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ABSTRACT 

Reliability is one of the most critical performance measures of modern systems, and has 

been emphasized more and more by academia, industry and government. In traditional 

binary reliability frameworks, both systems and components can take only two possible 

states: completely working and totally failed. However, engineering systems typically 

have multiple partial failure states in addition to the above-mentioned two states. 

Reliability analysis considering multiple possible states is known as multi-state reliability 

analysis. Furthermore when a multi-state component or system is in a certain state, it can 

produce a certain amount of benefit. Such benefit is called the component or system 

utility. When both component and system utility are considered in a multi-state system 

model, the model is called a multi-state weighted system model. When a multi-state 

system model is extended into a multi-state weighted system model, it becomes more 

effective and flexible. 

Efficient reliability evaluation and optimal design methods have not always been 

available for multi-state weighted systems. Without such methods, it is time-consuming, 

and sometimes impossible, to evaluate the reliability of complex systems and find the 

optimal solutions of reliability based design. Approximation approaches have had to be 

used. This dissertation documents research contributions to multi-state weighted system 

reliability theory, including reliability modeling, evaluation and optimal design. 

The contributions are summarized as follows: 



(1) Brought forward the definitions of and developed efficient algorithms for the 

reliability evaluation of multi-state weighted systems with k-o\xt-of-n structures and 

series-parallel structures. 

(2) Optimal reliability design based on component selection has been studied by two 

approaches for the binary weighted k-out-of-n systems which is a special case of multi-

state weighted k-aut-of-n systems. 

(3) The more general situation - optimal reliability design based on component design 

has been studied for both multi-state weighted &-out-of-n systems and multi-state 

weighted series-parallel systems. 

(4) An effective method has been developed for dealing with multiple objectives 

optimization typically involved in the optimal reliability design of multi-state weighted 

series-parallel systems. 

With efficient reliability evaluation methods and effective optimal reliability design 

approaches for multi-state weighted engineering systems, my research results provide 

useful tools for achieving highly reliable and cost-effective engineering systems. 
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Chapter 1 

Introduction 
Reliability engineering is the discipline of ensuring that a system will be reliable when 

operated in a specified manner. Reliability engineering work is performed throughout the 

entire life cycle of a system, including development, testing, production and operatioa 

Growing international competition has increased the need for all designers, managers, 

practitioners, scientists and engineers to ensure the highest possible level of reliability for 

their products within the constraints of budget and other resources. As modern systems 

are becoming more and more complex, research on effective approaches to measuring 

their reliability and developing optimal reliability designs becomes more and more 

important. 

1.1 Reliability 

Reliability is a broad term that focuses on the ability of a product to perform its intended 

function. Mathematically speaking, assuming that an item is performing its intended 

function at time equals zero, reliability can be defined as the probability that an item will 

continue to perform its intended operating function without failure for a specified period 

of time under stated operating conditions. The product defined here could be an 

electronic or mechanical hardware product, a software product, a manufacturing process, 

or even a service. Reliability engineers perform a wide variety of special management 

and engineering tasks to ensure that sufficient attention is given to reliability tasks. The 

production of a particular system includes the following specific reliability tasks [1]: 

1 



• Systematically collecting lifetime data of a device for reliability evaluation from 

the field or tests. 

• Reliability modeling for practical systems, and analyzing system reliability based 

on the reliability of components. 

• Enhancing system reliability through optimal design and maintenance scheduling, 

followed by verifying decisions by thorough analysis and testing. 

• Evaluating the reliability potential of alternative designs. 

The reliability of a system needs to be evaluated accurately, and it can be improved 

through design optimization. In traditional binary reliability frameworks, both systems 

and components can take only two possible states: perfectly working and totally failed [1]. 

Traditionally, reliability is the probability of a component/system to be at the perfect 

working state. However, typically in many real-life situations, systems and their 

components are capable of assuming a whole range of levels of performance degradation, 

varying from perfect functioning to complete failure. The dichotomous model is an 

oversimplification of actual systems. In today's real world problems, the great number of 

system states needs to be considered, and increasingly high requirements for accurate 

reliability evaluation and optimal design make it difficult to use traditional binary 

reliability techniques. Therefore, the reliability theory of multi-state (MS) reliability is 

highly needed. 
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1.2 Multi-state weighted systems reliability and several practical 
examples 

Reliability analysis considering multiple possible states is known as multi-state (MS) 

reliability analysis. MS reliability analysis recognizes the multiple possible states of 

engineering systems, and enables more accurate system reliability analysis and design. 

In a multi-state system (MSS) reliability model, the system and each component may 

experience states in the set {0, 1, 2,..., M). Furthermore when a multi-state component or 

system is in a certain state, j , it can produce a certain amount of benefit. Such benefit is 

called the component or system utility. When the utilities of the component and system 

are considered in the MSS model, the model is a multi-state weighted system model. Of 

course, the binary weighted system is a special case of MS weighted systems in which 

there are only two states of the component and the system: working or failed. Two 

practical examples of MS weighted systems are given below. 

Example 1.1: Highway infrastructure system [1] 

In the City of Edmonton, highway infrastructure deterioration conditions are evaluated 

based on the scale shown in Table 1.1. The highway infrastructure system has five states 

(A-E). The physical condition of highways in each state is the parameter that describes 

the performance capacity of the highways. In this thesis, we call it the utility. Each 

highway follows a certain deterioration behavior from state A to state E. With certain 

rehabilitation strategies, the highway health condition can be improved at a certain cost. 

3 



Table 1.1: Physical Condition Assessment [1] 

Mark 
A 

B 

C 

D 

E 

State 
Very good or 
Performance 
more than 
90% 

Good or 
Performance 
more than 
70% 

Fair or 
Performance 
more than 
60% 

Poor or 
Performance 
more than 
40% 

Inadequate or 
Performance 
less than 40% 

Explanation of condition 
Element is structurally sound and is functional as intended 
when it was designed. Maintenance and operations costs 
are well within standards and norms. Element is new or 
recently undergone major rehabilitation. Its condition and 
function are practically equal to a new. 
Element is structurally sound and is functional as intended 
when it was designed. Maintenance and operations costs 
are within acceptable levels but increasing with time. 
Typically such infrastructure would have not reached its 
midlife span. 
Element is showing signs of aging, small portions can be 
structurally deficient or the element is becoming 
functionally obsolete. Such an element is approaching the 
stage where expenditures beyond the original planned 
maintenance are being incurred to keep it useable. 
Element is approaching a poor condition. Signs of 
structural deficiency are becoming more pronounced and 
obvious. The element's physical condition may be 
contributing to safety hazards or negatively impacting 
safety, health, environment, or other areas. 
Element is structurally unsound and/or is not functional 
anymore. It is only a matter of time before it completely 
fail. 

Example 1.2: Power generation units [2] 

Power generation units are typical MS weighted systems. A power generation unit as in 

Figure 1.1 can perform not only at its full capacity level, but also at other lower capacity 

levels based on its health condition. Here the different states are based on the different 

performance capacities of the power unit, not based on the demand for the unit. During a 

ten year period of time, the different output capacity levels of a 360MW (full capacity) 

coal-fired power generation unit at Israel Electric Corporation Ltd. were illustrated in 

Figure 1.2. The coal fired power generation unit experienced 36 different states during 
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the ten year period. Different states have different utilities which are the output capacities 

corresponding to them. 

Figure 1.1: A power generation unit of the Israel Electric Corporation Ltd. [2] 
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Figure 1.2: Distribution of all events for a 360MW coal-fired unit at Israel Electric 
Corporation Ltd. [2] 
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The distribution of all failure events was classified into 9 states by bubble type bins in 

Figure 1.3. Using the average capacity in each bubble as the capacity in that state, 

together with the full capacity state, ten states with their corresponding capacities are 

illustrated in Figure 1.4. During the operation, the coal-fired generation unit will 

deteriorate from the full capacity state to other lower states. Not all the state transitions 

are shown here. Transactions between the degraded states are not shown in this figure. 

With the help of maintenance activities, the unit can be rehabilitated from a lower state to 

the full capacity state. Figure 1.4 is used to describe some state transitions in this MS 

weighted system. Although repair activities are illustrated in this figure, it will not be 

studied in this thesis. In this thesis, we only consider non-repairable systems. 

400 

"Bubble type" graph presentation 
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Figure 1.3: Grouping into bins of all events for a 360MW coal-fired unit at Israel Electric 
Corporation Ltd. [2] 
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Figure 1.4: State space diagram for a 360MW coal-fired unit at Israel Electric 
Corporation Ltd. [2] 

In the multi-state system, both the component and the system have more than two states. 

There is a probability value corresponding to each state. Generally, a pre-specified utility 

value is used to describe the system performance level in each state. In the literature, 

most of the research problems in MS system reliability have focused on how to evaluate 

the probability of the system being in each state based on the state probability distribution 

of components, and how to maximize system reliability subject to given resources or vice 

versa. A detailed literature review of MS reliability will be given in Chapter 2. In this 

thesis, a more general model MS weighted system model is brought forward and studied 

for different practical structures. Both the reliability evaluation and the optimal reliability 

design are studied for the MS weighted system. 
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1.3 The research topics 

As mentioned in Section 1.1, system reliability evaluation and enhancing system 

reliability through optimal design are two very important tasks in reliability engineering. 

However, because the traditional binary reliability system model is an over-simplified 

model of the real-world situation, the system reliability evaluation and optimal design 

based on binary system models are not accurate enough. In addition, although the MS 

system reliability model has been brought forward and studied with regard to reliability 

evaluation and optimal reliability design, its modeling ability is limited. In the traditional 

MS system model, because there is no parameter to describe the component (system) 

performance capacity, we have to assume that the people using the model know the 

component (system) performance capacity corresponding to each state. However, this 

may not always be true. In this thesis, a more general MS system model — the MS 

weighted system model is brought forward. In this model, we use a parameter -

component (system) utility to describe the component (system) performance capacity, a 

system utility distribution is calculated based on the component utility distribution. When 

the MS system model is extended to the MS weighted system model, the model becomes 

more effective and flexible. 

In this thesis, two different MS weighted system models (MS weighted k-out-of-n 

systems and MS weighted series-parallel systems) will be brought forward and their 

reliability evaluation and optimal design problems will be studied. 

8 



1.4 Organization of the thesis 

The thesis, consisting of 8 chapters, is organized as follows. Chapter 2 is the literature 

review of multi-state system reliability. Chapter 3 gives the fundamental knowledge of 

multi-state weighted reliability, including basic concepts and typical multi-state weighted 

system structures. Chapters 4, 5, 6 and 7 discussed the reliability evaluation and optimal 

reliability design of three typical weighted systems: binary weighted &-out-of-« systems, 

multi-state weighted k-out-of-n systems and multi-state weighted series-parallel systems. 

The contributions of this research work are summarized in Chapter 8, and some future 

work is discussed. 

References: 

[1]. H. AL-Battaineh. Developing an Optimal Best Practice Guidelines for Infrastructure 

Systems. PhD thesis, University of Alberta, 2007. 

[2]. Y. Ding. Multi-State Systems Reliability Modeling and Evaluation. Presentation, 

Reliability Research Lab, Mechanical Engineering Department, University of Alberta, 

2007. 

[3]. P.D.T. O'Connor. Practical Reliability Engineering, John Wiley & Sons, 2002. 
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Chapter 2 

Literature Review of Binary Weighted System 
Reliability and Multi-state System Reliability 

This chapter gives a literature review of the research related to MS weighted system 

reliability. Since there are no published results specifically on MS weighted system 

reliability, the literature review focuses on binary weighted system reliability which is a 

special case of MS weighted system reliability and general MS system reliability. For the 

literature review on traditional binary system reliability, please refer to [41] and [83]. 

2.1 The introduction of binary weighted system reiiability and 
muiti-state system reliability 

Although the topic of multi-state (MS) weighted system reliability is new, there are 

already some studies on binary weighted system reliability and MS system reliability. 

In 1994, Wu and Chen [109] generalized the binary k-out-of-n system reliability model to 

the binary weighted k-out-of-n system reliability model. In 1968, Hirsch et al. [24] 

brought forward the basic idea of multi-state systems. In the 1970s and 1980s, more and 

more people joined the multi-state reliability research. Ross [90] studied a component or 

system with more than two possible states. Barlow and Wu [4], El-Neweihi et al. [16] and 

Natvig [75] studied coherent multi-state systems. Block and Savits [8] studied multi-state 

monotone systems. The results from the early studies on multi-state reliability were 

generalized in the work of Griffith [20], and Hudson and Kapur [33]. Their work studied 

the primary concepts of multi-state reliability, including system structure function, 

minimal cut (path) set, relevancy and coherency. The reliability importance was extended 

10 



to multi-state systems in [11], [20], [19] and [8]. The early advances in multi-state 

reliability theory were summarized by El-Neweihi and Proschan [17]. 

The commonly used binary reliability models — the series-parallel system, &-out-of-n 

system and network system — have all been extended from the binary context to the 

multi-state context. These systems will be introduced in detail in Chapter 3. The multi-

state series-parallel system was studied in [4], [44] and [55]. The multi-state k-out-of-n 

system was studied in [9], [16], [29] and [32]. The multi-state network system was 

studied in three classes. In [62], [88], [89] and [93], both the links and the nodes can have 

more than 2 states. In [112] and [113] only the nodes can have more than 2 states, the 

links are perfect. In [61] and [121], only the links can have more than 2 states, the nodes 

are perfect. In addition, in the binary context, a consecutive k-out-of-n system is failed if 

and only if at least k consecutive components are failed. This model has also been 

extended to the multi-state context and studied in [31], [111] and [118]. 

There is more than one way to extend a binary reliability model to the multi-state model. 

For example, in Barlow and Wu's definition of multi-state series-parallel systems [4], the 

state of a parallel subsystem is equal to the state of the best component in that parallel 

subsystem. However, in Levitin's definition of multi-state series-parallel systems [55], 

the capacity of a parallel subsystem is equal to the sum of the capacities of its constituent 

components. Under the traditional definition of the multi-state &-out-of-«: G system, [9] 

and [16], the system is in state j or above when at least k components are in state j or 

above. Huang et al. [29] and [32] proposed the model of the generalized multi-state A:-out-

11 



of-n: G system by allowing different requirements for a number of components in 

different states. 

2.2 Binary weighted system reliability evaluation 

To evaluate the reliability of a binary weighted k-out-of-n system, Wu and Chen [109] 

provided a recursive algorithm. This algorithm will be introduced in details in Chapter 3. 

Higashiyama [23] provided a method to express the system reliability of a weighted k-

out-of-n system in fewer terms than that obtained with the algorithm by Wu and Chen 

[109]. However, the time complexity and space complexity of these two methods 

reported in [23] and [109] are the sarnie. The most recently reported study on binary 

weighted k-out-of-n system is by Chen and Yang [13]. In [13], the one-stage weighted k-

out-of-« model was extended to the two-stage weighted k-ou\-of-n model with 

components in common among the stages. The one-stage weighted k~owi-of-n system 

does not contain any subsystems. The two-stage weighted k-out-of-n system consists of a 

number of subsystems. 

All the published results in binary weighted system reliability focus on reliability 

evaluation. This thesis will study the optimal reliability design of binary weighted &-out-

of-n systems. 

2.3 Multi-state system reliability evaluation 

Successful reliability work must include the ability to model and evaluate system 

reliability. Many authors have made contributions which enrich multi-state system 

reliability modeling and evaluation theory. 
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Generally, MS system reliability evaluation methods are based on five different 

approaches: an extension of binary models to MS cases, the stochastic process approach, 

the universal generating function approach, the Monte-Carlo simulation technique and 

the recursive algorithm. 

The approach based on the extension of Boolean models is historically the first approach 

that was developed and applied to MS system reliability evaluation. In 1980, Caldarola 

[12] assigned a Boolean variable to each component state in a MS system. This variable 

indicates whether the component is at this particular state or not. Since a number of 

Boolean variables may belong to the same component, the variables are no longer 

independent. A special technique called Boolean algebra with restrictions on the variables 

has been used to deal with this dependence. Based on this method, a MS system can be 

reduced to a binary system for which reliability evaluation methods such as Fault Trees 

have already been well developed. Aven [2] proposed an algorithm based on state-space 

decomposition. In [107], a factoring solution was also used to deal with the dependence 

among Boolean variables. Block Diagrams and Fault Trees were both applied to solving 

the reduced binary model. In order to deal with the great number of variables and the 

dependencies among the variables, an inclusion-exclusion formula was used in [106] to 

obtain the expressions for state probabilities. A Binary Decision Diagram (BDD) 

approach [114] has also been proposed to realize the Boolean algebra. BDD is a data 

structure that is used to represent a Boolean function. The nature of the BDD technique 

allows the sum of the disjoint products to be implicitly represented; this avoids using a 

great deal of storage space and reduces the computation burden. Applying the Boolean 

methods to determining the MS system structure and reliability measures in practical 
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situations can be found in [9]. The determination of the MS system structure function for 

applying the Boolean methods is not a trivial problem in many practical cases. 

Boedidheimer and Kapur [9] presented a methodology for customer-centered structure 

function development. According to this method, customers define the appropriate 

number of states for components and the entire MS system. The performance measures 

they developed relate the component states to the system states by specifying when a 

change in the state of any one of the components forces a change in the state of the whole 

system. 

The stochastic process approach has been used to evaluate the reliability of MS systems 

and applied to power systems. In 1984, Natvig and Streller [76] first applied the 

stochastic process approach to MS system reliability evaluation. They analyzed the 

steady-state behavior of monotone MS systems by applying the stationary and 

synchronous stochastic process. Using stochastic process theory, Vaurio [105] developed 

models for the MS component reliability and availability evaluation with general failure 

and repair time distributions. The idea of combining the Markov processes and coherent 

structure function was proposed by Xue and Yang [110]. In [42], Lanus, Yin and Trivedi 

partitioned complex Markov models into a hierarchy of sub-models to obtain common 

availability measures for MS telecommunication systems. In [59], the components were 

checked periodically to obtain the state sequences of all components, and then this 

information was used to predict the reliability of the components in several periods, for 

example, the probability that the components are in specified states. Finally, the states of 

components in a number of periods were used by stochastic processes to calculate the 
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system reliability for those periods. MS system reliability evaluation was systematically 

studied using the stochastic processes in [3] and [10]. 

