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PREFACE

Introduction

In 1963 the ACI Building Code adopted a load and resistance

factor design format based on the design equation:

oRS ApD + AL
where R = member strength computed by the designer
D = specified dead Tload
L = specified live load
¢ = capacity reduction factor
XD = load factor on dead load

AL = load factor on live load

The derivation of the ¢ and X values in the 1963 ACI code are
discussed by MacGregor (1975). This design procedure was adopted for
reinforced concrete design in Canada soon after.

During the past five years work has been underway in the
United States and Canéda'to introduce "1imit states design" for steel
sfructures involving the basic design equation presented above. In
Canada, it is hoped that the load factors from these new studies will
eventually be adopted for use with steel, concrete, wood, masonry and
other technologies. When this occurs, however, it will probably be
necessary to revise the ¢ values currently used in reinforced concrete

-gsesign. As a first step in revising the ¢ factors it is necessary to

gather data on the variability of the strength of reinforced concrete



members in flexure, shear, bond, etc. This report is the first in a
series studying this problem and is a compilation of data on the vari-
ability of the material strengths and geometrical quantities which

affect the strength of reinforced concrete members. This is based
.primarily on data obtained from a number of published sources and involves

no additional experimental work.

Scope and findings

Chapter 1 of this report describes the variability of the com-
pressive and tensile strengths and the modulus of elasticity of normal-
weight concrete. The principal findings are summarized in the following
sections:

Concrete compressive strength - Section 1.1.6 - Page 17
Concrete tensile strength - Section 1.2.6 - Page 29
Modulus of elasticity of concrete - Section 1.3.6 - Page 36

Chapter 2 documents the variability inherent in the reinforcing

steel. The principal findings are summarized in the following sections:
Yield strength - Section 2.1.5 - Page 49
Ultimate strength - Section 2.2.3 - Page 54
Modulus of elasticity - Section 2.3.1 - Page 56

Chapter 3 reviews the literature on geometric imperfections.

The principal findings are summarized in the following sections:
Slab dimensions - Section 3.2.4 - Page 64
Beam dimensions - Section 3.3.7 - Page 70
Column dimensions - Section 3.4.3 - Page 73

Effects of discrete bar sizes - Section 3.5.1 - Page 76



The distributions presented in the sections listed above will

be used in studies of the variability of member strengths.
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Chapter 1
VARIABILITY OF CONCRETE STRENGTH

1.1 CONCRETE STRENGTH IN COMPRESSION

Concrete; Tike all other construction materials, is variable.
| Research has shown that under current design, production, testing and
quality control procedures, the strength of concrete in a structure
differs from its specified design strength. Furthermore, strength of
~concrete in a structure, is not uniform. The major sources of variations
in concrete strength are:

1. Variations in material properties and proportions,

2. Variations in mixing, transporting, placing and curing methods,

3. Variations in testing procedures.
Since concrete is a heterogeneous mixture of cement, water, sand, aggregate,
entrained air, and in some cases admixtures, variations in proportions
and/or properties of any one of these ingredients or combinations of
variations in more than one ingredient will lead to a variation in the
final strength of concrete. Similarly, the methods of mixing, trans-
porting, placing, curing, and testing will also result in variability of
concrete strength. Finally, the strength ofvthe concrete in a structure
and the strength measured by control specimens will differ somewhat due

to differences in the shape, size, placing, curing and testing conditions.

1.1.1 Degree of control

The variébi]ity of concrete strength depends on the quality

control of concreting operation. Depending on these controls, the co-



efficient of variation may range from 5% for laboratory conditions to as
high as 30% for uncontrolled conditions. The 30% value is unacceptable
under present construction techniques and a 5% value is not practical
for field conditions. In the construction of the Skylon Tower at Niagara
Falls (Lauer and Rigby, 1966), coefficients of variation ranging from 7%
to 10% were achieved using exceptional control methods. This suggests a
‘minimum value for site conditions. The Bureau of Reclamation (ACI Comm.
214, 1973) consistently achieves a coefficient of variation of about 15%
which suggests a value for average control. Table 1.1 indicates that
the coefficient of variation in many cases is between 15% to 20% which
suggests that 20% is a reasonable maximum value. Therefore, ACI Committee
214 (1965) has suggested that the level of quality control of concrete
can be divided into three classes, based on overall coefficient of
variation of the control cylinder as follows:

(1). 10 to 15% for good control,

(2). 15 to 20% for average control,

(3). Above 20% for poor control.
The total variation in concrete strength must include the variation in
concrete strength within a single batch. This in-bafch test variation
may be considered as a variation in testing procedures, mixer inefficien-
cies and variation in actual concrete strength. Thus, the in-test
coefficients of variation given in column 1 of Table 1.2 vary from 0.5
to 8.1 percent. Based on available information (ACI Comm 214, 1965) the
level of control for within-batch tests can be divided into three classes

- with corresponding coefficients of variations as follows:



(1). 4 to 5% for good control,
(2). 5 to 6% for average control,
(3). Above 6% for poor control.

An examination of previous investigations indicates that the
standard deviation and the coefficient of variation are not constant for
different strength levels. The relationship between the mean strength
and the standard deviation shown in Fig. 1.1 was developed using data
from several sources (Murdock,_1953; Entroy, 1960; Riisch, 1964; ACI
Comm. 214, 1965). The differences in values from different sources in
Fig. 1.1 may be partially explained by the type of data used. The
specimens of Entroy (1960) and Murdock (1953) were 6 in. cubes while the
ACI Committee 214 (1965) specimens were standard 6 x 12 in. cylinders.
The data reported by Riisch (1964) contained test specimens of both
types. On the basis of this test data it appears that the mean coefficient
of variation is roughly constant for strength levels below 3000 to 4000
psi while for concrete with an average strength above 4000 psi the
standard deviation remains approximately constant with values 400, 600
and 800 psi for the three levels of control listed above. This is
“expected since the greater control required for the production of higher

strength concrete contributes to smaller variability.

1.1.2 Distribution of the strength of concrete specimens in compression

Previous researchers have shown that for most purposes the
variability of concrete strength in compression can be represented by a
normal distribution if the coefficient of variation does not exceed 15
to 20 percent, although a slight skewness is generally present. In

cases where the coefficient of variation is very high the skewness tends



to become considerable and a Tognormal function represents the tail

areas of the distribution more reasonably. Table 1.1 is a collection of
data from a number of statistical studies of concrete strength. The
majority of researchers have used a normal distribution due to its
simplicity and because the central area of the curve is most important
in concrete control. At the same time, however, Fruendenthal (1956),
Julian (1955), and Shalon and Reintz (1955) have shown that the Tognormal
distribution gives a better fit for concrete strength in which the
control is poorer than average and should be used where extreme values
are important.

Shalon and Reintz (1955) observed no discrepancy between the
actual distribution and a normal distribution for concrete with a co-
efficient of variation of 14%. Conversely, for concrete with a coefficient
of variation of 23%, no discrepency was observed when actual distribution
was tested against lognormal distribution (Shalon and Reintz, 1955).

In establishing understrength factors for members to reflect
the probabi]ity of the material strength being Tower than the specified
strength, the lower strength tails of the distribution curves are
important. For this reason it seems reasonable to assume a normal distri-
bution for concrete strength if the coefficient of variation is 15% or
less. For concrete strengths with coefficients of variation greater
than 15% the lognormal distribution should be used to increase accuracy

in the tail areas of the curve.

1.1.3 1In-situ strength vs control cylinder strength

The strength of concrete in a structure is somewhat lower than

the strength of control cylinders moulded from the same concrete. This



difference is due to the effects of different placing and curing procedures,
. the effects of vertical migration of water during placing of concrete in
deep members, the effects of difference in size and shape, and the

effects of different stress regimes in the structure and the specimen.
Petersons (1968) revieWed the available data on core strengths as compared
to standard control cylinder strength. He concluded that the most

important factors affecting the concrete strength in a structure are the
curing conditions of the concrete, the strength level of the concrete

and the locatibn of the concrete in the structure.

(a) Effects of degree of control

Bloem (1968) observed that the strength of concrete cores from
well-cured slabs was 90% of the strength of well-cured cylinder, moulded
from the same concrete. The ratio reduced to 79% for slab cores and
cylinders, poured from the same concrete, when slab and cylinders were
subjected to Tower standards of curing nearly typical of usual field
practice. This indicates a 12% reduction in the in-situ strength of
concrete for minimum acceptable field curing conditions. Petersons
(1968) also concluded that the difference in in-situ strengths for
minimum acceptable and good curing standards can be approximated by a
factor of 0.9. No significant difference in variability of in-situ
strength of concretes, cured under different controls, was observed by

‘Bloem (1968).

(b) Effects of in-situ concrete placement

The concrete in higher portions of deep members tends to be



weaker than the concrete in the lower parts. Thus, for example, the
concrete in the top one-foot portion of a column is weaker than the
concrete in the remainder of column. This can be explained by the
increased water-cement ratio at the top due to water migration after
concrete has been placed, and by the greater compaction of concrete near
the bottom of a column due to weight of the concrete higher in the form.
Petersons (1968) concluded that this reduction in strength was about
15%. He also reports a similar weak layer at the top surface of beams
or slabs.
The average ratios of core strengths to cylinder strengths
from various studies (Bloem, 1965, 1968; Campbell and Tobin, 1967;
Petersons, 1968) varied from 0.74 to 0.96 with an overall average from
all studies of 0.87. Peteksons (1968) shows, however, that the ratio of
the strength of concrete in a structure to the strength of the same
concrete in a standard cylinder decreases as the strength level increases.
Allen (1970) suggested the following expression for the relation-
- ship .between compressive strengths of cores and cylinders, based on

analysis of Petersons (1968) data:

f = 0.7 f

 ccore ceyl + 600 psi (Eq. 1.1)

Bloem (1968) observed that the strengths of cores drilled from slabs
were 93% of the strength of the push-out cylinders from the same slab.
This was essentially independent of the type of cement used, curing
conditions, and age of concrete at testing. If the strength of concrete

in a structure is assumed to be represented by the push-out cylinder
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strength, which seems to be a reasonable assumption, then:

fcstructure = 0.75 fccy] + 650 psi (Eq. 1.2)
The reduction in the in-situ strength of concrete is partially offset by
the requirement that the average cylinder strength must be about 700 to
900 psi greater than the design strength to meet the existing design
codes. Based on this observation and on equations and data from Allen,

- Bloem and Petersons, MacGregor (1975) suggested that the mean 28-day
‘strength of concrete in a structure for minimum acceptable curing can be

expressed as:

- ' < , . ‘
fcstructure = 0.675 fc + 1100 - 1.15 fc psi (Eq. 1.3)

where fé is design compressive strength of concrete in psi.

(c) Effects of volume

The 1in-situ strength of concrete is affected by the difference
in the volumes of material under stress. Since the ratio of the volumes
of the control cylinder and the in-situ concrete vary substantially, the
influence of size should be carefully examined.

Concrete is neither a perfectly brittle nor a perfectly plastic
material; its behavior is somewhere in between. For this reason, the
_classical statistical theories of strength of materié]s are not truly
applicable to concrete. Nevertheless, the statistical theory of brittle
solids (Bolotin, 1969) gives good estimates for the influence of size 1in

geometrically similar specimens. According to this theory the dependence
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of mean strength on the volume can be represented by the expression:
v _ v Vo 1/0
X =% {8+ (1-8) (9%  (Eq. 1.4)

where 7}'v are the mean strength and volume of a specimen of a
given size,
Yb, v, are the mean strength and volume of standard specimen,
o, B are constants.
Eq. 1.4 shows clearly that as the volume increases the mean strength
decreases. When volume tends to infinity, the mean strength tends to
the strength of the weakest constituent element of the material and is

equal to BXB' The same theory estimates the dependence of the varia-

| bility on volume by the formula:

v
(1-8) (' (2= - LN

o
Vo= oVe (Eq. 1.5)
X Vo 1/a '
B+ (1-8) (%)
= coefficient of variation of a specimen of volume v

where VX
| associated with the mean value X in Eq. 1.4.

From Eq. 1.5 it is clear that as the volume increases the coefficient of

variation decreases, the coefficient of variation tending to zero when

~volume tends to infinityQ

Using Vo S the volume of a 4 x 4 x 4 in. cube, Bolotin (1969)

has empirically established the values of constants "o" and "B" to be 3

and 0.58, respectively. Substituting, Eqs. 1.4 and 1.5 become:

A
¥ = X {0.58 +0.42 (79-)”3} (Eq. 1.6)
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; |
0.147 (-2) 1/3
V. = v (Eq. 1.7)

X v
0.58 + 0.42 (Vﬂ)”3

Assuming a normal distribution for the strength, the minimum strength

and maximum strength can be easily estimated by the usual rule of "three
standard deviations". Based on this observation and Egs. 1.6 and 1.7,
the effects of volume on the mean, the maximum and the minimum strengths .
are shown in Fig. 1.2. Also plotted in Fig. 1.2 is a curve representing
0.58 76, which represents the minimum strength when volume tends to
infinity. It is interesting to note from Fig. 1.2 that the values of
minimum strength obtained from these two different methods are in close
agreement. In spite of the fact that the mean strengths are substantially
dependent on the volume, the influence of size on minimum strength seems
to be very small. In the study of understrength factors for concrete
members, it is the lower strength tail that is more important. For this
reason it is not unsafe to neglect the effect of volume in probalistic

studies of understrength.

