
M E I

dy
       (2.14) 

where pE  and e  are effective material constants given in Appendix 2.A, and PE I  is the 

bending stiffness of the actuator, which is given, for a layer with a uniform thickness h , by 

3 /12p pE I E h       (2.15) 

Making use of Equations (2.7)-(2.14), the axial strain and the slope of the deflection of 

the layer can also be determined in terms of   and   as 
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1
( ) ( ) ,

y
z

y
b

p p p

T eE
y d b y c

E h hE E
           (2.16) 

1 ( )
( ) ,

y
z b

b
b b b

p p

du M y b
d d d b y c

dy E I E I

 

     
 

         (2.17) 

where /b y y bdu dy   is the slope of the layer at .y b  

 

Fig. 2.3: Debonded actuator and bending deformation 

2.2.2 The elastic field of the host medium 

The host medium is subjected to the normal and shear stresses generated by the layer along 

the bonding interface. The general boundary conditions can then be expressed as 

( ) ( )
( ,0) , ( ,0)

0 , 0 ,

s s

yz z

y y c y y c
y y

y b y c y b y c

 
 

   
  

     

  (2.18) 

This is a well-established problem in elasticity (Muskhelishvili, 1977). The resulting 

elastic field by the applied forces given by Equation (2.18), s

y  and / ,s

zdu dy  can be obtained 

by using the fundamental solutions for concentrated forces and the superposition principle as 
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1 2 1 2 ( ) 2 ( )
( ,0) ( ) ,

1

b c
s

y
c b

y y d d b y c
E E y E y

    
   

    






    

      (2.19) 

( ,0) 1 2 1 2 ( ) 2 ( )
( ) ,

1

s
b c

z

c b

u y
y d d b y c

y E E y E y

    
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    





 
     

      (2.20) 

where   is the Poisson’s ratio and 2/ (1 )sE E    with sE  being Young’s modulus of the 

host medium. 

Considering the continuity of the displacements along the actuator-host interface, and 

using Equations (2.19) and (2.20), following governing equations are obtained 

1 2 1 2 ( ) 2 ( )
( )

1

1
( ) 0,

b c

c b

y
z

b
p p p

y d d
E E y E y

T eE
d b y c

hE hE E

    
  

    

  






  

  

     

 


   (2.21) 

1 2 1 2 ( ) 2 ( )
( )

1

1 ( )
( ) 0,

b c

c b

y
b

b
b b b

p p

y d d
E E y E y

M y b
d d d b y c

E I E I

 

    
  

    

     






 

  


     

 

  
  (2.22) 

Making use of Equations (2.7), (2.8) and the boundary conditions (2.4) and (2.5), T  

and M  can be expressed in terms of   and   as 

( )
c

b
T d           (2.23) 

( )
c y

b
b b

M d dy           (2.24) 

and 

( )d 0.
c

b
          (2.25) 

By analyzing the debonded part of the actuator deformation b  can be determined in 

terms of the bending moment bM  at y b  as 
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b
b

p

M
b

E I
   .      (2.26) 

The axial force T is related to the axial displacement of the actuator in the debonded part 

/b

p

T h
u b

E

 
  ,     (2.27) 

where b zeE   is the block stress of the actuator. The axial deformation of the actuator 

should be the same as the corresponding horizontal relative displacement of the host medium 

between the two ends of the debonding part. This condition results in the following 

additional equation, associated with the unknown force ,T  

2 /
ln ( )d ln ( )d 0

b c
b

c b
p

b b T h
b

E E

  
     

  





   
   

 
  .  (2.28) 

2.2.3 Solution of the resulting integral equations 

The electromechanical behaviour of the actuator system is governed by the obtained singular 

integral Equations (2.21), (2.22) and (2.28) under the conditions defined by (2.23), (2.24) and 

(2.25). 

The stresses and the bending moment are normalized by 

* * * *

0/ , / , / M , / ( / E )b b b b b pp p M M             (2.29) 

with 

0, .
2 2

z b
b

p p

E eE E I
p M

E E b

  
        (2.30) 

The governing equation of the problem can then be expressed as 
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   (2.32) 
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b b Tb
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 
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  





 
          (2.33) 
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c c c

p p b

b b b
b b

E T E M
d d d

E E
         

   
                   (2.34) 

From these governing equations the shear and normal stresses   and ,  the axial force 

T  in the actuator, and the bending moment bM  can be determined from the applied electric 

field. 

The resulting governing equations are singular integral equations (Wang and Meguid, 

2000), for which the solution involves a square-root singularity at the two tips of the 

debonding part and the two ends of the actuators (Muskhelishvili, 1977). To solve these 

governing equations, two local coordinate systems for the two bonded parts of the actuator 

will be introduced. For the first local coordinate system the origin is at the centre of the left 

bonded part of the actuator ( c y b    ) with a new coordinate 
1,  and for the second the 

origin is at the centre of the left bonded part of the actuator ( b y c  ) with a new coordinate 

2 ,  with 1  and 2  being given by 

(1) (2)/ , /
2 2 2 2

c b c b c b c b
y y 

          
          
       

   (2.35) 

As a result, the left and right ends of the two bonded parts correspond to -1 and +1, 

respectively, in the local coordinate systems. The problem considered here is symmetric in 
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the horizontal direction, and therefore, only the right bonded part of the actuator b y c   

need to be considered in the following discussion. For simplicity, the superscript "2" 

referring to this part of the actuator will be omitted. 

To solve these governing equations, the shear and normal stresses *  and *  can be 

expressed in the local coordinate ( (2)  ) in terms of Chebyshev polynomials 

*

2
0
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1
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




    (2.36) 

where iT  are Chebyshev polynomials of the first kind with    cosiT i  and cos .   To 

provide a solution to the problem, the Chebyshev polynomial will be truncated to the 

 2 thN   term. The equations for the boundary conditions will be satisfied at the selected 

collocation points given by 

1
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j

N
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  j=2,3, ,N-1    (2.37) 

Equations (2.31) and (2.32) lead to 
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  (2.38) 

j=2,3, ,N-1 
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with 

 , / 2 .p

c b
c E E

c
 


      (2.40) 

Only the corresponding equations for the right bonded part of the actuator are given in 

Equations (2.38) and (2.39). For the current symmetric problem, these equations are 

sufficient for solving the problem since the shear and normal stresses in the left bonded part 

of the actuator can be directly determined from the symmetry. In these equations, 
*

1 jy  is the 

coordinate of collocation point j  in the first coordinate system (the left bonded part of the 

actuator), with 

*

1 2j j

c b
y
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
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
.     (2.41) 

The additional equation given by Equation (2.33) becomes 
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where 
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1 2 1 02 3, 2 3, , .

c c

h h

 
    

 
            (2.43) 

The unknown coefficients id  and ,ie  which represents the interfacial stresses, can then 

be determined by using Equations (2.38), (2.39) and (2.42). In these equations, 0d  is related 
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to the axial force in the debonded part, 0 0e   and 1e  is related to the bending moment at the 

tip of the debonded part, i.e. 

*

0 0 1 2 2

4
, 0, .

p

b

E IT
d e e M

hp Eb c  
       (2.44) 

In the numerical solution, 2N   collocation points are used for each bonded part of the 

actuator, with 2,3, ,j  1,N   which provide 2 4N   equations. Combined with Equation 

(2.42), 2 3N  equations are obtained for 2 3N   unknowns , 1,2,id i  , 2;N  , 1,2,ie i  ,

2.N   

2.3 Results and Discussion 

The electromechanical behaviour of the integrated actuator-host structure is dominated by the 

interfacial normal and shear stresses transferred from the actuator to the host medium. These 

stresses can be determined by solving Equations (2.38), (2.39) and (2.42). The numerical 

results of the interfacial stresses will be presented in this section to evaluate the effects of 

geometry, material mismatch and interface debonding. In the solution of the problem, based 

on careful evaluation of the convergence of Chebyshev polynomial expansion, 40 terms of 

Chebyshev polynomials are used in the calculation, which ensures that the current results 

considered are convergent. The force and deformation of the debonded part of the actuator 

are also discussed to study the effect of debonding upon the local response of the structure. 

2.3.1  Comparison with FEM results 

To verify the current actuator model, finite element analysis (FEA) is conducted to determine 

the stress distribution along the actuator-host interface for both perfectly bonded and partially 

debonded actuators. The results are then compared to that of the current model. 
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The commercially available software ANSYS is used in the simulation with the 

piezoelectric material and the elastic host medium being modelled by a coupled field element 

PLANE13 and a plane element PLANE182, respectively. The thickness of the piezoelectric 

sensor is 0.1mm and the half-length of the sensor is 0.5mm or 1.0mm for two different cases 

corresponding to c/h=5 and c/h=10, respectively. The length and thickness of the host 

structure are selected as 100 times of the thickness of the sensor to simulate the semi-infinite 

plane. After the convergence analysis, the typical element size for both the actuator and the 

host structure is chosen as 1/20 of the thickness of the actuator to ensure the accuracy of the 

simulation with around 4,000,000 elements. The material constants used are shown in Table 

2.1 and 2.2 with Young’s modulus of the host being adjusted so that 0.5.    

 Table 2.1: Typical material properties of piezoelectric sensors. 

Elastic stiffness 

parameters 11c  12c  13c  33c  44c  

( 10
10 Pa ) 13.9 6.78 7.43 11.5 2.56 

Piezoelectric 

constants 31e  33e  15e    

( 2/c m ) -5.2 15.1 12.7   

Dielectric 

constants 11  33     

-910 /C Vm  6.45 5.62    

Table 2.2: Typical material properties of the host structure. 

 Young’s modulus E  Poisson ratio   

 105.27 10 Pa  0.3 
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The interfacial stresses determined from the current model and from the FEA for a 

perfectly bonded actuator for 0.5   and / 5.0c h   are shown in Fig. 2.4. To illustrate the 

effect of bending deformation, the corresponding results with bending being ignored has also 

been included in the figure. The shear stresses determined from the current model and FEM 

show very good agreement, while the shear stresses from the model without bending effect 

and FEM show relative larger error. The resulting normal stresses along the interface from 

the current model and the FEA show a similar variation along the interface, which, however, 

cannot be captured when the bending effect is ignored since in this case zero interfacial 

normal stress is always predicted.  

 

Fig. 2.4: Comparison with FEM results for a single actuator ( 0.5  ).  

The corresponding results and comparison for a debonded actuator are shown in Fig. 

2.5 for 0.5,   / 10.0c h   and / 0.5.b c   Similarly, the shear stresses from the current model 
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and FEA show very good agreement. The current model can reasonably predict the variation 

of the interfacial normal stress, which cannot be predicted using a model with ignored 

bending effect, which predicts zero interfacial normal stress. There is a limited discrepancy 

for the stress distribution, especially the normal stress, near the tips of the actuator. This 

discrepancy is mainly caused by the singularity of the stress field at the tips. 

2.3.2 Single actuator with bending effect 

Let’s consider first the electromechanical behaviour of a perfectly bonded piezoelectric layer. 

Obviously, the material combination or the stiffness ratio between the layer and the host 

medium will play a significant role in the load transfer. This effect can be described by a 

parameter  / 2 .pE E   Another important parameter affecting the behaviour of the layer 

is the length-to-thickness ratio / .c h   

 

Fig. 2.5: Comparison with FEM results for a debonded actuator ( 0.5  ). 
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Carefully examining the governing equations of the problem indicates that the 

normalized interfacial shear stress and normal stress are governed by these two parameters 

(  and  ). Table 2.1 and 2.2 (Pak, 1990) shows the typical property of piezo-ceramics and 

the host medium, with which the material combination gives that 1.0.   The typical 

thickness of commonly used piezoelectric thin-sheets is in the range of 0.1mm to 0.5mm. So 

for a layer of 10mm  in length, the length-to-thickness ratio is / 10 50.c h    Based on these 

reference data, parameters   and   will be varied in the following discussion to evaluate the 

effects of the material property and the geometry of the structure.  

The normalized interfacial shear stress *  and normal stress *  are important 

indicators of the actuation process. Comparing with previous actuator models where the 

bending effect is ignored, the level of the transverse normal stress   represents the 

importance of the bending deformation. The results for shear and normal stress distributions 

along the interface for / =5.0c h   for different   values are shown in Fig. 2.6. The thicker 

curves represent the shear stress, and the thinner ones represent the normal stress. For stiff 

actuators, i.e. low   values, the normal stress is quite significant. When the actuator 

becomes softer the effect of the normal stress is mostly near the actuator tips. The 

corresponding stress for the case where / =1.0c h   is shown in Fig.2.7. Compared with Fig. 

2.6 the increase in   value shows more effect on the stress distribution for low   values, but 

has limited influence on the stress for higher   values, since the stress near the tips of a soft 

actuator will be insensitive to its length increase. 
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Fig. 2.6: Interfacial stress distribution of a single actuator (c/h=5) 

 

Fig. 2.7: Interfacial stress distribution of a single actuator (c/h=10) 
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2.3.3 Interacting actuators 

If the debonded part of the actuator is removed, the two bonded parts of the actuator become 

two identical interacting actuators. Fig. 2.8 shows the shear and normal stress distributions of 

the right actuator along the interface for 0.5   and 10   for different distances between 

the actuators, where c is the half length of the actuators and /d b h  with 2b being the 

distance between the actuators. When the actuators are very close to each other the 

interaction results in asymmetric stress distribution for both   and .   

 

Fig. 2.8: Interfacial stress distribution of interacting actuators ( 0.5, 10   ). 

The results of interacting actuators for 0.1   are shown in Fig. 2.9. In this case the 

host medium is softer so the distributions of the stresses, both shear and normal, are less 

concentrated to the tips of the actuators. Significant asymmetry of shear stress distribution 

indicates the effect of interaction between the actuators. For both Fig. 2.8 and 2.9 the right tip 

of the actuator shown is almost unaffected, which corresponds to that of the single actuator. 



47 

 

The left tip, which is close to the other actuator, shows more significant shear and normal 

stresses because of the interaction effect. 

 

Fig. 2.9: Interfacial stress distribution of interacting actuators ( 0.1, 10   ). 

2.3.4 Interfacial debonding 

Interfacial debonding may occur because of the initial flaws at the interface or interfacial 

damage during service. The existence of such interfacial debonding will significantly alter 

the local stress distribution. Shear and normal stresses caused by an actuator partially 

debonded in b y b    along the interface are shown in Fig. 2.10 and 2.11, respectively, for 

0.5.   The results show that both the shear stress and the normal stress concentrate near the 

ends of the debonding part, particularly for larger debonding lengths. Fig. 2.10 also shows 

that the debonding mainly affect the stress distribution near the debonding area, and its effect 

on points away from debonding is insignificant, such as the points near the right tip of the 
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actuator as shown. Compared with shear stress, normal stress distribution is more affected by 

the debonding, as shown in Fig. 2.11. 

