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Abstract

High levels of penetration of distributed photovoltaic generators can cause

serious overvoltage issues, especially during periods of high power generation

and light loads. It is of vital importance to gain more understanding of the

system and to prepare mitigation plans before the number of PV installations

reaches a critical level. Therefore, properly assessing the PV hosting capacity is

necessary. In this thesis, the hosting capacities of several real circuits in Alberta,

Canada are evaluated using Monte Carlo simulation-based probabilistic power

flow (MCS-based PPF) method. The examined circuits are located in the cities

of Fort McMurray, Lloydminster, and Drumheller. These areas represent circuits

of different sizes and complexities. The hosting capacities of the three regions

were determined to be 10%, 60%, and 70%, respectively. Buses impacted by PV

penetration were found in all three distribution networks. Factors influencing

the PV hosting capacity are also identified and analyzed.

There have been many solutions proposed to mitigate the voltage problems,

some of them using battery energy storage systems (BESS) at the PV generation

sites. In addition to their ability to absorb extra power during the light load

periods, BESS can also supply additional power under high load conditions.

However, their capacity may not be sufficient to allow charging every time when

power absorption is desired. Therefore, typical PV/BESS may not fully prevent

over-voltage problems in power distribution grids. This thesis develops a co-

operative state of charge control scheme to alleviate the BESS capacity problem

through Monte-Carlo Tree Search based reinforcement learning (MCTS-RL). The

proposed intelligent method coordinates the distributed batteries from other re-

gions to provide voltage regulation in a distribution network. Furthermore, the

energy optimization process during the day hours and the simultaneous state of

ii



charge control are achieved using model predictive control (MPC). The proposed

approach is demonstrated on two test cases, the IEEE 33 bus system and a prac-

tical medium size distribution system in Alberta Canada.

Optimization technology is developing to the point of becoming a cost-effective

enabler of increased utilization of power transfer assets. This research presents

a smart decomposition technique for the traditional optimal power flow (OPF)

algorithm to allow distributed optimal power flow (DOPF) calculations without

relying on a centralized controller. Hence, it develops a feasible distributed ar-

chitectures for the electric power industry. The proposed method is implemented

using the same algorithm MCTS-RL. This reduces computational complexity and

avoids difficulties associated with stochastic modeling often used to capture the

random nature of distributed energy resources (DER) units and loads. The effi-

ciency of the optimization process is improved when the DOPF reflects the fast

response capability of the optimal solution. This contribution provides results

for a real-time dispatchable resource and demonstrates the flexibility of RL to

adapt to changes in system states, ultimately reducing the generation cost while

maintaining the system security constraints.

This thesis also develops a decomposition methodology for the traditional

optimal power flow. It not only avoids the challenges associated with the stochas-

tic nature of DERs and loads, but it also reduces the computational complexity

of the conventional linear programming approach in the optimization problem.

It does so using machine learning algorithms employed for two crucial tasks.

First, MCTS-RL identifies clusters of network nodes to form a distributed ar-

chitecture suitable for electric power transactions. Second, the network states

updated by RL are used to execute conventional linear programming on a re-

duced set of lines identified during the previous step. The proposed approach is
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demonstrated through a real-time balancing electricity market constructed over

the IEEE 69-bus system and enhanced using price signals based on distribution

locational marginal prices. This application clearly shows the ability of the new

technique to effectively coordinate multiple distribution system entities while

maintaining system security constraints.
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Chapter 1

Introduction

Adoption of Distributed Energy Resources (DER)s in the smart grid aims to en-
hance the reliability, sustainability, and economics of distribution systems. An
important example of fast-growing renewable technologies around the world
are Photo-Voltaic (PV) generation systems [1]. These roof-mounted PV panels
can provide significant cost savings by avoiding purchasing energy from the
grid. It is also expected that PV power generation will alleviate the long term
load growth in many distribution systems.

Studies have shown that high PV penetration can negatively affect voltage
stability in the distribution grid. The main concern is the overvoltage due to the
reverse power flow in distribution networks at the light load [2]. As a short-
cut solution, utilities typically limit the PV penetration in the distribution feeder.
However, this leads to losing a significant amount of PV power generation which
might otherwise be beneficial for the system. This thesis uses a stochastic anal-
ysis framework to simulate possible PV deployment scenarios, to identify the
locations of the critical buses in the grid and to examine the maximum accept-
able levels of PV penetrations.

In chapter 3, analysis of PV hosting capacity (PVHC) is conducted using
probabilistic power Flow (PPF). This part of the thesis also presents the results
of PVHC assessment for three types of distribution networks. The probability
distributions of bus voltages are examined with a predetermined threshold to
determine the buses affected by the PV penetration levels in the system.

For particular issues, many solutions have been suggested to resolve the volt-
age rise problem due to high PV penetration. Most researchers rely on reactive
power absorption by regulating the local Volt/VAR on the PV sites. Such designs
are implemented in many types of equipment such as transformer tap-changers,

1



smart inverters, capacitor banks, etc. [3–5]. However, although it resolves the
over-voltage issue, this solution tends to reduce the feeder power factor and in-
crease of line losses [6, 7].

A powerful alternative to maximize the local generation is to couple PV gen-
erators with the battery energy storage system (BESS). This technology can in-
crease the local consumption during the light load period and served the in-
creased demand during heavy load periods [8–10]. Moreover, it can contribute
to a better balancing of the power grid by smoothing out the demand peaks, and
improve the reliability and economy of the distribution system. Unfortunately,
BESSs have finite size and may become fully charged or discharged during the
control process significantly reducing the efficacy of voltage rise mitigation.

To avoid shortcomings of requiring excessive BESS capacities or setting an
upper limit of permitted PV penetration levels, we propose a BESS coordination
strategy that does not need any extra equipment to be connected to the power
network [11–14]. The DER units are highly stochastic and dynamic in their dis-
tribution and behaviour, which may lead to the growth of system uncertainty.
This can be addressed using intelligent approach such as Reinforcement Learn-
ing (RL) [15–17], to coordinate the DGs so as to mitigate the over voltage prob-
lem.

Chapter 4 describes an intelligent technique referred to as Cooperative State
of Charge Control (CSOCC). It is well suited for large, complex distribution net-
works. It suggests that the impacted regions (i.e. regions negatively affected by
the voltage rise problem caused by high penetration of PV generators) should be
supported by an assisting region with normal voltage conditions. This approach
combines a centralized controller using Monte-Carlo Tree Search (MCTS) based
Reinforcement Learning RL, and a decentralized controller using Model Predic-
tive Control (MPC). The MPC is developed to control the SOC of participating
BESS units, and optimize the battery scheduling to minimize energy consump-
tion. To demonstrate the operation of CSOCC and evaluate its efficiency, the
proposed approach has been tested on two distribution systems: a test model of
IEEE 33 bus system and a medium size distribution system model of the city of
Lloydminster, Alberta, Canada.

Available Transfer Capability (ATC) is characterized by the North American
Electric Reliability Council (NERC) in conjunction with the Federal Energy Regu-
latory Commission (FERC). In order to notify all the energy market participants
of a power system about the ATC, this information has to be available on an
hourly or daily basis [1]. The two major challenges that make the task of ATC

2



calculation of a nonlinear power system challenging are computing speed and
accuracy due to static and dynamic security constraints. Meanwhile, high DER
penetration and growing power transfers are necessary for a competitive elec-
trical power market; however, this is leading to the deregulation of power sys-
tems. For smooth transactions of power between areas, new technologies and
assessment methods are urgently needed. Transfer capability of a power system
also points out how much inter-area power transfer can be increased without
system security violations. The vital information required for the planning and
operation of the power systems can be obtained from these transfer capability
calculations. Power transfer capability details provide system bottlenecks to the
planners and the limits of the power transfers to the system operators. The re-
peated estimations of these transfer capabilities allow reduction of the risk of
overloads, over-voltages, equipment damage and unexpected blackouts.

Chapter 5, explores the feasibility of fully distributed calculation architec-
tures for the electric power industry. These architectures are represented by the
decomposition the large optimal power flow (OPF) problems into distributed
optimization and management regions. Moreover, they can handle the physi-
cal events and the circumstances of the power grid, and alleviate the massive
computations of a centralized optimization problem.

Although the centralized optimization can be decomposed into many smaller
distributed optimization problems, the resulting power transactions are very dy-
namic and stochastic in nature. Thus, forming their stochastic models before-
hand is very challenging. As mentioned earlier, RL is a powerful tool for solving
complex sequential decision-making problems. It can learn the optimal stochas-
tic policy effectively without relying on prior information. Each distributed op-
timization problem is led and managed by a local agent that can exchange in-
formation with its neighboring agents [18] and limit the power transactions in
the network. Chapter 6 proposes a multi-agent RL system which allows the
agent controllers to adapt to any changes in the power network without limit-
ing its reliance to the neighbouring buses. In addition, the multi-agent architec-
ture can improve communication among the numerous network segments. This
improves the ability of the system to deal with large, complex distribution net-
works, while maintaining system security.
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1.1 Research Objectives

The key objectives of the presented research can be organized in the following
three groups:

1. Voltage violation assessment in large distribution systems with high DER
penetration:

• To conduct a comprehensive assessment of the PV hosting capacity
impacts on power distribution systems, concentrating on overvoltage
problems.

• To identify main factors affecting hosting capacity, and determine their
correlations with the power system operation responses.

2. DER impact mitigation using energy management and coordination meth-
ods:

• To identify regions affected by DER-induced overvoltage, so-called
impacted regions, in distribution circuits of substantial size and com-
plexity.

• To develop an intelligent system for coordinating charging/discharg-
ing processes of BESSs to mitigate the overvoltage problem.

• To minimize energy consumption by developing an optimization strat-
egy that schedules battery operation.

3. Distributed optimal power flow for distribution systems with stochastic
DER units:

• To develop a methodology to divide OPF problems for large circuits
into smaller sub-problems through analysis of node cohesiveness and
generation of distributed optimization architectures suitable for elec-
tric power transactions.

• To reduce the computational burden of conventional optimization meth-
ods such as linear programming.

• To avoid violations of network security limits, such as congested lines
due to the extra power flow and line losses.
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1.2 Research Originality

The use of BESS at PV generator sites can significantly improve voltage stability
of power systems, because they can absorb extra PV energy generated during pe-
riods of light load. In addition, BESS can also assist the generation during peak
load periods. However, their extensive use is still limited by their relatively high
cost. Consequently, their size limitations may result in a full charge or discharge
during the control process and thus inability to further support voltage stability
of the system. To address this issue, it has been proposed to use the available
storage capacity of neighboring BESS units in distribution networks [11–14, 19].
This way, the charge/discharge power of BESS can be maximized using com-
mon battery scheduling. However, the operation strategies of such systems have
been programmed in advance, and prior knowledge about the system must be
provided to the controllers so they can identify regularities in the environment.
Nevertheless, in many cases, the states of the environment are uncertain and/or
they may change over time. Consequently, the implemented strategies may be
unable to converge. In addition, the above mentioned studies only consider the
SOC of the neighbouring BESS units. However, other factors (such as line losses
and voltage levels) are not considered, although may also change over time and
result in additional uncertainties.

These challenges call for a new system design that can learn strategies on its
own, with a minimal prior knowledge about the environment. It is proposed to
use an adaptive RL agent model approach that, unlike systems with supervised
learning, can learn by trial-and-error without an explicit teacher. In addition,
another intelligent technique of MCTS is implemented to build a feasible envi-
ronment for the agent. This significantly reduces the high computational burden
that would occur if the entire network were considered. It also assists and accel-
erates the progress of storing the state updates of particular buses in a tree-nodes
configuration. Each node in the search tree can store multiple system states, such
as the information about the available BESS capacities, bus voltage values, and
line losses.

Very large, complex distribution networks, may also require detection of im-
pacted buses and identification of assisting buses in the network. The newly
proposed approach, i.e. CSOCC, is well suited for these tasks as it divides a
large grid into multiple smaller networks based on the configuration of so-called
impacted regions. Finally, due to the non-trivial nature of system costs, battery
generation must be rescheduled using a sound optimization approach and the

5



overall control strategy must be changed accordingly. Here MPC is used as a
decentralized controller with two main tasks: it optimizes battery scheduling to
minimize energy consumption, and it estimates and controls the state of charge
(SOC) of the BESS units used to mitigate the PV-induced overvoltage problems.

Recently, several distributed optimization architectures have been proposed
to solve the problems associated with the use of the centralized optimization in
distribution networks [20]. For distribution networks, in contrast to transmis-
sion networks, the major challenge is that power transactions are very dynamic.
They also occur under varying load and generation conditions, and at different
locations. In addition, to avoid limitations of conventional economic power dis-
patch algorithms, prior statistical characterization of all DER units and loads are
needed simultaneously during the optimization process.

As mentioned earlier, RL is powerful tool for solving complex sequential
decision-making and control problems. It has been successful in learning stochas-
tic policies and converging in high-dimensional environments, without relying
on prior characterization of the system. Liu et al. [18] proposed an approach
using distributed RL agents that exchange control information with their neigh-
bours. Each agent controller makes its own action decision based on its states
and the states of the neighbouring controllers, in so called distributed cooper-
ative mechanism. However, this study relies on limited information exchanges
and power transactions since it utilized just neighbour buses. Moreover, it is
based on a base case power flow and does not consider the real-time impact of
the line flow variations on the grid.

To address these issues, nodal search associated with the DER optimization in
a distribution grid is performed using the proposed intelligent method MCTS-
RL. The agent learns the stochastic DER behaviour and network security con-
straints. As a result, it can optimize DER dispatch based on their price bids. It al-
lows the controller to adapt to any changes in the network to maintain system se-
curity. MCTS facilitates navigation through the network (not just the neighbour
buses) using tree search. It starts from the buyer bus and allocates the optimal
DER units within the feasible region. Compared to centralized OPF, the MCTS-
induced search space is significantly reduced. The network states updated by
RL with the selected feasible set are then used to accelerate the conventional op-
timization approach of linear programming.

When dealing with complex, large distribution circuit, it is necessary to si-
multaneously monitor multiple network constraints and transfer their values
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among the network segments during execution. Therefore, it is necessary to
establish a suitable communication framework. In this thesis, we form a multi-
agent system to facilitate interactions between these segments located in various
locations of the circuit. This architecture also includes a central coordinator that
can efficiently manages the information exchange among the agents in multi-
region systems.

Due to the line flow variations that may occur after each power transaction
in the network, the thermal security limit may be jeopardized. To mitigate this
risk, line congestion and losses due to the extra flows are calculated in real time
through the central coordinator and sent to agents to modify their optimization
policy accordingly.

1.3 Thesis Organization

The chapters of the thesis are structured as follows:

1.3.1 Related Work and Theoretical Background (Chapter 2)

This chapter offers a focused literature review and background on the topics rele-
vant to the research presented in this thesis. It also presents details of established
algorithms and functionalities which are used in building the research models
that are proposed and presented in later sections. The topics covered include de-
centralized and centralized control strategies, available transfer capability, nodal
pricing, Monte Carlo tree search, and reinforcement learning.

1.3.2 Assessment of Photovoltaic Hosting Capacity of Existing Distri-
bution Circuits (Chapter 3)

In recent years, the deployment of distributed energy resources (DERs) has in-
creased significantly, especially the residential photovoltaic (PV) systems. PV
power generation has a strictly daytime pattern often coincident with low de-
mand period on most the distribution feeders. As result, it may cause significant
impact on feeder voltage. Therefore, it is crucial to assess and quantify the PV
system operations to enhance the understanding of these systems at high deploy-
ment rates before moving forward to their level. Thus, careful assessment and
consideration of the PV hosting capacity limits are necessary. In this chapter, the
hosting capacities of three real circuits in Alberta, Canada are evaluated using
Monte Carlo simulation-based probabilistic power flow (MCS-based PPF). The
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results reveal that the hosting capacities of the three examined circuits (Fort Mc-
Murray, Lloydminster, and Drumheller) range significantly between 10%–70%.

1.3.3 Reinforcement Learning based Distributed BESS Management
for Mitigating Overvoltage Issues in Systems with High PV Pen-
etration (Chapter 4)

As described in chapter 3, high PV penetration can cause serious overvoltage is-
sues, essentially during periods of high power generation and light loads. Many
solutions have been proposed to mitigate this type of voltage problems, for in-
stance, reactive power absorption, control of local Volt/VAR using smart invert-
ers, or on-load tap changer (OLTC) transformers. However, most of these so-
lutions causing reduction of the system power factor. They also lead to an in-
creased flow of the reactive current into the distribution conductors and, con-
sequently, to increased losses. The integration of BESS with PV generator sites
may help resolving the overvoltage problem during the light load periods and
supply extra generation during the peak periods. However, their widespread
deployment has been hindered by their relatively high cost. In addition, their
capacity may not be adequate to allow charging every time when power absorp-
tion is required.

To compensate for the BESS capacity problem, this chapter develops a new
method called cooperative state of charge control. This scheme combines Monte-
Carlo Tree Search based Reinforcement Learning (MCTS-RL) and model predic-
tive control (MPC). The proposed intelligent method coordinates distributed bat-
tery systems from neighbouring buses to provide power management and volt-
age regulation in the impacted region of the distribution network. MCTS-RL
is used as a centralized controller that optimizes the cooperating buses in each
network segment in terms of BESS availability, with minimal line losses. MPC
serves as a decentralized controller by determining the amount of energy re-
quired to resolve the voltage problem, taking into account the battery state of
charge (SOC). Two test circuits are cosndiered in this study: the IEEE 33 bus sys-
tem, and a real distribution system of the sity of Lloydminster, Alberta, Canada.
The results show that in addition to successful overvoltage mitigation, this ap-
proach also minimizes the energy consumption.
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1.3.4 Distributed Optimal Power Flow for Electric Power Systems with
High Penetration of Distributed Energy Resources (Chapter 5)

This chapter presents a smart decomposition technique for the conventional op-
timal power flow (OPF) to form a distributed optimal power flow (DOPF) ar-
chitecture. This proposed algorithm demonstrates the usefulness of fully dis-
tributed architectures for the electric power industry through the assessment of
all the physical entities of the network. It also examines the interaction among
these entities to optimize their mutual power transactions.