The universal generating function (UGF) was introduced by Ushakov [103] in 1986. In 

1996, Lisnianski et al. [63] first applied UGF to power system reliability analysis. In a 

series of works, [44], [55], [52], [57], [62] and [63], different operators provided the 

determination of the entire MS system performance distribution based on the 

performance distributions of components. The system structures they studied include 

series, parallel, series-parallel and bridge structure. In of the some literature, UGF is also 

called the universal moment generating function (UMGF) [65], [66] and [73]. 

Technically, Monte-Carlo simulation can be used for the reliability evaluation of almost 

every real world MS system, although the main disadvantages of simulation are the time 

and expense involved in the development and execution of the models. In [7], a hybrid 

approach was presented using Monte-Carlo simulation and an enumeration technique for 

the reliability evaluation of large scale composite generation-transmission systems, 

including multi-state representation of generating units. Zio and Podofillini [116] have 

presented a Monte-Carlo simulation approach to estimate all the importance measures of 

the components at a given performance level in a multi-state series-parallel system, 

provided that the components are independent. In [117], the Monte-Carlo simulation 

method was used for modeling MS system reliability. The flexibility of •the simulation 

method was exploited to study two models with dependant elements: parallel elements 

with load-sharing and parallel elements with operational dependencies. In [115], Zio, 

Marella and Podofillini continued their research on Monte-Carlo simulation modeling of 
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the complex dynamics of MS components subject to operational dependencies with the 

system overall state. Ramirez-Marquez and Coit [88] brought forward and compared a 

new Monte-Carlo simulation approach that obtained accurate approximations to actual 

MS two-terminal network system reliability. Previous exact calculation approaches have 

relied on enumeration or on the computation of multi-state minimal cut vectors and the 

application of inclusion/exclusion formulae. In [84], a multi-state Monte Carlo simulation 

model of a multi-state railway network system was developed. 

Although use of a recursive algorithm is a new approach which has just been introduced 

into the MS system reliability field in the last several years, it has demonstrated its 

advantages in effectiveness and efficiency. Tian, Zuo and Yam [101] and Zuo and Tian 

[120] proposed a recursive algorithm for the reliability evaluation of generalized MS k-

out-of-rc systems defined by Huang et al [32]. Huang et al. [32] have provided an 

algorithm for calculating the state distribution of generalized multi-state &-out-of-n:G 

systems. However, their performance evaluation algorithm is enumerative in nature, and 

therefore is not efficient. Tian, Zuo and Yam [102] also developed a new general multi-

state &-out-of-n system model which they can make more practical engineering systems 

fit into, and brought forward a new recursive algorithm for evaluating its reliability 

distribution. Tian and Zuo [97] continued their research in this field by proposing a so-

called "unified MS k-ovX-of-n model". This model aims at providing high flexibility for 

modeling and analyzing practical and complex problems involving MS k-oui-of-n 

structures. Efficient recursive algorithm for reliability evaluation of this model has also 

been developed [97]. Zuo and Tian [121] also studied the reliability evaluation of two-

terminal MS networks using a recursive algorithm. They proposed a recursive algorithm 
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based on the SDP (sum of disjoint products) principle for the evaluation of MS network 

reliability, and confirmed its efficiency by comparing it with Aven's algorithm [2] which 

is recognized as efficient. 

For complex systems with a large number of components and a large number of states, 

reliability bounds can assist us in efficient decision making. Minimal path vectors or 

minimal cut vectors not only can be used for exact reliability evaluation, but also for 

boundary evaluation. Several binary reliability bounding approaches are generalized to 

multi-state systems by Block and Savits [8], and analyzed by Meng [68]. These 

approaches use simple formulas generalized from the binary case. In the early 1980s, 

Hudson and Kapur [33], [34], [35], and [36] developed methods using minimal cut 

vectors for exact reliability evaluation and reliability bounding of multi-state series-

parallel systems. In [93], Satitsatian and Kapur presented a new algorithm for finding 

lower boundary points, and used them to compute the reliability bounds for MS two-

terminal networks. Huang et al. developed bounding approaches for generalized multi-

state &-out-of-n:G systems [30] and consecutive multi-state &-out-of-« systems [31] by 

simplifying the minimal path or cut vectors to include no more than two different states. 

Tian, Yam and Zuo [98] proposed a systematic and flexible reliability bounding approach 

for MS &-out-of-n systems based on the recursive algorithm. 

From the above, it is clear to see that in the research on MS system reliability evaluation, 

more and more general MS system models have been brought forward and more and 

more efficient evaluation approaches have been developed. Until now, the most efficient 

reliability evaluation method has been the recursive method. In this thesis, the most 
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general MS system model so far — MS weighted system model — will be brought forward 

and the recursive method will be developed to evaluate system reliability, 

2.4 Optimal design of multi-state systems 

An important direction for MS system reliability research is the development of 

optimization algorithms to solve different application problems. Two approaches have 

been used in the reliability optimization field. One aims at achieving the greatest possible 

reliability subject to different constraints. The other aims at minimizing the resources 

subject to a minimum reliability. Basically, there are four ways to enhance the reliability 

of multi-state systems [62]: (1) to provide redundancy, such as adding redundant 

components in parallel and using redundancy in the form of k-out-of-n systems (generally, 

all the components are assumed to be independent); (2) to adjust system configuration 

while keeping constituent components the same, such as optimal arrangement of the 

existing components; (3) to enhance the reliability or performance of the components; (4) 

a combination of the above three methods. Applied to the MS system, these methods 

affect two basic system properties: its configuration (structure function), and the 

performance distribution of its components. Therefore, all MS system optimal reliability 

design problems can be divided into two classes: structure optimization problems and MS 

components optimal reliability design problems. Most of the reported research has 

focused on the first problem until now. 

The most popular MS system structure optimization problems studied in the literature are 

redundancy optimization problems. In order to solve practical problems in which a 

variety of products (versions of components) characterized by their performance, 
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reliability and price exist in the market, reliability engineers should have an optimization 

methodology for finding the optimal system structure by choosing the appropriate 

versions as well as a number of parallel components from the list of available products in 

the market. The reliability-redundancy allocation problem was first introduced by Misra 

and Ljubojevic [74] and has been intensively studied in the binary context [39]. The first 

redundancy optimization problem for multi-state systems was introduced in [103] where 

the general optimization approach was formulated. A modification of the gradient method 

was applied in [104] to finding the minimal cost configuration of a MS series-parallel 

power system structure. Components of the power system with different capacities and 

costs were considered, and the demand was estimated using a load curve. In the simplest 

MS series-parallel system structure optimization problem, each parallel subsystem can 

contain only identical elements [57]. The MS system structure optimization problem 

formulated in [57] was finding the minimal cost system configuration that provides the 

required level of the system performance measure. The more general situation in which 

different versions and the number of components may be chosen for any given parallel 

subsystem was studied in [58]. Genetic Algorithm (GA) was used to solve both the 

optimization problems in [57] and [58]. 

Ramirez-Marquez and Coit [87] studied the same optimization problem as in [58], but 

they used a heuristic algorithm instead of GA to solve the formulated optimization 

problem. The heuristic offered more efficient and straightforward analyses. This was the 

first time that the MS series-parallel system design problem has been addressed without 

using GA. The problem of structure optimization of MS controllable systems [46] is 

similar to the problem considered in [58]. The only difference is that the interaction 
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between the parallel subsystems is determined by the control rule that provides the 

maximal possible system performance in the MS controllable systems [46]. 

Instead of minimizing total investment cost subject to reliability constraints, Gupta and 

Agarwal [21] studied the optimization problem for MS series-parallel systems to 

maximize system reliability subject to system cost. They used GA together with the 

penalty technique to solve the formulated problem. Ant colony algorithm is another 

metaheuristics optimization technique used in MS systems structure optimization. In 

2005, Massim, Zeblah et al. [66] showed how to use the ant colony algorithm to choose 

an optimal multi-state series-parallel power structure configuration in order to minimize 

total investment cost subject to availability constraints. They defined availability as the 

probability that a multi-state series-parallel system will be in a state having a capacity 

level greater than or equal to a specific demand at a specified moment. Meziane et al. [73] 

described how to implement the ant colony algorithm for finding the optimal multi-state 

series-parallel power system configurations needed to maximize system reliability 

subject to system performance and cost constraints. In 2007, Agarwal and Gupta [1] 

presented the ant colony algorithm for a homogeneous series-parallel system exhibiting a 

multi-state behavior, in order to minimize cost and provide a desired level of reliability. 

Liu, Zuo and Meng [64] formulated the optimization model for continuous multi-state 

series-parallel systems to determine the number of redundancies needed to maximize the 

system's expected utility function subject to constraints on system cost. The design goal 

is also achieved by discrete choices made from components available in the market. Wu 

and Chan [108] defined a new utility importance of a component state in MS systems and 

illustrated how genetic algorithm, simulated annealing, and tabu search can be used to 
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select components and define the position order of components so that the performance 

utility of a MS system is optimized. A summary of how mathematical programming, 

heuristics, metaheuristics, neural networks and fuzzy techniques have been used to solve 

formulated MS system structure optimization problems can be found in [43]. Besides the 

redundancy optimization problem, El-Neweihi, Proschan and Sethuraman [18] allocated 

MS components into k series systems in order to maximize the expected number of 

systems functioning at a pre-specified level or higher. Meng [67] extended the principle 

of interchanging components from binary systems to MS systems. 

In practice, the designer often has to include additional elements in an existing system. It 

may be necessary, for example, to modernize a system according to new demand levels 

or new reliability requirements. The problem of minimal cost MS system expansion is 

very similar to the problem of system structure optimization in [57] and [58]. The only 

difference is that each MS parallel subsystem already contains some working elements. 

The problems of optimal single stage MS series-parallel system expansion was studied in 

[63]. The problem of optimal multi-stage MS series-parallel system expansion was 

studied in [48], [49] and [55]. The multi-stage expansion period is divided into several 

stages. At each stage, the demand distribution is predicted. Additional components 

chosen from the list of available products may be included in any parallel subsystem at 

any stage to increase total system reliability. The objective studied in the single stage [63], 

the multi-stage [48], [49] and [55] expansions was to minimize the sum of costs of 

investment over the study period while satisfying reliability constraints at each stage by 

adding additional components selected from a list of available products. Massim et al. [65] 

for the first time used the ant colony method to solve the multi-stage expansion problem 
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for multi-state series-parallel systems. The objective was to minimize the investment 

costs over the study period while satisfying availability or performance constraints by 

adding additional components selected from a list of available products. 

Gurler and Kaya [22] proposed a maintenance policy for a system with multi-state 

components, using an approximation of the average cost function to reduce problem 

complexity, and using a numerical method to solve the formulated optimization problem. 

A heuristic algorithm was developed to solve the problem. Zuo et al. [119] investigated 

the replacement-repair policy for multi-state deteriorating products under warranty. When 

maintenance activities are considered together with construction optimization, the 

problem becomes more complicated. Levitin and Lisnianski [56] formulated the joint 

redundancy and maintenance replacement schedule optimization problem generalized to 

MS systems. Nourelfath and Dutuit [79] and Nourelfath and Ait-Kadi [78] extended the 

redundancy optimization problem of MS systems to the more general case where 

maintenance resources are limited. In [78] and [79], the classical redundancy 

optimization problem was extended to find, under reliability constraints, the minimal 

configuration and maintenance costs of a series-parallel system for which the number of 

maintenance teams is less than the number of repairable components. The difference 

between [78] and [79] is that they used different approaches to solve the formulated 

optimization problem. The authors of [79] used a method that is based on a combination 

of UMGF and a simulation method based on stochastic Petri nets animated by Monte-

Carlo simulation. However, the approach developed in [78], using UMGF technique and 

the Markov chain approach, is mainly analytical. In [53] Levitin and Lisnianski 

summarized their technique for combining a UGF method used in reliability evaluation 
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and a GA used as an optimization engine for solving a family of MS system reliability 

optimization problems including structure optimization, optimal expansion, maintenance 

optimization and optimal multistage modernization 

In practical situations involving reliability optimization, there often exist mutually 

conflicting goals such as maximizing system utility and minimizing system cost and 

weight [40]. Most reported multi-state optimization models such as those mentioned 

above treat one goal as the objective function and the other goals as constraints. However, 

it is very difficult to specify in advance the constraint values for the goals used as 

constraints. After a solution is obtained, we often need to modify these constraint values 

to find a better tradeoff between different goals. Finding the most appropriate constraint 

values is a trial and error process and there are no clear guidelines as to how to converge 

to the right set of constraint values. Particularly, when there are many constraint values 

that need to be specified, it is almost impossible to find the most appropriate values for 

these constraints. Compared to the traditional single-objective optimization model, the 

multi-objective optimization model which is used to seek the balance among several 

goals automatically is more flexible and effective. Although there has been intensive 

research on redundancy allocation for binary systems considering multiple objectives, it 

is a relatively new research topic in the multi-state context. For example, the studies of 

multi-objective optimization problems in the binary context can be found in [15], [25], 

[26], [27], [28], [37], [38], [81], [85], [86], [92] and [95]. The Fuzzy approach, crisp 

approach, genetic algorithm, interactive optimization method, and physical programming 

have all been used to build and solve multi-objective optimization problems. Physical 

programming has proved its effectiveness in addressing a wide array of multi-objective 
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optimization problems in the binary context [69], [70], [71], [72] and [82]. Tian, Zuo and 

Huang [100] and Tian and Zuo [96] studied the redundancy allocation problem for multi-

state series-parallel systems using physical programming and the fuzzy approach. They 

compared the results from those two approaches and found that physical programming 

can generate better results. 

Tian, Zuo and Huang [99] investigated how to improve the optimal design of multi-state 

series-parallel systems by extending the redundancy optimization of multi-state series-

parallel systems to the joint reliability-redundancy optimization of multi-state series-

parallel systems. That is, in addition to redundancies, component state distributions were 

treated as design variables as well. This is the only research in the literature on enhancing 

MS system reliability by modifying the performance distribution of its components. 

Survivability, the ability of a system to tolerate intentional attacks or accidental failures 

or errors, becomes especially important when a system operates in battle conditions or is 

affected by a corrosive medium or other hostile environment. When applied to MS 

systems, the survivability depends on a MS system's ability to meet the demand (the 

required performance level). Subject to investment cost limitations, the optimization 

problems of how to find the minimal cost configuration of protection that provides the 

desired system survivability have been studied in [45], [46], [47], [48], [50], [51] and [54] 

for different types of MS systems. 

Based on the research in the literature, a more general MS system model - the MS 

weighted system model - is brought forward in this thesis. And the research involves 

both reliability evaluation and optimal reliability design. Systems under investigation 
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include binary weighted k-out-of-n systems (a special case of MS weighted k-out-of-n 

systems), MS weighted k-o\xt-of-n systems and MS weighted series-parallel systems. 

Specifically, in Reliability Evaluation of multi-state systems, we aim at developing 

efficient evaluation algorithms for MS weighted series-parallel systems and MS weighted 

k-out-of-n systems: 

(1) MS weighted series-parallel systems 

In order to model different practical situations, two MS weighted series-parallel system 

models are developed — the so-called MS weighted series-parallel model I and model II. 

Based on the coherent property of MS weighted series-parallel systems, MS weighted 

series-parallel systems can be decomposed into binary series-parallel systems, and then 

the binary series-parallel system reliability evaluation approaches can be applied to 

evaluating the reliability of the corresponding MS weighted series-parallel system. 

(2) MS weighted &-out-of-« systems 

Based on different practical situations, two MS weighted k-out-of-n system models are 

developed — the so-called MS weighted &-out-of-n model I and model II. The detailed 

definitions of these models, proposed UGF algorithms and efficient recursive algorithms 

to evaluate the system reliability are given, and these two approaches compared with each 

other. 

In Optimal Design of MS weighted systems, the proposed research will focus on the 

three topics below: 
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(1) Optimal design of binary weighted k-out-of-n systems 

Based on the efficient reliability evaluation algorithms which have already been 

developed, we can investigate the issue of optimal design of binary weighted k-out-of-n 

systems to minimize total system cost or maximize system reliability. Two optimal 

models are formulated in detail. One is to minimize the expected total cost, and at the 

same time, guarantee the system reliability greater than a pre-specified value; the other is 

to maximize system reliability with the constraints on the expected total system cost. 

Genetic Algorithm (GA) and Tabu Search (TS) methods are both used to solve the 

resulting optimization models. Since the key to a good TS algorithm is usually quite 

problem-specific policies and memory structures for deciding what a move is and how 

long moves are tabu after leading to a local minimum, there is no existing general TS tool 

available. As a result, many more details are given regarding the TS approach used in this 

thesis than regarding the GA approach. The results obtained using these two methods are 

compared. The results show that both are powerful tools for solving these kinds of 

problems, but TS is more efficient. 

(2) Optimal design of MS weighted A>out-of-« systems 

A widely studied reliability optimization problem is the "component selection problem", 

which involves selection of components with known reliability and cost characteristics 

for configuring the system. Less adequately addressed has been the problem of 

determining system cost and utility based on the relationship between component 

reliability, cost and utility. This so-called "component design problem" has been 

addressed under this topic. All the optimization problems dealt with under this topic can 
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be categorized as either minimizing the expected total system cost subject to system 

reliability requirements, or maximizing system reliability subject to total system cost 

limitations. The resulting optimization problems are too complicated to be solved by 

traditional optimization approaches, therefore, Genetic Algorithm (GA) is used to solve 

them. The results show that GA is a powerful tool for solving these kinds of problems. 