 

Fig. 2.10: Interfacial shear stress of debonded actuator ( 0.5  ) 

 

Fig. 2.11: Interfacial normal stress of debonded layer ( 0.5  ) 
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The debonded part of the actuator will not perform load transfer through interfacial 

stresses but the axial force T and bending moment bM  inside this part will affect the stress 

distribution and the load transfer of the system. The normalized axial force  * / bT T h  in 

the debonded part of the actuator is shown in Fig. 2.12 as a function of the length of the 

debonding / .b c  The axial force is significantly affected by the material combination ( ). It 

should be mentioned that the debonding length /b c  shows a very limited effect on the axial 

force until the debonding becomes rather long, approaching the tip of the actuator, even when 

the actuator is relatively stiff.  

The normalized bending moment in the debonded part of the actuator is given in Fig. 

2.13, which shows a significant increase with increasing debonding length. As expected, for 

a stiffer actuator, such as 0.1, 0.5,   the bending deformation is more significant than the 

case for a softer actuator. It is interesting to mention that if debonding is limited, then 

bending deformation, as represented by the bending moment, is insignificant in this case. The 

result indicates that the bending deformation will play an important role when debonding is 

the concern, but when no debonding occurs, the effect of bending of actuators is much less 

important.  

Fig. 2.14 shows the normalized horizontal displacement of the end of the debonding 

part, *

0/yu u u  with 0u  being the free horizontal displacement generated by the electric field 

at y b  of the actuator when there is no restrain to the deformation of the actuator. Near 

linear relation between *u  and the debonding length is observed even for large debonding, 

indicating that the axial force in the debonded part is almost a constant with the increase of 

the length of the debonding, consistent with the results of the axial force shown in Fig. 2.12. 
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Fig. 2.12: Axial compressive force 

 

Fig. 2.13: Bending moment in the debonded part 
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Fig. 2.14: Axial displacement of the end of the debonded part 

2.4 Conclusions  

This chapter provides a generalized model for surface bonded thin-sheet piezoelectric 

actuator, which contains both the axial and bending deformation. The formulation of the 

model is established and the solution of the resulting integral equations is presented using 

Chebyshev polynomials. Based on this model the electromechanical behaviour of a partially 

bonded piezoelectric actuator is studied. The model is used to evaluate the effects of the 

material property and the geometry on the load transfer from the actuator, through specific 

examples. The effects of debonding on the stress redistribution and load transfer in the 

integrated structure are studied. It is observed that the bending deformation may play a 

significant role in the electromechanical behaviour of this type of integrated systems, 

especially when debonding occurs.  
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Chapter 3: Dispersion characteristics of layered piezoelectric 

structures  

This chapter presents a theoretical study of the coupled dynamic behaviour of layered 

piezoelectric structures, including the dispersion characteristics and wave propagation under 

in-plane mechanical loadings. Based on the results of the previous chapter, the piezoelectric 

layer is modelled as an electro-elastic film, which reduces the complex eigen-value problem 

into the non-trivial solution of binary quadratic equations. Typical numerical examples are 

given to illustrate the wave modes, wave propagation and the effects of the piezoelectricity, 

geometry and material properties. This chapter starts with a brief introduction to the dynamic 

behaviour of layered piezoelectric structures as section 3.1, followed by the formulation of 

the problem (section 3.2), comparison with exact dispersion solutions (section 3.3) and wave 

propagation under a harmonic loading (section 3.4). Sections 3.5-3.7 are the numerical 

results, discussion and conclusions, respectively. The results in this chapter will be used in 

Chapter 4 to guide the modelling and simulation of the dynamic behaviour of piezoelectric 

sensors.  

 

3.1 Introductions 

When piezoelectric sensors are used for SHM, wave guides are formed by the layered 

piezoelectric structures. The fundamental issue for waves in such structures is their 

dispersion characteristics (eigen-value solution) and the steady state response (general 

solution) of the piezoelectric structure. The relation between the eigen-value solution and the 
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general solution can be understood by referring to the difference between free vibration and 

forced vibration.  

Section 1.2.2 has summarized the methods for dispersion characteristics of elastic wave 

propagation in layered piezoelectric structures, including exact solutions and approximate 

solutions. The exact dispersion equations of wave propagation in layered piezoelectric 

structures have been studied with the main focus on Lamb wave and surface wave (Datta et 

al., 1988; Nayfeh, 1995). Lamb wave propagation in a dielectric half-space overlaid by a thin 

piezoelectric layer has been studied using a simplified numerical solution of the dispersion 

curve by segmenting the phase velocity spectrum into different ranges (Jin et al., 2002). The 

dispersion characteristics of surface waves in a piezoelectric layer bonded to a piezo-

magnetic semi-infinite host medium (Pang et al., 2008) and the wave propagation in double-

layered piezoelectric plates  (Cheng and Sun, 1975) have also been studied.  

These works provided useful information about the characteristics of elastic waves in 

layered structures but were mostly from complicated numerical solutions. For cases where 

the layers are very thin, the approximate dispersion relation for wave in such thin layers 

bonded to semi-infinite structures have been studied by modelling the layer as a thin plate 

(Achenbach and Keshava, 1967; Tiersten, 1969), or by expanding the displacements and 

stresses of the layer into Taylor series along thickness of the layer (Vinh and Linh, 2012; 

Pham and Vu, 2014). These two models provided good approximate solutions but can only 

determine the surface wave mode.  

The objective of this chapter is to develop an analytical solution for approximate yet 

accurate dispersion equation of wave propagation in the layered piezoelectric structures. The 

current model is simple yet captures the two lowest modes of the wave propagation. To 
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validate the current model, the dispersion curves of the wave are determined and compared 

with exact models. Two major wave modes are discussed in detail, and the influence of the 

material and geometric properties of the piezoelectric layer is studied. Then, the dynamic 

behaviour of the structure under a longitudinal harmonic loading is further studied to evaluate the 

dynamic load transfer from the substrate to the surface-bonded layer.  

 

3.2 Formulation of the problem 

The problem envisaged is the wave propagation in a layered piezoelectric structure, as shown 

in Fig. 3.1, which consists of a thin piezoelectric layer with the uniform thickness ,h  as the 

sensors, and a homogeneous and isotropic elastic insulator under plane strain condition. It is 

assumed that the poling direction of the piezoelectric layer is along the z-axis, perpendicular 

to the x–y plane. Since the thickness of the piezoelectric layer is very thin, much smaller than 

that of the substrate, the substrate can be treated as a half-space (Qian and Hirose, 2012). 

Harmonic in-plane waves of frequency   will be considered.  

 

Fig. 3.1:  A piezoelectric layer surface-bonded to an elastic half-space substrate 

In this case, the field variables, displacement, stress and strain, are all in the form of  
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 ( , , ) ( , ) i tA y z t A y z e  .  (3.1) 

For convenience, 
i te 

 term will be omitted in the following discussion and only the 

magnitude ( , )A y z  will be considered. 

3.2.1 Modelling of the piezoelectric layer 

For a thin piezoelectric layer bonded to an elastic half-space, its axial stiffness along the layer 

will play a more important role than its flexural stiffness. As a result, the piezoelectric layer 

can be modelled as a thin film with no bending stiffness (Yu and Wang, 2016). The 

interfacial shear stress ( ) transferred between the piezoelectric layer and the substrate can 

be treated as a distributed body force along the layer (Wang and Meguid, 2000). Therefore, 

the layer can be modelled as an electro-elastic thin film subjected to a distributed axial body 

force / h  and normal force ,z   as shown in Fig. 3.2.  

 

 

Fig. 3.2: Stress analysis of the layer  

The equation of motion of the layer can be expressed as 

2( )
0

y

y

d y

dy h
u

 
            (3.2) 

 
2 0z zh u         (3.3) 
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where y  is the axial stress, yu  and zu  are the axial and transverse displacements, and   is 

the mass density. 

The constitutive relation of the piezoelectric layer under plane strain and open-loop 

conditions can be described as shown in Appendix B: 

y

y eff

u
E

y






,  

2

eff

e
E E


       (3.4) 

with 
2

13

11

33

c
E c

c
  ， 13

13 33

33

c
e e e

c
  ，

2

33

33

33

e

c
   . 

ij
c  are the stiffness parameters, 

ij
e  are the 

piezoelectric constants, and 
ij
  are the dielectric constants. 

The piezoelectric layer can be treated as a waveguide. For a free wave propagates 

along the positive y-axis with a velocity c , the displacement can be described as 

, 0
y y

iky
u u ke        (3.5) 

where /k c  is the wave number and 
y

u  is the amplitude of the displacement. 

Substituting Equations (3.4) and (3.5) into (3.2), the interfacial shear stress can then be 

related to the displacement y
u  as 

2

2

2
( )

eff y

s

k E hu
c


        (3.6) 

Where /s effc E  . And the interfacial normal stress can be determined as 

2

z z
h u     .     (3.7) 
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3.2.2 Wave in the substrate 

The wave propagation in the substrate is governed by equations of motion given by 

Achenbach (1973, P59), 

 
2 2

, ,( ) / , , ,s s s su u u t y z                 (3.8) 

where ,s s   are the Lame’s elastic constants of the substrate, and s  is the mass density of 

the substrate. 

The general solution of displacements of a surface wave of velocity c  in the substrate 

can be written in the following form 

1 2

1 2
( ) e

b z b zs

y

iky
u A e A e

 
        (3.9) 

1 21

1 2

2

( ) e
b z b zs

z

ikyb ik
u A e A e

ik b

 
        (3.10) 

where   

2 2 1/2

1
(1 / )

L
b k c c  ,   

2 2 1/2

2
(1 / )

T
b k c c   ,     (3.11) 

in which, Lc  and Tc  denote the velocities of longitudinal and transverse waves in the 

substrate, respectively, with ( 2 ) /
L s s s

c      and / .
T s s

c    1A  and 2A are two 

unknown parameters to be determined by the boundary conditions. 

The stresses in the substrate can then be determined as 

 
* *( )s

z z yE       (3.12) 

 
s s

yz s yz     (3.13) 
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                 1 2( )e
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y

u
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     (3.14) 
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2

1
1 2( )e
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s ikyz
z

u b
A ikA

z ik



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          (3.15) 

1 2 1 21
1 1 2 2 1 2
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 
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 
  (3.16) 

and * 2s sE    , * / ( 2 )s s s     . 

The shear and normal stress at the interface of the substrate are 

2

1 1 2 2 2
0

2

= (2 )es iky

yz s
z

k
Ab A b A

b
 


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3.2.3 Dispersion equation 

The continuity of displacements and stresses at the interface 0z   are 

0 1 2
( ) e

s

y z

iky
u A A


        (3.19) 
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 
  .    (3.21) 

By substituting(3.6), (3.7), (3.17), (3.18), (3.19) and (3.20) into (3.21), the boundary 

conditions can be expressed as 

2 2 2

2 2

1 1 2 22 2

2

[2 ( ) ] [ ( ) ( ) ] 0
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s s

k
b k E h A b k E h A
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Equations (3.22) and (3.23) can be reorganized in matrix form. The two equations for 

1A  and 2A  have a non-zero solution when and only when the determinant of the coefficient 

matrix vanishes. The dispersion equation can then be obtained from the condition that the 

coefficient matrix is singular, i.e. 

2 2 2

2 2
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2

2 2 2

* *1 1

* *

2
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   (3.24) 

3.2.4 Comparison with Rayleigh wave 

If piezoelectric layers disappear  0, 0effE   , the problem is degenerated into wave 

propagation along the free surface of an elastic half-space, which is Rayleigh wave. In this 

case, Equation (3.24) can be simplified to 
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which can be expressed as 

2 2 2 2
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  (3.26) 

Substituting the ratio of the transverse and longitudinal velocities, 
2 2

/ 2(1 ) / (1 2 )
L T

c c     , 

into Equation (3.26), the dispersion equation can be simplified as 

2 2 2

1/2 1/2 2

2 2 2
4(1 ) (1 ) (2 ) 0

L T T

c c c

c c c
         (3.27) 

which is exactly the dispersion equation of Rayleigh wave (Achenbach, 1973). 



60 

 

3.3 Comparison with exact solution 

3.3.1 Governing equations 

The governing equations of piezoelectric materials are determined and given in Appendix A. 

For the current problem, the thin-sheet piezoelectric layer will operate in an open-loop mode 

without external charge supplied to it. Therefore, the electric displacement in z-direction in 

the piezoelectric layer will be zero, i.e. 0.zD   And also considering the plane strain 

condition (y-z plane), the governing equations can be reduced to  
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 
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with 
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. 

In these equations, yu  and zu  are the displacements in y and z-direction, respectively. 

ij
c  are the stiffness parameters for a constant electric potential, 

ij
e  are the piezoelectric 

constants, 
ij
  are the dielectric constants for zero strains, and   is the mass density. 

The governing equations for the elastic substrate can be obtained by setting the 

piezoelectric, dielectric constants in Equation (3.28) to zero and 11 33 2 ,s sc c       

12 13 ,sc c     44 ,sc   giving 
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       

  (3.29) 

where Lc  and Tc  denote the velocities of longitudinal and transverse waves in the substrate, 

respectively, with ( 2 ) /L s s sc      and /T s sc   , in which ,s s   are the Lame’s 

elastic constants, and s  is the mass density of the substrate. Equation (3.29) is the same as 

the governing equation of elastic structure obtained in (Achenbach and Keshava, 1967). 

3.3.2 Wave motion equations 

Consider free wave propagating in y direction in the piezoelectric layer, which can be 

expressed in the form (Achenbach, 1973) 

 

 

 
,

ik y ctaz

y

ik y ctaz

z

u Ae e

u Be e








  (3.30) 

where k  is the wave number, c  is the phase velocity with / ,c k  A  and B  are unknown 

constants, a  is a parameter to be determined.  

In the substrate,  

 

 

 
,

ik y cts s bz

y

ik y cts s bz

z

u A e e

u B e e








  (3.31) 

where sA and sB  are unknown constants, b  is a parameter to be determined. The real part of 

a  and b  is supposed to be positive, so that the displacements decrease with increasing y and 

tend to zero as y increases beyond bounds. 

Substituting Equation (3.30) into Equation (3.28) yields two homogeneous equations 

for constants A and B  
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   

   

* 2 * 2 2 2 * *

44 11 13 44

* * * 2 * 2 2 2

13 44 33 44

0

0

c a c k k c A i c c akB

i c c akA c a c k k c B





    

     
  (3.32) 

A nontrivial solution of this system of equations exists if and only if the determinant of 

the coefficients vanishes, which leads to the following eigenequation 

      
2

* 2 * 2 2 2 * 2 * 2 2 2 * * 2 2

44 11 33 44 13 44 0c a c k k c c a c k k c c c k a          (3.33) 

The four roots of Equation (3.33) are denoted as  1,2,3,4ia i  . Therefore, the general 

solution of wave propagation in the piezoelectric layer can be expressed in the form 
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
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
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


  (3.34) 

where  1,2,3,4iA i    are unknown constants corresponding to  1,2,3,4ia i   and  

    / , 1,2,3,4i i
B A i     (3.35) 

In the substrate, by substituting Equation (3.31) into Equation (3.29), two homogenous 

equations for sA  and sB   can be obtained as 

 
   

   

2 2 2 2 2 2 2

2 2 2 2 2 2 2

0

0

s s

T L L T

s s

L T L T

c b k c c A ikb c c B

ikb c c A c b k c c B

     
 

      
 

  (3.36) 

A nontrivial solution of this system of equations exists if and only if the determinant of 

the coefficients vanishes, and parameter b can be obtained as 

 
2 2 1/2 2 2 1/2

1 2
(1 / ) (1 / ),

L T
b k c c b k c c      (3.37) 

Correspondingly, the general solution of the displacement equations of motion in the 

elastic substrate can be written in the form 
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  (3.38) 

3.3.3 Exact dispersion equations 

The exact dispersion equations will be obtained here for comparison purpose.  