To alleviate the computational complexity assciated with the stochastic na-
ture of distributed energy resources (DER), this approach uses Monte Carlo Tree
Search based reinforcement learning (MCTS-RL). RL also improves the efficiency
of the optimization process: it divides the central optimization problem into
smaller subproblems and optimizes the economy of regional operations. This
presented results demonstrate the ability of the proposed algorithm to dispatch
DER units in real time and show its adaptability to changes in the system states.
The optimal dispatch minimizes the overall generation cost while maintaining
system security constraints.

1.3.5 Distributed Optimal Power Flow for Electric Power Systems with
Stochastic Distributed Energy Resources Using Multi-agent Ar-
chitecture (Chapter 6)

Customer-owned DER entities tend to maximize their profits autonomously and
independently. Consequently, the structure of modern grids becomes highly dis-
tributed and ensuing electric power markets more complex, and stochastic. Since
these entities are physically interconnected in the same network, decision made
by any entity may affect the rest of the entities in the network. Collectively, they
may affect the power system assets. Hence, the capacity of the system infrastruc-
ture should be improved, for example by building new line assets that meet the
new peak demand. To address this infrastructural concern, this chapter expands
on the results presented in chapter 5 by proposing a new virtual architecture
based on a cooperative multi-agent system. The proposed solution promises to
mitigate the identified problems without the need to change the system infras-
tructure.

The proposed approach is based on RL that can efficiently learn the opti-
mal stochastic policy in high-dimensional spaces and reach the goal state in a
probabilistic fashion without relying on the prior information. The multi-agent
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architecture makes RL even more powerful by facilitating effective communica-
tion among agents representing individual regions in the network. Along with
multi-agent RL, this approach uses MCTS to increase the RL observability and
reduce the system complexity.

1.3.6 Conclusion and Future Work (Chapter 7)

Chapter 7 summarized the work presented in this thesis and overviews its main
contributions. It also identifies the limitations of the current work and shows
possible directions for future research on the topics presented in this thesis.
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Chapter 2

Related Work and Theoretical
Background

This chapter offers a focused literature review on topics relevant to the research
presented in this thesis. It also reviews the key concepts employed in the research
topics presented in Chapters 3 through 6.

2.1 Related Work

Several studies have assessed PV the impact on the system voltage stability in
electric power distribution systems. Tonkoski et al. identified the X/R ratio of
the network lines as the main sensitivity factor and analyzed the influence of PV
sites on feeder impedance [21]. The authors showed that the bus voltages are
inversely proportional to this ratio. A similar study by Coogan et al. examined
the locational dependency of PVHC in the network [22]. They determined that
there is a correlation between the system voltage and the distance between the
feeder and PV locations, and that the overvoltage problem is directly propor-
tional to this distance. Rylander et al. investigated PV interconnections in LV
distribution systems in commercial areas through an original streamlined tech-
nique [23]. Other studies [22, 24] added that the PVHC depends not only on the
PV penetration level, but also on the sizes and locations of PV systems installed
in residential areas, as well as on other factors such as circuit load conditions,
reactive power of the circuit, and short circuit level of the system.

There have been many solutions proposed to alleviate the voltage rise prob-
lems associated with high levels of PV penetration. For example, Hashemi et al. [25]
and Stetz et al. [26] proposed to use reactive power absorption and online trans-

11



former tap changers to deal with the overvoltage issues. However, such solu-
tions may not hold as they could lead to the rise of power system losses and
reduce the power factor. Although the use of smart inverters to control local
Volt/VAR on the PV sites provides a more beneficial solution [7], high cost pro-
hibits their widespread use.

A number of recent studies use a coordinated control of PV and BESS to im-
prove the voltage stability by locally installed storage systems [9, 10]. However,
they do not consider the limitation of full charge and discharge, and ignore the
high cost of the BESS-based solutions, especially for battery systems with high
capacities.

To minimize the required capacities of BESS, several authors proposed coor-
dination of neighboring BESS units to adjust the charging/discharging rates [11–
14, 19]. However, these strategies require prior knowledge about the system to
assess its states comprehensively and avoid unstable solutions under the system
uncertainties.

At the same time, power distribution systems are becoming more and more
distributed. The numbers of DER sites in residential areas are continuously
growing. This is associated with massive power transactions that may require
additional generation capacity and new line assets to supply the peak demand.
Therefore, the tools for calculating distributed OPF became increasingly impor-
tant to guarantee efficient system operation while maintaining its security con-
straints.

Recent literature presents several approaches to the distributed OPF prob-
lem. Xia et al. [27] and Li et al. [28] proposed fully distributed methods that
derive a set of distributed control laws for economic dispatch in a microgrid. In
this method, the communication structure is designed in two layers. The first en-
sures the supply-demand balance in the microgrid and the second coordinates
control agents. A decomposition of the centralized optimization problem into
many smaller optimization problems has been presented through a divide-and-
conquer approach [29, 30] where each agent exchanges information with its net-
work neighbors. However, such approaches lack ways to model the stochastic
behavior of the DERs in a distribution system.

Some authors [31–33] used Markov decision processes (MDPs) to resolve the
randomness of DER units and loads, while other [34–36] applied distributed
model predictive control (MPC) for stochastic dispatch optimization in micro-
grids. In each entity of a microgrid, there is a local MPC controller that executes
a receding-horizon optimization. Although some of these studies consider sys-
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tem stochasticity, they all have one shortcoming in common: they require prior
knowledge of system parameters to guarantee the optimal solution convergence.

Reinforcement learning (RL) is based on a generalizable and powerful algo-
rithm that can effectively solve complex sequential decision-making problems
without relying on prior system information. A distributed cooperative mecha-
nism using RL was proposed by Liu et al. [18]. In this approach, each distributed
agent exchanges information with its neighbouring buses in a microgrid. In other
words, it makes action decisions based on its state and the neighboring states.
However, the system observability is insufficient for a wide range of numbers
of buses when considering just neighbours. Therefore, it definitely limits the
power transactions and may affect the DER selections in the optimization prob-
lem. Moreover, this approach does not consider the thermal security limit.

2.2 Background

2.2.1 Centralized and Decentralized Control Strategies

Coordination methods are usually based on two essential strategies: centralized
and decentralized control. In centralized control, a central controller aggregates
measurements from the entire network and determines the charging/discharg-
ing control tasks for each BESS. This approach is more efficient than the decen-
tralized control as it is based on the current information about the entire network.
In the event that a particular BESS cannot meet the requirements for smooth op-
eration, the central controller can successively search for alternative units until
the problem is resolved. However, centralized control demands a fast commu-
nications infrastructure, increasing the computation requirements and overall
costs. Furthermore, in case of communication failure, BESS units may become
unresponsive to the central controller [37,38]. In decentralized control, the mon-
itoring and control of charging and discharging actions are performed locally by
each BESS. The main advantage of this approach is that it does not require extra
communication systems, making it robust and cost-effective. However, when a
BESS unit is either fully charged/drained or can only provide a limited power
supply/load, it is unable to request support from other BESS units. The unit
may even experience a total failure resulting from the lack of communication
with other units [39, 40].
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2.2.2 Available Transfer Capability (ATC)

An ATC assessment is essential for the successful implementation of electric
power deregulation where the power producers and customers share a common
distribution network for delivering power from the point of generation to the
point of consumption. The ATC indicates the amount by which inter-area bulk
power transfers can be increased without compromising system security. The
value used for ATC affect both system security and the profits made in bulk
power transactions. When the upper or lower ATC limits are exceeded, market
participants can have conflicting interests. Thus, under deregulation, there is an
increasing motivation for defensible calculations of ATC. In this thesis, ATC is
calculated in a static power flow as follows [41–43]

ATC = TTC - TRM - CBM

where

TTC (Total Transfer Capability) is defined as the quantity of electric power that
can be transferred over the interconnected path reliably without violating
a predefined set of conditions of the system. The various constraints that
limit TTC may be from the physical and/or electrical characteristics of the
systems including thermal, voltage, and stability limits

TTC = Minimum of {Thermal Limit, Voltage Limit, Stability Limit}.

TRM (Transmission Reliability Margin) is defined as that amount of transmis-
sion, or line transfer capability, and is an essential assessment to ensure
that the interconnected network line is secure under a reasonable range of
uncertainties in system conditions.

CBM (Capacity Benefit Margin) is defined as the amount of line transfer capa-
bility reserved by load-serving entities to ensure access to generation from
interconnected systems to meet generation reliability requirements.

The transfer capability is determined for the following reasons:

• The estimation of TTC can be used as a power system reliability indicator.

• It can be used for comparing the special merits of planned transmission or
distribution system improvements.
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• It can be used to improve reliability and economic efficiency of the electric
power markets.

• It can be used for providing a quantitative basis for assessing transmission
reservations to drive energy markets.

2.2.3 Power System with Uncertain Variables

With the increased integration of renewable energy resources into power grids
such as wind and solar generation, a considerable number of uncertainties are
introduced to system power flows. Regarding the uncertainty of power injection
caused by intermittent renewable resources and market-driven operation, the
active power and reactive power would oscillate within a particular range and
can be inspected using the intervals. Uncertainty of power injection is caused
intermittency of renewable generation and stochastic behavior of electricity mar-
ket. As a result, the active and reactive power cannot be determined with cer-
tainty, but instead as a range of possible values that can be described using inter-
vals [44, 45]

[Pi] = Pi(1 + [ξpi]); [Qi] = Qi(1 + [ξqi])

where [ξpi], and [ξqi] are the variation range ratios of the active and reactive
power, respectively. They are usually called the perturbed variables of active
and reactive power injection, and are represented by a predefined interval.

The Taylor inclusion function is an interval analyzer that is used to solve a
set of interval non-linear equations using inclusion functions. To make the in-
terval width narrower, the high-order Taylor series expansion of functions are
frequently used. Also, it’s used to present the lower and upper bounds of the in-
terval results; where, at the tightest bounds, the probability guarantees to enclose
the actual distribution. The interval bounds that an interval variable assumes in
the presence of a variation of ±∆x around a nominal value xc, can be evaluated
by the Taylor inclusion function, which is shown in Fig. 2.1.

F([x]) = F(xc) + F
′
(xc)[∆x] + · · ·+ 1

(n)!
Fn(xc)[∆x]n +

1
(n + 1)!

Fn+1(λ)[∆x]n+1
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Figure 2.1: Taylor inclusion function.
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The first-order derivative of the equation is the conventional power flow and
can be represented by the Newton iteration formula

−Jk∆xk = ∆Fk,
xk+1 = xk + ∆xk,

where Jk represents the Jacobian matrix at iteration k, and ∆Fk is the residual
vector at iteration k. The first-order derivative of the equation can be expanded
into matrix form as


∂F1
∂x1

∂F1
∂x2

· · · ∂F1
∂xN

∂F2
∂x1
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∂xN

...
...

. . .
...

∂FN
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∂FN
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· · · ∂FN
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
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∂x2
∂ξ j
...

∂xN
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+
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∂F1
∂ξ j
∂F2
∂ξ j

∂FN
∂ξ j

 = 0

for j = 1,2,...,m. Expanding the second-order derivative of the equation also into
matrix form gives
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where H(Fp), for p = 1, 2, ..., N is the Hessian matrix of the function Fp.
According to NERC and FERC, the interactions between two independent

bilateral power transactions are required to be checked and evaluated under the
power market environment. Hence, it is required to know the maximum power
transfer limit.

2.2.4 Nodal Pricing

Nodal pricing or Locational Marginal Pricing (LMP), represents the most effi-
cient expression of locational energy prices. LMP, which is already used by some
US utilities, calculates energy costs at specific locations. In current (traditional)
networks, pricing schemes can be changed only at the transmission level by the
Transmission System Operator (TSO). However, it is expected that a significant
growth of DG penetration, combined with both load and generation present in
distribution grids, can cause major issues affecting grid operation. Therefore, an
appropriate location-based pricing will be a vital clue in our distribution grid.
It can be demonstrated that pricing the electricity produced/consumed in each
node at the local marginal cost leads to efficient operation decisions. As a result,
these variations of the electricity prices from one node to another, would increase
the revenues, reduce network losses, and maintain the grid infrastructure [46,47].

2.2.5 Monte Carlo Tree Search (MCTS)

MCTS is a proposed search method that uses random sampling to carry out a
search of the paths along a tree. Typically, a game tree with a randomly bi-
ased sequence of actions is applied to the given states until a terminal condi-
tion is reached. MCTS has demonstrated its success for the game Go which has
been considered one of the hardest games for Artificial Intelligence (AI) to solve.
MCTS is a method for determining the optimal decisions in a given space by
taking random samples in that space and building a search tree according to the
sequential decision results. The basic algorithm involves iteratively building a
search tree until some predefined computational budget is reached, such as the
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depth limit. At this point, the search is stopped, and the best performing action
is returned. Each node in the search tree represents a state of the domain and
directed links to child nodes represent actions leading to subsequent states. Four
steps are required in this search policy [48]

Figure 2.2: MCTS search policy steps.

1. Selection: Starting at the root node, a child selection policy is recursively
applied to descend through the tree until the most urgent node is reached.
For every stage, the child is randomly selected among the list of available
children.

2. Expansion: One or more child nodes are added to expand the tree, accord-
ing to the available actions.

3. Simulation: A simulation is run from the new node(s) to produce an out-
come (determining the goals).

4. Backpropagation: The simulation result is "backed up" through the already
selected nodes to update their statistics (number of visits and goals).

2.2.6 Reinforcement Learning (RL)

The interaction between the agent and the environment includes a sequence of
actions, state information, and rewards for which the agent is trying to choose
optimal actions to maximize the cumulative rewards. A RL agent attempts to
learn an optimal strategy from the accumulated trials and the received feedback,
and with the optimal strategy, the agent would have successfully adapted to
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the environment, meaning the future rewards would be maximized. For RL,
the agent would be in one of any number of states (s ∈ S), and will take one
action out of a set of possible actions (a ∈ A) to switch from one state to another.
The outcome is decided by the transition probabilities between the states (p).
Once an action is taken, the reward (r ∈ R) is received from the environment
as a feedback. After efficiently learning the optimal solution, the agent’s action
policy (π(s)) effectively becomes the agent’s optimal solution for which action
to take. Each state in the environment is associated with a value function (V(s))
which represents the expected future rewards, and quantifies how good the state
is. The interaction sequence can be described as [15, 16]

S1, A1, R2, S2, A2, .., ST

Transition and Reward. The environment can be described as a model, and this
model has two main bases, the transition probability function p and the reward
function R. An example of how this works would be: an agent being in state s
and decides to take action a to go to the next state s′ while receiving a reward r.
This is defined as one episode, and expressed as (s, a, r, s′).

The transition probability function p determines the probability of transition-
ing from state s to s′ and obtaining reward r after taking action a.

p(s′, r|s, a) = P[St+1 = s′, Rt+1 = r|ST = s, At = a],

whereP is the probability symbol. Hence, the state-transition function is defined
as a function of p(s′, r|s, a),

pa
ss′ = P[St+1 = s′|St = s, At = a] = ∑

r∈R
, p(s′, r|s, a).

as well as the reward function R predicts the next reward and occurred by one
action:

R(s,a) = E[Rt+1|St = s, At = a] = ∑
s∈S

p(s′, r|s, a).

Policy is the function of the agent’s behavior (π), trying to select the optimal
action in state s. It is a mapping from state s to action a and can be either of

• deterministic π(s) = a, or

• stochastic π(a|s) = Pπ[A = a|S = s].

Value Function of a state s is the expected return of the current state at time t,

19



St = s
Vπ(s) = Eπ[Gt|St = s]

Similarly, the action-value (quality) can be defined as

Qπ(s, a) = Eπ[Gt|St = s, At = a]

Optimal Value and Policy. The optimal value function produces the maximum
return

V∗(s) = maxπVπ(s), Q∗(s, a) = maxπQπ(s, a)

Finally, the optimal policy can be achieved by

π∗ = argmaxπVπ(s), π∗ = argmaxπQπ(s, a)

Temporal-Difference (TD) Learning refers to the method of updating the value
function V(St) towards an estimated return Rt+1 + γV(St+1) (known as the "TD
target"). The extent to which the value function is updated is controlled by the
learning rate hyper-parameter α. For On-Policy learning, it would be

Q(st, at)← Q(st, at) + α
[
rt+1 + γQ∗(st+, at+1)−Q(st, at)

]
, (2.1)

whereas the Off-policy TD is

Q(st, at)← Q(st, at) + α
[
rt+1 + γmaxa∈AQ∗(st+, at+1)−Q(st, at)

]
, (2.2)

where γ is a discount factor that denotes how much impact the current decision
can have on the long-term reward. Particularly, a smaller value of γ emphasizes
more the immediate rewards and a larger γ gives higher weight to the future
rewards. When γ equals 0, the game becomes a one-time-event game.
Exploration-Exploitation. When RL interacts with an unknown environment,
and without enough exploration, the agent cannot perform well. However, with-
out enough exploitation, the reward optimization task cannot be completed. Var-
ious RL algorithms are trying to compromise between the exploration and ex-
ploitation in different ways. In Q-learning, and many other on-policy algorithms,
the exploration is commonly associated with the greedy policy.
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Chapter 3

Assessment of Photovoltaic
Hosting Capacity of Existing
Distribution Circuits

The integration of the distributed energy resources (DERs) into the distribution
system has been rapidly increasing over the past decade, with photovoltaics
(PV) leading the way as the fastest growing renewable energy resource in North
America [49]. This development is great for sustainability, but problematic for
system operation. Since the current distribution systems are designed for cen-
tralized power generation with a unidirectional power flow, a significant level of
PV penetration can potentially affect the voltage stability (overvoltage, voltage
deviation, and voltage unbalance), and line thermal stress [50]. Moreover, un-
certainty in PV power can lead to increases of switching in capacitor banks and
regulator tap changes [51] thus leading to more system losses and negatively af-
fecting the operational life expectancy of distribution grid equipment. In order
to mitigate these problems early, it is necessary to assess PV hosting capacity
(PVHC) of the distribution circuit. PVHC can be defined as the maximum PV
generation capacity that can be integrated into an existing distribution network
without violating the normal system operating conditions.