(3) Optimal design of MS weighted series-parallel systems 

The research on component design problems for multi-state weighted series-parallel 

systems has been addressed under this topic. Furthermore, comparing to the traditional 

single-objective optimization model, the optimization model studied under this topic is a 

multi-objective optimization model which is used to minimize investment cost while 

simultaneously maximizing system performance utility and system reliability. Genetic 

algorithm is used to solve the physical programming based optimization models. An 

example is used to illustrate the increased flexibility and effectiveness of the proposed 

approach over the single-objective optimization method. 

Detailed discussion of the proposed research will be presented in the following chapters. 
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Chapter 3 

Fundamentals of Multi-State Weighted 
System Reliability 

This chapter presents fundamental knowledge of multi-state weighted reliability, 

including some basic concepts and tools such as structure function, state distribution, and 

utility distribution. Typical system structures are discussed, including series-parallel 

systems and k-out-of-n systems. The general framework of recursive algorithms and 

universal generating functions are also presented in this chapter. 

3.1 Basic concepts 

• Structure function. A multi-state component or system can be in M+\ possible 

states: {0, 1, 2, ..., M}. There is a utility value corresponding to each state. 

Suppose a system has n components. We use a vector, u = (u\, ui,..., un), to 

represent the component utilities, where component i has utility m. "Structure 

function" represents the relationship between the component utilities and the 

system utility. y(u) denotes the system utility as a function of the component 

utilities. 

• State distribution. In binary reliability theory, the reliability of a component or a 

system actually refers to its probability of being in state 1. In the context of multi-

state reliability, there are more than two possible states. We use "state 

distribution" instead of "reliability" to denote the probability of a multi-state 

component being at different state levels. 
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• Utility distribution. In a binary weighted system, component / carries a utility of 

Ui, ut > 0. In a MS weighted system, a component has more than two states. There 

is a utility corresponding to every state of the component. So, corresponding to 

the state distribution, the "utility distribution" is used to denote the performance 

of a multi-state component at different performance levels. One point we need to 

mention is that the "utility" used here has the same meaning as the "weight" Wu 

and Chen used in their paper [12]. They all mean the contribution of the 

component. In the binary weighted context, the component that makes a higher 

contribution to a system has a higher "weight". The component that contributes 

less has a lower "weight". Since we also discuss the "physical weight" of the 

component, in order to distinguish the "weight" from "physical weight", clearly 

we use "utility" as a substitute for the word "weight". The notation, w,-, which was 

used by Wu and Chen [12] for the component "weight" is used as the "physical 

weight" of the component in this research. Consistent with the binary weighted 

system, the MS weighted system uses the "utility distribution" to denote the 

contribution of a multi-state component at different performance levels. 

3.2 Typical system structures 

In order to conduct the reliability evaluation and optimal design, we first need to look 

into the logical relationships among components, that is to say, to identify the system 

structure. In this section, some typical system structures are presented. For both the 

series-parallel system and the &-out-of-« system, we start from the traditional binary 

model, and then move on to the MS system model which has already been studied, finally 

bringing forward the MS weighted model which we will study in this thesis. We also 
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introduce a special case of MS weighted k-out-of-n system - the binary weighted &-out-

of-n system. The reliability evaluation for it has already been reported by Wu and Chen 

[12]. In this thesis, the reliability optimal design of it will be studied. For each system 

structure, first we discuss it with regard to the binary reliability framework where the 

system and the components can take only two possible states — state 1 (working state) 

and state 0 (failed state) — and then with regard to the multi-state reliability framework, 

and finally the multi-state weighted reliability framework. Finally the system structure is 

discussed with regard to the multi-state weighted reliability framework. We focus our 

discussion on the two typical structures of multi-state systems to be studied in this thesis 

work: series-parallel systems and A>out-of-n systems. 

3.2.1 Series-parallel systems 

(1) Binary series-parallel systems: A binary series-parallel system has N subsystems 

connected in series, and each subsystem is a parallel system [7]. A parallel system is 

working (in state 1) as long as at least one of its components is working (in state 1). 

In other words, a parallel system is failed (in state 0) if all of its components are failed 

(in state 0). A series system is working (in state 1) if all of its components are 

working (in state 1). 

(2) Multi-state series-parallel systems: The multi-state series-parallel system defined 

by Barlow and Wu [1] has been widely studied. A multi-state series-parallel system 

consists of subsystems, Si to SN, connected in series. Each subsystem, say Si, has 

some components connected in parallel. The following assumptions are used: (1) The 

components in a subsystem are independent. (2) The components and the system may 

be in M+\ possible states, namely, 0, 1,2, ..., M. (3) The multi-state series-parallel 
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systems under consideration are coherent systems. According to the multi-state 

system definition of Barlow and Wu [1], the state of a parallel system is defined as 

being the state of the best component in the system, and the state of a series system is 

defined as being the state of the worst component in the system. 

(3) Multi-state weighted series-parallel systems: 

When a MS series-parallel system is extended to the MS weighted series-parallel system, 

the system is still a coherent system and consists of subsystems, SX,S2, ..., SN, connected 

in series. Each subsystem, say St, has n( different MS weighted components connected in 

parallel. In a subsystem, each component may be in M + 1 states: {0,1,2,---,M} . 

Component i has a probability, ptj, of being in state j , and there is a utility value, uy, 

corresponding to each component state. The utility value, u.., describes the component 

performance capability in that state. 

The structure of a multi-state weighted series-parallel system is as shown in Figure 3.1. 

H l h 
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« i 

H l h 

m 

H l 

nN 

Figure 3.1: Structure of a multi-state weighted series-parallel system 
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3.2.2 K-out-of-n systems 

(1) Binary &-out-of-n systems: The &-out-of-« system structure is a very popular type of 

redundancy in fault tolerant systems, with wide applications in both industrial and 

military systems. An w-component system is called a binary &-out-of-rc:G system if it 

is working whenever at least k components are working. An n-component system is 

called a binary &-out-of-«:F system if it is failed whenever at least k components are 

failed. Efficient reliability evaluation algorithms for binary A>out-of-« systems with 

independent components have been provided by Barlow and Heidtmann [1] and 

Rushdi [9]. 

(2) Multi-state &-out-of-« systems: Binary &-out-of-« system models have been 

extended to multi-state A>out-of-« system models by allowing components and 

systems to take more than two possible states [4] and [5]. From Huang et al. [6], an n-

component system is called a generalized multi-state &-out-of-«:G system if 

<j)(x) > j , (l < j < M) whenever there exists an integer value, / (_ /</< M ) , such 

that at least ki components are in state / or above. 

(3) Multi-state weighted k-out-of-n systems: A special case of multi-state weighted k-

out-of-« systems is the binary weighted &-out-of-n system which has already been 

developed by Wu and Chen [12]. In a binary weighted &-out-of-n:G system, 

component / carries a positive integer weight, w,., wt >0 , fori = 1,2,...,n. The total 

weight of all components is w, w = ^ w,. The system works if and only if the total 

weight of working components is at least k, a pre-specified value. Since A: is a weight, 

it may be greater than n because k and n are expressed using different units of 

measurement. Such a binary weighted k-ovX-of-n.G system is equivalent to a binary 
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weighted (w-k + \)-out-of-n : F system wherein the system fails if and only if the 

total weight of failed components is at least w-k + 1. Using these generalizations, the 

binary A>out-of-« system model is a special case of the binary weighted &-out-of-n 

system model because each component in a k-out-of-n system has a weight of one. As 

mentioned before, the "weight" used in Wu and Chen's paper [12] is the same 

meaning as the "utility" used in this thesis. A multi-state weighted k-out-of-n system 

is a system with n multi-state weighted components. Each component has multiple 

possible states with multiple levels of capacity. Component i has a probability, py, 

of being in state j , and there is a utility value, uy, corresponding to each component 

state. The capacity of the system described by the system utility is equal to the sum of 

the utilities of all the components or of some special kinds of components in the 

system. The detailed definitions of two types of multi-state weighted k-o\xt-of-n 

systems will be presented in Chapter 4. 

3.3 Recursive Algorithms 

Recursive algorithms have been efficient means of making system reliability evaluations 

[3]. There are three fundamental elements in a recursive algorithm. Below, the recursive 

algorithm for binary weighted k-out-of-n systems [12] will be used to illustrate these 

elements. 

Below, R(k, n) represents the probability that a system with n components can provide a 

total utility of at least k. Then, R{k, n) is the reliability of the weighted k-out-of-n system. 

The following recursive equation can be used for evaluating the reliability of such 

systems. 
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R(k,n) = p„R(k-u„,n-l) + qnR(.k,n-l), (3.1) 

which requires the following boundary conditions: 

R(k,n) = l,fork<0,n>0, (3.2) 

R(k,0) = 0,fork>0. (3.3) 

As described in Tian's thesis [10], a recursive algorithm has the following three key 

elements: 

(1) Recursive function is the key function that calls itself in the recursive algorithm. It 

has one or multiple input parameters, which change during the course of the recursive 

algorithm. A recursive function with a set of input parameters is calculated via several 

recursive functions with sets of simpler input parameters. In the recursive algorithm 

for binary weighted k-out-of-n systems in (3.1) to (3.3), R(n, k) is the recursive 

function, in which n and k are the parameters. As shown in the equations, the 

recursive function, R(n, k), is calculated via the recursive functions R(k-u„, n-Y) and 

R{k, n-1). 

(2) Updating algorithms. The updating algorithm decides how the recursive function 

calls itself. In other words, the updating algorithm decides the relationship between a 

recursive function with certain parameters and recursive functions with different 

parameters, which are typically less complex. In the recursive algorithm for binary 

weighted k-out-of-n systems, Equation (3.1) shows the updating algorithm, that is, 

how to calculate the recursive function, R(n, k), via two recursive functions, 

R(k-u„, n-1) and R(k, n-\), with smaller input parameter values. 
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(3) Boundary conditions. When one of the boundary conditions is met, the recursive 

function will take a certain value, or can be determined in a specific and simple way. 

In the recursive algorithm for binary weighted A:-out-of-« systems, Equations (3.2) 

and (3.3) show the boundary conditions. There are two boundary conditions in this 

case. The first one is when k < 0, n > 0,, the value of the recursive function R(n, k), is 

1. The other boundary condition is when k>0, the value of the recursive function 

R(k, 0), is 0. 

3.4 Universal Generating Functions 

The universal generating function (UGF) was introduced by Ushakov [11] in 1986. In 

1996, Lisnianski et al. [8] applied the UGF to power system reliability analysis. The UGF 

technique allows one to find the entire system performance distribution based on the 

performance distributions of its components by using a rapid algebraic procedure. 

Although the UGF is a universal technique, specific operators for different kinds of 

systems need to be developed based on their specific logical structures. Since the binary 

weighted &-out-of-« system is a special case of the multi-state weighted &-out-of-« system, 

below, the binary weighted &-out-of-« system is used to illustrate how to use the UGF to 

evaluate system reliability. 

In a binary weighted &-out-of-« system, the UGF for the components is: 

Ui(z) = (l-Pi)z°+Piz\ (3.4) 

where pt is the reliability of component i, ut is the utility of component i in the binary 

weighted k-out-of-n system, and z is the transform parameter used to express the UGF in 
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a form of moment-generating functions. 

To obtain the UGF of a general system based on the UGFs of theist individual 

components, the following composition operator, Q, can be used [8]: 

Us{2)--^{Ux{z),U2{z)-,Un{z)), (3.5) 

where Q satisfies the following general conditions: 

Q([/1(z)-^(z),^+1(z)-[/„(z)) = Q([/1(z)-f/i+1(z),^(z)--t/„(z)) (3.6) 

Q(^(z)---^(z),^+1(z)---^(z)) = Q(Q(^(z)---^(z)),Q(t/t+1(z)---[/„(z))) (3.7) 

Where there are only two elements Ui(z) and U2(z), we have: 

Q(U1(z),U2(z)) = Q[fjP^ •YJP2l^'] = fJf,pXJp2l2
(8i'+8il\ (3.8) 

j=\ i=\ M /=i 

where J and L are the numbers of possible performance levels for element Ui(z) and 

U2(z). Note that Ui(z) and fyfe) may be the UGFs of two individual components, and 

they may also be the UGFs of two subsystems. 

Having a binary weighted &-out-of-« output performance distribution in the above form, 

one can obtain the system reliability for the arbitrary k using the following operator, 5A : 

K (*) = SA (Us (z), *) = 8A ( ^ P^', k) = £ Pfii(G, - *). (3.9) 

where h is the number of possible performance levels in the polynomial Us(z). 
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The function a(x) in the above equation means: 

fl, x > 0 

[0, x < 0 

In this chapter, some basic concepts and tools such as structure function, state distribution, 

and utility distribution are presented. Typical system structures, including series-parallel 

systems and k-out-of-n systems, from the traditional binary system to the MS weighted 

system are all introduced. The general framework of recursive algorithms and universal 

generating functions (UGF) are also described in this chapter. In the following chapters, 

these concepts, structures and approaches will be used to define the MS weighted system 

model and evaluate the system reliability. The recursive and UGF methods will both be 

used to evaluate the system reliability distribution and will be compared with each other 

on the computation efficiency. 
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Chapter 4 

Reliability Evaluation of Multi-state Weighted 
/c-out-of-n Systems 

The k-out-of-n systems have been extensively studied in recent years [14]. A binary 

weighted A>out-of-« model, which is a special case of multi-state weighted A>out-of-n 

model, has also been reported in the literature [18]. In this chapter, a more general system 

- MS weighted k-out-of-n system is brought forward. Two kinds of reliability evaluation 

methods: recursive method and universal generating function (UGF) method are used to 

evaluate the binary and MS weighted k-out-of-n system reliability. Since the modern 

systems become more and more complex, efficient reliability evaluation method is highly 

needed. The reason we used two methods to evaluate the system reliability is to compare 

them and find the more efficient one. We first compare these two approaches for 

reliability evaluation of binary weighted &-out-of-« systems. We then provide two models 

of multi-state weighted k-out-of-n system. Recursive algorithms are presented for 

reliability evaluation of these new models and then compared with the universal 

generating function (UGF) method. A shorter version of materials in this chapter has 

been published in [11]. 

4.1 Binary weighted k-out-of-n: G systems 

In a binary &-out-of-rc:G system, the system works if and only if at least k components 

work. In a binary &-out-of-«:F system, the system fails if and only if at least k 

components fail. Wu and Chen [18] generalized the binary &-out-of-n system models into 
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the binary weighted A>out-of-« models. In a binary weighted A>out-of-«:G system, 

component i carries a utility of wt, wt >0 for / = 1,2, •••,«. Here, the utility of each 

component is actually representing the utility of the component. The total utility of all 

components is w, w = ^ " wt. The system works if and only if the total utility of 

working components is at least k, a pre-specified value. Since A: is a utility, it may be 

larger than n because they have different measuring units. Such a binary weighted &-out-

of-n:G system is equivalent to a binary weighted (w-k + l) -out-of-n :F system wherein 

the system fails if and only if the total utility of failed components is at least w-k + l. 

With these generalizations, the binary k-out-of-n system models are special cases of the 

binary weighted &-out-of-n system models since each component in a binary k-out-of-n 

system has a utility of one. 

To evaluate the reliability of a binary weighted &-out-of-n system, Wu and Chen [18] 

provided a recursive algorithm. Higashiyama [3] provided a method to express the 

system reliability of a binary weighted A>out-of-n system in fewer terms than that with 

the algorithm by Wu and Chen [18]. However, the time complexity and space complexity 

of these two methods reported in [3] and [18] are the same. The most recently reported 

study on the binary weighted k-out-of-n systems is by Chen and Yang [1 ]. In [1], the one-

stage binary weighted k-out-of-n model was extended to the two-stage binary weighted k-

out-of-« model with components in common among the stages. 

The concept of universal generating function (UGF) was introduced by Ushakov [16] in 

1986. Detailed mathematical foundations of the UGF method were presented in 

Gnedenko and Uskakov [2], Ushakov [15] and [17]. In 1996, Lisnianski et al. [11] 
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applied this method to power system reliability analysis. In a series of research work by 

Levitin and Lisnianski [9], [9], [5], [12], [6], [8] and [5], the UGF method were used for 

performance evaluation of several multi-state system structures including series, parallel, 

series-parallel, and the bridge. 

In this section, we will focus on binary systems wherein each component and the system 

may only be in two possible states: working or failed. The UGF of component / is a 

polynomial function denoted by Ui (z) that relates the probability of each state to the 

performance or utility of the component when in that state. For the binary weighted k -

out-of- n: G system, the UGF of component i is 

Ui{z) = Piz
w' +(\-pi)Z°=piz

w> +(1-/>,)> C4-1) 

where p( is the reliability of component / and w. is the utility of component / when it is 

working. 

The UGF of a system is a polynomial function denoted by Us (z) that defines the system 

output performance distribution (OPD). It relates the probability Pj of state j to the 

performance G, of the system when in state j in the following form: 

£/» = £/>/', (4.2) 

where J is the largest possible state of the system. System state j corresponds to a 

certain combination of the components' states. The system utility is the sum of utilities of 

components in those states. To obtain the UGF of a system based on the individual UGFs 

of the components, we need to use the following operator D, [15]: 
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Us(z) = Q(Ul(z),U2(z)-,Un(z)), (4.3) 

where n is the number of components in the system. 

