
 
 
 
 
 

Development of Data-driven Models for Thermal Dynamic Analysis of Buildings 

 
by 

 
Zequn Wang 

  
  

 
 
 
 

A thesis submitted in partial fulfillment of the requirements for the degree of 
 
 

Master of Science 
 

in 
 

Civil (Cross-disciplinary) 
 
 
 
 
 

Department of Civil and Environmental Engineering 
University of Alberta 

 
 
 
 
 
 
 

  
 
 

© Zequn Wang, 2019 



ii 
 

Abstract 

Data-driven modelling has been widely applied in building operation optimization, energy 

management, ongoing commissioning, and so on. This thesis presents a comprehensive study of 

data-driven modelling for analysis of building thermal dynamics. First, three types of data-driven 

models, namely, transfer-function based models (TF models), resistor-capacitor based models (RC 

models), and artificial-intelligence based models (AI models) are critically reviewed, including 

their formulations, interpretability of physical meanings, and prediction accuracy. Fundamental 

concepts and common techniques for model training and selection are also presented. By applying 

the data-driven approach to a low-energy house using on-site monitored data, features of different 

data-driven models are further demonstrated. It is found that, in general, RC models are the most 

suitable for physical interpretation. 

Then, a simple yet effective methodology is proposed to obtain reliable RC models for 

building thermal dynamic analysis. In this methodology, complex preliminary model structures 

are first created based on physical principles and then simplified by progressively removing non-

identifiable parameters. Two important techniques are adopted in the simplification process: 1) a 

genetic algorithm is employed during model training to ensure the satisfactory fitting ability of 

large model structures; 2) asymptotic confidence intervals are calculated for parameter estimates 

and used to define parameter non-identifiability. The methodology is illustrated using a case study 

of the low energy house. This case study shows that the obtained RC model can predict room 

temperatures with satisfactory accuracy, and the estimated parameters are physically interpretable.  
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Finally, the estimated RC model parameters are related to building configurations, and the 

model is used to evaluate the design of the low energy house, with a focus on the adequacy and 

effectiveness of its thermal energy storage (TES) system. The influences of different parameter 

values on energy consumption and temperature fluctuations are compared. The findings show that 

the current TES system (i.e., the concrete wall and slabs) is designed with sufficient thickness and 

surface area. Decreasing its thickness or surface area will result in considerably more fluctuations 

of indoor air temperatures. Regarding energy consumption for space heating, varying the design 

would not result in significant improvement. The RC model is also used in evaluating other aspects 

of the thermal performance of the house, such as the overall thermal transmission of the envelop, 

the equivalent solar aperture, and the relative significance of different energy flow paths. 
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Chapter 1. Introduction 

1.1. Background 

Buildings represent the largest energy-consuming sector in the world, with over one-third 

of all final energy and half of global electricity consumed there [1]. If no action is taken to improve 

energy efficiency in the buildings sector, this consumption is expected to rise by 50% by the year 

2050 [1]. In addition, almost half the energy consumed in buildings in developed countries is used 

by heating, ventilation, and air conditioning systems [2]. Given this trend and trait of energy 

demand, a great deal of research efforts has been devoted to enhancing the energy efficiency of 

buildings such as operation optimization, energy management and ongoing commissioning.  

Among such practices, data analysis and modelling techniques have demonstrated critical 

importance [3]. For example, it is believed that process modelling and identification is the most 

time-consuming and challenging part of predictive system control [4, 5]. Among a variety of data 

analysis and modelling techniques employed in building applications, data-driven modelling of 

building thermal dynamics has received particular interest. Data-driven modelling has shown 

promise in reducing operational energy consumption, shifting and shaving peak demand, and 

performance monitoring. These are achieved through model-based control of space heating and 

cooling [6-8], fault detection of mechanical systems [9, 10], retrofit evaluation [11], etc.  

Data-driven modelling of building thermal dynamics (i.e., the data-driven approach) 

consists of three phases (see Figure 1.1): modelling, training and selecting. In the modelling phase, 

a mathematical model with unknown parameters is formulated which can predict system outputs 

using measured inputs. For example, the model may predict indoor air temperature using measured 
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weather information, heating or cooling supply, and occupant activities. The unknown parameters 

are then estimated in the training phase by tuning the predicted outputs to the measured outputs. 

Finally, in the selecting phase, the best model is chosen by schematically comparing the well-

trained model candidates.    

 

 

Figure 1.1 A general procedure of the data-driven approach 

 

The data-driven approach is also known as an inverse approach, in contrast to the forward 

approach [12]. The forward approach uses engineering principles and prior-known design 

information (e.g., building geometry and thermal characteristics) to model building responses 

subjected to specified inputs. A severe drawback of the forward approach is that, in the rather 

complicated modelling process, unexpected interactions can occur between systems or between 

various modes of heat transfer [12]. On the contrary, the data-driven models are often simplified, 

easy to formulate and require less parameterization and computation time. The models tend to be 

highly adaptive to the actual performance data and give more accurate predictions of building 

responses. Moreover, multiple model candidates can be easily formulated and compared during 

model selection to derive a more representative model.  

Data-driven dynamic modelling is relevant for prediction purpose (e.g., predicting room 

temperatures into the future) and/or explanatory purpose (e.g., inferring and verifying important 



 

3 

thermal characteristics). Dynamic data-driven models can make hourly or sub-hourly predictions 

that are especially useful for predictive control of buildings with high thermal inertia. Dynamic 

data-driven models can also be used for describing the actual thermal behaviours and deriving as-

built thermal properties of buildings. Moreover, by taking transient heat transfer into account, 

dynamic models can deliver better thermal characterization compared to steady-state models [13, 

14]. As such, the dynamic data-driven models have broad applicability to buildings due to their 

prediction and explanatory abilities.  

1.2. Objective & Scope 

The primary objective of this research is to develop data-driven models that are simple and 

reliable, which can be used for the thermal dynamic analysis of buildings and are suitable for 

evaluation of the actual building thermal performance. Realization of this objective consists of 

addressing the followings:  

i. Investigate different types of data-driven models used for the thermal dynamic 

analysis of buildings and compare their structure complexity, computation demand, 

as well as the capability of predicting and characterizing building thermal 

behaviours.  

ii. Identify the type of data-driven models (e.g., RC models) that are the most suitable 

for explanatory purposes and have satisfactory prediction accuracy.  

iii. Build up a methodology that can simplify complex model structures by removing 

unnecessary parameters to obtain a simpler and physically more reliable model.   
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iv. Apply the developed methodology to the modelling of a low energy house using 

on-site data and apply the obtained model to assessing the house’s thermal 

performance and analyzing its design.  

The thesis focuses on the physical interpretability of data-driven models. Starting from 

investigation of different model types, to buildup of model simplification methodology, to 

application of the obtained model on assessments of a low energy house’s thermal performance, 

the entire process is to develop and benefit from a high-quality model that is readily physically 

interpretable. Another concentration of the research is to apply the developed data-driven models 

to evaluating the actual performance of existing designs and identify potential design 

improvements. The study has also incorporated various techniques of model training and selection 

along with their applicability in different situations.  

1.3. Thesis Outline 

The remainder of this thesis is organized as follows. Chapter 2 presents a literature review 

on the data-driven approach including variables for measuring, model formulation, training, and 

selection, and a small case study exemplifying the whole data-driven modelling process. Structure 

complexity, physical interpretability, and computational efficiency are discussed for different 

types of models. Chapter 3 proposes a methodology to simplify preliminary complex model 

structures by progressively removing non-identifiable parameters to obtain the most reliable model 

structures for explanatory purposes. The proposed methodology is illustrated through the case 

study of a low energy house for which a three-zone model is developed and justified. Chapter 4 

demonstrates the physical interpretation of the simplified model structure through the design and 

modelling of a simple single-zone space. The simplified model structure is applied to evaluate the 
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house’s energy storage system and investigate the capability of internal thermal mass in reducing 

the fluctuations of indoor air temperatures. Chapter 5 concludes the thesis with a summary of the 

research, key contributions, and recommendations for future work.  
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Chapter 2. Literature Review 

2.1. Introduction 

The objective of this chapter is to conduct a literature review on the data-driven approach 

for the thermal dynamics of buildings. Section 2.2. “Categories of Data-driven Models and Their 

Fundamentals” demonstrates the formulations, constraints, and relations of three types of data-

driven models. Section 2.3. “Training & Selection” summarizes input/output variables that are 

commonly employed for model training, and introduces parameter estimation methods, validation 

criteria, and model selection techniques. In Section 2.4. “Case study” a single-zone house is 

modelled using different models with on-site data. Section 2.5. “Discussion” explains the major 

differences between the reviewed models.  

2.2. Categories of Data-driven Models and Their Fundamentals 

Data-driven models are core components of the data-driven approach. In the literature, 

there are three main categories of data-driven models for building thermal dynamics, i.e., models 

based on resistor-capacitor networks (RC models), models based on discrete-time transfer 

functions (TF models), and models based on artificial intelligence techniques (AI models).  

Building thermal dynamic process can be nonlinear with respect to the input variables, e.g., 

convective heat transfer on surfaces is nonlinearly dependent on the surface-air temperature 

difference. Besides, some thermal properties may vary over time due to changes in environment 

and operation (e.g., ventilation rate continually changes). Complex model structures can be 
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developed to account for the nonlinearity and time-varying behaviours of building systems. 

However, most researchers adopt linear time-invariant versions of the data-driven models (except 

for AI models that are naturally nonlinear) for simplicity. Their results have shown that linear time-

invariant models can characterize building thermal dynamics with promising performance [15-21].   

This section will focus on describing linear time-invariant TF and RC models as well as 

time-invariant AI models. These models are either for prediction purposes (e.g., predicting room 

temperatures into the future) or for explanatory purposes (e.g., deriving specific thermal 

properties). They will be investigated regarding their structure formulations, prediction abilities, 

and physical interpretations.  

2.2.1. RC models 

The RC models capture building thermal dynamics by a network of temperature nodes, 

thermal resistors, and thermal capacitors. Resistances, capacitances, and other necessary 

parameters in the network are referred to as equivalent thermal parameters [22-24]. In other words, 

their estimates only enable the RC network to imitate building thermal dynamics and do not match 

precisely with the apparent quantities. Measured or prior-known node temperatures (e.g., zone 

temperatures) are often called system inputs or outputs, while temperatures linked to thermal 

capacitors are system states. The number of system states determines a model’s order (or the 

number of ordinary differential equations as defined in the following context). Typically, models 

of lower orders are preferred since they require less parameterization and often have satisfactory 

prediction accuracy compared to larger ones [8, 13, 24-29]. 

Given an RC network and assuming one-dimensional heat transfer, thermal dynamics of 

each temperature node in the network are governed by the following ordinary differential equation 

(take the 𝑘𝑘𝑡𝑡ℎ node for example): 
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𝐶𝐶𝑘𝑘
𝑛𝑛𝑇𝑇𝑘𝑘
𝑛𝑛𝐹𝐹

= �
𝑇𝑇𝓀𝓀 − 𝑇𝑇𝑘𝑘
𝑅𝑅𝓀𝓀,𝑘𝑘𝓀𝓀

+ � 𝐹𝐹𝑗𝑗𝑇𝑇𝑗𝑗
𝑗𝑗

 (2.1) 

where, 

𝑇𝑇𝑘𝑘 represents the mperature of the 𝑘𝑘𝑡𝑡ℎ node; 

𝐶𝐶𝑘𝑘 is the thermal capacity attached to the 𝑘𝑘𝑡𝑡ℎ node; 

𝑇𝑇𝓀𝓀 represents the mperature of a neighbor of the 𝑘𝑘𝑡𝑡ℎ node.   

𝑅𝑅𝓀𝓀,𝑘𝑘 is the thermal resistance between the 𝑘𝑘𝑡𝑡ℎnode and its neighbor;  

𝑇𝑇𝑗𝑗 denotes the 𝑗𝑗𝑡𝑡ℎ heat input to the 𝑘𝑘𝑡𝑡ℎ node (e.g., solar radiation); and 

𝐹𝐹𝑗𝑗 is a factor (e.g., solar aperture) that evaluates the heat input 𝑇𝑇𝑗𝑗.  

Eqn. (2.1) is essentially a heat balance equation. On its right-hand side, ∑ (𝑇𝑇𝓀𝓀 − 𝑇𝑇𝑘𝑘) 𝑅𝑅𝓀𝓀,𝑘𝑘⁄𝓀𝓀  

describes the sum of heat fluxes from all the neighbor nodes and ∑ 𝐹𝐹𝑗𝑗𝑇𝑇𝑗𝑗𝑗𝑗  for all the direct heat 

inputs. The left-hand side, 𝐶𝐶𝑘𝑘 𝑛𝑛𝑇𝑇𝑘𝑘 𝑛𝑛𝐹𝐹⁄ , describes how the incoming energy is stored in the node. 

Such ordinary differential equations are set up for all the temperature nodes and rearranged into a 

state-space representation where model inputs, outputs, and parameters are clearly defined.  

RC models are often used for zone air temperature prediction [15, 23, 24, 30, 31], as well 

as heating or cooling load prediction [7, 32-35]. Table 2.1 shows the formulation of a simple 

second-order RC model for temperature prediction.  

In addition to temperature or load prediction, the RC models can also be used for inferring 

important building thermal characteristics [29, 36-38]. For example, if 𝑇𝑇𝑖𝑖, 𝑇𝑇𝑒𝑒, and 𝑇𝑇𝑜𝑜 respectively, 

are zone air temperature, the average temperature of the building envelop, and outdoor air 

temperature, the overall thermal transmittance of the studied building can be calculated as 𝑈𝑈 =

(𝑅𝑅2 + 𝑅𝑅3)−1 + 𝑅𝑅1−1; if 𝑇𝑇𝑠𝑠 is global solar radiation on the south façade, 𝐹𝐹𝑠𝑠 can be interpreted as 

solar aperture and 𝐹𝐹𝑠𝑠𝑇𝑇𝑠𝑠 becomes the transmitted effective solar gains.  
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Table 2.1 An example of RC model formulation 

For a single-zone 

house 

𝑇𝑇𝑖𝑖: indoor air temperature 

𝑇𝑇𝑒𝑒: the average temperature of building envelop 

𝑇𝑇𝑜𝑜: outdoor air temperature 

𝑇𝑇ℎ: heating power 

𝑇𝑇𝑠𝑠: solar radiation on south façade 

Model structure 

 

Ordinary 

differential 

equations 

𝐶𝐶𝑒𝑒
𝑛𝑛𝑇𝑇𝑒𝑒
𝑛𝑛�̃�𝐹

=
𝑇𝑇𝑜𝑜 − 𝑇𝑇𝑒𝑒
𝑅𝑅2

+
𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑒𝑒
𝑅𝑅3

 

𝐶𝐶𝑖𝑖
𝑛𝑛𝑇𝑇𝑖𝑖
𝑛𝑛�̃�𝐹

=
𝑇𝑇𝑜𝑜 − 𝑇𝑇𝑖𝑖
𝑅𝑅1

+
𝑇𝑇𝑒𝑒 − 𝑇𝑇𝑖𝑖
𝑅𝑅3

+ 𝐹𝐹𝑠𝑠𝑇𝑇𝑠𝑠 + 𝐹𝐹ℎ𝑇𝑇ℎ (𝐹𝐹ℎ = 1) 

State-space 

representation in 

continuous-time 

𝑛𝑛
𝑛𝑛�̃�𝐹
�𝑇𝑇𝑒𝑒𝑇𝑇𝑖𝑖

� =

⎣
⎢
⎢
⎡−

1
𝐶𝐶𝑒𝑒𝑅𝑅2

−
1

𝐶𝐶𝑒𝑒𝑅𝑅3
1

𝐶𝐶𝑒𝑒𝑅𝑅3
1

𝐶𝐶𝑖𝑖𝑅𝑅3
−

1
𝐶𝐶𝑖𝑖𝑅𝑅1

−
1

𝐶𝐶𝑖𝑖𝑅𝑅3⎦
⎥
⎥
⎤

�����������������������
𝑨𝑨�

�𝑇𝑇𝑒𝑒𝑇𝑇𝑖𝑖
� +

⎣
⎢
⎢
⎡

1
𝐶𝐶𝑒𝑒𝑅𝑅2

0 0

1
𝐶𝐶𝑖𝑖𝑅𝑅1

𝐹𝐹𝑠𝑠
𝐶𝐶𝑖𝑖

1
𝐶𝐶𝑖𝑖⎦
⎥
⎥
⎤

�����������
𝑩𝑩�

�
𝑇𝑇𝑜𝑜
𝑇𝑇𝑠𝑠
𝑇𝑇ℎ
� 

𝑇𝑇𝑖𝑖 = [0 1]���
𝑪𝑪�

�𝑇𝑇𝑒𝑒𝑇𝑇𝑖𝑖
� + [0 0 0]�������

𝑫𝑫�
�
𝑇𝑇𝑜𝑜
𝑇𝑇𝑠𝑠
𝑇𝑇ℎ
� 

Variables Input: 𝒖𝒖 = [𝑇𝑇𝑜𝑜 𝑇𝑇𝑠𝑠 𝑇𝑇ℎ]′; Output: 𝒚𝒚 = 𝑇𝑇𝑖𝑖; State: 𝒙𝒙 = [𝑇𝑇𝑒𝑒 𝑇𝑇𝑖𝑖]′; 

Parameter: 𝜽𝜽 = [𝑅𝑅1 𝑅𝑅2 𝑅𝑅3 𝐶𝐶𝑒𝑒 𝐶𝐶𝑖𝑖 𝐹𝐹1 𝐹𝐹2]′ 
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The state-space representation obtained from differential equations is in continuous-time. 

For a multiple-input multiple-output (MIMO) system, the continuous-time state-space 

representation can be written as 

𝑛𝑛𝒙𝒙
𝑛𝑛�̃�𝐹

= 𝑨𝑨�𝒙𝒙 + 𝑩𝑩�𝒖𝒖 (2.2a) 

𝒚𝒚 = 𝑪𝑪�𝒙𝒙 + 𝑫𝑫�𝒖𝒖 (2.2b) 

where,  

�̃�𝐹 represents time; 

𝒙𝒙, 𝒖𝒖, and 𝒚𝒚 are vectors of model states, inputs, and outputs, respectively; and 

𝑨𝑨�, 𝑩𝑩�, 𝑪𝑪�, and 𝑫𝑫�  are matrices determined from model parameters e.g., (𝑅𝑅1;𝑅𝑅2;𝑅𝑅3;𝐶𝐶𝑒𝑒;𝐶𝐶𝑖𝑖;𝐹𝐹𝑠𝑠). 

Eqn. (2.2) must be converted to a finite difference form in order to make use of the 

measured data for model training. The conversion of state-space representation is known as 

discretization and easily accessible in relevant studies [23, 39, 40]. Besides, environmental 

disturbances and measurement imperfections can result in noise-corrupted data. Thus, taking noise 

term into account, a discretized state-space representation is expressed by 

𝕩𝕩𝑡𝑡+1 = 𝑨𝑨𝕩𝕩𝑡𝑡 + 𝑩𝑩𝒖𝒖𝑡𝑡 + 𝑲𝑲𝒆𝒆𝑡𝑡 (2.3a) 

𝒚𝒚𝑡𝑡 = 𝑪𝑪𝕩𝕩𝑡𝑡 + 𝑫𝑫𝒖𝒖𝑡𝑡 + 𝒆𝒆𝑡𝑡 (2.3b) 

where,  

𝐹𝐹 represents the 𝐹𝐹𝑡𝑡ℎ time step; 

𝕩𝕩𝑡𝑡 is a vector of states converted from 𝒙𝒙𝑡𝑡; 

𝑨𝑨, 𝑩𝑩, 𝑪𝑪, and 𝑫𝑫 are matrices calculated from 𝑨𝑨�, 𝑩𝑩�, 𝑪𝑪�, and 𝑫𝑫� ; 

𝑲𝑲 is the optimal Kalman gain matrix; and 

𝒆𝒆𝑡𝑡 is a vector of stochastic processes, often assumed as Gaussian white noises [17, 21, 23, 41, 42].  
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Two types of interpolation are recommended for the discretization: piecewise constant 

interpolation and piecewise linear interpolation. They can be found in, e.g., Chapter 6 of [43]. For 

both interpolations. the matrix and state are converted as shown in Table 2.2. 

 

Table 2.2 Discretization of continuous-time state-space representation 

Piecewise linear interpolation Piecewise constant interpolation 

𝑨𝑨 = exp�𝑨𝑨�𝑇𝑇𝑠𝑠� 𝑨𝑨 = exp�𝑨𝑨�𝑇𝑇𝑠𝑠� 

𝑩𝑩 = 𝑨𝑨𝜞𝜞𝟐𝟐 + 𝜞𝜞𝟏𝟏 − 𝜞𝜞𝟐𝟐 𝑩𝑩 = 𝑨𝑨�−𝟏𝟏(𝑨𝑨 − 𝑰𝑰)𝑩𝑩� 

𝑪𝑪 = 𝑪𝑪� 𝑪𝑪 = 𝑪𝑪� 

𝑫𝑫 = 𝑪𝑪�𝜞𝜞𝟐𝟐 + 𝑫𝑫�  𝑫𝑫 = 𝑫𝑫�  

𝕩𝕩𝑡𝑡 = 𝒙𝒙𝑡𝑡 − 𝜞𝜞𝟐𝟐𝒖𝒖𝑡𝑡 𝕩𝕩𝑡𝑡 = 𝒙𝒙𝑡𝑡 

𝜞𝜞𝟏𝟏 = 𝑨𝑨�−𝟏𝟏(𝑨𝑨 − 𝑰𝑰)𝑩𝑩� 

𝜞𝜞𝟐𝟐 = 𝑨𝑨�−𝟏𝟏 �𝜞𝜞𝟏𝟏 𝑇𝑇𝑠𝑠� − 𝑩𝑩�� 

𝑇𝑇𝑠𝑠: sampling interval 

𝑰𝑰: identity matrix 

 

Eqn. (2.3) is called the innovation form of state-space representation, compared to its 

stochastic form where two noise terms (process noise 𝝎𝝎 and measurement noise 𝒗𝒗) are adopted 

(i.e., the equations become  𝕩𝕩𝑡𝑡+1 = 𝑨𝑨𝕩𝕩𝑡𝑡 + 𝑩𝑩𝒖𝒖𝑡𝑡 + 𝝎𝝎𝑡𝑡  and 𝒚𝒚𝑡𝑡 = 𝑪𝑪𝕩𝕩𝑡𝑡 + 𝑫𝑫𝒖𝒖𝑡𝑡 + 𝒗𝒗𝑡𝑡 ). Since the 

Kalman gain matrix 𝑲𝑲 can be derived from covariances of 𝝎𝝎 and 𝒗𝒗 through the Algebraic Riccati 

Equation [44], these two forms of state-space representation are mathematically equivalent [17, 

45].  
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2.2.2. TF models 

The outputs of physical systems (e.g., indoor air temperature in a building) depend on 

current and past inputs [46]. Thus, for a linear system, the current output can be related to the 

history of inputs by the convolution sum: 𝑦𝑦𝑡𝑡 = ∑ 𝜃𝜃𝑡𝑡−𝑗𝑗𝑛𝑛𝑗𝑗𝑡𝑡
𝑗𝑗=−∞  or 𝑦𝑦𝑡𝑡 = �∑ 𝜃𝜃𝑡𝑡−𝑗𝑗𝑧𝑧−𝑗𝑗𝑡𝑡

𝑗𝑗=−∞ �𝑛𝑛𝑡𝑡, where 

𝜃𝜃’s are constant parameters and 𝑧𝑧 is a forward-shift operator: 𝑛𝑛𝑡𝑡−1 = 𝑧𝑧−1𝑛𝑛𝑡𝑡. Here, ∑ 𝜃𝜃𝑡𝑡−𝑗𝑗𝑧𝑧−𝑗𝑗𝑡𝑡
𝑗𝑗=−∞  

can be regarded as a transfer function (TF) in discrete-time. Such TFs can be used to characterize 

the input-output relationships and thermal dynamics of buildings. In general, a linear time-

invariant TF model can be written as [46]:  

𝒚𝒚𝑡𝑡 = 𝐺𝐺(𝜽𝜽, 𝑧𝑧)𝒖𝒖𝑡𝑡 + 𝐻𝐻(𝜽𝜽, 𝑧𝑧)𝒆𝒆𝑡𝑡 (2.4) 

where,  

𝑧𝑧 is a forward-shift operator: 𝒖𝒖𝑡𝑡+1 = 𝑧𝑧𝒖𝒖𝑡𝑡 or 𝒖𝒖𝑡𝑡 = 𝑧𝑧−1𝒖𝒖𝑡𝑡+1; 

𝐺𝐺(𝜽𝜽, 𝑧𝑧) is the transfer function for inputs; and 

𝐻𝐻(𝜽𝜽, 𝑧𝑧) is the transfer function for system noise. 