There have been several studies conducted to assess different aspects of PVHC
in distribution networks. Tonkoski et al. studied the sensitivity of PVHC to
feeder impedance [21]. The results showed that the bus voltages increase with
reduction of the X/R ratio on network lines. Coogan et al. examined the location
dependency of PVHC [22]. They found that the bus voltages are proportional to
the distance between the feeder and bus locations. A streamlined technique to
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investigate PV interconnections in commercial areas of LV distribution networks
was proposed by Rylander et al. [23]. A number of other studies concentrated on
hosting capacities in residential areas [52–56].

This contribution presents the results of PVHC determination for three types
of distribution networks, using data of three communities that have the potential
to adopt PV systems on a large scale. Analysis of PVHC was conducted using
probabilistic power Flow (PPF) [57,58]. PPF is an essential tool for power system
analysis and planning in situations when some systems parameters are uncer-
tain and can be considered random variables. In this contribution, PPF is imple-
mented through Monte Carlo simulations (MCS) [59] that use repetitive solutions
of deterministic power flow with different realizations of random parameters to
obtain expected probability distributions of variables of interest. The probability
distributions of bus voltages are combined with a predetermined threshold to
identify the numbers and locations of buses affected for selected PV penetration
levels and load conditions used in PF simulation. Because PVHC can be affected
by other factors such as individual installation sizes, locations, system reactive
power, and the presence of regulation devices, sensitivity of HC to these factors
are also considered. Finally, several recommendations for distribution system
operators (DSOs) are made with respect to PV integration.

This research is organized in six sections. Section II defines PV hosting capac-
ity and identifies factors that need to be considered in PVHC studies. Circuits
assessed in this study are described in section III. The proposed methodology
for calculating probabilistic power flow is outlined in section IV, while section V
describes the results of its application to selected circuits. The concluding section
VI summarizes the obtained result and lessons learned.

3.1 PV Hosting Capacity

PVHC can be defined as the maximum amount of PV capacity that can be inte-
grated into a distribution network without violating any operating thresholds.
Meanwhile, PV penetration can be defined as the peak power of all PV gen-
erators connected to a power system, represented as a percentage of the sys-
tem’s annual peak load [60]. In this section, the hosting capacity is determined
with respect to overvoltage. A simplified feeder model is shown in Figure. 3.1.
An equivalent Thevenin impedance of Zth = Rth + jXth, is used to determine
the overvoltage at the point of common coupling (PCC), where the PV unit is
connected. The voltage at the PCC can be obtained using methods described
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Figure 3.1: Simplified distribution feeder with PV.

in [61, 62]

VPCC ≈ V1 +
P
′
Rth + Q

′
Xth

VPCC
, (3.1)

where P
′
= PPV − PL, similarly Q

′
= QPV −QL.

Alternatively, the equations for finding the maximum active power that can
be injected by PV unit at the PCC, which results in a maximum voltage at this
point, can be derived as follows

P
′
=

Vmax
PCC (V

max
PCC −V1)

Rth + tan φXth
. (3.2)

Multiplying and dividing the denominator of equation (3.2) by Zth, the final ex-
pression can be written as

Pmax
PV =

Vmax
PCC (V

max
PCC −V1)

Zth(cos θ + tan φ sin θ)
+ PL, (3.3)

where θ is the phase angle of Thevenin impedance, and φ is the receiving end
power factor.

Several important factors need to be taken into consideration to study the
sensitivity of PVHC:

a) Reactive power absorption: Should the reactive power at the PCC be in-
creased by adding QC, the term (−Q

′
Xth/VPCC) in (3.1) would increase to

(−Q”Xth/VPCC) and cause a reduction in VPCC (Q” = QL + QC assuming
QPV = 0). Therefore, an increase in reactive power could improve PVHC.
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However, it would also significantly increase system losses.

b) Network load condition: PVHC linearly increases with network load (3.3).
This shows that a higher PVHC can be obtained at the PCC with a higher
load demand.

c) Equivalent Thevenin impedance: PVHC is inversely proportional to the
equivalent Thevenin impedance at the PCC (3.3). Based on this observa-
tion, PVHC can be maximized by reconfiguring the distribution circuit
such that the Thevenin impedances are minimized at the corresponding
buses. However, this solution invariably involves conductor upgrades,
which may be expensive.

d) Voltage regulation can be implemented using voltage regulators or trans-
former tap changers. These devices can help to maximize PV installations
provided that they are placed at optimal locations. However, these regu-
lation devices are not fast enough to reduce transient overvoltages or fast
power variations due to rapid insolation changes.

3.2 Circuit description

This study reports on three circuits (Fort McMurray, Drumheller, and Lloydmin-
ster). They are the models of three urban networks with different topologies,
load conditions, customer types, and populations. The three circuits can be char-
acterizations as follows:

1. Fort McMurray is a 25kV circuit supplied by eight feeders, with a load of
156,726.37 kW and 76,570.24 kVAR. Light load was determined to be 40%.

2. Drumheller is a 25kV distribution circuit supplied by two feeders, with a
load of 16,193.7 kW and 6,255.33 kVAR. Light load was determined to be
50%.

3. Lloydminster is a 25kV distribution circuit supplied by four feeders, with a
full load of 73,480.28 kW and 27,094.08 kVAR. Light load was determined
to be 50%.
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3.3 Methodology: MCS-based PPF

The methodology used to determine PVHC can be described using the following
four steps:

1. A base model of distribution circuit contains no PVs. Light load is deter-
mined by the dominant type of customer (residential or commercial). In
most cases, light load is considered to be 50% of the peak load. A size of a
single PV panel is also set based on the type of customer.

2. PV panels are randomly placed onto the base model until the desired pen-
etration level is reached (see Figure 3.2). Power flow of the model with
PV generators is calculated and bus voltages are recorded. This step is re-
peated a number of times (depending on the circuit size) to obtain enough
data for calculating a voltage probability distribution for each bus. In each
repetition, a new random distribution of locations and sizes of PV genera-
tors is used.

3. Starting from 0% penetration, step 2 is repeated in 10% increments. Stop
after a predefined voltage threshold is attained.

Figure 3.2: An example scenario under the stochastic PV deployment frame-
work.
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4. The overall impact of PV penetration on the circuit is assessed and PV host-
ing capacity evaluated.

3.4 Results and discussion

Power flow was calculated using CYME power engineering software. Unity
power factor was assumed. A bus voltage of 1.04 p.u is considered impacted
(represented in orange), while voltage of 1.05 p.u is considered critical (repre-
sented in red). Figures 3.3, 3.4, and 3.5 show the critical and impacted regions
of each circuit, at 70% PV penetration for all circuits. Voltage distribution at the
most affected buses is shown using box plots in Figure 3.6 for PV penetration lev-
els as noted, corresponding to the first occurrence of voltage violation for given
circuit.

Figure 3.3: Fort McMurray circuit diagrams based on the voltage impact.
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Figure 3.4: Lloydminster circuit diagrams based on the voltage impact.

Figure 3.5: Drumheller circuit diagrams based on the voltage impact.

Due to the complexity of Fort McMurray circuit, it has been divided into four
areas for clarity of analysis and presentation. At 10% penetration, areas 3 and
4 have many critical and impacted regions, while areas 1 and 2 only became
problematic at around 40% to 50%. The primary reason that this circuit is affected
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(a)

(b)

(c)

Figure 3.6: Voltage violation vs the impacted buses at: a) Fort McMurray, 3rd
area (PV 10%). b) Lloydminster (PV 60%). c) Lloydminster (PV 60%).

by low levels of PV penetration is due to the circuit load condition. The highly
loaded buses suffer more voltage increase at the PCC since the output current of
the PV system is proportional to the loading current of these buses. Although
some areas can accommodate higher PV penetration, the HC of the entire circuit
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must be taken as 10%.
Lloydminster circuit can be considered moderate in terms of a load demand

and complexity. The hosting capacity for this circuit has been determined at 60%
PV penetration, when the first voltage violation occurred. The locations of the
critical buses are highlighted in Figure. 3.4 by letters A, B, and C.

Drumheller’s population and the load demand are significantly lower than
those of Fort McMurray and Lloydminster. As a result, the hosting capacity of
this region is higher than in the other two cases. PPF calculations were stopped
at 70% PV penetration when voltage reached level 1.04 p.u. If 1.05 p.u. was
considered, the hosting capacity would have been even greater.

Figures 3.7 and 3.8 show the distribution of voltage levels of the three circuits
by using probability density function (PDF) and a cumulative distribution func-
tion (CDF). The mean voltages for Fort McMurray and Lloydminster circuits are
the same at 1.0461 p.u., while for Drumheller the mean is 1.0401 p.u.
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Figure 3.7: PDF of PVHC of the three circuits: Fort McMurray the 3rd area (PV
10%), Lloydminster (PV 60%), and Drumheller (PV 70%).
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Figure 3.8: CDF (b) of PVHC of the three circuits: Fort McMurray the 3rd area
(PV 10%), Lloydminster (PV 60%), and Drumheller (PV 70%).

3.5 Final Remarks

In this contribution, the hosting capacities of three real communities were de-
termined using MCS-based PPF. The presented study examined three circuits of
varying size and complexity using the developed MCS-based PPF method. It de-
termined the hosting capacities of Fort McMurray, Lloydminster, and Drumheller
circuits as 10%, 60%, and 70%, respectively.

The developed methodology is an effective approach for determining PV
hosting capacity that can be used for any distribution circuit model. The use
of stochastic approach overcomes shortcomings of deterministic methods and
can, in principle, handle circuits of any complexity.
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Chapter 4

Reinforcement Learning based
Distributed BESS Management
for Mitigating Overvoltage Issues
in Systems with High PV
Penetration

Integration of household-scale photovoltaic (PV) generators and other distributed
energy resources (DER) into the existing low voltage (LV) distribution grids around
the world has rapidly increased. Many government incentive programs encour-
age households and businesses to install small-scale, roof-mounted PV panels,
driving consumer-led evolution of modern electricity supply systems. Studies
have shown that high PV penetration can lead to grid voltage level problems.
The main concern is the risk of overvoltage due to reverse power flow in dis-
tribution feeders, especially at light loads. To avoid integration-related prob-
lems, many utilities limit PV penetration levels. However, this passive approach
leads to loss of significant amount of potential PV generation [21,22]. By using a
stochastic analysis framework on the simulated PV deployment scenarios, var-
ious characteristics can be determined such as the hosting capacity (i.e. the PV
penetration limits) or the location of the susceptible buses to overvoltage. The
hosting capacity depends not only on the total PV penetration level, but also on
the sizes and locations of PV systems installed in residential areas. Additional
PV deployment factors that influence the hosting capacity include circuit char-
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acteristics and loading conditions [22, 24]. Has been shown that feeder voltage
increases with increasing ratio K = R/XL, where R is the line resistance and XL

is its impedance [21].
There have been many solutions proposed to mitigate the voltage rise prob-

lems associated with high levels of PV penetration. The reactive power absorp-
tion has been proposed in [6]. Although this solution resolves overvoltage issues,
it also leads to reduction of the feeder power factor. The use of smart inverters
to control local Volt/VAR on the PV connected buses offers a decentralized so-
lution [7]. It is more effective in resolving the overvoltage issue with lower line
losses, but at a higher cost. The use of medium voltage to low voltage (MV/LV)
transformers to limit the overvoltage has been investigated in [25, 26].

The use of BESS collocated with PV generators can boost local consumption
during the periods of light load. In addition, BESS can be used to support gen-
eration during the peak load periods. It has been shown that BESS-based ap-
proaches can considerably increase the hosting capacity [9, 10]. However, their
widespread implementation has been impeded by their relatively high cost. As
a result, most proposed approaches combine BESS with PV inverters to absorb
part of the active power caused by high PV penetration. The limited size of BESS
used in PV applications may result in a full charge or discharge of the batteries
during the control process. In addition to the limited BESS capacity, other factors
such as initial state of charge, load conditions, and weather-dependent PV en-
ergy production may contribute to the shortage of the available energy storage.
To address these issues, it has been proposed to use available storage capacity
of neighboring BESS units [11–14, 19]. This way, the charge/discharge power
in small radial distribution networks can be maximized using common battery
scheduling. However, the operation strategies of these systems have been pro-
grammed in advance, based on complete prior knowledge of the environment.
However, in many cases, the states of the environment are not know and/or
may change over time. This affects the applicability and flexibility of the imple-
mented strategies and, in some cases, even their ability to converge. For instance,
these methods consider the SOC of the neighbouring bus BESS units, but they do
not consider the impact of other factors such as the line losses and voltage lev-
els. These may change over time and lead to growth of system uncertainty and,
subsequently, to decrease of reliability. Therefore, it is crucial to design system
that can learn the strategies on its own and with limited prior knowledge of the
environment. A RL system, unlike systems with supervised learning, operates
as an adaptive agent that learns by trial-and-error without an explicit teacher.
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A strategy learned by RL is evaluated by the Q-value function that maps each
state-action pair to an estimate the reward of the new action using a transition
probability. The purpose of MCTS is to build a feasible environment for the RL
agent to reduce the high computational burden that would occur if the entire net-
work were considered. It also facilitates storing of the updates of the RL states
at particular nodes through the tree search configuration of the MCTS naviga-
tion method. Eventually, it considers multiple factors/system states including
the sufficiency of the BESS capacities, bus voltage levels and line losses.

Finally, because of the non-trivial nature of the system cost function, the bat-
tery operation must be scheduled using a sound optimization approach and the
overall system control strategy must be modified accordingly.

The new approach proposed in this research, termed cooperative state of charge
control (CSOCC), is well suited for large and complex distribution networks. It
divides a network into multiple smaller segments based on the configuration of
so called impacted regions (i.e. regions negatively affected by voltage raise prob-
lems due to the high penetration of PV generators). This approach relies on the
intelligent technique of Monte-Carlo tree search-based reinforcement learning
(MCTS-RL) and on model predictive control (MPC), to resolve the PV-induced
overvoltage problem. MCTS-RL is used as a centralized controller that optimizes
the cooperating buses in each of the partitioned network structures in terms of
BESS availability, and line losses that are subjected to the voltage level. MPC is
used as a decentralized controller to mitigate the overvoltage by estimating and
controlling the battery state of charge (SOC). Battery scheduling is optimized
not only to mitigate the PV-induced overvoltage problems, but also to minimize
energy consumption. To demonstrate the operation of CSOCC and evaluate its
efficiency, the proposed approach has been implemented on a model of the dis-
tribution system of Lloydminster, Alberta Canada.

This research is organized as follows. Section II presents the system model
description of the Lloydminster distribution circuit and the formulation of the
economic dispatch problem. The proposed cooperative state of charge control
algorithm, RL-MCTS algorithm, and the system modules are presented in Sec-
tion III. Section IV provides a summary of the proposed algorithm. Simulation
results are presented and discussed in Section V, followed by conclusions in Sec-
tion VI.
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4.1 Case description

In order to understand the performance of the proposed method the simulations
are conducted on two distribution feeders. The first is the 33 bus distribution
feeder [63]. The second, which is the practical case; the distribution feeder of
the Lloydiminster city. Lloydiminster, is served by a 25-kV distribution circuit
supplied by four substations. The total generation at full load is 75 MW and 23
MVAR with the total load equal to 73 MW and 27 MVAR. The distribution circuit
with no PV generator installed, used as a base case, is shown in Figure 4.1. This
colored schematic diagram shows relative voltage levels corresponding to the
full load for the circuit. Load flow analysis of the circuit under different PV
penetration levels has been simulated using power engineering software CYME
[64] and will be shown in section. V.

Vp.u
0.99
1.03
1.04
1.05
1.06

(a)

Figure 4.1: A circuit diagram of the Lloydminster distribution system showing
voltage levels at the full load.

PV penetration is defined as the total peak power of all installed PV genera-
tors expressed as a percentage of the annual peak load of the same system [60].
PV hosting capacity is then the maximum level of PV penetration that can be in-
tegrated into the system without violating a predefined performance index (e.g.,
the voltage level) [65]. The impact of PV systems on a distribution circuit can
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Figure 4.2: Conceptual comparison of the proposed distributed control strategy
against the conventional centralized and decentralized strategies.

be determined using a probabilistic deployment framework that simulates vari-
ous PV deployment scenarios and examines the impact of their variation on the
variable(s) of interest. The outcome of this stochastic modelling is then used to
determine the PV penetration level defined as the ratio of the PV panel rated
power (kW) to the value of the full-load (kW) at the connected bus [24].