1.1.4 Speed of loading

The observed strength of concrete is considerably affected by
the rate of application of the load, the lower the rate of loading the
Tower ‘the apparent strength. This is probably due to the increase in
.strain with time owing to creep and micro-cracking if it is assumed that
failure takes place independent of the level of applied stress when a
1ihiting compressive strain is reached. The normal rate of loading for
the standard cylinder test is approximately 25 to 40 psi/sec (test
~duration about 2 minutes). Compared with this rate of loading, the

loading at 1 psi/sec reduces the apparent strength of concrete by



approximately 12%, whereas loading at 100 psi/sec increases the strength

by about 12%. Concrete is capable of withstanding indefinitely the

stresses only up to 70% of the strength under loads applied at 35 psi/sec.
Based on standard compression cylinder tests, Jones and Richart

(1936) suggested the following relation between compressive strength of

concrete and the rate of loading:

fcR = fC1 (1 +K 1og]0 R) (0.1 < R < 10,000) (Eq. 1.8)
where fcR = strength at a given rate of loading R psi/sec,

fC] = strength at a rate of 1 psi/sec,

K = a constant, roughly equal to 0.07 for a 7-day strength

and 0.08 for 28-day strength.
In order to make Eq. 1.8 ready-to-use it is desirable to
relate the 28-day strengths of concrete to the nominal testing speed at
which cylinders are genefa]]y tested, i.e., roughly 35 psi/sec. Thus

for 28-day concrete:

fcR = 0.89 f035 (1 +0.08 ]og]0 R) (Eq. 1.9)

where fc35 = strength at a loading rate of 35 psi/sec.

Allen (1970) suggested that the dispersion of concrete strength
remained unaffected by the speed of testing. Although no concrete
information is available on variability of the concrete strength due to
speed effects, a small dispersion was observed by Jones and Richart
(1936). For this reason it is assumed here that the coefficient of
variation of concrete strength obtained from Eq. 1.9 is approximately

5%.

13.



1.1.5 Model for in-situ concrete strength in compression
Based on discussions in the preceding paragraphs, the model of

concrete compressive strength in a structure can be constructed as

foT]ows:
fcstrR N fc " Tereal * Tin-situ "vo1 * "R (Eq. 1.10)
where fcstrR = compressive strength of in-situ concrete at a
given rate of loading R psi/sec
fé = design compressive strength of concrete
Fereal = random variable relating real cylinder strength
with design strength, fcreal/fc
Fin-situy - random variable relating in-situ strength with
real cylinder strength, fcstructure/fcrea]
vol = random variable relating volume effect
rr = random variable relating rate of loading effect,

fer/fess

Because the influence of volume on minimum strength is neglible, Eq. 1.10
can be revised to be:

f (Eq. 1.10a)

= 1 L[] . .
cstrR © e Tcreal Pin-situ * "R
Substituting values from Eqs. 1.3 and 1.9, the mean value for in-situ
compressive strength of concrete at a given rate of loading R psi/sec is

found to be:

14.
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Fostri = 089 (1 +0.08 Tog;o R) {0.675 £ + 1100} ps

({0.675 £+ 1100} $1.5 £ (Eq. 1.11)

At a loading rate equal to 35 psi/sec, Eq. 1.11 becomes:

F ' < 1
fcstr35 0.675 fc + 1100 - 1.15 fc (Eq. 1.3a)

where fcstr35 = mean compressive strength of in-situ concrete at
rate of loading equal to 35 psi/sec.
Similarly, variation for in-situ compression strength of concrete at a

given fate of loading is calculated using the model of Eq. 1.10a:

2 = y2 2 2
vcstrR vcrea] * Vin-situ * vR (Eq. 1.12)
where vcrea] = coefficient of variation of real cylinder strength
Vin-sity = coefficient of variation of concrete strength in
structure relative to cylinder strength
VR = coefficient of variation for rate of loading effect

The strength of concrete measured by control cylinders includes
variations in the "real" concrete strength, and the so-called “in-test"

variations due to testing procedure. Thus,

2 = y2 2
vccy] Vcrea] * V1'n-test (Eq. 1.13)
or _
2 = y2 - y2
vcrea] vccy] v1‘n-test (Eq. 1.13a)
where vccy] = variation of compressive strength of cylinders.
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Substituting, Eq. 1.13a in Eq. 1.12, we get:

] + V2

2
v R

cstrR ( (Eq. 1.14)

2 _ y2 2
ccyl Vin-test) * Vin-situ
Assuming a 10% variation of concrete strength in a structure with respect
to compressive strength of control cylinders and an in-test variation of

4% and variation due to rate of loading effect to be 5% as described in
previous sections, the coefficient of variation of in-situ strength of
concrete at a given rate of loading will be taken as:

- 0.04% + 0.10% + 0.052 (Eq. 1.14a)

v v

= 2
cstrR ccyl
when coefficient of variation of in-situ concrete strength at rate of
loading similar to cylinder test (35 psi/sec) is required, it will be

taken as:

- 0.04% + 0.102 (Eq. 1.14b)

v v

cstr3s écy]
The equations for mean value and coefficient of variation
presented above are based on a multiplicative model of in-situ concrete
strength and thus would theoretically tend towards a log-normal distri-
bution. The discussions in Section 1.1.2, however, lead to a normal
probability distribution for concrete cylinder strengths if the coef-
ficient of variation is 15% or less. Therefore, the probability distr-
ibution of in-Situ strengfh of concrete should be taken normal if

coefficient of variation is 15% or less, otherwise it should be considered

log-normal.
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1.1.6 Su@mary and recommended'distributions of concrete compressive strength
For loading rates similar to that of a cylinder test, the

probability distribution of the in-situ strength of concrete in a struc-

ture can be described by a normal curve with mean and dispersion calculated

using Eqs. 1.3a and 1.14b:

F = ' < I : )

fcstr35 =(0.675 fc + 1100)- 1.15 fc psi (Eq. 1.3a)
= 2 _ 2 2

Vcstr35 0.10 0.04° + Vccy1 (Eq. 1.14b)

For concrete loaded at other rates the mean and coefficient of variation

can be computed using Eq. 1.11 and Eq. 1.14a:

fostpp = 0-89 (1 +0.08 Tog,  R) (0.675 £ + 1100) psi
([0.575 fL + 1100] 1.5 fe) (Eq. 1.11)
= 2 _ 2 2 2
Voo ‘/0.10 0.042 + V2 1 +0.05 (Eq. 1.14a)

1.2 CONCRETE STRENGTH IN TENSION

There are many types of that can be used for determining
tensile strength of concrete: direct tension, flexure, split cylinder
and'ring}tests. O0f these, the split cylinder test seems to be gaining
popularity because of convenience of testing it offers. In this study

tensj]e strength of concrete refers to splitting strength unless mentioned

otherwise.



Very limited information is available for the variability of

~concrete strength in tension and most of it is in relation to its compres-
sive strength. Available information for the probability model of

tensile strength is even more meager. For this reason, this study was
conducted to relate the probability model of tensile strength with the
model of its compressive strength in the structure. This is consistent
with the current design and control practices of concrete strength in
Nbrth America, since design strengths as well as control cylinder strengths

.are both specified in terms of compressive strengths.

1.2.1 Relation of compressive and tensile strengths of concrete

The tensile strength of concrete is related to its compressive
strength but they are not proportional to one another. The ratio of
tensile to compressive strengths decreases with an increase in the level

of strength. The general forms of the relation are:

ft = a fC + n for linear relation (Eq. 1.15)
ft = a fg for power relation (Eq. 1.16)
ft = a-exp(nfc) for exponential relation (Eq. 1.17)

where fC = compressive strength in psi,

f tensile strength in psi,

t
exp

2.718282,

-and a,n are empirical constants.

18.
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(a) Splitting tension

Regression analyses of the test data of 671 sets of compression
cy]inder and split cylinder strengths collected from recent Ph.D. dissert-
ations and reports of the Universities of Alberta, Calgary and Texas

give the following least-square-fit equations:

fsp = 0.056 fc + 168 psi (r 0.76, cov = 12.3%) (Eq. 1.18)
_ 0.55 . _ - 9
fsp = 4.14 fc psi (r = 0.75, cov = 12.5%) (Eq. 1.19)
0.124 fc .
fsp = 237-exp —go0— PS1 (r = 0.74, cov = 12.4%) (Eq. 1.20)
where r = regression coefficient,
cov = coefficient of variation,
and fsp = splitting tension strength.

These equations are plotted in Fig. 1.3 along with the data points. As
can be expected, all three equations represent the data fairly well and
show a fair degree of correlation between the splitting tensile and
cqmpressive strengths of concrete. Eq. 1.19, however, seems more pro-
mising than the other two for its simplicity and the fact that it passes
thfough the zero origin. Based on the available test data other investi-
gators (Malhotra,'1969, Riisch, 1975) have also suggested equations
similar to Eq. 1.19 with somewhat different values of the coefficient
"a" and "n".

In studies of the strength of concrete elements it is common
practice to express tensile strength as a function of square-root (ACI
Code, 1971) or cube-root (Zsutty, 1968) of compressive strength. It

should be noted that the power 0.55 in Eq. 1.19 is close to a square
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root. A statistical analysis of the data shown in Fig. 1.3 was carried
out for different values of coefficient "n" in Eq. 1.16. The values of
coefficient "a" in Eq. 1.16 were found to be 6.4 and 26.2 for "n" equal

to 1/2 and 1/3, respectively:

f

1/2
sp = 6:4 T, (Eq. 1.21)

fsp

1]

2.2 /3 (Eq. 1.22)

Egs. 1.19, 1.21 and 1.22 are plotted in Fig. 1.4 along with the data
points, and are compared to the data in Table 1.3. Equations 1.23 and
1.24, used to represent the tensile strength in the CEB Recommendations

(converted to psi) and the ACI Code are also plotted in Fig. 1.4:

, _ 2/3
CEB: fg = 1.43 f (Eq. 1.23)
et _ 1/2
ACT: o = 6.0 f, (Eq. 1.24)

A ‘comparison of all curves in Fig. 1.4 indicates that Egs. 1.21 and 1.22
are reasonably close to the regression equation except that Eq. 1.22

Toses accuracy in the very high and very low strength regions. Nonetheless,
any of Egs. 1.19, 1.21 and 1.22 can be used with reasonable accuracy to
ca]bu]ate the tensile strength of concrete from its compressive strength

in the range 2000 to 9000 psi. The CEB (Riisch, f975) and ACI (1971)
equations give somewhat conservative estimates of the tensile strength

of concrete. A comparison of some empirical equations to representative
"test data quoted by Neville (1973) is shown in Table 1.4.

The relationship between tensile and compressive strengths of



concrete depends not only on the level of strength as described above
but also on many other factors. The size and type of aggregates, air
entrainment, curing conditions, water-cement ratio, cement content and
age at the time of loading also affect this relation. Due to variations
contributed by these factors formulation of a unique relation between
the two strengths does not seem possible at this time. Until further
knowledge is acquired, an empirically derived equation that represents
the available test data with acceptable accuracy, such as Eq. 1.19, 1.21

or 1.22, seems to be a reasonable solution.

(b) Flexural tension

The available test results of standard modulus of rupture
beams with third-point loading (342 tests) were analyzed to develop
equations for the strength of concrete in flexural tension. The fol-

lowing equations were obtained:

fr = 0.0455 fC + 322 psi (r = 0.51, cov = 19.9%) (Eq. 1.25)

f,=12.23 £ %7 psi (r = 0.55, cov = 19.7%) (Eq. 1.26)
0.093 fc

fr = 338-exp 000 psi (r = 0.51, cov = 20.2%) (Eq. 1.27)

where fr = flexural tension strength.

Of these equations, Eq. 1.26 shows the highest degree of correlation,
lowest degree of dispersion and is the only equation passing through
zero origin, as shown in Fig. 1.5. Using statistical analysis Eqs. 1.28
and 1.29 were developed for square and cubic relationships between

flexural tension and compressive strengths:

21.
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—h
1}

= 8.0 £./2 psi (Eq. 1.28)

£ =32.0 /3 ps (Eq. 1.29)

Equations 1.26, 1.28 and 1.29 are compared to the tests data in Fig. 1.6
and Table 1.3. Equations 1.30 and 1.31, used to represent flexural
tensile strength in the CEB Recommendations (Riisch, 1975) and the ACI
Code (1971) are also plotted in Fig. 1.6:

CEB: f, = 2.37 £2/3 psi (Eq. 1.30)
ACI: f_ = 7.5 f‘/2 (Eq. 1.31)

A comparison of all the curves in Fig. 1.6 indicates that any of Egs.
1.26, 1.28 and 1.29 represent the data‘fair1y well. Equation 1.31 is
slightly conservative whereas Eq. 1.30 seems to be the upper bound for

the available data.