The top surface of the piezoelectric layer is traction free, and the displacements and 

stresses along the interface between the piezoelectric layer and the substrate are continuing, 

so the boundary conditions are as follows, 

At z h    

 0zz yz     (3.39) 

At 0z   

 
0, 0,

0, 0.

s s

y y z z

s s

zz zz yz yz

u u u u

   

   

   
  (3.40) 

The general solutions given by Equations (3.34) and (3.38) are required satisfying the 

boundary conditions, and the resulting equations are 

 
4

* *

13 33

1

0ia h

i i i

i

ikc a c Ae


                                        (3.41) 

  
4

*

44

1

0ia h

i i i
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c ik a Ae


    (3.42) 

4

1 2

1

0s s

i

i

A A A


                                            (3.43) 
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0s s

i i
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b ik
A A A
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           (3.44) 
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  
2 4

*

1 1 2 2 2 44

12

(2 ) 0s s s

s i i i

i

A A A
k

b b c ik a A
b

 


      .  (3.46) 

Equations (3.41)-(3.46) are a system of 6 homogeneous equations for 1 2,s s
A A  and 

 1,2,3,4 .iA i   The dispersion equation can be obtained from the condition that the 

coefficient matrix jkK   (j,k=1,2, ,6) of the system of equations is singular, or equivalently 

 
6 6

0jkK

   (3.47) 

which is the exact dispersion equation of the problem, i.e. for a given value of wave number 

k, the phase velocity c can be solved through Equation (3.47).  

 

3.4 Wave propagation under a harmonic loading 

The steady state response of the structure under an oblique incident harmonic wave will be 

studied. The displacement wave in the layer is described by Equation (3.6) and (3.7). By 

using the following spatial Fourier transform, 

1
( ) ( )

2

( ) ( )

isy

isy

f s f y e dy

f y f s e ds




















,                                             (3.48) 

the displacement field in the layer can be expressed in terms of the unknown interfacial shear 

and normal stress as 
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.  (3.49) 

The substrate is subjected to a harmonic incident wave and interfacial surface stresses, 

as shown in configuration (a) of Fig. 3.3. The incident wave will be reflected and the surface 

stresses will generate a dynamic field in the substrate. Therefore, the wave field inside the 

substrate can be expressed by superimposing the configuration (b) and (c),  

 

c

c

s I

y y y

s I

z z z

u u u

u u u

  


 

  (3.50). 

where the variables with superscript ,s I  and c  represent the field in the substrate, 

configuration (b) and (c), respectively.  In particular, 
I
yu  and 

I
zu  are the real displacement in 

configuration (b), i.e. the superposition of the incident wave and the reflected wave.   

In Fig. 3.3(b), the displacement along the interfacial surface can be obtained as 

 
0

0
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ik yI I

y z y

ik yI I

z z z

u A e

u A e





 




  (3.51), 

where I

yA , I

zA  and Ik  are functions of the amplitude, angle and wave number of the incident 

wave, given in Appendix B. 

In Fig. 3.3(c), the dynamic plane strain displacement field in the homogeneous 

isotropic elastic host medium is governed by (Achenbach, 1973), 

 ,c c

y zu u
y z z y

      
   
   

  (3.52) 

where   and   are two displacement potentials which satisfy  
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 2 2 2 2( ) 0, ( ) 0,L Tk k         (3.53) 

with 

2 2 2 2 2/ /y z         

/ , /L L T Tk c k c     

  

Fig. 3.3: The substrate subjected to a harmonic incident wave and interfacial surface 

stresses 

The general solution of Equation (3.53) can be determined by using the Fourier 

transform defined by Equation (3.48), which can be expressed as 

 ( , ) ( ) , ( , ) ( )z zs z A s e s z B s e      (3.54) 

where (s)A  and (s)B  are two unknown functions of s  with 

 

2 2 2 2

2 2 2 2
,

L L T T

L L T T

s k s k s k s k

i k s s k i k s s k
 

     
  

       

 (3.55) 

which ensure that the induced stress field satisfies the radiation condition of the problem at 

infinity.   

The outgoing wave in the substrate should satisfy the following boundary conditions 

along the surface,  

 , 0c c

yz z at z         

Then the unknown parameters (s)A  and (s)B  can be determined as 
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  (3.56) 

where 2 2 2 2(2 ) 4 .s k s       

From Equation (3.52), the Fourier transform of the displacement field components can 

be determined as  
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, (3.57) 

and the Fourier transform of the dynamic stress field components caused by the surface 

stresses can be obtained as 
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  (3.58) 

If the piezoelectric layer is perfectly bonded to the substrate, the displacement should 

be continuous at the upper surface of the substrate and the lower surface of the sensor, 
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  


 

  (3.59) 

By substituting Equation (3.49) and (3.57) into Equation (3.59), the Fourier transform 

of the interfacial shear and normal stress can be determined as 
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  (3.60) 

with  
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  (3.61) 

Therefore, by substituting Equation (3.60) into (3.49), and applying the inverse Fourier 

transform, the displacement field along the piezoelectric layer can be obtained as 
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  (3.62) 

Then all stress wave field in the substrate can also be obtained by substituting Equation 

(3.56) and (3.60) into (3.58). 

 

3.5  Comparison and results 

3.5.1 Dispersion curves 

The dispersion curves of propagating waves can be determined by solving the dispersion 

equations obtained. Wave propagation in structures with a PZT-4 layer is studied. The 

material properties of PZT-4 used are c11=132 Gpa, c12=71 Gpa, c13=73 Gpa, c33=115 Gpa, 

c44=26 Gpa, e31=-4.1 C/m2, e33=14.1 C/m2, e15=10.5 C/m2, ρ=7500 Kg/m3. For the substrate, 

Young’s modulus, Poisson’s ratio and mass density are 77.5 Gpa, 0.33 and 2700 Kg/m3 

respectively. The resulting dispersion curves from both simplified and exact models are 

shown in Fig. 3.4. The simplified model can determine the two lowest modes of wave 
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propagation in these layered structures. The lower branch mode starts from a velocity of 

2884m/s when the wave number is 0. The Rayleigh wave velocity for the substrate, the 

aluminum half space, can be determined from Equation (3.27) to be 2889m/s. Therefore, this 

is a generalized Rayleigh mode, which starts from the Rayleigh wave of the substrate at k=0 

and decreases with the increase of wave number. On the other hand, the dispersion curves of 

the upper mode also decrease with the increase of wave number.  

 

Fig. 3.4: Dispersion curves for the PZT4-Aluminum layered structure  

The dispersion curves determined from the simplified model are compared with those 

from the exact model. The results of the simplified model are more accurate when the 

thickness of the layer is small compatible to the wavelength (kh<1), while the error between 

the current results and the exact solutions will become bigger with the increase of the 
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thickness of the layer. As expected, this model is suitable for cases where a thin layer is 

bonded to an elastic substrate, which is consistent with the assumption of the current model.  

Typical thickness of commonly used piezoelectric thin-sheets is in the range of 0.1mm 

to 0.5mm (Yu and Wang, 2016). Therefore, to guarantee the accuracy of the result (kh<1), 

the corresponding longest wavelength the current simplified model can handle (when kh=1) 

is about 0.6mm to 3.1mm, which will provide reasonable detection resolution for structural 

health monitoring.  

3.5.2 Physical explanation 

To understand the physical meaning of the two branches of the dispersion relation, the effect 

of the mass density and the transverse inertia of the piezoelectric layer will be studied in 

detail. 

Based on the current analytical model, the dispersion curves of PZT-Aluminum layered 

structure for piezoelectric layers with different densities can be obtained, as demonstrated in 

Fig. 3.5. The density of piezoelectric layer has a significant influence on the dispersion 

curves, i.e. the phase velocity will increase with the decrease of the density of the 

piezoelectric layer. When the density approaches zero, the lower branch approaches that of 

Rayleigh wave. Therefore, the wave of the lower branch represents a generalized Rayleigh 

wave. When the piezoelectric layer is ignored, it will degenerate to Rayleigh wave, as 

discussed before. The upper branch disappears when the density approaches zero. Fig. 3.6 

shows that the upper branch of dispersion curves will approach the effective longitudinal 

velocity of the piezoelectric layer /s effc E   when * .k h   This indicates that the 

upper branch apparently degenerate into longitudinal waves in the layer along the y-axis 

when .h   
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Fig. 3.5: Dispersion curves for different densities of the piezoelectric layer  

To further evaluate the upper branch, the transverse inertia of the piezoelectric layer is 

ignored in the dispersion equation. In this case, the only non-zero stress component in the 

layer is ,
y

  and 0
s

z z
   , which results in 

2

* *1

1 2
( ) (1 ) 0
b

ik A ik A
ik

     .    (3.63) 

Equations (3.22) and (3.63) can be reorganized in a matrix form, from which, the 

dispersion equation can be determined and simplified to the following dispersion equation 

    * * 2

2

1 2 1

1
2 1 0

eff effs sk E h k E h BB B
B
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  (3.64) 
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k
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
   . 
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Fig. 3.6: Dispersion curves of the upper branch approaches the effective longitudinal 

velocity of the layer cs  

It can be observed that removing transverse inertia did not change the upper branch 

significantly, as shown in Fig. 3.7, indicating that the upper branch represents only a 

longitudinal mode wave along y-direction, while the lower branch represents a Rayleigh-like 

mode.  

To show the generalized Rayleigh wave in the substrate, the displacement field is 

illustrated for a specific point at the dispersion curve of our solution, 2000 / ,c m s  

1040 /k m .  In this case, when the amplitude of yu  is assumed to be unity, the real part of 

the displacement field in the substrate at 1t ms  can be expressed as 
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984.4 794.6( ) 26.3( 0.962 )cos[1040( 2)]s z z

yreal u e e y      (3.65)

 984.4 794.6( ) 26.3(0.9465 1.2591 )sin[1040( 2)]s z z

zreal u e e y       (3.66) 

 

Fig. 3.7: Dispersion curve when the inertia of the piezo-layer in z-direction is ignored 

The displacement fields (
s

yu  and 
s

zu ) in the substrate are plotted in Fig. 3.8 and Fig. 3.9. 

At the interface, the displacements are the same to these in the piezoelectric layer. In the 

substrate, the wave shows clearly similar properties to that of Rayleigh wave with the 

amplitudes decaying exponentially with the increase of depth.  

In summary, the current simplified model can determine the two lowest modes of wave 

propagation in the layered piezoelectric structure. The first mode is a generalized Rayleigh 

wave propagating in the layered structure, while the second mode is the generalized 

longitudinal wave, which is mainly propagating along the layer and affected by the supported 

substrate. 
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Fig. 3.8: The displacement wave field in y-direction when k=1040/m, c=2000m/s and 

t=1ms 

 

Fig. 3.9: The displacement wave field in z-direction when k=1040/m, c=2000m/s and 

t=1ms 
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3.5.3 Wave propagation under a harmonic loading 

Wave propagation in PZT4-Aluminum layered structure is studied. The analysis will focus 

on the dynamic load transfer from the substrate to the surface-bonded layer under different 

material combinations and loading frequencies.  

The dynamic strain ratio (DSR) represents the percentage of deformation transferred 

from the host medium to the sensor, given by  
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( ) ( ) / ( ).
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 
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


  (3.67) 

It is an index of the sensing characteristics of the piezoelectric layer. The dynamic 

strain ratio can be determined from  
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  (3.68) 

Fig. 3.10 shows the amplitude of the dynamic strain ratio with different material 

combinations under different loading frequencies. The strain ratio will increase gradually 

with the decrease of the loading frequency and the increase of the material combination, 

which is defined as the ratio of Young’s modulus of the substrate and that of the piezoelectric 

layer. Therefore, to gain a good dynamic strain ratio, high levels of loading frequency should 

be avoided and the stiffness of layers should not exceed that of the substrate too much.  
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Fig. 3.10: Amplitude of strain ratio with different material combinations under different 

frequencies 

3.6 Discussion 

The present simplified model can reasonably predict the two lowest wave modes in the 

layered structure. Because it is analytical in nature, the model is useful and convenient to use 

to analyze the complicated wave phenomena, such as the effects of the piezoelectricity and 

the material combinations. 

3.6.1 Effect of the piezoelectricity 

Dispersion curves for the PZT4-Aluminum structure with and without the piezoelectric effect 

are plotted in Fig. 3.11. The piezoelectric effect shows a significant influence on the 
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generalized longitudinal wave but insignificant effect on the generalized Rayleigh wave 

propagation.  

 

Fig. 3.11: Comparison of dispersion curves with and without the piezoelectric effect 

3.6.2 Effect of the material combinations 

The dispersion curves for different mass densities are studied and given in Fig. 3.5, from 

which the physical meaning of each mode was clearly shown. According to previous analysis 

in (Achenbach and Keshava, 1967),  the dispersion curves will be affected by the stiffness 

ratio, which is defined as the ratio of Young’s modulus of the substrate (
sE ) to the effective 

Young’s modulus of the piezoelectric layer ( effE ). When the material properties of the layer 

are given and fixed, the dispersion curves for different Young’s moduli of the substrate can 

be obtained, which are shown in Fig. 3.12. 
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Fig. 3.12: Effect of the stiffness ratio on the dispersion curve 

For the generalized Rayleigh mode wave, there is only limit effect of the stiffness ratio. 

For the generalized longitudinal mode wave, the phase velocity will increase significantly 

with the decrease of the stiffness ratio. When the substrate is much softer than the layer, there 

will be only one mode exists, and the upper mode will disappear. The critical value for the 

existence of the upper mode di determined by the ratio of the longitudinal velocity of the 

layer, /s effc E  , to that of the substrate, ( 2 ) /L s s sc     . As shown in Fig. 3.13, when 

/ 1L sc c  , the upper mode exists, while it will disappear and only the lower mode exists 

when s Lc c .  