4.2 cooperative state of charge control

The proposed approach to increase PV hosting capacity is based on a combina-
tion of centralized and decentralized control strategies. In decentralized control,
the monitoring and control of charging and discharging actions are performed
locally by each BESS. The main advantage of this approach is that it does not
require extra communication systems. This makes decentralized approach ro-
bust and cost-effective. However, when a BESS unit either is fully charged or
can only provide a limited power, it cannot communicate with other BESS units
to request support. The unit may even experience a total failure resulting from
the lack of communication with other units [39,40]. In centralized control, a cen-
tral controller aggregates measurements from the entire network and determines
the charging/discharging control tasks for each BESS. This approach is more ef-
ficient than the decentralized control, as it is based on the current information
about the entire network. In the event of unavailability of particular BESS unit,
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the central controller can search for an alternative unit and resolve the prob-
lem. However, centralized control demands fast communications infrastructure
which results in higher computational burden and overall costs. Furthermore,
in case of communication failure, a BESS units may not respond to the central
controller [37, 38], or the entire system may collapse.

The proposed CSOCC strategy forms multiple distributed sections within
an entire network [66, 67]. Integrating the advantages of the centralized and
decentralized strategies, this approach is highly robust and tolerant to discon-
nections of network components. The robustness is achieved through the node
feedback responses of the multiple distributed network sections, while the con-
nection/disconnection tolerance comes directly from the presence of multiple
smaller sections rather than the entire network. Similar to the decentralized con-
trol method, the proposed strategy takes into account the local measurements
of the BESS capacity and voltage sensitivity (VS) for each node to control each
BESS unit. At the same time, communication with the central controller offers
an opportunity to optimize BESS charging/discharging to not only mitigate the
overvoltage problems, but also to minimize the overall costs of system operation.

BESS can be used to mitigate voltage rise under high penetration of rooftop
PV systems in LV distribution networks. However, technical limitations of BESS
systems, such as their finite capacity, may prevent them from maintaining suffi-
cient amounts of energy throughout the day. Thus, participation of BESS units
from different regions in the network is necessary to correct the voltage profile,
to maximize the utilization of available BESS capacity in the network, and to
prevent its premature depletion or saturation. The proposed CSOCC approach
addresses coordination of distributed BESS units for an overall voltage regula-
tion in distribution networks [68,69]. The proposed approach identifies an assist-
ing region (with normal voltages) surrounding an impacted region (with voltage
limit violation) using MCTS-RL. It acts as a centralized consumption planner
and controller for choosing the optimal BESS buses in the assisting region. In
the decentralized controller, the MPC controls the SOC of each BESS bus to ac-
commodate the daily system operation in both assisting and impacted regions.
Figure 4.3a shows the discretized SOC curve of the impacted region without the
use of the CSOCC. In this figure, K − ∆t, K, and K + ∆t are, respectively, the
time instants when past, present and predicted (future) states are sampled. The
future SOC state in the impacted region is estimated using the MPC controller.
Consequently, the amount of energy required from BESS by the impacted region
can also be estimated. This energy can be obtained from the assisting regions
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Figure 4.3: Principle of the proposed CSOCC approach: BESS in the assisting
regions effectively stretch the available storage capacity to avoid its premature
saturation or depletion.

using the centralized controller. The energy transferred from other regions is
represented by the wavy lines in Figure 4.3b. Eventually, the MPC-driven energy
transfers will extend the SOC curve of the impacted region to fit the required time
period and prevents premature saturation of the BESS. The main task of CSOCC
is to select the optimal BESS units using MCTS-RL. The selected units work as
a coherent group and are able to effectively share their capacity. This strategy
functions properly even in situations when the impacted buses have BESS units
with insufficient capacities.

4.2.1 MCTS-RL

Methods of machine learning and artificial intelligence (AI) offer many valu-
able tools to address a variety of issues in dynamic and complex networks of
contemporary power systems. Using machine learning techniques, a control
system can learn without being explicitly programmed. Among machine learn-
ing mechanisms, Monte Carlo tree search (MCTS) based reinforcement learning
(RL) [48] [15, 16] is particularly suitable for solving sequential decision-making
problems. RL provides an agent with the ability to learn the state variations
and to find potential solutions. By interacting with the environment, RL agents
gain powerful experience for sequential decision making under uncertainty. The
MCTS-RL algorithm aims to find desirable resource diffusion strategies. For
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example, in application described in this research, this algorithm can identify
the best available BESS buses in the assisting region and optimal power trans-
fer paths. It navigates through the network and gradually builds up its expe-
rience (i.e., learns from the results) to further optimize its own decisions in an
unsupervised fashion. This approach uses the temporal difference RL methods
such as SARSA [17]. The accumulated experience is the result of biased random
sampling in the decision space during the policy optimization and exploration
process. Another advantage of the MCTS, compared to conventional exhaus-
tive search methods, is its narrow area of exploration obtained using the subset
search method. In RL, an agent is in a state s from a set of possible states S, and
takes an action a out of a set of possible actions A. It moves between states ac-
cording to transition probabilities p. Once an action is taken, the agent receives
a reward r ∈ R from the environment. In MCTS, each node (representing a net-
work bus) contains state and action edges (s, a) of a tree. In addition, each edge
stores a set of statistical parameters {N(s, a), r(s, a), Q(s, a)}, where N(s, a) is the
visit counter (initialized at zero), r(s, a) is the instant reward, and Q(s, a) is the
action-value pair obtained from the value network. The value of Q is updated
by Q-learning. Q-learning is an algorithm to learn a policy for selecting actions
an agent can take within its environment. It is a model-free learning approach
that can handle problems under stochastic conditions. The learned action-value
function, Q, directly approximates the optimal action-value function, Q∗, of the
policy being followed [17]. It can be described using the following equation:

Q(st, at)← Q(st, at) + α
[
rt+1 + γQ∗(st+, at+1)−Q(st, at)

]
, (4.1)

where α is a learning rate hyper-parameter that controls the extent to which the
value function is updated, and γ is a discount factor that denotes the impact of
the current decision on the long-term reward. A lower value of γ results in more
immediate rewards, while a higher value of γ gives a higher weight to the future
rewards. Discount factor γ = 0 corresponds to a one-time-event.

The tree search state is randomly initialized. When the network state changes
to s′, agent n selects an action a. The Q-value of the agent is then updated accord-
ing to the preliminary Q-function, and the number of visits is incremented by 1
for the visited nodes. The learning process ends either when the algorithm con-
verges, or when the depth limit is reached. The proposed method is illustrated in
Figure 4.4. The MCTS-RL model receives the state from the environment, trans-
forms it into the transition probability, computes Q(s, a) values, and selects the
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Figure 4.4: The proposed algorithm based on MCTS-RL method.

diffusion strategy according to a greedy policy. In this policy, each strategy cor-
responds to a different set of actions A upon which RL will be executed in the
search tree. In a nutshell, MCTS constructs its search tree, generates many DG
allocation strategies, and through the back propagation process, it returns the
Q-values for each state after the RL has executed the actions and generated the
transition probabilities.

4.2.2 Battery modeling

The dynamic behavior of the BESS unit can be modeled using the following
discrete-time equation

SOC(k + 1) = SOC(k) +
Ts

Bs

(
ηch,Pch(k)− ηdisPdis(k)

)
, (4.2)

where SOC is the state variable (state of charge), ηch, ηdis are the charging and
discharging efficiencies (respectively), Ts is the sampling time, Bs is the battery
capacity, Pch(k) and Pdis(k) are the charging (withdrawing) and discharging (in-
jecting) power at each bus and time k. The variance of SOC is proportional to the
charging/discharging current [70].

The SOC of the battery bank is subject to the upper and lower boundaries [71]

SOCmin 6 SOC(k) 6 SOCmax. (4.3)

The boundary constraints for the charging and discharging power can be rep-
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resented as
0 6 Pch(k) 6 Pmax, (4.4)

0 6 Pdis(k) 6 Pmax, (4.5)

where Pmax is the rated charging or discharging power of the battery.
Finally, the limitation on the simultaneous charging and discharging of the

BESS is shown by
Pch(k) · Pdis(k) = 0. (4.6)

4.2.3 MPC Design

This section develops MPC controller design procedure [72] that implements the
proposed method. The dynamic behavior of SOC (4.2) can be simplified in terms
of the state space model

SOC(k + 1) = SOC(k) + Bb(k) · ub(k) (4.7)

The estimated parameters of the next state of charge SOC(k + 1) are Bb(k) =
[0, ηch,−ηdis], and ub(k) = [0, Pch(k), Pdis(k)]T. The control variable ub can be
derived as follows

ûb(k) = [0,
(

Pch,i(k) + Pch,a(k)
)
,
(

Pdis,i(k) + Pdis,a(k)
)
]T (4.8)

where the subscripts i and a designate battery systems in the impacted and as-
sisting region, respectively. The final expression can be written as

SOC(k + 1) = SOC(k) + Bb(k) · ûb(k). (4.9)

The error between two samples is defined as the cost function to be mini-
mized

Je = SOC(k + 1)−
(
SOC(k) + Bb(k) · ûb(k)

)
. (4.10)

4.2.3.1 MIMO System Modeling

To facilitate MPC design, the MIMO system (i.e., Multi-Input-Multi-Output) has
to be transformed into a state-space model [73]. The energy balance within the
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system is maintained thorugh the following equality constraint

Pg(k) = PL(k)−
(

PPV(k) + PBatt(k)
)
, (4.11)

where PBatt(k) = −Pch(k) + Pdis(k), and Pg and PL are the grid power and the
load demand power respectively.

Considering grid energy cost C1 and battery energy cost C2 [74], the goal
of the MPC assignment can be expressed as minimization of the following two
variables [75]

yg(k) = C1(k)Pg(k), (4.12)

yBatt(k) = C2(k)
(
−Pch(k) + Pdis(k)

)
. (4.13)

The augmented system state can be expressed as

x(k + 1) = [SOC(k + 1), yg(k), yBatt(k)]T, (4.14)

and transformed into state-space model [76]

x(k + 1) = Ax(k) + B · ûb(k) (4.15)

to calculate the output
y(k) = Cx(k) (4.16)

where the model matrices are

A =

[
1 01×2

02×1 02×2

]
, B =

 0 ηch −ηdis

C1 0 0
0 −C2 C2

 ,

C =
[
02×1 I2×2

]
.

4.2.3.2 MPC Objective Functions

In addition to determining CSOC control signal, MPC is also capable of opti-
mizing the overall cost through minimizing the grid cost. This is achieved by
defining the MPC objective functions used for minimizing the purchase period
and battery time-of-use (TOU) cost as shown below
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Jg(k) = min
k+Np

∑
k

C1(k)Pg(k), (4.17)

and

JBatt(k) = min
k+Np

∑
k

C2(k)PBatt(k), (4.18)

where the battery TOU cost is

C2(k)PBatt(k) = Cpurch(k) ∗ Pch(k) ∗ Ts − Csell(k) ∗ Pdis(k) ∗ Ts, (4.19)

where Cpurch and Csell are the grid purchase and selling price, respectively.

4.2.3.3 MPC Constraints

In this system, MPC is modelled with two major types of constraints applied to
the output and control signal, respectively. From the dynamic equation of BESS
(3), predicted values of SOC(k + 1) can be calculated as follows [75]:

SOC(k + 1)
SOC(k + 2)

...
SOC(k + Nc)

 =


SOC(k)

SOC(k + 1)
...

SOC(k + Nc− 1)

+

[
Bb

]
.


ûb(k)

ûb(k + 1)
...

ûb(k + Nc− 1)


(4.20)

where Bb dimension is (Nc− 1)× (Nc− 1).
Maximum and minimum constraints are applied to all future values of con-

trol signals, also called manipulated variables. They can be expressed in matrix
form as follows.
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

1
. . .

1. . . . . . . . . .
1

. . .

1


ûb(k) ≤



Pmax(k)
...

Pmax(k + Nc− 1). . . . . . . . . . . . . . . . . .
Pmin(k)

...
Pmin(k + Nc− 1)


(4.21)

where, Pmax and Pmin are column vectors with Nc − 1 elements of the maximum
and minimum limits of the rated charging or discharging power of the battery,
respectively. In this system, Pmin = 0.

Similarly, the output constraints applied to the controlled variables can be
represented as follows:

1
. . .

1. . . . . . . . . .
1

. . .

1


SOC(k + 1) ≤



SOCmax(k + 1)
...

SOCmax(k + Nc). . . . . . . . . . . . . . . . . .
SOCmin(k + 1)

...
SOCmin(k + Nc)


(4.22)

where, SOCmax and SOCmin are column vectors with Nc elements of the maxi-
mum and minimum limits of the observed SOC(k+ 1). In this system, SOCmax =

90% and SOCmin = 20%.

4.3 Summary of the Proposed Algorithm

The proposed hybrid strategy is implemented by a Distribution System Opera-
tor (DSO). It combines centralized and decentralized components: MCTS-RL is
used as a centralized controller that optimizes cooperating buses in each net-
work partition in terms of BESS availability and line losses, and subject to a
voltage level constraint; MPC is used as a decentralized controller to mitigate
overvoltage by estimating and controlling the battery state of charge as well as
to optimize battery operation from the perspective of energy consumption. The
profiles of load and PV generation, required as input by the MPC algorithm,
are assumed to be available. While development of the forecaster is outside the
scope of this work, there are a number of existing forecasting algorithms that can
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be used for this purpose, such as [77]. The proposed CSOCC algorithm is shown
in the flowchart of Figure 4.5. In this algorithm, the bus terminal voltages are
compared to the threshold voltage (1.05p.u.) to identify the impacted buses. All
voltages and their buses coordinates are sent to the centralized controller to start
specifying the assisting region using MCTS. In the proposed approach, MPC op-
erates as a decentralized controller to achieve two objectives: a) to control the
SOC, b) to optimize the daily schedule of BESS, based on the information from
the centralized controller implemented using MCTS-RL.
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Figure 4.5: A flowchart of the proposed algorithm.

Each decentralized controller monitors the reverse power Prev
i of the respec-

tive bus; the reverse direction compared to the original flow in the circuit is
represented by a negative sign. This reverse power is often the main reason
for overvoltage. This can be accomplished through a comparison of the reverse
power for given impacted buses, Prev

i , against a predetermined threshold, θi. Ac-
cordingly, there will be a required BESS capacity Cb

r „ computed by the MPC,
to maintain the reverse power limit at the impacted region. MPC will provide
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this information to the centralized controller to manage the energy from the as-
sisting region(s). In other words, there will be an information packet sent from
the impacted region to the centralized controller regarding its energy reduction
requirement. θi is determined as follows [78]:

Pmax
PV =

Vmax
PCC (V

max
PCC −V1)

Rth(1 + tan (cos−1 (PF))Xth
Rth

)
+ PL, (4.23)

θi = PL − Pmax
PV (4.24)

where Rth and Xth are, respectively, the Thevenin resistance and reactance be-
tween the PCC and the feeder. Pmax

PV and PL are, respectively, the powers at the
PCC of the maximum PV penetration level and the bus load. Accordingly, θi

usually has very small value. Therefore, for simplicity, its value is approximated
by zero in this study.

The role of the centralized controller is to determine the availability of neigh-
boring BESSs to store energy using MCTS-RL algorithm. This algorithm uses
three values of each bus: BESS capacity, voltage level and line losses determined
when MCTS navigates through the paths to the buses with DG. The tree states of
MCTS are updated through RL as follows

Q(s, a)← Q(s, a) + α
[
rt+1(1− ϕn) + γQ∗(s

′
, a)−Q(st, at)

]
. (4.25)

This way, the algorithm selects the best buses in the assisting region with the
lowest path losses. In equation (4.25), ϕn represents the percentage level of the
voltage violation – the stability factor under normal power system conditions
that maintains the security limit. Symbol s denotes the state of the line segment
losses that leads to the next bus through the selected path. Finally, reward r
represents the BESS capacity of the selected bus in the algorithm.

The state-value V(s), under the optimal policy π for given state s and the
state-action-value Q(s, a) for taking action a, is calculated as follows [15]

Vπ(s) = max
a∈A

Qπ(s, a), (4.26)

where π is the optimal policy followed by the RL agent to optimize the action-
value function Q. To mitigate the potential excessive voltage rise in assisting
regions, engagement is monitored for each assisting BESS to check if its par-
ticipation does not cause voltage constraint (1.05 p.u) violation within its own
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region. Participation of each assisting bus is determined using BESS deployment
rate αa

αa = 1/Da ∗
(

max(Pch,a,without CSOCC)−max(Pch,a,with CSOCC)
)

(4.27)

where Da is the full load demand of the assisting bus (subscript a denotes vari-
ables related to the assisting region). αa may be reduced if the reverse power of
an assisting bus Prev

a exceeds a predetermined threshold θa which is determined
by the same manner of θi of the impacted buses as mentioned above so θa equals
to zero also. The resulting shortage of power injection capacity of the assisting
buses is compensated by adding more BESS units.

4.4 Results and Discussion

4.4.1 Stochastic framework for PV deployment modelling

The impact of PV systems on a distribution circuit can be determined using a
probabilistic deployment framework which is implemented by a probabilistic
power Flow-based Monte Carlo simulations (PPF-MCS) [24, 59]. This method is
used when some systems parameters are uncertain and can be considered ran-
dom variables. PPF-MCS uses repetitive solutions of deterministic power flow
with different realizations of random parameters to obtain expected probabil-
ity distributions of variables of interest.The outcome of this stochastic modelling
is then used to determine the PV penetration level defined as the ratio of the
PV panel rated power (kW) to the value of the full-load (kW) at the connected
bus [24].The probability distributions of bus voltages are compared with a pre-
determined threshold to identify the numbers and locations of buses affected for
selected PV penetration levels.The stochastic framework is implemented in the
following four steps:

1) A base case model of the selected distribution feeder is developed, assum-
ing that there is no PV generation installed in the system that operates un-
der a light load. The load level is derived from a known load profile. De-
pending on the feeder type (e.g. residential, commercial or industrial), the
light load is defined as a percentage of the peak load.