𝐺𝐺(𝜽𝜽, 𝑧𝑧)  and 𝐻𝐻(𝜽𝜽, 𝑧𝑧)  are often expressed in rational function forms, e.g., 𝐺𝐺(𝜽𝜽, 𝑧𝑧) =

ℬ(𝑧𝑧) 𝒜𝒜(𝑧𝑧)⁄  and 𝐻𝐻(𝜽𝜽, 𝑧𝑧) = 𝒞𝒞(𝑧𝑧) 𝒟𝒟(𝑧𝑧)⁄ , where 𝒜𝒜(𝑧𝑧) , ℬ(𝑧𝑧) , 𝒞𝒞(𝑧𝑧) , and 𝒟𝒟(𝑧𝑧)  are polynomial 

functions:  

𝒜𝒜(𝑧𝑧) = 𝑛𝑛0 + 𝑛𝑛1𝑧𝑧−1 + 𝑛𝑛2𝑧𝑧−2 + ⋯+ 𝑛𝑛𝑛𝑛𝑛𝑛𝑧𝑧−𝑛𝑛𝑛𝑛 

ℬ(𝑧𝑧) = 𝑛𝑛0 + 𝑛𝑛1𝑧𝑧−1 + 𝑛𝑛2𝑧𝑧−2 + ⋯+ 𝑛𝑛𝑛𝑛𝑛𝑛𝑧𝑧−𝑛𝑛𝑛𝑛 

𝒞𝒞(𝑧𝑧) = 𝑄𝑄0 + 𝑄𝑄1𝑧𝑧−1 + 𝑄𝑄2𝑧𝑧−2 + ⋯+ 𝑄𝑄𝑛𝑛𝑛𝑛𝑧𝑧−𝑛𝑛𝑛𝑛 

𝒟𝒟(𝑧𝑧) = 𝑛𝑛0 + 𝑛𝑛1𝑧𝑧−1 + 𝑛𝑛2𝑧𝑧−2 + ⋯+ 𝑛𝑛𝑛𝑛𝑛𝑛𝑧𝑧−𝑛𝑛𝑛𝑛 
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Thus, the vector of model parameters 𝜽𝜽 is composed of 𝑛𝑛𝑗𝑗, 𝑛𝑛𝑗𝑗, 𝑄𝑄𝑗𝑗, and 𝑛𝑛𝑗𝑗, and the model 

order is defined by 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑄𝑄 , and 𝑛𝑛𝑛𝑛 . For a MIMO system with 𝑛𝑛𝑛𝑛 inputs and 𝑛𝑛𝑦𝑦 outputs, 

𝐺𝐺(𝜽𝜽, 𝑧𝑧) and 𝐻𝐻(𝜽𝜽, 𝑧𝑧) are respectively, 𝑛𝑛𝑦𝑦 × 𝑛𝑛𝑛𝑛 and 𝑛𝑛𝑦𝑦 × 𝑛𝑛𝑦𝑦 matrices of transfer functions.   

Depending on the use of polynomial functions, TF models can be categorized into Box-

Jenkins (BJ) model, autoregressive moving average with exogenous input (ARMAX) model, 

autoregressive with exogenous input (ARX) model, output error (OE) model, etc. [47, 48]. The BJ 

models employ different polynomials for 𝒜𝒜(𝑧𝑧), ℬ(𝑧𝑧), 𝒞𝒞(𝑧𝑧), and 𝒟𝒟(𝑧𝑧). When 𝒟𝒟(𝑧𝑧) = 𝒜𝒜(𝑧𝑧), the 

BJ models become ARMAX models, and if further 𝒞𝒞(𝑧𝑧) = 1, they are simplified to ARX models 

(i.e., 𝒜𝒜(𝑧𝑧)𝒚𝒚𝑡𝑡 = ℬ(𝑧𝑧)𝒖𝒖𝑡𝑡 + 𝒆𝒆𝑡𝑡, and 𝑛𝑛0 = 1). These models are different merely by the structure of 

𝐻𝐻(𝜽𝜽, 𝑧𝑧), namely, how the noise is modelled. An 𝐻𝐻(𝜽𝜽, 𝑧𝑧) with more freedom (such as that in a BJ 

model) allows more disturbances beyond the white noise 𝒆𝒆𝑡𝑡 to be described. Hence, the BJ models 

may outperform the ARMAX and ARX models in terms of prediction accuracy [47]. However, 

the ARMAX and ARX models are the most popular among researchers because they are simple 

and easily implementable in building applications [18, 49-56]. Furthermore, the deterministic 

structure of ARMAX and ARX models (i.e., 𝐴𝐴(𝑧𝑧)𝑦𝑦𝑡𝑡 = 𝐵𝐵(𝑧𝑧)𝑛𝑛𝑡𝑡) has already been derived in the 

forward approach, known as comprehensive room transfer function [57]. Such models in nature, 

tend to align with the fundamental physical laws.  

To be additional, RC and TF models are closely related through the state-space 

representation. By applying 𝔁𝔁𝑡𝑡+1 = 𝑧𝑧𝔁𝔁𝑡𝑡 to Eqn. (2.3a), we have (𝑧𝑧𝑰𝑰 − 𝑨𝑨)𝔁𝔁𝑡𝑡 = 𝑩𝑩𝒖𝒖𝑡𝑡 + 𝑲𝑲𝒆𝒆𝑡𝑡 where 

𝑰𝑰 is an identity matrix. Substitute this to Eqn. (2.3b), we get 

𝒚𝒚𝑡𝑡 = [𝑪𝑪(𝑧𝑧𝑰𝑰 − 𝑨𝑨)−1𝑩𝑩 + 𝑫𝑫]𝒖𝒖𝑡𝑡 + [𝑪𝑪(𝑧𝑧𝑰𝑰 − 𝑨𝑨)−1𝑲𝑲 + 𝑰𝑰]𝒆𝒆𝑡𝑡 (2.5) 
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In Eqn. (2.5), [𝑪𝑪(𝑧𝑧𝑰𝑰 − 𝑨𝑨)−1𝑩𝑩 + 𝑫𝑫] and [𝑪𝑪(𝑧𝑧𝑰𝑰 − 𝑨𝑨)−1𝑲𝑲 + 𝑰𝑰] can be explained as transfer 

functions. When the matrices 𝑨𝑨, 𝑩𝑩, 𝑪𝑪, 𝑫𝑫 and 𝑲𝑲 are directly parameterized with constant entries 

instead of using equivalent thermal parameters, state-space representations should also be 

categorized as TF models (referred to as SS models). This is because an identified SS model can 

always be mapped to a unique transfer function model through Eqn. (2.5) [58], but it is practically 

impossible to derive all equivalent thermal parameters from the SS model’s matrices. After being 

mapped to transfer function forms, the SS models have similar structures as ARX models and are 

also commonly used for characterizing building thermal dynamics [17, 21, 45, 59, 60]  

Table 2.3 gives an example of TF model formulation using ARX structure. Compared to 

the RC model example in Table 2.1, this ARX model is of lower order but has a larger set of 

parameters to be estimated, and the parameters are not as physically interpretable as in the RC 

models. However, developing a TF model is more straightforward, i.e., there is no need for creating 

a thermal network or discretizing continuous-time differential equations. As such, the obtained TF 

models are mostly for prediction purposes: predicting room temperatures [60, 61], humidity level 

[18, 47, 62], and heating or cooling load [63-66]. Furthermore, TF models are pure statistical 

models. Being identified from data that contains disturbances, they may violate conservation of 

energy, exhibit resonant behaviour, or be unstable or non-casual [51]. Therefore, certain 

constraints or supervisory rules should be applied to the models.  

The purpose of constraints is to obtain physically plausible and stable models. If the 

constraints are satisfied, a TF model can also be used for deriving important thermal characteristics 

of the building, such as heat loss coefficient through the building envelop, solar aperture, and time 

constants [17, 48, 67].  
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Table 2.3 An example of TF model (ARX) formulation 

For a single-zone 

house 

𝑇𝑇𝑖𝑖: indoor air temperature 

𝑇𝑇𝑜𝑜: outdoor air temperature 

𝑇𝑇ℎ: heating power 

𝑇𝑇𝑠𝑠: solar radiation on south façade 

Model structure ARX (𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛) 

𝑛𝑛𝑛𝑛 = [𝑛𝑛𝑛𝑛1 𝑛𝑛𝑛𝑛2 𝑛𝑛𝑛𝑛3] 

Transfer function 

form  

(1 + 𝑛𝑛1𝑧𝑧−1 + ⋯+ 𝑛𝑛𝑛𝑛𝑛𝑛𝑧𝑧−𝑛𝑛𝑛𝑛)𝑇𝑇𝑖𝑖,𝑡𝑡

= �
𝑛𝑛1,0 + 𝑛𝑛1,1𝑧𝑧−1 + ⋯+ 𝑛𝑛1,𝑛𝑛𝑛𝑛1𝑧𝑧

−𝑛𝑛𝑛𝑛1

𝑛𝑛2,0 + 𝑛𝑛2,1𝑧𝑧−1 + ⋯+ 𝑛𝑛2,𝑛𝑛𝑛𝑛2𝑧𝑧
−𝑛𝑛𝑛𝑛2

𝑛𝑛3,0 + 𝑛𝑛3,1𝑧𝑧−1 + ⋯+ 𝑛𝑛3,𝑛𝑛𝑛𝑛3𝑧𝑧
−𝑛𝑛𝑛𝑛3

� [𝑇𝑇𝑜𝑜,𝑡𝑡 𝑇𝑇𝑠𝑠,𝑡𝑡 𝑇𝑇ℎ,𝑡𝑡] + 𝑇𝑇𝑡𝑡 

Polynomial form e.g., 𝑛𝑛𝑛𝑛 = 1, 𝑛𝑛𝑛𝑛 = [2 2 1] 

𝑇𝑇𝑖𝑖,𝑡𝑡 = −𝑛𝑛1𝑇𝑇1,𝑡𝑡−1 + 𝑛𝑛1,0𝑇𝑇𝑜𝑜,𝑡𝑡 + 𝑛𝑛1,1𝑇𝑇𝑜𝑜,𝑡𝑡−1 + 𝑛𝑛2,0𝑇𝑇𝑠𝑠,𝑡𝑡 + 𝑛𝑛2,1𝑇𝑇𝑠𝑠,𝑡𝑡−1

+ 𝑛𝑛3,0𝑇𝑇ℎ,𝑡𝑡 + 𝑇𝑇𝑡𝑡 

Variables Input: 𝒖𝒖 = [𝑇𝑇𝑜𝑜 𝑇𝑇𝑠𝑠 𝑇𝑇ℎ]′; Output: 𝒚𝒚 = 𝑇𝑇𝑖𝑖;  

Parameter: 𝜽𝜽 = [𝑛𝑛1 𝑛𝑛1,0 𝑛𝑛1,1 𝑛𝑛2,0 𝑛𝑛2,1 𝑛𝑛3,0]′ 

 

The first and the most important constraint is the steady-state constraint, i.e., the identified 

TF models must hold under steady-state conditions. Take an unoccupied single-zone building for 

example, the steady-state constraint is given by Eqn. (2.6) [51, 67, 68],   

𝑇𝑇ℎ + 𝐹𝐹𝑠𝑠𝑇𝑇𝑠𝑠 = 𝑈𝑈(𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑜𝑜) (2.6) 

where,  

𝐹𝐹𝑠𝑠𝑇𝑇𝑠𝑠 is the effective solar heat gain (𝐹𝐹𝑠𝑠 is the solar aperture and 𝑇𝑇𝑠𝑠 is the global solar radiation);  
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𝑇𝑇ℎ is the supplied heating power;  

𝑇𝑇𝑖𝑖 and 𝑇𝑇𝑜𝑜 are respectively, the indoor and outdoor air temperatures; and 

𝑈𝑈 is the overall thermal transmittance of the single-zone building. 

Under steady-state conditions, all input and output variables are constant (i.e., 𝑧𝑧 = 1). By 

substituting 𝑧𝑧 = 1  to the ARX model in Table 2.3 (polynomial form), we have (1 + 𝑛𝑛1)𝑇𝑇𝑖𝑖 =

�𝑛𝑛1,0 + 𝑛𝑛1,1�𝑇𝑇𝑜𝑜 + �𝑛𝑛2,0 + 𝑛𝑛2,1�𝑇𝑇𝑠𝑠 + 𝑛𝑛3,0𝑇𝑇ℎ. In order to align this with Eqn. (2.6), the ARX model 

must satisfy 𝑛𝑛1,0 + 𝑛𝑛1,1 = 1 + 𝑛𝑛1 so that 𝑈𝑈 = �𝑛𝑛1,0 + 𝑛𝑛1,1� 𝑛𝑛3,0�  or 𝑈𝑈 = (1 + 𝑛𝑛1) 𝑛𝑛3,0⁄ . The solar 

aperture can also be derived by 𝐹𝐹𝑠𝑠 = �𝑛𝑛2,0 + 𝑛𝑛2,1�/𝑛𝑛3,0. 

In addition to the steady-state constraint, Armstrong et al. [51] proposed the pole constraint, 

i.e., for diffusion processes (which building thermal dynamics are simplified as), the characteristic 

frequencies or poles, 𝜆𝜆𝑗𝑗, must be real and positive. This corresponds to saying that roots of 𝐴𝐴(𝑧𝑧) 

in Eqn. (2.4) or eigenvalues of matrix 𝑨𝑨 in Eqn. (2.3a) are real and less than one. The pole 

constraint assures the model to be stable. Furthermore, Chen [69] and Chen et al. [70] proposed to 

supervise the parameter estimator with certain supervisory rules. Specifically, the rules require that 

the sum of any first coefficients with respect to each input and output, as well as the common ratio 

of response factors of output to any input, should follow the same features as in theoretically 

derived room transfer functions. The violation of these features will lead to a physically 

meaningless or unstable model.  

While applying the pole constraint, the time constants can be calculated by 𝜏𝜏𝑗𝑗 = 1 𝜆𝜆𝑗𝑗⁄  and 

𝜆𝜆𝑗𝑗 = ln 𝑟𝑟𝑗𝑗 , where 𝑟𝑟𝑗𝑗  is the 𝑗𝑗𝑡𝑡ℎ root of the polynomial 𝒜𝒜(𝑧𝑧) or eigenvalue of the matrix 𝑨𝑨 in SS 

models.  
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2.2.3. AI models 

Artificial intelligence (AI) is “the science and engineering of making intelligent machines, 

especially intelligent computer programs” as defined by John McCarthy in 1956. Such intelligent 

machines (e.g., neural networks) have been extensively adopted for building energy use prediction 

since the 1990s. A representative example is “The Great Energy Predictor Shootout” competitions 

held by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), 

where neural networks provided the most accurate model of a building`s energy use [71, 72]. 

Among a variety of machine learning techniques, artificial neural networks (ANN) and support 

vector machines (SVM) (for regression) are the most commonly used for modelling of building 

thermal dynamics [73-75]. Other AI based modelling methods are also adopted such as artificial 

immune systems [76] and random forests [77], but they have received relatively less attention than 

ANN and SVM models. 

Analogous to the human brain, ANN models map the input-output relationship by creating 

a large internal structure of artificial neurons. Typical ANN models for building thermal dynamics 

contain an input layer, one hidden layer, and an output layer [78-81]. Table 2.4 shows a simple AI 

model structured by a three-layered ANN, where one of the artificial neurons is highlighted. In 

each neuron, the input signals are weighted, summed and added by a bias. Then the net input signal 

𝑇𝑇𝑡𝑡
𝑗𝑗 is assigned to an activation function 𝑓𝑓(∙) and the activation is passed to the output function 

(often a linear function) to calculate the output. The example in Table 2.4 is a feedforward neural 

network, i.e., the input signals flow forward with no feedbacks. Its counterpart is a recurrent neural 

network (RNN), where the information can travel in loops from layer to layer [78, 82-84]. For 

example, in Table 2.4,  if 𝑇𝑇𝑖𝑖,𝑡𝑡 in the input layer is not measured but based on the model prediction 

𝑇𝑇�𝑖𝑖,𝑡𝑡 from the output layer, the feedforward neural network will turn into an RNN. 
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Table 2.4 An example of AI model (ANN) formulation 

For a single-

zone house 

𝑇𝑇𝑖𝑖: indoor air temperature 

𝑇𝑇𝑜𝑜: outdoor air temperature 

𝑇𝑇ℎ: heating power 

𝑇𝑇𝑠𝑠: solar radiation on south façade 

Model 

Structure 

 

Net input 

signal 

For the 𝑗𝑗𝑡𝑡ℎ neuron:  

𝑇𝑇𝑡𝑡
𝑗𝑗 = 𝑧𝑧−1:𝑦𝑦𝑛𝑛𝑇𝑇𝑖𝑖,𝑡𝑡𝒘𝒘𝑢𝑢𝑦𝑦

𝑗𝑗 + 𝑧𝑧−0:𝑢𝑢𝑛𝑛1𝑇𝑇𝑜𝑜,𝑡𝑡𝒘𝒘𝑢𝑢1
𝑗𝑗 + 𝑧𝑧−0:𝑢𝑢𝑛𝑛2𝑇𝑇𝑠𝑠,𝑡𝑡𝒘𝒘𝑢𝑢2

𝑗𝑗 + 𝑧𝑧−0:𝑢𝑢𝑛𝑛3𝑇𝑇ℎ,𝑡𝑡𝒘𝒘𝑢𝑢3
𝑗𝑗

+ 𝑛𝑛𝑢𝑢
𝑗𝑗  

Activation & 

output 

functions 

𝑇𝑇𝑖𝑖,𝑡𝑡 = � 𝑤𝑤𝑦𝑦
𝑗𝑗𝑓𝑓�𝑇𝑇𝑡𝑡

𝑗𝑗�
𝑗𝑗

+ 𝑛𝑛𝑦𝑦 + 𝑇𝑇𝑡𝑡 

e.g., 𝑓𝑓�𝑇𝑇𝑡𝑡
𝑗𝑗� = tanh �𝑇𝑇𝑡𝑡

𝑗𝑗� 

Variables Input: 𝒖𝒖 = [𝑇𝑇𝑜𝑜 𝑇𝑇𝑠𝑠 𝑇𝑇ℎ]′; Output: 𝒚𝒚 = 𝑇𝑇𝑖𝑖;  

Parameter: 𝜽𝜽 = �𝒘𝒘𝑢𝑢1
1:𝑛𝑛𝑛𝑛 𝒘𝒘𝑢𝑢2

1:𝑛𝑛𝑛𝑛 𝒘𝒘𝑢𝑢3
1:𝑛𝑛𝑛𝑛 𝒘𝒘𝑢𝑢𝑦𝑦

1:𝑛𝑛𝑛𝑛 𝑛𝑛𝑢𝑢1:𝑛𝑛𝑛𝑛 𝑤𝑤𝑦𝑦1:𝑛𝑛𝑛𝑛 𝑛𝑛𝑦𝑦�; 

e.g., 𝑤𝑤𝑦𝑦1:𝑛𝑛𝑛𝑛 = [𝑤𝑤𝑦𝑦1,𝑤𝑤𝑦𝑦2, … ,𝑤𝑤𝑦𝑦𝑛𝑛𝑛𝑛] 
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In Table 2.4, 

𝑛𝑛𝑄𝑄 is the number of neurons (𝑛𝑛𝑄𝑄 = 5 in this example); 

𝑛𝑛𝑛𝑛1, 𝑛𝑛𝑛𝑛2, and 𝑛𝑛𝑛𝑛3 are input delays (e.g. 𝑧𝑧−0:𝑢𝑢𝑛𝑛1 = [1, 𝑧𝑧−1, 𝑧𝑧−2, … , 𝑧𝑧−𝑢𝑢𝑛𝑛1]); 

𝑦𝑦𝑛𝑛 is output delay (e.g., 𝑧𝑧−1:𝑦𝑦𝑛𝑛 = [𝑧𝑧−1, 𝑧𝑧−2, … , 𝑧𝑧−𝑦𝑦𝑛𝑛]); 

𝒘𝒘𝑢𝑢𝑦𝑦
𝑗𝑗 , 𝒘𝒘𝑢𝑢1

𝑗𝑗 , 𝒘𝒘𝑢𝑢2
𝑗𝑗 , and 𝒘𝒘𝑢𝑢3

𝑗𝑗  are weight vectors for the 𝑗𝑗𝑡𝑡ℎ neuron in the input layer; 

𝑛𝑛𝑢𝑢
𝑗𝑗  is a bias for the 𝑗𝑗𝑡𝑡ℎ neuron in the input layer; 

𝑤𝑤𝑦𝑦
𝑗𝑗 is a weight for the 𝑗𝑗𝑡𝑡ℎ neuron in the output layer; and 

𝑛𝑛𝑦𝑦 is a bias in the output layer. 

The choice of activation function can affect the ANN performance. In general, the 

activation function introduces a degree of nonlinearity that is valuable for most ANNs [85], but 

there is no established rule defined for selecting activation functions to produce better network 

outputs [73]. Common activation functions include logistic-sigmoid functions [84, 86], hyperbolic 

tangent functions [78, 80, 81, 87], radial basis functions [88-91], etc. Particularly, ANNs that use 

radial basis functions are referred to as radial basis function neural networks (RBFNN). Such 

networks are said to have fast online learning ability, strong tolerance to noisy input data, good 

generalization, and easy design implementation [90]. A variation of RBFNN is the general 

regression neural network (GRNN), which also uses radial basis functions for activation and is 

even more suitable for online identification [92, 93].   

The ANN model’s performance is also impacted by the number of neurons within the 

hidden layer (𝑛𝑛𝑄𝑄). Too many neurons will cause the network to be overfitted and not generalize 

well beyond the training data. Too few neurons will weaken the network’s ability to learn from 
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the measurements. However, there is no strict rule for determining the right number of hidden 

neurons. Some researchers use empirical equations to calculate 𝑛𝑛𝑄𝑄 from the number of inputs 𝑛𝑛𝑛𝑛 

and/or the number of outputs 𝑛𝑛𝑦𝑦 [84, 86, 94, 95], for example, 𝑛𝑛𝑄𝑄 = 2𝑛𝑛𝑛𝑛 + 1. Other researchers 

consider 𝑛𝑛𝑄𝑄 as an indicator of model complexity and reduce it during model training or selecting 

without jeopardizing the prediction accuracy [11, 62, 80, 88]. Model training and selection will be 

further discussed in Section 2.3. 

In addition to ANNs, the SVMs are also used increasingly in the modelling of building 

thermal dynamics [96-98]. The basic idea behind the SVMs is to map the input space into a high 

dimensional feature space through some nonlinear mapping, and then perform a linear regression 

in this feature space [99], namely, 

𝒚𝒚� = 𝒘𝒘 ∙ 𝜑𝜑(𝒖𝒖) + 𝒃𝒃 (2.7) 

where,  

𝒚𝒚� represents the predicted output vector;  

𝜑𝜑(∙) denotes the nonlinear mapping; and 

𝒘𝒘 is a weight vector; and  

𝒃𝒃 is a bias vector.   

The nonlinear mapping in Eqn. (2.7) extract nonlinear features from inputs. For example, 

when 𝒖𝒖 = [𝑇𝑇𝑜𝑜 ,𝑇𝑇𝑠𝑠,𝑇𝑇ℎ] , the mapping can be 𝜑𝜑(𝒖𝒖) = �𝑇𝑇𝑜𝑜,𝑇𝑇𝑠𝑠,𝑇𝑇ℎ,𝑇𝑇𝑜𝑜𝑇𝑇𝑠𝑠,𝑇𝑇ℎ2� . Thus, a three-

dimensional input space is mapped into a five-dimensional input space by including two nonlinear 

features: 𝑇𝑇𝑜𝑜𝑇𝑇𝑠𝑠 and 𝑇𝑇ℎ2. In practice, the realization of 𝜑𝜑(∙) is often implicitly defined via kernels 

[96, 100]. By using kernels, all necessary computations can be performed directly in the input 

space 𝒖𝒖 without having to compute the mapping 𝜑𝜑(∙) [101]. A detailed description of applying 

kernels in SVMs can be found in e.g., [102]. Furthermore, a major advantage of the SVM models 
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is that they employ the structural risk minimization principle, which seeks to minimize an upper 

bound of the generalization error consisting of the sum of the training error and a confidence level 

[91, 97, 98, 101]. Owing to this feature, the SVM models can have fewer free parameters, and 

achieve better accuracy and generalization than conventional ANN and RBFNN models in e.g., 

predicting hourly cooling load of buildings [91].   