79 

 

 

Fig. 3.13: Dispersion curves for different longitudinal velocity ratio cL/cs (the higher order 

branch only exists when cL/cs>1) 

3.7  Conclusions  

A simplified model is developed and compared to describe how waves propagate in a semi-

infinite elastic substrate with a surface-bonded piezoelectric layer. The current model 

assumes that the piezoelectric layer can be modelled as an electro-elastic film, which reduces 

the complex problem to the non-trivial solution of binary quadratic equations. This model is 

validated by comparing with exact results, indicating that the model is reliable when the 

thickness of the layer is smaller or comparable to the typical wavelength. For specific 

examples, the dispersion curves are presented and analyzed. The physical meanings of the 

two branches of the dispersion curve are examined by analyzing the effect of the transverse 

inertia and the density of the piezoelectric layer. The influence of the piezoelectric effect and 
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the material combination is also examined and discussed. The piezoelectric effect shows 

much more significant influence on the generalized longitudinal wave than that on the 

generalized Rayleigh wave and the upper mode only exists when the longitudinal wave of the 

substrate is bigger than that of the layer. Also, the in-plane dynamic behaviour of the layered 

piezoelectric structure is studied to evaluate the dynamic load transfer from the substrate to the 

layer under different loading frequencies and material combinations. Lower loading frequency 

and lower ratio between the stiffness of the piezoelectric layer and that of the substrate will 

result in higher dynamic strain ratio, which is desirable for the smart structures. The current 

model can be used as a benchmark for the study of wave propagation in this type of 

piezoelectric coupled structures. 
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Chapter 4: Dynamic interaction between piezoelectric sensors 

and embedded cracks  

This chapter provides a new semi-analytical solution to simulate the complicated dynamic 

interaction between piezoelectric sensors and cracks under plane elastic wave loading. The 

solution is obtained using proper superposition and the pseudo incident wave (PsIW) method, 

which takes the advantages of the reliability of analytical solutions and the flexibility of 

numerical methods. The explicit forms of the voltage output of the piezoelectric sensor and 

dynamic stress intensity factors (SIFs) of embedded cracks are determined. Numerical 

examples are given to illustrate the effect of embedded cracks upon voltage output of the 

piezoelectric sensor due to the interaction between them. In this chapter, problem statement 

and formulation is presented firstly. Secondly, the dynamic behaviour of the piezoelectric 

sensor is modelled based on the results in Chapter 2 and 3. Thirdly, the scattered waves from 

a single crack are summarized, followed by dynamic interaction between the sensor and 

cracks. Lastly, the results, discussion and conclusions are given.  

This chapter determines the voltage output of the piezoelectric sensor in response to 

crack parameters by solving the complicated dynamic interaction. The voltage output will be 

integrated into an optimization process into the next Chapter to estimate crack parameters 

quantitatively.  

4.1 Introduction 

In typical advanced piezoelectric based SHM systems for crack detection, elastic waves will 

be reflected between the attached piezoelectric sensors/actuators and embedded cracks. The 
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interaction between these sensors and cracks will cause the redistribution of the local stress 

and electric fields. Because of the complexity of the problem, when dynamic loads are 

applied, the simulation of the dynamic response of such coupled systems possesses a 

significant challenge, due to the multiple scattering among these sensors/cracks.  

The methods for multiple scattering of elastic waves are summarized in Section 1.2.3. 

The main numerical methods are T-matrix methods (Waterman, 1965), boundary element 

methods (BEM) (Cruse, 1972), and finite difference time domain method (FDTD) 

(Botteldooren, 1995). These numerical methods can be used to conduct the dynamic 

simulation of these problems under certain conditions but have their own limitations when 

multiple interactions are involved, because of the computing resource needed to obtain 

reliable results. Besides, most of these problems are governed by highly singular boundary 

integral equations, so they are less accurate and less efficient compared to analytical 

solutions (Wang et al., 2015). 

Analytical or semi-analytical study of interacting inhomogeneities under dynamic loads 

is very attractive because of its high reliability and accuracy but is limited to only simple 

cases of single inhomogeneity of certain types. For the dynamic interaction of these regular 

shaped scatters, analytical or semi-analytical solutions can be found with solutions of 

scattered field from a single scatter and pseudo incident wave (PsIW) method.  The PsIW 

method was firstly provided by Wang and Meguid (1997) for solving multiple scattering 

problems in an infinite elastic medium with a through-thickness crack and a circular fibre 

subjected to anti-plane loadings. Then, this method was used to determine the interactions 

between piezoelectric actuators (Wang and Huang, 2001, 2006a) and dynamic interactions 

among a large number of  circular inhomogeneities (Wang and Wang, 2016).  However, the 
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PsIW method in these studies was all applied to the dynamic interactions in infinite mediums. 

For the interaction problems in layered structures, the scattered waves of cracks will be 

reflected by interfaces between layers, resulting in complicated displacement and stress 

distribution near the interfaces, which cannot be solved by using the pseudo-incident wave 

technique directly. Besides, to the best of authors’ knowledge, the dynamic interaction 

between surface bonded piezoelectric sensors and embedded cracks has not been studied. 

The objective of this chapter is to investigate the multiple scattering of elastic waves in 

advanced piezoelectric based SHM systems and the effect of embedded cracks upon the 

voltage output of a piezoelectric smart sensor. The PsIW method and proper superposition 

will be used to solve the dynamic interaction between sensors and cracks theoretically. By 

using this method, the dynamic interaction problem is reduced to the coupled solution of 

single crack problems and single piezoelectric sensor problems, for which analytical 

solutions or simpler numerical solutions could be derived. By considering the consistency 

condition between different cracks/sensors, the steady state dynamic solution of multiple 

interaction problems can be formulated as a system of coupled single crack/sensor solutions. 

Numerical examples are presented to show the effectiveness of the PsIW method in 

simulating dynamic interaction problems of electromechanical structures under complicated 

geometries.  

 

4.2 Problem statement and formulation 

A piezoelectric smart sensor with uniform thickness h is surface-bonded to a homogeneous 

isotropic elastic solid structure, in which multiple cracks are embedded, as shown in Fig. 4.1. 
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It is assumed that the poling direction of the piezoelectric sensor is along the z-axis, 

perpendicular to the x–y plane. Since the host structure is much thicker than the piezoelectric 

sensor, it can be modelled as a semi-infinite plane (Qian and Hirose, 2012). The effect of the 

thin electrodes is ignored. To describe the structure, a global Cartesian coordinate (y, z) is 

used, shown in Fig. 4.1, and n local Cartesian systems ( , ), 1,2,...,i iy z i n  are used to 

characterize the cracks. The half-lengths and the orientation angles of the cracks are assumed 

to be ic  and  1,2,..., ,i i n   respectively. The centre of the ith crack is assumed to be 

located at  ,c c

i iy z  in the global Cartesian coordinate. 

The problem investigated is the dynamic interaction of surface bonded piezoelectric 

smart sensor with embedded cracks under a harmonic plane strain loading. In this case, the 

field variables, displacement, stress and strain, are all in the form of  ( , , ) ( , ) .i tA y z t A y z e    

For convenience, i te  term will be omitted in the following discussion and only the 

magnitude  ,A y z   will be considered. 

 

Fig. 4.1: The advanced piezoelectric structures with embedded cracks  

The current dynamic interaction problem involves complex boundary conditions and 

interfacial conditions which result in multiple scattering of elastic waves among the 
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piezoelectric smart sensors and cracks. To overcome this difficulty, instead of dealing with 

the original problem directly, this problem will be solved using the pseudo-incident wave 

method and proper superposition, which reduce the original interaction problem to the 

solution of coupled single piezoelectric sensor and single crack problems, as shown in Fig. 

4.2. 

 

Fig. 4.2: The pseudo-incident wave method: (a) single piezoelectric sensor problem; (b) 

single crack problem 

In the single piezoelectric sensor problem (Fig. 4.2(a)), the effects of cracks and the 

original incident wave upon the sensor are represented by a pseudo incident wave  ps

p
F , 

which can be expressed as 

      0

1

=
n

ps sc

p pj p
j

F F F


   (4.1) 

where  0

p
F  and  sc

pj
F  are the resulting stress components along the host-sensor interface 

induced by the original incident wave and the scattered wave from the jth crack, respectively. 

In this problem, the piezoelectric sensor is subjected to the pseudo incident wave  ps

p
F  and 

a scattered wave will be generated, which is assumed to be   .sc

p
F   



86 

 

For the crack problem (Fig. 4.2(b)), every crack is subjected to the original incident 

wave and scattered waves from the piezoelectric sensor and all other cracks. Therefore, the 

pseudo incident wave for crack i is 

        0

1

= +
n

ps p sc

i i ij i
j
j i

F F F F



   (4.2) 

where    0 , p

i i
F F  and  sc

ij
F  are the resulting stresses along the surface of the ith crack 

 0iz   induced by the original incident wave, the reflected wave from the piezoelectric 

sensor and the scattered wave from the jth crack, respectively. In this problem, crack i is 

subjected to the pseudo incident wave  ps

i
F  and a scattered wave  sc

i
F  will be generated.  

In this thesis, the superscript ‘0’, ‘sc’ and ‘ps’ representing the original incident wave, 

the scattered wave and the unknown pseudo-incident wave filed, respectively, and the 

subscript ‘p’, ‘s’ and ‘i’ indicate the piezoelectric sensor, substrate (i.e. host structure) and 

the ith crack, respectively.  

 

4.3 Dynamic behaviour of the piezoelectric sensor 

Consider first a piezoelectric sensor is perfectly bonded to a semi-infinite elastic host 

structure, under a general pseudo incident wave, as discussed in the previous section, and 

then a scattered wave will be generated from the reflection of the sensor-host interface and 

free surface of the semi-infinite medium, as shown in Fig. 4.2(a).  
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4.3.1 Modelling of the piezoelectric smart sensor 

Per the piezoelectric thin-sheet modelling as presented in Chapter 2, the axial stress can be 

assumed to be consistent across the thickness. The accuracy of this assumption has been 

validated for both static (Wang and Meguid, 2000) and dynamic cases (Wang and Huang, 

2006b). The result from Chapter 1 indicates that the axial stiffness along the sensor will play 

a much more important role than its flexural stiffness. Therefore, the piezoelectric sensor can 

be modelled as an electro-elastic thin layer (thin film) subjected to a distributed axial stress 

/ h .  

The equation of motion of the piezoelectric sensor is  

2( )
0

y

y

d y

dy h
u

 
            (4.3) 

where y  is the average axial stress, yu  is the average axial displacement, and   is the mass 

density of the piezoelectric sensor.  

Because the two tips of the surface-bonded piezoelectric sensor are traction free, the 

axial boundary conditions can be expressed as 

  0 at y y y a             (4.4) 

The constitutive relation of the piezoelectric layer under the plane strain and open-loop 

condition can be described as (Wang and Huang, 2006b): 

2

,
y

y p p

u e
E E E

y





  


     (4.5) 

with 

2

13

11

33

c
E c

c
  ，

13

13 33

33

c
e e e

c
  ，

2

33

33

33

e

c
   . 

ij
c  are the stiffness parameters, 

ij
e  are the 

piezoelectric constants, and 
ij
  are the dielectric constants, as shown in the appendix. 

Substituting Equation (4.5) into Equation (4.3) results in 



88 

 

 
 

 2

2

2
0

y

p y

p

u y y
k u y

y E h


  


    (4.6) 

where pk  and pc  being the wave number and the actual wave velocity of the axial wave in 

the piezoelectric sensor, with /p pk c   and / .p pc E    

The general solution of the displacement  u y  can be determined by solving Equation 

(4.4) and (4.6) as  

   
 

sin cos sin
y

y p p p p p
a

p p

u y A k y B k y k y d
hk E

 
 


      (4.7) 

with 

   

   

sin
cos

sin 2

cos
cos ,

sin 2

a
p

p p
a

p p p

a
p

p p
a

p p p

k a
A k a d

hk E k a

k a
B k a d

hk E k a

   

   





 

  





 

then, the axial strain of the piezoelectric layer can be obtained as 

 
 

   

 
 

sin
cos

sin 2

cos ,

a
p

y p
a

p p

y

p
a

p

k a y
y k a d

hE k a

k y d y a
hE

    

 
 






 

  





.   (4.8) 

4.3.2 The elastic field of the host medium 

The host structure is subjected to the pseudo-incident wave and interfacial stresses induced 

by the piezoelectric sensor, as indicated in Fig. 4.3(a). The wave field inside the host 

structure can be expressed by superimposing the two sub-problems, as illustrated in Fig. 

4.3(b) and Fig. 4.3(c). Sub-problem (b) represents the pseudo incident wave (original 

incident wave plus the scattered wave from the cracks) propagating in an infinite elastic 

medium, and sub-problem (c) represents the dynamic response of the semi-infinite host 

structure subjected to the following surface loading: 
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 

 
 

2

2

2

,0
, ,0

,0

s

yz s

zs

yz

y y a
y

y y a
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 

 

    
 

  

   (4.9). 

where s

yz  and s

z  represent the shear and normal stresses of the scattered wave in the 

substrate, and 2 2,   are the shear and normal stresses at the sensor-host interface 

induced by the pseudo incident wave in sub-problem 4(b).  

 

Fig. 4.3: Superposition of wave propagation in the layered piezoelectric structures  

The host medium is homogeneous isotropic and under steady state plane strain loading. 

The dynamic behaviour is governed by the following Helmholtz equations  of two 

displacement potentials  and  (Achenbach, 1973, p291) 

2 2 2 2( ) 0, ( ) 0K k           (4.10) 

where 2 2 2 2 2=( / y ) ( / )z       is the Laplacian operator, and / ,LK c / Tk c are 

longitudinal and transverse wave numbers respectively, with ,  ,Lc  Tc  being the circular 

frequency of the loading, the longitudinal velocity and transverse velocity in the host 

structure, respectively.  

Equation (4.10) can be solved by applying the following Fourier transform over y, 



90 

 

        
1

, ,
2

isy isyf s f y e dy f y f s e ds


 


 
     (4.11) 

from which the general solution of the two displacement potentials of the scattered field can 

be expressed in the Fourier domain as 

1

2

3

4

( ) , 0
( , ) ;

( ) , 0

( ) , 0
( , )

( ) , 0

z

z

z

z

A s e z
s z

A s e z

A s e z
s z

A s e z


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









 
 



 
 



 ,     (4.12) 

where ( ), 1,2,3,4iA s i   are four unknown functions of s, and ,  are  

2 2

2 2

,

,

s K s K

i K s s K


  
 

  

     (4.13) 

2 2

2 2

,

,

s k s k

i k s s k


  
 

  

     (4.14) 

which guarantee that the stress components of the solution will level off to zero at infinity. 

The non-vanishing displacement components can be expressed by ( ), 1,2,3,4iA s i   as 
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  (4.15) 

The corresponding strain components are  

 
1

, ,
2

y yz z
y z yz

u uu u

y z y z
  

   
    
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  (4.16) 

and the stress components can be determined through Hooke’s law as 
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where ,s sE   and 
s  are the Young’s modulus, Poisson’s ratio and shear modulus of the host 

structure with 
 2 1

s
s

s

E






.  