1.2.2 Distribution of the strength of concrete specimens in tension

The same factors that influence the concrete strength in
compression also influence the tensile strength, although the degree of
effect may not be the same. For example, crushed coafse aggregate tends
to improve both the tensile and compressive strengths, but the effect is
greater for the tensile strength with the result that the ratio of
tensile to compressive strengths is higher with crushed stone than with
gravel. Similarly, better curing conditions improve the tensile strength ;

relatively more than they improve the compressive strength. On the |



other hand, air-entrainment appears to affect the compressive strength
more than it affects the tensile strength of concrete.

A statistical analysis of the test data for compression and
tension strengths of concrete cylinders and beams used earlier in this
section, was carried out using Egqs. 1.19, 1.21 and 1.22, and Egs. 1.26,
1.28 and 1.29. The results from this analysis are presented in Table
1.3. The detailed distribution diagrams for the commonly used form of
equations for splitting tension and flexural tension, Egs. 1.21 and 1.28
respectively, are shown in Figs. 1.7 through 1.10. An examination of
Table 1.3 and Figs. 1.7 and 1.8 reveals that the distribution of the
deviations in observed splitting tensile strength relative to predicted
tensile strength is normal with a mean value close to unity. A Chi-
square test carried out on the grouped data of the histogram shown in
Fig. 1.7 did not reject this hypothesis up to 21.5% level of signifi-
cance, a much higher value than the usual acceptable level of 5%. This,
however, does not seem to be valid for flexural tension strength, where
the hypothesis of normality was rejected at much lower than 5% level of
significance. Table 1.3 and Figs. 1.9 and 1.10 also subscribe to this
fact. This contradictory behaviour of observed flexural tension strength
cannot be explained in definite terms at the present time. It is,
prdbab]y, due to the high degree of dispersion demonstrated by the
available test data. Nonetheless, the normal distribution approximates
flexural tension strength reasonably well except in the low probability
regions where it overestimates the number of low tests as is evidenced

by Figs. 1.9 and 1.10. Until further information is available it seems

reasonable to assume that the probability distribution of tensile strength

of concrete follows the same distribution as its compressive strength.

23.
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To determine whether the type of distribution for tensile
strength was affected by the value "n" in Eq. 1.16, one thousand values
of compressive strength were generated based on a normal distribution of
fc with a mean value of 4000 psi and cov 17.5%. These values were
transformed into four populations of tensile strength for four sets of
coefficients "a" and "n" with "n" varying from 0.33 to 1.0. As the
power coefficient "n" decreased from unity the tensile strength distribu-
tion deviated from normality, but only slightly. This seems to indicate
that the probability density functions of tensile strengths will not be
affected-significantly by using different values of coefficient "n" when

Eq. 1.16 is used to compute the tensile strength.

1.2.3 Dispersion of tensile strength of concrete

A Timited amount of data is available for‘variability of
tensile strength. A comparison of variability of concrete strengths in
compression and different tension tests from previous studies (Wright,
1955; Ramesh and Chopra, 1960; Malhotra, 1969; Orr, 1970; Kom]og,

v 19705 AASHO, 1962) is shown in Table 1.5 These data were taken mostly
from laboratory tests (where high controls result in low variability of
concrete strength) and do not represent the field conditions. Nonetheless,
the data indicates that for laboratory conditions the dispersion of
tensile strength tests tends to be slightly higher than the dispersion
of compressive strength tests.

Similarly, an examination of the in-batch coefficients of
variation of compression and tensile strengths in Table 1.2 indicates
simi]ar trends as those for overall dispersions. The differences in the

in-batch dispersions of different strengths of concrete are, however,
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neg]egib]g. Therefore, within-batch variability of tensile strength can
be assumed to be the same as that for the compression strength of concrete.
When tensile strength is not directly controlled but obtained
from a relation with the compressive strength, considerably larger
dispersions in the tensile strength should be expected. This increase
in dispersion of tensi]e strength is attributed to the variability of
observed tensile strength of concrete with respect to its computed
strength.
The ratio of observed and calculated tensile strengths can be

calculated from:

ft (observed)

n
C

A = (Eq. 1.32)

af
If the distribution properties of the ratio A are determined from test
data of fc and ft (shown in Figs. 1.3 to 1.6), (then the dispersion of
A will include in-test variation of 4% in fc and ft (for laboratory
controlled concrete) and, using Taylor's expansion, the coefficient of
vafiation for the observed real tensile strength of concrete with respect

to its computed strength is:

= 2 - 2 _ 2
VA VAtest (0.04) (0.04n) (Eq. 1.33)
where VAtest = coefficient of variation of the ratio A determined

from experimental data of fc and ft,

A" coefficient of variation of observed real tensile strength with

respect to its calculated strength.

and V
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The results of Eq. 1.33 for different equations of splitting and flexural
vtension strengths of concrete are presented in Table 1.6. When the
splitting tensile strength is obtained from Egs. 1.19, 1.21 or 1.22, the
variability of observed tensile strength relative to its calculated
strength will be approximately 12%. Similarly, if the flexural tension
strength is calculated from Eqs. 1.26, 1.28 or 1.29, the dispersion of
observed flexural tension strength relative to its computed strength

will be roughly 19%.

1.2.4 In-situ strength vs control specimens

There are three main sources of variation in in-situ strength
of concrete compared to its control specimens:
| (1) Effect of volume,

(2) Effect of concrete in-situ rather than in cylinders, and

(3) Effect of speed of loading.
According to the statistical theory of brittle solids (Bolotin, 1969),
the dependence of the hean value and variation of geometrically similar
specimens on the volume can be represented by Egs. 1.4 and 1.5, respec-
tively, as described in Section 1.1.3(c). Using data from the modulus
of rupture strength of prismatic specimens, Bolotin (1969) has empirically
estimated the values of coefficients "a" and "g" in Eqs. 1.4 and 1.5 to
be 3 and 0.43, respectively. Substituting these values in the appropriate
equations, we get:

X = X, {0.43 + 0.57 (2)1/3} (Eq. 1.34)
and

v
0.199 (-2)1/3
V. = v (Eq. 1.35)

X v
0.43 + 0.57 (913

emtaitd
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As has been explained in Section 1.1.3(c), the influence of volume on
minimum strength turns out to be negligible, although mean strength is
substantially affected. For this reason the effect of volume on tensile
strength may be neglected for studies of understrength, where lower
tails of the probability distributions are more important than the mean
values.

Hardly any information is available on the effects of the
remaining two parameters causing variability in the tensile strength of
concrete. Until further knowledge is acquired, it seems reasonable to
consider the effects of in-situ casting and speed of loading on tensile
strength of concrete through its compressive strength. For example, if
tensile strength of concrete in a structure loaded at 3 psi/sec is
desired, the distribution of in-situ strength in compression at 3
psi/sec should be defined first as per Section 1.1.6; the distribution
of tensile strength can be obtained easily using equations in Section

1.2.1 through 1.2.3.

1.2.5 Model for in-situ concrete strength in tension

Based on discussions in the preceding sections, the model of
tensile strength of concrete in a structure, loaded at a given rate of

loading R psi/sec, can be constructed as follows:

festrr = A ° {g (fcstrR)} (Eq. 1.36)

where g_(f ) =a f"

cstrR
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The mean value of tensile strength is calculated from the above model to

be:

af" (Eq. 1.16a)

ftstrR - cstrR

Similarly, variation of concrete tensile strength is calculated using

model of Eq. 1.36:

2 2 2
vtstrR VA * vg

where v = coefficient of variation of tensile strength of

tstrR
in-situ concrete loaded at R psi/sec.

n

For g (f cstrR® Vg

=nV R? and substituting in the above

cstr
- equation, we get:

VZ

- 2 2
tstrR - (M Veserp) " * VA (Eq. 1.37)

From the general model of tensile strength shown above, specific
models for splitting tensile and flexural tensile strengths can be
easily constructed using the appropriate equations for tensile strength.
For example, using square-root relationship for splitting tensile strength,
the mean value and coefficient of variation of splitting tensile strength
of in-situ concrete will be calculated from:

= 1/2

fsp = 6.4 fC psi (Eq. 1.21a)

and

stp =‘/(Vé/4) + (0.1‘2)2 (Eq. 1.37a)
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where ?E and V_ are values of ?EstrR or ?EstrBS and V_ . o or
Vcstr35’ respectively, and are calculated according to Section
1.1.6.

Similarly, the mean value and coefficient of variation of flexural

tension strength of in-situ concrete for the square-root relationship

between compressive and tensile strengths will be calculated from:

T =807 "1/2 psi (Eq. 1.28a)

and

vf.‘r =J(v§/4) + (0.19)2 (Eq. 1.37b)

The values of the ratio A are normally distributed as shown in

Section 1.2.3. Since the model of tensile strength is also dependent on

g (fcstr
bution of tensile strength of concrete. The discussions in Section

R), departure from normality might be expected for the distri-

1.2.2, however, lead to the same probability distribution for tensile
strength of concrete as for concrete compressive strength. Therefore,
the model of tensile strength of concrete should be assumed to follow
the same distribution as its compressive strength and may be approxi-

mated by a normal distribution.

1.2.6 Summary and recommended distributions of concrete tensile strength

With the discussion in previous sections, it seems reasonable
to assume that the probability model of tensile strength of concrete in

a structure can be described with a normal distribution with:
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Splitting Tension:

Top = 6.4 f”z psi (Eq. 1.21a)

and

=\/vg/4 + (0.12)2 (Eq. 1.37a)

and Modulus of Rupture:

7. = 8.0 7./ %psi (Eq. 1.28a)
and
=yV2/4 + (0.19)* (Eq. 1.37b)
where ?; and Vc are calculated according to Section 1.1.6.

1.3 MODULUS OF ELASTICITY

Although some five or six equations are present in the 1literature

to estimate the static modulus of elasticity of concrete, the available
data on the variability of this parameter is limited. This study was
conducted to relate the probability models of static modulus of elasticity
and compressive strength of concrete. Two different moduli of concrete
are estimated in the succeeding sections:

(1) Initial tangent modulus, and

(2) Secant modulus at specified stress levels

Only normal weight concrete and compressive 1oads will be considered.

1.3.1 1Initial tangent modulus

An analysis of available test data for 139 tests of standard
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cylinders (Richart et. al, 1931, 1934, 1938) gave the following linear,
power and exponential regression equations for the relationship between

the initial tangent modulus and the compressive strength of concrete:

Eci = 1,918,000 + 453 fC psi (r = 0.88, cov = 8.2%) (Eq. 1.38)
Ecq = 92,000 FO 8 psi (r = 0.91, cov = 7.4%) (Eq. 1.39)
0.138 fc .
Eci = 2,130,000 exp —Jo00—~ Psi (r = 0.85, cov = 8.9%) (Eq. 1.40)
" where Eci = initial tangent modulus.

A high degree of correlation existed between initial tangent modulus and
compressive strength as indicated by correlation coefficients shown with
the above equations. The data used for the regression analysis are
plotted in Fig. 1.11 with Eqs. 1.38, 1.39 and 1.40. A comparison of
these equations with the data in Fig. 1.11 indicates that any of these
three equations may be used for estimation of initial tangent modulus of
concrete, although Eq. 1.39 seems to be the most promising because it
has the highest correlation factor and the lowest coefficient of varia-
tion.‘ In studies of stiffness and deflection of concrete members it is
sométimes desirable to express the modulus of elasticity as a function
of square-root of compressive strength (ACI, 1971). Based on a stat-

istical study of the available data the following relation was obtained:

1/2

< psi (Eq. 1.41)

Eci = 60,400 f
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- and is also plotted in Fig. 1.11 for comparison.

Using Eq. 1.39 and 1.41 a statistical analysis of the ratios
of observed to calculated moduli was carried out in order to study the
distribution properties of inifia] tangent modulus of concrete; results
fkom this study are presented in Table 1.7. These results suggest that
the distribution of observed initial tangent modulus of concrete rela-

' tive to its calculated value can be approximated by a normal distri-

: bﬁtion with a mean value of the ratio of observed to calculated moduli
equal to 1. In the above comparison the observed initial tangent modulus
was determined experimentally by dividing initial stress by initial
strain. Assuming an in-test variation of 2% in measurements of initial
stress and strain and 4% in-test variation in concrete strength, the
experimentally determined coefficient of variation of observed initial

tangent modulus from Eq. 1.41, shown in Table 1.7, reduces to:

\/(0.07695)2 - 2(0.02)% - (0.04 x 0.5)2 = 0.07, or 7%

A 7% coefficient of variation for observed initial tangent modulus of
concrete relative to the computed value was also found to be valid for
the relation represented by Eq. 1.39. |

When the initial tangent modulus is estimated from Eq. 1.39 or
Eq. 1.41, the variabjlity of Eci relative to the calculated value is

approximately 7%.