The Q operator has the following properties [15]: 

flKU, (z), • - ,U, (z),Ui+1 (z), • • • ,Un (z))=fl(U1 (z), • • • ,U w {z\U{ (z), • • • ,Un (z)), 

n(u, (z), • • • ,u, (z),ui+1 (z), • • • ,un (z))=n(^(u, (z), • • • ,v. (z)),n(ui+1 (z), • • • ,un (z))), 

Q ^ I Z ^ U ^ Z ^ E P zE^ ,£p? />. ] = t t Pljp2]z
(^+g2'). 

j=i 1=1 j=i HI 

Once the UGF of a binary weighted k -out-of- n : G system is obtained, we can use the 

following operator SA [9] to obtain the reliability of the system for any given arbitrary k 

value: 

Rs(k) = SA(Us(z),k) = SA S V ' . * =2>/*(Gy-£), (4.4) 
VM J y=i 

where the function a(x) in the above equation is defined as: 

f l ,x>0 
a(x) = < 

[0 ,x<0 

Example 4.1: Consider a binary weighted 5-out-of-3: G system. It has three components 

with utilities 2, 6 and 4, respectively. The system works if and only if the total utility of 

working components is at least 5. The UGFs for the three components are as follows: 

Ux(z) = qxz° +p1z
2, 

U2(z) = q2z° + p2z
6, 

U3(z) = q3z° + p3z*. 
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where qt = 1 - p t , i = 1,2,3. 

Based on the individual UGFs of the components given above, we can obtain the system 

UGF by using operator Q as follows: 

Us(z) = Q(Ul(z),U2(z),Ui(z)) 

= Q((qlZ° + Plz
2),(q2z° + p2z

6),(q3z° + /73z
4)) 

= Mtf^ + Piq2q3z
2 + WiP^ + ( ? i M +Pi<l2Pi)z6 

+ pxp2q3z* + qxp2p3z
w + pxp2PiZn 

Since k = 5, the reliability of the system based on the above expression can be found to 

be: 

^*(5) = SA (Us{z),S) = qxp2q^ + pxq2p^ + ptp2q3 + qxp2p3 + p:p2p3 = p2 + q2p}p3 

In the following, we provide a comparison of the recursive algorithm by Wu and Chen 

[18] and the UGF approach for reliability evaluation of the binary weighted &-out-of-« 

systems. The computer programs for both approaches were developed in Matlab 7.0. To 

run these programs we used a Pentium 4 computer with a 3.00GHZ CPU and 512MB 

RAM under Windows XP operating system. The input data to the programs were k, n, a 

vector of component weights, and a vector of component reliabilities. The program for 

Wu and Chen's recursive method included the complete recursive process as described in 

[18]. The program for the UGF method included the process from building the UGFs for 

the components to obtaining the system reliability based on the system UGF as illustrated 

in Example 4.3. Random numbers between 0 and 1 were generated to represent 

component reliability values and random numbers between 0 and 10 were used to 
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represent component weights. The CPU times taken by the two approaches for different 

system sizes are given in Table 4.1. 

Table 4.1: CPU time comparison of the Wu and Chen algorithm and the UGF approach 
as a function of system size n (A=200) 

System Size 
n 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
18 
20 

CPU Time in Seconds of 
the Wu and Chen Method 

0.0100 
0.0100 
0.0100 
0.0100 
0.0150 
0.0160 
0.0310 
0.0630 
0.1090 
0.2030 
0.4060 
0.8130 
1.6400 
3.2970 
13.2340 
51.4140 

CPU Time in Seconds of 
the UGF Method 

0.0100 
0.0100 
0.0100 
0.0100 
0.0100 
0.0100 
0.0160 
0.0310 
0.0310 
0.0940 
0.2670 
1.6450 
11.5600 

108.2380 
2005.1821 

More than one hour 

From Table 4.1, we find that when the size of the system was very small (n < 6), the 

CPU times required by the two approaches were pretty much the same. When the size of 

the system grew a little bigger, between n-1 and n = 13, the UGF method was a little 

bit faster than the Wu and Chen method. However, when the size of the system grew 

even bigger, the computation time of the UGF method increased dramatically and 

became much longer than the CPU time of the Wu and Chen method. When n = 15, the 

CPU time of the UGF method was more than 7 times of the CPU time of the Wu and 

Chen method. When n = 18, the CPU time of the UGF method was more than 100 times 

of the CPU time of the Wu and Chen method. It is clear that the CPU time advantage of 

the UGF approach was very minimal even when the system size was moderate. Thus, 
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generally speaking, the recursive method of Wu and Chen [18] is more efficient than the 

UGF approach. 

4.2 Multi-state weighted k-out-of-n:G system: mode! I 

In Section 4.1, we have described the binary weighted &-out-of-«:G system model. In a 

binary weighted &-out-of-«:G system, the utility of the system is the sum of the utilities of 

working components. When a component is failed, its contribution to system utility is 0. 

In a multi-state context, a component may be in different states. When it is in a different 

state, it may have a different contribution to the system. When it is completely failed, its 

contribution to the system is zero. In the multi-state weighted &-out-of-n:G model to be 

defined in this section, every component in every possible state has a certain contribution 

to the system's performance. The formal definition of Model I of the multi-state weighted 

&-out-of-n:G system is given below. 

Definition 4.1: In a system with n components, each component and system may be in 

M + 1 possible states: 0, 1, 2, ..., M. Component i (1 <i<n), when in state j 

(0 < j < M), has a utility value of wtJ. The system is in state j or above if the total 

utility of all components is greater than or equal to kj, a pre-specified value. Let ^ be 

the structure function of the system representing the state of the system and W the total 

utility of all components. Then, this definition means Pr{^ > j} = J*r{W > kj}. Since 

state 0 is the worst state of the system, we have Pr{0 > 0} = 1. 

To present a recursive algorithm for reliability evaluation of the defined multi-state 

weighted k -out-of- n: G system, we first define the following notation: 
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• n : the number of components in the system 

• M : the highest possible state of each component and system 

• Wjj : the utility of component i when it is in state j 

• p : Pr{ Component / is in state j) 

• qtj : Pr{ Component / is in a state below j), q^j = ̂ = o ptl. 

• kj : the minimum total utility required to ensure that the system is in state 

j or above. 

• R'j (kj, ri): probability for the system to be in state j or above based on 

the defined model I. 

A recursive equation for evaluation of the state distribution of the system (Model I) is as 

follows: 

M 
Rj (M) = £P^ -K {kj-w^i-l). (4.5) 

r=0 

The boundary conditions for this recursive equation are: 

R'J(k,0) = 0,whenO<k<kJ, 

R'j (k, i) = 1, when / > 0 and k < 0. 

Example 4.2: Consider a multi-state weighted &-out-of-n:G system with three 

components. Every component has three possible states: 0, 1,2. Table 4.2 and Table 4.3 
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give the reliability distribution and the utility distribution of all the components. The 

utility of each component in state 0 is 1 instead of 0. Because in some situations, even the 

component works in the lowest state, it can still contribute some basic utilities to the 

system. 

Table 4.2: Reliability distribution of the components, pt 

i = \ 
i = 2 
i = 3 

7 = 0 
0.1 
0.4 
0.3 

7 = 1 
0.2 
0.2 
0.5 

7 = 2 
0.7 
0.4 
0.2 

Table 4.3: Utility distribution of the components, w. 

1 = 1 

1 = 2 

i = 3 

7 = 0 
1 
1 
1 

7 = 1 
2 
3 
3 

7 = 2 
3 
4 
5 

In this example, « = 3 , M = 2 , ^ = 5 , and k2 = 10 . We can use Equation (4.5) to 

calculate the reliability of the system. 

tf(5.3) = i / v t f ( 5 - w 3 , , 3 - l ) 
r=0 

= p3fi • R( (5 -1 ,2) + pxl • R( (5 - 3,2) + p3a • R( (5 - 5,2) 

= p3fi • R{ (4,2) + p 3 , • # (2,2) + pX2 • R[ (0,2) 

= JP3,0-^l /(4»2)+P3i l+JP3 ;2 
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#(4'2) = i X -^(4-^,2-1) 
r=0 

= / ^ 0 . */(4-1,1) + / ^ - ^ ( 4 - 3 , 1 ) + ̂ - ^ (4-4,1) 

= p2yR({3,\) + p2yR; (\,\) + p2yR;(0,l) 

= Pi,o • P\,i + Pi,i + Pi,i = 0-4 • 0.7 + 0.2 + 0.4 = 0.88 

R[ (5,3) = p3fi • Rl (4,2) + p3iI + p3 2 = p3fi • 0.88 + />3>1 + p3<2 

= 0.3*0.88 + 0.5 + 0.2 = 0.964 

(̂10,3) = X^'^(10-^>3-l) 

= fto -^(10-1,2) + ̂  -^(10-3 ,2) + ^ - ^ ( 1 0 - 5 , 2 ) 

= p3<0 • Ri (9,2) + p3, • i?7 (7,2) + p3 2 • Ri (5,2) 

^'(5,2) = 2>2 > r .^ ' (5-^,2-1) 
r=0 

= ^ • ^ ( 5 - 1 , 1 ) + ^- i? 2
7 (5-3 , l ) + p22.i?2

7 (5-4,1) 

= p2>0 -^(4,1) + ̂  -i?7(2,l) + p2a -Ri(l,l) 

= P2fi-0 + p2y(phl+pl2) + p2a=0.2-(0.2 + 0J) + 0A = 0.58 

R[ (7,2) = /?, 2 • p22 = 0.7 * 0.4 = 0.28 

i?7(9,2) = 0, 

R[(10,3) = p3y0.28 + p320.58 = 0.5 0.28 + 0.2-0.58 = 0.256 

Thus the state distribution of the system is as follows: 

Pr(^ > 0) = 1, 

Pity > 1) = 0.964, 

Pity > 2) = 0.256. 

Pity = 2) = 0.256, 

Pity = 1) = 0.964 - 0.256 = 0.708, 

Pity = 0) = 1-0.964 = 0.036. 
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We would also like to investigate the use of the UGF approach for reliability evaluation 

of multi-state weighted &-out-of-«:G systems. The UGF of each multi-state component is 

now given by: 

Ui(z) = plfiz
w^ + P i ^ +... + P i M z w < " . (4.6) 

To obtain the system UGF using the component UGFs, we still use the same operator Q 

and SA as in the UGF method for binary weighted £-out-of-« systems. 

Example 4.3: The multi-state weighted system studied in Example 4.2 is considered here. 

The UGF for the three components are as follow: 

Ul(z) = Q.lz1+0.2z2+0.7z\ 

U2(z) = 0Azl+0.2z3+0Az\ 

U3(z) = 03z1 + 0.5z3 +0.2z5. 

Based on the individual UGFs of the components, we can get the system UGF by using 

operator Q, as follows: 

Us(z) = n(Ux{Z),U2(z),U,(z)) 

-QCCO.lz1 +0.2z2 + 0.7z3),(0„4z' + 0.2z3 + 0.4z4),(0.3z1 + 0.5z3 + 0.2z5)) 

= 0.012z3 + 0.02z5 + 0.008z7 + 0.006z5 + O.Olz7 + 0.004z9 + 0.012z6 + 0.02z8 

+ 0.008z10 + 0.024z4 + 0.04z6 + 0.016z8 + 0.012z6 + 0.02z8 + 0.008z10 + 0.024z7 

+ 0.04z9 +0.016Z11 +0.084z5 +0.14z7 +0.056z9 + 0.042z7 +0.07z9 +0.028Z11 

+ 0.084z8+0.14z10+0.056z12 

The equation given above is the output performance distribution of the multi-state 

weighted k -out-of- n: G system model I. From this equation, we can obtain the system 

state distribution for values of ^ = 5 and k2 = 10 using the operator SA, just as shown in 

Equation (4.4). 
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R((5,3) = SA(Us(z),5) 

= 0.02 + 0.008 + 0.006 + 0.01 + 0.004 + 0.012 + 0.02 

+ 0.008 + 0.04 + 0.016 + 0.012 + 0.02 + 0.008 + 0.024 + 0.04 + 0.016 + 0.084 

+ 0.14 + 0.056 + 0.042 + 0.07 + 0.028 + 0.084 + 0.14 + 0.056 

= 0.964, 

Ri(10,3) = SA(Us(z)M = 0.008 + 0.008 + 0.016 + 0.028 + 0.14 + 0.056 

= 0.256. 

Actually, the above process can be simplified by collecting the like terms in Us (z) and 

reducing its length from 27 terms to 10 terms. Of course, this simplification process can 

also be applied to all intermediate polynomials to calculate Us (z) such as the result of 

Q([/, (z), U2 (z)) based on the properties of operator Q . 

U,(z) = 0.012z3 + 0.02z5 + 0.008z7 + 0.006z5 + O.Olz7 + 0.004z9 + 0.012z6 + 0.02z8 

+ 0.008z10 + 0.024z4 + 0.04z6 + 0.016z8 + 0.012z6 + 0.02z8 + 0.008z10 + 0.024z7 

+ 0.04z9 + 0.016zn + 0.084z5 + 0.14z7 + 0.056z9 + 0.042z7 + 0.07z9 + 0.028zn 

+ 0.084z8 + 0.14z10+0.056z12 

= 0.012z3+0.024z4+0.011z5+0.0106z6 + 0.182z7+0.2z8 + 0.1z9 + 0.184z10 

+ 0.016zu+0.056z12 

In this way, the calculation time can be reduced a lot. However, it depends on how many 

like terms exist. Sometimes, there are few like terms in Us (z) especially when the utility 

vectors of components are different decimal numbers. We can see it later in the 

comparison examples. 

The distribution of the system state in this example is the same as obtained in Example 

4.2. For the multi-state weighted k -out-of- n: G system model presented in this section, 

we also compared the performances of the recursive method and the UGF approach. The 

CPU times required by the two methods were obtained as the values M and n when 
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only one of them changed, and they are compared in two situations. One is when the 

utilities of the component are random integer numbers from a given range. The other is 

when the component utilities are random decimal numbers from a given range. The 

integer numbers for the component utility are randomly selected from [1,14]. The 

decimal numbers for the component utility are randomly selected from [20,50]. The 

probability of component i in state j is randomly selected from [0,1] and meets the 

requirement of ^ . ptj = 1. The reason to set up the experiments like this is to show the 

effects of two situations: with lots of like terms in the intermediate polynomials to 

calculate Us(z) and with few like terms in the intermediate polynomials to calculate 

Us(z). These comparisons are shown in Table 4.4, Table 4.5, Table 4.6, and Table 4.7. 

Based on the CPU times required by the two methods for various values of the 

parameters M and n of the multi-state weighted k -out-of- n: G model, we have the 

following observations. As the system size n increased, the CPU time required by the 

UGF approach increased much faster than that by the recursive method. As the number of 

component states M increased, the CPU time required by the UGF approach increased 

much faster than that by the recursive method. In addition, when there are many like 

terms in the process of calculating Us (z), collecting the like terms can reduce the 

calculation time a lot; when there are seldom like terms in the process of calculating 

Us (z), collecting the like terms may make the calculation slower, because collecting the 

like terms itself also spends time. Generally speaking, the recursive approach is more 

efficient than the UGF approach for multi-state weighted A>out-of-n:G system: Model I 

performance evaluation. 
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Table 4.4: Comparison of the CPU times of the two methods when only M changes with 
random integer number for the component utility (kx = 200, n = 5 ) 

The M 
Value 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

CPU (Seconds) 
Recursive Method 

0.0000 
0.0460 
0.1220 
0.3210 
0.6170 
1.1120 
2.0660 
3.3810 
5.4220 
8.3380 

CPU (Seconds) 
UGF method without 
collecting like terms 

0.0000 
0.0160 
0.0460 
0.1830 
0.7110 
3.2130 
12.0400 
43.2040 
113.0950 
256.1410 

CPU (Seconds) UGF 
method with collecting 

like terms 
0.0025 
0.0028 
0.0038 
0.0048 
0.0049 
0.0061 
0.0080 
0.0101 
0.0131 
0.0151 

Table 4.5: Comparison of the CPU times of the two methods when only n changes with 
random integer number for the component utility (kx = 200, M - 5) 

The n 
Value 

3 
4 
5 
6 
7 
8 
9 
10 
11 

CPU (Seconds) 
Recursive Method 

0.0000 
0.0160 
0.1220 
0.6070 
3.0270 
14.9210 
75.5460 

225.0440 
1872.3541 

CPU (Seconds) UGF method 
without collecting like terms 

0.0000 
0.0000 
0.0460 
0.9190 

44.3890 
1566.9123 

More than one hour 

CPU (Seconds) UGF method 
with collecting like terms 

0.0023 
0.0028 
0.0038 
0.0048 
0.0058 
0.0073 
0.0091 
0.0114 
0.0138 

Table 4.6: Comparison of the CPU times of the two methods when only n changes with 
random decimal number for the component utility (kx = 200, M = 5) 

The n 
Value 

3 
4 
5 
6 
7 
8 
9 

CPU (Seconds) 
Recursive Method 

0.0000 
0.0160 
0.1220 
0.6070 
3.0270 
14.9210 
75.5460 

CPU (Seconds) UGF method 
without collecting like terms 

0.0000 
0.0000 
0.0460 
0.9190 

44.3890 
1566.9123 

More than one hour 

CPU (Seconds) UGF method 
with collecting like terms 

0.0029 
0.0295 
0.3044 
7.6404 

263.7771 
More than one hour 
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Table 4.7: Comparison of the CPU times of the two methods when only M changes with 
random decimal number for the component utility (&, = 200, n = 5) 

The M 
Value 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

CPU (Seconds) 
Recursive Method 

0.0000 
0.0460 
0.1220 
0.3210 
0.6170 
1.1120 
2.0660 
3.3810 
5.4220 
8.3380 

CPU (Seconds) UGF 
method without collecting 

like terms 
0.0000 
0.0160 
0.0460 
0.1830 
0.7110 
3.2130 
12.0400 
43.2040 
113.0950 
256.1410 

CPU (Seconds) UGF 
method with collecting 

like terms 
0.0037 
0.0368 
0.3044 
1.8191 
8.3769 

32.2615 
139.3600 
437.2028 
1116.4360 
2668.0371 

4.3 Multi-state weighted k-out-of-n:G system: model II 

Huang et al. [4] proposed the general multi-state k-o\xt-of-n system model in 2000. In 

their definition, for the system state to be not lower than a given value j , the number of 

components whose states are not lower than j must be at least kj, a pre-specified value. 