The dynamic response of a half space is a well-established problem in elasticity 

(Muskhelishvili, 1977; Wang and Huang, 2006b). If the stress boundary conditions at the 

surface (z=0) are given, the unknown parameters
2 ( )A s  and 

4 ( )A s can be determined by 

substituting Equations (4.17) into the boundary conditions. The resulting dynamic strain 

along the interface between the piezoelectric layer and the host structure in Fig. 4.3(c) can be 

obtained as 
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(4.18) 

where B

y  is the outgoing strain wave induced by the surface loading 2  and 2 , with 



92 

 

     

     

2

2

2
2 2

2

2

1
2 2

2

is yB T
y

s

is y

T

s

ik s
y e dsd

s
s k e dsd






   



   


   

 

   

 






  


 

 

  (4.19) 

and 

    2 2
22 2 / 1 .2 4 ,T s s sk E Es s               (4.20) 

4.3.3 Governing equations and numerical solutions 

Considering the continuity of the strain along the layer-host interface, and using equations 

(4.8) and (4.18), the following governing equation for the piezoelectric structure is obtained 

 
 

 
 

 
       

 

2

0
1 sin

1

sin
cos cos

sin 2

,
2

a a
T

a a
s

a y
p

p p
a a

p

Bs
y

k s
d s y dsd

y

k a y
k a d k y d

h k a h

E
y y a
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




 

 

 
          


   

 

  

    (4.21) 

where  / 2s pE E   is the material mismatch between the piezoelectric sensor and the 

host structure.  

The resulting governing integral equation contains a square-root singularity solution of 

  at the two tips of the piezoelectric sensor. This equation can be solved by expressing the 

interfacial shear stress in terms of Chebyshev polynomials 

2 2

0

( ) ( / ) / 1 /j j

j

y d T y a y a




   

where jT  is the Chebyshev polynomial of the first kind of jth order with    cos cosjT j  . 

To provide a solution to the problem, the Chebyshev polynomial will be truncated to Nth 

term, and Equation (4.21) will be satisfied at the selected collocation points given by 
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1

/ cos ,
1

l l l
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N
 

 
   

 
l=1,2, ,N (4.22) 

The governing equation can be reduced to N linear algebraic equations in terms of 

  1 2{ , ,
p

d d d , }T

Nd  as 

      sc

pp p
B d F   (4.23) 

where  
p

B  is a known matrix given by  
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l=1,2, ,N; j=1,2, ,N.  (4.24) 

In above equations 

 / , , , , /l l

P Py a k ka k k a s sa a h        

with 
jJ  being the Bessel functions of the first kind. ,   and   can be obtained from 

Equations (4.13), (4.14) and (4.20) directly with ,s K  and k  being replaced by ,s K  and 

,k  respectively. 

The matrix   1 2{ , , ,sc

p
F F F  }T

N pF  of Equation (4.23) can be expressed as 

 
2

B

i y i

E
F


                               (4.25) 
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The solution for c  can be determined from these linear algebraic equations. Once they 

are solved, the dynamic stress distribution caused by the layered piezoelectric structure can 

be determined as 

    

( , )

( , )

( , )

sc

y
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z p p
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y z

y z R d
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 
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  (4.26) 

where  
p

R  is given by 
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  (4.27) 

with 
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  



.  (4.28) 

 

4.4 Scattered waves of a single crack 

4.4.1 Elasto-dynamic behaviour of a crack in elastic medium 

The ith crack is subjected to a pseudo incident wave, as discussed in section 4.2, and then a 

scattered wave will be generated, as shown in Fig. 4.2(b). The scattered wave can then be 
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obtained through solving the elasto-dynamic behaviour of the crack. The elasto-dynamic 

behaviour of a single crack in an elastic medium is well studied. We will use the Fourier 

transform and the dislocation density functions to solve the single crack problem. The main 

formulation for single crack modelling is summarized as follows.  

The dynamic behaviour of the ith crack in the local coordinate system ( ,i iy z ) can be 

described by the following dislocation density functions (Meguid and Wang, 1995).  

     

     
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                                (4.29) 

After using the continuity condition of zz and 
yz at 0,iz  ( ), 1,2,3,4rA s r   can be 

determined and expressed in terms of the Fourier transform of dislocation density functions 
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  (4.30) 

where 
2 22s k    and    ,i is s   are the Fourier transform of  ,iy    iy .  

The dynamic displacement, strain and stress components can then be obtained and 

expressed as functions of  is  and  is  by substituting Equation (4.30) into Equations 

(4.15) to (4.17), respectively.  

Without considering the contact of crack surfaces, the boundary conditions along the 

crack surface for a crack under an incident wave are 
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  (4.31) 

where    ,I I

i iy y   represent the shear and normal stress components along the crack 

surface induced by the incident wave, and         ,0 , ,0 , ,0 , ,0y i y i z i z iu y u y u y u y   
 are 

displacements of the scattered field in y and z directions on the upper and lower surfaces of 

the through-thickness of the crack.  

By substituting Equations (4.15), (4.17) and (4.30) into (4.31), the governing equations 

for dynamic behaviour of a crack in elastic medium can be obtained as  
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 (4.32) 

and 
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c

c

c

c
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w dw










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


  (4.33) 

from which the displacements of the crack surface can be determined. 

4.4.2 Solution of the resulting integral equations 

Since the resulting governing equation solutions involve square root singularity, these 

equations can be solved by expanding the dislocation density functions   and   in terms of 

Chebyshev polynomials as 
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where jT  is the Chebyshev polynomial of the first kind with     cos cosjT j   and 1 2,j jd d  

are unknown constants to be determined. Equation (4.33) gives 
1

0 0d   and 
2

0 0d   according 

to the orthogonality conditions of the Chebyshev polynomials. By substituting Equation 

(4.34) into Equations (4.32) and (4.33), the governing equations will be transferred to 

algebraic equations for 1

jd  and 2

jd .  

An efficient way to determine the induced scattered wave  1 2,j jd d  is to truncate the 

Chebyshev polynomials to the Nth term, and to satisfy the resulting algebraic equations at N 

selected collocation points along the crack surfaces given by 
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y c
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

 
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 
 l=1,2, ,N (4.35) 

Then, the governing Equations (4.32) will be reduced to the following 2N  linear algebraic 

equations, as organized in the matrix format as 

 
 

 
 

 
 2 2 2 1 2 1N N N N

B d F
  

                                               (4.36) 

where  

   1 1

1 2{ , ,d d d
1 2 2

1 2, , , ,Nd d d 2, }T

Nd  (4.37) 

is a vector of coefficients of Chebyshev polynomials, and 

      1 2{ , ,I I

i iF y y       1 2, , , ,I N I I

i i iy y y    , }I N T

iy   (4.38) 

is a vector of the stress components at the collocation points on crack surfaces induced by the 

incident wave, and 
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The 2N unknown coefficients  d  can be found from the 2N linear algebraic equations 

in Equation (4.36). The scattered wave from a through-thickness crack can then be expressed 

in terms of constants  d  by substituting solution of 1

jd  and 2

jd  into Equation (4.16), (4.17), 

(4.30) and (4.34),  
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where  
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with 
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4.5 Dynamic interaction and multiple scattering of elastic waves 

Based on the solutions for the sensor problem and the crack problem described in the 

sections 4.3 and 4.4, dynamic interaction of the piezoelectric sensor and cracks can be solved 

using the pseudo incident wave, as illustrated in section 4.2, which will integrate the coupled 

single sensor and single crack problem.  

For the sensor problem, the piezoelectric sensor is subjected to the following pseudo 

incident wave 

      0

1

=
n

ps sc

p pj p
j

F F F


   (4.43) 

where  0

p
F  and  sc

pj
F  are resulting stress components along the sensor-host interface 

 0z   induced by the original incident wave and the scattered wave from the jth crack, 

respectively. From the analysis in Fig. 4.4, the shear stress  sc

pj  and normal stress  sc

pj  at 

the collocation points along the sensor-host interface induced by the scattered wave from the 

jth crack are obtained as 

   

   2 2

,0 ( , )sin cos ( , )sin cos ( , )cos 2

,0 ( , )cos ( , )sin ( , )sin 2

sc l sc out out

pj y j j pj pj j j pj pj j j pj

sc l sc sc sc

pj y j j pj z j j pj yz j j pj

y y z y z y z

y y z y z y z

         

      

   

  

 

 (4.44) 

with  

 
cos( ) cos

sin( ) sin

l

j pj pj pj pj

l

j pj pj pj pj

y d y

z d y

  

  

   

  
  (4.45) 

where 
ly  is the collocation points defined in Equation (4.35), 

pjd  are the distance between 

the centres of the piezoelectric sensor and the jth crack, pj  and pj  are the inclination and 
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orientation angles of the jth crack, as shown in Fig. 4.4. They can be obtained in the global 

coordinate as    
2 2

c c

pj j jd y z   and  arctan /c c

pj j jz y   .  In these equations, ,sc sc

y z   and 

sc

yz  are scattered wave due to the jth crack, and have been determined in the single crack 

scattering problem, as given in Equation (4.41) 

 

Fig. 4.4: The stress components at the sensor-host interface induced by the scattered wave 

from the jth crack 

Then  sc

pj
F  can be obtained by substituting Equation (4.26) into (4.44) 

        sc

jpj jpj
F T R d   (4.46) 

where  
j

R  is the corresponding matrix  R  in Equation (4.42) after replacing ,y z  by ,j jy z , 

i.e.    ,j jj
R R y z 

  , and  
pj

T  is the coordinate transformation matrix, given by  

  
 

 2 2

sin cos sin cos cos 2

cos sin sin 2

pj pj pj pj pj

pj

pj pj pj

T
    

  

 
 
 
 

  (4.47) 

Therefore, for the piezoelectric sensor, the scattered wave can be determined from 

Equation (4.23), by replacing the incident wave as  ps

p
F , such that 
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      ps

p p p
B d F   (4.48) 

where    ,
p p

B d  and  ps

p
F  are the corresponding matrix, Chebyshev polynomials 

coefficients and the pseudo incident wave of the sensor, which have been given in Equation 

(4.23) in the piezoelectric sensor problem.  

The pseudo incident wave along the piezoelectric sensor-host structure interface is 

given in Equation (4.43). Therefore, the following algebraic equations can be obtained by 

substituting Equations (4.43), (4.46) into (4.48), 

            0

1

n

p jp pj j p
j

B d T R d F


    (4.49) 

For the crack problem, as shown in Fig. 4.2(b), crack i is subjected to an unknown 

incident wave 
ps

iF  which represents the superposition of the scattered waves from the 

piezoelectric sensor-host system, other cracks and the original incident wave. Therefore, the 

pseudo incident wave for crack i is 

        0

1

=
n

ps sc sc

i p ij i
j
j i

F F F F



    (4.50) 

where    0 0,
i p

F F   and  sc

ij
F  are resulting stress components along the surface of the ith 

crack  0iz   induced by the original incident wave, scattered wave from the piezoelectric 

sensor and the scattered wave from the jth crack   ,j i  respectively. From the analysis in 

Fig. 4.5, the shear stress  sc

ij  and normal stress  sc

ij  on the surface of the ith crack due to 

the scattered wave from the jth crack are obtained 
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   
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( , ) ( , ) sin cos ( , )cos 2

( , )sin ( , )cos ( , )sin 2

sc l sc sc sc
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sc l sc sc sc
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y y z y z y z

y y z y z y z
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      

     

  
  (4.51) 

with 

 
cos cos

sin sin

l

j ij ij i ij

l

j ij ij i ij

y d y

z d y

 

 

 

  
     (4.52) 

where l

iy  is the collocation points defined in Equation (4.35), ijd  are the distance between 

the centres of the ith and jth crack, ij  are the inclination angles and ij  are the orientation 

angles of the ith crack, as shown in Fig. 4.5. They are obtained in the global coordinate as 

   
2 2

c c c c

ij i j i jd y y z z     ,    arctan /c c c c

ij i j i jz z y y    
   and 

ij i j     ( ,i j  are the 

orientations of the ith crack and the jth crack in the global coordinate, respectively). In these 

equations, ,sc sc

y z   and sc

yz  are that of scattered field due to jth crack, and have been 

determined in the single crack scattering problem, as given in Equation (4.41) 

 

Fig. 4.5: The stress components on the surfaces of the ith crack due to the scattered wave 

from the jth crack 

Therefore,  sc

ij
F  can be obtained by substituting Equation (4.41) into (4.51) as 
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        sc

ij j jij
F T R d   (4.53) 

where  
j

R  is the corresponding matrix  R  in Equation (4.42) after replacing ,y z  by ,j jy z , 

i.e.    ,j jj
R R y z 

  , and  
ij

T  is the coordinate transformation matrix, given by  

  
 

 2 2

sin cos sin cos cos 2

sin cos sin 2

ij ij ij ij ij

ij

ij ij ij

T
    

  

 
 
 
 

. (4.54) 

Similarly, the shear stress  sc

ip  and normal stress  sc

ip  on the surface of the ith crack 

induced by the scattered wave from the piezoelectric sensor can be determined from 

Equation (4.53) by replacing the subscript j by p as 

        sc

pip pip
F T R d .  (4.55) 

The scattered wave of the ith crack, when it is subjected to the pseudo incident wave, 

can be determined from Equation (4.36), by replacing the incident wave with  ps

iF  in the 

single crack solution  

     ps

i i i
B d F       (4.56) 

where    ,
ii

B d  and  ps

i
F  are the corresponding matrices, Chebyshev polynomials 

coefficients and the pseudo incident wave of the ith crack, which have been given in 

Equation (4.36) in the single crack problem.  

The pseudo incident wave along the surfaces of the ith crack is given by Equation 

(4.50). Therefore, the following algebraic equations can be obtained by substituting 

Equations (4.50), (4.53) into (4.56), 
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                  0
1

n

i p ji ip p ij j i
j
j i

B d T R d T R d F



    (4.57) 

For the dynamic interactions between a piezoelectric sensor and n cracks, a linear 

system of equations of the Chebyshev polynomial coefficients can be determined by 

combining Equations (4.49) and (4.57) as 

0
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
 (4.58) 

where  0

i
F (i=p,1,2,  ,n)are the vectors representing the stress components at the 

piezoelectric sensor-host interface (i=p) and at the surfaces of the ith crack due to the 

original incident wave,  
i

B (i=p,1,2,  ,n) are the coefficient matrices of the single 

piezoelectric sensor problem (i=p) or single crack problem, and [ ] [R]ij jT (i=p,1,2, ,n) 

represent the effect of the jth crack upon the piezoelectric sensor (i=p) or the ith crack. 

The Chebyshev polynomial coefficients can be found through solving Equation(4.58). 

Then the stress and strain of the wave field in the structures can be calculated directly.  

4.6 Results and discussion 

The dynamic interactions among multiple cracks in piezoelectric based SHM systems are 

dominated by the linear algebraic Equations (4.58). By solving the system of equations, the 

Chebyshev polynomial coefficients are determined, and all displacement, strain andstress 

components can then be obtained. In this section,firstly, the current model will be compared 
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with existing results, followed by the multiple scattering of elastic wave among multiple 

cracks, and the dynamic interaction between sensors and cracks will be studied. 

In the solution of the problem, based on the careful evaluation of the convergence of 

Chebyshev polynomial expansion, 20 terms of Chebyshev polynomials are used in the 

numerical calculation, which ensures that the current results considered are convergent.  

The incident wave considered is a time-harmonic longitudinal plane wave 
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   
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0 2
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y m

z m

yz m

ik y z

ik y z

ik y z
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        

        

       

  (4.59) 

where m  is the maximum amplitude of the normal stress corresponding to the incident wave 

front,   is the angle angel with the y-axis, K is the longitudinal wave number and 

 
2 1 2

2 1

s

s










. 