1.3.2 Secant modulus

An extremely limited amount of data from standard cylinder
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tests (Shideler, 1957; Hanson, 1958) was available for use in estab-
lishing the relation between compressive strength of concrete and its
secant modulus at 30% of the maximum stress. The regression equations

based on 45 data points are:

E 2,365,000 + 300 fC psi (r = 0.86, cov = 13.8%) (Eq. 1.42)

cs,0.3fc
= 0.469 _ . _ _
Ecs,0.3fc = 72,100 f_ psi (r = 0.89, cov = 12.2%) (Eq. 1.43)
0.076 f -
Ees,0.3f, ~ 2,564,000 exp | —yggg— Psi (r = 0.82, cov = 14.8%)
(Eq. 1.44)
where Ecs,0.3fc = secant moduius of concrete at 30% of maximum
stress. The square-root relation was found to be:
- 172 .
Ees,0.37, = 55,400 fc7" psi (Eq. 1.45)

Equations 1.42 through 1.45 are compared in Fig. 1.12 with the data
also plotted in the diagram. Equation 1.43 and 1.45 seem to be the best
representation of the available data. The ACI Equation (1971) is also plotted
on this figure.
Although the results of a statistical analysis, presented in
Table 1.7, indicate a deviation from normal distribution for the ratio
of observed to calculated secant moduli, normality will be assumed in
this report, particulariy in view of the small data population used in

the study. Considering in-test variations in data measurements to be
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the same as those for initial tangent modulus, the real variation of
observed secant modulus relative to calculated secant modulus of con-
‘crete was found to be approximately 12%. This variation is somewhat
higher than the variation of initial tangent modulus of concrete.

Using modulus of elasticity data reported by Hognestad (1951),
the modulus of elasticity of concrete at 90 to 95 percent of the ultimate
~strength was found to be 37,500 fl/z psi.

If the stress-strain curve for concrete is assumed to be
parabolic up to the ﬁ]timate stress, the secant moduli corresponding to

the initial tangent modulus given by Eq. 1.41 would be:

At 0.3 fC:

1/2

i:
¢ PsS

Ecs,0.3fc = 55,500 f

At 0.925 fC:

_ 172 .
Ecs,0.925fc = 38,500 fc psi.

Because these values are so close to the statistically derived values, a
parabolic stress-strain relationship can be assumed to exist and can be

used to compute secant modulus values at various stress levels.

1.3.3 Effects of rate of loading

Like compressive strength, the mean value and dispersion of
modulus of elasticity of concrete are subject to a rate of loading
effect. This effect on the modulus of elasticity can be considered

using Eq. 1.46 (Allen, 1970):
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AE (Eq. 1.46)

EcR c _

where modulus of elasticity at a required rate of loading,

R

Ec
EC = modulus of elasticity under laboratory test conditions,
such as those obtained from Eqs. 1.39, 1.41, 1.43 or 1.45.
A= 0.0036/euR, ratio of ultimate strain under test conditions,
0.0036, to the ultimate strain at the required rate of loading, €uR’
The data given by Allen on the effect on X of the loading duration (time
to failure ih a cylinder test) can be expressed using the following

equation:

1.20 - 0.08 Togy, t (Eq. 1.47)

>
n

where t = loading duration in seconds.
Although no information is available for the effect of rate of loading
on dispersion of modulus of elasticity of concrete, it is assumed here to be

5%.

1.3.4 Effect of in-situ casting

No fnformation is available on the effect of in-situ casting
on modulus of e]aSticity of concrete in a structure compared to that of
control specimens. For this reason modulus of elasticity of in-situ
concrete will be calculated from compressive strength of cast-in-place
concrete. All equations developed in the preceding sections to relate
modulus of elasticity and compressive strength of standard cylinders

will be considered valid for in-situ concrete as well.
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1.3.5 Model for modulus of elasticity of in-situ concrete

Based on discussions in previous sections, a general model for
modulus of elasticity of in-situ concrete can be constructed. This
model will be similar to the one developed for tensile strength of
concrete (Section 1.2.5). From the general.model specific models for
initial tangent modulus and secant modulus at a desired stress level can
be easily constructed.

The distribution of modulus of elasticity of concrete will be

assumed to follow normal probability curve.

1.3.6 Summary and recommended distributions of modulus of

elasticity of normal-weight concrete

The probability distribution of the initial tangent modulus of
elasticity of normal-weight in-situ concrete in compression can be

described with a normal curve with:

= _ =1/2 .
Eci = 60,400 fcstr35 psi (Eq. 1.47a)
and
v =Jisi'-’§—+ 0.072 (Eq. 1.48)
E. . 4
ci
where fcstr35 and Vcstr35 are calculated according to Section 1.1.6.

The secant modulus at any stress level can be computed from
the initial tangent modulus assuming that the initial portion of the
stress-strain curve is a parabola with a horizontal tangent at maximum
stress. The coefficient of variation of the secant modulus will be

taken as:
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v2
Ve =J—-C§7}"—3-5-+ 0.122 (Eq. 1.49)
CS

In order to consider the rate of loading effect for loads

other than laboratory testing conditions, these equations should be

modified as:

and

where

E

Ecr = (1.20 - 0.08 10910 t) EC (Eq. 1.46a)

Vv =¢/ V2 + 0.052 (Eq. 1.50)
EcR J Ec

EQR = mean value of modulus of elasticity at required rate of
loading,

v = coefficient of variation at the required rate of
cR
loading,

Ec = mean value from Eq. 1.41a,

E

V. = coefficient of variation from Eq. 1.48 or Eq. 1.49.
c .
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Chapter 2
VARIABILITY OF REINFORCEMENT STRENGTH

2.1 YIELD STRENGTH OF REINFORCING STEEL

There are three main sources of variation in steel yield

strength:

(1). variation in the strength of material,

(2). variation in the area of the cross-section of the bar, and

(3). variation in the rate of Toading.
}The variablity of yield strength depends on the source and the nature of
the population. The variation in strength within a single bar is rela-
| tively small, while the in-batch variation for a given heat is slightly
larger. However, the variability of samples derived from different
batches and sources may be high. This is expected since rolling practices
and quality measures vary for different countries, different manufac-
turers and different bar sizes. Furthermore, the cross-sectional areas
vary due to differences in the setting of the rolls, and this adds to
the variation. Mill tests are generally carried out at a rapid rate of
Toading (ASTM corresponds to 1040 micro-in/in/sec) and have the tendency
of reporting the unstable high yield point rather than the stable low
yield point. Since the strains in a structure are generally induced at
a much lower rate than the mill tests, mill tests tend to over-estimate
the strength of reinforcement, hence another source of variation.

An examination of the test data revealed that the bars of

'1arge diameter tended to develop less yield strength (Allen, 1972;
- Gamble, 1973; Robles, 1972) than #3 to #11 bars. Thus, for purpose of

~ statistical evaluation of yield strength, the #14 and #18 bars were
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studied separately from other sizes. Also, the #2 bars were not included
in this study because of their rare use for structural concrete.

In this study the terms Grade 40, Grade 50 and Grade 60 refer
to reinforcing bars with minimum specified yield strength of 40, 50 and
60 ksi, respectively, even though the bars in question may not have been
produced according to ASTM or CSA specifications. Only data for de-
formed bars have been included. In some cases data for cold-worked bars

have been considered but most of the data are for hot-rolled bars.

2.1.1 Variation in strength of material

Different values for the yield strength of steel can be obtained
depending how it is defined. The static yield strength based on nominal
area seéms to be desirable because the strain rate is similar to what is
expected in a structure, and designers use the nominal areas in their
calculations. Most mill tests, however, are conducted with a rapid rate
, of loading, and the strength is generally referred to actual areas. For
these reasons yield strength corresponding to rapid strain rate and
measured area is discussed in this section, and the effects on this
strength of variations in cross-sectional area and rate of loading are
dealt with in the succeeding sections.

A review of literature on yield strength of reinforcing bars
showed fhat the coefficient of variation was in general in the order of
1 to 4% for individual bar sizes and 4 to 7% overall for data derived
from one source. When data was taken from many sources the coefficient
of variation increased to 5 to 8% for individual sizes and 10 to 12%
overall. A summary of selected studies from Titerature (Allen, 1972;
Baker, 1970: Bannister, 1968; Julian, 1957; Wiss, Janney, Elstner and

Assoc., 1976; Narayanaswamy, 1972) is shown in Table 2.1. -



The data reported by Allen (1972), Julian (1957) and Wiss,
Janney, Elstner and Assoc. (1976) on Grade 40 and 60 stee] bars showed
close agreement with normal distribution (with respective mean and
standard deviation) in the range from about the 5th to the 95th percentile
but differed from the normal distribution outside this range. Some
authors have suggested other types of distributions such as skewed
(Bannister, 1968; Roberts, 1967), - truncated normal (Johnson, 1956) and
Beta distributions (Costello, 1969). Similarly, for yield strength of
structural steel shapes and plates, Alpsten (1972) has suggested an
extreme-value distribution Type I or a log-normal distribution. These
~ suggestions were, however, based on a particular set of data and only
approximated the distribution of the population from which the data were
drawn. Nonetheless, they suggest that yield strength is a phenomenon
that can be described by a particular theoretical distribution with
certain limitations.

The normal distribution seems to correlate very well in the
vicinity of mean values for different populations of yield strength; but
it is a crude approximation at low and high probabilities where the
steel strength distribution curves tend to have a certain minimum and
maximum value instead of following the theoretical tails. This is
expected since the manufacturing of steel is not truly a random process.
-There are always some quality controls that are used to attain a certain
minimum yield strength. Because much of the data indicated a positive
_-skewness, particularly when derived from different sources and mixed
together, a log normal distribution should be a better fit for this case
than a normal distribution since it takes into account the skew nature

of the data. However, the log-normally distributed values of yield

40.
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strength at Tow and high prqbabi]ites did not show a prominent improvement
over normally distributed values of available data. Therefore, it was
decided to empirically establish a distribution that would correlate

with the North American data on yield strength. For this purpose
modified log-normal, Béta and Pearsan system distribution curves were
tried.

(a) Grade 40 steel

Values of 1og]O(fy - 34 ksi) were plotted on a normal probabi-
lity paper for the data from 249 tests reported by Julian (1957) and
Allen (1972) for Grade 40 reinforcing bars. These values were found to
be in good agreement with a normal distribution in the range from the
0.01 percentile to the 99th percentile. The modification constant of 34
ksi was established by trial and error. The probability density func-
tions of normal and modified log-normal distributions for Grade 40 steel

can be obtained from Eqs. 2.1 and 2.2, respectively:

f - 48.8 ,
PDF = — . exp -{i/z (~1§7?ﬁ;-4 } (Eq. 2.1)
5.21&J§F :

- 0.43429 Togyo(f, - 34) - 1.14482), »
or 6y Bl 0. 14866 (Eq. 2.2)
0.14866y2m (f, - 34) :

(fy > 34 ksi)

where fy = steel strength in ksi.

Using the Pearson system of frequency curves (Elderton and
Johnson, 1969) it was found that the above data can be represented
fairly, even in the high and Tow probability regions, by Pearson Main
Type I distribution. The probability density function of the distribu-

tibn can be calculated from:
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f - 47.86

f - 47.86
_7.42 5.13 y 10.62
POF = 150 (W + g7 7 (0 - L)
(32.39 = f, < 79.90 ksi) (Eq. 2.3)

Similary, a Beta distribution with the range from 36 ksi to 68
ksi seems to represent the available data for Grade 40 steel quite well.

The probability density function can be represented by the equation:

f - 36
3.7138 (—135———02'2105 (

68 - f
—_ ¥
32

)3.8]57

PDF (Eq. 2.4)

IA

<

(36 - f

8
y = &

A1l the theorteical distributions described in the preceding
paragraphs were empirically derived using the grouped data. The mean
value of the data was found to be 48.8 ksi and the coefficient of varia-
tion was 10.7%. The theoretical frequency curves for normal, modified
log-normal, Pearson Main Type I and Beta distributions are shown in Fig.
2.1. The cumulative frequencies obtained from the data are also shown
in Fig. 2.1 for the purpose of comparison. The corresponding density
functions and the histogram of the grouped data are plotted in Fig. 2.2.
An examination of these figures clearly indicates that the central
region can be represented by any of the four distributions. The modified
1og-norma1 distribution fits the lower tail as well but considerably

overestimates the strengths in the upper tail region. Pearson Type I
~and Beta distributions, however, fit the entire region. It is, therefore,

proposed that the B-distribution or Pearson Main Type I distribution,



shown in Figs. 2.1 and 2.2 and represented by Eqs. 2.3 and 2.4, should
be used to represent the distribution of yield strength of Grade 40
steel.