2) Using the base case model, multiple PV deployment scenarios are consid-
ered for different PV penetration levels. For each level, a number of cases
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Figure 4.6: An illustration of the stochastic PV deployment scenario.

(e.g., 100) are considered, each with a random distribution of locations and
sizes of PV generators which at the individual points of supply. An illus-
tration of PV deployment scenario is shown for a small of the circuit in
Figure 4.6.

3) Step 2) is repeated for each penetration level in selected increments (e.g.
10%) until the predefined performance index of the feeder is violated. Due
to the stochastic nature of the modelling framework, this violation must
also be defined in probabilistic terms taking into account the prescribed
reliability indices.

4) When modelling the PV deployment scenarios is completed, the overall
impact of PV penetration is assessed using a probabilistic evaluation of
multi-phase load flow analysis to determine the PV hosting capacity.

It has been assumed that the PV bus is of PQ type [79] and the PV inverters
cannot control voltage as there is no reactive injection or absorption at a majority
of locations where PV generators are installed. In addition, the effects of capaci-
tors on complex power are negligible and it can be safely assumed that very few
nodes are near synchronous generators or motors. Consequently, the reactive
power injection (negative VARs) is not considered in the analysis (i.e. only zero
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or positive VAR values are considered) [14, 80]. In simulations, the load power
factor (PF) of 1.0 is used, that corresponds to the worst-case scenario.

4.4.2 Test Case 1: IEEE 33 Bus System

4.4.2.1 PV hosting capacity

Since IEEE 33 bus system is a small circuit, it can accommodate high PV pene-
tration without violating the commonly used voltage rise threshold of 1.05 p.u.
Therefore, a lower threshold of 1.045 p.u. is considered in this study. The volt-
age violation starts at 90% PV penetration at 3 critical buses 16, 17, and 18 where
voltages exceed 1.045 p.u.

4.4.2.2 Battery implementation without CSOCC

As discussed earlier, the overvoltage issue in distribution systems can be ad-
dressed using BESS with optimal charge/discharge energy scheduling. In addi-
tion to absorbing high instantaneous power due to PV generation at light load,
this approach can also support heavy system demand during peak load peri-
ods. This BESS charge/discharge optimization is carried out by a decentralized
controller using MPC without a central coordinator. To make the this test case
consistent with the real case (circuit in Lloydminster, Alberta, Canada) described
next, the hourly averaged electricity pool prices [81, 82] provided by the Alberta
Electric System Operator (AESO) are considered. The energy price is high during
the peak hours and low off-peak. Similarly, the 24-hour residential load profile
for the city of Lloydminster is considered in both cases, scaled to the peak load of
each circuit. The load demand and PV power generation profiles on the 3 critical
buses are shown in Figure 4.7.

In this scenario, the BESS deployment rate (αb) of each bus in the circuit (in-
cluding the critical buses) is determined using BESS data collected over a 24h
period as follows

αb = max(Pch,i)/Di, (4.28)

where Di is the full load demand of given critical bus. For instance, consider
the bus causing the highest voltage violation in this region, bus 18. The MPC
optimization results, shown in Figure 4.8, has max(Pch,i) = 18 kW. After dividing
this value by the full load Di = 90 kW (see Figure 4.7), the value of deployment
rate is obtained as αb = 20%. Figure 4.8 also shows that the BESS units discharge
when the energy price rate is high. The units charge during two distinct periods:
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1) when the energy price rate is low (during the night), and 2) when PV energy
is generated (during the day).

0 5 10 15 20

Time (h)

0

20

40

60

80

100
P

ow
er

 (
kW

)
P

PV

P
Load

Figure 4.7: The load demand and PV power generation of the 3 critical buses 16,
17, and 18.

By examining the power flows in Figure 8, it is obvious that the capacities of
individual BESS are not sufficient to allow charging throughout the entire period
of high solar PV generation. This leads to a premature full use of battery charging
capacity during the overvoltage mitigation processes. As a result, there is still
large amount of reverse power fed to the bus terminal during the time period
between 11:00 and 13:00. The highest impact occurs at bus 18 at 12:15, when
reverse power of -54 kW leads to overvoltage of 1.047 p.u. (corresponding to the
pronounced peak in Figure 4.17).

4.4.2.3 Battery implementation with CSOCC

To demonstrate the operation of the proposed approach, consider MCTS process
applied to the IEEE 33 bus system. Each bus in the circuit can be considered a
state, and each move from one bus to another an action of a virtual agent. The
goal of the agent is to reach the state with the highest reward. It acts according
to a policy learned through experience. At the beginning, the agent traverses
from one bus to another with no knowledge about the environment and without
knowing the correct sequence of buses. What the agent needs to learn is repre-
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Figure 4.8: BESS powers controlled by MPC at the critical buses and their corre-
sponding grid terminal power flows and SOC plots (without CSOCC).

sented by so called Q matrix [83] illustrated in Table 4.1. Each row of this matrix
represents a current state and its columns represent possible actions that lead to
the next state (i.e. the links between the buses). In the IEEE 33-bus circuit used in
this illustration, each node has at most two branches that lead to other possible
buses (called children in MCTS terminology). An action is represented by a ran-
dom selection of one of the children. As shown in Table 4.1, the algorithm starts
from a group of the impacted buses and navigates in a descending order of bus
numbers. Initially, the action set has only one child to chose from, until it reaches
state 6 that has two possible next states (buses 5 and 26). The agent chooses bus
26, and the algorithm continues.

This matrix is initialized with zero values corresponding to tabula rasa – an
agent with no knowledge. A new value is assigned to each element as the agent
explores the environment from state to state until the goal is reached, according
to equation (4.25). This way, the virtual agent is learning through experience
without a teacher. Each exploration process is represented by an episode and it
is equivalent to one training session. More training results in more enhancement
of the Q matrix that facilitates finding the fastest route to the optimal bus. The Q-
values over the training episodes for three selected buses are shown in Figure 4.9.
It can be seen that different Q-values are assigned to different buses. Bus 8 has
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Table 4.1: State-Action

Action

State Child 1 Child 2

16 15 -

15 14 -

14 13 -

13 12 -

12 11 -

11 10 -

10 9 -

9 8 -

8 7 -

7 6 -

6 - 26

5, 26 - 27

27 - 28

28 - 29
...

...
...

the highest value compared to buses 24 and 25. In addition, buses 24 and 25 have
very similar line losses and identical BESS capacities that result in very close Q-
values at the end of the training process. All three nodes converged after about
600 episodes.

Since the 33 bus circuit is a small system, all its buses are selected in the MCTS
search space to determine the bus candidates that construct the assisting region.
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Figure 4.9: Plots of Q-values of buses 8, 24, and 25

For simplicity, and to provide a clear illustration of the MCTS navigation pro-
cess, it is considered that a BESS is deployed on every bus of the assisting and the
impacted region in both cases (without and with CSOCC). The size of BESS in the
first case (without CSOCC) is uniform across the system, determined as αb=20%
of the full load using equation (4.28). With CSOCC, the BESS deployment rate in
the impacted region is increased to a new value αi calculated from the required
energy obtained by MPC (462 kWh). On the other hand, the deployment rate
of the assisting region is reduced so that each assisting bus provides 10% of its
original BESS capacity to the impacted region.

Column 1 of Table 4.2 shows bus labels (2-33) in the search space. MCTS
uses two objective functions: the line losses (column 3), and BESS power flow
capacities (column 4) determined as 20% of the full load. Column 2 shows the
bus voltages (with PV implemented) that are subject to the voltage constraint
limit of 1.045 p.u. Reverse powers in assisting buses, if they occur, are subject
to reverse power threshold θa = 0. Line losses [79] are calculated through the
MCTS navigation process over all line segments between the starting bus (the
impacted region) and the bus selected as the assisting bus (a part of the assisting
region). Finally, the bus prioritization is shown in column 5 (MCTS results). In
this column, the candidate buses (encircled by a red ellipse) are selected based
on the capacity required to store the excess energy in the impacted region.
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Table 4.2: MCTS-RL Result

Bus No Voltage
(p.u)

Losses
(kW)

BESS (kW) MCTS

2 1.002 60.873 20 8

3 1.01 38.641 18 24

4 1.014 30.951 24 25

5 1.018 23.797 12 7

6 1.027 9.298 12 14

7 1.028 8.392 40 32

8 1.031 6.12 40 30

9 1.034 4.172 12 15

10 1.038 2.536 12 13

11 1.038 2.285 9 12

12 1.039 1.882 12 31

13 1.043 0.654 12 10

14 1.044 0.314 24 9

15 1.044 0.136 12 11

16 1.045 - - 29

17 1.046 - - 6

18 1.047 - - 26

19 1.002 60.968 18 27

20 1.004 61.458 18 28

21 1.005 61.517 18 33

22 1.005 61.543 18 4

23 1.012 40.343 18 5

24 1.016 43.104 84 3

25 1.018 43.791 84 23

26 1.028 10.018 12 2

27 1.029 10.898 12 19

28 1.033 13.731 12 20

29 1.036 15.57 24 21

30 1.038 16.384 40 22

31 1.04 17.1 30 -

32 1.04 17.194 42 -

33 1.04 17.199 12 -54



The required BESS capacities resulting from the MPC optimization process
correspond to the energy differences between the two scenarios shown in Fig-
ures 4.8 and 4.10, over the time period when SOC changes from its minimum
to maximum value. These capacities are determined based on the optimal BESS
cost (4.13) while using the MPC controller (4.8). Deployment rate of the critical
buses in the impacted region, αi, is calculated through (4.28) for the amount of en-
ergy required by the impacted region. For example, in the scenario with CSOCC
and considering the power flows shown in Figures 4.7 and 4.10, the deployment
rate is αi = 72kW/90kW = 80%. To determine the total required capacity of BESS
for critical buses, Cb

r , one has to calculate the incremental amount of energy with
respect to the base case without CSOCC. This amount depends on the difference
between the two deployment rates and the load demand of the impacted region

Cb
r ≈

Nreg

∑
nbus=1

∫ tsoc,max

tsoc,min

Di(t)(αi(t)− αb(t))dt), (4.29)

where Nreg is the total number of critical buses within a particular region, and
tsoc,min/tsoc,max are the times when SOC reaches its minimum/maximum value,
respectively (see Figure 4.10). The total required BESS capacity is Cb

r = 462.8kWh,
and the individual required capacities for buses 16, 17, and 18 are 116.2 kWh,
118.4 kWh, and 228.2 kWh, respectively. Figure 4.10 shows that the negative
power flows in all three regions have been resolved. Since the reverse power
is always checked, this method guarantees voltage rise mitigation. The BESS
deployment rate of the assisting buses (encircled by the red ellipse in Table 4.2
column 5) is αa=10% of the existing BESS units in the assisting region. The re-
duction of the deployment rate in this scenario, compared to the original value
αb = 20% (without CSOCC) is α′b = αb − αb · αa = 20% − 20% · 10% = 18%
(10% is level of participation of BESS installed in the assisting region towards the
impacted region).

Figure 4.11 shows the 33-bus voltages for three cases: i) 90% PV penetration
with no storage; ii) 90% PV penetration with 20% BESS penetration but with-
out CSOCC; and iii) 90% PV penetration with 20% BESS penetration and with
CSOCC. It can be clearly seen that the proposed method significantly improves
the voltage levels of the circuit, even compared to the case with BESS but without
CSOCC. In this specific case, the use of storage alone (without CSOCC) resolves
the overvoltage issues caused by high PV penetration. This can be attributed to
the small size and low line impedances of the 33-bus circuit where the branches
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between the feeder and the PV buses are short.
This is not the case for a real system of substantial extent and complexity, the

aim of using this circuit is to explain the procedure steps and the feasibility of
the proposed method. However, a practical test case of the Lloydminster circuit
is described in the next section and the voltage threshold 1.05 p.u is considered.
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Figure 4.10: BESS powers controlled by MPC at the critical buses and their cor-
responding grid terminal power flows and SOC plots (with CSOCC).

4.4.3 Test Case 2: Lloydminster Circuit

4.4.3.1 PV hosting capacity

Similarly, as in the previous test case, the load flow analysis of the distribution
circuit was simulated by PPF-MCS. However, in this test case with a real and
complicated network CYME power engineering software is used to perform the
power flow analysis. Also, the same assumptions of the previous case in terms of
the reactive power and the power factor is considered here. Certain penetration
levels cause the occurrence of impacted regions (regions with marginal, but still
acceptable, voltage increase) shown in orange in Figure 4.12. The voltage vio-
lation starts at 60% PV penetration at 14 buses called critical buses that located
at three regions A, B, and C called the impacted regions, shown in red where
voltages exceed 1.05 p.u.
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Figure 4.11: 33-bus system voltages in the following cases: i) 90% PV penetration
with no storage; ii) 90% PV penetration with 20% BESS penetration but with-
out CSOCC; and iii) 90% PV penetration with 20% BESS penetration and with
CSOCC.
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Figure 4.12: The impacted regions (orange) and critical buses (red); the impacted
regions contain the following buses: a) bus 1 at (A), b) buses 2-8 at (B), c) buses
9-14 at (C).
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4.4.3.2 Battery implementation without CSOCC

The load demand and PV power generation profiles of the 14 critical buses are
shown in Figure 4.13, grouped into the three regions as in Figure 4.12. The load
profiles are obtained as averages of the residential and industrial load curves
from the circuit data. In this study case, only one region is enough to explain
the simulation. For demonstration, area C has been selected as in this area the
assisting buses fittingly surround the impacted buses where will be needed in
the next scenario (with CSOCC). The worst bus in this area is bus 4, which is
causing the highest voltage violation in this area. Based on the worst bus, the
MPC optimization results, shown in Figure 4.14, has max(Pch,i) = 5.34 kW. and
Di = 62 kW (see Figure 4.13), the value of deployment rate is obtained as αi =

9%.
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Figure 4.13: The load demand and PV power generation of the 14 critical buses
in the three regions A, B, and C.

The same figure also shows that the reverse power is fed to the bus terminal
between 11:00 and 13:00. The highest impact occurs at bus 4 (in region C) at
12:15, when reverse power of -6.1 kW leads to overvoltage of 1.052 p.u. (the
pronounced peak in Figure 4.17).
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Figure 4.14: Terminal power flows at the critical buses and corresponding BESS
flows (without CSOCC).

4.4.3.3 Battery implementation with CSOCC

As mentioned in the previous scenario, area C is considered in this test case.
Figure 4.15d shows the buses in the search space that are selected as the best
candidates by following the two objective functions the line losses and the BESS
capacities, where their values are shown through the Figures 4.15a and b respec-
tively, and the bus voltages that are checked with the voltage constraint are also
shown in Figure 4.15c, and the revers powers if happen in the assisting buses
will be subjected to θa which is zero. Similar to the previous test case, the excess
energy in the impacted region may not need to use all assisting buses available
in the search space. The participating buses in the assisting region are shown
in different colors according to the priority of their selection determined by the
optimization process (MCTS-RL algorithm). The required BESS capacities re-
sulting from the MPC optimization process correspond to the energy differences
between the two scenarios shown in Figures 4.14 and 4.16, over the time period
of SOC maximum to minimum value.

In this test case, the deployment rate for the impacted buses is αi = 11.5kW/62kW
= 18% (obtained using information from Figures 4.13 and 4.16, as in the previous
case).
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Figure 4.15: States at the assisting regions: a) line losses, b) bus BESS capacities,
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final results of the assisting buses corresponding to the critical region required
energy

Cb
r values for impacted regions A, B, and C are determined as 42.2 kWh,

197.75 kWh, and 124.3 kWh, respectively, using equation (4.29). Moreover, in
this practical case, the overvoltages are resolved and PV penetration of 60%
can be achieved with a low BESS deployment rate of the assisting buses (20%
of the existing BESS units in the assisting region). This low required penetra-
tion level can be considered an additional advantage of a robust power man-
agement in the centralized controller that reduces the overall fixed cost of this
BESS-based solution. Voltages at the critical buses for the two scenarios (without
and with CSOCC), obtained using CYME software with a 15 minutes resolution,
are shown in Figure 4.17. The semitransparent blue plane represents the voltage
limit of 1.05 p.u.
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Figure 4.16: Terminal power flows at the critical buses and corresponding BESS
flows (with CSOCC) .

r
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Figure 4.17: Voltages levels at the critical buses during a 24 hour operation with-
out CSOCC (a), and with CSOCC (b).
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Figure 4.18: The critical buses costs: a) without CSOCC, b) with CSOCC.

Finally, Table 4.3 shows the system costs for the following three scenarios:
conventional method (without MPC), with MPC but without CSOCC and with
MPC and CSOCC are calcualted for the region C. The conventional method is
clarified in [10], [12], and [13], where the BESS charges at the PV time period and

62



Table 4.3: System secanrio costs

Scenario A Conventional method

Impacted region Assisting region

Grid Cost ($) 654.54 2919.00

BESS Cost ($) 16.61 47.73

Total Cost ($) 3637.90

Scenario B Without CSOCC (with MPC)

Impacted region Assisting region

Grid Cost ($) 497.31 1332.80

BESS Cost ($) 50.49 340.51

Total Cost ($) 2221.10

Scenario C With CSOCC

Impacted region Assisting region

Grid Cost ($) 269.19 1590.50

BESS Cost ($) 94.29 278.66

Total Cost ($) 2232.60

discharges at the peak load at night time. Since the costs incurred by the assisting
region must also be considered (in addition to the costs in the impacted region),
the total cost of the area that includes both impacted and assisting region costs
are shown in the last row of each scenario. It is obvious that the total costs in the
two scenarios without and with CSOCC are significantly reduced compared to
scenario of the conventional method. The use of CSOCC reduces the impacted
region cost even further, as also shown in plots a) and b) of Figure 4.18. The total
costs of both MPC-based scenarios are very close to each other. This is due to
the fact that the BESS operation in both impacted and the assisting regions are
optimized by the MPC that tracks the electricity pool prices and optimizes the
BESS accordingly. The additional savings gained using MCTS-RL are relatively
small because this algorithm only coordinates the BESS units in the two regions
without changing energy adding new energy to the system.