4.6.1  Comparison with existing results 

To the best of authors’ knowledge, there are no works on multiple scattering of elastic waves 

between surface bonded piezoelectric sensors and multiple cracks, however, there are some 

simper related cases, such as the dynamic behaviour of a surface bonded piezoelectric sensor 

(Congrui Jin and Wang, 2011; Wang and Huang, 2006b) and the dynamic interaction of 

cracks (Meguid and Wang, 1995). These simpler cases are studied using the current solution 

and compared with the existing results in Congrui Jin and Wang (2011) and Meguid and 

Wang (1995).  

Comparison is first made to a single piezoelectric sensor problem solved by Jin and 

Wang (2011), by using only the first row in Equation (4.58), i.e.   
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    0[ ]p p p
B d F .  (4.60) 

The material properties of the piezoelectric sensor are given in Table 2.1. Meanwhile, 

the material properties of the host structures are 102.74 10 Pa  for Young’s modulus, 0.3 for 

Poisson’s ratio and 
32700 /Kg m  for the mass density. The mass density of the piezoelectric 

sensor is also assumed as 32700 /Kg m . 

The dynamic strain ratio is “the percentage of deformation transferred from the host 

medium to the sensor” (Huang and Wang, 2006). It is an index of the sensing characteristics 

of the piezoelectric sensor. It is defined as  

 0( ) ( ) / ( )y y yy y y     (4.61) 

where 0( )y y  is the resulting strain on the free surface of the host structure. In general, ( )y y

is in the complex form. The resulting dynamic strain ratio studied in this chapter is the real 

part of ( ) i t

y y e   . 

Fig. 4.6 shows the amplitude of the dynamic strain ratio along the sensor under 

different loading frequencies when the sensor system is subjected to a normal incident wave 

with K being the longitudinal wave number. Very good agreement are observed, which 

validating the current model and program of the piezoelectric sensor problem. 

The results of the current model are then compared with that of interacting crack 

problems, which have been extensively studied using numerical methods, such as FEM or 

BEM, and analytical methods (Achenbach, 1973; Meguid and Wang, 1995). Meguid and 

Wang (1995) developed a semi-analytical model to determine the dynamic interaction of two 

cracks using the superposition of a series of the analytical solution of a single crack. This 
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method solved the multiple scattering of elastic waves back and forth between two cracks by 

using a number of iterations of scattering wave from a single crack to convergence.  

 

Fig. 4.6: The amplitude of the dynamic strain ratio along the sensor under different loading 

frequencies. 

In the current method, the dynamic stress intensity factors (SIF) of the ith crack can be 

expressed in terms of Chebyshev polynomials coefficients  
i

d  as 
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  (4.62) 

where ,i iR R

I IIK K   and ,i iL L

I IIK K  are the dynamic SIFs at the right and the left tips of the ith 

crack, respectively.  
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 To evaluate the accuracy of the current method for simplified case without sensors, the 

dynamic SIFs of two collinear cracks are determined and compared to the existing results. 

Fig. 4.7 shows the comparison between the results from the current model and that from 

Meguid and Wang (1995) for different loading frequencies (kc) and different c2/c1 values. In 

this figure, the normalized SIF is defined as 1* /
R static

I I IK K K  with 
static

IK  being the static SIF 

of a single crack and kc being the normalized wave number. The interaction between two 

collinear cracks is studied, with Poisson’s ratio being 1/ 3  , the half-length of the first 

crack being c1, the centre-to-centre distance being d=2.2c1, and the half-length of the second 

crack c2 being allowed to vary. The interacting cracks are subjected to a normal incident 

wave propagating perpendicularly to the cracks, given in Equation (4.59). 

 

Fig. 4.7: Variation of normalized dynamic SIFs versus kc for different lengths of a 

collinear crack induced by a normal incident wave. 
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The results showed a very good agreement with the result of Meguid and Wang (1995). 

The good agreement verifies that the current solution can predict the wave fields reliably and 

accurately caused by the dynamic interaction between cracks.  

4.6.2 Dynamic interaction between piezoelectric sensors and cracks 

The dynamic interactions among cracks in piezoelectric based SHM systems are dominated 

by a system of  linear algebraic Equations (4.58). By solving these equations, the voltage 

output can be determined. This section will focus on analyzing the voltage output of the 

piezoelectric smart sensor, which can be used as the surface signals for crack identification. 

The material properties used in this section are same as that given in section 4.6.1.  

The current method can be reduced to solving dynamic interaction of multiple cracks in 

an infinite medium. The SIFs can be determined from Equation (4.62) after determining all 

Chebyshev polynomial coefficients, which are the solutions of Equation (4.58) after 

eliminating first row and column. Because this problem of interacting multiple cracks has 

been solved by Meguid and Wang (1995), therefore, except the SIFs of two collinear cracks 

with difference lengths shown in Fig. 4.7 for comparison, other results of interacting only 

multiple cracks determined by the current method are given in Appendix C.  

Based on the constitutive equations of piezoelectric materials, the voltage output  V y  

along the sensor can be expressed as (Jin and Wang, 2011) 

    
0

h

z y

eh
V y E y dz 


     (4.63) 

where y  is the axial strain along the piezoelectric sensor and 

13 33 13 33/e e e c c  ，
33

2

33 33/e c    
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with 
ij

c  being the stiffness coefficients, ij
e  being the piezoelectric constants, and 

ij
  being 

the dielectric constants. It is noted that the voltage output determined is in the complex form, 

and only the amplitudes are considered in the current analysis.  

The voltage output of the piezoelectric smart sensor may be affected by embedded 

cracks in the structure, and contains the information of crack parameters. To illustrate the 

effect of a crack upon the voltage output, specific results with and without cracks subjected 

to a normal incident wave are compared and plotted in Fig. 4.8, which show the results under 

a dynamic loading (normalized wave number Ka=1 with K and a being the longitudinal wave 

number and half-length of the piezoelectric sensor). The crack is parallel to the piezoelectric 

sensor with its length being equal to that of the sensor and the distance between the sensor 

and the crack being a/2. The voltage output of the piezoelectric sensor is normalized by 

dividing  max = max /yV eh    with  max y  representing the maximum strain induced by the 

incident wave (Ka=1 for Fig. 4.8) for the structure without any cracks. For the case of Ka=1, 

the voltage output is affected significantly by the existence of the embedded crack. The 

voltage outputs under different frequencies are studied and shown in Fig. 4.9. The voltage 

output is normalized by dividing the maximum voltage for the static case without any cracks. 

For the case with a crack, the incident wave is scattered from both the crack and the sensor, 

so the wave propagation involves multiple scattering and will be very complicated. The wave 

field and the voltage output from the sensor depend on loading frequencies and crack 

characteristics. The current model will enable the description of such a complicated wave 

field and the final voltage output for different configurations.  
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Fig. 4.8: Comparison of voltage output along the piezoelectric sensor surface for none 

crack case and with crack case under a dynamic load (Ka=1).  

 

Fig. 4.9: Comparison of voltage output along the piezoelectric sensor surface for different 

loading frequencies. 
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In summary, the voltage output of the piezoelectric sensor in response to embedded 

cracks can be determined, which contains the information of crack parameters. This result 

can then be used to identify embedded crack from known sensor signals, i.e. the recorded 

voltage data of surface bonded piezoelectric sensor.  

The sensor response to multiple cracks is also studied for the case of Ka=2, under a 

normal incident wave. Three collinear cracks are distributed uniformly with the same half-

length being a/4 and the distance between the sensor and the cracks being a/2, as shown in 

Fig. 4.10. The voltage output is shown in Fig. 4.10. The voltage is normalized by the voltage 

value of the one crack configuration at the centre of the piezoelectric sensor. From the figure, 

the voltage output for these two configurations is significantly different along the sensor 

surface. The amplitude for three crack configuration is higher than the one crack 

configuration. Therefore, the difference in the crack configurations can be distinguished from 

the voltage output of the sensor. It should be mentioned that the three collinear cracks occupy 

the same length as the single crack. 

Piezoelectric element, as an inhomogeneity of the structure, may affect the fracture 

behaviour of near cracks. The dynamic SIFs of cracks can also be obtained from the method 

directly. Fig. 4.11 shows the variation of normalized dynamic SIFs versus ka for different 

locations of a parallel crack induced by a normal incident wave. Comparison with the 

corresponding SIF of a single crack in an infinite medium is also provided. When the 

distance between the piezoelectric element and the crack is small (d=0.1 for example), there 

is a significant difference between the current dynamic SIF and that for the single crack case. 

As expected, the difference will be reduced with the increase of the distance.  
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Fig. 4.10: Comparison of voltage output along the piezoelectric sensor surface for one 

crack configuration and three crack configuration under a dynamic load (Ka=2). 

 

Fig. 4.11: Variation of normalized dynamic SIFs versus ka for different locations of a 

parallel crack induced by a normal incident wave. 



115 

 

4.7 Conclusions  

A semi-analytical methodology is presented to simulate the complicated dynamic interaction 

among cracks in a piezoelectric smart structure under plane elastic wave loading using the 

pseudo incident wave method and proper superposition technique. Through this method, the 

complicated multiple scattering problem is reduced to the coupled solution of the single 

crack problem and the single piezoelectric sensor problem. The resulting integral governing 

equations for both are solved using Chebyshev polynomials. The main contribution of this 

chapter is the development of explicit forms of the voltage output of the piezoelectric sensor 

and dynamic SIFs of cracks by solving the complicated dynamic interaction problem. The 

method is compared with the existing results of simplified cases. Numerical results of the 

voltage output and the dynamic SIFs for different configurations and frequencies are 

determined and analyzed. The loading frequency shows complicated effects on the voltage 

output of the sensor, which depends on the crack characteristics. For specific crack 

configuration, certain frequencies can be used to generate more significant voltage output 

which can potentially be used for crack identification. The current method is very general 

and can reliably simulate the complicated interaction between piezoelectric sensors and 

cracks. 
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Chapter 5: A novel crack identification technique using 

optimization methods  

In the previous chapter, the wave propagation by interacting the cracks and the piezoelectric 

sensor can be determined, and the surface voltage signals and interface stress can be obtained 

theoretically, which related the surface signals with the crack characteristics. Inversely, the 

unknown parameters of cracks, including the sizes, shapes and locations, can be determined 

through the obtained surface signals by integrating the relation into an optimization process. 

This chapter will study a novel crack detection technique using the surface signals 

determined from piezoelectric smart sensors based on an optimization method. Numerical 

examples will be given to demonstrate the accuracy and evaluate the effectiveness of the 

current approach.  

 

5.1 Introduction 

In a typical structural health monitoring system, piezoelectric sensors can be used to measure 

the scattered waves, and the recorded signals contain the health signatures of the embedded 

cracks which will be useful for estimating their parameters. One of the most fundamental 

issues in such a crack identification system is the extraction of crack information from the 

measured signals precisely. Four methods to interpret the surface signals have be 

summarized and compared in the literature review analysis in Section 1.2.4, including 

comparing feature parameters between damaged and undamaged structures (Schulz et al., 

1999), scanning method (Hoseini et al., 2013), time-reversal technique (Meng et al., 2006)  
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and optimization methods (De Fenza et al., 2015). An effective way to identify cracks is to 

use a traditional optimization process based on theoretical solutions of sensor response to 

different crack configurations, which has been studied in the previous chapter. Through the 

comparison, the optimization scheme will be conducted to determine the length, the positions 

and orientations of the embedded cracks using known surface signals of piezoelectric smart 

sensors.  

The relation between crack parameters and the scattered field has been integrated into 

an optimization algorithm to predict unknown crack parameters by Bao and Wang (2009, 

2011). Bao and Wang (2009) presented a framework to identify a crack in an infinite elastic 

medium subjected to a longitudinal incident wave using BFGS algorithm with the known  

strains of the scattered elastic waves, and then multiple cracks detection was conducted 

following the same process in their later work (Bao and Wang, 2011). In their works, the 

known strains used to identify crack parameters were around the cracked area, which is 

impracticable for industrial application. Meanwhile, their simulation results ignored the 

effects of sensors upon the signals, but per our results in Section 4.6.2, the sensors will have 

a significant influence on the scattered wave field due to the interaction between the cracks 

and sensors. 

This project will study the quantitative crack identification using traditional 

optimization scheme based on known voltage output from surface bonded piezoelectric 

sensors. The voltage output of the piezoelectric sensor in response to unknown crack 

parameters will be simulated using the solution developed in previous chapter for specific 

crack configurations. The position, the length and the orientation of embedded cracks will 
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then be estimated through minimizing the difference of the known voltage output and that 

determined in the developed interacting sensor/crack solution.  

 

5.2 Formulation of the problem 

A piezoelectric smart sensor with uniform thickness h and half-length a is surfaced attached 

to an isotropic and elastic host structure, in which cracks may be embedded, as shown in Fig. 

5.1. It is assumed that the poling direction of the piezoelectric sensor is along the z-axis, 

perpendicular to the x–y plane. The host structure can be idealized as a semi-infinite plane 

which corresponding to the case that cracks are far from the lower boundaries. To describe 

the structure, a Cartesian coordinate system (y, z) is illustrated in  Fig. 5.1, and n local 

Cartesian systems ( , ), 1,2,...,i iy z i n  are used to characterize the coordinates of the crack i. 

The unknown parameters for the ith crack are assumed to be ic  for half lengths, i  for the 

orientation angles and  ,c c

i iy z for the location in the global Cartesian coordinate. 

The problem investigated is to identify the unknown crack characteristics through the 

known voltage signals from the piezoelectric smart sensor when the structure is subjected a 

time-harmonic incident wave. Two tasks will be conducted. One is the direct problem and the 

sensitivity analysis of the solution, which determines the dynamic response of the structures 

(the voltage output of the piezoelectric sensor) when the excitation loading, structural 

constants and the crack parameters are known. The other one is the inverse problem to 

identify the crack parameters using the known voltage output. In the current study, the 

voltage output of the sensor will be numerical simulated using the solution developed in the 

previous chapter.   
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Fig. 5.1: General schematics of the piezoelectric sensor systems for embedded crack 

identification. 

5.2.1 The direct problem 

The direct problem is to simulate the voltage output along the piezoelectric smart sensor in 

response to specific embedded cracks under a time harmonic loading. Chapter 4 has provided 

an effective and accurate semi-analytical model for dealing with the dynamic interaction 

among piezoelectric sensors and embedded cracks using the PsIW method. This model will 

be used in the current section to related the voltage output of the piezoelectric sensor to crack 

parameters.  