In this definition, the components whose states are below j do not make any 

contribution for the system to be in state j or above. Based on this idea, we define a new 

model of the multi-state weighted k -out-of- n: G system. In the proposed definition, for 

the system to be in state j or above, the sum of the utilities of only those components 

whose states are in state j or above must be not less than k}, a prespecified value. The 

difference between Model I presented in the previous section and Model II presented in 

this section is whether the components whose states are below j are making any 

contribution for the system to be in state j or above. The formal definition of Model II is 

given below. 
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Definition 4.2: The system is in state j or above if the sum of the utilities of the 

components whose states are in state j or above is greater than or equal to fc.. Let </> be 

the structure function of the system and W, be the sum of the utilities of the components 

whose states are j or above. We then have Pr{^ > j) = Pr{PT. > kj}. 

Let R"(k,n) denote the probability for the n component system to have a sum of useful 

utilities of at least kj when one is evaluating the probability for the system to be in state 

j or above. The following recursive algorithm is proposed for evaluation of the 

performance distribution of the system based on Definition 4.2. 

M 

R1; (kj,nyqnyR]1 [kj^-l^YPnyR" {kj-wn,,n-\). (4.7) 

The boundary conditions for equation (4.7) are: 

i?;;(i,0) = 0,for; = l,2,3,--,A;7., 

R"(k,i) = \, for k < 0 and i = 0,l,2,-~,n 

Example 4.4: We consider the same set of components used in Example 4.2. However, 

the system state is determined based on Definition 4.2. Thus, we have n = 3, M = 2, 

k^=5, and k2 = 10. Equation (4.7) is used below to calculate the state distribution of the 

system. 
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< ( 5 , 3 ) = ̂ , , x^ / (5 ,2 ) + X ^ x ^ / ( 5 - ^ , 3 - 1 ) 

= qxx x R(> (5,2) + A>1 x R(> (5 -3,2) + ft>2 x < (5 - 5,2) 

= 0.3 x i?/7 (5,2) + 0.5 x i?/7 (2,2) + 0.2 x i?/7 (0,2) 

= 0.3 x R(' (5,2) + 0.5 x i?/7 (2,2) + 0.2, 

i?1
//(5,2) = ^1xi?/7(5,l) + 2^ r xi? 1

7 7 (5- W 2 i r ,2 - l ) 
r=\ 

= q2lxR[,{5,\) + p2XxR[\2,\) + p22xR{\\,\) 

= p21 x (0.2 + 0.7) + p12 x (0.2 + 0.7) 

= (0.2 +0.4) x 0.9 

= 0.54, 

< /(2,2) = ^2ilxi?/7(2,l) + | ;p 2 i rxi? 1
7 7 (2-W v ,2- l ) 

= g 2 1 x^ 7 (2 , l ) + ̂ 1 x ^ 7 ( - l , l ) + /72;2xJR1
//(-2,l) 

= 0.4x(0.2 + 0.7) + 0.2 + 0.4 

= 0.96, 

B? (5,3) = 0.3 x R[] (5,2) + 0.5 x R? (2,2) + 0.2 

= 0.3 x 0.54 + 0.5 x 0.96 + 0.2 = 0.842, 

i?2
//(10,3) = ̂ 2xi?77(10,2) + £ ^ x ^ / d O - ^ , 3 - 1 ) 

= qX2 x i?77 (10,2) + p32 x i?77 (10-5,2) 

= g3;2xi?77(10,2) + jp3j2xi?7/(5,2)5 

i?f(10,2) = 0, 
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< ( 5 , 2 ) = ftjxJ?{/(5>l) + j ;P2.rX^ /(5-w2 . ,>2-l) 

= P2fixRlI(5,l) + p2axR?(5-4,l) 

= p2fixB?(5,l) + p2axR?(l,l) 

= P2fixO + P2,2
XPl,2 

= 0.28, 

R? (10,3) = qi2 x 7?2
7/ (10,2) + /?„ x R2

U (5,2) = p32 x 0.28 

= 0.2x0.28 = 0.056. 

Furthermore, extending the UGF from Model I to Model II, we only need to change the 

UGF for the individual component as the following form: 

Ul(z) = qIJz
0+pIJz^ + -PlJlz*> +.~ + pIMz*". (4.8) 

For the system in Example 4.4, when we calculate the probability that the system is in 

state 1 or above, the UGF for the three components should be written as follow: 

t/1(z) = 0.1z°+0.2z2+0.7z3, 

C/2(z) = 0.4z°+0.2z3+0.4z4, 

C/3(z) = 0.3z°+0.5z3+0.2z5 

Based on the individual UGF of the components, we can get the system UGF by using 

operator CI: 

Us(z) = Q(Ul(z),U2(z),U3(z)) 

= 0.012z° +0.024z2 4-O.llz3 +0.012z4 +0.06z5 +0.216z6 +0.12z7 

+ 0.08z8 + 0.118z9 + 0.148z10 + 0.044Z11 + 0.056z12 

The above form is the MS weighted &-out-of-« Model II OPD. We can obtain the system 

reliability for the arbitrary kx - 5 based on this form using the operator SA : 
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#'(5,3) = SA(U,(z),5) = 0.842 

When we calculate the probability that the system is in state 2 or above, the UGF for the 

three components should be written as follow: 

£/,(z) = 0.3z°+0.7z3, 

£/2(z) = 0.6z°+0.4z4, 

£/3(z) = 0.8z°+0.2z5 

Based on the individual UGF of the components, we can get the system UGF by using 

operator Q: 

U,(z) = to(Ul(z),U2(z),U3(z)) 

= 0.144z° + 0.336z3 + 0.096z4 + 0.036z5 + 0.224z7 + 0.084z8 + 0.024z9 + 0.056z12 

We can obtain the system reliability for the arbitrary k2 = 10 based on this form using 

the operator SA: 

#'(10,3) = SA(Us(z),lO) = 0.056 

So we get the same results as using the recursive method. 

In summary, we have the state distribution of the system as follows: 

Pr(^>l) = #'(5,3) = 0.842, 

Pr(<z> > 0) = 1, 

Pr(^ = 2) = 0.056, 

Pr((z5 = 1) = 0.842 - 0.056 = 0.786, 

Pr(^ = 0) = 1-0.842 -0.158. 
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Given j = 3 , using the same method in Section 4.2 to compare the two approaches. The 

results are shown in Table 4.8, Table 4.9, Table 4.10, and Table 4.11. From these results, 

we can say generally speaking, the recursive approach is more efficient than the UGF 

approach for multi-state weighted &-out-of-n:G system: Model II performance evaluation. 

Table 4.8: Comparison of the CPU times of the two methods when only M changes with 
random integer number for the component utility (kx= 200, n = 5) 

TheM 
Value 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

CPU (Seconds) 
Recursive Method 

0.0160 
0.0160 
0.0470 
0.1250 
0.2970 
0.6410 
1.2340 
2.1400 
3.5460 
5.6230 

CPU (Seconds) UGF 
method without collecting 

like terms 
0.0000 
0.0000 
0.0150 
0.0470 
0.1880 
0.7650 
2.6870 
12.1060 
42.2850 
111.7170 

CPU (Seconds) UGF 
method with collecting 

like terms 
0.0030 
0.0037 
0.0039 
0.0045 
0.0051 
0.0061 
0.0075 
0.0095 
0.0121 
0.0138 

Table 4.9: Comparison of the CPU times of the two methods when only n changes with 
random integer number for the component utility (kx = 200, M -~ 5) 

The n 
Value 

3 
4 
5 
6 
7 
8 
9 
10 

CPU (Seconds) 
Recursive Method 

0.0000 
0.0150 
0.0470 
0.1880 
0.7190 
3.0160 
11.5930 
46.7640 

CPU (Seconds) UGF method 
without collecting like terms 

0.0000 
0.0000 
0.0150 
0.0940 
1.2810 

41.4560 
885.1180 

More than one hour 

CPU (Seconds) UGF method 
with collecting like terms 

0.0029 
0.0038 
0.0039 
0.0049 
0.0060 
0.0073 
0.0091 
0.0109 
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Table 4.10: Comparison of the CPU times of the two methods when only M changes 
with random decimal number for the component utility {kx= 200, n = 5) 

The M 
Value 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

CPU (Seconds) 
Recursive Method 

0.0160 
0.0160 
0.0470 
0.1250 
0.2970 
0.6410 
1.2340 
2.1400 
3.5460 
5.6230 

CPU (Seconds) UGF 
method without collecting 

like terms 
0.0000 
0.0000 
0.0150 
0.0470 
0.1880 
0.7650 
2.6870 
12.1060 
42.2850 
111.7170 

CPU (Seconds) UGF 
method with collecting 

like terms 
0.0033 
0.0065 
0.0396 
0.3076 
1.8255 
8.3420 

31.8077 
136.6563 
404.5117 
1142.2968 

Table 4.11: Comparison of the CPU times of the two methods when only n changes with 
decimal decimal number for the component utility (kx = 200 ,M = 5) 

The n 
Value 

3 
4 
5 
6 
7 
8 
9 
10 

CPU (Seconds) 
Recursive Method 

0.0000 
0.0150 
0.0470 
0.1880 
0.7190 
3.0160 
11.5930 
46.7640 

CPU (Seconds) UGF method 
without collecting like terms 

0.0000 
0.0000 
0.0150 
0.0940 
1.2810 

41.4560 
885.1180 

More than one hour 

CPU (Seconds) UGF method 
with collecting like terms 

0.0030 
0.0059 
0.0396 
0.5501 
8.7883 

190.7333 
3535.5925 

More than one hour 

Examples 4.3 and 4.4 use the same set of components. The only difference between these 

two examples is that what components' utilities are used in determining the state of the 

system. The state distributions obtained in these two examples are given in Table 4.12. 

Table 4.12: Comparison of system state distributions of Model I and Model II 

Pr(<z5 > 2): 

Pr(^ > 1): 

Pr(<*> > 0): 

Model I 
0.256 

0.964 

1.000 

Model II 
0.056 

0.842 

1.000 
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From Table 4.12, it is apparent that the probability for the Model II system to be not less 

than a specific state is less than that for the Model I system. Model I may be applied 

whenever the contribution of every component is useful no matter how bad or good a 

component is. Model II is applicable when components in bad states cannot make any 

contribution for operation of high system states. 

4.4 Conclusions 

In this chapter we have proposed two definitions of multi-state weighted &-out-of-n:G 

system model. They may be applied in different situations when the contributions of 

relatively weak components may and may not be useful. Recursive algorithms are 

provided for evaluation of system distribution under both definitions. The UGF approach 

is compared with recursive methods for the binary weighted &-out-of-n:G system defined 

by Wu and Chen [18] and the proposed two kinds of multi-state weighted &-out-of-»:G 

systems. It is found that recursive methods are generally more efficient than the UGF 

approach. 

In the design process, we need to evaluate system reliability repetitively. Using the more 

efficient reliability evaluation method in the MS weighted system optimal reliability 

design is very important. Based on the research in this chapter, we can select more 

efficient method in the MS weighted k -out-of- n system optimal reliability design which 

will be presented in the following chapter. 
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Chapter 5 

Optimal Design of Binary Weighted /c-out-of-n 
Systems 

In this chapter, based on the reliability evaluation methods introduced in Chapter 4, we 

consider the optimal design of the binary weighted &-out-of-» system. The binary weighted 

&-out-of-«:G system works if and only if the total utility of all working components is at 

least k. In the design process, we need to evaluate system reliability repetitively. The 

universal generating function (UGF) approach is used for this purpose when the system 

size is small or moderate, and when the size of the system is large, the more efficient 

recursive approach is used. Two optimization models are formulated. One is to minimize 

the expected total cost at the same time guarantee the system reliability bigger than a 

pre-specified value, and the other is to maximize the system reliability with the constraints 

on total system cost. Genetic Algorithms (GA) and Tabu Search (TS) methods are used to 

solve the resulting optimization models. Since the key to a good TS algorithm is usually 

quite problem-specific policies and memory structures for deciding what a move is and 

how long moves are tabu after leading to a local minimum, there is no existing general TS 

tool available. So, much more details of the TS approach used in this chapter are given than 

GA approach. The results obtained with these two methods are compared. The results show 

that both are powerful tools to solve these kinds of problems, but TS is more efficient. A 

simpler version of the materials in this chapter has been published in [22], and an extended 

version has been submitted to the International Journal of Reliability, Quality and Safety 

Engineering [23]. 
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5.1 Introduction 

In a binary k -out-of- n: G system, the system works if and only if at least k components 

work. In a &-out-of-n:F system, the system fails if and only if at least k components fail. 

Wu and Chen [34] generalized these k-out-of-n system models into the weighted 

k -out-of- n models. In a weighted &-out-of-n:G system, component i carries a weight of 

MA , wt > 0 for i = 1,2,..., n. The total weight of all components is w, w = ]£]" wt. The 

system works if and only if the total weight of working components is at least k, a 

pre-specified value. Since k is a weight, it may be larger than n because they have 

different measuring units. Such a weighted k-out-oi-n:G system is equivalent to a weighted 

(w - k + 1) -out-of- n:¥ system wherein the system fails if and only if the total weight of 

failed components is at leastw~k + \. With these generalizations, the &-out-of-« system 

models are special cases of the weighted &-out-of-n system models since each component 

in a k-out-of-n system has a weight of one. 

Actually the "weight" Wu and Chen mentioned in their paper means the contribution of the 

component. The component with higher contribution to the system has higher "weight". 

The component with lower contribution to the system has lower "weight". For example, a 

jet plane usually has several engines. The engine with higher drive has higher "weight". 

The engine with lower drive has lower "weight". In this chapter, in order to distinguish the 

"weight" from "physical weight" clearly, we use "utility" to substitute the name of 

"weight" and use notation ut to substitute w(. in above. 

To evaluate the reliability of a binary weighted A>out-of-«:G system, Wu and Chen [34] 

provided a recursive algorithm. Higashiyama [3] provided a method to express the system 
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reliability of a weighted k -out-of- n system in fewer terms than that with the algorithm by 

Wu and Chen [34]. However, the time complexity and space complexity of these two 

methods reported in [3] and [34] are the same. The most recently reported study on the 

binary weighted k -out-of- n systems is by Chen and Yang [3]. In [3], the one-stage 

weighted k -out-of- n model was extended to the two-stage weighted k -out-of- n model 

with components in common among the stages. 

The concept of universal generating function (UGF) was introduced by Ushakov [32] in 

1986. Detailed mathematical foundations of the UGF method were presented in Gnedenko 

and Uskakov [9], Reinshke and Ushakov [28], and Ushakov [13]. In 1996, Lisnianski et al. 

[20] applied this method to power system reliability analysis. Since UGF is a general 

technique, one needs to develop specific operators for different kinds of system structures. 

In a series of research work by Levitin and Lisnianski [18], [20], [15], [18], [16], [17] and 

[13], several operators of the UGF method were provided for performance evaluation of 

several multi-state system structures including series, parallel, series-parallel, and the 

bridge. In our research work [24], we applied UGF method to not only the multi-state 

weighted k -out-of- n system, but also the binary weighted k -out-of- n system reliability 

evaluation. 

Thus to evaluate the reliability a weighted k -out-of- n: G system, we may use either the 

recursive algorithm by Wu and Chen [34] or the UGF approach. To compare the 

computational complexity of these two approaches [24], we get the follow results. When 

the size of the system is very small (n < 6), the required computation CPU times of the two 

methods are about the same; when the size of the system is moderate (7 < n < 13), the UGF 

method seems to be more efficient; and when the size of the system is large (n > 14), the 
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recursive approach is more efficient. In addition, when k is the only parameter that may 

change, that is, all other parameters such as system size n, component reliabilities, and 

component weights are fixed, the UGF approach is more efficient than the recursive 

approach. 

In solving an optimal design problem, we need to evaluate system reliability repetitively. 

Based on the comparison results in terms of the efficiency of the two approaches, the more 

efficient one will be used in optimal system design. 

The multi-state system mentioned above is a more general system than the binary system. 

In the multi-state context, a component may be in more than two different states, varying 

from perfect functioning to complete failure. When in a different state, it may make a 

different contribution to the system. In the binary context, a component has only two states: 

perfect working and failed. The binary system is a special case of the multi-state system. In 

this chapter, we only study the binary weighted k -out-of- n system. 

5.2 Design models 

In optimal design of k -out-of- n systems, there are reported studies for determining the 

optimal system size n [26], finding the optimal value k [27], and determining the optimal 

values n and k simultaneously [28]. The commonly used form of the objective function 

to be minimized is en + d(\ - Rs), where c is the cost of each component, d is the cost of 

system failure, and Rs is system reliability for some time period.. This objective function is 

interpreted as the "expected total cost = the costs of all components + the expected cost of 

system failure." 
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In this study, we focus on the optimal design of the weighted k -out-of- n system. We 

choose to minimize the expected total cost of the system subject to a minimum system 

reliability requirement. The expected total cost includes the costs of all components and the 

expected cost of system failure as described before. The decision variables are not n, k,or 

both. All these are fixed. We are to select n components from a set of available 

components with possibly different reliabilities and weights. The optimization problem 

which we call problem PI can be formulated as follow. 

Problem PI: 

Minimize: 

C , = 2 > , + ( 1 - * > C / (5.1) 

Subject to: 

RS>R* 

Notation: 

• c,. : the design and manufacturing cost of component i 

• Cf : the cost of system failure (includes repair cost and production loss) 

• Cs : expected total cost 

• Rs: system reliability 

• R* : minimum system reliability required 

• n : the number of components in the system. 