There are other published works that also use coordination strategies to share
energy among neighbouring BESS units [11–14, 19]. However, the do not con-
sider the stochasticity of DER. Therefore, to facilitate coordination, these strate-
gies methods require a priori knowledge that may not be available in practical
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systems. On the other hand, the proposed model-free algorithm demonstrates
robust performance under stochastic conditions of real system. This can be at-
tributed to the efficiency of the multistage stochastic optimization based on RL
and the diffusion strategy (i.e. the mechanism of allocating nodes to assist the
impacted region). This strategy is based on randomly selecting routes between
the impacted region and the assisting buses in a way similar to how Monte Carlo
methods build probabilistic models for each state. Eventually, the diffusion strat-
egy finds the optimal BESS capacities along routes that are optimal in terms of
line losses and also subject to considering voltage constraints. Because the RL-
MCTS controller has a global view of the system, the energy management over
feasible region at each node is effectively obtained even though the BESS units
in the system are only described by explicit stochastic models. The proposed
method also facilitates BESS optimization through economic dispatch so that the
cost of the system operation is minimized using MPC, while respecting system
operation constraints. Finally, the use of diffusion strategy reduces the time re-
quired to find solution, because it restricts search to a small region surrounding
the impacted region that examining the
entire search space.

4.5 Final Remarks

This research introduces a novel method for distributed control to mitigate volt-
age rise in power distribution networks caused by high penetration of residen-
tial photovoltaic generators. The proposed method, dubbed coordinated state
of charge control (CSOCC), combines an intelligent method MCTS-RL and co-
operative SOC control using MPC. In addition to preventing voltage violations
through optimal use of network-wide installed battery capacity, it also minimizes
losses due to power transfer. The described case study considers two scenarios
of the battery implementation, without and with CSOCC, and corresponding en-
ergy management strategies. To prevent a premature saturation or depletion of
BESS, the first scenario (without CSOCC) requires a significant increase of BESS
penetration level from initial 9% to 18% at each impacted bus. The second sce-
nario, using the proposed CSOCC approach, successfully mitigates voltage rise
issues using the the assisting buses with only a low BESS participation of 20%.
This is because the higher number of assisting buses with lower BESS participa-
tion compensates for high BESS penetration required for a lower number of im-
pacted buses in the non-coordinated case. In the proposed approach, distributed

64



storage units are coordinated to form an assisting region that is optimized using
MCTS-RL method considering the capacity of each available BESS, the voltage
levels at the individual buses, and the line losses along the paths of required
energy transfers. As a result, it resolves the voltage issues with a low BESS pen-
etration level while inflicting minimal system losses. The effectiveness of the
proposed method is examined on a circuit model of the distribution system of
city of Lloydminster in Alberta, Canada. The results obtained using power en-
gineering software package CYME show that the proposed distributed control
approach is effective in mitigating over-voltages with a guaranteed performance
since the values of reverse power are always checked. The proposed method
can be implemented in real, complicated networks with multiple laterals. In the
future, the algorithm can also be extended to incorporate other practical factors
such as thermal constraints or ability to handle unbalanced three-phase systems.
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Chapter 5

Distributed Optimal Power Flow
for Electric Power Systems with
High Penetration of Distributed
Energy Resources

In the liberalized electricity market of North America, the NERC in conjunction
with FERC introduced the concept of Available Transfer Capability (ATC). It is
provided to all energy market participants of a power system through Open Ac-
cess Same-time Information System (OASIS) [1]. This information must be avail-
able on hourly or daily basis for system optimization processes. Therefore, a
strong economic incentive is necessary to improve the effectiveness of power
system optimization and thus the transfer capability for the Distribution System
Operators (DSO)s and power markets. Meanwhile, high Distributed Energy Re-
sources (DER) penetration and their growth in power transactions will definitely
affect the power system operation and the competitive power markets. Further-
more, the power transactions by these DERs are very dynamic, occur under vary-
ing load and generation conditions, and at different locations [84]. Therefore, the
interactions between two independent bilateral power transactions under the
power market environment need to be optimized and checked using Optimal
Power Flow (OPF) method. However, the centralized OPF method would be
very complicated under these conditions. The centralized optimization architec-
ture already exhibits the following limitations [85]:

a) The massive number of DER units rapidly increases system uncertainty;
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this results in control problems that require immense power computations
and thus became fundamentally very demanding and hard to solve.

b) Control of the massive numbers of DER units requires massive implemen-
tation of communication systems and extensive data processing.

c) Data privacy and cyber-security risks become substantially more serious in
a centralized optimization control architecture.

d) The market complexity that accompanies new technologies and new busi-
ness models leads to suboptimal outcomes or even to intractable results.

Distributed optimization and management architectures represent a transition-
ing support towards a highly-efficient industry. These architectures can capture
all the physical realities of the network and relieve a centralized agent from
massive computing. This research explores the feasibility of fully distributed
architectures for the electric power industry. This architecture is based on vari-
ous electric power ecosystems that can interact with each other to achieve their
power transaction objectives without the need for real-time centralized coordi-
nation or optimization. Moreover, decomposition technique is used to divide
the large OPF problems into smaller subproblems [86, 87]. Spatial coordina-
tion method based on reinforcement learning (RL) can separate the challenge of
optimizing interconnection operation into smaller units and optimize the inter-
nal operation economically. Ideally, the same system overall operating point is
achieved while satisfying the constraints of power network boundaries, mainly
the voltage stability limit and the line thermal limit or contingency.

5.1 DCOPF constraints Modeling in a Dynamic Power Mar-
ket

In a distribution network with high DER penetration, power flow patterns may
change after each power transaction due to the dynamic behaviour of DER. If
the network is very large and complex, the AC OPF is a nonlinear, non-convex
problem. Finding feasible solutions for such problems is a very difficult task [88].
A widespread approach in many industrial applications is so-called DC approx-
imation for the OPF. This simplification leads to a convex optimization problem
that can be solved quickly not only for a single transaction, but even for multiple
simultaneous transactions. The DC OPF approximation assumes that the angle
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differences θij are small so that sin(θij) ≈ θij. It also assumes that the voltage is
equal one at each bus in the network buses set N, and Gl � Bl for all l lines in
the set L where Gl and Bl are the conductance and susceptance of line l [89]. The
key to applying the line losses constraint and the marginal loss price is the loss
factor (LF) based on the line flow shift factor (also called power transfer distri-
bution factor, PTDF). Thus, in order to formulate the DOPF using the linearized
DCOPF, the PTDF and LF need to be established first.

5.1.1 Line Flow Shift Factor

When a DER injects power in the distribution network with N buses and L lines,
a power transfer will change the network active power flow. Assuming PDER

is a random value of the DER power injected by a seller, and the power flow P
between buses i and j is continuous and differentiable in PDER, the distribution
factor can be represented as [90]

PTDFij,k =
∂Pij

∂PDER , (5.1)

where, PTDFij,k is the portion of the flow on line ij due to the injection at node k.
In the linear approximation, the active power flow from i to j can be expressed
as [89]

Pij = Bij[Aθij], (5.2)

where B is a susceptance matrix with a diagonal dimension of L × L, A is an
L× N incidence matrix that encodes how the buses are connected by the lines,
and θij is the voltage angle difference between the buses i and j. Solving for
equations (5.1) and (5.2), the PTDF can be obtained as [91]

PTDF = Bd AB−1. (5.3)

Starting from the pre-transfer or base case PDER = 0 and the pre-transfer flow
of line ij being Pij(PDER0), the post-transfer flow of the line is determined as

Pij = Pij(PDER0) +
∫ PDER

PDER0
ρij,T(PDER)dp. (5.4)

For a particular power transfer, the PTDF measures the sensitivity of a line’s kW
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flow to a kW transfer, so (5.4) can be rewritten as

Pij = Pij(PDER0) + PTDFij,T × PDER. (5.5)

5.1.2 Line Loss Factor

Another important factor is the line losses factor (LF). Losses can be quite sig-
nificant for a large scale power system, and their impact on the DC OPF and
locational marginal price (LMP) cannot be ignored. The LF, a function of a PTDF,
is calculated using the iterative DC technique. It can be determined from the line
flow losses as follows [92, 93]

PLosses,l =
P2

l + Q2
l

V2
l
· rl , (5.6)

QLosses,l =
P2

l + Q2
l

V2
l
· xl , (5.7)

where Pl and Ql are the real and reactive power flow, respectively. LF is defined
as a linear sensitivity of the total system losses to the real power injections at
each bus. Therefore sensitivity w.r.t. (5.6) can be determined as

∂PLosses,l

∂PDER =

(
2 · Pl ·

∂Pl

∂PDER + 2 ·Ql ·
∂Ql

∂PDER

)
· rl

V2
l

. (5.8)

It will be assumed that all voltages are equal to 1 p.u. and the reactive power
is constant during the DER power transactions, the reactive power derivative is
zero and can be excluded from (5.8). This allows us to reduce (5.8) to

∂PLosses,l

∂PDER = 2 · Pl ·
∂Pl

∂PDER · rl . (5.9)

The final expression of the nth element of the LF can be represented as a func-
tion of PTDF

LFn = 2
L

∑
l=1

rl · Pl · PTDFl,n. (5.10)

5.2 Proposed MCTS-RL Algorithm

Machine learning has started to play an important role in maintaining the sta-
bility of autonomous micro-grids (MG)s and complex power networks. The pri-
mary reason is that it provides these systems with the ability to learn without
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being explicitly programmed. Typically, a multi-agent system (MAS)-based dis-
tributed control scheme can interact with the environment to learn the state vari-
ations and find potential solutions. The interaction between the environment
(the power grid) and the reinforcement learning RL (representing the system op-
erator) can be formulated as a stochastic game. Let S be a set of system states in
this environment. Each state s ∈ S is a vector that indicates the current status of
all the DER units in the search space. Next, A be a the set of all possible actions,
a ∈ A, that the agent may take to achieve the optimal decision. In response to
action a taken and state s traversed, the agent will receive an immediate reward
R(a, s) [94].

Figure 5.1: Proposed MCTS-RL algorithm.

The MCTS-RL algorithm aims to find the desired resource diffusion strate-
gies, such as the best available DER units and the optimal power transfer paths.
The use of MCTS provides the proposed algorithm with ability to navigate through
the network and gradually build experience by performing tree search [95]. The
addition of RL allows learning from the results to further optimize decisions
taken by the system in an unsupervised fashion similar to temporal difference
RL methods such as SARSA [96]. Figure 3 illustrates the proposed method.

Each bus in a power network can be represented as a node in MCTS, and
each node contains state and action edges (s, a) of the tree. Each edge stores a set
of statistical parameters: visit count N(s, a), action-value Q(s, a) pair updated by
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Q-learning (5.11), and instant reward r(s, a). These parameters are defined as
follows

Q(st, at)← Q(st, at) + α
[
rt+1 + γQ(st+1, at+1)−Q(st, at)

]
, (5.11)

where α is a learning rate which controls the extent to which the value function
is updated, and γ is a discount factor which indicates the effect of the current
decision on the long-term reward.

The agent selects an action a, and the network state is changed from s to s′.
Accordingly, the Q-value of the agent is updated, and the number of visits on
the visited nodes is increased by one. The tree state is randomly built up and the
accumulated experience in each state is updated by the random sampling during
the process of the optimization and exploration policy and store the information
in the node states by the back propagation process.

5.3 The proposed DOPF based on MCTS-RL Model

The distribution network is modeled as a directed tree graph T(Ωk, L). It consists
of a set of buses Ωk (part of the set of all network buses N), also referred to as
nodes, and a set of distribution lines L that link these nodes. The subset Ωk con-
tains K linked nodes that are indexed as k = 0, 1, ..., K. Node 0 denotes the root
node, the starting point of the tree search. In general, this node can represent ei-
ther a buyer or seller. However, under the scenarios considered in this study, the
root node is restricted to being a buyer looking for the best seller(s). The remain-
ing nodes in Ωk (except the root node j) are branch nodes. All pairs of branch
nodes are linked together by a branch line l. All nodes (except the leaf node) in
this tree are considered parent nodes since they have a set of child nodes Ci con-
nected to the parent by the branch lines. The child nodes may have connected
generators. For each line in L that links a parent node to a child node, there is an
impedance zi = ri + xi. Power injection from i to j is computed using (5.5).

The objective of the DOPF is to determine the generation dispatch that results
in the lowest cost to supply the load while all system constraints are satisfied.
Based on the DC OPF approximation, the DOPF problem formulation will be
determined as follows

min ∑
x∈Ωk

fi(xi), (5.12)

f (x) = f 1(CP) + f 2(LFij),
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h(x) =

 Pi − dj = ∑
i∈Ωk

PTDFij,x + LFij ∀j ∈ N, (5.13)

θre f = 0, (5.14)

g(x) =


Px 6 Px 6 Px ∀x ∈ ΩG, (5.15)

PTDFij,x 6 PTDFij,x 6 PTDFij,x (5.16)

LFij 6 φ ∀lij ∈ N. (5.17)

Here x is the DER state variable which is updated by RL. It belongs to the feasible
set Ωk of the MCTS region which is part of the original distribution network. This
variable includes the generation output cost Cp, and the loss factor LFij between
the load bus and the DER bus. Functions h(x) and g(x) are the sets of equality
and inequality constraints, respectively. ΩG denotes all DER units that belong to
the feasible set of the MCTS region Ωk, Ωi refers to the set of all buses connected
to the load bus j, and ΩL refers the set of all branches of these buses. The balance
nodal power flow is enforced by constraint (5.13). Constraint (5.14) keeps the
reference bus voltage angle at zero. The inequalities (5.15) and (5.16) ensure that
power flow in the branches and the power output of the DER unit are within
their upper and lower bounds. Constraint φ provides coupling between region
Ωk and its neighboring regions. According to the DC OPF and the concepts of
electric distance [97], φ represents the threshold value of the LF where the latter
is a function to the voltage angle difference between the load bus j and the cross-
bordering buses separating region Ωk from its neighbors. Thus it identifies the
feasible space of the OPF problem in multiple regions.

RL changes its policy through on-line learning to allow adaptation to any
changes in power system states and maintaining system security. This cean be
expressed through a modified state-action-value update equation

Q(st, at)← Q(st, at) + α
[
rt+1(m− ϕ

′
n) + γQ(st+1, at+1)−Q(st, at)

]
, (5.18)

with additional parameters

ϕ
′
n =

1 if m > τ,

0 otherwise

m = 1− (ϕn + LF),

where ϕn is the set of all constrain factors under normal power system condi-
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tions, and τ is the constrain threshold that maintains the security limit. The
state-value V(s), under the optimal strategies for a given state s, is represented
as

V∗(s) = max ∑
a∈A,s′

π∗(s), Q∗(s
′
, a), (5.19)

where π∗(s) is the optimal state policy.

5.4 Results and Discussion

To demonstrate the proposed MCTS-RL algorithm, a real-world network, IEEE
33-bus test system is considered as a case study [98]. The testing DER dynamic
price bid profiles and corresponding generation profiles are shown in Figures 5.2a
and 5.2b, respectively. Load profile at node 2 is shown in Figure 5.2c. DER units
1,2 and 3 are connected to buses 25, 6, and 22, respectively. The algorithm pro-
gressively builds a partial game tree [95], with a greedy and randomly biased
sequence of actions applied to a given series of states, is simulated for the MCTS
and trained on using RL.

MCTS-RL attempts to obtain the optimal selection of DER price bids through
building a search tree until the predefined constrain φ is reached. Figure 5.3a
shows that different DERs are selected at each time slot depending on the best
price bids following the load demand shown in Figure 5.2c. When a single DER
is not capable to cover the demand at a particular time slot, more than one DER
is selected to participate in the transaction. The best DER prices that have met
the demand during the sample day are plotted in Figure 5.3b.

The scenario described above does not consider contingency analysis and
may lead to line congestion as shown in Figure 5.5a. To resolve this problem un-
der non-linear load and DER behavior, the contingency constraint is added to the
RL update algorithm (5.18), and implemented during the optimization process.
In this new scenario, generation of DER units that compromise network security
is reduced even if they offer energy at the best prices. Instead, other DER units
that do not influence system security while providing energy at satisfactory price
offers are selected to satisfy the load as shown in Figure 5.4a. This demonstrates
that the proposed DOPF model can effectively consider system contingencies
and ensure efficient power market solutions that do not jeopardize system se-
curity. It should be noted that this added security comes at the price of a slight
increase of the system overall generation cost, as shown in Figure 5.4b. For a
more detailed comparison of the contingency analysis in the two considered sce-
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narios, refer to Figure 5.5.

(a)

(b)

(c)

Figure 5.2: DER units and load used for testing: (a) DER dynamic prices profile,
(b) DER dynamic power output, (c) Load profile at node 2.
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(a)

(b)

Figure 5.3: Results of MCTS-RL optimization when line congestion is not consid-
ered: (a) Optimal DER units, (b) DER generation cost.