Based on the constitutive equations of piezoelectric materials (Jin and Wang, 2011), 

the voltage output  V y  along the sensor in open-loop condition can be expressed as 

   
0

h

z y

eh
V y E y dz 


                                             (5.1) 

where y  is the axial strain along the piezoelectric sensor and 

13 33 13 33/e e e c c  ，
33

2

33 33/e c    

with 
ij

c  being the stiffness coefficients, ij
e  being the piezoelectric constants, and 

ij
  being 

the dielectric constants. 
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The axial strain of the piezoelectric sensor is controlled by the interfacial stress 

transferred from the host structure to the sensor   ,y  as given in Equation (4.8), as 
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  (5.2) 

where 
pk  and 

pc  represent the wave number and the axial wave velocity in the piezoelectric 

layer, with /p pk c  and / .p pc E   

According to the solution in Chapter 4, the interfacial shear stress  y  can be 

determined by the following Chebyshev expansions, 

  
2

1

( ) ( ) / 1
N

l l

j j

j

y d T  


    (5.3) 

where 
jd  are Chebyshev polynomials coefficients, 

jT  is the Chebyshev polynomials of the 

first kind with    cos cosjT j  , and 
l  are the locations of N selected collocation points 

along the piezoelectric sensor-host structure interface with 

1
/ cos ,

1

l l l
y a

N
 

 
   

 
 l=1,2, ,N.                                (5.4) 

For specific loading conditions and crack geometries, the Chebyshev polynomial 

coefficients  
p

d  can be determined using the solution obtained in the previous Chapter, 

Equation (4.58). The interfacial shear stress  y  and voltage output  V y  along the 

piezoelectric smart sensor can then be obtained.  

This section summarizes the relation between the voltage output of the sensor and the 

crack parameters. In this problem, each potential crack has four crack parameters. These four 

parameters of the ith crack are denoted as  
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       44 1 1 4 1 2 4 1 3
( , , , )T

i ii i i
p p p p

     
p   (5.5) 

with 
 4 1 1

,ii
p c

 
  4 1 2

,ii
p 

 
   4 1 3

,c

ii
p y

 
  

4

c

i ip z  being the half length, the orientation 

and two position coordinates of the crack centre in the global Cartesian coordinate. For a 

specific structure attached with a known piezoelectric smart sensor under a given time 

harmonic loading, the resulting voltage output is only determined by the crack parameters p , 

i.e. 

    fV y V p   (5.6) 

where 1 2 3 3{ , , , ,p p p pp
4 1 4, , }T

n np p  with 1 1,p c  2 1,p   
3 1 ,cp y  

4 1 ,cp z  , 4 1np     

,c

ny  
4

c

n np z . The solution of the direct problem is a predictor or solver, through which the 

theoretical solution of resulting voltage output can be obtained if the crack parameters are 

given. 

5.2.2 Sensitivity analysis 

For the direct problem, the inputs are the crack parameters and the outputs are the voltage 

data of the piezoelectric sensor. In the current chapter, the sensitivity analysis is adopted to 

evaluate the variation of the voltage output at selected points along the piezoelectric sensor 

with the change of positions, lengths and orientations of every crack. Mathematically, 

sensitivity analysis is equivalent to evaluating the partial derivative of the voltage output with 

respect to crack parameters. The results of the sensitivity analysis will be used to determine 

the gradient vector and the Hessian matrix to determine the searching direction in the 

optimization iteration. 

In this problem, each potential crack has four crack parameters, one length parameter, 

two position coordinates, one orientation. For a case where n cracks might exist, a total of 4n 
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parameters need to be identified. The sensitivity can be obtained by determining the partial 

derivative of the voltage output function with respect to each parameter. However, the  direct 

differentiation is difficult to determine because the formulation of the voltage output function 

is very complicated. Therefore, the finite difference approximation is used to provide simpler 

and more convenient way of calculating local sensitivity. It requires no extra code beyond the 

original model solver.  

In general, the crack parameters are represented as a vector given in Equation (5.5). 

The first and second order derivative of voltage output with respect to the crack parameter ip  

can be mathematically formulated  by  
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  (5.7) 

where    ,f i f iV p V p  and  f iV p   are the corresponding voltage output for crack 

parameter ,i ip p  and ip   respectively with    being a small disturbance value, which 

will be identified later.  

Using these equations, the sensitivity of the voltage output to every parameter of every 

crack can be determined. 

5.2.3 The inverse problem 

The relation between crack characteristics and the voltage output has been obtained by 

solving the direct problem. This relation between signals and crack parameters can be 

integrated into an optimization algorithm to predict the cracks parameters from known 

voltage output along the sensor. The crack parameters, including the length, orientation and 
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locations, can be identified by minimizing the distance between the known voltage data and 

corresponding voltage predicted by the direct problem. If this distance is defined as an 

objective function ( )f p , the inverse problem is to then determine crack parameters p which 

minimize the objective function, i.e.  

    
2

1 1

1
min ( ) ,

2

pn n

f q f q

f q

f V V


 
 

 p p   (5.8) 

where  f qV   is the known voltage output at 
pn  selected points along the sensor described 

by , 1,2,iy i  , pn  in response to embedded cracks and loading frequency
q , 

pn  is the 

number of selected points, n  is the number of frequencies, and  ,f qV p  is the surface 

voltage output along the sensor obtained through the direct problem for the crack parameters 

p  and the frequency q .  

In the current study, proper initial values of crack parameters, which are different from 

the target crack geometry, will be assumed. Minimization of the objective function will occur 

if the estimated crack parameters p  approach the actual parameters, which are used to 

generate  .f qV   This is a large-scale and nonlinear optimization problem.  

This objective function can be reduced to a simpler case when only a single frequency 

is used. This case requires only an incident wave with a specific frequency, so it can work for 

real-time health monitoring. However, the number of measurement points along the 

piezoelectric smart sensor will limit the monitoring capability. If there are only 4 data points 

at the piezoelectric smart sensor, this system will only be able to monitor more than one 

crack, which is characterized by its four parameters.  

If only one frequency is used, Equation (5.8) can be reduced to  
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  
2

1

1
min ( )

2

pn

f f

f

f V V


 p p   (5.9) 

where 
fV  is the known recorded voltage signal at pn  selected points described by 

, 1,2,iy i  , pn  and  fV p  is the surface voltage solution at the 
pn  selected points 

predicted by the direct problem for the crack parameters .p   

Multiple frequencies can be used to enhance the monitoring capability when limited 

signal points are available in a SHM system. If there are only 4 sensing points at the 

piezoelectric smart sensor, this system will still be able to identify more than one cracks if 

data from enough frequencies are collected. In the limiting case where only one is available, 

Equation (5.8) is reduced to  

   
2

1

1
min ( ) ,

2

n

q q

q

f V V


 


 p p      (5.10) 

where  qV   is the known recorded voltage under loading frequency 
q  and  , qV p  is 

the surface voltage solution predicted by the direct problem for the crack parameters p  and 

the frequency .q    

In the following discussion, attention will be paid to only the single frequency case. 

 

5.3 Quantitative crack identification 

By solving the previous direct and inverse problems, the crack parameters can be estimated 

from known voltage data from piezoelectric sensors. The flow chart for the crack 

identification process will be summarized, followed by the analysis of optimization methods.  
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The flow chart for the crack identification process is shown in Fig. 5.2. The inputs are 

the recorded voltage data, structural constants, loading data and the initial guess for crack 

parameters. The recorded data will be used to determine the objective function and the other 

three will be substituted into the direct problem solution for predicting the corresponding 

theoretical voltage output. After updating the crack parameters through the process, the 

estimated crack parameters will approach these of true cracks if convergence is achieved.  

 

 

Fig. 5.2: The flow chart for the crack identification process using harmonic wave 

propagation and optimization method. 

For the identification of cracks, a reasonable crack number needs to be assumed first. 

Ideally, if the maximum number of cracks is assumed to be n, the current model will be able 
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to identify not more than n cracks. The maximum crack number is limited by the sensor data 

and also limited by the convergence of the numerical process in optimization. For example, if 

there is only one crack, the results will be the parameters of this crack and 0 for all other n-1 

cracks. When the number of existing cracks is larger than the capability the piezoelectric 

sensor, extra voltage data for different loading frequencies will be required to enhance the 

capability of the current system. 

The problem is to find the solution minimizing the objective function  f p  of 4n 

variables, where 1 2{ , ,p pp
4, }T

np  are the 4n crack parameters. Although the direct 

problem  ,f qV p  given by Equation 5.8 is linear with respect to the wave field but nonlinear 

regarding the crack parameters, this problem is a nonlinear minimization problem which is 

usually solved using Newton’s methods (Métivier et al., 2013), because the rate of 

convergence is faster than most of other optimization methods. The Newton’s method is to 

approximate the objective function by constructing a quadratic function, with its first and 

second derivatives at the current point match the corresponding values of the original 

objective function at this point. The quadratic approximation to  f p  can be obtained from 

the second order Taylor expansion as 

               
21

2

k k k k k
q f H    p p g p p p p   (5.11) 

where     k k
f g p  is the gradient of the function with respect to estimated parameters 

 k
p  

with k being the iteration number, and the matrix  k
H  is the corresponding Hessian matrix 

(Métivier et al., 2014) with     =
k k

H f  p .  Fig. 5.3 is a two-dimensional schematic diagram 

showing the iteration principle of the Newton method for finding the minimum. For each step 



127 

 

k, he minimizer of  q p  is determined, which corresponds to a value of  k
p . In the next step 

k+1 of the iteration  k
p  will be used as the starting point. This procedure is repeated 

 
        

1
1k k k k

H



 p p g   (5.12) 

until a convergent solution is obtained for .p   

 

 

Fig. 5.3: A two-dimensional schematic diagram to show the iteration principle of the 

Newton method for finding the minimum. 

The Newton’s method will head in the descent direction of the objective function when 

the Hessian matrix is positive definite. But for the current problem, positive definite of 

Hessian matrix cannot be proved. In order to ensure the descent property of the Newton’s 

method for the current problem, Equation (5.12) is modified as 

 
        

1
1k k k k

k H



 p p g   (5.13) 

where k  is the optimal step size in the direction of 
    

1
k k

H


 g , which can be determined 

through a one-dimensional search method, such as golden section search method and secant 
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method (Métivier et al., 2013). With this modification, it is guaranteed that 

     1k k
f f


p p  for any  

.
k
g 0  

The Newton’s method requires computing the inverse of the hessian matrix 1
H  in 

every iteration and it is inefficient. Consequently, quasi-newton methods are adopted, and the 

inverse Hessian matrix is approximated using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

algorithm (Bao and Wang, 2009). Based on BFGS algorithm, the inverse Hessian matrix    

can be approximated using the updating rules below 
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        (5.14) 

where          1
= ,

k k k k k

k kH


    p g g g g  and superscript T means matrix transpose.   k
g  is 

gradient vector obtained in the sensitivity analysis. 

The BFGS optimization scheme is conducted to find the optimal estimated crack 

parameters 
*p  from the recorded surface voltage signals of the piezoelectric sensor. The 

algorithm for this problem is summarized in the following 5 steps, as shown in Table 5.1. 

The BFGS algorithm guarantees that inverse Hessian matrix is positive definite in each 

iteration, so the iterative process has the descent property, which guarantees that the local 

minimum is obtained through the algorithm. If the initial crack parameters are not far from 

the optimal, the relatively accurate length, orientation and the position of the cracks can be 

identified through this algorithm. The selection of initial crack parameters will be discussed 

in the following section. 
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Table 5.1: The optimization algorithm for finding the optimal estimated crack parameters 

from the recorded surface voltage signals of the piezoelectric smart sensor. 

(a) Set 0;k   input structural constants, loading and recorded voltage data; select initial 

crack parameters  0
p  and 0H  ( 0H  should be symmetric and positive definite).  

(b) Solve the direct problem; compute objective function   k
f p  and gradient vector  

.
k

g   

(c) If  k
g 0  or ,f tolerance output optimal crack parameters 

*p  and stop; else find k  

that minimizes     k k

k kf Hp g  and      1k k k

k kH

 p p g . 

(d) Compute          1
= ,

k k k k k

k kH


    p g g g g  and estimate 
1kH 
 using Equation (5.14). 

(e) Set 1k k   and go to step (b). 

 

5.4 Results and discussion 

For an elastic isotropic and homogeneous structure with a surface attached piezoelectric 

sensor, a dynamic excitation can be applied by an exciter, such as ultrasonic transducers or 

piezoelectric actuators, to generate elastic wave propagation in it. When the wave encounters 

cracks, it will be scattered and the scattered wave will be recorded by the piezoelectric 

sensors. The recorded signals contain the signature of the cracks thus can be used to identify 

the parameters of the cracks using the optimization algorithm given in Table 5.1.  

The material properties of the piezoelectric sensor and the host structure are same as 

these used in Chapter 4. The incident wave considered is a time-harmonic longitudinal plane 

wave propagating in the z-axis direction perpendicular to the sensor, given in Equation (4.59) 

with the incident angle o90  . The half-length of the sensor is 1.0a cm  and the 
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normalized wave number 1.0Ka  , with K is the longitudinal wave number. In the current 

theoretical study, the known voltage signals used in the inverse problem are provided by the 

solution of the direct problem solution from the pre-assumed crack parameters.  

This following section will study some specific cases to show the effectiveness of the 

current crack identification method. Consider a specific case of a piezoelectric sensor with 

the thickness being h=0.05a parallel to three uniformly distributed collinear cracks with the 

same half-length 1 2 3 / 4.c c c a    The location of the centres of the three cracks are 

therefore  3 / 4, / 2 ,a a    0, / 2a  and  3 / 4, / 2a a .The configuration and geometric 

details are shown in Fig. 5.4.  

 

Fig. 5.4: Case 1 of three uniformly distributed collinear cracks parallel to the piezoelectric 

sensor subjected to a normal incident wave. 

Using these crack parameters, the direct problem subjected to the incident wave with 

Ka=1 is solved to generate the voltage output of the sensor. The results are normalized by 

dividing the maximum voltage value V0 for no crack case. The resulting voltage data at 12 

selected locations along the sensor are given in Table 5.2. 
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Table 5.2: Known voltage signals at 12 selected locations along the piezoelectric sensor for 

case 1. 

Number 1 2 3 4 5 6 

Location y/a 0 0.05 0.10 0.15 0.20 0.25 

Voltage V/V0 1.1798 1.1703 1.1436 1.1023 1.0496 0.9897 

Number 7 8 9 10 11 12 

Location y/a 0.30 0.40 0.50 0.60 0.70 0.80 

Voltage V/V0 0.9265 0.7996 0.6738 0.5371 0.3797 0.2118 

 

The voltage data at these 12 selected locations are substituted into the BFGS algorithm 

in Table 5.1Table 5.1. The algorithm starts from guessed initial parameters as shown in Table 

5.3, which are different from the actual parameters. The iteration process of finding the 

optimal crack parameters is shown in Fig. 5.5. The figure shows that the rate of convergence 

is very quick, indicating suitableness of the BFGS algorithm for this optimization problem.  

The crack parameters predicted by the current method is also given in Table 5.3. 

Comparing with the actual parameters, the difference is very small. The very good agreement 

with the actual values theoretically demonstrates the accuracy and the effectiveness of this 

technique to identify cracks. It should be noted that the current crack identification is limited 

to theoretical study only. The inevitable noise in real structures has been ignored here, and 

experimental validation with noise being considered should be carried out in the future work.  
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Table 5.3: The estimated crack parameters for case 1. 