For thermal dynamic problems, the AI models (ANN and SVM models in particular) can 

be regarded as nonlinear regressions, where the system inputs are regressors, and the outputs are 

dependent variables. In general, the AI models nonlinearly and implicitly relates outputs to inputs. 

They can also account for complex interactions between inputs through, e.g., an intertwined 

network in the input layer in ANN models or a nonlinear mapping of the input space in SVM 

models. Unlike RC or some TF models, the AI models are not physically interpretable, and cannot 

serve for any explanatory purposes. However, they tend to have higher prediction accuracy than 

the linear models [62, 79]. For that reason, they have also been extensively applied just like the 

RC or TF models, in model predictive control [89], fault detection [93, 95], retrofit evaluation 

[11], etc.    

2.2.4. Enhanced models 

The basic structures of RC, TF, and AI models can be combined or modified to create 

hybrid models. One possibility is to combine several different models by assigning linear weights 

to their outputs, so the combined model can take advantage of each model and gives higher 

prediction accuracy [100, 103, 104]. It is also possible to combine the model with techniques such 

as fuzzy logic [105, 106] and wavelet transform [106, 107] to improve the model’s performance. 

Furthermore, a model can be modified with respect to weather conditions (e.g., outdoor air 

temperature) or system changes (e.g., opening of windows) to include a series of weather or system 
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dependent models [63, 108]. This is equivalent to vary a model’s structure with weather conditions 

and system changes. Its goal is to enhance the original model’s ability to learn from the available 

data.  

Although these hybrid models can exhibit better performances, they are not entirely new 

models. As such, this review only focuses on the basic structures of data-driven models.  

2.3. Training & Selection 

The data-driven models are formulated with unknown parameters. When training the 

models to learn buildings’ thermal behaviours from the measured data, unknown parameters are 

estimated. After being trained, the models are evaluated by performing residual analysis or testing 

their generalization on new datasets. Then, the evaluation results are used as an indicator for 

comparing different models in the selecting phase. This section will focus on commonly adopted 

methods for training and selection of data-driven models along with typical input and output 

variables for measuring in building thermal dynamic studies.     

2.3.1. Input/output variables 

Inputs and outputs to be used for data-driven models are measured as a time series. This 

time series is usually sampled at a fixed sampling interval over a long duration (varies from several 

weeks to several years depending on the specific model and the quality of the data). The outputs 

should be an easily observable response, and the inputs should have significant influences on the 

system. Generally, input/output variables required for a thermal zone fall into the following types: 

zone air temperature, ambient air temperature, solar radiation, heating or cooling power supply, 

and internal gains. These variables are discussed in Table 2.5.  
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Table 2.5 Types of input/output variables for a thermal zone 

Input/output 

variables 
Discussion 

Zone air 

temperature 

Zone air temperature (or indoor air temperature) can be regarded as either 

input or output. When it is input, heating or cooling load is often output and 

vice versa. Some researchers measure temperatures from multiple locations 

in the zone and take average [17, 30, 32]. 

Ambient air 

temperature 

Ambient air temperature is the outdoor air temperature in most cases. It 

impacts zone air temperatures, and heating/cooling patterns by heat transfer 

through building envelop, natural ventilation, fresh air intake, etc.  

Solar radiation This variable often comes available as global solar radiation. Some 

researchers directly use global horizontal or vertical radiation as input [29, 

61, 109]. Other researchers employ mathematical methods to split the 

global radiation into direct normal and diffuse components to account for 

their distinctive solar effects [64, 66]. It is also possible to combine solar 

radiation and outdoor air temperature to a single input, i.e., sol-air 

temperature [34, 51, 52]. 

Heating or 

cooling power 

supply 

Heating or cooling power supply, in general, is derived from other 

measured variables depending on the type of heating or cooling system. For 

examples, in a forced-air heating system, the heating power can be 

approximated using measured flow rate and temperature of the supply air 

from air handling units [7, 47]; if an electric heater provides space heating, 
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the heating power can be approximated as the heater’s electricity demand 

[23, 42]; if radiators are the heating source, they emit heat to the 

surroundings through both convection and radiation, which should be 

considered separately [30, 41]. 

Internal gains Internal gains consist of heat gains from occupants, lighting, appliances, 

equipment, etc. For residential houses, some researchers use constant 

periodic values to approximate internal heat gains instead of measuring 

them [18, 64, 66]. For commercial buildings, many researchers relate 

internal gains to gross electricity demand excluding that for heating or 

cooling [17, 25, 109]. This is because occupants’ behaviours can be highly 

correlated to the equipment (e.g., lights, printers, and computers) being 

used [110]. Besides, internal gains are often split into convective and 

radiative parts for separate consideration  [32, 34]. 

  

Other variables to be measured include ground temperature, wind speed, wind direction, 

relative humidity, mechanical ventilation, etc. Since ground temperature varies negligibly 

compared to other inputs, it is often assumed to be constant [15, 17]. Wind speed and direction can 

change the conductive or convective heat transfer coefficient associated with building envelop 

over time [29, 64, 66]. Outdoor relative humidity can also influence zone air temperatures and 

heating/cooling loads by humification or dehumidification process. However, it is indicated that 

wind effects and humidity level are not as relevant as the ambient temperature and solar radiation 

[18, 80, 88]. As for the mechanical ventilation, the fresh air intake can be considered as heat loss 
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to (or heat gain from) outdoor environment which can be integrated as part of the heating/cooling 

power supply [29]. Usually, the mechanical ventilation rate should be measured.  

The measured variables are prepared for model training. It is generally necessary to acquire 

data with significant and persistent variations in order to train models that can provide accurate 

predictions. Furthermore, reliable parameter estimates can be obtained only when the 

measurements contain sufficient magnitude variance among every input and output [111]. If a 

system is not significantly excited, the data will not be as dynamically informative as needed for 

robust parameter estimation, e.g., certain parameters could be non-identifiable (cannot be uniquely 

identified) [112]. Therefore, ensuring the quality of on-site measurements is as equally important 

as developing a good model structure. 

2.3.2. Model training 

Model training is an optimization process that estimates the unknown parameters by 

minimizing the value of an objective function. If the parameter estimate is denoted by 𝜽𝜽�, then 

𝜽𝜽� = min
𝜽𝜽
𝑉𝑉(𝜽𝜽) (2.8) 

𝑉𝑉(𝜽𝜽) in Eqn. (2.8) is the parameter-dependent objective function (or loss function) often defined 

by prediction error method (PEM) or maximum likelihood estimation method (MLE).  

Prediction error method (PEM) 

In PEM, the loss function for minimization is a function of prediction errors (usually 

defined in the quadratic form) [113], for example,  

𝑉𝑉(𝜽𝜽) =
1
𝑁𝑁
� 𝒆𝒆𝑡𝑡(𝜽𝜽)′𝒆𝒆𝑡𝑡(𝜽𝜽)

𝑁𝑁

𝑡𝑡=1
 (2.9) 

where, 
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𝑁𝑁 is the number of samples in training dataset;  

𝒆𝒆𝑡𝑡(𝜽𝜽) is the prediction error at time 𝐹𝐹: 𝒆𝒆𝑡𝑡(𝜽𝜽) = 𝒚𝒚𝑡𝑡 − 𝒚𝒚�𝑡𝑡|𝑡𝑡−ℎ(𝜽𝜽); 

ℎ is the prediction horizon;  

𝒚𝒚�𝑡𝑡|𝑡𝑡−ℎ(𝜽𝜽) is the predicted output at 𝐹𝐹 given 𝜽𝜽 and 𝒀𝒀𝑡𝑡−ℎ; and 

𝒀𝒀𝑡𝑡−ℎ contains the measured outputs up to 𝐹𝐹 − ℎ: 𝒀𝒀𝑡𝑡−ℎ = [𝒚𝒚𝑡𝑡−ℎ,𝒚𝒚𝑡𝑡−ℎ−1, … ,𝒚𝒚1]. 

When ℎ = 1, the error is referred to as one-step ahead prediction error, and the model 

parameters that give the smallest loss function value will give the best one-step ahead prediction 

performance. When ℎ > 1, the error becomes multi-step ahead prediction error. A loss function 

with ℎ > 1 is especially suitable for model predictive controllers since they often require models 

that can provide good predictions over a finite-time horizon [114-118]. When ℎ = ∞, the error is 

known as simulation error. Using simulation errors for the loss function corresponds to, e.g.,  

𝐻𝐻(𝜽𝜽, 𝑧𝑧) = 1 for TF models in Eqn. (2.4). Such TF models are so-called output error (OE) models 

whose identification has been a long-standing topic studied in various respects [119-121]. By 

taking 𝐻𝐻(𝜽𝜽, 𝑧𝑧) = 1, the OE models focus on the dynamics of inputs and not the disturbance 

properties of noise. The prediction horizon influences the estimation results. Choice of ℎ should 

be based on the purpose: whether the model is for short-term or long-term prediction.   

Maximum likelihood estimation (MLE) 

The MLE method estimates the parameters that make the observations (i.e. the measured 

outputs) most likely to be within the predicted outputs. In other words, the joint probability density 

of all the observations - the likelihood function - should be maximized. Maximizing the likelihood 

function is to minimize the loss function:  

𝑉𝑉(𝜽𝜽) = − log 𝐿𝐿(𝜽𝜽;  𝒀𝒀𝑁𝑁) (2.10) 

where, 
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𝐿𝐿(∙) is the likelihood function: 𝐿𝐿(𝜽𝜽;  𝒀𝒀𝑁𝑁) = ∏ 𝑝𝑝(𝒚𝒚𝑡𝑡|𝒀𝒀𝑡𝑡−ℎ,𝜽𝜽)𝑁𝑁
𝑡𝑡=1 ; 

𝒀𝒀𝑡𝑡 contains the observations up to time 𝐹𝐹: 𝒀𝒀𝑡𝑡 = [𝒚𝒚𝑡𝑡,𝒚𝒚𝑡𝑡−1, … ,𝒚𝒚1]; and 

𝑝𝑝(∙ | ∙) is the conditional density function, often assumed to be Gaussian. 

The Gaussian densities (assume ℎ = 1) are determined by the conditional mean 𝒚𝒚�𝑡𝑡|𝑡𝑡−1 and 

the conditional covariance 𝚺𝚺𝑡𝑡|𝑡𝑡−1, i.e.,  

𝑝𝑝(𝒚𝒚𝑡𝑡|𝒀𝒀𝑡𝑡−1,𝜽𝜽) = exp �−
1
2
�𝒚𝒚𝑡𝑡 − 𝒚𝒚�𝑡𝑡|𝑡𝑡−1�

′
𝚺𝚺𝑡𝑡|𝑡𝑡−1�𝒚𝒚𝑡𝑡 − 𝒚𝒚�𝑡𝑡|𝑡𝑡−1�� �(2𝜋𝜋)𝑛𝑛𝑦𝑦�𝚺𝚺𝑡𝑡|𝑡𝑡−1��  

In the stochastic state-space representation, 𝒚𝒚�𝑡𝑡|𝑡𝑡−1 and 𝚺𝚺𝑡𝑡|𝑡𝑡−1 can be calculated recursively 

by using a Kalman filter [23, 122]. If the conditional covariance is assumed to be a time -invariant 

constant (i.e., 𝚺𝚺𝑡𝑡|𝑡𝑡−1 = 𝚺𝚺), it can be found by minimizing the loss function with respect to 𝚺𝚺 

independently from the other parameters [113, 123]. Under the special conditions of Gaussian 

densities and 𝚺𝚺, the MLE method is equivalent to the one-step ahead PEM in its least-squares form 

[123]. As such, a major advantage of the PEM is that no probabilistic assumptions must be made.  

Optimization algorithms 

Either PEM or MLE defines a loss function to be minimized. For specific models, the value 

of the loss function can be minimized by linear regression techniques, e.g., linear least squares for 

the ARX models [124, 125] and subspace identification for the state space (SS) models [126, 127]. 

When linear regression techniques are allowed, a global minimum is always guaranteed.  

For other models in general, this minimization process can be realized by iterative search 

algorithms such as Gauss-Newton algorithm [19, 25] and Levenberg-Marquardt algorithm [17, 32, 

62, 88, 89, 95]. Typically, these algorithms evaluate gradients or Hessians for a searching direction 

that leads to the optimal solution. Specifically, backpropagation is a method used in ANN models 

for calculating gradients [11, 62, 78, 84]. However, the iterative algorithms require a proper initial 
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guess for the parameter estimation. Without a good starting point, the searching guided by 

gradients or Hessians may lead to a local minimum. Therefore, some authors have proposed to 

employ global optimization routines, such as the genetic algorithm [34], the multi-start searching 

[32], the modal trimming method [81], the differential evolution algorithm [98], etc., to approach 

the global optimal.  

Online algorithms 

The iterative or linear algorithms are off-line. Namely, the parameters are estimated with 

fixed datasets. On-line algorithms, on the other hand, update the estimates as new data become 

available for the next time step [26, 54, 55]. Thus, estimation using on-line algorithms is also 

referred to as real-time estimation [55]. It can be expressed by 

𝜽𝜽�𝑡𝑡+1 = 𝜽𝜽�𝑡𝑡 + 𝒬𝒬�𝜅𝜅𝑡𝑡,𝝍𝝍𝑡𝑡, 𝒆𝒆�𝑡𝑡+1|𝑡𝑡� (2.11) 

where,  

𝜽𝜽�𝑡𝑡 is the estimated parameter at time 𝐹𝐹;  

𝒬𝒬(∙) is a correction term determined by 𝜅𝜅𝑡𝑡, 𝝍𝝍𝑡𝑡, and 𝒆𝒆�𝑡𝑡+1|𝑡𝑡;  

𝝍𝝍𝑡𝑡 is the gradient 𝜕𝜕𝒚𝒚�𝑡𝑡 𝜕𝜕𝜽𝜽�𝑡𝑡⁄ ;  

𝒆𝒆�𝑡𝑡+1|𝑡𝑡 is the one-step ahead prediction error 𝒚𝒚𝑡𝑡+1 −  𝝍𝝍𝑡𝑡𝜽𝜽�𝑡𝑡; and 

𝜅𝜅𝑡𝑡 is an adaptation gain.  

The adaption gain can be interpreted by forgetting factor or Kalman filter: the forgetting 

factor introduces increasingly weaker weighting on the old data while the Kalman filter reflects 

the evolution of the covariance of the parameter error [128]. Thus, the real-time estimation is to 

recursively minimize the same loss function as in the off-line estimation but modified by the 

forgetting factor or the parameter covariance. Here, the definition of “real-time” should be 
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distinguished from “adaptive”. For example, accumulative training or sliding window training [86, 

88] adapts to new data but uses off-line (non-recursive) algorithms.  

Depending on the underlying loss functions, Eqn. (2.11) represents a family of recursive 

algorithms: the recursive least squares, the recursive instrumental variables, the recursive 

maximum likelihood, etc. [129]. It is shown that these different algorithms have substantially the 

same structure and can be unified to a general description known as the recursive prediction error 

algorithm [130]. It is also shown that this on-line algorithm has the same convergence properties 

as its off-line counterparts [130].  

2.3.3. Model selection 

Models trained by off-line algorithms are candidates for model selection, a systematic 

routine through which these candidates are validated, tested, and compared. The purpose of model 

selection is to find the most suitable model that achieves favourable prediction accuracy with the 

least possible complexity. In other words, the selected model should be able to characterize the 

principal thermal dynamics using fewest input variables and model parameters (number of the 

model parameters is highly dependent on the model order, e.g., the number of ordinary differential 

equations in RC models, the number of time lags in ARX models or the number of hidden neurons 

in ANN models).  

Forward/backward selection 

Two types of model selection are shown in Figure 2.1. One is the forward selection which 

starts from the simplest model and progressively extends the model until the model’s performance 

can no longer be improved in a significant sense [17, 20, 42, 66, 131]. The other is the backward 

selection that consecutively creates sub-models from a larger model until a decrease of the model’s 
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performance allows for no further model reduction [87, 104, 132]. To perform either selection 

process, the candidate models’ performances must be evaluated by validation or/and testing (here, 

validation refers to any analyses conducted on the dataset used for training while testing refers to 

any analyses conducted on an independent dataset from training).    

 

(a) forward 

selection 

 

(b) backward 

selection 

 

Figure 2.1 Model selection procedures: (a) forward, and (b) backward 
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Model evaluation/comparison 

The trained models can be evaluated by quality criteria including mean square error (MSE), 

root mean square error (RMSE), mean absolute error (MAE), the goodness of fit (Fit) (see Eqn. 

(2.13)), the coefficient of determination (R2-value), the coefficient of variation, mean bias error 

and so on [20, 41, 47, 61, 62, 80, 87, 104, 131, 132]. Choosing which criterion to use depends on 

how the residuals (i.e., after-training errors) should be penalized and interpreted. For examples, 

the MSE takes the average of the squared residuals and emphasizes larger errors; the MAE takes 

the average of absolute residuals and equally treats errors of different magnitude; the R2-value and 

the Fit are expressed in percentages and suitable to assess how much variance of the output variable 

is explained by the model. These quality criteria can be used for either validating a model’s training 

performance or testing its generalization (or reproductivity) on new observations. Essentially, they 

measure a model’s success at fitting the available data. 

Another category of methods for evaluating the trained models is to perform residual 

analyses based on autocorrelation function, cumulative periodogram, and cross-correlation 

function [17, 20, 29, 42, 66, 131]. The autocorrelation function and the cumulative periodogram 

are used to check for whiteness of the residuals. The cross-correlation function is used to check 

for independence of the residuals and the input variables. Given a pre-specified level of 

significance, if the hypothesis of whiteness or independence is rejected, there could be significant 

dynamics remaining unexplained in the residuals, which indicates the need for a larger model and 

more input variables. Such statistical analyses are mostly conducted on the training dataset. 

Additionally, the likelihood ratio test is a useful tool for comparing two nested models, i.e., 

one model is the sub-model of the other [20, 42]. If the likelihood of the sub-model is 𝐿𝐿0 and the 
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likelihood of the larger model is 𝐿𝐿, the test statistic can be expressed by −2 log 𝐿𝐿0 𝐿𝐿⁄ , which 

converges to a 𝜒𝜒2 distribution as the number of samples goes to infinity. For large values of the 

test statistic, it can be concluded that reducing the larger model can cause a significant decrease in 

the model performance.  

Frequency response analysis can also be used for model comparison [24, 133]. The basic 

idea is that for two models of different orders, the one of lower order can be used if their frequency 

responses resemble each other (especially for frequencies corresponding to large amplitudes), 

leading to statistically negligible difference between their outputs. 

Model pruning 

Finally, excessive model comparisons can be caused when there are a lot of possibilities of 

reducing or extending a model. This is true for complex models (e.g., ANN models) with large 

sets of input variables and model parameters. To make the selection more efficient, techniques like 

model pruning [62, 80, 87] and recursive feature elimination [104, 132] can be integrated into the 

backward selection procedure. Such techniques identify unnecessary parameters or unimportant 

input variables right after model training. Then the unnecessary parameters or unimportant inputs 

are removed until a decrease of the prediction accuracy is no longer tolerated. Model pruning or 

recursive feature elimination can effectively guide model reduction. Moreover, model pruning is 

a solution to the potential overfitting problem of the ANN models.  

In practice, model training and model selection are often realized on various toolboxes such 

as System Identification Toolbox™ [134], Neural Network Toolbox™ [135], CTSM-R [136], 

CAPTAIN [137], CONTSID [138], etc. These toolboxes have provided a convenient platform for 

data-driven modelling.  
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2.4. Case study 

This section illustrates the data-driven approach through a case study of a single-detached 

low-energy house. The house has large glazing areas facing south and a significant amount of 

thermal mass from concrete floor/slab/walls. Its wood-frame building envelop is well-insulated 

and air-tight. A geothermal heat pump mainly provides space heating through forced hot air.  

2.4.1. Measured data 

The house is simplified as one thermal zone. Relevant input and output variables are 

summarized in Table 2.6. Outdoor air temperature (𝑇𝑇𝑜𝑜) is the driving input. Global radiation on 

the south façade (𝑇𝑇𝑠𝑠) and gross electricity demand (𝑇𝑇𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛) are used to approximate effective solar 

heat gains and internal heat gains, respectively [109]. Heating power provided by the geothermal 

heat pump (𝑇𝑇ℎ) is calculated based on measured air flowrate and temperature difference between 

supply air and return air. Influence of the ground temperature is neglected since there is a 51 mm 

(RSI 1.8) insulation between the ground and the slab. The desired model output is indoor air 

temperature (𝑇𝑇𝑖𝑖) which is an average of room temperatures weighted by their floor areas.  

 

Table 2.6 Summary of input and output variables 

Variables Unit Description 

𝑇𝑇𝑜𝑜 ℃ Outdoor air temperature 

𝑇𝑇𝑠𝑠  𝑘𝑘𝑘𝑘 𝑇𝑇2⁄  Global irradiation on the south façade  

𝑇𝑇ℎ  𝑘𝑘𝑘𝑘 Heating power provided by the geothermal heat pump 

𝑇𝑇𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛  𝑘𝑘𝑘𝑘 Gross electricity demand 

𝑇𝑇𝑖𝑖  ℃ Indoor air temperature (average) 
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This house was monitored for two months (January and February in 2011). Raw data 

obtained during monitoring was preprocessed (formatting, synchronization, deleting outliers, etc.) 

into measurements that can be used for model training. All measurements are sampled every 0.5 

hour. The measurements are then divided into one training dataset and one testing dataset (see 

Figure A.1). The training dataset includes 30-day data points from January 2011 (number of 

samples 𝑁𝑁 = 1440) while the testing dataset consists of 29-day data points from February 2011. 

2.4.2. Training and testing criteria 

Three data-driven models (i.e., RC, ARX, and ANN models) are developed. The PEM is 

adopted for model training, where the objective function is defined based on one-step ahead 

prediction errors: 

𝑉𝑉(𝜽𝜽) =
1
𝑁𝑁
� �𝑇𝑇𝑡𝑡|𝑡𝑡−1(𝜽𝜽)�

2𝑁𝑁

𝑡𝑡=1
 (2.12) 

Minimizing 𝑉𝑉(𝜽𝜽) gives parameter estimate 𝜽𝜽�. For RC and AI models, the minimization of 

𝑉𝑉(𝜽𝜽) is realized by the Levenberg–Marquardt algorithm. For ARX models, the parameters are 

estimated by linear least squares.  

The obtained models are often adopted for one-day ahead forecasting, especially in 

applications like model predictive control. To examine the models’ forecasting ability, each model 

is demanded to forecast the indoor air temperature 48 steps into the future (i.e., 24-hour ahead) 

given the previous one-week data. Then, the forecasted temperatures are compared with the 

measured temperatures using the following criteria:  

𝐹𝐹𝑇𝑇𝐹𝐹𝑗𝑗 =

⎝

⎛1 −
�∑ �𝑦𝑦𝑗𝑗,𝑡𝑡 − 𝑦𝑦�𝑗𝑗,𝑡𝑡�

248
𝑡𝑡=1

�∑ �𝑦𝑦𝑗𝑗,𝑡𝑡 − 𝑦𝑦�𝑗𝑗�
248

𝑡𝑡=1 ⎠

⎞ ∙ 100% (2.13) 
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where, 

𝐹𝐹𝑇𝑇𝐹𝐹𝑗𝑗 is the goodness of fit for the 𝑗𝑗𝑡𝑡ℎ day; 

𝑦𝑦𝑗𝑗,𝑡𝑡 is the measured output at time step 𝐹𝐹 in 𝑗𝑗𝑡𝑡ℎ day;  

𝑦𝑦�𝑗𝑗,𝑡𝑡 is the forecasted output at time step 𝐹𝐹 in 𝑗𝑗𝑡𝑡ℎ day; and 

𝑦𝑦�𝑗𝑗 is the average of 𝑦𝑦𝑗𝑗,𝑡𝑡, i.e., 𝑦𝑦�𝑗𝑗 = 1
48
∑ 𝑦𝑦𝑗𝑗,𝑡𝑡
48
𝑡𝑡=1 .  