(b) Grade 60 steel

The values of 1og]0(fy - 54 ksi) for Grade 60 reinforcing bars
from 273 mill tests, reported by Allen (1972) and Wiss, Janney, Elstner

and Assoc. (1976) grouped together, were found to be normally distributed

in the range from the 0.01 percentile to the 99th percentile. The
probability density functions of normal and modified log-normal distri-

butions for Grade 60 steel can be calculated from the equations:
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'| (f - 7].04 2} ( )
PDF = . exp <- 1/2 Eq. 2.5
6.582\2T 6.582
. 0.43429 Togy,(f, - 54) - 1.20115),
POF - Texp |- 172 0.16200 (Eq. 2.6)
0.16200 (f, - 54)2r :

(fy > 54 ksi)

where fy = yield strength in ksi.

As in the case of Grade 40 reinforcement, Pearson and Beta
distributions were also found to represent the yield strength data for
Grade 60 steel. The probability density functions of Pearson Type VI
and Beta distributions for Grade 60 reinforcement can be obtained from
Eqs. 2.7 and 2.8, respectively:

-41.8811

PDF = 18.923 x 1028 (

24.8022 (

f - 51.32 - 39.7
y 0) fy 9.798)

(fy > 51.320 ksi)

(Eq. 2.7)
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The theoretical frequency curves and the grouped data for Grade 60 steel
are plotted in Figs. 2.3 and 2.4. The mean value of the data was found
to be 71.04 ksi and the coefficient of variation 9.3%.

| For Grade 60 steel the modified log-normal and Pearson Type VI
distribution curves are better approximations at the Tower end of the
curve and the normal curve is better at the high end of the curve, while

Beta distribution curve approximates the entire range of distribution.

2.1.2 Variations in the area of bar cross-section

The actual areas of reinforcing bars tend to deviate from the
nominal areas due to the rolling process. The designers do not have
this information readily available to them, and hence use the nominal
areas in their calculations. For this reason, this variafion should be
incorporated in the strength of steel.

The variation in the ratio of measured/nominal areas (Am/An)

- was studied as a measure of variation in cross-sectional area of reinforc-
ing bars. The values of Am/An are reproduced from available literature
(Al1en, 1972; Baker, 1970; Narayanaswamy, 1972) in Table 2.1. Table 2.1
indicates that the data reported by Baker (1970) for Grade 60 steel
demonstrates high mean value and coefficient of variation. Such values
cannot be explained in definite terms. It is possible that this data
contained a good percentage of values from mills with old rolls that
increased the mean and coefficient of variation. Furthermore, British
rolling practice ‘may differ from Canadian practice. For these reasons,

these values were not included in the analysis.



The ratios of Am/An from tests on Grade 40 and 60 reinforcing
bars, manufactured in Canada (Studies No. 1 and 6 in Table 2.1), were
plotted on normal probability paper. These values exhibited close

agreement in the range fhom 5th to 95th percentile for Grade 40 steel

and from 2nd to 98th percentile for Grade 60 bars with normal distribution.

When values for both studies were combined, they resulted in a normal
distribution in the range between the 3rd and the 99th percentiles with
a mean value of 0.988 and coefficient of variation 2.43% as shown in
Fig. 2.5. Allen (1972) has suggested a mean value of 0.97 for Am/An'
This seems to be a conservative estimate of the average values of Am/An
shown in Table 2.1, and close to ASTM rolling tolerances that allow an
average ratio as low as 0.965 and a minimum single value down to 0.94.
From the above discussion and Fig. 2.5 it seems reasonable to
assume a normal distribution truncated at 0.94 and 1.06 with a mean
value 0.988 and coefficient of variation of 2.4% for the ratio of
measured nominal areas. Where the effect of bar areas is relatively

unimportant, a single value of 0.97 for the ratio Am/An may be used in

lieu of the distribution shown in Fig. 2.5.

2.1.3 Effects of rate of loading

The apparent yield strength of a test specimen increases as
the strain rate or the rate of loading increases. Since mill tests on
steel specimens are generally carried out at much greater strain rates
(approximately 1040 micro-in/in/sec) than encountered in a structure,
they tend to over-estimate the yield strength. A strain rate of 1
in/in/sec may increase the yield strength of Grade 40 steel as much as

50% over the static yier point (Keenan, 1960).
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Tests conducted on steel coupons of A36, A441 and A514 steel
(Rao et al., 1966) demonstrated a yield strength reduction of more or
less the same value for all types of steel with decreases in the rate of
strain. The regression equation developed by Rao on the basis of these
tests gives values of static yield strength that are 4.2 ksi and 3.4 ksi
}less than the yield strengths obtained at cross-head speed of 1000 and

200 micro-in/in/sec, respectively. Rao's (1966) equation is:

=T, -1 _=3.2+0. i . 2.
dfys fy fys 3.2 + 0.00T¢ ksi (Eq. 2.9)

A

(200 = & = 1600)

where € = strain in micro-in/in/sec.
NRC tests on Grade 40 bars (Allen, 1972) showed a reduction of approxi-
mately 3 ksi in the mean yield strength when speed of testing machine
was dropped from 208 micro-in/in/sec to static. This value correlates
well with the one obtained from Rao's equation (1966). Similarly, for
Grade 40 bars, it has been shown at University of I1linois (Keenan,
1960) that the difference between yield strength at strain rate 1040
micro-in/in/sec and strength at strain rate 20 micro-in/in/sec is about
9% or 4 ksi. Swiss tests (Lampert et al., 1967) for high strength
reinforcement demonstrated a reduction of 3 ksi for static condition.
: Simi]ar results were obtained elsewhere (Wiss, Janney, Elstner and
Assoc., 1976).

A statistical analysis of NRC data (Allen, 1972) for Grade 40
- reinforcing bars suggests that the distribution of the difference in
-yield strength at machine speed of 208 micro-in/in/sec and static yield

strength (dfys) has the following properties:

46.
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Mean Value = 2.8359
Coefficient of Variation = 0.1340
Coefficient of Skewness = -0.1030
Coefficient of Kurtosis = 2.9543

These properties strongly indicate a normal distribution for dfys' The
grouped data for dfys and the corresponding theoretical normal distribu-
tion are plotted in Fig. 2.6. These values clearly exhibit a close
agreement in the range from 0.01 percentile to 98th percentile with the
normal distribution. It should be noted that these data are for lab
tests. For evaluation of static yield strength from mill tests, Allen
(1972) has suggested a decrease of 4 ksi. This value seems to be a
conservative estimate for the available test data.

'Based on Eq. 2.9 and Allen's (1972) tests it will be assumed
that the distribution of dfys can be considered normal for Grade 40 and
Grade 60 reinforcing bars with a mean value 3.5 ksi and a coefficient of
variation of 13.4%. In cases where the effect of variability of df s is

y
considered negligible, a single value of 4 ksi may be used.

2.1.4 Effects of bar diameter

The strength of steel tends to vary across the cross-section
of a reinforcing bar with highest strength near the outside of the bar.
This is probably due to cold-working of circumferential sections of bars

during rolling process. Thus the mean yield strength is expected to

~decrease with the increase in diameter. In addition, rolling mill

practice is different for large bars than for small bars. The variation of
the mean yield strength with size is plotted in Figs. 2.7 and 2.8. The

data shown in the figures were taken from several test series for Grade



40 and Grade 60 reinforcement (Allen, 1972; AASHO, 1962; Baker, 1970;
Bannister, 1968; Gamble, 1973; Wiss, Janney, Elstner and Assoc., 1976).
For bars with relatively small diameter the effect of this variation is
small and not clearly established. For large diameter bars such as #14
and #18 this effect becomes more prominent. In addition, the ASTM
specifications allow the use of small specimens machined from samples of
large diameter bars for testing purposes. A specimen machined to a
- smaller diameter from a quarter-piece of a full size bar tends fo show
higher yield strength than the bar itself (Gamble, 1973). Since some
manufacturers may use these tests as a measure of quality control, there
is a higher probability that #14 and #18 bars may satisfy thé quality
controls without developing the required strength.

“An extremely limited amount of data is available for #14 and
#18 bars. Tests on Grade 40, #14 bars carried out by Allen (1972)
showed that the mean yield strength of #14 bars was 44 ksi, a 15% decrease
from strength of #3 to #11 bars produced by the same manufacturer. Some
data has been reported by Gamble (1973) for #14 and #18 bars of Grade 60
steel. The mean yield strengths were 60 ksi for #14 and 55 ksi for #18
bars. These strengths were referred to the nominal areas. Using the
mean yield strength of Grade 60, #3 to #11 bars as 71.5 ksi (as per
" Study No.'6 in Table 2.1) and a 3% adjustment for deviation from nominal
~area, the reduction in strength is approximately 13% for #14 bars and
‘21% for #18 bars. This comparison is, however, not truly justffied
since the data for both studies were not drawn from the same source.
‘Nonetheless, it strongTy indicates the potential under-strength of #14
and #18 bars. On the other hand, however, the data reported by Wiss,

Janney, Elstner and Associates (1976) for Grade 60, #5, #8, #11 and #18
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reinforcing bars did not indicate any significant influence of bar size,
as shown in Fig. 2.8. This is in contradiction to other studies (A]]en;
1972; Gamble, 1973). Until more data are available, it seems reasonable
to assume that the yield strength of #14 and #18 bars will be at least

15% below that of reinforcing bars with small diameter.

2.1.5 Summary and recommended distributions of the

yield strength of reinforcement

The Beta distribution and Pearson distribution curves, shown
in Figs. 2.1 through 2.4, seem to correlate well, particularly the Beta
distribution curve, with the entire distribution range of the available
North American data for yield strength of Grade 40 and Grade 60 reinforc-
ing bars. The mean values and coefficients of variation for the selected
data were found to be 48.8 ksi and 10.7% for Grade 40 and 71.04 ksi and
9.3% for Grade 60 bars.

Based on the Beta Distribution the PDF of yield strength of

Grade 40 reinforcement can be calculated from:

f - 36 68 - f
(36 < f, S 68 ksi) (Eq. 2.4)

Similarly, using the Beta Distribution the PDF of fy of Grade

60 steel bars can be calculated from:

f. - 57 108 - f

'A

(57 f $108 ksi) (Eq. 2.8)
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The distribution curve of the ratio measured/nominal areas can
be approximated with a normal function truncated at 0.94 and 1.06 with a
mean value 0.988 and coefficient of variation 2.4%. Similarly, for
evaluation of static yield strength from mill tests corresponding to
'VASTM specifications, the distribution curve for dfyS should be assumed
to be normal with a mean value 3.5 ksi and coefficient of variation
13.4%. The distribution functions of Am/Ah and dfys are assumed to be
the same for both Grade 40 and Grade 60 steel.

When calculating the yield strength of #14 and #18 reinforcing
~ bars from the strength of bars of smaller sizes a reduction of at least
- 15% should be used to account for the effect of large diameter. In
doing this the mean values should be adjusted to account for deviations
due to bar size, but the standard deviations must be kept constant.

If a single distribution for steel yield strength based on
“nominal area for static loading is desired, it may be crudely approx-

imated by assuming a normal distribution with:

A
i (M fF _3F ,
Mean yield strength = (An) {ufy fys} ksi (Eq. 2.10)
% * %¢ <2
Coefficient of variation = [v2 A [ SR £ (Eq. 2.11)
A /A =5F
mn ufy - dfys

where ?&, O are mean yield strength and standard deviation

based on measured area from mill tests in ksi,

df s 9df are mean correction and standard deviation

Y ys
. for static condition in ksi,
A
(—Eb, v are mean value and coefficient of variation
An Am/An

of the ratio of measured to nominal areas of

bars,
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and u is a factor for diameter effect, and is equal
to 1.00 for #3 to #11 bars and 0.85 for #14
and #18 bars.
Thus Eqs. 2.710 and 2.11 will give a mean strength 44.76 ksi and cov
11.82% for #3 to #11 reinforcing bars with mi1l mean yield strength 48.8
ksi and cov 10.7%.

2.2 ULTIMATE STRENGTH OF REINFORCING STEEL

The sources of variation of ultimate strength of reinforcing
bars are same as those causing variation of the yield strength, except
that the ultimate strength does not appear to be influenced by the bar
size. Consequently, for this study no distinction was made between #14
and #18 bars and bars of smaller sizes for the purpose of studying

ultimate strength.

2.2.1 Variations in strength of material

Results from statistical analyses of ultimate and yield strengths
of Grade 40 and Grade 60 reinforcing bars (Allen, 1972; Wiss, Janney,
Elstner & Assoc., 1976) are compared in Table 2.2. These results indi-
cate an increase in average ultimate strength of steel in the order of
roughly 55% over the yield strength, with other distribution properties
of steel strengths, particularly the coefficient of variation, remaining
approximately unchanged in most cases. From this observation it can be
reasonably assumed that the probability distribution of ultimate strength
of steel follows Beta distribution, which was found to be the best fit
for yield strength data and the equations of the probability density functions

for yield strength will be used after modification for the higher values
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of the ultimate strengths. This will be done here because of the lack
of data for Grade 40 bars.