Crack 

parameters 

Actual 

parameters 

Initial 

parameters 

Estimated 

parameters 

1c (mm) 0.25 1.0 0.251 

1 (o) 0 1.0 0.014 

1

cy (mm) -0.75 1.0 -0.752 

1

cz (mm) -0.5 -1.0 -0.501 

2c (mm) 0.25 1.0 0.250 

2 (o) 0 1.0 0.011 

2

cy (mm) 0 1.0 0.000 

2

cz (mm) -0.5 -2.0 -0.499 

3c (mm) 0.25 1.0 0.251 

3 (o) 0 1.0 0.026 

3

cy (mm) 0.75 1.0 0.748 

3

cz (mm) -0.5 -3.0 -0.501 

 

 

Fig. 5.5: The objective function vs iteration for case 1. 
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In case 2 of the crack identification, a similar configuration but with only one long 

crack with its half-length being c=a is considered. The configuration and detailed geometry 

are shown in Fig. 5.6. This case will be compared with the previous three crack case to 

evaluate the sensitivity of the current method in distinguishing similar crack geometries. The 

voltage output of the sensor corresponding to these crack parameters is obtained from the 

solution of the direct problem and is given in Table 5.4. Similar to the previous case, the 

voltage output at 12 selected locations along the sensor is used.  

 

Fig. 5.6: Case 2 of one big crack parallel to the piezoelectric sensor subjected to a normal 

incident wave. 

Table 5.4: Known voltage signals at 12 selected locations for case 2. 

Number 1 2 3 4 5 6 

Location y/a 0 0.05 0.10 0.15 0.20 0.25 

Voltage V/V0 0.0384 0.0356 0.0282 0.01615 -0.0002 -0.0205 

Number 7 8 9 10 11 12 

Location y/a 0.30 0.40 0.50 0.60 0.70 0.80 

Voltage V/V0 -0.0441 -0.0985 -0.1562 -0.2075 -0.2400 -0.2375 
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The optimization process is conducted by considering three possible cracks and using 

the crack parameters for the previous three crack case as the initial parameters, as given in 

Table 5.5. The iteration process is shown in Fig. 5.7. The rate of convergence is also very 

quick. The crack parameters predicted by the current method are in very good agreement 

with the actual values for the existing crack. The results predict accurately the parameters for 

the long crack and the other cracks are predicted to have almost zero lengths. This study 

clearly shows the reliability of the current approach in identifying cracks.  

Table 5.5: The estimated crack parameters for case 2. 

Parameters 

notation 

Actual 

parameters 

Initial 

parameters 

Estimated 

parameters 

1c (mm) 1.0 0.25 0.997 

1 (o) 0 0 0.062 

1

cy (mm) 0 -0.75 0.000 

1

cz (mm) -0.5 -0.5 -0.500 

2c (mm) 0 0.25 0.000 

2 (o) 0 0 0.003 

2

cy (mm) 0 0 0.000 

2

cz (mm) 0 -0.5 0.000 

3c (mm) 0 0.25 0.000 

3 (o) 0 0 0.011 

3

cy (mm) 0 0.75 0.001 

3

cz (mm) 0 -0.5 0.000 
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Fig. 5.7: The objective function vs the iteration number 

The two cases considered represent two extreme cases, one long crack and closely 

packed small cracks. the results reliably predicted the crack geometries in both cases, 

showing the effectiveness and reliability of current method to identify embedded cracks 

theoretically. It should be mentioned that convergence can be easily achieved if reasonable 

initial values of the crack parameters are used. If the initial values are significantly far away 

from the expected ones, desirable convergence may not be available. For example, when the 

initial parameters are selected to be 1 2 3 100c c c    and all other parameters are 0, the 

optimization process will be convergent but the results are far from the expected parameters.  

This method can identify crack parameters quantitatively using limited voltage signals 

of the piezoelectric sensor. The problem investigated is a strong nonlinear optimization 

problem with respect to multiple parameters. In addition, this problem is solved using local 

optimization methods. Thus, the initial parameters guessed should not be too far away from 
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the expected values to ensure convergence the global minimum rather than just to a local 

minimum.  

In order to guarantee initial parameters are reasonable to converge to the global 

minimum in the crack detection of real structures, two approaches can be considered to help 

to choose the initial crack parameters for the identification. and make the current approach 

suitable for real application:  

(1) When continuous crack monitoring is available, the last known crack information can be 

used as the initial condition. By ensuring that the interval between two continuous 

detections is short enough, the crack status change will be in a reasonable range and this 

will guarantee the objective function is near the local minimum.  

(2) To conduct a typical Non-Destructive-Testing, such as B-Scan, to obtain an initial 

estimate of possible cracks. In this situation, the current method will serve as a further 

developed technique for quantitative identification of cracks.  

5.5 Conclusions 

A crack identification method is provided to quantitatively identify the position, the length 

and the orientation of cracks embedded in structures using the voltage output of the surface-

bonded piezoelectric sensor. The explicit forms of the voltage output with respect to crack 

characteristics are obtained by solving the direct problem, i.e. the dynamic interaction 

problem. Inversely, this form and known sensor data are then used to identify the cracks by 

integrated them into a BFGS optimization process. Numerical examples are presented, which 

show rapid convergence and effectiveness of the current method in crack identification.  
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This chapter shows that the dynamic interaction can provide a richer description of 

interacting cracks, which enables the accurate identification of the cracks. At this stage, the 

theoretical investigation is completed and a framework is established to realize quantitative 

crack identification. To further apply this framework in practical applications, experimental 

validation will be conducted in future work. 
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Chapter 6: Contributions and future work 

This chapter summarizes the main contributions of this thesis and suggests several problems 

that remain to be addressed in the future work. 

6.1 Main contributions 

This thesis conducted a systematic investigation of the dynamic behaviour of piezoelectric 

sensors, multiple scattering of elastic waves and its application on crack identification. 

Throughout this project, four major issues essential to the establishment of a piezoelectric 

based SHM system are studied, (1) how to model the piezoelectric sensor; (2) how elastic 

waves propagate in the piezoelectric coupled solid structures under time harmonic loading; (3) 

how elastic waves are scattered back and forth between cracks and sensors; (3) how to detect 

embedded cracks using the piezoelectric sensors. 

Corresponding to these four major issues, the specific contributions of this project can 

be summarized as follows. 

6.1.1 A new model for piezoelectric sensors/actuators with bending effect 

This thesis develops a modified two-dimensional model of thin-sheet piezoelectric sensors/ 

actuators, bonded to half planes. This sensor/actuator model is an extension of the one 

dimension model given in Wang and Meguid, (2000) with added bending effects. The 

electromechanical response of the sensor/actuator is studied under different mechanical and 

geometrical conditions to evaluate the effect of bending. Numerical examples are conducted 

to study the effects of the material properties, the geometry and interfacial debonding upon 

the load transfer between the actuator and the host structure.  



139 

 

6.1.2 A new analytical solution for dispersion relation in layered piezoelectric structures 

The dispersion equations of layered piezoelectric structures normally can only be solved 

using pure numerical solution. This thesis develops an analytical dispersion equation, which 

reduces the complicated problem to a much simpler one using the new sensor model. The 

resulting eigen-value problem is much simpler yet captures major wave modes for the current 

layered piezoelectric structure. Typical examples are provided to illustrate the wave modes 

and the effects of the piezoelectricity, geometry and material properties. Comparison with 

exact results indicates that the current solution is accurate for low-order wave modes. 

6.1.3 A new solution for dynamic interaction between piezoelectric sensors and cracks 

A semi-analytical systematic methodology is established to simulate the complicated 

dynamic interaction among cracks and the piezoelectric sensor. Through this methodology, 

the original multiple scattering problem is reduced to the solution of coupled single crack 

problem and single piezoelectric sensor problem. The resulting integral equations governing 

the dynamic behaviour of single crack/sensor are solved by using Chebyshev polynomial 

expansion and the collocation point method. Numerical results of the voltage output and the 

dynamic stress field for different configurations and frequencies are determined and analyzed. 

This methodology takes the advantages of the reliability of analytical solutions and the 

flexibility of numerical methods. It is very general and can provide a reliable simulation of 

complicated interaction problem.  

6.1.4 A quantitative technique for quantitative crack identification  

A crack identification technique is provided to quantitatively identify the position, the length 

and the orientation of cracks embedded in structures using the voltage output of the surface-

bonded piezoelectric sensor. The calculated voltage output of the piezoelectric sensor in 
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response to the existence of multiple cracks and the known data are integrated into a BFGS 

optimization process to predict unknown crack parameters. Numerical examples show that 

this technique can potentially quantitatively identify multiple cracks effectively. But current 

examples are limited to near parallel crack cases, and more general cases need to be verified 

in the future work. 

6.2 Future work 

Although the work of this thesis has tried to cover the major gap found in the existing 

literature as stated in Chapter 1, some problems still need to be addressed in the future to 

extend the application of current methods. 

1. Effect of interfacial debonding and structural boundaries 

For piezoelectric based SHM systems, poor adhesive conditions and high-stress 

concentration may cause partial debonding between the piezoelectric sensor and the structure. 

The effect of debonding on the voltage output of the piezoelectric sensor should be studied. 

The scattered waves from these interfacial cracks can also be modelled in the similar method 

with dislocation density functions and traction free boundary conditions. Then, the current 

methodology for dynamic interaction problems can be extended to involve interfacial cracks. 

On the other hand, the host structure is idealized as a semi-infinite plane, which is 

corresponding to the case that the sensors and embedded cracks are far from boundaries. The 

current method can also be extended by considering the effect of other boundaries. The 

scattered or reflected wave from the boundaries can deal with using the superposition method 

similar to that for the free surface with piezoelectric sensors. 

 



141 

 

2. Different types of cracks 

This thesis considered only through-thickness cracks to show the methodology and 

effectiveness of the current methods. In practical applications, different types of cracks, such 

as penny-shaped cracks may exist. The scattered wave of such cracks can be derived and 

substituted into the current method for dynamic interaction to evaluate the interaction 

between the crack and the sensor. This can then be used in the optimization process 

developed for the identification of these cracks.  

3. Experiment validation 

This thesis mainly focused on theoretical studies, which help us understand the 

dynamic behaviour of piezoelectric based SHM systems, multiple scattering of elastic waves 

and give insights into developing new methods for quantitative crack identification. However, 

these theoretical studies are based on some assumptions. Although they have been validated 

by comparing with existing results or simplified cases, the related experiments should be 

done in the future to further validate these theoretical solutions, especially the effectiveness 

of the optimization algorithm in practical applications for crack identification.  
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Appendix 

Appendix A: The governing equations of piezoelectric materials 

In the rectangular Cartesian coordinates, the equations of motion without body force are 

given by 
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and the Gauss’ law 
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The constitutive equations of piezoelectric materials are given by (Kögl and Bucalem, 2005)
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Where 

  , , ,
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In above equations, 
ij , 

ij  and iu  are the stress components, the strain components and the 

mechanical displacements, while ,iD  iE  and V represent the electric displacements, the 
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electric field intensity and the potentials, respectively. 
ijc  are the stiffness parameters for a 

constant electric potential, 
ij
  are the dielectric constants, 

ij
e  are the piezoelectric constants, 

and   is the mass density. 

Then, the governing equations of the piezoelectric material can be obtained by 

combining these equations together, as 
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Appendix B: One-dimensional piezoelectric sensor model 

According to the electro-elastic line model of piezoelectric sensors (Wang and Meguid, 

2000), the stress component 
y  and the electric displacement zD  under plane strain 

condition can be obtained as, 
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with  
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When the electric displacement across the piezoelectric layer 0,zD   the stress component  

y  can be determined as 
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Appendix C: Dynamic interaction of multiple cracks 

The method developed in Chapter 4 can also be used for dynamic interaction of multiple 

cracks in an infinite medium. Attention will be focused on the dynamic SIFs caused by the 

incident wave with the effect of crack interaction. The SIFs can be determined from Equation 

(4.62) after determining all Chebyshev polynomial coefficients, which are the solutions of 

Equation (4.58). The dynamic SIFs of other cracks can be also determined from Equation 

(4.62) in the same way. The SIFs of two collinear cracks with difference lengths subjected to 

a longitudinal incident wave have been determined and compared in the comparison with 

existing results. In this part, we first study the effect of the distance between two cracks on 

the dynamic SIFs, followed by the effect of the orientation of cracks. It should be noted that 

the dynamic SIFs induced by a time-harmonic incident wave are in general complex 

quantities. For convenience, only the amplitude of the SIFs is considered in the following 

figures.  

 The dynamic interaction of two collinear cracks is studied first to analyze the dynamic 

interaction. For two collinear cracks with the same length subjected to a longitudinal incident 

wave, the dynamic SIFs for difference distance between the two cracks can be determined, as 

shown in Fig. A.1. The figure reveals that the dynamic SIFs will be affected by the distance 

of the two cracks. For the low frequency, the dynamic SIF will become much larger with the 

decrease of the distance between two cracks, which means the effect of the collinear crack 
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will be larger upon the stress concentration at the right tip of the first crack when their 

distance becomes smaller. It is observed that the dynamic SIFs will become larger with the 

increase of the frequency and achieve the maximum value when the frequency is below kc=1. 

After passing the maximum value, they will decrease with the increase of the frequency and 

emerge almost together after kc>2.5. The maximum dynamic SIFs are larger than that 

corresponding to the static case, which is the well-known dynamic overshoot phenomenon. 

For high frequencies, which correspond to shorter wavelengths, the dynamic interaction 

between the cracks will become insignificance when the wavelength is smaller than the 

distance between cracks. We can conclude that the dynamic interaction should be considered 

when kc is relatively small, such as kc<1. 

To further study the phenomenon, the dynamic SIFs for difference distance d=2.2, 3, 8, 

10, 20 are plotted in Fig. A.2. The errors of dynamic SIFs with and without considering the 

dynamic interaction are defined by the maximum difference between the SIF of single crack 

and that of two collinear cracks with the same length 2c. The errors for different distances 

between two crack centres are obtained and given in Table A.1. The error for d/c=10 is 

3.12%, and for d/c=8 is 7.47%. The dynamic interaction of two collinear cracks under time 

harmonic loadings can be ignored when the distances of the crack centre d>10c under an 

error of around 3%. 

Table A.1: The errors of dynamic SIFs with and without considering the dynamic 

interaction for different distance d between the centres of two collinear cracks. 

Distance d/c 3 8 10 20 

Error 14.74% 7.47% 3.12% 1.99% 
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Fig. A.1: Normalized dynamic SIFs versus kc for different distances d between two near 

collinear cracks induced by a normal incident wave. 

 

Fig. A.2: Normalized dynamic SIFs versus kc for different distances d between two 

collinear cracks induced by a normal incident wave. 
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Fig. A.3 shows the variation of normalized dynamic SIFs versus normalized wave 

number kc for different orientation angles of two interacting cracks induced by a normal 

incident wave. The configuration of cracks is also included in the figure. From the figure, all 

of the curves have the similar trend, increasing first and then decreasing with the increase of 

frequencies. For low frequency, 0   achieves the maximum dynamic SIFs while 90   

achieves the minimum. This can be explained by the distance of two closest tips of cracks.  

 

Fig. A.3: Normalized dynamic SIFs versus normalized wave number kc for different 

orientation angles induced by a normal incident wave. 

 

 

 

 