The examination by Eqn. (2.13) is performed on the testing data, which yields 𝐹𝐹𝑇𝑇𝐹𝐹’𝑇𝑇 for 29 

days. The goodness of fit in percentage informs how closer the data are to the fitted curve compared 

to a straight line (i.e., 𝑦𝑦�𝑗𝑗). The larger the 𝐹𝐹𝑇𝑇𝐹𝐹, the more accurately a model can fit the measurements. 

Here, instead of displaying all 29 values of 𝐹𝐹𝑇𝑇𝐹𝐹, its average and standard deviation are used:  

𝐹𝐹𝚤𝚤𝐹𝐹���� =
1

29
� 𝐹𝐹𝑇𝑇𝐹𝐹𝑗𝑗

29

𝑗𝑗=1
 (2.14) 

and  

𝐹𝐹𝑇𝑇𝐹𝐹_𝑇𝑇𝑛𝑛 = �
1

28
� �𝐹𝐹𝑇𝑇𝐹𝐹𝑗𝑗 − 𝐹𝐹𝚤𝚤𝐹𝐹�����

29

𝑗𝑗=1
 (2.15) 

A good model should give a high 𝐹𝐹𝚤𝚤𝐹𝐹���� and a low 𝐹𝐹𝑇𝑇𝐹𝐹_𝑇𝑇𝑛𝑛 as much as possible. These two 

criteria will be used for the following evaluation and selection of model structures.  

2.4.3. Model development 

The full RC model considers four inputs (𝑇𝑇𝑜𝑜𝑇𝑇𝑠𝑠𝑇𝑇ℎ𝑇𝑇𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛) and three states (𝑇𝑇𝑖𝑖𝑇𝑇𝑚𝑚𝑇𝑇𝑒𝑒). Its 

structure can be found in Figure 2.2 (e). 𝑇𝑇𝑚𝑚 and 𝑇𝑇𝑒𝑒  represent temperatures of internal concrete 

mass and building envelop, respectively. 𝐶𝐶𝑚𝑚  and 𝐶𝐶𝑒𝑒  represent their thermal capacitances. 𝐶𝐶𝑖𝑖 

denotes thermal capacitance of the indoor air, furniture, etc. The outdoor air temperature (𝑇𝑇𝑜𝑜) 

affects the indoor air temperature (𝑇𝑇𝑖𝑖) through a fast response path (𝑅𝑅1) and a slow response path 
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(𝑅𝑅2-𝐶𝐶𝑒𝑒-𝑅𝑅3). The fast response path captures the thermal impact through windows and ventilation 

while the slow response path is mainly to characterize the transient conduction through thick walls, 

roof, and ceilings. 𝐹𝐹𝑠𝑠 and 𝐹𝐹𝑛𝑛 are respectively, the solar gain factor (i.e., solar aperture) and internal 

gain factor that evaluate effective solar gains (from 𝑇𝑇𝑠𝑠) and effective internal gains (from 𝑇𝑇𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛) 

to the indoor.  

 

 

(a) 

 

(b) 

 

(c) 

 

 

(d) 

 

(e) 

Figure 2.2 RC model structures: (a) 𝑇𝑇𝑜𝑜𝑇𝑇𝑠𝑠𝑇𝑇ℎ-𝑇𝑇𝑖𝑖; (b) 𝑇𝑇𝑜𝑜𝑇𝑇𝑠𝑠𝑇𝑇ℎ-𝑇𝑇𝑖𝑖𝑇𝑇𝑒𝑒; (c) 𝑇𝑇𝑜𝑜𝑇𝑇𝑠𝑠𝑇𝑇ℎ-𝑇𝑇𝑖𝑖𝑇𝑇𝑚𝑚; (d) 𝑇𝑇𝑜𝑜𝑇𝑇𝑠𝑠𝑇𝑇ℎ-

𝑇𝑇𝑖𝑖𝑇𝑇𝑚𝑚𝑇𝑇𝑒𝑒; (e) 𝑇𝑇𝑜𝑜𝑇𝑇𝑠𝑠𝑇𝑇ℎ𝑇𝑇𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛-𝑇𝑇𝑖𝑖𝑇𝑇𝑒𝑒 

 

To facilitate explanation, an RC model is labelled in the format of RC (inputs-states). The 

most suitable model structure is selected by the forward selection technique starting from RC 

(𝑇𝑇𝑜𝑜𝑇𝑇𝑠𝑠𝑇𝑇ℎ-𝑇𝑇𝑖𝑖). 𝑇𝑇𝑜𝑜, 𝑇𝑇𝑠𝑠, and 𝑇𝑇ℎ are considered initial inputs and 𝑇𝑇𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛 is tested as a model extension. 
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A list of model structures is given in Figure 2.2. The selection process is shown in Table 2.7 where 

the selected model structure is highlighted. RC (𝑇𝑇𝑜𝑜𝑇𝑇𝑠𝑠𝑇𝑇ℎ-𝑇𝑇𝑖𝑖𝑇𝑇𝑚𝑚𝑇𝑇𝑒𝑒) is not selected though it has 

slightly better 𝐹𝐹𝚤𝚤𝐹𝐹����  and 𝐹𝐹𝑇𝑇𝐹𝐹_𝑇𝑇𝑛𝑛  than RC (𝑇𝑇𝑜𝑜𝑇𝑇𝑠𝑠𝑇𝑇ℎ -𝑇𝑇𝑖𝑖𝑇𝑇𝑚𝑚 ). This is because that the focus of RC 

models is to obtain physically interpretable parameters. For RC ( 𝑇𝑇𝑜𝑜𝑇𝑇𝑠𝑠𝑇𝑇ℎ - 𝑇𝑇𝑖𝑖𝑇𝑇𝑚𝑚𝑇𝑇𝑒𝑒 ), some 

parameters are estimated to have unreasonable values and considerable uncertainties, hence are 

not interpretable.   

Table 2.7 indicates that extending the RC model by 𝑇𝑇𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛 makes a negligible improvement 

to either its training or testing performance. Thus, 𝑇𝑇𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛 is no longer considered for the following 

development of ARX and ANN models.  

 

Table 2.7 Selection of a suitable RC model  

RC model structures Training Testing 

Inputs States 𝑉𝑉 𝐹𝐹𝚤𝚤𝐹𝐹���� % 𝐹𝐹𝑇𝑇𝐹𝐹_𝑇𝑇𝑛𝑛 % 

𝑇𝑇𝑜𝑜𝑇𝑇𝑠𝑠𝑇𝑇ℎ  𝑇𝑇𝑖𝑖  0.3186 -29.64 59.62 

𝑇𝑇𝑖𝑖𝑇𝑇𝑒𝑒  0.0098 72.60 12.12 

𝑇𝑇𝑖𝑖𝑇𝑇𝑚𝑚  0.0098 68.90 13.24 

𝑇𝑇𝑖𝑖𝑇𝑇𝑚𝑚𝑇𝑇𝑒𝑒  0.0099 73.57 10.82 

𝑇𝑇𝑜𝑜𝑇𝑇𝑠𝑠𝑇𝑇ℎ𝑇𝑇𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛  𝑇𝑇𝑖𝑖𝑇𝑇𝑒𝑒  0.0100 72.18 12.32 

 

An ARX model is labelled in the format of ARX (𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛) with 𝑛𝑛𝑛𝑛 = [𝑛𝑛𝑛𝑛1 𝑛𝑛𝑛𝑛2 𝑛𝑛𝑛𝑛3]. 

𝑛𝑛𝑛𝑛 and 𝑛𝑛𝑛𝑛 are output and input delays, respectively. The backward selection routine is employed 

for selecting the most suitable model structure. The selected structure ARX (10, [1 10 10]), as 
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highlighted in Table 2.8, has 𝐹𝐹𝚤𝚤𝐹𝐹����  and 𝐹𝐹𝑇𝑇𝐹𝐹_𝑇𝑇𝑛𝑛  less than 1% different from the largest model 

structure. Further reducing its order will cause an apparent decrease in the testing performance.  

 

Table 2.8 Selection of a suitable ARX model 

ARX model structures Training Testing 

Inputs 𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛 𝑉𝑉 𝐹𝐹𝚤𝚤𝐹𝐹���� % 𝐹𝐹𝑇𝑇𝐹𝐹_𝑇𝑇𝑛𝑛 % 

𝑇𝑇𝑜𝑜𝑇𝑇𝑠𝑠𝑇𝑇ℎ  12 [12 12 12] 0.0044 76.13 12.42 

[1 10 10] 0.0045 76.25 13.03 

[1 10 8] 0.0046 75.52 14.08 

10 [1 10 10] 0.0045 76.25 13.02 

8 [1 10 10] 0.0046 75.64 14.15 

 

A feedforward ANN model is labelled in the format of ANN (𝑛𝑛𝑄𝑄, 0:𝑛𝑛𝑛𝑛, 1:𝑦𝑦𝑛𝑛). Here, all 

input delays are set the same (i.e., 𝑛𝑛𝑛𝑛1 = 𝑛𝑛𝑛𝑛2 = 𝑛𝑛𝑛𝑛3 = 𝑛𝑛𝑛𝑛) which leaves the training algorithm 

to adjust relative importance (i.e., weight) of each delay. Hyperbolic tangent function (i.e., tanh) 

is adopted as the activation function. Before training, the weights and biases are initialized with 

random small values. Since a lot of weights and biases are being used, there may exist multiple 

local minima. To overcome this problem, each model structure is initialized and trained for 20 

times from which the one with the best testing performance is screened out. Moreover, to avoid 

overfitting, early stopping is adopted and 20% of the training data is used for cross-validation. 

Based on the above settings, model selection is performed forwardly starting from ANN (4, 0:2, 

1:2). The selected model structure is ANN (4, 0:2, 1:3) which gives the highest 𝐹𝐹𝚤𝚤𝐹𝐹���� and the lowest 

𝐹𝐹𝑇𝑇𝐹𝐹_𝑇𝑇𝑛𝑛 (see Table 2.9).  
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Table 2.9 Selection of a suitable ANN model  

ANN model structures Training Testing 

Inputs 𝑛𝑛𝑄𝑄 0:𝑛𝑛𝑛𝑛 1:𝑦𝑦𝑛𝑛 𝑉𝑉 𝐹𝐹𝚤𝚤𝐹𝐹���� % 𝐹𝐹𝑇𝑇𝐹𝐹_𝑇𝑇𝑛𝑛 % 

𝑇𝑇𝑜𝑜𝑇𝑇𝑠𝑠𝑇𝑇ℎ  4 0:2 1:2 0.0024 77.85 11.38 

0:3 1:2 0.0016 77.56 10.98 

0:2 1:3 0.0023 78.36 7.00 

0:2 1:4 0.0017 77.71 10.56 

5 0:2 1:3 0.0016 77.02 10.80 

 

2.4.4. Analysis of results 

The analysis of results focuses on examining the physical interpretations and prediction 

accuracy of the selected models.   

Physical interpretations 

Parameter estimates for RC (𝑇𝑇𝑜𝑜𝑇𝑇𝑠𝑠𝑇𝑇ℎ -𝑇𝑇𝑖𝑖𝑇𝑇𝑒𝑒 ) are listed in Table 2.10 together with the 

corresponding approximate standard errors. Methods for calculation of the standard errors can be 

found in [139]. The standard errors are small compared to the estimates, suggesting a relatively 

low model uncertainty. Besides, 𝐶𝐶𝑒𝑒 (9.145 𝑘𝑘𝑘𝑘ℎ ℃⁄ ) should not only account for the thermal mass 

of the wood-framed building envelop but also that of the concrete floor/walls/slabs. 

Correspondingly, 𝑇𝑇𝑒𝑒 should be regarded as the equivalent temperature of the building fabric.  
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Table 2.10 Parameter estimates and uncertainty for RC (𝑇𝑇𝑜𝑜𝑇𝑇𝑠𝑠𝑇𝑇ℎ - 𝑇𝑇𝑖𝑖𝑇𝑇𝑒𝑒) 

Parameters Estimates Standard errors 

𝑅𝑅1(℃ 𝑘𝑘𝑘𝑘⁄ )  14.85 4.8747 

𝑅𝑅2(℃ 𝑘𝑘𝑘𝑘⁄ )  16.33 6.3594 

𝑅𝑅3(℃ 𝑘𝑘𝑘𝑘⁄ )  0.4818 0.0134 

𝐶𝐶𝑖𝑖(𝑘𝑘𝑘𝑘ℎ ℃⁄ )  4.601 0.0622 

𝐶𝐶𝑒𝑒(𝑘𝑘𝑘𝑘ℎ ℃⁄ )  9.145 0.3671 

𝐹𝐹𝑠𝑠(𝑇𝑇2)  10.15 0.3147 

 

The selected RC model has demonstrated strong physical interpretability for the house’s 

thermal behaviours. To be compared, the selected ARX (10, [1 10 10]) exhibits a more favourable 

testing performance. However, without applying any supervisory rules, it tends to have parameter 

estimates with large standard errors and poles that fail the pole constraint. Even though, respective 

summations of the estimates of 𝑛𝑛𝑗𝑗, 𝑛𝑛1,𝑗𝑗, 𝑛𝑛2,𝑗𝑗, and 𝑛𝑛3,𝑗𝑗 show low uncertainties (see Table 2.11). This 

suggests the model’s potential for deriving important thermal properties. 

 

Table 2.11 Parameter estimates and uncertainty for ARX (10, [1 10 10]) 

ARX (10, [1 10 10]) Estimates Standard errors 

∑ 𝑛𝑛𝑗𝑗𝑗𝑗   0.0034 0.0004 

∑ 𝑛𝑛1,𝑗𝑗𝑗𝑗   0.0038 0.0004 

∑ 𝑛𝑛2,𝑗𝑗𝑗𝑗   0.2775 0.0300 

∑ 𝑛𝑛3,𝑗𝑗𝑗𝑗   0.0278 0.0026 
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As shown in Table 2.11Table 2.11, ARX (10, [1 10 10]) has automatically satisfied the 

steady-state constraint: ∑ 𝑛𝑛𝑗𝑗𝑗𝑗 ≈ ∑ 𝑛𝑛1,𝑗𝑗𝑗𝑗 . By taking the average, the overall thermal transmittance 

of the house can be approximated by  

𝑈𝑈𝐴𝐴𝐴𝐴𝐴𝐴 =
∑ 𝑛𝑛𝑗𝑗𝑗𝑗 + ∑ 𝑛𝑛1,𝑗𝑗𝑗𝑗

2 ∙ ∑ 𝑛𝑛3,𝑗𝑗𝑗𝑗
= 0.1295 𝑘𝑘𝑘𝑘 ℃⁄  (2.16) 

The equivalent solar aperture can be approximated by 

𝐹𝐹𝑠𝑠,𝐴𝐴𝐴𝐴𝐴𝐴 =
∑ 𝑛𝑛2,𝑗𝑗𝑗𝑗

∑ 𝑛𝑛3,𝑗𝑗𝑗𝑗
= 9.982 𝑇𝑇2 (2.17) 

𝑈𝑈𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐹𝐹𝑠𝑠,𝐴𝐴𝐴𝐴𝐴𝐴 are very close to 𝑈𝑈𝐴𝐴𝑅𝑅 and 𝐹𝐹𝑠𝑠,𝐴𝐴𝑅𝑅, indicating consistent estimations of the 

overall thermal transmittance and solar aperture by RC and ARX models. However, the ARX 

model can only give thermal properties under steady-state conditions. Deriving properties that are 

associated with thermal dynamics (e.g., thermal capacitances) will require a proper RC model. In 

addition, the ANN model, as previously mentioned in Section 2.2.3. “AI models”, cannot be used 

to infer any thermal properties.   

Prediction accuracy 

Autocorrelations and cumulative periodograms of the training residuals (𝑦𝑦 − 𝑦𝑦�) are plotted 

for the selected RC, ARX and ANN models in Figure 2.3. For each plot, the 95% confidence 

interval under the null hypothesis that the residuals are white noise is also shown (by parallel lines). 

Although RC (𝑇𝑇𝑜𝑜𝑇𝑇𝑠𝑠𝑇𝑇ℎ-𝑇𝑇𝑖𝑖𝑇𝑇𝑒𝑒) exhibits autocorrelations and cumulative periodogram outside the 

confidence region slightly more than ARX (10, [1 10 10]) and ANN (4, 0:2, 1:3), there is a clear 

low dependency of autocorrelations on lags and periodograms on frequencies for all three models. 

It is reasonable to accept the hypothesis that the residuals are white noise, indicating the thermal 

dynamics are well modeled.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 2.3 Autocorrelation and cumulative periodogram of residuals (with 95% confidence 

intervals) 
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The testing performance of the selected models is summarized in Table 2.12. The ANN 

model, with the highest 𝐹𝐹𝚤𝚤𝐹𝐹����% and the lowest 𝐹𝐹𝑇𝑇𝐹𝐹_𝑇𝑇𝑛𝑛%, demonstrates strong ability and reliability 

of one-day ahead forecasting. The forecasted indoor air temperatures by the selected models are 

displayed against the measurements for four representative days in the testing period (Figure 2.4). 

For most days, the ANN model has higher forecasting accuracy and can capture dynamics 

overlooked by the RC and ARX models (e.g., Figure 2.4 (a, b)). On worse days for the RC and 

ARX models (e.g., Figure 2.4 (b, d)), though the forecasting accuracy is unfavorable, the 

forecasting errors at most of the time are constrained within 0.5 ℃; the maximum error is no more 

than 1 ℃ and only occurs occasionally. So, the RC and ARX models’ forecasting ability is still 

acceptable. 

 

Table 2.12 Summary of the testing performance of selected models 

Selected models 𝐹𝐹𝚤𝚤𝐹𝐹���� % 𝐹𝐹𝑇𝑇𝐹𝐹_𝑇𝑇𝑛𝑛 % 

RC (𝑇𝑇𝑜𝑜𝑇𝑇𝑠𝑠𝑇𝑇ℎ - 𝑇𝑇𝑖𝑖𝑇𝑇𝑒𝑒) 72.60 12.12 

ARX (10, [1 10 10]) 76.25 13.02 

ANN (4, 0:2, 1:3) 78.36 7.00 
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(a) 

 

(b) 

 

(c) (d) 

Figure 2.4 Testing results on representative days: (a) model performance around 𝐹𝐹𝚤𝚤𝐹𝐹����; (b) ANN 

model outperforming RC and ARX models; (c) model performance above average 𝐹𝐹𝚤𝚤𝐹𝐹����; (d) model 

performance below 𝐹𝐹𝚤𝚤𝐹𝐹����. In parenthesis is the 𝐹𝐹𝑇𝑇𝐹𝐹 of each model for that day.  

 

Although the ANN model outperforms the RC and ARX model in terms of forecasting 

accuracy, it is hardly possible to infer any thermal properties from the estimated weights and 

biases. Due to the large size of parameters, the ANN model may subject to multiple local minima 

during model training and demand more computation power. Nevertheless, the ARX model is easy 
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to formulate and allows for linear least squares for model training so that the loss function is 

guaranteed to be globally optimized. The RC model, on the other hand, is the most physically 

plausible, requires the least parameterization, thus tend to be more robust under errand input 

signals.  

2.5. Discussion 

The RC, TF, and AI models are manifestly different by their structure formulations. The 

RC models are constructed based on a series of ordinary differential equations that characterize 

thermal dynamics in buildings. The appropriate design of RC models requires a thorough 

understanding of the studied thermal system. Moreover, since the ordinary differential equations 

are set up in continuous-time, discretization is required for the models to be trained with measured 

data. In contrast, the TF models are more straightforward to develop. They simply use rational 

functions or polynomials to incorporate the input and output variables. Since the rational functions 

or polynomials are already in discrete-time, discretization is not needed. Compared to the linear 

RC and TF models, the AI models can be regarded as nonlinear regression models that have 

complex inner structures built upon machine learning techniques. Due to their inherent implicit 

nonlinearity, the AI models allow for raw measurements (e.g., supply air temperature and flow 

rate instead of the heating power) to be directly used as inputs.  

Another difference between these three types of models arises from their physical 

interpretability. Both RC and TF models have their counterparts in the forward approach, e.g., 

thermal networks and comprehensive room transfer functions. They are mathematically connected 

through state-space representations. In the RC models, the equivalent thermal parameters are 

positive and have intuitive physical meanings. Hence they are suitable for interpretation or 
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explanatory purposes. However, the parameters in the TF models are not directly physically 

interpretable. Without applying proper constraints on the parameters, physically implausible or 

unstable models may be obtained. For AI models, they are impossible for any physical meaning 

interpretation. This is because the models are in no accordance with the forward approach and their 

structure are too complicated to be physically understood.  

In terms of training, TF models (ARX and SS models in particular) are computationally 

more efficient than RC models. This is because that in the RC models, the ordinary differential 

equations and their discretization can make the outputs highly nonlinear with respect to the 

unknown parameters. Due to the same reason, more local minimums may occur in the RC models’ 

training. As for AI models, other concerns like overfitting can be more crucial than computational 

efficiency.  

Most ANN models are trained using backpropagation-based searching algorithms. Since 

there are often a lot of parameters (e.g., weights and biases) to be estimated, overfitting can become 

a serious problem that influences the model’s generalization. A conventional technique to avoid 

overfitting is early stopping which uses a portion of the training dataset for cross-validation and 

ends training when the cross-validation error starts to increase [78]. The problem can also be 

overcome by including the model complexity (e.g., number of neurons) as an objective to minimize 

[88]. However, not all the AI models are subjected to overfitting. For example, the GRNN models 

can be trained in one pass through the data with no need for any iterative algorithm [92, 93]. An 

essential advantage of the GRNN models is fast-learning. Besides, the SVM models are trained 

with the structural risk minimization principle which defines a trade-off between the fitting quality 

and model complexity [99]. This intrinsic feature of SVMs also prevents the model from being 

overfitted. 
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2.6. Summary 

Data-driven modelling of building thermal dynamics consists of three phases: modelling, 

training, and selecting. TF, RC and AI models are three main categories of data-driven models. 

The RC models are the most suitable for physical interpretation, the TF models are the easiest to 

formulate, and the AI models can conveniently manage nonlinearity and complex interactions 

between inputs. In the training phase, the prediction error method (PEM) and maximum likelihood 

estimation (MLE) are two popular methods to build up loss functions. Unknown parameters in the 

data-driven models are estimated by minimizing the values of the loss function, which is 

accomplished by either linear or nonlinear search algorithms. In the selecting phase, the most 

suitable model structure is selected through a forward or backward selecting procedure. It is a 

trade-off process that balances the model’s prediction accuracy against its complexity. Quality 

criteria, residual analyses, etc. are used to validate, test, and compare model candidates with 

different inputs and structures.  

The whole data-driven approach is illustrated by the case study of a single-zone house. 

Three models, i.e., an RC model, an ARX model, and an ANN model, are developed for the 

thermal dynamics of the house. After training and selecting, all models exhibit favourable 

forecasting ability, with the ANN model generally outperforming the RC and ARX models. On 

the other hand, both the ARX and RC models can be used to derive important thermal properties 

of the house, but the RC model serves better for explanatory purposes. Finally, the ARX model 

has the advantage of being trained by linear least squares.  
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Chapter 3. RC Model Development 

3.1. Introduction 

The RC model captures building thermal dynamics using a network of thermal resistors 

and capacitors. Thermal resistance, capacitances, and other necessary parameters in the network 

are estimated by tuning the model outputs to measured outputs. Unlike pure statistical models (e.g., 

autoregressive models), parameters of the RC models tend to be physically interpretable [23, 25]. 

For example, the estimated R’s value of a composite wall can represent the wall’s effective thermal 

resistance. Some existing studies in the literature took advantage of this intrinsic feature of RC 

models to derive important thermal properties of building components [36-38]. Some other studies 

focused more on obtaining a physically plausible and statistically well-performing model for 

characterizing building thermal dynamics [29, 140] as well as predicting transient building load or 

indoor temperatures [32, 141].  

Nevertheless, parameter estimates of the RC models are not guaranteed to be physically 

interpretable: when model parameters are non-identifiable (i.e., cannot be uniquely determined), 

their physical meanings will be ambiguous. The concept of non-identifiability encompasses two 

notions: structural non-identifiability and practical non-identifiability [142, 143]. The structural 

non-identifiability arises from parameter redundancy where the model parameterization is not 

unique regardless of measurement patterns. The practical non-identifiability, on the other hand, 

indicates a parameter estimate is not confident using available data. In other words, non-

identifiability has two main causes: the model structure is overcomplicated (causing structural and 
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practical non-identifiability), or the measurements are inadequate (causing practical non-

identifiability).    