5.5 Final Remarks

This contribution introduced an efficient method for distributed optimal power
flow (DOPF) calculation that overcomes shortcomings of the state-of-the-art OPF
methods. As such, this new methodology will find applications in the emerging
distribution grids with high penetration of distributed energy resources. The
developed DOPF has a scalable architecture for energy optimization and man-
agement at all levels.

The proposed methods is based on a powerful combination of Monte Carlo
tree search (MTCS) and reinforcement learing (RL). MCTS-RL leverages a diffu-
sion strategy to generate a set of optimal routes through navigating actions/lines
that link to multiple candidate/child nodes in the microgrid. The speed at which
MCTS-RL can obtain optimal solution is one of its main advantages that makes
it suitable for real-time system with dispatchable resources. This algorithm can
avoid the dimensionality problem and guarantee convergence.

Simulation results also demonstrate that the proposed DOPF can achieve cost
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(a)

(b)

Figure 5.4: Results of MCTS-RL optimization when line congestion is considered:
(a) Optimal DER units, (b) DER generation cost.

minimization for distributed economic dispatch in microgrids while maintain-
ing the system security limits. The presented analysis can be of use to many
practitioners who are interested in designing and developing power distribution
markets. The key advantage of the proposed method is that it can be efficiently
integrated into power market software.
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(a)

(b)

Figure 5.5: Contingency analysis (a) Congested lines are unconsidered in MCTS-
RL. (b) Congested lines are considered in MCTS-RL.
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Chapter 6

Distributed Optimization for
Distribution Systems with
Stochastic DER using
Multi-Agent Deep Reinforcement
Learning

Optimal power flow (OPF) is an essential tool for managing energy in electric
power systems. It seeks the least-cost operation of a power system by dispatch-
ing generation for given power demand while satisfying the system constraints.
The changing nature of modern power grids brings new entities into electric
power markets. They include owners of distributed energy resources (DERs),
and even so called prosumers - individual customers equipped with self-owned
DER units. The new market participants are interested in autonomous maxi-
mization of their profits. Therefore, they can be considered independent entities
of the system [99]. However, a decision made by a single entity may affect the
decisions of the remaining entities that are physically interconnected in the same
system.

As power distribution systems are becoming more and more dispersed, they
may require additional generation capacity and new line assets to supply the
peak demand. The network participants may need to cooperate with each other
to achieve reliable and effective operation of the network without changing the
system infrastructure. The incremental dispersion of new network entities will
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also affect the electric power markets. In this new scenario, the interactions be-
tween two independent bilateral power transactions in the network need to be
checked and optimized using OPF. However, the conventional centralized OPF
method poses a number of problems [85]. To avoid these issues and provide
the power industry with tools to support highly efficient system operation, dis-
tributed optimization architectures are required. Such architectures can capture
all physical realities of a dispersed network and alleviate a centralized optimiza-
tion agent from tremendous amount of computing.

Recent literature presents several approaches to distributed economic dis-
patch [31, 100]. They resolve the randomness of DER units and loads in micro-
grids through the use of Markov decision processes (MDPs). Fully distributed
methods for economic dispatch in microgrids have been proposed by Xia et al. [27]
and Li et al. [28]. They derive a set of distributed control laws for microgrid
agents. The underlying communication network has two layers. One ensures the
supply-demand balance in the microgrid, while the other one coordinates con-
trol agents. Distributed model predictive control (MPC) for stochastic dispatch
optimization in microgrids have been proposed by several authors [34–36]. They
use a local MPC for each entity to implement receding-horizon optimization.

Other authors use a divide-and-conquer approach [29, 30]. They decompose
the centralized optimization problem into many smaller optimization problems
executed by local agents. Each agent can exchange information with its network
neighbors. After the information is processed, agents adjust production of their
DER units in a distributed manner with limited communication among the enti-
ties.

A common shortcoming of all these approaches to distributed economic dis-
patch is that they require prior statistical information on all DER units and loads.
In addition, they cannot effectively cope with the dynamic nature of power trans-
actions that occur under varying load and generation conditions, and at different
locations.

Reinforcement learning (RL) is a powerful tool to solve complex sequential
decision-making and control problems. RL can effectively learn optimal stochas-
tic policies, even in high-dimensional or dynamic action spaces. It can reach the
goal state in a few steps, with high probability, and without relying on prior
information or complex stochastic modeling. These properties make RL a suit-
able tool to address the multistate stochastic optimization problems in modern
distribution grids.

A simple solution is to use tabular Q-learning [100]. In this approach, RL only
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finds a feasible region that contains DERs that are implicitly considered optimal.
However, it does not find DERs that can contribute to the acceleration of the
optimization process. In addition, tabular Q-learning does not work well with
continuous observations in complex systems with many DERs. A cooperative
RL approach has been proposed by Liu et al. [18]. The authors suggest that each
distributed controller exchanges information with its neighbours, makes action
decision based on its own state and the neighbourhood states, and performs so
called distributed cooperative mechanism. However, the system observability
is limited to the neighbouring buses, leading to limited power transactions. In
addition, this approach does nor consider the real-time impact of the line flow
variations due to the power transactions.

In practice, operation of power systems relying on machine learning may
be affected by approximation errors. This may increase the cumulative opera-
tion costs of the system or even cause damage to the equipment connected to
the circuit. On the other hand, the use of exact optimization methods in com-
plex distribution systems with stochastic DER units is often impractical due to
the increase of computational burden associated with such methods. For exam-
ple, the use of linear programming (LP) may not be possible due to a massive
number of control variables and associated conditional statements. Hence, the
proposed model presents a hybrid approach that avoids the drawbacks of both
constituents: machine learning errors and lack of scalability of conventional op-
timizers. The proposed system, called Multi Leader-Follower Actors under Cen-
tralized Critic (MLFACC), can fully capture the environment states and learn
from the behavior of network participants to determine the optimal DERs before
they are sent to LP for power generation optimization. To expand the capabil-
ity of distributed OPF algorithms from microgrids to large, complex distribution
circuits, it is necessary to monitor network states and communicate them among
the microgrids. This can be accomplished through the proposed multi-agent sys-
tem (MAS) architecture.

This research proposes a multi-agent RL system that allows agent controllers
to adapt to changes in the power distribution network as a means to maintain
system security. The feasible region in a large system is obtained using Monte
Carlo Tree Search (MCTS) as a first step. This is followed by deep RL-based op-
timization to navigate from a buyer bus through the entire network (i.e. beyond
the local neighbourhood). This procedure finds the best DER units to buy power
from, while reducing the search space compared to the centralized OPF.

This research is organized as follows. Section 6.1 describes a power flow
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linearization method used to calculate power injection in the proposed OPF ap-
proach introduced in section 6.2. Illustration of the new approach is based on a
model of real-time balancing electricity market constructed in section 6.3. Simu-
lation results based on IEEE 69-bust system are presented and analyzed in sec-
tion 6.4.

6.1 Power Flow Linearization

In large distribution networks with high penetration of intermittent DER units
(such as photovoltaic and wind generators), the power flow computational bur-
den becomes substantial. In addition to the impact of scale, OPF needs to be
checked more frequently due to the dynamic behaviour of DER units. However,
the OPF in AC systems is a nonlinear, non-convex problem [101]. Therefore,
finding feasible solutions for such problems is a very difficult task. A common
approach is DC OPF approximation that leads to a convex optimization problem
which can be solved quickly. However, its use for practical large distribution
networks with a high system R/X ratio negatively affects the accuracy of OPF
computations.

Yang et al. [102] illustrate the impact of several approximations used in the
linearization process on branch power flows. They start from the well known
polar AC power flow model

Pi =
N

∑
j=1

GijViVj cos θij +
N

∑
j=1

BijViVj sin θij (6.1)

Qi = −
N

∑
j=1

BijViVj cos θij +
N

∑
j=1

GijViVj sin θij (6.2)

where N is the bus number, and Gij and Bij are the conductance and suscep-
tance of the line. There are three main approximations [102] of the expression for
branch power flow GijVi(Vi −Vjcosθij) ≈

a) 0, b) Gij(V2
i −V2

j ), c) Gij(Vi −Vj).

Based on voltage computation results [102], the third approximation (c) pro-
vides the best accuracy. Using this simplification, the linearized models of the
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active and reactive power injections at bus i are [103]

Pi =
N

∑
j=1,j 6=i

kij2

xij
(δi − δj) +

kij1

xij
(Vi −Vj), (6.3)

Qi =
N

∑
j=1,j 6=i

−
kij1

xij
(δi − δj) +

kij2

xij
(Vi −Vj), (6.4)

where

kij1 =
rijxij

r2
ij + x2

ij
, kij2 =

x2
ij

r2
ij + x2

ij
. (6.5)

To solve equations (6.3) and (6.4), the node voltages have to be obtained first[
P′

Q′

]
−
[

Bc
2

−Bc
1

]
δ1 −

[
Bc

1

−Bc
1

]
V1 =

[
B′2 B′1
B′1 B′2

] [
δ′

V ′

]
, (6.6)

where P′, Q′, δ′, and V ′ are vectors of real power injection, reactive power injec-
tion, voltage angle, and voltage magnitude, respectively. Matrices Bc

1, Bc
2, B′1 and

B′2 can be found in [103].
In a large scale power system, losses can be quite significant and their impact

on the OPF and locational marginal price (LMP) cannot be ignored [103]. The
flow losses for line l can be determined as follows [79, 100]

Ploss,l =
P2

flow + Q2
flow

V2
l

rl , Qloss,l =
P2

flow + Q2
flow

V2
l

xl , (6.7)

where Pflow and Qflow are the real and reactive power flow, respectively. The loss
factor is defined as a linear sensitivity of the total system losses to the real power
injections at each bus with connected DER, i.e. LF = ∂Ploss,l/∂PDER. Substitut-
ing (6.7) for Ploss,l , one gets

LF =

(
2Pflow

∂Pflow

∂PDER + 2Qflow
∂Qflow

∂PDER

)
rl

V2
l

. (6.8)

Assuming that the reactive power is constant during DER power transac-
tions, its derivative is zero and thus the second term can be excluded from for-
mula (6.8), reducing it to

LF = 2Pflow
∂Pflow

∂PDER · rl . (6.9)
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6.2 Description of the Algorithm

6.2.1 Monte Carlo Tree Search based Reinforcement Learning

RL and game theory can be used to develop optimization strategies for stochastic
games. If considered a stochastic game, the problem of integrating intermittent,
weather-dependent DERs on the grid can benefit from the developments in these
areas. In conventional strategies, description of the system must be programmed
in advance with sufficient prior knowledge. However, in a dynamic environ-
ment with stochastic behavior, the system itself changes over time making the
optimization problem very hard to solve. In such situations, the optimization
strategy can be developed by an agent through a learning process, without be-
ing explicitly programmed.

In a power system with high penetration of DERs, let S be a finite or infinite
set of environment states. Each state s ∈ S is a vector that refers to the current
status of a DER unit in the search space. An agent may take an action a ∈ A
from a set of all possible actions A. The transition probability p determines the
likelihood of the agent traversing from state s to s′ under the joint action of all
agents. In response to action a taken and state s traversed, the agent will receive
an immediate local reward r(s, a, s′) [104]. Eventually, the learning objective of
the agent is to maximize the discounted cumulative reward at each time step as
follows

R(t) = r(t + 1) + γr(t + 2) + γ2r(t + 3) + . . . , (6.10)

where γ ∈ [0, 1] is a discount factor expressing the effect of the current decision
on the long-term reward. A small value of γ means that rewards in the near
future are more important.

Applied to power systems, feasible regions with suitable energy resources
can be identified using Monte Carlo tree search based Reinforcement Learning
(MCTS-RL) [105]. This search algorithm provides the proposed approach with
ability to navigate through the power network and gradually build experience.

The region feasible for power transactions with optimal power transfer tra-
jectories to the DERs are determined using diffusion strategies illustrated in Fig-
ure 6.1. Each bus in a power network is modeled as a node in the MCTS graph [48].
Each edge stores a set of parameters: the state-action pair (s, a) and the visit
count N(s, a). A learned strategy is represented by a Q-value function that maps
each state-action pair to a value estimating goodness of the action in the next
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Figure 6.1: Proposed MCTS-RL algorithm.

state s′. The Q-value function is obtained as follows

Q(st, at) ← Q(st, at) + α
[
rt+1 + γQ(st+1, at+1) − Q(st, at)

]
, (6.11)

where α is the learning rate which controls the extent of the value function up-
date.

The next joint action is selected by the ε-greedy policy

a =

{
max Q(s, a) with probability 1− ε

random a ∈ A with probability ε
(6.12)

where ε ∈ [0, 1] is the exploration rate used to balance the exploration and ex-
ploitation policies during the process of learning the Q value function. This way,
the state tree is randomly built up and the experience accumulated in each state
is updated by random sampling and stored in the node states by a back propa-
gation process.

To enhance the learning capability in terms of DER optimization in complex
power systems, the described agent-based algorithm can be expanded to multi-
agent case through the proposed MLFACC method. A theoretical framework of
this method is introduced in the next section.
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6.2.2 Multi Leader-Follower Actors under Centralized Critic

The proposed MLFACC algorithm relies on deep reinforcement learning using
an actor-critic [104, 106]. Three actor networks train decentralized policies in
a multi-agent framework, and share information using a centralized critic net-
work. The main idea of using a critic network is to learn a centralized policy
with an attention mechanism. In complex multi-agent environments, the at-
tention mechanism has shown effective and scalable learning [107]. The intu-
ition behind this idea is that the centralized critic can dynamically evaluate each
agent’s action; eventually, it sends attention to the agents to adjust their actions
according to the environment need.

Another crucial approach to obtain the optimal variables of interest to accel-
erate the LP method is the leader-follower policy. The idea of the leader-follower
game policy is inspired by Stackelberg game model [108]. In order to take an op-
timal action, it is necessary that a leader fully understand the environment and
not only learns from its own actions but also the follower’s actions. Typically,
the leader acts first, then announces its action. At this point, the game rule al-
lows the followers to make their decisions. In the proposed method, the roles
of the players in the game change: if the number of agents is more than two,
every follower agent can be a leader to the next agent. However, the first agent
is always a leader, and the last agent is always a follower. Also, it is worth not-
ing that the follower’s action is estimated as a function of the leader’s actions
since the goal’s reservation of the previous leader is already made. Thus, in this
game, the leader uses a competitive policy, while the follower is expected to use
a cooperative policy.

The main question that arises in this algorithm is how the agents learn from
each other the optimal policies and get higher rewards. If an agent performs an
action, it is based on the states mapped through the critic network. These states
are always changing by the actions of the agent itself as well as the other agents.
In other words, all agents should take optimal policies by their action probabil-
ities as in (∇ log πθ(at, st)) of (6.13) in order to increase the return in the critic
network in (rt+1 + γv(st+1, wt+1)) of the same equation. Since agents seek their
own, unique goals, each agent has its own loss gradient (∇θ JEπθ) that is sent to
the critic network to allow estimation of the policy probabilities advantage (Ât)

as in (6.14), where index E refers to a particular agent under policy estimation.
This way, the central critic can teach the agents based on the experience of the
other agents and the state updates of the system.
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∇θ JEπθ ← ∇ log πθ(aEt , sEt )(rt+1 + γv̂(st+1, wt+1) − v̂(st, wt)), (6.13)

∇θ JEπθ ← ∇θ log πθ(aEt , sEt )Ât. (6.14)

To prevent the follower agents from seeking the same leader’s policy trajec-
tories, a tracing constraint (∇θ log πθ(aLt , sLt )) is added to (6.14), as

∇θ JEπθ ← ∇θ log πθ(aEt , sEt )Ât − µ
[

max
(
∇θ log πθ(aLt , sLt ), Ψ

)]
, (6.15)

where L is the index of all agent policies in a leader position, and µ is a la-
grangian multiplayer. This constraint forces the follower agent that intends to
choose the best goal to be right inferior to the leader’s goal. However, this con-
straint may result in inefficient policies by the follower agents and slow learn-
ing. Since the leader plans its strategy to propel the followers to take actions in
its favour, it may pick a trivial trajectory; consequently, the followers are con-
strained to choose other trajectories with even less importance. Hence, to relax
this constraint at the beginning of the learning process, a relaxation factor (Ψ) is
used. This factor is also an action probability that allows the followers to break
the tracing constrained to a particular limit; once the leader finds a proper tra-
jectory that leads to obtain a better DER price, the relaxation factor vanishes. At
this point, just the first term of the maximization operator is valid.

This mechanism enables the proposed algorithm to identify the best group of
DERs in a descending order, and without overlap. The pseudocode is presented
as follows.
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Algorithm 1 MLFACC algorithm
Initialize actors’ weights; (θ1, ..., θN), θ ∈ Rn

Initialize critic weight; (w), w ∈ Rm

Initialize step size parameters: α > 0, β > 0.
for t = 1 to max episode length do

done = False
while not done do

for agents i = 1 to N do
Choose action at+1 based on probability:
log πθ(at, st)
Receive observation (st+1, st, rt+1, done)

end

Compute the TD error:
δ← (rt+1 + γv̂(st+1, wt+1)− v̂(st, wt))
Compute the loss gradient for each agent by eq. (6.15)
Update policy parameters for the actor networks:
θt+1 ← θt + α∇θ JEπθ

Update policy parameters for the critic network:
wt+1 ← wt + βδv̂(s,w)

end
end

6.2.3 Deep RL-based Linear Programming

A power distribution network can be modeled by a directed tree graph T(ΩG, ΩL) ⊆
(N, L). The nodes of the graph ΩG, a subset of all network buses N, are linked
by a set of distribution lines ΩL, a subset of all network lines L. Node 0 is the
starting point of the tree search, referred to as the root node j. In general, the
root node can represent either a buyer or a seller of energy. Under the scenario
considered in this study, the root node is specified as a buyer looking for the
best seller(s). The remaining nodes are referred to as branch nodes. Each pair of
adjacent branch nodes is connected by a branch line l ∈ ΩL. All nodes (except
the leaf nodes) in this tree are parent nodes since they have a set of child nodes
Ci linked by the branch lines. In addition, the child nodes may have connected
DER units. i is the index of all buses that link to load bus j. Each line in L has an
impedance zi = ri + xi. Power injection from node i to node j is calculated using
equation (6.3).