The modified version of Eq. 2.8 for the Beta distribution of
the ultimate strength of Grade 60 bars is:

f - 88.35)2.0204 167.40 - f

PDF = 4.6169 (-Y u)6.9545

—79.05 (—505 (Eq. 2.12)

< < .. >
(88.35 = f, = 167.40 ksi; f, 2 f,)

Frequency distribution curves from Eq. 2.12 for the Beta
distribution of ultimate strength of Grade 60 reinforcement are plotted
- in Figs. 2.9 and 2.10. The data from 274 mill tests reported by Allen
(1972) and Wiss, Janney, Elstner & Associates (1976) grouped together
are also shown in the figures. The Beta distribution correlates well
with the data, and thus confirms its validity for the ultimate strength
of Grade 60 bars. The average and coefficient of variation of the
ultimate strength of Grade 60 steel were found to be 110.8 ksi and 7.9%,
respectively.

A normal curve is also plotted in Figs. 2.9 and 2.10 for the
purpose of comparison. The normal distribution also indicates a good
correlation with the data in the range from the 2nd percentile to the
99th percentile, but does not correlate in the regions of the lowest and
highest probabilities. With the comparison of both curves, it seems
that the normal distribution is more representative of the actual distri-
bution in the central region, while Beta distribution is more acceptable
for the tail areas. The probability density function for normal distribu-

tion of Grade 60 steel can be calculated from:



1 (fu - 110.8)2 ( )
PDF = —————— « exp |- 1/2 (—g—5r—— Eq. 2.13
8.735v/2n 8.735

Unfortunately, insufficient data is available for the ultimate
strength of Grade 40 steel to allow one to establish an ultimate strength
distribution. However, due to the acceptable degree of correlation
demonstrated by Grade 60 reinforcement with the corresponding Beta
distribution equation, Eq. 2.12, it seems logical that the ultimate
strength distributions for both grades of steel should be based on
similar arguments, and Beta distribution should be adequate for Grade 40
steel as well. From Table 2.2 and the yield strength distributions in
Figs. 2.1 and 2.2, the mean ultimate strength and coefficient of varia-
tion of Grade 40 steel should be taken as 79.3 ksi and 10%, respectively.
The following Beta distribution has been arbitrarily selected to represent

the ultimate strength of Grade 40 reinforcement:

f - 55.8 105.4 - f
PDF = 2.3960 (g *+ 4100 (— U)3.8187 (Eq. 2.14)

< < . >
‘(55.8 - fu - 105.4 ksi, fu - fy)

2.2.2 Effects of rate of loading

Like yield strength, the apparent ultimate strength of a test
specimen is influenced by the rate of loading, the higher the strain
rate, the higher the ultimate strength. Mill tests tend to over-estimate
the ultimate strength due to very high strain rate at which these tests
are conducted. This increase in strength due to rapid loading must be
deducted from mill tests in order to estimate the ultimate strength for

the strain rate at which loads are applied in a structure, which in most
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cases, is close to the static condition.
Some data is available from NRC (Allen, 1972) for effect of
rate of lToading on strength of Grade 40 reinforcing bars with a strain
rate drop from 208 micro-in/in/sec to static condition. Results obtained

from the statistical evaluation of the data are given below:

df = f - f df = f - f

us u us ys y 'ys
Mean Value (ksi) 4.124 2.8359
Coefficient of variation 0.1333 0.1340
Coefficient of skewness +0.7804 -0.1030
Kurtosis 2.7979 2.9543

Although the mean value for dfus increased by approximately 50% over
dfys’ the coefficient of variation remained constant. Other statistical
properties indicate a distribution of dfus somewhat skewed towards the
higher tail, but a close normal distribution for dfys.

Until further information is available the distribution of
dfus may be assumed to be normal with mean value 4.5 ksi and coefficient
of variation 13.4%. 1In cases where the effect of variability of dfus is

considered negligible, a single value of 5 ksi may be used instead of

above-described distribution.

2.2.3 Summary and recommended distributions of ultimate strength

of reinforcing steel

The distribution of ultimate strength cof reinforcing steel can
be represented by Beta distributions. The probability density function
for these distributions can be calculated from Eqs. 2.14 and 2.12 for

Grade 40 and Grade 60 bars, respectively.
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The distribution curve for the ratio measured/nominal areas,
Am/An’ should be taken as normal with average 0.988 and coefficient of
variation 2.4%. Similarly, the distribution of the difference between
ultimate strenéth from mill tests and the static ultimate strength,
dfus’ can be assumed to be normal with the average 4.5 ksi and coefficient
of variation 13.4%. The effects of rate of loading and the deviations
from the nominal areas must be incorporated in the ultimate strength.
The distribution functions of Am/An and dfus are same for both grades of
steel.

If a single distribution for ultimate strength based on nominal
area for static loading condition is desired, it may be crudely approx-

imated by assuming a Gaussian curve with:

Mean ultimate strength = (2\'"1) {? - df } ksi (Eq. 2.15)
. L us
2 2
Ofu ) odfus 2 ;
Coefficient of variation = [V2 mry T (Eq. 2.16)
An/ A T o-df

u us

where ?b, Op are average ultimate strength and standard deviation

u
from mill tests,

df  , o are mean correction in ultimate strength and
us dfus .
standard deviation for static condition,
A
and (ﬁgb, vAm/A are mean and coefficient of variation of the
n ) n

ratio measured/nominal area of bars.

2.3 MODULUS OF ELASTICITY OF STEEL

Modulus of elasticity of steel is an easily predictable para-

meter, which has a small dispersion and is more or less insensitive to
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the rate of loading (Allen, 1970). Also, like ultimate strength, the
modulus of elasticity seems to be unaffected by the bar size (Allen,
1972).

Based on Robertson's data (1931), Allen (1970) has proposed a
normal distribution with mean value 29,200 ksi and a coefficient of
variation of 3% fdr the modulus of elasticity of steel. A statistical
analysis of the NRC data (Allen, 1972) of #3 to #14 bars of Grade 40

reinforcing steel gave following properties of distribution:

Mean value (ksi) = 29,250
- Coefficient of variation = 0.0154

Coefficient of skewness = -0.3582

Kurtosis = 3.2662

These properties indicate a slight skewness toward the lower values,

:although the distribution seems to be close to normal curve.

2.3.1 Summary and recommended distribution

for modulus of elasticity of reinforcement

The probability distribution of modulus of elasticity of rein-
forcing bars should be considered normal with a mean value of 29,200 ksi
~ and a coefficient of variation of 2.4 percent. This coefficient of
variation was obtained by combining with equal weightage the coefficients

of variation of Allen's (1972) and Robertson's (Allen, 1970) data.

—



Chapter 3
GEOMETRIC IMPERFECTIONS

3.1 INTRODUCTION

Geometric imperfections in reinforced concrete elements are

caused due to deviations from the specified values of the cross-sectional
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shape and dimensions, the position of reinforcing bars, ties and stirrups,

the horizontality and verticality of concrete 1ines, the alignment of
columns and beams, and the grades and surfaces of the constructed struc-
tures. Geometric imperfections arise during different phases of the
construction process. For example, variations in size and shape are
mainly dependent on the size, shape and quality of forms used, and to
some extent on concreting and vibrating operations. For these reasons
geometric imperfections vary from country to country, region to region,
and even from structure to structure, depending on the quality of con-
sfruction techniques, equipment, and the training of site personnel.

Unfortunately, the process of collecting and reporting data

for geometric imperfections has not yet been standardized. Without a

reasonable degree of uniformity it is difficult to compare the results
of measurements reported by various researchers for quantitative conclu-
sioﬁs. Furthermore, no data were available for certain imperfections,
such as stirrup spacing, shear span, etc. and probability models for
these imperfections must be extrapolated on the basis of distribution

properties of the related variables. As a result, the probability

models of geometric imperfections suggested in this study are the conse- _

quence of rational interpretation of the qualitative trends of the
available data. These models should be considered preliminary as such,

and should be modified when more complete data are available.



While most researchers have recommended the use of a normal
~distribution (van den Berg, 1971; Johnson, 1953; Connolly, 1975) for the
probability models of the majority of dimensions, probably because of
its simplicity and versatility, others have preferred the use of a log-

" normal distribution (Conno]]y; 1975; Tichy and Vor]igek, 1972) for
certain dimensions. In order to determine the form of the probability
distribution of a dimension it must be established whether the variations
in the dimension are caused by accidental or systematic errors. Examina-
tion of the data presented in this chapter shows that at least in some
cases part of the variation is due to systematic errors. In most cases,
hdwever, the whole or at least the greater part of the variation can be
considered due to accidental errors. If these variations can be attributed
to a great number of mutually independent causes that produce additive

. effects, then the variations, according to the central Timit theorem,
will tend toward the normal distribution. If the effects are multipli-
cative, then the distribution will tend to approach log-normal. From
this discussion it follows that either normal or log-normal distfibution
can be used to represent the dispersion of geometric imperfections of
reinforced concrete members. Due to simplicity offered by-normal distri-
bution, the normal distribution will be used here unless specifically
‘.mentioned otherwise for geometric imperfections related to reinforced
concrete elements.

In this chapter dimensional variations of in-situ and precast
yconcrete members are treated. The variations in the dimensions of
precast elements should be expected to be smaller than those for in-situ
structures, because the higher degree of dimensional controls and smaller

specified tolerances contribute to lower dispersions.
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The areas and spacings of reinforcing steel actually furnished
in concrete elements will differ somewhat from those calculated on the
basis of design strength equations. This is due to the fact that the
designer's option is limited to bars of standard sizes. This difference
in required and specified areas of reinforcement introduces further
variations in member capacities. For this reason the variability of
the ratios of actual to computed areas of longitudinal and transverse
steé] for beams as well as vertical steel for columns is also discussed
in this chapter.

Certain original references used in the text, namely Jacobson
and Widmark (1970), Klingberg (1970), van den Berg (1971), Johansson and
Warris (1968) and Bishop (1963), were not available, and the data
attributed to these references were taken from the excellent review by

Fiorato (1973).

3.2 SLAB DIMENSIONS

3.2.1 Slab thickness

Variations in slab thicknesses are important from the view
point of serviceability as well as strength, High dispersions in the
slab thickness can result in poorly finished floor surfaces. These
dispersions also affect the effective depth of slabs, and thus influence
their stréngth capacities. Variations in slab thickness generally
depend'on finishing operations of concrete surfaces, and to some extent
on the supporting conditions of the forms.

Results from various studies (AASHO, 1962; Johnson, 1953;
Johansson and Warris, 1968; Bishop, 1963; Hernandez and Martinez, 1974)

of the distribution properties of cast-in-place and precast slabs are
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given in Table 3.1. The average measured thicknesses in Table 3.1 are
slightly higher than the specified values for in-situ slabs in almost
all cases. The standard deviations for these studies are nearly constant,
except for the AASHO results for the AASHO Road Test bridge decks where
the standard deviation is much smaller than in the other studies. Lower
values of standard deviation for the AASHO data is probably due to
higher degree of controls employed in bridge construction and possibly
due to the experimental nature of the bridges considered. As expected
for precast construction, the mean deviations from nominal values seem
to be negligible and the standard deviations are small too.

If the results from individual studies shown in Table 3.1 are
assumed to be samples from population of the slab thickness data with
the means and variances of these samples being independent, then the
weighted mean and standard deviation of the total sample can be statisti-

cally calculated from Eqs. 3.1 and 3.2, respectively.

N:)s 1 =1, 2, eeee, k (Eq. 3.1)

Ni (7} - X)? /(-g N.) (Eq. 3.2)
where Y}, o; are mean and standard deviation of sample size Ni’
and X, o are mean and standard deviation of total sample size N.
Weighted means and standard deviations calculated from these equations
for deviations of thickness from nominal values are shown at the bottom
of Table 3.1.
Comparing the weighted values it is evident that the standard

deviation of precast units is roughly 40% of the standard deviation of
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in-situ slabs. But, the mean deviation of in-situ slabs is only slightly
higher than one for the precast units. Based on the observations in
Table 3.1, the recommended properties of distribution for slab thickness

are given in Table 3.3.

3.2.2 Effective depth of slab reinforcement

Variations in effective depth of steel are very important from
point of view of strength. These variations are caused during different
phases of construction, although most of the inaccuracies are induced
during steel fabrication process. These deviations vary depending on
the dimensional inaccuracies involved, locations of supporting chairs
with the possibility of sag of bars between them, and the congestion of
reinforcement that, sometimes, necessitates forcing the bars out of
position during fabrication and vibration processes. In addition top
steel of in-situ concrete is affected also by the methods of placing
concrete. For example, Tower effective depths for top steel should be
expected due "to practice of construction personnel walking on the rein-
forcement during fabrication and concreting operations. This is partic-
ularly true when concrete is transported on planks placed over reinforcement.