Given that the measured data is sufficient and in sound quality, a complex model structure 

can still lead to non-identifiability. On the contrary, an oversimplified model structure is incapable 

of explaining the thermal dynamics. Model selection is a standard process in finding a suitable RC 

model structure. In model selection, several potential model structures are constructed as 

candidates and then compared through statistical tests [42], validation criteria [41], or frequency 

responses [24]. Even a relatively suitable model structure is often obtained in the end, constructing 

all potential candidates and selecting the best one is rather time-consuming. This chapter proposes 

an alternative approach which first creates one complex preliminary model structure and then 

removes non-identifiable parameters (instead of comparing candidates). This approach is relatively 

robust as the resulted model structures will have the advantage of being both physically 

interpretable and computationally efficient.  

The objective of this chapter is to propose a methodology for obtaining reliable RC model 

structures for thermal dynamic analysis of houses. The methodology is presented in Section 3.2. 

“Methodology” followed by a case study illustrating this methodology in Section 3.3. “Case 

Study”. Then relevant discussions, such as the physical interpretability of the simplified model 

structure, will be discussed in Section 3.4. “Discussion”. 

3.2. Methodology 

This section describes a methodology for developing reliable and simple RC models for 

thermal dynamic analysis of houses. The methodology consists of model formulation, model 

training, and model simplification. In the model formulation phase, the necessity and formulation 
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of a multi-zone model are investigated, as well as the associated assumptions. In the model training 

phase, criteria for model training and testing are introduced, and model parameters are estimated 

when using the methodology. In the model simplification phase, a model simplification procedure 

is proposed as an alternative to model selection. The basic idea behind the proposed methodology 

is to start from a complex model structure and simplify it to a more suitable one.   

3.2.1. Model formulation 

Due to uneven heating or cooling, houses can exhibit considerable thermal stratifications 

across floors, with a floor being 1 to 2 ℃ higher than the one below it. Furthermore, solar gains 

may cause the equator-oriented rooms warmer than those that are not. Under such cases, single-

zone models are often incompetent. To reflect the room temperature difference, a house can be 

divided into multiple thermal zones and modelled accordingly. However, having more zones 

means impractically more measurement points and higher complexity in the model structures and 

hence causes potential non-identifiability of parameters. For a typical house, a reasonable way is 

to treat each floor as one thermal zone [35]. It is also possible to further divide each floor into 

south and north zones to consider the local nonuniformity of solar energy. The methodology being 

presented aims to accommodate multi-zone RC models for houses. 

In modelling building thermal dynamics, zonal temperatures are considered as outputs 

while outdoor temperature, solar radiation, heating power, etc. are selected as inputs. An RC 

network maps the input-output relationship. Some important assumptions for constructing the RC 

model include: 

i. Air in each zone is well mixed;  

ii. Heat transfer coefficients for conduction, convection, and radiation are constant; 

iii. Natural ventilation rate is constant;  
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iv. Thermal conduction is one-dimensional within each building component; and 

v. Heating power is uniformly distributed across the whole house. 

Based on the above assumptions, the thermal dynamics of each temperature node in the 

RC network are governed by the ordinary differential equation expressed in Eqn. (2.1). Similar 

ordinary differential equations are established for all the temperature nodes and rearranged into a 

state-space representation where model inputs, outputs, and parameters are clearly defined. An 

example of the RC model formulation can be found in Table 2.1.  

The acquired state-space representation is in continuous-time and needs discretization. 

This methodology assumes piecewise linear interpolation for discretization (see Table 2.2). The 

final model expression will be in the form of Eqn.  (2.3), where the matrices 𝑨𝑨, 𝑩𝑩, 𝑪𝑪, and 𝑫𝑫 contain 

the model parameters to be estimated while training the model with measured inputs and outputs. 

3.2.2. Model training 

In this methodology, the well-known Prediction Error Method (PEM) is adopted for model 

training [134]. A corresponding algorithm is provided in the System Identification Toolbox™ in 

MATLAB. In short, the PEM estimates unknown model parameters by minimizing the value of 

an objective function of prediction or simulation errors. The model training here focuses on 

simulation (i.e., infinite step ahead prediction or ℎ = ∞). When the simulation errors are assumed 

to be jointly Gaussian with zero mean and time-invariant unknown covariances, we have: 

𝜽𝜽 = min
𝜽𝜽
𝑉𝑉(𝜽𝜽) (3.1a) 

𝑉𝑉(𝜃𝜃) = det �
1
𝑁𝑁
�[𝒚𝒚𝑡𝑡 − 𝒚𝒚�𝑡𝑡(𝜽𝜽)]
𝑁𝑁

𝑡𝑡=1

[𝒚𝒚𝑡𝑡 − 𝒚𝒚�𝑡𝑡(𝜽𝜽)]′� (3.1b) 

where, 
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det is the determinant operator; 

𝑉𝑉(∙) is the objective function in a maximum likelihood sense [123, 134]; 

𝑁𝑁 is the number of data samples; 

𝜽𝜽 is the vector of model parameters to be estimated; 

𝒚𝒚𝑡𝑡 is the measured output (i.e., a column vector of zonal temperatures) at  𝐹𝐹𝑡𝑡ℎ time step; and 

𝒚𝒚�𝑡𝑡 is the simulated model output at 𝐹𝐹𝑡𝑡ℎ time step. 

The trained model is then validated with new data (i.e., testing data). RMSE is used as a 

criterion to evaluate the performance of the model for both training and testing. It is defined (for 

the 𝑗𝑗𝑡𝑡ℎ output) as follows:  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗 = �
1
𝑁𝑁
��𝑦𝑦𝑗𝑗,𝑡𝑡 − 𝑦𝑦�𝑗𝑗,𝑡𝑡�

2
𝑁𝑁

𝑡𝑡=1

 (3.2) 

where 𝑦𝑦𝑗𝑗,𝑡𝑡 the 𝑗𝑗𝑡𝑡ℎ entry of the output vector 𝒚𝒚𝑡𝑡.  

Another testing criterion Fit is also used. Fit can be seen as a normalized RMSE term 

expressed as a percentage. It is defined (for the 𝑗𝑗𝑡𝑡ℎ output) as follows:  

𝐹𝐹𝑇𝑇𝐹𝐹𝑗𝑗 =

⎝

⎛1 −
�∑ �𝑦𝑦𝑗𝑗,𝑡𝑡 − 𝑦𝑦�𝑗𝑗,𝑡𝑡�

2𝑁𝑁
𝑡𝑡=1

�∑ �𝑦𝑦𝑗𝑗,𝑡𝑡 − 𝑦𝑦�𝑗𝑗�
2𝑁𝑁

𝑡𝑡=1 ⎠

⎞ ∙ 100% (3.3) 

where 𝑦𝑦�𝑗𝑗 is the sample mean of 𝑦𝑦𝑗𝑗.  

Comparing these two criteria, both RMSE and Fit emphasize larger errors by taking the 

square of the residuals. RMSE expresses the average output error in degree Celsius. The smallest 

RMSE indicates the best training or testing performance. Fit, on the other hand, informs how closer 

the data are to the fitted curve compared to a straight line (i.e., 𝑦𝑦�𝑗𝑗). The larger the Fit is, the more 

accurately a model can fit the measurements.  
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3.2.3. Model simplification 

A good RC model should have both a simple structure and satisfactory accuracy but 

seeking such a model is often not straightforward. Previous studies [20, 42] employed a trial-and-

error method to search for the best model structure from a group of candidates based on specific 

criteria. Such a selection process can be quite laborious especially when a model has a lot of 

possible structures (e.g., a multi-zone model). Alternatively, we can start from a complex 

preliminary RC model structure that can be created following physical principles and then 

progressively simplify it by removing non-identifiable parameters. A complex RC model structure 

includes many parameters to reflect the detailed thermal interactions between different building 

components. 

This simplification process involves mainly two challenges. First, the RC model needs to 

be trained to have a satisfactory fitting at training and testing data. Unsatisfactory fitting often 

originates from over-parameterization or unreliable initial guesses of model parameters. Local 

searching algorithms tend to give unfavourable training results, especially for a complex model 

structure when initial guesses for model parameters are far away from the true values. Second, 

non-identifiable parameters must be precisely detected. Parameters that are not identifiable have 

negligible or no influence on the model predictions. It is, therefore, reasonable to remove those 

non-influential parameters. Whereas, non-identifiability is not straightforward in some cases. In 

linear regression, the significance test [144] is sufficient for detecting non-influential parameters. 

However, for such ordinary differential equations as in RC models, extra efforts are needed and 

will be presented below.  

To overcome the first challenge, a model structure can be trained first by a global search 

algorithm (e.g., genetic algorithm) for a rough search and followed by a local search algorithm 
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(e.g., the Levenberg-Marquardt algorithm) for a refined search. Global search algorithms have 

been applied to RC models [32, 34] and proven to give favourable estimates. Genetic algorithm 

(GA) is adopted in the model development methodology. GA imitates the process of biological 

evolution. It starts with a population of randomly generated individuals (i.e., initial estimates of 𝜃𝜃) 

within assumed bounds. All individuals are measured by a fitness function (i.e., the objective 

𝑉𝑉(𝜃𝜃)) and those of small fitness function values are selected as elites. A new generation is 

produced from the elites through operations like mutation and crossover. The GA solver terminates 

when either a fixed number of generations is reached, or the difference between the best fitness 

values of two consecutive generations are less than a small value (e.g., 1e-6). The initial population 

is set to 200 for parameter size larger than 5, the elites take up 5% of the population, and the 

maximum number of generations is 30.  

The second challenge is to detect non-identifiable parameters and remove them. A rigorous 

method for non-identifiability analysis is to examine the profile likelihood [142, 143] near the 

parameter estimates. This method requests a series of re-optimization of the model for each 

parameter and is rather computationally demanding. Another common method is approximate but 

simpler, e.g., using Hessian or asymptotic covariance [145-147] to detect non-identifiable 

parameters. Under typical excitation conditions, non-identifiable parameters detected by the 

asymptotic-covariance-based method tend to align with those by the profile-likelihood-based 

method [112]. Thus, the asymptotic-covariance-based method is adopted in the methodology and 

explained as follows.   

Since the prediction error estimator is asymptotically normally distributed [123, 148], for 

large enough sample size 𝑁𝑁, we have,  

√𝑁𝑁�𝜽𝜽� − 𝜽𝜽�
d
→𝒩𝒩(0,𝑷𝑷𝜽𝜽) (3.4a) 
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𝑷𝑷𝜽𝜽 = (𝔼𝔼𝑽𝑽𝜽𝜽𝜽𝜽)−1(𝔼𝔼𝑽𝑽𝜽𝜽𝑽𝑽𝜽𝜽′ )(𝔼𝔼𝑽𝑽𝜽𝜽𝜽𝜽)−1 (3.4b) 

where,  

𝜽𝜽� is the estimate of the model parameter vector 𝜽𝜽; 

𝑷𝑷𝜽𝜽 is the asymptotic covariance matrix [148]; and 

𝑽𝑽𝜽𝜽 is the gradient vector 𝜕𝜕𝑉𝑉 𝜕𝜕𝜽𝜽⁄  and 𝑽𝑽𝜽𝜽𝜽𝜽 is the hessian matrix 𝜕𝜕2𝑉𝑉 𝜕𝜕𝜽𝜽2⁄ . 

Estimation for 𝑷𝑷𝜽𝜽 can be obtained during model training. Standard errors of the parameter 

estimates are merely the square root of diagonal elements in the asymptotic covariance matrix, i.e., 

𝝈𝝈�𝜽𝜽 = �𝑛𝑛𝑇𝑇𝑛𝑛𝑔𝑔(𝑷𝑷𝜽𝜽)/𝑁𝑁. The more a parameter affects the model outputs, the easier it will be to 

determine its value, and the less uncertainty the parameter estimate will have. It can be seen from 

Eqn. (3.4) that large standard errors mean large uncertainty and thus indicates non-identifiability. 

In addition, parameters in the RC models are strictly positive but the normal distribution in Eqn. 

(3.3) is unbounded. To take the constraint of positivity into account, it is advantageous to 

reparametrize the parameters by log-transform [147]. According to the delta-method [149], the 

log-transformed estimator is also asymptotically normally distributed, namely, �log𝜃𝜃� − log𝜃𝜃� →

𝒩𝒩�0,𝜎𝜎�𝜃𝜃 𝜃𝜃�⁄ � for any parameter 𝜃𝜃 in the parameter vector 𝜽𝜽. Here, a parameter is defined to be 

identifiable only when 𝐹𝐹𝛿𝛿 2⁄ 𝜎𝜎�𝜃𝜃 𝜃𝜃�⁄ < 25%, where 𝐹𝐹𝛿𝛿 2⁄  is the t-statistic given significance level 𝛿𝛿. 

This corresponds to saying with (1 − 𝛿𝛿) × 100%  confidence that 𝜃𝜃 ∈ �𝜃𝜃�𝑇𝑇−0.25,𝜃𝜃�𝑇𝑇0.25� . By 

taking 𝛿𝛿 = 0.05, we can say with 95% confidence that true values of the identifiable parameters 

fall between 78% (≈ 𝑇𝑇−0.25) and 128% (≈ 𝑇𝑇0.25) of their estimates.  

The model structure simplification procedure is summarized below (Step 1 ~ 3). The 

flowchart in Figure 3.1 schematically shows the simplification process (together with model 

formulation and model training). This simplification approach has a definite advantage: there is no 

need to construct a lot of candidate models to choose the best from. Since the simplification is 
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achieved by directly removing non-identifiable parameters, it requires fewer rounds of model 

formulations and comparisons so that it is more efficient than the trial-and-error method.  

• Step 1 

First, train the complex model using a genetic algorithm to obtain initial guesses for model 

parameters. Then, train the model with Levenberg–Marquardt algorithm based on the initial 

guesses for a refined search. The refined search yields the parameter estimate 𝜽𝜽�, the standard error 

estimate 𝝈𝝈�𝜽𝜽, and the optimized objective function value 𝑉𝑉�𝜽𝜽��. To assure that the model has an 

acceptable fitting ability, 𝑉𝑉�𝜽𝜽�� must not exceed a small number 𝜇𝜇 (e.g., 𝜇𝜇 = 10𝑅𝑅 − 5). Otherwise, 

the model is not well structured, and the simplification procedure should be ended.  

• Step 2 

Remove non-identifiable parameters whose standard error to parameter estimate ratio 

(𝜎𝜎�𝜃𝜃 𝜃𝜃�⁄ ) surpasses a threshold 𝜖𝜖 ). The threshold is defined differently in every round of the 

simplification. Its value should have the same order of magnitude as the largest 𝜎𝜎�𝜃𝜃 𝜃𝜃�⁄  in that round 

(see the thresholds in Table B.1 for example). Only a small number of parameters are removed in 

each round. When a parameter is removed, any component or input that depends on this parameter 

should also be removed. For example, in Table 2.1, if 𝑅𝑅2,3 is removed from the network, 𝑇𝑇3 is also 

discarded.  

• Step 3 

Repeat Step 1 and 2 to train the reconstructed model until there are no non-identifiable 

parameters (𝐹𝐹𝛿𝛿 2⁄ 𝜎𝜎�𝜃𝜃 𝜃𝜃�⁄ < 25% for all 𝜃𝜃) or the optimized objective function value becomes too 

large (𝑉𝑉�𝜽𝜽�� > 𝜇𝜇). Whichever condition is met, the simplification procedure ends, and the results 

are exported for analysis. When 𝑉𝑉�𝜽𝜽�� > 𝜇𝜇, the current model is no longer successful at fitting the 
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training data, so the last model should be kept. Thus, this step delivers a model that not only has a 

simple structure but also fits the measured data with adequate accuracy.  

 

 

Figure 3.1 Flow chart of the model development methodology (model formulation, model 

training, and model structure simplification).  
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3.3. Case Study 

The proposed methodology is applied to a low-energy house [150, 151] to create a simple 

and sufficient RC model. The house is a wood-framed two-story single-detached home (including 

a basement) located in Eastman, Quebec, Canada. It has large glazing areas facing south. Energy 

system and locations of thermal mass are shown in Figure 3.2. There is a significant amount of 

thermal mass from the concrete floor/slab/walls in both the living room and the basement. Space 

heating is mainly provided by a geothermal heat pump through forced hot air. In the basement, 

there is a ventilation concrete slab which can also provide some space heating when there is under-

floor warm air circulation.  

This house was monitored for a period of several years. Raw data obtained during 

monitoring was preprocessed (formatting, synchronization, deleting outliers, etc.) into 

measurements [152] that can be used to train RC models. To account for temperature stratification 

of the house, a three-zone model is adopted in this case study: basement, first floor, and second 

floor. Following the model development methodology presented above, a complex preliminary 

model structure is formulated and trained first, then simplified to a simple and sufficient structure. 

This section will present the measured data, demonstrate the methodology, and evaluate the 

modelling results. 
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Figure 3.2 Energy system and location of thermal mass in ÉcoTerraTM house [150]  

 

3.3.1. Measured data 

Relevant input variables are summarized in Table 3.1. Global irradiation on the south 

façade (𝑇𝑇𝑠𝑠) and gross electricity demand (𝑇𝑇𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛) are used to approximate effective solar heat gains 

and internal heat gains [109], respectively. Heating power provided by the geothermal heat pump 

(𝑇𝑇ℎ𝑝𝑝) is calculated based on the measured air flow rate and temperature difference between supply 
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air and return room air. The thermal energy charged to the slab (𝑇𝑇𝑣𝑣𝑛𝑛𝑠𝑠)  is calculated based on the 

measured temperature difference between the inlet and outlet air and the flow rate of the air, which 

was heated by the roof-mounted solar thermal system. Ground temperature is assumed to be 

constant (i.e., 𝑇𝑇𝑔𝑔 = 13℃). The desired model outputs are the zone air temperature  𝑇𝑇2𝑓𝑓 for the 

second floor, 𝑇𝑇1𝑓𝑓 for the first floor, and 𝑇𝑇0𝑛𝑛 for the basement. 

 

Table 3.1 Summary of model input and output variables 

Variables Unit Description 

𝑇𝑇𝑜𝑜 ℃ Outdoor air temperature 

𝑇𝑇𝑔𝑔 ℃ Ground temperature 

𝑇𝑇𝑠𝑠  𝑘𝑘𝑘𝑘 𝑇𝑇2⁄  Global irradiation on the south façade  

𝑇𝑇ℎ𝑝𝑝  𝑘𝑘𝑘𝑘 Heating power provided by the geothermal heat pump 

𝑇𝑇𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛  𝑘𝑘𝑘𝑘 Gross electricity demand 

𝑇𝑇𝑣𝑣𝑛𝑛𝑠𝑠  𝑘𝑘𝑘𝑘 Heat charged to the ventilation concrete slab 

𝑇𝑇0𝑛𝑛 ,𝑇𝑇1𝑓𝑓 ,𝑇𝑇2𝑓𝑓  ℃ Air temperatures of the basement, first floor, and second floor 

 

All measurements are sampled every 10 minutes. This sampling interval is chosen to be 

sufficiently small to avoid overlooking of important thermal dynamics. The measurements consist 

of the entire dataset and are then divided into one training dataset and two testing datasets (see 

Figure A.2) for testing 1 and 2, respectively. The training dataset contains sufficient difference 

among various inputs and outputs so that non-identifiability is hardly caused by the data quality 

[111]. Two testing datasets represent two different situations. In the first testing dataset, zonal 

temperatures have significant variations within 24 hours, but the daily pattern of the temperatures 
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barely changes. In the second testing dataset, zonal temperatures are less excited and in relatively 

low frequencies (i.e., more variations from day to day). A suitable RC model should perform well 

on both scenarios.    

3.3.2. Model development 

The measured data show that in the training dataset, RMSEs of the temperature differences 

between the basement and the main floor and between the main floor and the second floor are 

1.03℃ and 1.68℃, respectively. Hence, the zonal temperature differences are not negligible, and 

a three-zone model is necessary. The house is divided into three zones: basement (notation: 0b), 

main floor (notation: 1f), and second floor (notation: 2f). 

The complex preliminary model structure is created based on physical principles and 

shown in Figure 3.3 (a). In this model structure, there are five types of model parameters: thermal 

resistances (𝑅𝑅), thermal capacitances (𝐶𝐶), solar gain factors (𝐹𝐹), internal gain factors (𝑝𝑝), and 

heating power distribution factors (𝛼𝛼). Thermal resistances (𝑅𝑅) and capacitances (𝐶𝐶) describe the 

thermal dynamics between temperature nodes. Solar gain factors (𝐹𝐹 ) are applied on global 

irradiation to approximate effective solar heat gains. They are closely related to window areas 

(often interpreted as solar apertures). Gross electricity demand (𝑇𝑇𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛) is weighted by internal gain 

factors (𝑝𝑝) to approximate effective internal heat gains. Sum of 𝑝𝑝 should be no greater than one 

(∑ 𝑝𝑝𝑗𝑗3
𝑗𝑗=1 ≤ 1). Heating power (𝑇𝑇ℎ𝑝𝑝) is distributed to each zone through a distribution factor (𝛼𝛼). 

The distribution factors, instead of being estimated from the measurements, are pre-calculated 

proportionally to each zone’s heated floor area. For the basement, first-floor, and second-floor, the 

distribution factors are respectively, 𝛼𝛼0 = 0.35, 𝛼𝛼1 = 0.38, and 𝛼𝛼2 = 0.27 (∑ 𝛼𝛼𝑗𝑗3
𝑗𝑗=1 = 1).  
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(a) 

 

(b) 

Figure 3.3 Model structures: (a) the complex three-zone model structure, and (b) the simplified 

three-zone model structure 

 

In the complex model structure, each level’s building envelop is modelled by three 

resistances and one capacitance (3𝑅𝑅1𝐶𝐶), including a fast response path (e.g., 𝑅𝑅6) and a slow 

response path (e.g., 𝑅𝑅2 -𝐶𝐶𝑒𝑒2-𝑅𝑅1 ). The fast response path captures the thermal impact through 

windows and ventilation while the slow response path is mainly to characterize the transient 

conduction through thick walls, roof, and ceilings. Inside each zone, it is modeled by a 2𝐶𝐶1𝑅𝑅 

where one thermal capacitance 𝐶𝐶𝑖𝑖 is for indoor air (𝑇𝑇 denotes indoor air) and the other capacitance 
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𝐶𝐶𝑛𝑛 belongs to building fabric (e.g., walls and floors). Between zones, it is modeled by a 3𝑅𝑅1𝐶𝐶 with 

a fast response path (e.g., 𝑅𝑅5 ) and a slow response path (e.g., 𝑅𝑅4 -𝐶𝐶𝑚𝑚2 -𝑅𝑅7 ). The two paths 

respectively represent convective and transient conductive heat transfer between adjacent floors. 

For the basement, specifically, the slab thermal mass is modeled by two thermal capacitances: 𝐶𝐶𝑚𝑚0 

is for the ventilated slab and 𝐶𝐶𝑚𝑚𝑚𝑚0 for the non-ventilated slab. 

Using the presented methodology (Section 3.2), the complex preliminary model structure 

is simplified shown in Figure 3.3 (b). Details of the simplification process and the parameter 

estimates are provided in Table B.1 in the appendix where non-identifiable parameters to be 

removed in each turn are highlighted. The simplification has significantly reduced the complexity 

level of the model structure. For example, slow response paths of the building envelop are removed 

for all three zones. Thermal capacitances associated with the building fabric are discarded. For the 

influence of solar radiation, only the solar gains to indoor air remain in the model structure. 

Moreover, the internal heat gains of the second floor are estimated as zero. Each zone ends up 

being modelled by two capacitances and three to four resistances. In summary, the simplified 

model structure is of 6𝐶𝐶10𝑅𝑅 (i.e., 6 thermal capacitances and 10 thermal resistances) compared to 

the complex preliminary structure of 13𝐶𝐶22𝑅𝑅  (i.e., 13 thermal capacitances and 22 thermal 

resistances). The model complexity measured in terms of the number of thermal capacitances and 

resistances has been reduced by more than 50%.  

3.3.3. Results and analysis 

The results of model training and testing are summarized in Table 3.2, which shows that 

simplification of the complex preliminary model structure causes no significant loss of 

training/testing accuracy measured concerning both RMSE and Fit. The simplified model exhibits 
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favourable testing performance (with all Fit larger than 60%). This can also be seen in Figure 3.4, 

where the simulated zonal temperatures are displayed against the measurements for two typical 

days in both testings.  