Rs is a function of component reliabilities. As mentioned before, either the recursive 
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algorithm by Wu and Chen [34] or the UGF approach can be used to calculate the system 

reliability Rs. The component reliabilities are given in the database. The component 

reliabilities and system reliability are all probability numbers. According to the definition 

of reliability, it means the component/system can perform its operating function under the 

pre-defined situation and during the pre-defined period of time. The design model we 

studied here is the component selection model. There are discrete component choices with 

known characters (cost, utility, reliability). The objective is to determine which component 

to use. The decision variables in this optimization problem are the component ID numbers 

which will be selected from a database of available components. In fact, this is a 

component selection problem which has been studied in recent years in optimal design of 

systems of various structures. In 1990, Shen and Xie [30] studied the component selection 

problem for a parallel system to maximize system reliability. In 2003, Coit [5] studied the 

redundancy allocation problem with discrete component choices for multi-state 

series-parallel systems. The objective function was to maximize system reliability subject 

to constraints on system cost and system weight. In 2004, Ramirez-Marquez and Coit [28] 

continued the study of the redundancy allocation problem with discrete component choices 

for multi-state series-parallel systems. The objective function was to minimize system cost 

subject to system reliability requirement. In a series of research work by Levitin and 

Lisnianski [18], [20], [15], [18], [16], [17] and [13], they studied the following component 

selection problems: 

1. maximizing system reliability without considering costs at all, 

2. minimizing system cost subject to requirement on system reliability. 
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The optimization model that we have formulated here is for optimal design of the weighted 

A:-out-of-/z systems. Both system reliability and system costs will be considered. The 

components do not have to be identical. When we select components, we will consider the 

component weights, component costs, and component reliabilities simultaneously. In 

addition, our objective function is the expected total cost of the system, not only the costs 

of the components. 

Furthermore, in problem PI we try to find the optimal solution that minimize the expected 

total cost with the constraint that the system reliability is bigger than a pre-specified value. 

There is another problem we call it problem P2 which is to maximize the system 

reliability with the constraints on total component cost and physical weight. A similar 

problem has been studied in [4]. However, in [4] they considered the system configured by 

connecting binary A:-out-of-« subsystem (not weighted &-out-of-n subsystems) in series. 

There is only one component choice used for each subsystem. That is to say, in each 

k-ont-of-n subsystem all the components are the same. Here, we consider the optimal 

design of weighted k-out-of-n systems, and all the components in the system can be 

different. The decision variables in problem P2 are still the choices for component ID 

numbers. The objective is to select the component choices to maximize the system 

reliability with the constraints of components cost and physical weight. The problem P2 

is formulated as: 

Problem P2: 

Maximize: 

R, (5.2) 
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Subject to: 

Yt^+(l-Rs)-Cf<Ct 

Notation: 

• Rs : the system reliability 

• c. : the design and manufacturing cost of component i 

• Cf : the cost of system failure (includes repair cost and production loss) 

• C* : the upper limit for the system expected total cost 

• n : the number of component 

5.3 Solution approaches and example results 

Reported optimization approaches for solving reliability based design problems include 

dynamic programming, integer programming, mixed integer programming, non-linear 

programming, heuristics, and metaheuristics. A literature survey on these approaches was 

provided by Kuo and Prasad [12]. 

The family of metaheuristic optimization techniques includes simulated annealing, Tabu 

search (TS), Genetic Algorithm (GA), Evolutionary Strategies, Ant Colony, Immune 

Algorithm, Swarm Optimization and so on. The applications of some of these optimization 

techniques can be found in [14]. These methods have been found to be more powerful for 

solving large-scale and complex optimization problems. Especially, they perform much 

better than traditional optimization algorithms in finding global optimal solutions. 

GA has been demonstrated to converge to global optimal solutions for many diverse 

difficult problems, although optimality cannot be guaranteed. TS is also very useful for 
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solving large complex optimization problems. Its salient feature is the use of memory 

(information about previous solutions) to guide the search beyond local optimality. There 

is no fixed sequence of operations in TS and its implementation is problem-specific. 

Actually the key to a good TS algorithm is usually quite problem-specific policies and 

memory structures for deciding what a move is and how long moves are tabu after leading 

to a local minimum. A simple TS which uses only short-term memory is easy to implement. 

Usually such methods yield good solutions when attributes, tabu-tenure, and 

aspiration-criteria are appropriately defined. In reference [12], the authors strongly 

recommended TS for solving complicated redundancy allocation problems. In reference 

[11], TS was demonstrated on numerous variations of three different problems and the 

solutions obtained with TS were compared to the solutions obtained with integer 

programming and GA. The comparison results confirmed that tabu search was very useful 

for solving large complex optimization problems that are very difficult or impossible to 

solve with mathematical programming techniques. When compared to GA, TS provided 

superior performance in terms of best solutions found and reduced variability and offered 

the potential of greater efficiency [11]. Besides the reliability optimization problems, TS 

has also demonstrated its advantages in other optimization problems. For example, in 

Morley's transport network optimization research [25], he found that TS is more efficient 

than GA. 

In this work, we will use both TS and GA to solve the optimal design problem of a 

weighted k -out-of- n system and compare their performances. In the following, we will 

first provide an introduction of the TS approach. 

TS uses a procedure to guide local search methods to overcome local optimality and 
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achieve global optimality or near-global optimality. Starting from an initial solution, the 

method explores the solution space and moves to the next solution in the neighborhood at 

each iteration. This next solution may not be a better solution and this allows the method to 

escape from a possibly local optimum and move to other regions of the search space. To 

avoid cycling, a specially designed memory mechanism, known as the tabu list, is used to 

store certain previously visited solutions or certain attributes of them. In particular, the 

status of a tabu move may also be overruled and made possible right away if a certain 

aspiration criterion is met. For a more comprehensive description of TS, readers can refer 

to reference [6]. 

The following lists the main elements of the TS approach: 

1. Initial solution: 

An initial solution needs to be generated. The method is not very sensitive to the starting 

solution. For our component selection problem, the solution includes n component ID 

numbers. 

2. Moves used: 

The two commonly used types of moves are the Swap Move and the Insert Move [8]. A 

Swap Move is to arbitrarily select two elements in a solution and switch their positions. An 

Insert Move is to arbitrarily select two elements in a solution, pick up one element and 

insert it in front of the other element. Neither of these two moves is applicable for optimal 

design of the weighted k-out-of-n system. The reason is that both of these moves change 

the positions of the elements in a solution and this does not change either the cost or the 

reliability of the weighted k-ouX-of-n system. 
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Based on the specific property of our problem, we define the following two types of moves. 

The first type of move is to change the ID number of a particular component type by adding 

or subtracting one. This move is considered for each element in the current solution. The 

second type of move simultaneously adds a component type to and drops another 

component type from the current solution simultaneously. All possibilities are enumerated 

for this second type of move. These two types of moves are preformed independently on 

the current solution and the best feasible solution among them will be selected. We use 

Figure 5.1 and Figure 5.2 to illustrate how they work. In Figure 5.1, we subtract 1 from the 

second component and this changes the second component type from 2 to 1. In Figure 5.2, 

we add a component type 4 and simultaneously drop component type 3 from the solution. 

1 2 3 4 

1 1 3 4 

Figure 5.1: Type 1 move 

:i 2 3 Tr 

^ 

1 2 4 4 

Figure 5.2: Type 2 move 

3. Tabu list: 

The most critical step of the TS approach is embedded in its short-term memory process. A 

tabu list (short term memory) is to record a limited number of attributes of solutions 
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(moves, selections, assignments, etc) which will be discouraged in order to prevent 

revisiting a visited solution. This will ensure the method to focus on the unvisited areas of 

the solution space. Without such restrictions, the method could take a so called "best" 

move away from a local optimum, and then conceivably at the next step, fall back into the 

local optimum by taking the best move available at that point. In general, the tabu 

restrictions are intended to prevent such cycling behavior and more broadly to induce the 

search to follow a new trajectory if cycling in a narrower sense occurs. 

In several reported applications of the TS approach, the most commonly used length of the 

tabu list fell in the interval from 5 to 12, with 7 representing a highly effective value [98]. 

In this chapter, we will select 7 as the length of the tabu list. 

4. Aspiration criterion: 

In general, if after a move, the attributes of the new solution is in the tabu list, we usually 

drop this new solution. However, if the objective function value of this new solution is 

better than the best value found so far, we keep it in spite of its status of being in the tabu 

list. 

5. Stopping criterion: 

If the number of iterations reaches a specified number, or evidence can be given that an 

optimum solution has been obtained, or from the current solution, we cannot find any more 

feasible solutions, the optimization process terminates. In our numerical examples which 

are given later, the program always stops when the optimum solution has been obtained. 

6. The search procedure: 
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The tabu search process for our problem is shown in Figure 5.3. 

Begin with, a starting feasible solution. 
Obtain the solution from initialization. 

Create a candidate list using the two types of moves 
mentioned before from the current solution. (If applied, 

each move would generate a new solution from the current 
solution.) 

Terminate 
(The current best feasible 

solution is the optimal solution.) 

Figure 5.3: The flow chart of the tabu search procedure 

In this study, we will use both GA and TS to solve the optimization problem in design of 

weighted k -out-of- n systems and compare their results. In order to make the calculation 

easier, we change the form of the optimization problem PI as follows using a penalty 
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function: 

C,=ficl+(l-R,)*Cf+max({R'-R,),0)*ri, (5.3) 
i=\ 

where r/ is a very big number (we use 999,999 in our computer program). 

For problem PI, we use the data in Table 5.1 as the characteristics of the available 

components for selection. Given R* =0.92,Cf =10,k = 5 and« = 3, we have developed 

the GA program using Matlab GA toolbox to minimize the function given in Equation 

(5.3). 

Table 5.1: Characteristics of available components: Database 1 

ID 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Utility 
6.0000 
4.0000 

5.0000 
7.0000 
3.0000 
9.0000 

5.0000 
6.0000 
4.0000 

2.0000 
7.0000 
5.0000 
2.0000 
3.0000 
4.0000 
6.0000 

Reliability 

0.9600 
0.9900 

0.9300 
0.9800 
0.9400 
0.9900 
0.9700 
0.9500 
0.9200 
0.8800 
0.9500 
0.8800 
0.9700 
0.8600 
0.8500 

0.8300 

Cost 

16.0000 
14.0000 

15.0000 
17.0000 
13.0000 
19.0000 
16.0000 
16.0000 
15.0000 

12.0000 
18.0000 
26.0000 

29.0000 
25.0000 
30.0000 
22.0000 

When the data in Table 5.1 was used, the optimal GA solution was to select two 

components with ID 10 and one component with ID 5. We then changed the reliability of 

component 10 in Table 5.1 from 0.88 to 0.98 and ran the GA program again. This time the 

89 



optimal solution was to select three components with ID 10. The solution was reasonable, 

because component ID 10 was the cheapest component in the database, and the total utility 

of three components with ID 10 is higher than the required k = 5 . When the reliability of 

component ID 10 increases to a level similar to other components, selecting component ID 

10 is the best choice. 

We then used the TS method to solve problem PI with R' = 0.92,Cf = 10,k = 5, and n = 3. 

The arbitrary starting solution was to select componentsxl = 3 , x2 =10 and x3 =6 from 

Table 5.1. Using component x{ -3, x2 =10 and x3 =6 to build a weighted 5-out-of-3 

system, the system reliability is 0.9265, and this satisfies the system reliability requirement 

RS>R*. Starting from this initial solution, with type 1 and type 2 moves, we obtained the 

candidate solutions shown in Table 5.2 and Table 5.3, respectively. Selecting the solution 

with the minimum system cost which is 39.700 in Table 5.2, we get a new solution with 

xx=3 , x2=10 and x3=10 . This is the first generation after the initial solution. 

Comparing it with the initial solution xl = 3, x2 = 10 and x3 = 6, we know that only the 

third component is changed. Since it has the minimum system cost, it is the best move in all 

the possible moves from the initial solution. The best move is then to change the third 

component from component 6 to component 10. At this moment, the tabu list is empty. 

Because the tabu list should reflect the most recent best move, the following entry is added 

to the tabu list: 

39.7|10|3 

The first element in this entry of the tabu list is the system cost. The second element is the 

new component ID number which is used to substitute the old one. The third element is the 

90 



position of the substituted component. This completes the first step of implementing the TS 

procedure. After this, we use the present best move solution as the initial solution to go 

through the same process again. 

Table 5.2: All possible type 1 moves from the initial solution 

System cost 

47.004 
45.013 
48.002 

44.017 
50.001 
47.003 
47.005 

46.019 
43.100 
48.002 
49.002 
49.002 
49.002 
49.002 
49.002 

50.000 
48.007 
49.000 
51.000 
47.007 
53.000 
50.000 
50.000 

*i 

1 
2 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
3 
3 
3 
3 
3 
3 
3 
3 

Jvry 

10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
1 
2 
3 
4 
5 
6 
7 
8 

x3 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 

System cost 

49.007 
51.000 
52.000 
52.000 
52.000 
52.000 
52.000 
43.028 
41.090 
42.049 
44.014 
40.121 
43.021 
43.035 

42.133 
39.700 
44.014 
45.014 
45.014 
45.014 
45.014 
45.014 

*i 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

x2 

9 
11 
12 
13 
14 
15 
16 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 

X3 

6 
6 
6 
6 
6 
6 
6 
1 
2 
3 
4 
5 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Table 5.3: All possible type 2 moves from the initial solution 

System cost 

47.004 
43.100 
50.001 
51.000 
54.000 
40.400 
44.016 

xx 

1 
10 
6 
1 
1 
1 
1 

x2 

10 
10 
10 
1 
6 
10 
10 

x3 

6 
6 
6 
6 
6 
10 
1 



Using the data in Table 5.1 as the characteristics of available components, the TS method is 

compared with the GA method. Both methods provided the optimal result 

x{ = 5,x2 =10,x3 =10 for problem PI and the minimum system cost is 37.735. In the 

calculations, it is observed that in order to make the result stable, at least 50 generations are 

needed for the GA method. The Stall Generation Limit parameter is also used to terminate 

the algorithm. If there is no improvement in the best fitness value after the number of 

generations specified by the stall generation limit, the algorithm stops. This parameter is 

set to be 20. The Stall Time Limit parameter is also used. If there is no improvement in the 

best fitness value for an interval of time in seconds specified by the stall time limit, the 

algorithm is also terminated. This parameter is set to be 100. In order to make the 

comparison fair, same values for the above parameters have been set for the TS approach. 

The range of each decision variable is set to be integers between 1 and 16 since there are 

totally 16 components in Table 5.1. The time spent on GA method is 2.1720 seconds. On 

the other hand, the TS method finds the optimal solution in 10 steps and uses only 0.3280 

seconds. 

Following the same procedure, we used the data in Table 5.1 as the characteristics of the 

available components, the TS method is compared with the GA method for problem P2 , 

given C* = 54, «=3 and k=5. In order to make the calculation easier, the Equation (5.2) and 

its constraints are revised to the penalty function form as follow. 

Minimize: 

-Rs =-Rs+ max(]T c,, - C, 0) * 77 + max(J] w,.- W*, 0) * 77 (5.4) 
i=\ l=\ 
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in which 77 is a very big number (we use 999,999 in the program). 

The procedure of GA is as follows. 

1. Initialization. Set the size of population and the length of the chromosome. 

Set k = 0, and generate the initial population P(0). 

2. Evaluation. Calculate the fitness value of each chromosome of the current 

population P(k) . Save the chromosome B(k) with the best fitness value. 

3. Select. Select chromosomes from the current population based on their 

fitness values to form a new population P(k +1). 

4. Cross. One point crossover is used to P(k +1). 

5. Mutate. Implement even mutation on P(k +1). 

6. Duplication. Use to replace the first chromosome in P(k +1). 

7. If the maximal iteration is reached, terminate the procedure and output the 

result. Otherwise, set k = k + l , and go to step (2). 

For the similar reason as mentioned before, the generation step has been set to be 100 for 

the GA method. The stall generation limit was set to be 20 and the stall time limit was set to 

be 100. The initial range of the solution for GA method is still set to be [1,16]. The time 

spent on GA method is 2.7980 seconds. On the other hand, for the TS method, every time it 

still obtained the optimal result within 10 steps, although the total iteration step is set to be 

100 in order to compare with GA approach fairly. Because the TS method is not sensitive 

to the initial solution, we still use the former one. It spent 0.4240 seconds to complete the 

20 iteration steps calculation. Both methods got the optimal solution Xj = 4, x2 = 6, x3 = 4 

and the maximum system reliability is 0.98960400. 
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Our description of Tabu Search is much more detailed, because TS is a problem-specified 

approach and it is not as known in the literature as GA. 

When the size of the system increases from « = 3 to M = 10, we also compared these two 

approaches. Because as the increasing of the system size, the total utility of the components 

and the upper limit for the total system cost should increase too, the value of k is set to be 

equal to n*5 and the C* is set to be n*\S where n is the number of the component. R* 

is still set to be 0.92, and Cf is equal to 10. Since in the process of solving these problems, 

the reliability evaluation algorithm is employed repetitively, we used the efficient UGF 

algorithm in these situations (n from 3 to 10 are small and medium sized systems) to 

calculate the system reliability. For the GA method the maximum number of generations is 

set to be 100, the Stall Generation Limit is set to be 50, and the Stall Time Limit is set to be 

20. For the TS method, the maximum number of iterations is set to be 100. The results are 

listed in Table 5.4, Figure 5.4 for problem PI and Table 5.5, Figure 5.5 for problem P2. 

Based on the comparison results, it is clear that the TS method is more efficient and robust 

that the GA method. 