To minimize the cost of DER generation dispatch under system constraints,
we propose a DOPF algorithm called Deep Reinforcement Learning-based Lin-
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ear Programming (DRL-LP). In this model, LP is accelerated by selecting the op-
timal DERs through MLFACC, within the feasible region determined by MCTS-
RL. Chazelle and Matousek [109] have analysed and estimated the computa-
tional complexity that describes the amount of time it takes to run LP by counting
the number of input variables x and g(x) constraints as follows

O(x)7x(log x)xg(x), (6.16)

where O(.) denotes the time complexity. Thus the behavior of the LP complexity
can be reduced by reducing the size of the input.

Based on the linearized power flow model described in section 6.1, the DRL-
LP problem can be formulated as follows

min ∑
x∈Ωk

fi(CP
i ), (6.17)

geq(x) =

 Pi − dj = ∑
i∈Ωk

Pflow
ij + Ploss

ij ∀j ∈ N, (6.18)

θref = 0, (6.19)

gineq(x) =



PDER 6 PDER 6 PDER∀DER ∈ ΩG, (6.20)

Pflow
ij 6 Pflow

ij 6 Pflow
ij ∀lij ∈ L, (6.21)

Ploss
ij 6 Ploss

ij 6 Ploss
ij ∀lij ∈ L, (6.22)

Vi 6 Vi 6 Vi ∀x ∈ N, (6.23)

LFij 6 φ ∀lij ∈ ΩL, (6.24)

In this optimization problem, CP
i is the optimal DER that is determined by

MLFACC. It belongs to a node in the tree graph Ωk delineated by MCTS as a
feasible subset of the entire distribution network. The objective function aims to
minimize the generation cost at node i, and implicitly minimizes the losses Ploss

ij

of the line connecting nodes i and j. The set of all DER units within the feasible
region is denoted ΩG. Functions geq(x) and gineq(x) express, respectively, the
equality and inequality constraints. The nodal balance power flow is restricted
by constraint (6.18), where dj is the power demand, while equation (6.19) holds
the reference bus voltage angle at zero. Inequalities (6.20)–(6.22) express the up-
per and lower bounds of the power output of DER units, the power flows in the
branches, and the power losses in the branches, respectively. The coupling con-
straint between region ΩG and its neighboring regions is denoted φ. Based on
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the concept of electric distance [97], φ represents the threshold value of LF of the
line impedance between the load bus j and the cross-border buses separating re-
gion ΩG from its neighbors. It can be considered a means to specify the borders
of a feasible space of the DOPF problem among multiple regions. However, the
network constraints must still be observed and communicated among clusters.
Thus, there is a need for a central coordinator that can efficiently manage the
information for multi-region systems. Form the implementation perspective, all
information is sent to the central coordinator after the distributed optimizers are
instantiated and load bus i spans solutions of its own OPF subproblems. The
coordinator reconciles system state information for multiple clusters ΩG.

6.3 Real-Time Balancing Electricity Market

To illustrate application of the proposed DOPF method using DRL-LP, we con-
struct a distribution electricity market framework to facilitate effective integra-
tion of DERs into the electricity system. A central role in this framework is as-
sumed by the distribution system operator (DSO) who facilitates DERs integra-
tion and delivers location services. It also provides real-time power balancing
through dispatch of stochastic DERs and bidding of flexible loads.

The algorithm for balancing electricity market is executed every minute to ac-
commodate (near) real-time power imbalances. Distribution locational marginal
price (DLMP) differs from location to location due to the limits of the node volt-
ages, line capacity, and network losses. This facilitates mitigation of over/under
voltage and line congestion, and compensation of location-dependent network
losses.

The main goal of the DSO is to maximize its economic benefit while providing
the amount of power required by the balancing electricity market. The individ-
ual entities of the distribution system respond to specific price signals derived
from the following DLMP equation

DLMPi = λ
p
0 + λ

p
0 ·

N

∑
i=1

∂Pflow
i

∂PDER
i

+ λ
p
0 ·

N

∑
i=1

∂Ploss
i

∂PDER
i

+ λ
p
0 ·

N

∑
i=1

∂Vi

∂PDER
i

(6.25)

where λP
0 is the active power exchange or the reference price. This is a known pa-

rameter that can be adjusted by the DSO. The three sum terms ∑N
i=1 ∂Pflow

i /∂PDER
i ,

∑N
i=1 ∂Ploss

i /∂PDER
i , and ∑N

i=1 ∂Vi/∂PDER
i are the total line flow factor, total system

losses factor, and voltage deviation factor, respectively. All three factors are cal-
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culated with respect to DER power injection, PDER
i , from the constraint equations

(6.21), (6.22), and (6.23). DLMP works as a price coordinator to ensure that any
power imbalance in the system can be fully offset and objectives of all participat-
ing entities can be optimized simultaneously. This coordinated operation model
is designed to include all required objective functions and system constraints.

6.4 Results and Discussion

To demonstrate the proposed DRL-LP algorithm, the IEEE 69-bus test system [110]
is considered as a case study. To examine the leverage provided by the RL agents
in the distributed optimization sub-problems, a search tree is progressively build
using MCTS-RL. This tree is a randomly biased sequence of actions applied by
an RL agent to a given series of states until a predefined coupling constraint φ

is reached. This way, the feasible region suitable for power transactions is ob-
tained based on the concept of electric distance. To exclude buses with high
losses (4 and 5), the feasible region A is selected as shown in Figure 6.2. The
DER units within this region are connected to 9 buses. MLFACC determines the
optimal DERs, consequently reducing the number of variables and their condi-
tional statements to accelerate the LP process. As shown in Figure 6.3, MLFACC
obtains the best DERs as: 54, 56, and 66 by agents 1, 2, and 3. respectively. It can
be seen that most agents converged after about 2500 episodes

The following sections analyze the optimization process for two scenarios:
an unconstrained system with a single multi-agent system (cluster A), and a con-
strained system with a group of multi-agent systems (clusters A and B).

Figure 6.2: IEEE 69 bus distribution system with region A.

90



Figure 6.3: The learning simulation of the MLFACC for region A buses.

6.4.1 Single Cluster Architecture

For simplicity, this analysis considers a single dynamic real-time load located
at bus 15 (see Figure. 6.4). This load is also considered an extra load to be bal-
anced by the generation of the main feeder. The load data has been extracted
from a residential community in Edmonton, Alberta, Canada, and scaled to the
transformer level. Loads of the remaining buses of the circuit are based on the
original static load data. Real-time optimization of the DER generation in region
A is performed on a 1-minute basis after the MLFACC obtains the best DERs on
buses 54, 56, and 66, as shown in Figure 6.5. It can be seen that, when DER at
bus 56 reached its limit (30kW), the algorithm switched to DER at bus 54. Should
demand be concentrated on a few DERs, the corresponding segments of distribu-
tion lines can become overloaded. To mitigate the occurrence of overloaded lines
due to DER optimization, the algorithm also tracks its impact on the distribution
circuit. The optimization process mainly relies on the variation of DER benefits
stemming from the reduction of the active power flow losses within the circuit.
Based on their location, the power the DERs generate usually flows in the direc-
tion opposite to the main power stream of the feeder. This causes a reduction
of the total losses of the feeder power flow. The variation of losses also causes
considerable differences of DLMP, especially when the DER generation levels
approach their maximum energy export capacity. More details about the DLMP
pricing are provided in the next section describing the multi-agent optimization
in a multi-cluster architecture.
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Figure 6.4: The real-time load profiles at bus 15 and 67 at region A and B respec-
tively.
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Figure 6.5: The real-time optimization of DER generation within region A, con-
trolled by agent A, without considering the contingency constraint.

6.4.2 Multi-Cluster Architecture

To demonstrate the distributed optimization framework, the multi-cluster inter-
action is analyzed in this section. Assume that another region (B) is settled and
managed by a second independent group of agents at cluster B. This region has
only two buses, 66 and 67, both with DERs. The DER connected at bus 66 is
shared between the two regions A and B (DER AB). Similar to region A, region
B also has one dynamic load, located at bus 67. Each cluster attempts to opti-

92



mize the DER generation levels within its region while tracking its own impact
on the circuit. Communicating through the central coordinator, each cluster can
also track the impact of the other cluster(s). This way, they can update the esti-
mates of the next RL states and, accordingly, they can change their optimization
policies to maintain the required security level of the circuit.

The simulation of the above scenario using the proposed DRL-LP model can
be demonstrated as follows. Line connecting buses 10-11, with an original flow
of 740 kW, is assumed to have two cases of flow limits: 780 kW and 740 kW. In the
first case (I), the limit of 780 kW allows ∆P = 40 kW of extra power to be carried
by this line. When the load of bus 15 increases such that the flow on the line 10-11
exceeds 40 kW, the flow congestion occurs at this line, as shown in Figure 6.6a. In
such scenario, the amount of generation of the DERs that compromise network
security is reduced. Instead, another DER that does not influence system security
while offering an acceptable price is called by cluster A. Hence, the new marginal
DER is the common generator at bus 66. In addition, in this case, the generation
limit of the common DER is sufficient for both regions A and B. Cluster B uses
only one DER, as shown in Figure 6.6b.

The primary goal of this step is to change the system flow to prevent conges-
tion, while providing energy to the load at an acceptable price. However, this
leads to a price step-change. The price change to avoid 1 kW of line congestion is
called congestion DLMP. Similarly, the change to avoid line losses is called losses
DLMP. The daily values of congestion and losses DLMP in region A are 4¢ and
-31.36¢, respectively. In region B, these values are 0¢ and -30¢, respectively. The
negative sign signifies the reduction of losses due to DER generation. The DLMP
values for both regions A an B are shown in Figure 6.6c.

In the second case (II), shown in Figure 6.7a, the flow limit is 740 kW. In
this case, the common DER (connected at bus 66) reaches its generation limit. As
shown in Figure 6.7b, agent B calls the second DER with a relatively higher price,
connected at bus 67, to compensate the generation demand. The daily values of
the congestion and losses DLMP in region A are, respectively, 494.23¢ and -5¢.
In region B, these values are 0¢ and 29.8¢, respectively. The DLMP values for
both regions A an B are shown in Figure 6.7c. Finally, the total cost of the system
generation for case II is shown in Figure 6.8. It should be noted that the common
DER (66) feeds both regions and is affected by interactions of both clusters. The
interactions are terminated when the clusters reach agreement on the amounts
and prices of power supplied by the common DER. This agreement is known as
consensus dynamics [111].
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Figure 6.6: The real-time optimization of the DER generations, with the case I
contingency constraint: (a) Region A, (b) Region B, (c) The total DLMP prices
per 1 kW of both regions A and B.
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Figure 6.7: The real-time optimization of the DER generations, with the case II
contingency constraint: (a) Region A, (b) Region B, (c) The total DLMP prices per
1 kW of both regions A and B.
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The two scenarios confirm that the proposed model can successfully consider
the system constraints and provide an effective power market solution without
jeopardizing system security. The IEEE 69-bus system considered in this study
experiences only minor voltage control issues. This is due to the nature of the
load connected at nodes 15 and 67. The losses are also relatively low as they are
proportional to the network size.

6.5 Final Remarks

This research introduces a novel approach for OPF in distribution systems with
high penetration of DERs. Using modern methods of artificial intelligence, the
proposed approach facilitates accurate OPF calculation while reducing its com-
putational burden. The proposed method is based on an effective combination of
Monte Carlo tree search (MCTS) and reinforcement learning (RL). Through nav-
igation steps of a diffusion strategy, MCTS-RL generates a set of optimal paths
to the most suitable nodes in the grid. Only the selected paths are then con-
sidered by the optimizer applied on the linearized problem, thus guaranteeing
convergence. This way, the combined algorithm mitigates the challenges asso-
ciated with stochasticity of DERs while addressing the problem of dimension-
ality faced by conventional optimization techniques using the proposed deep
learning-based approach (MLFACC). Furthermore, the multi-agent nature of the
proposed approach allows direct application of DOPF in systems with multiple
interacting entities. The presented simulation results clearly demonstrate the ef-
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fectiveness of the proposed method to solve the distributed economic dispatch
problem while maintaining the system security limits. In addition, the proposed
methodology is suitable for large and complex networks.
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Chapter 7

Conclusions

This thesis highlights the necessity for identifying to impact of the distributed
DER units on the distribution systems, also developing intelligent techniques to
resolve these issues in the most cost-effectively way. The presented research is
primarily concerned with power distribution networks with high penetration of
stochastic DER units. In addition to presenting a methodology for assessment
of DER-related issues in distribution networks, this thesis successfully resolves
two critical problems: mitigation of the voltage rise over the specified limit and
design of a fully distributed OPF algorithm.

The overvoltage mitigation problem is solved using a newly designed algo-
rithm that coordinates and controls the state of charge of multiple BESS using
techniques of Monte Carlo tree search, reinforcement learning (RL), and model
predictive control (MPC). In addition, this coordination control strategy also op-
timizes the battery schedules from the perspective of energy prices and losses.

The distributed OPF procedure accelerates the optimization process for large-
scale systems where the use of centralized fashion is not possible. The algorithm
identifies clusters of related distribution lines and coordinates partial OPF solu-
tions through agent-based approach. It results in an extension of conventional
linear programming (LP) algorithm into it RL-based counterpart for effective bal-
ancing of power transactions in large distribution circuits.

7.1 Contributions

Referring to the objectives stated in section 1.1, the contributions of this thesis
can be organized in the following three groups:

1. Voltage violation assessment in large distribution systems with high DER
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penetration:

• An assessment of three circuits of varying size and complexity has
been conducted. The PVHC of the three distribution networks (Fort
McMurray, Lloydminster, and Drumheller) was determined as 10%,
60%, and 70%, respectively. The developed Monte Carlo simulation-
based probabilistic power flow is effective, even when dealing with
large and complex networks.

• The sensitivity of distribution system PVHC has been analyzed, and
relevant influential factors identified: circuit load conditions, location
and size of PV installations, reactive power of the circuit, and short
circuit level of the system.

2. DER impact mitigation using energy management and coordination meth-
ods:

• A new method, called cooperative state of charge control (CSOCC),
has been designed to deal with large and complex distribution net-
works. It divides an entire network into several smaller networks
to facilitate indetification of regions impacted by overvoltage and re-
gions that can assist in its mitigation. The developed network struc-
ture facilitates sharing of energy between neighboring BESS units to
prevent the voltage problems in real-time; this would be either impos-
sible or very expensive using independent BESS controllers.

• The proposed intelligent method, based on MCTS-RL, builds a list of
feasible regions. This reduces the computational burden associated
with a large real network. It also coordinates the distributed batteries
from the other areas to provide voltage regulation and adapt to any
changes.

• A decentralized controller is designed using MPC. It not only controls
the battery SOC to mitigate the overvoltage, but also minimizes the
system operation cost through optimal battery scheduling.

3. Distributed optimal power flow for distribution systems with stochastic
DER units:

• A fully distributed OPF has been proposed to capture all physical re-
alities of distribution networks and achieve the optimal power trans-
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actions between network entities. This algorithm is based on the in-
telligent method of MCTS-RL that navigates through the circuit to de-
termine feasible regions based on the concept of electric distance.

• Reinforcement learning is used to effectively solve stochastic sequen-
tial decision-making problem without relying on prior system infor-
mation. It determines the most suitable DERs in a complex environ-
ment. As a result, it accelerates the linear programming optimization
method by reducing the number of its arithmetic operators and their
conditional statements.

• The proposed distributed OPF is designed to achieve interactions be-
tween independent entities cooperatively, while maintaining the sys-
tem security constraints such as the congested lines, without upgrad-
ing the capacity of grid infrastructure.

7.2 Future Work

There are many opportunities to further research topics that have been addressed
in this thesis. The studies proposed in this thesis are bounded to particular
methodologies and parameterizations that help to manage and further extend
the scope of the thesis research.

High penetration levels of DERs, such as PV systems, into the existing low
voltage (LV) distribution grids can cause a number of issues. The main problem,
considered in this research is the the change of grid voltage levels due to reverse
power flow in distribution feeders, especially at light loads. However, due to
distinct cable types that are used in a feeder’s circuit, the impact on line loading is
notably more clustered then the impact on the bus voltages. This bring concerns
about the line thermal limits, especially when the analysis is applied to larger
systems where high levels of reverse power flow are likely to occur.

For most of residential and commercial clients, single-phase connections of
grid-tied inverters are used. In this type of connection, PV systems are con-
nected randomly along with the phases. However, due to the PV systems are
relatively large unbalanced customer loading and voltages of the phases are the
most pronounced. Electric vehicle chargers also fall under this category. Un-
balanced phase loading and voltages may result in unwanted tripping of the
converters. Moreover, they significantly affect the power quality of the distribu-
tion network. Therefore, issues related to power system protection and power
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quality are promising topics for future research.
In the proposed DOPF methodology, a medium-sized circuit is considered.

It would be interesting to apply the methodology to large, complex networks
where the voltage control issues and high power losses caused by DER pene-
tration are more noticeable. Finally, the agent-based DOPF can be extended to a
multi-agent architecture. This would improve resiliency of the calculations when
communication fault occur, or when individual local controllers go offline.
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