 

Table 3.2 Training and testing performances of the three-zone model 

Model Zone air 

temperature 

Training Testing 1 Testing 2 

RMSE 

(℃) 

Fit  

(%) 

RMSE 

(℃) 

Fit  

(%) 

RMSE 

(℃) 

Fit  

(%) 

Complex  𝑇𝑇2𝑓𝑓 0.275 77.0 0.295 71.5 0.623 60.7 

𝑇𝑇1𝑓𝑓 0.296 79.7 0.376 74.6 0.439 70.8 

 𝑇𝑇𝑜𝑜𝑛𝑛 0.139 80.9 0.231 74.5 0.221 79.5 

Simplified 𝑇𝑇2𝑓𝑓 0.277 76.8 0.319 69.1 0.632 60.1 

𝑇𝑇1𝑓𝑓 0.300 79.5 0.416 71.9 0.427 71.6 

𝑇𝑇0𝑛𝑛 0.145 80.2 0.235 74.0 0.272 74.7 

 

There is a relatively large decrease in fitting accuracy for second-floor air temperature (𝑇𝑇2𝑓𝑓) 

from training to testing 2, e.g., Fit drops from 76.8% to 60.1% for the simplified model (see Table 

3.2). Yet, a similar decrease of fitting accuracy happens to the complex model structure as well 

(Fit drops from 77.0% to 60.7%). In addition, an obvious discrepancy occurs between the 

measured and the simulated first-floor air temperatures (𝑇𝑇1𝑓𝑓) around 3:00 pm on the first testing 

day (hour 15), as shown in Figure 3.4 (b). However, such discrepancy is not observed around 3:00 

pm on the next day (hour 39), which has similar weather conditions. Therefore, the decrease of 

fitting accuracy and the temperature discrepancy is not due to the model simplification, but 
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unmodelled influences that are only notable in the testing 2, such as occupant activities, e.g., 

closing blinds, that result in little or no solar radiation getting transmitted through the windows. 

Certainly, the model’s simulation accuracy can be increased by integrating influences due to 

occupant activities. Nevertheless, even with the decrease of fitting accuracy and occasionally 

discrepancies, the largest RMSE of the simplified model structure is merely 0.632℃ (for 𝑇𝑇2𝑓𝑓 on 

testing 2), which is acceptable for the model to acquire the primary thermal dynamics of the house 

when compared to the variation of indoor air temperatures (around 5℃).  
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(b) 

Figure 3.4 Comparison between measured and simulated zonal temperatures for the first two 

days in (a) testing 1, and (b) testing 2.   

 

From the complex model structure to the simplified one, a total of 35 non-identifiable 

parameters are removed (Table B.1), and all the remaining parameters are identifiable, i.e., for 

each parameter, 𝐹𝐹𝛿𝛿 2⁄ 𝜎𝜎�𝜃𝜃 𝜃𝜃�⁄ < 25%. This suggests that parameter estimates of the simplified model 

structure are of enough confidence so that they can be used for evaluating the actual performance 

of the thermal system. Moreover, the simplification process is finished in 10 rounds. In other 

words, only 10 model structures need to be constructed to simplify the complex model structure 

which has 50 unknown parameters. This indicates the presented methodology is very efficient 

towards finding a suitable model structure.    

For the simplified model structure, estimated cross-correlations of residuals (𝑇𝑇 = 𝑦𝑦 − 𝑦𝑦�) 

with input signals on training dataset are shown in Figure 3.5 (a). The 99% confidence interval 

under the null hypothesis that the residuals and inputs are statistically independent is also shown 

(by shaded regions). The maximum time lag here is 144 corresponding to 24 hours (1440 minutes) 

0 5 10 15 20 25 30 35 40 45

Time (hour)

18

19

20

21

22

23

24

25
Te

m
pe

ra
tu

re
 (°

C
)

Measured T
2 f

Simulated T
2 f

Measured T
1 f

Simualted T
1 f

Measured T
0 b

Simulated T
0 b



 

67 

at a 10-minutes sampling interval. Since only a small number of cross-correlations exceed the 

confidence region, it is reasonable to accept the hypothesis that the residuals are uncorrelated to 

input signals. This further indicates that the simplified model structure has captured the essential 

part of the thermal dynamics from inputs to outputs. Histograms of the simulation residuals are 

also shown in Figure 3.5 (b). For each zone, the residuals can be well fitted to a normal distribution. 

This agrees with the assumption during model training that the simulation errors are jointly 

Gaussian.  

 

 

(a) 

 

(b) 

Figure 3.5 Residual analysis: (a) cross-correlation (XCorr) of residuals “e” with input signals 

and the 99% confidence region marking statistically insignificant correlations displayed as a 

shaded region around the X-axis. (b) histograms of residuals fitted well with the normal 

distribution 
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To justify the capability of the simplified model structure to address temperature 

stratification, the RMSEs from the two testing’s (see Table 3.2) are compared with the inter-zone 

RMSEs (i.e., RMSEs of temperature differences between adjacent zones). Most testing RMSEs in 

Table 3.2 are less than 0.5℃ (except for the RMSE in testing 2 for the second floor). However, 

the inter-zone RMSEs between the basement and the main floor and between the main floor and 

the second floor are 1.42℃ and 1.51℃  in testing dataset 1, and 0.88℃ and 1.44℃  in testing 

dataset 2, respectively. Thus, most inter-zone RMSEs are greater than 1℃. This implies that the 

simplified three-zone model structure can effectively distinguish adjoining zonal temperatures. 

This is also visualized in Figure 3.4. It can be seen that for most of the time, temperature 

differences between adjacent zone air temperatures are precisely captured by the RC model with 

a simplified model structure.  

Some may suggest that each floor level should be further divided into a north and a south 

zone to take into consideration the nonuniform solar gains. However, due to continuous air 

circulation and open space design (except for the bedrooms on the second floor) in this house, 

temperatures of adjacent south and north sections are nearly the same though slightly different 

during sunny daytime. Slight temperature differences can hardly be recognizable. Furthermore, a 

model of more zones will contain more model parameters and require more input variables. 

Therefore, separating a floor level into more zones, in this case, is not necessary. 

3.4. Discussion 

The results presented in Section 3.3.3 “Results and analysis” show that by removing all the 

non-identifiable parameters, the model uncertainty is significantly reduced. In other words, the 
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parameter estimates are obtained with enough confidence and tend to be more physically 

interpretable. For example, the wood-framed building envelop serves as an excellent insulator, but 

it has insignificant thermal capacitance. Thus, the slow response path of the building envelop is 

removed during simplification. However, the removal of slow response path does not apply 

between the zones that contain massive concrete. Inside the house, there are a concrete slab and a 

wall exposed to both the main floor and the basement air, so they contribute thermal capacitance 

to both the zones. Hence, a common thermal capacitator has remained between the main floor and 

the basement. Moreover, the second floor contains few electric appliances and therefore internal 

heat gains indicated by the gross electricity demand is negligible (i.e., 𝑝𝑝2  =  0).  

In addition, the parameters in the RC model are not exact but equivalent. Their estimates 

only enable the RC network to imitate building thermal dynamics and do not match precisely with 

the apparent quantities. For example, the apparent value of indoor air thermal capacitance (specific 

heat times its volume) for the main floor zone is about 0.1 𝑘𝑘𝑘𝑘ℎ ℃⁄  whereas 𝐶𝐶𝑖𝑖1(as reported in 

Table B.1, Model 10) is 3.3𝑘𝑘𝑘𝑘ℎ ℃⁄ . Therefore, 𝐶𝐶𝑖𝑖2 , 𝐶𝐶𝑖𝑖1 , and 𝐶𝐶𝑖𝑖0  do not represent indoor air 

thermal capacities. Instead, each of them can be interpreted as an effective thermal capacitance 

including the indoor air, furniture, and surface layers of the building fabric. On the other hand, 

𝐶𝐶𝑚𝑚2, 𝐶𝐶𝑚𝑚1, and 𝐶𝐶𝑚𝑚0 can be explained as thermal capacities of inner layers of the building fabric. 

Thus, thermal resistances 𝑅𝑅4, 𝑅𝑅11, 𝑅𝑅14, and 𝑅𝑅18 reflect how effectively the inner layers of building 

fabric influence indoor air temperatures (smaller resistances, more effective). Usually, these 

thermal resistances can be reduced by increasing exposure of internal thermal mass (e.g., 

uncovered concrete slab) to indoor air.  

As illustrated by the case study, the proposed model development methodology is easy to 

implement and fulfills our goal to obtain a reliable RC model structure for characterization of 
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building thermal dynamics. In practice, the methodology can be further enhanced by addressing 

the following points. First, the training data must be sufficient and in good quality to guarantee the 

estimated asymptotic covariance matrix is reliable. Data that contain insufficient or unfavourable 

information can cause the wrong removal of parameters. Second, heuristic optimization algorithms 

(e.g., GA) in global search may not at once give satisfactory initial estimates (within limited 

generations) to be used by the local search. If necessary, the GA solver can be run for multiple 

times until a valid result is obtained. Third, nonlinear local search can be slow for large model 

structures in reaching the optima. To proceed, one can limit the local search time and 

conservatively remove non-identifiable parameters (e.g., remove one at a time).  

The RC models obtained using the proposed methodology have broad potential 

applications. Since all or most of the parameters are identifiable, their estimates are of adequate 

confidence. Valuable knowledge of, such as passive heat storage and effective solar gains, can be 

identified. The obtained models, therefore, can be used for evaluating the actual performance of 

houses and informing future designs. Since the models have satisfactory simulation accuracy, they 

can also be used for model predictive control, fault detection and diagnosis, ongoing 

commissioning, and so on.  

3.5. Summary 

A data-based model development methodology has been proposed to acquire reliable RC 

model structures for thermal dynamic analysis of houses. The methodology is conceptually simple 

and yet practically effective. In principle, it starts with creating a complex preliminary model 

structure based on physical principles, and then non-identifiable parameters are progressively 

removed to obtain a simplified model structure. In this methodology, a global search algorithm 
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(i.e., GA) is adopted for better initial estimates, and non-identifiable parameters are quantified 

using asymptotic standard errors. The proposed methodology is illustrated through the 

development of a three-zone RC model for a low-energy house. 

The simplified model structure for the house is validated. The results reveal that the 

simulation accuracy is favourable and has not been jeopardized after simplification. Besides, 

training residuals of the simplified model structure are insignificantly correlated with the inputs, 

suggesting thermal dynamics of the house are well modelled. Furthermore, this three-zone model 

has demonstrated a satisfactory capability of characterizing temperature stratification across the 

floors. Finally, the simplified model structure and the simplification process are justified from a 

physical perspective. Therefore, the obtained RC model proves to be reliable for simulation of 

building thermal dynamics as well as physical interpretation of the thermal characteristics. 
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Chapter 4. Application of RC Models to Building Performance Evaluation 

4.1. Introduction 

RC models are especially suitable for evaluating building thermal behaviours. Compared 

to autoregressive models (e.g., ARX models), parameters of the RC models can be directly 

physically interpretable [23, 25]. For example, the estimated R’s value can represent the effective 

thermal resistance of a building envelop. Furthermore, RC models allow for direct interpretation 

of internal thermal mass (e.g., concrete wall and slabs) through the estimated thermal capacitances 

that cannot be identified on steady-state conditions or using autoregressive models.  

The majority of the previous studies of RC models focused on predicting building load or 

indoor air temperatures for model-based control of space heating and cooling [6-8, 40]. Though 

some studies employed data-driven models to estimate thermal properties of building components, 

the estimation is limited to thermal transmittance of building envelop and solar heat gain 

coefficient [36-38]. A comprehensive interpretation of thermal capacitances has not yet seen in the 

literature. Besides, it was shown that data-driven models could be applied to analyzing energy use 

or qualifying energy management in buildings [17, 68]. However, few studies have used data-

driven RC models to address passive thermal energy storage in buildings.   

The objective of this chapter is to apply RC models to evaluating the actual thermal 

performance of buildings. It is organized as follows. Section 4.2. “Methodology” briefly describes 

the methodology of this chapter. Section 4.3. “Parameter Interpretation of RC Models” associates 

the estimated parameters of RC models to specific building components through design and 

modelling of a single-zone room. Then, Section 4.4. “Evaluation of Building Thermal 
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Performance” applies a three-zone RC model to a real house to evaluate its thermal performance 

by inferring important thermal properties, analyzing energy flow paths, and investigate the 

function of internal thermal mass. In the end, the results are discussed in Section 4.5. "Discussion” 

and the key findings are summarized in Section 4.6. “Summary”. 

4.2. Methodology 

The methodology consists of two phases of studies in order to employ RC models to 

evaluate the actual performance of existing designs in buildings and identify potential design 

improvement.  

The first phase of study investigates how parameter estimates in RC models are related to 

design configurations. First, a simple single-zone room is designed with different configurations. 

Under each configuration and given inputs, the room’s air temperature (i.e., output) is simulated 

by the finite difference method. Then, the given inputs and the obtained output are used as 

“measurements” to train a low-order RC network. Finally, parameters of the RC network are 

interpreted by comparing their estimates under different configurations and relate them to passive 

thermal energy storage (TES) design. 

The second phase of the study is to develop a three-zone RC model for a real house, then 

apply it to evaluate the house’s design and thermal performance. First, some essential thermal 

properties are derived from the estimated parameters. Second, different energy flow paths are 

identified along with their relative significance. Third, parameter values of the three-zone RC 

model are altered to create different scenarios, and their influences on indoor air temperature 

fluctuation and energy consumption are compared. Finally, the comparison results are used to 

evaluate the passive TES system of the house and identify potential design improvement.   



 

74 

4.3. Parameter Interpretation of RC Models 

In order to investigate the relationships between the apparent building properties and the 

estimated parameters of RC models, a simple single-zone room is designed with different 

configurations. A 31-day weather dataset is used to simulate the thermal performance of this room. 

The simulated indoor air temperature is recorded as system output and used to train a low-order 

RC network. By varying the design configurations (i.e., the thickness and area of the concrete 

slab), their influences on the estimates of the RC parameters can be revealed. 

4.3.1. Design of a single-zone room 

A single-zone room is designed with three sets of configurations (or cases), as shown in 

Figure 4.1. For each case, the building envelop is composed of wooden material and built upon a 

slab foundation. Within the building envelop, there is a large and clear single-lane window facing 

south. The slab is partially or fully concrete, and there is a layer of insulation between the concrete 

and the soil. The design configurations being varied are the thickness and area of the concrete slab. 

In case 1, the concrete slab occupies half of the foundation area, and the other half is filled with 

dense insulation (𝑅𝑅 = ∞). The concrete slab’s thickness is doubled in case 2 but its area remains 

the same. Case 3 has a concrete slab of the same thickness as in case 1, but the area is doubled. 

These three cases are designed mainly to interpret parameters related to internal thermal mass.   
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(a)  

 

 

(b) 

 

(c) 

Figure 4.1 Three different configurations in the design of a single-zone space: (a) case 1, 

concrete slab with half the area; (b) case 2, concrete slab with half the area but doubled 

thickness; (c) case 3, concrete slab with the full area. 

 

The design specifications are summarized in Table 4.1. Thermal dynamics of the single-

zone room are simulated by the finite difference method. One-dimensional heat transfer normal to 

the component surfaces is assumed. Inputs to the room (i.e., outdoor air temperature, global solar 
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radiation, ground temperature, and heating power) are retrieved from the training dataset in Figure 

A.2. The simulated indoor air temperature is recorded as an output every 10 minutes for 31 days.  

 

Table 4.1 Design specifications for three cases of the single-zone house 
 

Case 1 Case 2 Case 3 

Thermal resistance 

(℃ 𝑘𝑘𝑘𝑘⁄ )  

Indoor air – Outdoor air 31.7 31.7 31.7 

Indoor air – Slab top 11.1 11.1 5.6 

Concrete slab 12.5 25.0 6.3 

Slab bottom – Soil 113.3 113.3 56.7 

Thermal capacity 

(𝑘𝑘𝑘𝑘ℎ ℃⁄ )  

Indoor air 0.2167 0.2167 0.2167 

Building envelop 0.9806 0.9806 0.9806 

Concrete slab 0.5 1.0 1.0 

Window 

(facing south) 

Area (𝑇𝑇2) 7.5 7.5 7.5 

Average SHGC 0.519 0.519 0.519 

 

4.3.2. Training of a 3R2C network 

A 3R2C network, as shown in Table 4.2, is proposed to represent a thermal system of the 

single-zone room. It is trained using the modelled output and inputs. The model training method 

can be found in Section 3.2.2. “Model training”. In the network, parameters to be estimated include 

the thermal resistance between indoor and outdoor air (𝑅𝑅𝑖𝑖𝑜𝑜), the thermal resistance between indoor 

air and concrete slab (𝑅𝑅𝑖𝑖𝑚𝑚), the thermal resistance between the concrete slab and ground (𝑅𝑅𝑔𝑔), the 
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thermal capacitance of indoor air (𝐶𝐶𝑖𝑖), the thermal capacitance of the concrete slab (𝐶𝐶𝑚𝑚), as well 

as the solar aperture (𝐹𝐹𝑠𝑠). The training results are shown in Table 4.2.  

 

Table 4.2 Structure and parameter estimates of the 3R2C network for the single-zone room 

 

Parameter Case 1 Case 2 Case 3 

𝑅𝑅𝑖𝑖𝑜𝑜 (℃ 𝑘𝑘𝑘𝑘⁄ ) 31.79 32.35 31.82 

𝑅𝑅𝑖𝑖𝑚𝑚 (℃ 𝑘𝑘𝑘𝑘⁄ ) 6.032 9.024 4.127 

𝑅𝑅𝑔𝑔 (℃ 𝑘𝑘𝑘𝑘⁄ ) 133.2 111.5 63.86 

𝐶𝐶𝑖𝑖 (𝑘𝑘𝑘𝑘ℎ ℃⁄ ) 0.3823 0.4535 0.3816 

𝐶𝐶𝑚𝑚 (𝑘𝑘𝑘𝑘ℎ ℃⁄ ) 0.6857 0.7487 1.111 

𝐹𝐹𝑠𝑠 (𝑇𝑇2) 3.971 3.936 3.983 

 

4.3.3. Interpretation of model parameters 

A comparison of Table 4.1 and Table 4.2 indicates that the initial descriptions of 𝐶𝐶𝑖𝑖 and 

𝐶𝐶𝑚𝑚 are not precise. For example, every estimated 𝐶𝐶𝑖𝑖 (0.3823 𝑘𝑘𝑘𝑘ℎ ℃⁄  for case 1, 0.4535 𝑘𝑘𝑘𝑘ℎ ℃⁄  

for case 2, or 0.3816 𝑘𝑘𝑘𝑘ℎ ℃⁄  for case 3) is over 70% larger than the designed indoor air thermal 

capacity (0.2167 𝑘𝑘𝑘𝑘ℎ ℃⁄ ). This implies that 𝐶𝐶𝑖𝑖 represents not only the thermal capacitance of 

indoor air but also some thermal capacitance from the building envelop and the concrete slab. It 

should be interpreted as the thermal capacitance of indoor air, furniture, and some surface layers 

of the building fabric. This is further confirmed when the thickness of the concrete slab is doubled 

from case 1 to case 2, the estimate of 𝐶𝐶𝑖𝑖  also increases notably (from 0.3823 𝑘𝑘𝑘𝑘ℎ ℃⁄  to 

0.4535 𝑘𝑘𝑘𝑘ℎ ℃⁄ ). Thicker concrete has allowed more surface layers to have temperatures close to 
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that of the indoor air. However, only increasing the surface area of the concrete slab (as from case 

1 to case 3) has negligible influence on 𝐶𝐶𝑖𝑖. This is because that larger area of the concrete slab 

makes it harder to bring up the surface layers’ temperatures. 

Correspondingly, 𝐶𝐶𝑚𝑚 represents inner layers of the building fabric that can not be easily 

penetrated by the indoor air temperature. Its estimate is affected by both the building envelop and 

the concrete slab. For example, the estimated 𝐶𝐶𝑚𝑚 for case 1 (0.6857 𝑘𝑘𝑘𝑘ℎ ℃⁄ ) is larger than the 

designed concrete slab thermal capacity ( 0.5 𝑘𝑘𝑘𝑘ℎ ℃⁄ ). Thus, part of 𝐶𝐶𝑚𝑚  must have been 

contributed by the building envelop. However, since the building envelop is more of an insulator 

than a capacitor, 𝐶𝐶𝑚𝑚 depends mostly on the amount of concrete. Furthermore, the estimate of 𝐶𝐶𝑚𝑚 

only reflects the effective thermal mass. From case 1 to case 2, the amount of concrete is doubled, 

but the estimate of 𝐶𝐶𝑚𝑚  has not been increased for more than 10% (from 0.6857 𝑘𝑘𝑘𝑘ℎ ℃⁄  to 

0.7487 𝑘𝑘𝑘𝑘ℎ ℃⁄ ). From case 2 to case 3, the amount of concrete remains the same but the estimate 

of 𝐶𝐶𝑚𝑚 mainly increases due to the doubling of concrete surface area. Therefore, the concrete slab 

in case 2 may have been over-designed and ineffectively used.  

Thermal resistances are comparatively more straightforward for interpretation: 𝑅𝑅𝑖𝑖𝑜𝑜 is the 

thermal resistance associated with the building envelop; 𝑅𝑅𝑔𝑔 is the thermal resistance associated 

with the slab and ground; 𝑅𝑅𝑖𝑖𝑚𝑚 denotes the thermal resistance between the indoor air and inner 

layers of the building fabric. The estimated 𝑅𝑅𝑖𝑖𝑜𝑜 (31.79 ℃ 𝑘𝑘𝑘𝑘⁄  for case 1, 32.35 ℃ 𝑘𝑘𝑘𝑘⁄  for case 

2, or 31.82 ℃ 𝑘𝑘𝑘𝑘⁄  for case 3) aligns well with the designed indoor air – outdoor air thermal 

resistance (31.7 ℃ 𝑘𝑘𝑘𝑘⁄ ). In addition, the estimated 𝑅𝑅𝑖𝑖𝑚𝑚  is highly related to the concrete area 

exposed to the surrounding air. For example, from case 2 to case 3, doubling the surface area of 

the concrete slab results in a much smaller value of 𝑅𝑅𝑖𝑖𝑚𝑚 (from 9.024 ℃ 𝑘𝑘𝑘𝑘⁄  to 4.127 ℃ 𝑘𝑘𝑘𝑘⁄ ). 
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This reduction of 𝑅𝑅𝑖𝑖𝑚𝑚’s value induces greater heat transfer between the indoor air and inner layers 

of the building fabric.  

Finally, 𝐹𝐹𝑠𝑠 represents the solar aperture or the solar gain factor that determines the effective 

solar gains to the indoor. For a well-insulated building, 𝐹𝐹𝑠𝑠 can be interpreted as the multiplication 

of the total glazing area and the solar heat gain coefficient (SHGC) of the window. In all the three 

cases, the estimated 𝐹𝐹𝑠𝑠  (3.971 𝑇𝑇2, 3.936 𝑇𝑇2, and 3.983 𝑇𝑇2) agree precisely with its apparent 

value ( Area ∙ SHGC = 7.5𝑇𝑇2 × 0.519 = 3.893𝑇𝑇2 ). Comparatively, 𝑅𝑅𝑖𝑖𝑜𝑜  and 𝐹𝐹𝑠𝑠  are two 

parameters in the 3R2C network that have the most precise physical meanings.   

4.4. Evaluation of Building Thermal Performance 

In this section, the three-zone RC model developed in Section 3.3 “Case Study” is applied 

to evaluating the thermal performance of ÉcoTerraTM house through energy balance analysis and 

investigation of internal thermal mass. Figure 3.2 gives the energy system and location of thermal 

mass in the low energy house. A description of measurements and a summary of the input and 

output variables can be found in Section 3.3.1.  