Table 5.4: Comparison of GA and TS on CPU time for Problem PI based on database 1 

System 
size (n ) 

3 
4 
5 
6 
7 
8 
9 
10 

Computation 
time (GA) 

2.1721 
4.5710 
9.4732 
13.5452 
17.5451 
42.0582 
61.2323 
72.8324 

Computation 
time (TS) 

0.3283 
2.0922 
3.7850 
6.2210 
9.6340 
14.3661 
19.8123 
27.2741 

Optimal objective 
function 
37.7354 
48.7322 
61.2992 
74.1891 
91.6940 
106.4071 
121.6370 

138.5333 

Optimal component 
selection 
{5,10,10} 

{10,10,10,10} 
{10,5,10,10,10} 

{10,10,2,10,10,10} 
{5,2,5,5,5,5,10} 

{2,2,10,2,2,5,10,5} 
{10,10,4,4,10,10,5,10,2} 
{2,10,1,1,1,2,10,10,10,2} 
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Figure 5.4: Comparison of GA and TS on CPU time for Problem PI based on database 1 

Table 5.5: Comparison of GA and TS on CPU time for problem P2 based on database 1 

System 
size ( n ) 

3 
4 
5 
6 

7 
8 
9 

10 

Computation 
time (GA) 

2.7982 
3.7031 
4.7650 
5.7490 

8.9990 
21.2652 
49.3112 

68.7473 

Computation time 
(TS) 

0.4243 
2.0130 
2.7680 
4.3250 

6.2540 
12.4131 
17.9871 
26.6442 

Optimal objective 
function 

0.98960400 
0.99940797 
0.99940797 
0.99957874 

0.99993636 
0.99997703 
0.99998030 
0.99999754 

Optimal component 
selection 
{4,6,4} 

{2,6,6,6} 
{6,6,6,10,6} 
{1,1,6,6,4,6} 

{2,6,6,6,4,6,4} 
{2,6,6,6,2,6,6,6} 
{1,6,2,6,6,6,6,1,6} 

{2,2,6,6,4,6,6,6,6,6} 
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Figure 5.5: Comparison of GA and TS on CPU time for problem P2 based on database 1 

The maximum system size in the above numerical examples is 10. It is clear that the 

computation time for GA increases much more quickly than TS as the system size 

increases. Based on this trend, we have concluded that TS is more efficient than GA. Of 

course, if we try more numerical examples with greater system sizes, the results may be 

different. Either approach or both of them may not find the optimal solution. But at least 

based on our comparison, we can say when the system size is not very big and both GA and 

TS can find the optimal solution, TS is more efficient than GA. 

5.4 Conclusions 

We studied the optimal reliability design of the binary weighted k -out-of- n system in this 

chapter. Two optimal models are formulated. One is to minimize the expected total cost at 

the same time guarantee the system reliability bigger than a pre-specified value; the other is 

to maximize the system reliability with the constraints on total system cost. Genetic 
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Algorithms (GA) and Tabu Search (TS) methods are both used to solve the resulting 

optimization models. The results obtained with these two approaches for a series of 

example systems are compared. The results show that both are powerful tools to solve 

these kinds of problems, but TS is more efficient. 

The binary weighted k-o\xt-of-n system is a special case of the MS weighted k-out-of-n 

system, and the optimal reliability design problem studied in this chapter is the widely 

studied component selection optimization problem. The main contribution of this chapter 

is to explore the advantages of using TS relative to the most commonly used optimization 

tool-GA in solving this kind of problem. In the next chapter, we will move on to the more 

general system - MS weighted k -out-of- n system and more general optimal reliability 

design problem - component design problem. 
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Chapter 6 

Optimal Design of Multi-State Weighted k-
out-of-r? Systems Based on Component 

Design 

This chapter presents a study on design optimization of multi-state weighted k -out-of- n 

systems. The studied system reliability model is more general than the traditional binary 

&-out-of-« system model. The system and its components are capable of assuming a 

whole range of performance levels, varying from perfect functioning to complete failure. 

A utility value corresponding to each state is used to indicate the corresponding 

performance level. A widely studied reliability optimization problem is the "component 

selection problem", which involves selection of components with known reliability and 

cost characteristics. Less adequately addressed has been the problem of determining 

system cost and utility based on the relationships between component reliability, cost and 

utility. This chapter addresses this topic. All the optimization problems dealt within this 

chapter can be categorized as either minimizing the expected total system cost subject to 

system reliability requirements, or maximizing system reliability subject to total system 

cost limitation. The resulting optimization problems are too complicated to be solved by 

traditional optimization approaches, therefore Genetic Algorithm (GA) is used to solve 

them. Our results show that GA is a powerful tool for solving these kinds of problems. 

The materials in this chapter have been published in [16] and [18]. 
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6.1 Introduction 

6.1.1 The binary weighted k-out-of-n system model 

In a binary &-out-of-«:G/F system, the system works/fails if and only if at least k 

components work/fail. Wu & Chen [27] generalized the binary k-out-of-n system model 

into the binary weighted k-out-of-n model. In a binary weighted &-out-of-«:G system, 

component i carries a positive integer weight,^, w ( >0 , for/ = l,2,...,«. The total 

weight of all components is w, w- ^T VIA. The system works if and only if the total 

weight of working components is at least k, a pre-specified value. Since k is a weight, 

it may be larger than n because k and n are expressed using different units of 

measurement. Such a binary weighted &-out-of-«:G system is equivalent to a binary 

weighted (w-£ + l)-out-of-n:F system wherein the system fails if and only if the total 

weight of failed components is at least w - k +1. Using these generalizations, the binary k-

out-of-n system model is a special case of the binary weighted k-out-of-n system model 

because each component in a k-out-of-n system has a weight of one. 

The "weight" used by Wu & Chen [27] refers to the contribution made by the component. 

A component that makes a greater contribution to the system has a greater "weight." For 

example, a jet plane usually has several engines. Any engine that generates a greater 

thrust has a higher "weight." Any engine that generates a lesser thrust has a lower 

"weight." Because the term "weight" has nothing to do with the component's "physical 

weight", in this chapter, we will avoid confusion by using the word "utility" instead of 

"weight". 
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6.7.2 The multi-state weighted k-out-of-n system models 

Section 6.1.1 described the binary weighted &-out-of-«:G system model. In a binary 

weighted &-out-of-«:G system, the utility of the system equals the sum of the utilities of 

the working components. When a component has failed, its contribution to system utility 

isO. 

In the multi-state context, a component may be in more than two different states, varying 

from perfect functioning (denoted by level M) to complete failure (denoted by level 0). 

When in a different state, it may make a different contribution to the system. That is to 

say, every component in every possible state makes a certain contribution to the system's 

performance. If it has completely failed, its contribution to the system is zero. 

Suppose that there are n components in a system, each of which may be in M +1 

possible states: {0,1,2,- .M}; and suppose as well that component i, when in state j , has 

a utility value of utj. The formal definition of Model I of the multi-state weighted &-out-

of-«:G system provided by Li and Zuo [14] is given below. 

Definition 6.1 [15]: The system is in state j or above if the total utility of all 

components is equal to or greater thank j , a pre-specified value. 

Let ^ be the structure function of the system representing the state of the system and 

Utotal the total utility of all components. Since every component in this model can 

contribute a utility to Utotai Utotal is a function of the state of each component. Then, this 

definition means Pr{^ > j) = Pr{Ulolal >kj}. Since state 0 is the worst state of the system, 

we have Pr{^ > 0} = 1. 

104 



Huang et al. [3] proposed the general multi- state k-out-of-n system model without 

consideration of the concept of utility. According to their definition, for the system state 

to be no lower than a given value, j , the number of components whose state is not lower 

than j must be at least k., a pre-specified value. According to their definition, the 

components whose states are below j do not make any contribution to the system's 

being in state j or above. Building on their idea, Li and Zuo [14] defined another model 

of the multi-state weighted &-out-of-«:G system. According to this definition, for the 

system to be in state j or above, the sum of the utilities of only those components in 

state j or above must be no less than k., a pre-specified value. The difference between 

Model I (given in Definition 1) and Model II (to be formalized in Definition 2) is whether 

the components whose states are below j make any contribution to the system's being 

instate j or above. The formal definition of Model II is given below. 

Definition 6.2 [15]: The system is in state j or above if the total utility of the 

components in state j or above is equal to or greater than^., a pre-specified value. 

Let U. be the sum of the utilities of the components whose states are j or above. 

Based on Definition 6.2, we then have Pr{^ > j} = Pr{C/y > &,.}. 

Applications of the multi-state weighted A>out-of-« system can be found in aircrafts, 

telecommunication networks, traffic systems, satellites, electric generators and their 

distribution systems, mining and mining distribution systems, space shuttles and 

computer systems. A practical example is given below. A case study can be found in 

[21]. 
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Example 6.1. Conveyor systems: There are several conveyors that work together in 

parallel. During the life of a conveyor, its state will deteriorate from perfect to failed. 

When its state has deteriorated, it may not be able to carry a full load any more. That 

means that corresponding to different states, it has different utilities. When we require 

that in a system, all the conveyors must be able to transport enough coal to generate at 

least 100 kw no matter what state an individual conveyor may be in, we can use Model I 

of a multi-state weighted k-out-of-n system. When we require the whole system to carry a 

full load (or above a specified level), those conveyors that are unable to carry the required 

load may not be useful anymore. In this case, we can use Model II of a multi-state 

weighted &-out-of-« system. 

Li and Zuo reported a recursive approach for evaluating the reliability of the two models 

given in Definitions 1 and 2 and also applied the Universal Generating Function (UGF) 

approach to solving the same problem [15]. Based on the results reported in [14], 

generally speaking, the recursive approach is more efficient than the UGF approach for 

multi-state weighted &-out-of-« system performance evaluation, however, in some special 

cases, UGF is more efficient than the recursive approach. For more details on reliability 

evaluation for these system models, please refer to [15]. 

In solving optimal design problems, we need to repetitively evaluate system reliability. 

Based on the comparison results in terms of the efficiency of the two approaches, the 

more efficient one will be selected for use in the following studies on optimal design. A 

simpler version of this chapter was published in a conference proceeding [16]. 
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6.2 Design models 

In optimal design of binary A>out-of-« systems, there are reported studies that determine 

the optimal system size, n [22], the optimal value of k [23], and the optimal values for 

n and k simultaneously [26]. The commonly used form of the objective function to be 

minimized is cn + d(l-Rs), where c is the cost of each component and d is the cost 

of system failure. This objective function is interpreted as "the expected total cost = the 

costs of all components + the expected cost of system failure." 

In this study, we focus on the optimal design for multi-state weighted &-out-of-« systems 

which have not yet been studied. Two problems are addressed in this chapter. One is 

minimizing the expected total cost of the system subject to a minimum system reliability 

requirement. The other is maximizing system reliability subject to a given total budget. In 

studies of multi-state weighted systems, the term "reliability" has dynamic meanings, 

depending on the state of interest, that is the probability that the component or the system 

will be in state j or above. We will not treat any of the n or k. values as decision 

variables; all are fixed. The decision variables are the component reliability distributions 

and the component utility distributions; this is because we would like to determine what 

components to use in the optimal system design. 

According to the recursive reliability evaluation approach and the UGF approach 

described earlier, the reliability of the multi-state weighted k-ant-of-n system is a 

function of the component utility distribution matrix and the component reliability 

matrix: Rs = R(U,P), where the component reliability distribution matrix, P , is: 
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Ao P\\ Pn '" P\M 

P20 Pl\ P22 '" PlM 

_PnO Pn\ Pnl '" PnU. 

where /?.. is the probability of component / b e i n g in state j , /€•[ 1,2,•••,«} and 

j e {0,1,2, • • • , M } , and the utility distribution matrix, U, is: 

Un M[2 " • ^1M 

u2X u22 ••• W 2 M 

M»l W«2 * " M n M . 

where w(> is the utility of component / in state j , ie {1,2,•••,«} and 

7 e {0,1,2, • • •, M). Thus, the decision variables are U and P . 

Furthermore, there are two types of problem in the field of optimal reliability design. 

(1) There are discrete component choices with known characteristics (cost, utility, 

reliability). The objective is to determine which components to use. 

(2) Component utilities and component reliabilities are all treated as design variables. 

System cost is a pre-defined function of component utilities and component 

reliabilities. This is the more general situation. 

The first type of problem is the component selection problem that has been well studied 

in recent years in system optimal design for various structures. Shen & Xie [25] studied 

the component selection problem to maximize the reliability of a parallel system. Coit [1] 

studied the problem of redundancy allocation using discrete component choices for multi-

state series-parallel systems. The objective function was to maximize system reliability 
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subject to constraints on system cost and system physical weight. Ramirez-Marquez & 

Coit [24] continued the study of the redundancy allocation problem using discrete 

component choices for multi-state series-parallel systems. The objective function was to 

minimize system cost subject to system reliability requirements. Li and Zuo [15] studied 

the problem of component selection for binary weighted k -out-of-« systems. In a series 

of research work by Levitin [7], Levitin & Lisnianski [9], [10], [11], Levitin et al. [12], 

Levitin et al. [13] and Lisnianski et al. [12], the following component selection problems 

were studied: 

(1) maximizing system reliability without considering costs at all, 

(2) minimizing system cost subject to requirements on system reliability. 

The second type of problem represents the more general situation where components can 

be designed and produced to desired specifications. If the manufacturers not only 

assembled the system but also designed components themselves, they would be interested 

in solving the second type of problem. Though manufacturers may not specifically design 

multi-state components such as 3-state components or 4-state components, these 

components may turn out to be able to assume more than two possible states. In the 

binary context, engineers try their best to design components that never fail, that is, 

components with only a single (perfect) state. In reality that is impossible. We need to 

study failure modes because any component may fail. In the multi-state context, we need 

to evaluate the design of a component to fully understand that the component could 

experience different states with different probabilities. How do we change the design so 

that the probabilities of a component being in any given state can be optimized? These 

are the issues that motivated us to pursue this study. In addition, reliability of any product 
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must be defined and evaluated by the customer. The purpose of our research is to develop 

the reliability models which can capture the experience and requirements of the customer 

with the product. If customers need a single specific system that is not available on the 

market, we believe manufacturers will develop the multi-state component on which it is 

based, even though designing and manufacturing a component is considered less cost 

effective than buying it on the market. This is because any work done to meet the needs 

of customers attracts more customers and, thus may generate profits for the 

manufacturers. If done intelligently this could more than repay the investment in design 

and manufacture. So far, however, almost all reported studies have focused on only the 

first type of problem. The second type of problem is much more complicated. The reason 

is that it is hard to develop a function that describes the relationship between component 

cost, reliability and utility. Generally, the empirical data are not adequate to fitting such a 

function. Even when they are, different systems' data may provide different functions. 

This chapter will address the second type of problem. We will first extend the 

relationship between component reliability and component cost from the binary system to 

the multi-state weighted &-out-of-« system, and then, develop the relationship between 

component utility and component cost based on the analysis of empirical data. Next, we 

will combine these two relationship functions to express component cost as a function of 

component reliability and component utility. Finally, we will use the obtained function to 

conduct optimal design of multi-state weighted &-out-of-« systems. To the best of the 

authors' knowledge, this is the first time the relationship between component utility and 

cost has been developed based on the analysis of empirical data, and this is the first 

reported attempt to systematically address the second type of reliability design problems. 
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The optimization models formulated here are for optimal design of the multi-state 

weighted A>out-of-« system which offers the advantage of being a much more general 

system than the traditional binary &-out-of-« system. Both system reliability and system 

total cost are considered in the models. Note that, the cost considered here is the expected 

total cost of the system, not just the cost of the components. 

For the second type of problem, we need to develop a function to describe the 

relationship between the component cost, component reliability and component utility. 

Mettas et al. [20] gave the component cost as a function of component reliability for a 

binary component as follows: 

c = exp[(l-f)-P~Pmin] (6.1) 
rmax r 

where 

• Pmin '• minimum reliability of the component 

• pmax: maximum reliability of the component 

• / : feasibility of increasing the reliability of the component 

• c: cost of the component 

• p : reliability of the component. 

The cost here is the cost of acquiring the component, not the cost or consequences caused 

by its failure. The feasibility parameter, / , is a positive constant, which represents the 

difficulty in increasing the component's reliability. It assumes values between 0 and 1 

[20]. Several methods can be used to obtain a feasibility value. Weighting factors for 

allocating reliability have been proposed by many authors and can be used to quantify 

feasibility [4]. These weights depend on certain factors of influence [4] such as the 
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complexity of the component, the state of the art, the operational profile, the criticality, 

etc. Engineering judgment based on past experience, supplier quality, supplier 

availability, etc., can also be used in determining values of these parameters [20]. When 

this equation is extended to the i th component of the multi-state weighted k-out-of-n 

system Model I, p should be replaced b y X - i ^ y a nd Equation (6.1) should be 

revised to read: 

yM p -p' 
cl\ =cxp[(l-f/)-^M^M

 w ] (6.2) 
'max 2-1 j=\ Pi J 

where 

• P. : minimum probability of component / being in a state higher than state 0 

• P' : maximum probability of components i being in a state higher than state 0 

• f'\ feasibility of increasing the probability of component i in Model I being in 

a state higher than state 0 

• elf: cost of component / in Model I, in terms of considering the relationship 

between component reliability and component cost. 

There may be other ways of extending Equation (6.1) to the multi-state case, but the form 

we proposed is as close to Equation (6.1) as one can be. The proposed Equation (6.2) 

actually relates the cost of buying a given component to the total probability that the 

component is not in the completely failed state (which is state 0). This basically sums all 

the probabilities that the component is in states 1,2, ..., through M. This total probability 

is then treated in Equation (6.2) in the same way "reliability" is treated in Equation (6.1). 
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If we let M = 2, Equation (6.2) reduces to Equation (6.1), demonstrating that Equation 

(6.1) is a special case of Equation (6.2). 