Available data on the effective depths of top and bottom
reinforcement of slabs are presented in Table 3.2 (Johnson, 1953; Johansson
and Warris, 1968). For all studies on in-situ slabs the average measured
depths of top as well as bottom reinforcements were smaller than the
nominal dimensions, although top reinforcement was more affected than
the bottom steel. This does not seem to be valid for precast units,

however, where the differences in average measured and nominal, dimensions
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are marginal. This should be expected due to greater degree of controls
employed in precast construction. The standard deviations among indivi-
dual studies of in-situ as well as precast slabs varied only slightly.
The weighted means and standard deviations of all studies for
in-situ as well as precast slabs were calculated using Egs. 3.1 and 3.2,
and are also shown in Table 3.2. A comparison of these values for
in-situ slabs indicates that the mean deviation of top reinforcement
from nominal effective depth is approximately 2 1/2 times the mean
deviation of bottom steel, but the standard deviations for both steels
are about the same. No data were available for the variability of
effective depths of top reinforcement of precast slabs. Since the
variabilities in the positions of top and bottom steels of precast slabs
arise from the same sources, it seems reasonable to assume thét the
probability models for top and bottom steel placements are nearly ident-
ical. Based on this observation and on weighted values in Table 3.2,
the recommended distributions for effective depths are given in Table

3.3.

3.2.3 Concrete cover for slab steel

Distribution properties of concrete cover for top and bottom
reinforcement of in-situ as well as precast slabs were established from
the recommended distributions of slab thickness and effective depths of
reinforcement. Assuming that the variability in the diameter of rein-
forcing bars is negligible, the distribution of concrete cover is the
b‘difference between distributions of slab thickness and effective depth.
The positions of top and bottom reinforcement in an in-situ

slab are controlled by placing chairs on the formwork. Therefore,



concrete cover of bottom steel and effective depth of top bars can be
'assumed to be independent random variables. Since, slab thickness is
also an independent random variable, the concrete cover for the top

reinforcement can be calculated from:

ct =t - dt

and its dispersion can be calculated from:

oét = o% + Gét 4 (Eq. 3.3)
or oét = oét - ci (Eq. 3.3a)

where Oy = standard deviation of slab thickness,

Ogt = standard deviation of effective depth of top steel,

o] standard deviation of concrete cover of top steel.

ct
Similarly, the effective depth of bottom reinforcement in an in-situ

‘slab can be expressed by:

o
1]

t-c

where the cover Cp> and the thickness, t, are independent variables.

Hence the variability of the effective depth is:

2 o 2 2
Ogp = 9% * Iep (Eq. 3.4)
2 . 2 _ 2 ’
or. ogy = 04y - Ot (Eq. 3.4a)
where O4p = standard deviation of effective depth of bottom bars,

‘standard deviation of concrete cover of bottom bars.

b
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Based on these observations and Eqs. 3.3 and 3.4a, the distribution
properties of concrete cover in the in-situ slabs are shown in Table
3.3. The recommended mean and variances of concrete cover are somewhat

higher than the following values found by van Daveer (1975):

Nominal Cover Mean Deviation from Nominal Standard Deviation
(in.) (in.) (in.)
11/2 + 3/8 3/8
2 +1/8 3/8
17/8 - 1/8 1/4

However, van Daveer's data (1975) were drawn from studies of bridge deck
construction where lower variability should be expected due to higher
degree of controls. To avoid inaccuracies resulting from the combina-
tion of standard deviations, calculations should be based on distri-
butions of thickness and effective depth rather than thickness and
concrete cover, etc.

For variability of concrete cover of precast slabs, Eq. 3.3
was used for top as well as for bottom reinforcement because of the

different forming and placing practices.

3.2.4 Summary and recommended distributions of slab dimensions

Dimensional variations in thickness, effective depths and the
concrete cover of tbp and bottom reinforcement of in-situ as well as
pfecast slabs were studied. Based on available information, Gaussian
distributions are recommended to represent the probability models of

slab dimensions with means and standard deviations as shown in Table 3.3.
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3.3 BEAM DIMENSIONS

3.3.1 Beam width
| Results from various investigators (van den Berg, 1971; Hernandez

and Martinez, 1974; Connolly, 1975; Jacobson and Widmark, 1970; AASHO,
1962) for widths of in-situ and precast beam stems as well as precast
beam flanges are shown in Table 3.4. The weighted means and standard
deviations of all data are also shown in the table. Contrary to what is
expected, the data on width of stems of precast beams indicate a higher
dispersion than the comparative data for in-situ beams. This is possibly
due to a higher than usual degree of controls employed at the construc-
tion sites reported by Connolly (1975) and AASHO (1962). Until further
information is available, the standard deviations of the widths of in-
situ beam stems should be taken at least as large as those for precast
béams. Comparison of the results of precast beam ribs and flanges
indicates somewhat higher‘dispersion as well as higher mean deviations
ffom nominal diménsions for flange widths than for web widths of precast
beams. This is consistent with the trend since the more complex form-
wdrk required for T-beams than for rectangular beams would be expected
to lead to larger dispersion in dimensions of T-sections (Fiorato,
1973).

Based on Table 3.4 and the observations mentioned in the above
paragraph the recommended distribution properties of rib and flange

widths of beams are given in Table 3.7.

3.3.2 Overall depth of beams

Variations in the overall depth of beams affect the effective
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depth of reinforcement, and thus influence the strength capacity.
Results from studies of beam depths of in-situ and precast concrete by 7
various investigators (AASHO, 1962; Jacobson and Widmark, 1970;

van den Berg, 1971; Johansson and Warris, 1968; Connolly, 1975) are
shown in Table 3.5. Weighted mean deviations from nominal dimensions
and standard deviations are also shown in the table. Data for in-situ
concrete joists poured in steel forms are not included in the weighted
mean and standard deviation of in-situ beams, since the metal forms
result in better controls for joist construction than for ordinary in-
situ beam-and-column structures. Based on the weighted values the
recommended distribution properties of the overall depth of beams are

given in Table 3.7.

3.3.3 Concrete covering for beam reinforcement

Dispersions of concrete covering of reinforcing bars in concrete
elements are important due to their substantial influence on the effective
depth of reinforcing bars. The variability of the concrete cbvering is
affected by the same factors as the variability of the effective depth,
although the degree of influence may not be the same. In many cases the
variability of effective depth and of concrete covering may be regarded
as mutually dependent; if the concrete cover increases the effective
-depth decreases provided that the total thickness remains unchanged.

Available data (Hernandez and Martinez, 1974; Connolly, 1975)
on concrete covering of top and bottom reinforcement of in-situ beams
and Joists are shown in Table 3.6. Weighted mean values and standard
deviations of the available data are also given in the table. Data

reported by Hernandez and Martinez (1974) for in-situ beams were not



included in the weighted values. It was felt that this data did not
conform to the general trend due to very high mean value and very Tow
standard deviation it exhibited. This data was obtained from buildings
built in Mexico and may reflect different construction practices.

As expected, the top reinforcement of in-situ beams exhibited .
higher mean and standard deviation than did the bottom stee].. In-situ
Joists poured in steel forms showed much lower dispersion than the
in-situ beams. No information was available for the concrete cover in
precast beams, but its distribution properties can be assumed to be the
same as the properties of in-situ joists poured in steel forms. Based
on this assumption and weighted values in Table 3.6, recommended distri-
bution propertieé of concrete covering of in-situ and precast beams are

given in Table 3.7.

3;3.4 Effective depth of beam reinforcement

No data was available for effective depths of beam reinforce-
ment. Therefore, distribution properties of depth of top and bottom
bars for in-situ as well as precast beams were calculated from the
recommended distributions of beam thickness and concrete cover. Varia-
bility of bar diameters were considered negligible for this purpose.
Recommended distributions are shown in Table 3.7.

The position of steel in reinforced ¢oncrete beams are affected
by the same factors and during the same phases of construction as the
position of reinforcement in slabs. This is particularly true for top
bars. However, the position of beam reinforcement is less severely
affected than the slab steel due to increased rigidity of the steel cage
and the formwork for beams as can be seen by comparing Tables 3.3 and

3.7.
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Depth of reinforcement in concrete elements is not only a very
important dimension from strength point of view, it also represents one
of the most unpredictable dimensions. Unfortunately, no data is avail-
~able on direct measurements of effective depths of beam reinforcement.
Until further information is available it seems reasonable to use distribu-
tion properties of effective depth established from other related dimen-

'sions such as those given in Table 3.7.

3.3.5 Stirrup spacing

There is absolutely no data available for variations of stirrup
spacing in the literature searched. Ellingwood and Ang (1972) have
suggested that the uncertainties in stirrup spacing are about the same
as those in the effective depth. This seems logical, since the uncer-
tainties in stirrup spacing are mostly caused during the fabrication of
steel cage.

Current construction practices of cage fabrication in Nprth
America require that the specified number of stirrups should be placed
around the longitudinal bars before tying the stirrups at proper spacings.
Therefore, it seems reasonable to assume that the average spacing of all
stirrups in a beam will not deviate signifiéant]y from the nominal
"spacing provided that the mean length of the beam is equal to the
specified Tength. Even if beam length deviates slightly from the nominal
dimension, the influence on average stirrup spacing will be negligible.
Consequently, mean deviation from nominal for average stirrup spacing
will be assumed to be zero. The standard deviation of stirrup spacing

- will arbitrarily be taken as the average of standard deviations of
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effective depths of top and bottom steel in beams. The probability
~distribution of the stirrup spacing will be assumed to be normal.
Based on the above discussion the recommended distribution

properties of stirrup spacing are given in Table 3.7.

3.3.6 Beam spacing

Dispersions in lateral spacing of secondary beams framing into
main girders influence the strength capacity of main girders and, there-
fore, should be incorporated, wherever warranted, in study of under-
strength of reinforced concrete beams. Since no information is available
on direct measurements of the beam spacing in the literature seérched,
it is assumed that the beam spacing will follow the same probability
distribution as does the spacing of walls and columns.

Fiorato (1973) has reported following summary of data on dev-

jations from specified location of prefabricated walls and columns:

Nominal spacing = 130 - 300 in.
Mean deviation: minimum = ( in.
maximum = 4+ 0.47 in.

Standard deviation: minimum = (0.146 in.
max imum = (0.512 in.

It should be realized that the summary shown above is based on a very
limited amount of field data and should not be considered conclusive.
However, it can serve as a guide until more information is available.
Birkeland and Westhoff (1971) have reported measurements of
spacing between column 1ines of a hull-core type high rise office build-

ing representing high quality of construction. The hull was comprised



of cast-in-place columns and spandrel beams and the floor area was
framed with precast prestressed single tees spanning from the hull to
the core. The reported deViations of the spacing between column lines
as well as the deviations of individual columns from their lines were
usually in the order of 1 in., but the extreme deviations reacﬁed to +2
in. Assuming a normal distribution with mean deviation equal to zero
and the usual rule of "three standard deviations" for extreme values,
the standard deviatibn of column spacing is estimated to be 2/3 in.

This means that about 68% of the deviations will lie within the range of
+2/3 in., and about 86% within the range #1 in.

From the data presented above it seems reasonable to assume
that the probability model of spacing of in-situ beams can be represented
by a normal distribution with mean deviation from nominal value to be
zero and standard deviation 0.67 in. The standard deviation of spacing
-of precast beams should be assumed to be average of minimum and maximum
values of standard deviation of the data on precast walls and columns
reported by Fiorato (1973). The standard deviation thus calculated is
0.33 in., or 50% of the standard deviation of in-situ beam spacings.

The mean deviation for precast beams should be taken as zero. Recommended

properties'bf distributions are shown in Table 3.7.

3.3.7 Summary and recommended distributions of beam dimensions

Recommended probability models of dimensional uncertainties of
cast-in-place and precast beams are shown in Table 3.7. It is emphasized
that this table is based on the very limited information available and

as such should be considered preliminary. As further information becomes
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available the recommended values will probably change. For the sake of
simplicity a Gaussian distribution is recommended for all dimensional

variations.

3.4 COLUMN DIMENSIONS

3.4.1 Cross section dimensions

Results from various studies of the variation of the dimensions
of column cross-sections are shown in Table 3.8(a). With the exception
of van den Berg's (1971) study of circu]ér precast columns all data
shown in the table pertain to rectangular cross section. Weighted mean
and standard deviations of all the data on rectangular columns are also
shown in Table 3.8(a). It should be noted that the measurements reported
by Tso and Zelman (1970) for in-situ rectangular columns were made to
the nearest 1/4 inch. Inaccuracies due to this are largely offset by
the large number of measurements made.

No data are available for dispersion of cross-sectional dimen-
sions of in-situ circular columns. However, a comparison of precast and
in-situ reétangu]ar columns indicates that the dispersion of precast
columns is about 50% of the dispersion of in-situ columns. Therefore,
it seems reasonable to aésume similar relationships between circular
precast and in-situ columns.