4.4.1. Inferring building thermal properties 

The three-zone model has a similar zonal structure as the RC network in Table 4.2. For the 

parameters, 𝐶𝐶𝑖𝑖2, 𝐶𝐶𝑖𝑖1, and 𝐶𝐶𝑖𝑖0 fall in the category of 𝐶𝐶𝑖𝑖; 𝐶𝐶𝑚𝑚2, 𝐶𝐶𝑚𝑚1, and 𝐶𝐶𝑚𝑚0 fall in the category of 

𝐶𝐶𝑚𝑚 ; 𝑅𝑅4 , 𝑅𝑅11 , 𝑅𝑅18 , and 𝑅𝑅20  correspond to 𝑅𝑅𝑖𝑖𝑚𝑚 ; 𝑅𝑅6 , 𝑅𝑅13 , and 𝑅𝑅20  correspond to 𝑅𝑅𝑖𝑖𝑜𝑜 ; 𝑅𝑅21 

corresponds to 𝑅𝑅𝑔𝑔; 𝐹𝐹2, 𝐹𝐹6, and 𝐹𝐹10 fall in the category of 𝐹𝐹𝑠𝑠. As such, parameters of the three-zone 

model in Table 4.3 have similar meanings as the parameters in the 3R2C network.  
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Table 4.3 The simplified model structure and the parameter values 

 

Parameter Value Parameter Value 

𝑅𝑅4 1.0 𝐶𝐶𝑖𝑖1 2.0 

𝑅𝑅5 1.3 𝐶𝐶𝑚𝑚1 19.5 

𝑅𝑅6 14.4 𝐶𝐶𝑖𝑖0 2.9 

𝑅𝑅11 3.4 𝐶𝐶𝑚𝑚0 10.0 

𝑅𝑅12 7.1 𝐹𝐹2 2.6 

𝑅𝑅13 33.7 𝐹𝐹6 4.2 

𝑅𝑅14 10.5 𝐹𝐹10 1.3 

𝑅𝑅18 2.1 𝑝𝑝2 0.4 

𝑅𝑅20 24.7 𝑝𝑝3 0.1 

𝑅𝑅21 13.9 𝛼𝛼0 0.35 

𝐶𝐶𝑖𝑖2 1.8 𝛼𝛼1 0.38 

𝐶𝐶𝑚𝑚2 3.3 𝛼𝛼2 0.27 

Units: 𝑅𝑅 (℃ 𝑘𝑘𝑘𝑘⁄ ); 𝐶𝐶 (𝑘𝑘𝑘𝑘ℎ ℃⁄ ); 𝐹𝐹 (𝑇𝑇2) 

 

Some important thermal properties can be derived from the three-zone model. For example, 

the overall thermal transmittance of the above-grade building envelop of the studied house can be 

calculated by  

𝑈𝑈𝑡𝑡𝑜𝑜𝑡𝑡 =
1
𝑅𝑅6

+
1
𝑅𝑅13

+
1
𝑅𝑅20

= 139.6𝑘𝑘 ℃⁄  (4.1) 

The studied house has a reported building envelop area of 354𝑇𝑇2  (walls: 227.5𝑇𝑇2 ; 

windows and doors: 39.5𝑇𝑇2; ceilings: 87𝑇𝑇2). Using the trade-off compliance path recommended 
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by [153], the overall thermal transmittance for a reference building is calculated to be 148.8𝑘𝑘 ℃⁄ . 

If integrated with mechanical ventilation and infiltration/exfiltration effects, this reference value 

will be even larger. Since 𝑈𝑈𝑡𝑡𝑜𝑜𝑡𝑡 is already smaller than the reference value, it can be concluded that 

the building envelop is performing in good quality.  

In addition, the solar gain factor can be calculated by 

𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡 = 𝐹𝐹2 + 𝐹𝐹6 + 𝐹𝐹10 = 8.1 𝑇𝑇2 (4.2) 

The studied house has a reported south glazing area of 20.9𝑇𝑇2. Dividing 𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡 by the south 

glazing area, an average SHGC of 0.39 is retrieved. The house is installed with clear low-e triple 

glazing windows. According to Chapter 15 Table 10 of [12], the SHGC of 0.39 is rather small 

compared to similar windows. Therefore, the windows may not be operating at their best state.   

4.4.2. Model-based energy analysis 

Based on physical meanings of the model parameters, a more definite understanding of the 

house’s thermal behaviours can be achieved by conducting energy balance analysis on the three-

zone model to identify the relative importance of different energy flow paths. Energy flow paths 

can be found by integrating difference equations based on the three-zone RC network for a long 

enough period (e.g., a month). Let ∆𝐹𝐹 be the sampling interval; 𝐹𝐹1  and 𝐹𝐹2  are respectively, the 

starting and ending time of a month. Take the first floor for example, 𝛼𝛼1 ∑ 𝑇𝑇ℎ𝑝𝑝,𝑡𝑡∆𝐹𝐹
𝑡𝑡2
𝑡𝑡=𝑡𝑡1  and 

𝐹𝐹6 ∑ 𝑇𝑇𝑠𝑠,𝑡𝑡∆𝐹𝐹
𝑡𝑡2
𝑡𝑡=𝑡𝑡1  are heat gains from space heating and solar radiation, respectively; 

𝑅𝑅13−1 ∑ �𝑇𝑇1𝑓𝑓,𝑡𝑡 − 𝑇𝑇𝑜𝑜,𝑡𝑡�∆𝐹𝐹
𝑡𝑡2
𝑡𝑡=𝑡𝑡1  is heat loss to the outdoor; 𝑅𝑅5−1 ∑ �𝑇𝑇1𝑓𝑓,𝑡𝑡 − 𝑇𝑇2𝑓𝑓,𝑡𝑡�∆𝐹𝐹

𝑡𝑡2
𝑡𝑡=𝑡𝑡1  and 

𝑅𝑅12−1 ∑ �𝑇𝑇1𝑓𝑓,𝑡𝑡 − 𝑇𝑇0𝑛𝑛,𝑡𝑡�∆𝐹𝐹
𝑡𝑡2
𝑡𝑡=𝑡𝑡1  are heat losses to adjacent zones; 𝑅𝑅11−1 ∑ �𝑇𝑇1𝑓𝑓,𝑡𝑡 − 𝑇𝑇𝑚𝑚1,𝑡𝑡�∆𝐹𝐹

𝑡𝑡2
𝑡𝑡=𝑡𝑡1  



 

82 

denotes net heat storage in the inner layers of building fabric. For foundation, ∑ 𝑇𝑇𝑣𝑣𝑛𝑛𝑠𝑠,𝑡𝑡∆𝐹𝐹
𝑡𝑡2
𝑡𝑡=𝑡𝑡1  is 

heat gain from the VCS and 𝑅𝑅21−1 ∑ �𝑇𝑇𝑚𝑚0,𝑡𝑡 − 𝑇𝑇𝑔𝑔,𝑡𝑡�∆𝐹𝐹
𝑡𝑡2
𝑡𝑡=𝑡𝑡1  is heat loss to the ground.  

To calculate heat gain/loss terms in the energy balance equations, node temperatures or 

system states (i.e., 𝑇𝑇2𝑓𝑓, 𝑇𝑇1𝑓𝑓, 𝑇𝑇0𝑛𝑛, 𝑇𝑇2𝑚𝑚, 𝑇𝑇1𝑚𝑚, 𝑇𝑇0𝑚𝑚) must be estimated over the data duration. Given 

the parameter values in Table 4.3, matrices in the state-space representation can be calculated (see 

Section 2.2.1 for Eqn. (2.3) and Table 2.2). The estimation can be performed as 

𝕩𝕩�𝑡𝑡+1 = 𝑨𝑨𝕩𝕩�𝑡𝑡 + 𝑩𝑩𝒖𝒖𝑡𝑡 (4.3a) 

𝒙𝒙�𝑡𝑡 = 𝕩𝕩�𝑡𝑡 + 𝜞𝜞2𝒖𝒖𝑡𝑡 (4.3b) 

where  

𝒙𝒙� = �𝑇𝑇�2𝑓𝑓;  𝑇𝑇�1𝑓𝑓;  𝑇𝑇�0𝑛𝑛;  𝑇𝑇�2𝑚𝑚;  𝑇𝑇�1𝑚𝑚;  𝑇𝑇�0𝑚𝑚�;  

𝑛𝑛 is the vector of inputs to the simplified model structure; and 

𝑨𝑨, 𝑩𝑩, and 𝜞𝜞2 are matrices of the simplified model structure. 

The system states are estimated by Eqn. (4.3) using the dataset in Figure A.2 (a), Then, the 

heat losses and gains are calculated and listed in Table 4.4. The total heat loss for the studied house 

(for March 2010) is 2224 𝑘𝑘𝑘𝑘ℎ. Around 85% of this energy is lost through the building envelop 

and ventilation to the outdoor while the remaining 15% is lost to the ground. The heat loss to the 

outdoor referred to the building envelop area (354 𝑇𝑇2) is 5.3 𝑘𝑘𝑘𝑘ℎ 𝑇𝑇2⁄ . The heat loss to the 

ground referred to the foundation slab area (90 𝑇𝑇2) is 3.7𝑘𝑘𝑘𝑘ℎ 𝑇𝑇2⁄ . The phenomenon that the 

above-grade heat loss is faster than that below the grade implies a potential of reducing heat loss 

by enhancing building envelop or recovering more heat from the exhausting air.  

Total heat input to the house is 759 𝑘𝑘𝑘𝑘ℎ in which solar gains (759 𝑘𝑘𝑘𝑘ℎ) represent 34.5%, 

the heat pump (853 𝑘𝑘𝑘𝑘ℎ) represents 38.8%, and internal heat sources represent 21.6%. Although 

the VCS contributes only 113 𝑘𝑘𝑘𝑘ℎ to space heating, it is able to balance out over 30% of heat 



 

83 

loss to the ground. Additionally, the second floor draws a lot of energy from the first floor 

(481 𝑘𝑘𝑘𝑘ℎ) and eventually loses it to the outdoor through large areas of walls and ceilings. This 

energy draw is even greater than the sum of heating supply and solar gains to the second floor. It 

is mostly caused by the mechanical air circulation that boosts the heat exchange between the 

second and the first floor. A possible solution is to provide more heating to the second floor by 

proper control.     

 

Table 4.4 Energy flow paths: heat losses and gains (unit: kWh) 

Energy flow \ Location Zone 2f Zone 1f Zone 0b Foundation Total 

Heat loss to Outdoor 939 420 532 ---- 1891 

Ground ---- ---- ---- 333 333 

Heat gain from Heating  209 339 305 ---- 853 

Solar 246 395 118 ---- 759 

Internal  0 373 102 ---- 475 

VCS ---- ---- ---- 113 113 

Building fabric 

(inner layers) 

Charging 209 146 240 ---- 595 

Discharging 210 88 97 ---- 395 

Net storage 1 (gain) 58 (loss) 143 (loss) ---- 200 

From adjacent zone 481 (gain) 629 (loss) 148 (gain) ---- 0 

 

The net energy storage in inner layers of the building fabric can be regarded as a combined 

effect of thermal charging and discharging. Inner layers of the building fabric behave like a heat 

battery. This “battery” is charged when the indoor air is warmer (e.g., 𝑇𝑇1𝑓𝑓 > 𝑇𝑇𝑚𝑚1) and discharged 
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when the indoor air is cooler (e.g., 𝑇𝑇1𝑓𝑓 < 𝑇𝑇𝑚𝑚1). This effect is visualized in Figure 4.2, where the 

estimated 𝑇𝑇𝑚𝑚1 and 𝑇𝑇1𝑓𝑓 are displayed for two days together with solar gains and heating supply to 

the first floor. It can be seen that some energy has been shifted from daytime to nighttime through 

charging and discharging. This shifted energy helps achieve a stable indoor air temperature and 

avoid temperature peaks during sunny noon.  

 

 

Figure 4.2 The estimated thermal mass temperature (𝑇𝑇𝑚𝑚1) displayed for two days in March 

together with the estimated zone temperature (𝑇𝑇1𝑓𝑓), solar gains (𝐹𝐹6𝑇𝑇𝑠𝑠), and heating supply 

(𝛼𝛼1𝑇𝑇ℎ𝑝𝑝). 

 

As shown in Table 4.4, the energy shifted by charging (595 𝑘𝑘𝑘𝑘ℎ ) and discharging 

(395 𝑘𝑘𝑘𝑘ℎ) is quite considerable. It suggests that inner layers of the building fabric have been 

effectively used for energy balance and stabilizing the indoor air temperature. However, due to the 

coupling of the building fabric (concrete wall and slabs in particular) and the ground, some energy 

charged to the thermal mass does not discharge to the indoor air but lost into the surrounding 
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ground. This results in some negative net energy storage in the first and second floor. Therefore, 

reducing heat loss to the ground can also migrate the difference between daytime charging and 

nighttime discharging, which leads to more effective energy shifting.    

4.4.3. Investigation of internal thermal mass 

Due to varied heat losses and gains, air temperatures in a building always fluctuate. For the 

studied house in a typical day, the heat pump is turned on at dawn to heat the indoor air (e.g., see 

Figure 4.2). As a result of solar gains, the air temperature continues to increase during the day and 

ultimately drops after sunset. This diurnal change pattern results in a significant fluctuation of the 

indoor air temperature. Reducing this fluctuation can enhance the indoor thermal comfort.  

To investigate the capability of internal thermal mass of stabilizing indoor air temperatures, 

the parameter estimates of internal thermal mass are altered to create different scenarios. In the 

three-zone model, there are three categories of parameters that are associated with the internal 

thermal mass: 𝐶𝐶𝑖𝑖’s (𝐶𝐶𝑖𝑖2, 𝐶𝐶𝑖𝑖1, and 𝐶𝐶𝑖𝑖0), 𝑅𝑅𝑖𝑖𝑚𝑚’s (𝑅𝑅4, 𝑅𝑅11, 𝑅𝑅18, and 𝑅𝑅20), and 𝐶𝐶𝑚𝑚’s (𝐶𝐶𝑚𝑚2, 𝐶𝐶𝑚𝑚1, and 

𝐶𝐶𝑚𝑚0). There are eleven alteration scenarios:  

i. reference with no alterations (𝐶𝐶𝑖𝑖/𝑅𝑅𝑖𝑖𝑚𝑚/𝐶𝐶𝑚𝑚); 

ii. increase 𝐶𝐶𝑖𝑖 by 50% (↑ 𝐶𝐶𝑖𝑖 = 1.5𝐶𝐶𝑖𝑖);  

iii. decrease 𝐶𝐶𝑖𝑖 by 50% (↓ 𝐶𝐶𝑖𝑖 = 0.5𝐶𝐶𝑖𝑖);  

iv. increase 𝑅𝑅𝑖𝑖𝑚𝑚−1 by 50% (↓ 𝑅𝑅𝑖𝑖𝑚𝑚 = 𝑅𝑅𝑖𝑖𝑚𝑚 1.5⁄ );  

v. decrease 𝑅𝑅𝑖𝑖𝑚𝑚−1 by 50% (↑ 𝑅𝑅𝑖𝑖𝑚𝑚 = 𝑅𝑅𝑖𝑖𝑚𝑚 0.5⁄ );  

vi. increase 𝐶𝐶𝑚𝑚 by 50% (↑ 𝐶𝐶𝑚𝑚 = 1.5𝐶𝐶𝑚𝑚);  

vii. decrease 𝐶𝐶𝑚𝑚 by 50% (↓ 𝐶𝐶𝑚𝑚 = 0.5𝐶𝐶𝑚𝑚); 

viii. increase the thickness of building fabric: ↑ 𝐶𝐶𝑖𝑖, ↑ 𝑅𝑅𝑖𝑖𝑚𝑚, ↑ 𝐶𝐶𝑚𝑚; 
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ix. decrease thickness of building fabric: ↓ 𝐶𝐶𝑖𝑖, ↓ 𝑅𝑅𝑖𝑖𝑚𝑚, ↓ 𝐶𝐶𝑚𝑚; 

x. increase the surface area of building fabric: ↓ 𝑅𝑅𝑖𝑖𝑚𝑚, ↑ 𝐶𝐶𝑚𝑚; 

xi. decrease surface area of building fabric: ↑ 𝑅𝑅𝑖𝑖𝑚𝑚, ↓ 𝐶𝐶𝑚𝑚. 

The operation of increase (↑) or decrease (↓) is performed on one category of parameters, 

e.g., ↑ 𝐶𝐶𝑖𝑖 is to increase the values of all 𝐶𝐶𝑖𝑖2, 𝐶𝐶𝑖𝑖1, and 𝐶𝐶𝑖𝑖0 by 50%.  

All other inputs to the simplified model structure (i.e., 𝑇𝑇𝑜𝑜 , 𝑇𝑇𝑠𝑠 , 𝑇𝑇𝑣𝑣𝑛𝑛𝑠𝑠 , 𝑇𝑇𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛 , and 𝑇𝑇𝑔𝑔) are 

unchanged and from the training dataset. For all the scenarios, heating power (𝑇𝑇ℎ𝑝𝑝) and indoor air 

temperatures (𝑇𝑇2𝑓𝑓 , 𝑇𝑇1𝑓𝑓 , and 𝑇𝑇0𝑛𝑛 ) are simulated with a simple control algorithm. The control 

algorithm is defined as follows: 

 

Heating setpoints (reference: zone 1f):  

Daytime (7:00 am to 11:00 pm): 22 °𝐶𝐶 

Nighttime (11:00 pm to 7:00 am): 18 °𝐶𝐶 

Dead band:  

The control calls for heating when the reference temperature (𝑇𝑇1𝑓𝑓) drops 1.0 °𝐶𝐶 below 

the setpoint and remains the heat on until it is 0.5 °𝐶𝐶 above the setpoint.  

Heating power (by heat pump): 

The maximum heating power 𝑇𝑇ℎ𝑝𝑝,𝑚𝑚𝑛𝑛𝑚𝑚 = 9.6 𝑘𝑘𝑘𝑘 

Heating power pulse: 0 → 1
2
𝑇𝑇ℎ𝑝𝑝,𝑚𝑚𝑛𝑛𝑚𝑚 → 𝑇𝑇ℎ𝑝𝑝,𝑚𝑚𝑛𝑛𝑚𝑚 → ⋯ → 𝑇𝑇ℎ𝑝𝑝,𝑚𝑚𝑛𝑛𝑚𝑚 → 0 

 

The sampling interval is 10 minutes. Control commands (e.g., turn the heat on) at time 𝐹𝐹 

are made depending on the observed 𝑇𝑇1𝑓𝑓 at time 𝐹𝐹 − 1. As the system states are initialized, the 

simulation can proceed iteratively.  
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To evaluate temperature fluctuation, variances of the simulated 𝑇𝑇2𝑓𝑓 , 𝑇𝑇1𝑓𝑓 , and 𝑇𝑇0𝑛𝑛  are 

computed for each scenario. Take zone 1f for example, the variance is defined as 

𝑣𝑣𝑛𝑛𝑟𝑟(𝑇𝑇1𝑓𝑓) =
1

𝑁𝑁 − 1
��𝑇𝑇1𝑓𝑓,𝑡𝑡 −

∑ 𝑇𝑇1𝑓𝑓,𝑡𝑡
𝑁𝑁
𝑡𝑡=1

𝑁𝑁
�
2𝑁𝑁

𝑡𝑡=1

 (4.4) 

where,  

𝑁𝑁 is the number of samples (here, 𝑁𝑁 = 𝐹𝐹2 − 𝐹𝐹1 + 1); and 

𝑇𝑇1𝑓𝑓,𝑡𝑡 is the simulated 𝑇𝑇1𝑓𝑓 at the 𝐹𝐹𝑡𝑡ℎ time step. 

The variance index measures how far the simulated indoor air temperatures spread out from 

their averages. Large values of 𝑣𝑣𝑛𝑛𝑟𝑟(∙) signify significant temperature fluctuations.  

The calculated variances of simulated 𝑇𝑇2𝑓𝑓, 𝑇𝑇1𝑓𝑓, and 𝑇𝑇0𝑛𝑛 are listed in Table 4.5 for each 

scenario. It is noticed (scenarios 1~7) that for every zone the rise of temperature variance by ↓ 𝐶𝐶𝑖𝑖, 

↑ 𝑅𝑅𝑖𝑖𝑚𝑚 , or ↑ 𝐶𝐶𝑚𝑚  is larger than the reduction of variance by ↑ 𝐶𝐶𝑖𝑖 , ↓ 𝑅𝑅𝑖𝑖𝑚𝑚 , or ↓ 𝐶𝐶𝑚𝑚 . For example, 

𝑣𝑣𝑛𝑛𝑟𝑟�𝑇𝑇1𝑓𝑓� is raised by 38% (from 2.13 to 2.95) after decreasing 𝐶𝐶𝑖𝑖 but reduced by only 27% (from 

2.13 to 0.58) after increasing 𝐶𝐶𝑖𝑖. This phenomenon can be also observed in Figure 4.3 (a, b, & c), 

where the simulated 𝑇𝑇1𝑓𝑓’s under different scenarios are plotted for two days. It indicates that the 

house is designed with sufficient internal thermal mass, so that continuing to improve the thermal 

mass will become less beneficial. 

In practice, alteration of 𝐶𝐶𝑖𝑖, 𝑅𝑅𝑖𝑖𝑚𝑚, or 𝐶𝐶𝑚𝑚 is not independent. Changing internal thermal mass 

is often accomplished by changing the thickness and/or surface area of building fabric (concrete 

wall and slabs in particular), which often results in alterations of more than one parameter. 

Scenarios 1 & 8~11 are used to examine the combined effect of altering two or more parameters. 

They are proposed based on the results of Table 4.2 (the building fabric corresponds to the concrete 

slab in Figure 4.1): when the surface area of the building fabric increases, ↓ 𝑅𝑅𝑖𝑖𝑚𝑚 and ↑ 𝐶𝐶𝑚𝑚; when 
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the thickness of the building fabric increases, ↑ 𝐶𝐶𝑖𝑖, ↑ 𝑅𝑅𝑖𝑖𝑚𝑚, and ↑ 𝐶𝐶𝑚𝑚. As indicated in Table 4.5 and 

Figure 4.3 (d & e), increasing the thickness or surface area causes less change in the variance of 

indoor air temperatures than decreasing the thickness or surface area. This suggests that both the 

thickness and surface area of building fabric are designed to be sufficient that further increasing 

them is not necessary, and non-redundant that further decreasing them leads to considerate raise 

in the variance of indoor air temperatures.  

 

Table 4.5 Temperature variance and heating energy usage calculated based on simulation of the 

simplified model structure under different scenarios 

Scenarios 𝑣𝑣𝑛𝑛𝑟𝑟�𝑇𝑇2𝑓𝑓� 𝑣𝑣𝑛𝑛𝑟𝑟�𝑇𝑇1𝑓𝑓� 𝑣𝑣𝑛𝑛𝑟𝑟(𝑇𝑇0𝑛𝑛) ∑ 𝑇𝑇ℎ𝑝𝑝
𝑡𝑡2
𝑡𝑡=𝑡𝑡1 ∆𝐹𝐹 (𝑘𝑘𝑘𝑘ℎ) 

Reference (𝐶𝐶𝑖𝑖/𝑅𝑅𝑖𝑖𝑚𝑚/𝐶𝐶𝑚𝑚) 1.48 2.13 0.58 876 

↑ 𝐶𝐶𝑖𝑖  1.05 1.55 0.39 886 

↓ 𝐶𝐶𝑖𝑖  2.01 2.95 0.91 850 

↑ 𝑅𝑅𝑖𝑖𝑚𝑚  2.33 3.20 0.85 846 

↓ 𝑅𝑅𝑖𝑖𝑚𝑚  1.15 1.59 0.43 897 

↑ 𝐶𝐶𝑚𝑚  1.26 2.04 0.54 862 

↓ 𝐶𝐶𝑚𝑚  2.08 2.37 0.66 882 

↑ 𝐶𝐶𝑖𝑖, ↑ 𝑅𝑅𝑖𝑖𝑚𝑚, ↑ 𝐶𝐶𝑚𝑚 1.53 2.16 0.51 853 

↓ 𝐶𝐶𝑖𝑖, ↓ 𝑅𝑅𝑖𝑖𝑚𝑚, ↓ 𝐶𝐶𝑚𝑚 2.63 2.63 0.74 876 

↓ 𝑅𝑅𝑖𝑖𝑚𝑚, ↑ 𝐶𝐶𝑚𝑚 0.88 1.47 0.39 890 

↑ 𝑅𝑅𝑖𝑖𝑚𝑚, ↓ 𝐶𝐶𝑚𝑚 2.69 3.31 0.92 857 
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Although the studied house is well designed regarding its internal thermal mass, the 

mechanisms of changing 𝐶𝐶𝑖𝑖, 𝑅𝑅𝑖𝑖𝑚𝑚, and 𝐶𝐶𝑚𝑚’s values to stabilize indoor air temperatures is still worth 

exploring in order to inform future designs.  

𝐶𝐶𝑖𝑖  (𝐶𝐶𝑖𝑖2 , 𝐶𝐶𝑖𝑖1 , or 𝐶𝐶𝑖𝑖0) represents the thermal capacity of indoor air, furniture, and some 

surface layers of building fabric. A larger value of 𝐶𝐶𝑖𝑖  makes it harder to vary the indoor air 

temperature, hence reduces fluctuations of the indoor air temperature. However, strategies for 

increasing the value of 𝐶𝐶𝑖𝑖  can be hard to implement: increasing the amount of indoor air is 

impractical; adding furniture or surface layer components (e.g., partition walls) may not lead to a 

significant change of 𝐶𝐶𝑖𝑖 but will sacrifice the living space.  

𝑅𝑅𝑖𝑖𝑚𝑚 (𝑅𝑅4, 𝑅𝑅11, 𝑅𝑅18, or 𝑅𝑅20) is the thermal resistance between indoor air and inner layers of 

building fabric. A smaller value of 𝑅𝑅𝑖𝑖𝑚𝑚 makes it easier to charge and discharge the inner layers of 

building fabric. Decreasing its value allows more energy to be stored at daytime and released at 

nighttime, and thus stabilizes the indoor air temperature. To reduce 𝑅𝑅𝑖𝑖𝑚𝑚’s value, the best strategy 

is to increase the exposure of building fabric to its surrounding air such as using raw concrete walls 

and circulating indoor air within concrete slabs.  

𝐶𝐶𝑚𝑚 (𝐶𝐶𝑚𝑚2, 𝐶𝐶𝑚𝑚1, or 𝐶𝐶𝑚𝑚0) denotes the thermal capacity of inner layers of building fabric. 

Similar to 𝐶𝐶𝑖𝑖, large values of 𝐶𝐶𝑚𝑚 makes it difficult to vary the temperature of building fabric’s 

inner layers. Thus, an increased value of 𝐶𝐶𝑚𝑚  will enlarge temperature difference between the 

indoor air and the building fabric, which results in more charging or discharging and more energy 

to be shifted from daytime to nighttime. Increasing its value typically involves integrating more 

thermal mass into the building fabric (e.g., more concrete).  
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(d) 

 

(e) 

 

Figure 4.3 Simulated zone temperature ( 𝑇𝑇1𝑓𝑓) for two days under different scenarios: (a) change 

𝐶𝐶𝑖𝑖; (b) change 𝑅𝑅𝑖𝑖𝑚𝑚; (c) change 𝐶𝐶𝑚𝑚; (d) change 𝐶𝐶𝑖𝑖, 𝑅𝑅𝑖𝑖𝑚𝑚, and 𝐶𝐶𝑚𝑚; (e) change 𝑅𝑅𝑖𝑖𝑚𝑚 and 𝐶𝐶𝑚𝑚. 

Increase is ↑ and decrease is ↓. 

 

At last, changing values of 𝐶𝐶𝑖𝑖, 𝑅𝑅𝑖𝑖𝑚𝑚, or 𝐶𝐶𝑚𝑚 does not induce a great change of heating energy 

usage. As shown in Table 4.5, the estimated heating energy for each scenario lies within 870 ±

30 𝑘𝑘𝑘𝑘ℎ. This is because 𝐶𝐶𝑖𝑖, 𝑅𝑅𝑖𝑖𝑚𝑚, and 𝐶𝐶𝑚𝑚, parameters of internal thermal mass, mainly affect the 

fluctuation of indoor air temperatures rather than heat losses to the outdoor or the ground. Since 
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other sources of heat gains are never changed, the energy for heating should not, in a significant 

way, depend on the values of such parameters.  

4.5. Discussion 

The data-driven RC model has demonstrated a strong ability of physical interpretation and 

thermal performance evaluation of buildings.  

Typically, the RC models have two types of parameters for interpretation: steady-state 

parameters (e.g., 𝑅𝑅𝑖𝑖𝑜𝑜’s and 𝐹𝐹𝑠𝑠’s) and dynamic parameters (e.g., 𝐶𝐶𝑖𝑖’s, 𝑅𝑅𝐼𝐼𝑚𝑚’s, and 𝐶𝐶𝑚𝑚’s). Steady-

state parameters can be identified even when there are no dynamics (i.e., all system states are time-

invariant constants). Dynamic parameters can only be inferred when the training data contains 

sufficient difference among various inputs and outputs. Physical meanings of dynamic parameters 

are relatively obscure. For example, the boundary between the surface layers and inner layers of 

building fabric is difficult to define. Even though, the basic interpretations of dynamic parameters 

are already enough to perform analyses on the internal thermal mass.  

In thermal performance evaluation, an RC model can approximate the net energy storage 

in building fabric as well as the shifted energy from day to night by charging and discharging. This 

advantage of RC models allows them to provide useful information for building operation to save 

energy use and avoid overheating during sunny days. Also, energy shifting can be regarded as a 

way of inner layers of the building fabric to constrain the fluctuations of indoor air temperatures. 

RC models can be used to investigate such constraining effects by altering their parameter values. 

In particular, the thickness of surface area of building fabric (concrete wall/slabs) can be evaluated 

regarding their adequacy and effectiveness. With a suitable RC model, such evaluation approaches 

apply to buildings in general.  
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4.6. Summary 

First, parameters in RC models are thoroughly interpreted through the design of a simple 

single-zone room and training of a low-order RC network. Parameter estimates in the RC network 

are related to different design configurations. Then, a three-zone RC model of a low energy house 

is adopted to evaluate the actual thermal performance of the house. By performing energy balance 

analysis, the relative importance of different energy flow paths is identified; energy storage by 

inner layers of the building fabric is assessed. By altering the estimated parameter values and 

simulating the three-zone RC model under different scenarios, parameters of internal thermal mass 

are investigated concerning their capability of reducing the fluctuations of indoor air temperatures. 

In conclusion, the data-driven RC models are powerful in deriving important thermal properties, 

evaluating the actual thermal performance, and inform future designs of buildings.  
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Chapter 5. Conclusion 

This chapter summarizes the research content, marks the major contributions, and provides 

recommendations for future work.  

5.1. Research Summary 

The goal of this research is to identify suitable data-driven models for thermal dynamic 

analysis of buildings. In pursuing this goal, Chapter 2 critically reviews the data-driven approach 

including data-driven models (i.e., RC, TF, and AI models) that are the most commonly employed 

within building applications along with the corresponding model training and selection techniques. 

Based on the results of the literature review, Chapter 3 proposes a simple yet effective 

methodology to acquire RC model structures that are reliable for physical interpretation. It is 

shown that the obtained model is readily physically interpretable and has a favourable learning 

ability from on-site measurements. Chapter 4 applies the obtained RC model to evaluating the 

thermal performance of a low energy house. The estimated model parameters are associated with 

design configurations. By adjusting the parameter values, the influences of changing the current 

design of internal thermal mass on reducing temperature fluctuations are investigated. Important 

thermal properties (e.g., the equivalent thermal transmittance of the house) are derived. The 

relative importance of different energy flow paths is identified and compared. In conclusion, the 

obtained RC model proves to be powerful at both characterizing and assessing the thermal 

behaviours of buildings.    
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5.2. Major Contributions 

This research presents a comprehensive study of data-driven modelling of and its application 

in building thermal systems. In this context, the major contributions of this thesis include:  

i. Conducting a critical review of the data-driven approach for modelling building 

thermal dynamics. This includes summarizing typical input/output variables used 

in data-driven modelling, comparing different types of data-driven models by their 

formulation, prediction accuracy, and physical interpretation, and examining some 

model training and selection techniques.  

ii. Proposing a methodology for developing RC models that are reliable for physical 

interpretation and suitable for thermal dynamic analysis of buildings. This involves 

integrating the genetic algorithm into model training and detecting non-identifiable 

parameters for removal. The proposed methodology is effective, efficient, and easy 

to implement. 

iii. Applying the developed RC model to evaluating the design and actual thermal 

performance of occupied buildings. The model parameters are related to design 

configurations through an in-depth physical interpretation. The model’s ability to 

evaluate building designs is justified through an investigation of the internal 

thermal mass, an energy balance analysis, and inferring important thermal 

properties.  

The proposed model development methodology is verified with the development of a 

multi-zone model with on-site measurements from a low energy house. The thermal performance 

evaluation is performed on the same house using the same dataset.    
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5.3. Future Work 

Current research focuses on developing data-driven models for building thermal systems. 

This work can be extended into the following directions: 

i. Design software or toolboxes that allow for easy collection of data and automation 

of the model development process.  

ii. Develop time-variant models to consider time-varying effects and investigate the 

potential improvement of model performance.  

iii. Incorporate data-driven models into conventional building operating systems for 

model predictive control.  

iv. Apply data-driven models with online training to fault detection and diagnosis of 

complex mechanical systems.  
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Appendix A. Training/Testing Datasets  

A.1. Datasets for the case study in Section 2.4 
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(b) 

Figure A.1 Datasets for the case study in Section 2.4 “Case study”: (a) training (30 days), and 

(b) testing (30 days). Sampling interval: 0.5 hour 
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A.2. Datasets for the case study in Section 3.3 
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(c) 

Figure A.2 Dataset for the Case Study in Section 3.3 “Case Study”: (a) training (31 days), (b) 

testing 1 (17 days), and (c) testing 2 (17 days). Sampling interval: 10 minutes. 
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Appendix B. Simplification Details 

Table B.1 Simplification process of a three-zone RC model structure: the parameters to be 

removed in each round are highlighted. Model 1 is the complex preliminary model structure, and 

Model 10 is the simplified model structure.  
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Estimate Standard Error Ratio Estimate Standard Error Ratio Estimate Standard Error Ratio
R1 17.3 344.4 39.03 R1 21.4 62.4 5.72 R1 25.4 160.7 12.39
R2 14.6 332.1 44.67 R2 27.2 91.4 6.59 R2 35.5 165.4 9.12
R3 6.0 40.9 13.37 R3 11.7 18.5 3.09 R3 10.3 26.8 5.07
R4 1.9 0.4 0.44 R4 2.2 0.2 0.17 R4 2.8 0.2 0.16
R5 1.6 0.5 0.57 R5 15.9 11.9 1.46 R5 30.5 32.9 2.12
R6 21.2 1.6 0.15 R6 22.6 0.8 0.07 R6 24.9 0.9 0.07
R7 10.4 6.7 1.26 R7 2.9 0.3 0.20 R7 2.2 0.1 0.13
R8 17.0 18020.0 2077.00 R8 18.3 139.0 14.89 R8 30.5 2123.4 136.65
R9 28.0 19152.0 1342.20 R9 29.5 254.9 16.91 R9 39.0 1727.0 86.90

R10 26.5 4149.5 306.53 R10 35.8 464.2 25.44 R10 36.9 2788.8 148.25
R11 13.3 10393.0 1527.50 R11 12.3 11.9 1.90 R11 43.3 711.4 32.22
R12 4.8 0.6 0.25 R12 6.2 0.7 0.21 R12 5.1 0.5 0.19
R13 21.4 1.8 0.16 R13 18.1 0.6 0.06 R13 18.0 0.6 0.07
R14 19.5 6415.7 645.41 R14 23.8 46.6 3.84 R14 9.9 200.0 39.77
R15 26.0 14135.0 1065.30 R15 18.0 251.8 27.48 R15 20.2 171.3 16.61
R16 14.1 14252.0 1982.50 R16 19.6 282.7 28.24 R16 12.2 158.6 25.49
R17 20.5 2422.7 231.65 R17 35.9 761.5 41.58 R17 33.1 37069.0 2195.70
R18 2.7 1.5 1.10 R18 2.5 0.3 0.22 R18 2.7 0.2 0.18
R19 14.7 691.8 92.43 R19 21.9 204.9 18.33 R19 35.9 45593.0 2487.60
R20 32.8 1.3 0.08 R20 29.6 0.6 0.04 R20 32.5 0.6 0.03
R21 14.9 18.6 2.45 R21 14.6 5.3 0.71 R21 40.8 39.9 1.92
R22 17.4 2923.0 330.18 R22 9.6 297.8 60.92 R22 33.8 16237.0 941.95
C1 8.7 24.9 5.62 C1 26.4 138.0 10.24 C1 9.0 19.6 4.25
C2 2.0 0.1 0.07 C2 1.7 0.0 0.05 C2 1.8 0.0 0.05
C3 19.7 48.3 4.80 C3 10.8 34.3 6.24 C3 18.8 42.6 4.45
C4 3.4 0.4 0.23 C4 3.3 0.2 0.10 C4 3.6 0.2 0.11
C5 26.7 10014.0 735.49 C5 16.8 46.5 5.42 C5 36.6 1711.0 91.60
C6 1.9 0.0 0.04 C6 1.8 0.0 0.04 C6 1.7 0.0 0.04
C7 34.1 6609.2 380.04 C7 34.2 457.3 26.24 C7 41.0 2459.6 117.59
C8 27.6 12811.0 910.81 C8 4.8 6.3 2.59 C8 30.1 814.7 53.11
C9 15.3 7169.8 918.20 C9 15.2 14.2 1.83 C9 11.5 53.2 9.04

C10 2.8 0.0 0.02 C10 2.8 0.0 0.01 C10 2.8 0.0 0.01
C11 20.1 1494.5 145.55 C11 31.6 559.4 34.68 C11 48.4 54343.0 2200.10
C12 9.8 5.5 1.11 C12 6.9 0.8 0.24 C12 6.4 0.7 0.21
C13 7.8 643.0 162.16 C13 8.4 179.8 42.11 C13 36.8 52474.0 2795.40
F1 0.4 12.4 62.01 F1 4.6 17.8 7.60 F1 2.8 12.5 8.90
F2 2.1 0.1 0.12 F2 2.5 0.1 0.06 F2 2.5 0.1 0.06
F3 0.0 3.3 Inf F4 1.0 0.2 0.45 F4 0.9 0.3 0.61
F4 2.4 0.5 0.37 F6 3.7 0.1 0.04 F6 3.8 0.1 0.04
F5 0.0 1348.3 Inf F7 12.5 32.8 5.12 F7 12.6 314.6 48.87
F6 3.9 0.1 0.06 F9 2.7 37.0 26.43 F9 0.5 9.3 34.39
F7 12.9 120.2 18.19 F10 1.3 0.0 0.03 F10 1.2 0.0 0.05
F8 0.0 683.1 Inf F11 10.2 46.2 8.84 F11 25.7 347.0 26.41
F9 1.3 1026.4 1504.30 F12 0.0 0.2 Inf p2 0.2 0.0 0.18
F10 1.2 0.0 0.07 p2 0.2 0.0 0.18 p3 0.0 0.0 0.67
F11 4.1 264.5 126.16 p3 0.0 0.0 0.41 Threshold 2.00E+03
F12 0.7 0.9 2.51 Threshold Inf R22 is removed since C13 is removed
p1 0.0 0.0 Inf Objective Function 2.41E-05 F11 is removed since C11 is removed
p2 0.2 0.0 0.21 Objective Function 2.57E-05
p3 0.0 0.0 0.68

Threshold Inf
Objective Function 4.05E-05

Parameters Parameters
Model 2

Parameters
Model 1 Model 3
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Estimate Standard Error Ratio Estimate Standard Error Ratio Estimate Standard Error Ratio
R1 9.1 26.5 5.73 R1 1.2 0.1 0.14 R1 3575.7 748000.0 410.14
R2 49.5 37.9 1.50 R2 37.0 12.4 0.65 R2 464.1 31000000.0 131000.00
R3 29.7 286.7 18.89 R3 3.8 1.3 0.65 R3 7.2 2.9 0.81
R4 2.8 0.2 0.15 R4 56.6 291.2 10.08 R4 2.2 0.2 0.14
R5 77.9 187.5 4.72 R5 0.9 0.0 0.07 R5 2573.1 189000.0 144.02
R6 24.4 0.8 0.07 R6 19.2 2.8 0.28 R6 21.4 0.6 0.06
R7 2.2 0.1 0.12 R7 156.9 913.6 11.41 R7 2.2 0.1 0.12
R8 25.8 494.3 37.59 R8 59.5 289.8 9.54 R8 1770.8 56755.0 62.82
R9 41.9 850.5 39.76 R9 84.0 1961.7 45.77 R11 7.0 0.9 0.24

R10 82.3 4628.9 110.27 R11 96.7 801.3 16.24 R12 6.3 0.3 0.10
R11 31.6 139.5 8.66 R12 4.4 0.2 0.08 R13 18.3 0.5 0.05
R12 4.2 0.1 0.07 R13 29.0 1.8 0.12 R14 4.2 0.4 0.17
R13 16.9 0.6 0.06 R14 6.8 7.1 2.03 R18 3.0 0.2 0.14
R14 10.8 74.7 13.52 R15 27.7 132.4 9.38 R20 25.8 0.2 0.02
R15 10.1 64.6 12.48 R16 5.4 136.0 49.71 R21 13.0 0.4 0.07
R16 6.6 62.4 18.42 R18 2.4 0.1 0.11 C1 147.7 8790000.0 117000.00
R18 2.5 0.1 0.08 R20 31.0 0.5 0.03 C2 1.8 0.0 0.05
R20 32.8 0.5 0.03 R21 162.0 397.0 4.80 C3 9.4 6.2 1.29
R21 108.4 106.2 1.92 C1 4.1 0.2 0.11 C4 3.2 0.1 0.09
C1 21.0 57.9 5.42 C2 2.1 0.1 0.07 C5 1.5 47.9 62.67
C2 1.8 0.0 0.05 C3 23.3 16.2 1.36 C6 1.7 0.0 0.03
C3 7.1 66.3 18.43 C4 87.3 866.2 19.45 C8 17.2 1.1 0.13
C4 3.6 0.2 0.08 C5 59.3 681.6 22.51 C10 2.8 0.0 0.01
C5 35.6 784.1 43.16 C6 1.7 0.0 0.03 C12 6.5 0.5 0.15
C6 1.7 0.0 0.03 C8 90.8 90.6 1.96 F1 547.0 32400000.0 116000.00
C7 77.8 5888.1 148.29 C9 48.3 986.9 40.08 F2 2.7 0.1 0.06
C8 48.0 241.7 9.87 C10 2.8 0.0 0.01 F4 0.4 0.2 0.96
C9 123.4 409.6 6.51 C12 8.5 0.6 0.13 F6 3.9 0.1 0.04

C10 2.8 0.0 0.01 F1 2.3 0.3 0.29 F10 1.3 0.0 0.03
C12 8.4 0.4 0.10 F2 2.2 0.1 0.13 p2 0.2 0.0 0.13
F1 2.5 2.1 1.67 F4 16.5 145.7 17.34 p3 0.1 0.0 0.12
F2 2.5 0.1 0.06 F6 3.8 0.1 0.03 Threshold 1.00E+05
F4 1.1 0.3 0.44 F9 19.3 488.5 49.60 R1 is removed since C1 is removed
F6 3.8 0.1 0.04 F10 1.2 0.0 0.04 Objective Function 3.63E-05
F7 38.9 997.4 50.20 p2 0.2 0.0 0.22
F9 21.0 199.0 18.55 p3 0.0 0.0 0.19
F10 1.2 0.0 0.04 Threshold 40
p2 0.2 0.0 0.16 R15 is removed since C9 is removed
p3 0.0 0.0 0.49 Objective Function 3.22E-05

Threshold 100
F7 is removed since C7 is removed
Objective Function 2.83E-05

Parameters ParametersParameters
Model 6Model 4 Model 5



 

116 

 

 

 Estimate Standard Error Ratio Estimate Standard Error Ratio   
R3 9.0 0.7 0.15 R3 6.5 0.7 0.21
R4 1.8 0.2 0.18 R4 0.8 0.1 0.13
R5 4.1 0.9 0.44 R5 1.0 0.0 0.08
R6 21.2 0.6 0.06 R6 12.0 0.3 0.05
R7 91.5 443.3 9.50 R8 31969.0 25100000.0 1538.90
R8 1.5 0.1 0.16 R11 7.3 1.2 0.31

R11 4.1 0.2 0.11 R12 6.6 0.3 0.10
R12 5.6 0.2 0.07 R13 48.9 4.9 0.20
R13 20.0 0.4 0.04 R14 4.3 0.5 0.22
R14 60.7 29.0 0.94 R18 3.1 0.3 0.16
R18 1.7 0.0 0.04 R20 25.0 0.2 0.01
R20 26.2 0.2 0.01 R21 13.8 0.5 0.07
R21 14.6 0.3 0.04 C2 1.8 0.1 0.08
C2 1.8 0.0 0.05 C3 8.3 1.9 0.44
C3 8.5 1.4 0.31 C4 3.3 0.2 0.09
C4 1.8 0.2 0.23 C5 5703.7 121000000.0 41659.00
C5 1.2 0.1 0.18 C6 1.8 0.0 0.03
C6 1.5 0.0 0.05 C8 14.6 1.4 0.18
C8 11.0 1.2 0.21 C10 2.9 0.0 0.01

C10 2.9 0.0 0.01 C12 6.9 0.6 0.18
C12 14.0 0.3 0.04 F2 3.0 0.1 0.06
F2 2.6 0.1 0.06 F6 3.9 0.1 0.03    
F4 0.2 0.1 1.36 F10 1.3 0.0 0.04  
F6 4.3 0.0 0.02 p2 0.3 0.0 0.16
F10 1.3 0.0 0.03 p3 0.1 0.0 0.11       
p2 0.4 0.0 0.06 Threshold 1.00E+03  
p3 0.1 0.0 0.08 Objective Function 4.25E-05

Threshold 1
Objective Function 4.08E-05

      
 

 
Parameters Parameters

 Model 7 Model 8  

Estimate Standard Error Ratio Estimate Standard Error Ratio
R3 8.7 1.3 0.29 R4 1.0 0.1 0.12
R4 0.9 0.1 0.13 R5 1.3 0.1 0.11
R5 1.2 0.1 0.10 R6 14.4 0.4 0.06
R6 13.2 0.4 0.05 R11 3.4 0.2 0.10

R11 4.2 0.3 0.13 R12 7.1 0.3 0.07
R12 7.4 0.3 0.09 R13 33.7 2.3 0.13
R13 41.2 3.3 0.16 R14 10.5 1.1 0.21
R14 8.4 1.1 0.25 R18 2.1 0.1 0.05
R18 2.2 0.1 0.07 R20 24.7 0.2 0.01
R20 24.6 0.2 0.01 R21 13.9 0.3 0.04
R21 13.5 0.3 0.05 C2 1.8 0.1 0.07
C2 1.8 0.1 0.08 C4 3.3 0.1 0.08
C3 5.6 1.3 0.44 C6 2.0 0.0 0.03
C4 3.1 0.2 0.11 C8 19.5 2.0 0.20
C6 1.9 0.0 0.03 C10 2.9 0.0 0.01
C8 16.8 1.4 0.16 C12 10.0 0.3 0.06

C10 2.9 0.0 0.01 F2 2.6 0.0 0.03
C12 10.1 0.4 0.07 F6 4.2 0.1 0.03
F2 2.9 0.1 0.05 F10 1.3 0.0 0.02
F6 4.1 0.1 0.03 p2 0.4 0.0 0.06
F10 1.3 0.0 0.03 p3 0.1 0.0 0.06
p2 0.4 0.0 0.06 All parameters are identifiable
p3 0.1 0.0 0.06 Objective Function 5.03E-05

Threshold 0.4
R3 is removed since C3 is removed
Objective Function 4.75E-05

Model 10
Parameters Parameters

Model 9
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Note:  

𝜇𝜇 = 10𝑅𝑅 − 5, 𝛿𝛿 = 0.05 

Ratio = 1.96*Standard Error/Estimate 

[𝐶𝐶1;𝐶𝐶2;𝐶𝐶3;𝐶𝐶4;𝐶𝐶5;𝐶𝐶6;𝐶𝐶7;𝐶𝐶8;𝐶𝐶9;𝐶𝐶10;𝐶𝐶11;𝐶𝐶12;𝐶𝐶13] =

[𝐶𝐶𝑒𝑒2;𝐶𝐶𝑖𝑖2;𝐶𝐶𝑛𝑛2;𝐶𝐶𝑚𝑚2;𝐶𝐶𝑒𝑒1;𝐶𝐶𝑖𝑖1;𝐶𝐶𝑛𝑛1;𝐶𝐶𝑚𝑚1;𝐶𝐶𝑒𝑒0;𝐶𝐶𝑖𝑖0;𝐶𝐶𝑛𝑛0;𝐶𝐶𝑚𝑚0;𝐶𝐶𝑚𝑚𝑚𝑚0]   

Parameter units: 𝑅𝑅(℃ 𝑘𝑘𝑘𝑘⁄ ), 𝐶𝐶(𝑘𝑘𝑘𝑘ℎ ℃⁄ ), 𝐹𝐹(𝑇𝑇2) 
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