Based on the above observations and Table 3.8(a), the recom-
mended distribution properties of column cross sectional dimensions are
presented in Table 3.8(b). Normal probability distributions are recommended

mainly because of their simplicity.
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3.4.2 Reinforcing steel placement

Errors in placement of reinforcing steel of columns are very
important from strength point of view. Redkop (1971) has reported data
on measurement of steel placement errors in columns. His measurements
were taken on 14 in-situ concrete buildings of various size and use in
the Toronto-Hamilton area.

Redkop's (1971) data on concrete cover of exterior steel,
described in Fig. 3.1, shows that the actual cover on the average is
0.32 in. Targer than the specified cover, with the standard deviation
0.166 in. Similar results were reported by Hernandez and Martfnez
(1974) who found the mean deviation from nominal +0.47 inch, and the
standard deviation 0.130 inch. |

Based on Redkop's (1971) measurements Grant (1976) has sug-
gested that the errof in placement of the interior steel can be de-

scribed by a Tinear regression equation:

0., = 0.2035 + 0.329h (Eq. 3.5)

The placement of the steel in the exterior layers can be described with

the regression equation:

Ca = CSp + 0.250 + 0.003%

0.4 = 0.166 (Eq. 3.6)



where E; = Average actual cover or distance from face of column, in.,
CSp = Specified cover or distance from face of column, in.,
Ocq = Standard deviation, in.,
h = Column dimension perpendicular to the neutral axis, in.

For variability of interior as well as exterior steel Grant (1976) has

suggested a normal distribution.

3.4.3 Summary and recommended distributions of column dimensions

Recommended probability distributions of cross sectional
dimensions of precast as well as in-situ columns are given in Table 3.8.
Probability models of reinforcing bar placements in in-situ columns may
be represented by Gaussian curves, with mean values and standard devia-
tions calculated from Eq. 3.5 or 3.6. For probability models of steel
placement in precast columns the mean values of deviations from nominal
dimensions and standard deviations obtained from Eqs. 3.5 and 3.6 should

be reduced by 50%.

3.5 EFFECT OF DISCRETE BAR SIZES

Because the reihforcement in a beam or column must be some
combination of whole bars, the area of steel actually provided in a
reinforced concrete element may differ from that found to be necessary
in the calculations. A comparison of provided and required areas of
reinforcement for a column is shown in Fig. 3.2. This effect of dis-
crete bar sizes on choice of reinforcement was studied in terms of the
ratio furnished area/calculated area (Af/Ac) of steel. This study was
conducted for longitudinal and transverse steel of beams and vertical

reinforcement of columns. Four different sizes of tied square columns
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and three different sizes of rectangular beams were studied with 4000
psi concrete, Grade 40 stirrups, and Grade 60 Tongitudinal and vertical
reinforcement. These strengths were chosen because of their frequent
use in design offices in North America.

For each beam or column a number of practical steel areas were
chosen from actual bar sizes that met all ACI Code (1971) Tlimitations on
spacing, size and number of bars as well as amount of reinforcement. It
was assumed that when the calculated area of reinforcement was less than
90% of the lowest or more than 105% of the highest practical value for
the cross-section under consideration the size of the concrete cross
section would be revised. This limitation is necessary in order to
avoid unrealistically large differences between calculated and furnished
areas of steel near minimum and maximum practical values.

Assuming a uniform distribution (with a range as described
above) for calculated steel area, a 500-point population of the ratio
Af/Ac was simulated for each beam or column, using a random number
generator. The distribution properties thus obtained are shown in Table
3.9. The histograms are plotted in Figs. 3.3, 3.4 and 3.5 for flexural
tension steel in beams, beam stirrups and vertical reinforcement in
columns, respectively. The histograms shown in these figures are highly
skewed due to the fact that a maximum 5% under-design of the reinforce-
ment area was allowed, while no restriction was made for over-design of
steel. Modified log-normal distributions with a modification constant
(Mean Value - 0.10) are also shown with. the histograms shown in Figs. 3.3
through 3.5. The probability density functions of these distributions

can be calculated from the equations:
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log o (Ac/A . - ¢c)-Xy. )2
POF 0.43429 . ex _1/23 10\A¢/Ae qu (Eq. 3.7)
c)c1g

Vor (Ac/A, - g
X, = logy (X - ¢) 31 ¥ (-UL—)zg'W:] (Eq. 3.8)
1g 10 7(‘ -C
o ='\/o.43429 log gi + ( °x )2§ (Eq. 3.9)
1g 10 Y -c

where ¢ is modification constant and is equal to X - 0.10,

and X, oy are mean value and standard deviation of the ratio

Ac/A

f'7%c¢’

To investigate the influence of size of cross section on
distribution of the ratio Af/AC the cumulative frequency functions for
different sizes of concrete elements are compared in Fig. 3.6. Even
though the mean strength and coefficient of variation are affected due
to the size of cross section (Table 3.9), the effect of size on distri-
bution of the ratio Af/Ac seems to be insignificant in the Tower 10%
probability region for all three types of steel investigated. An exam-
ination of the distribution properties shown in Table 3.9 clearly
indicates that as the mean value reduces so does the dispersion of the
ratio Af/AC. This reduces the differences between lower probability
regions of the distributions obtained for different sizes of concrete
elements. In the study of understrength factors it is the lower tail of
the distribution that is most important. For this reason it is not
unsafe to neglect the influence of size on distribution of the ratio

Ac/A

¢
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3.5.1 Summary and recommended distribution of effects of discrete bar sizes

Based on above observations it is suggested that the prob-
ability distribution of the ratio Af/Ac similated for a 36 in. x 36 in.
column and shown in Figs. 3.5 and 3.6 should be used to represent the
effects of selection of discrete bar sizes on flexural tension steel in
beams, beam stirrups and vertical reinforcement in columns for all sizes
of member cross section. Thfs distribution will give same effects in
the low probability region as other simulated distributions, but the
effects in the high probability region will be on the conservative side.
If a continuous curve is desired for the ratio Af/AC it may be approxi-
mated by a modified log-normal distribution with mean value 1.01, co-
efficient of variation 0.04 and modification constant 0.91. The prob-
ability density function for this curve can be calculated from Eqs. 3.7

to 3.9.
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NOTATION

ratio of observed and calculated tensile strength.
ratio of the furnished area/calculated area of steel.

ratio of the measured area/nominal area of a reinforcing
bar. '

mean value of the ratio Am/An‘
total area of vertical steel in a column.
area of both legs of stirrups.

a constant for relationship between compressive and tensile
strengths of concrete.

width of beam stem.

mean value of actual cover or distance from column face.
cumulative frequency function.

coefficient of variation.

specified cover or distance from face of column.
modification constant for modified log-normal distribution.

concrete cover of bottom reinforcement.

concrete cover of top reinforcement.

dead load effect.

effective depth of bottom reinforcement.
effective depth of top reinforcement.

fu - fus'

mean value of dfus.
fy - fys.

mean value of dfys.

modulus of elasticity of concrete at required rate of loading.
mean value of EcR'

modulus of elasticity of concrete under laboratory loading
conditions.
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mean value of Ec'

initial tangent modulus of concrete.

mean value of Eci'

secant modulus of concrete at 30% of maXimum stress.

= secant modulus of concrete at 92.5% of maximum stress.
compressive strength of concrete.

mean compressive strength of concrete.

design compressive strength of concrete.

= compressive strength of cores taken from structure.
= compréssive strength of standard cylinders.

compressive strength of concrete at a given rate of loading

R psi/sec.

mean compressive strength of in-situ concrete at a given
rate of Toading R psi/sec.

= mean compressive strength of concrete in structure.

= compressive strength of in-situ concrete at a given rate

of Toading R psi/sec.

mean value of fcstrR'

= mean compressive strength of in-situ concrete at rate of

loading equal to 35 psi/sec.

compressive strength of concrete at rate of loading of
1 psi/sec.

compressive strength of concrete at loading rate of 35 psi/sec.

mean compressive strength of in-situ concrete for loading
rate similar to that of a cylinder test.

modulus of rupture of concrete.

mean value of modulus of rupture of concrete.
splitting tensile strength of concrete.

mean splitting tensile strength of concrete.

tensile strength of concrete.
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tensile strength of in-situ concrete at loading rate of R
psi/sec. :

mean value of ftstrR'
ultimate strength of reinforcing steel from mill tests.
mean value of fu.

static ultimate strength of reinforcing steel based on
measured area.

yield strength of reinforcing steel from mi1l tests.
mean value of fy'

static yield strength of reinforcing steel based on measured
area. :

column dimension perpendicular to neutral axis.

a constant for rate of loading effect on compressive strength
of concrete.

live load effect.
sample size.

a constant for relationship between compressive and tensile
strengths of concrete.

probability density function.

rate of loading in psi/sec corresponding to fc.
strength.

regression coefficient.

random variable relating real cylinder strength with design
strength, f ]/fé.

maximum value of the ratio Av fy/bs.

crea

minimum value of the ratio Av fy/bs.

random variable relating in-situ strength with real cylinder
strength, fcstructure/f

random variable relating rate of loading effect, fcR/fc35’

creal’

random variable relating volume effect.

stirrup spacing.
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loading duration in seconds.

slab thickness.

coefficient of variation of observed tensile strength with
respect to calculated strength of concrete after accounting

for in-test

coefficient

= coefficient

errors.
of variation

of variation

experimental data for fc

coefficient
concrete.

= coefficient

cylinders.

= coefficient
= coefficient

= coefficient

coefficient
coefficient

coefficient
concrete.

coefficient
coefficient

coefficient
concrete.

of variation

of variation

of variation
of variation
of variation
of variation
of variation

of variation

of variation
of variation

of variation

of ratio Am/An'

of the ratio A determined from

and ft.

of compressive strength of in-situ
of compressive strength of concrete

of real cylinder strength.
associated with fcstrR‘
associated with fcstr35'
corresponding to E;.
corresponding to EcR’

of initial tangent modulus of

of secant modulus of concrete.
of modulus of rupture of concrete.

of splitting tensile strength of

= coefficient of variation of compressive strength of in-situ

concrete relative to cylinder strength.

= coefficient

coefficient

= coefficient

coefficient
volume of a

volume of a

of variation
of variation
of variation
of variation

specimen.

representing in-test variations.
for rate of loading effect.
associated with ftstrR'

corresponding to X.

standard specimen.

mean value or mean strength of a specimen.
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méan value of 1094 (Af/Ac - ¢c).

mean strength of a standard specimen.

a constant for effect of volume on strength.

a constant for effect of volume on strength.
strain rate in micro-in/in/sec.

ultimate strain at a required rate of loading.

ratio of ultimate strain under test conditions to ultimate
strain at the required rate of loading.

load factor.
dead load factor.

live load factor.

-a factor for diameter effect on yield strength of rein-

forcing bars.

maximum longitudinal steel percentage.

minimum longitudinal steel percentage.

standard deviation corresponding to Eg .

standard deviation of concrete cover of bottom reinforcement.
standard deviation of concrete cover of top reinforcement.
standard deviation of effective depth of bottom reinforcement.
standard deviation of dfus.

sténdard deviation of dfys.

standard deviation of effective depth of top reinforcement.
standard deviation of fu.

standard deviation of f .

y
standard deviation corresponding to Y}g.
standard deviation of overall depth.
standard deviation corresponding to X.

capacity reduction factor.



Table 1.1

Concrete Strength Variability

‘Source Test Type of Coefficient of
Type No. Distribution .Variation (%)

Julian  (1955) cyl. | 861 Normal 10.4

Cummings (1955) cyl. 208 Normal 9.3
~|Shalon (1955) cube --- Normal 14.2
|Shalon (1955) cube --- Log-normatl 23.6

Bloem (1955) cyl. 1429 Normal 11.4

Bloem (1955) cyl. 354 Normal 16.4

w&gner (1955) cyl. 613 Normal 11.8

Erntroy  (1960) cube 4000 ——— 20.0

Malhotra (1962) cyl. 68 ——— 13.5

Wagner (1963) cyl. 688 Normal 12.4

Wagner (1963) cyl. 688 Normal 15.2

BPR (1965) cyl. 975 Normal 12.4

BPR (1965) cyl. 200 Normal 10.9

Virginia cyl. 210 Normal 7.2

Hwy . (Newlon,1966)

Soroka (1968) cyl. 68 Normal 15.2

Riley (1971) cyl. | 50,000 Normal 13.6

Kawasaki (1974) cube 742 Normal 13.2
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Coefficient of Variation of Real Observed Tensile Strength of

Table 1.6

Concrete Relative to its Calculated Strength

3523?:}22 EqngF1on Equa?;og Used VAtest VA
Splitting 1.19 4.14 £ | 0.12514 | 0.11652
Tension 1.21 6.4 /2 0.12678 | 0.11863

1.22 2.2 /3 0.14057 | 0.13410
Flexural 1.26 12.23 0471 019669 | 0.19175
Tension 1.28 8.0 f/? 0.19799 | 0.19287

1.29 32.0 /3 0.19760 | 0.19305
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