We also need to obtain the relationship between the cost of a component and its utility. In 

practice, an empirical relationship is often not available or the empirical data are not 

adequate to fitting such a function. We did not try to fit the function of cost to reliability 

and utility based on empirical data. Instead, we tried to observe some trends in the 

practical data and used mathematical equations to describe these trends. Table 6.1 and 

Table 6.2 give the prices for different capacities of Western Digital Hard Disks (Ultra 

ATA-100, 7200-RPM, 8MB, 3.5 IDE, HDD) and Archos MP3 Player Compact Flash 

Memory Cards as recorded on Feb. 15, 2006. The hard disk data were obtained from 

Western Digital Corporation's website [27], and the memory card data were obtained 

from 18004memory's website [29]. Although the data are so limited that we can not fit a 

usable function, we can still observe some trends in these data: 

(1) The price increases as the product capacity (utility) increases. 

(2) The more the product capacity (utility) increases, the faster the price increases. 

Table 6.1: The price for the Western Digital Hard Disks (Ultra ATA-100 7200-RPM 
8MB 3.5 IDE HDD) (www.wdc.com) 

Capacity (GB) 
Price (US dollars) 

40 
69 

80 
79 

120 
99 

160 
109 

200 
129 

250 
159 

320 
219 

Table 6.2: The price for the Archos MP3 player Compact Flash Memory Card 
(www.18004memory.com) 

Capacity (GB) 
Price (US dollars) 

0.128 
16 

0.256 
25 

0.512 
35 

1 
59 

2 
119 

4 
299 

Based on the two examples above, it can be seen that the cost of a component may 

increase exponentially in relation to its capacity or utility. Thus the exponential function 

113 

http://www.wdc.com
http://www.18004memory.com


can be used to approximately describe the relationship between the component's cost and 

its utility as follows. 

c = g-exp(u-umin) (6.3) 

where: 

• umin '• minimum utility of the component 

• g : feasibility of increasing the utility of the component 

• c: cost of the component 

• u : utility of the component. 

Equation (6.3) follows the exponential form used in Equation (6.1). Actually, we are not 

promoting the use of any specific function form; we are promoting the idea of relating the 

cost of a component to its utility. It is the concept shown in Equation (6.3) that is of the 

utmost importance. One can use the linear function form, the polynomial function form, 

etc, to represent such relationships if they are applicable. The feasibility parameter, g, is 

a positive constant that represents the difficulty of increasing a component's utility. The 

more difficult it is to improve the utility of the component, the greater the cost. In 

addition, it makes no sense to have a 0 utility product, therefore usually the value of u 

is equal to or greater than a given value, umjn. 

The proposed utility function given in Equation (6.3) satisfies the following 

requirements: 

(1) Component cost is a monotonically increasing function of component utility. 

(2) The derivative of component cost (with respect to utility) is a monotonically 

increasing function of component utility. 
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This means that the function given in Equation (6.3) matches our earlier observations of 

the practical data. When this function is extended to the il component of the multi-state 

weighted &-out-of-n system Model I, the utility of the binary component should be 

replaced by the "expected utility" of the multi-state component which is the weighted 

average of the component utilities in different states^] -=0Pij *UIJ- Thus Equation (6.3) 

should be revised to read: 

M 

c2\ = gj • exp(£ PiJ * utJ - uln) (6.4) 

where: 

• ll! : minimum value for the weighted average of the component i 's utilities in 

lmn < - > * - > 

all possible states 

• g!: feasibility of increasing the utility of component / in Model I 

• c2\: cost of the component i in Model I in terms of the relationship between 

component utility and component cost. 

It can be seen that Equation (6.2) ignores the effect of component utility on the 

component cost. Equation (6.4) also ignores the effect of component state probability on 

component cost. Each considers only one factor and relates the trend of the component 

cost to the changing of that factor. Clearly, a more reasonable approach is to consider the 

utility and the state probability simultaneously. The following function is proposed to 

describe this relationship. Actually this function adds Equation (6.2) and Equation (6.4) 

together. 
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M 

J=° P>„-Z.JMP'J 

(6.5) 

Given £/. = ̂  />,. y * «w and /f = ]>] . ptJ, Equation (6.5) can be rewritten as: 

c<=gl.exp(U;-Uij + exm-f/>jt-^] (6.6). 

1500 

1000 

500 

Reliability 0.92 1 
Utility 

Figure 6.1: Component cost as a function of reliability and utility 

We are not claiming that the proposed functions in Equation (6.2) to (6.6) hold in the 

majority of cases. They are generated based on the exponential trends in the two 

examples cited, partly because this form is also used in Equation (6.1) by Mettas et al 

[20]. The basic idea for the component cost function is to formulate the relationship 

between component cost, reliability and utility. The proposed functions outline the 

importance of developing such relationships, and the proposed forms are examples of 

such relationships. 
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The parameters used in the cost function are explained as follows. The feasibility 

parameters (feasibility of increasing component reliability, f' , and feasibility of 

increasing component utility, g/) are constants that represent the difficulty in increasing 

a component's reliability and utility relative to other components. Depending on design 

complexity, technological limitations, etc., some components can be very hard to 

improve, relative to other components. Clearly, the more difficult it is to improve the 

reliability and utility of a component, the greater the cost will be. Examining the effect of 

feasibility on cost function in Equation (6.2), it can be seen that the lower the feasibility 

value, f/, the more rapidly the cost function approaches infinity. Examining the effect of 

feasibility on cost function in Equation (6.4), it can be seen that the greater the feasibility 

value, g\ , the more rapidly the cost function approaches infinity. The maximum 

component reliability, P. ; minimum component reliability, P' ; and minimum 

component weighted average utility, U\ , act as scale parameters for the cost function. 
min 

In accordance with customer requirements, component reliability and weighted average 

utility should be at least equal to or above a minimum level. Thus we have defined the 

minimum component reliability and minimum component weighted average utility. The 

maximum component reliability is a parameter that shows that technically the probability 

value for a component's reliability cannot reach 1. The weighting factor method (Section 

15.7 in [4]) and engineering judgment based on past experience, supplier quality, supplier 

availability, etc., can be used in determining values of these parameters [20]. 
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Given g ' = 5 , f' = 0.4 , Ul =1 , P< =0.93 , P/ =0.9999 , Uj e\l,6] and 
c ^ ' ' Wn lmin 'max ' •- J 

P. e [0.93,0.9999], the function given in Equation (6.6) is plotted in Figure 6.1. In this 

figure, reliability refers to P' and utility refers to U\. 

When we consider Model II given in Definition 2, the component cost function is as 

follows: 

c!J = gf' • exptf/, tt> -U& + exp[(l - f?>) • ̂ ~ ^ \ (6-7) 
i i 
'•max, l 

where 

• P"': minimum probability of component / being in state j or above 

• P"': maximum probability of component i being in state j or above 

• f"J: feasibility of increasing the probability of component i being in state j or 

above 

• U,': minimum utility of the weighted average of component i 's utilities in all 

states 

• gt
 J: feasibility of increasing the utility of component i for Model II 

• c,.': cost of component i for Model II if the component can contribute to the 

system in state j or above 

As we have mentioned already, the difference between Models I and II is whether the 

components whose states are below j are making any contribution for the system to be 
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in state j or above. In Model II, only the components whose states are in state j or 

above can make contributions for the system to be in state j or above. It is the reason 

why we have Ui '' = ^ pir * uir and Pt
 y = ^ = Pi,r • ̂ n e meanings of parameters in 

Equation (6.7) are the same as in Equation (6.6). 

The component cost functions we developed describe a general behavior of the 

component cost as a function of component reliability and utility, to be used in cases 

where an actual function is not available. If there is an actual function for a specific 

system, of course, the actual function should be used. Unfortunately, there seldom is one. 

In addition, the cost functions provided above are the first ones to describe the general 

relationship between component cost, reliability and utility. As already mentioned, this 

does not mean our cost functions are the only possible ones. Even in the binary reliability 

context, as mentioned in [20], that there are other forms of cost function besides Equation 

(6.1). Other general forms were suggested by [4] and [6]. Other researchers may someday 

suggest other general forms for the multi-state weighted system. They may use different 

parameters and forms, but again, the basic idea for these functions will be the same - to 

describe the general behavior of cost as a function of reliability and utility. 

With the relationship given in Equations (6.6) and (6.7), the design optimization 

problems can be formulated as given below. 

Problem PI: 

Minimize: 

Cp:=5X+(l-4(A;,,H)).C; (6.8) 
1=1 
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Subject to: 

M 

YJPu=hO<piJ<A(i = l,2,--;n;j = 0,\,2,--,M) 

ui0=0,uiJ>0(i = l,2,---,n;j = !,••-,M) 

Problem P2: 

Maximize: 

Subject to: 

Rj(kpn) (6.9) 

M 

cl> =Y.c? H^-R'ik^yc] <cTJ 
1=1 

X^J=l,0<p;j<l(/ = l,2,---,«;y = 0,l,2,--,M) 

w;0=0,w,.J>0(/ = l,2,---,«;;=l,---,M) 

The notation in the above models is: 

T 

• CS
J' : the expected total cost when the system is in state j or above 

• R*(kj,n): the probability of the system being in state j or above, given kj, j 

and n 

• C j : the cost of the system state being below state j 

• ^ : the minimum required probability for the system to attain a state of j or 

above 

• cj: the upper limit for the total cost when the system attains a state of j or 

above 

120 



• T e {/, 77}, X G il,IIj). Specifically, when T = I, X must be equal to I. Under 

these conditions, the above two models (PI and P2) are for a multi-state weighted 

k-out-of-n system Model I and the component cost function is given by 

Equation (6.6). WhenT = 11 ,X must be equal to IIj. Under these conditions, the 

above two models are for the multi-state weighted k -out-of- n system Model II 

and the component cost function is given by Equation (6.7). 

In the above models, P* , Pt
x , Uf_ , gf, f*, k., j , £lJ, RT,, C% M and n 

lmtn max 'nun ' l J ^^• i - l v y J 

are all parameters. The decision variables are U and P . 

In the models, we assume that the component utility distribution can be fully controlled. 

In practice, it is hard to say that the component utility distribution can be controlled in all 

situations. With the rapid development of today's manufacturing technology, we do, 

however, have much better control over the utility distribution and state distribution than 

ever before. With this rapid development of technology, we need advanced models that 

provide new directions and new challenges for technological development. Furthermore, 

the models brought forward in this chapter are the foundation for further research. For 

this reason, we suppose that the component utility can be fully controlled. In the future, it 

will be easy to put constraints on component utility in order to describe situations in 

which it can only be partially controlled. 

Applications of these optimization models can be found widely in industries, including 

but not limited to oil and gas, transportation, and telecommunication. Example 6.1, which 

has been described in Section 6.1.2 will be used to illustrate the possible application of 

these models. If designers want to reduce cost and at the same time keep reliability at a 
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given level, because a conveyor system is a multi-state weighted k-out-of-n system as 

described in Section 6.1.2, the proposed optimization model Problem PI is suitable for 

this case. In practice, the choice between Model I and II depends on the requirements of 

the conveyor system. For instance, if all the conveyors are required to carry a full load, 

Problem PI for Model II should be used; if there is no specific requirement for the state 

of the conveyors, Problem PI for Model I should be used. Similarly, if there is a fixed 

budget for building a conveyor system, and the aim is to obtain the greatest system 

reliability possible under that budget, Problem P2 is suitable for the application. 

6.3 Solution approach and an illustration example 

Reported optimization approaches for solving reliability-based design problems for the 

binary systems include dynamic programming, integer programming, mixed integer 

programming, non-linear programming, heuristics, and metaheurisctcs. A literature 

survey on these approaches was provided by [5]. 

The family of metaheuristic optimization techniques includes Simulated Annealing, Tabu 

Search, Genetic Algorithm (GA), Evolutionary Strategies, Ant Colony, Immune 

Algorithm, and Swarm Optimization. The applications of some of these optimization 

techniques can be found in [7]. These methods have been found to be more powerful for 

solving large-scale and complex optimization problems. They perform better than 

traditional optimization algorithms in finding global optimal solutions. Especially, GA is 

the most widely used metaheuristic approach to solving large-scale complex optimization 

problems. 

GA has two key advantages: 
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Flexibility in modeling the problem. GA has no strict mathematical requirements, such as 

the derivative requirement for objective functions and constraints. The only 

requirement is that the objective functions and constraints can be evaluated in 

some way. GA is also suitable for dealing with those problems that include 

discrete design variables. 

Global optimization ability. GA has been recognized as one of the most effective 

approaches to searching for the global optimal solution. 

In this chapter, we use the GA approach to solve the design problems formulated in 

Section 6.2. In order to make the calculation easier, the objective functions and 

constraints in problems PI to P2 have been written into the penalty function forms as 

follows. 

Problem PI: 

Minimize: 

f^cj +(l-R^kj,n))-C1
i +max(Rr

J-R
I
l(kJ,n),0)*r1 (6.10) 

Problem P2: 

Minimize: 

n 

- i?J(^,«) + m a x ( » f + ( l - i ? ; ( ^ . , « ) ) . C ; - c : > , 0 ) ^ (6.11) 

In these objective functions, rj is a very large number. (We use 999999 in the 

programs.) These objective functions are all still subjected to: 

M 

YJpij=l,0<Pij<\(i = l,2,--,n;j = 0,l,2,-;M) 

^ o = 0 > w ^ ° 0 ' = l,2,---,«;y' = l,---,M). 
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A system with two components (n = 2) wherein each component has four states (M = 3) 

is used as an illustration of the optimization problems and their solutions. 

Giveny = 2 ,k2 =3,R% =0.9 ,C2
r =10 and^ 2 = 9 , the other parameters used in this 

example are those given in Table 6.3. 

Table 6.3: Parameters used in the example 

&'=&' 

1 

Si =g2 

1 

f! = f! 

0.99 

/?'=/? 
0.99 

UL =UL 
i 

1 

P1 =P 7 
1 1 • 2 2 • 

0.93 

'•mia ^min 

0.93 

P1 =P' 

0.99999 
P"j _ pUj 
1lmax ~ A 2m„ 

0.99999 

After developing the objective functions and their constraints, we used the GA toolbox 

[2] in Matlab R2006a to solve the problems. We ran these programs using a computer 

with 2.00GHZ AMD Opteron I Processor and 3.00 GB RAM under the Windows XP 

operating system. We set the population data type at double and population size at 20. 

Elite count and crossover fraction were all set at the default values in Matlab R2006a GA 

toolbox. The uniform function was used as the population creation function. The adaptive 

feasible function was used as the mutation function. The rank function was used as the 

scaling function. The scattered function was used as the crossover function. The 

stochastic uniform function was used as the selection function. The stopping criteria were 

1000 generations, 500 stall generations, 100 stall time limit, and 10"9 function tolerance. 

The reason we set the stopping criteria this way is that we found the results were 

convergent for all the systems we tried (n=2, 10 and 20). For more details about GA 

toolbox in Matlab R2006a and for the terminology used here, please refer to [2] and the 
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Matlab R2006a Help Document. The optimization results for Models I and II are listed in 

Table 6.4 and Table 6.5, respectively. 

There are 14 decision variables in each of the above optimization problems, all of which 

are non-linear non-integer optimization problems. It is difficult to use traditional 

optimization approaches to solve these problems, however, by using GA, they were all 

solved in about 7 seconds. In this example, the value of n is 2. When the value of n 

increases to 10 and all the other parameters remain the same, there are 70 variables in 

each optimization model, and completing the computation takes about 4 minutes. When 

the value of n increases to 20 and all the other parameters remain the same, there are 140 

variables in each model, and completing the computation takes about half an hour. 

Clearly, even though the system is large, the GA approach can still solve these 

optimization problems. 

Table 6.4: Optimization results in Model I 

Reliability 

Cost 

U 

P 

Problem PI 

0.9781 

5.9753 

0 

0 
0.0127 

0.0087 

2.0000 

1.0000 

0.3291 

0.3305 

2.0000 

1.0000 

0.3291 

0.3299 

2.0001 

1.0026 

0.3291 

0.3303 

Problem P2 

0.9927 

8.8525 

0 

0 
0.0056 

0.0107 

1.1185 

1.9994 

0.3326 

0.3302 

3.0000 

1.9996 

0.3314 

0.3299 

3.0000 

2.0000 

0.3314 

0.3302 

Table 6.5: Optimization results in Model II 

Reliability 

Cost 

U 

P 

Problem PI 

0.9690 

5.9473 

0 

0 
0.0162 

0.0039 

0.0000 

0.0000 

0.0095 

0.0034 

2.0423 

0.9604 

0.4844 

0.4968 

2.0456 

0.9616 

0.4908 

0.4968 

Problem P2 

0.9770 

8.0905 

0 

0 
0.0012 

0.0027 

0.0000 

0.0000 

0.0006 

0.0431 

1.9425 

1.2508 

0.5003 

0.4907 

3.0000 

1.7610 

0.4986 

0.4645 
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An interesting observation was that the systems for Problem PI in Table 6.4 and 

Table 6.5 actually both have only two states; combining states with the same utilities 

makes sense, because a binary component (system) is more cost-efficient than a multi-

state component (system), assuming that both meet the reliability requirement. From our 

results we can see that the optimization problems that minimize the total cost have a 

lower total cost than optimization problems that maximize the probability of the system 

being at or above a given state. On the other hand, the optimization problems that 

maximize the probability that a system state will be at or above a given state are better 

able to attain that goal than optimization problems that minimize the total cost. This is 

reasonable, obviously when the only objective is to minimize the total cost, we sacrifice 

some requirements for the probability of the system being at or above a given state by 

just giving a constraint for that probability. That constraint is usually selected not to be 

too high in order to avoid infeasibility. Similarly, when the only objective is to maximize 

the probability of the system being at or above a given state, some requirements for 

limiting the total cost will be sacrificed, resulting in a larger total cost allowance. After 

investigating the optimization results, the decision-maker may decide that the total cost 

goal can be relaxed a little more in order to improve system reliability. Since we are 

dealing with a multi-state weighted system, the term system reliability means the 

probability of the system being at or above a given state. 

6.4 Conclusions 

In this chapter, we have defined two optimization problems for the multi-state weighted 

k -out-of- n system which includes two models - Model I and Model II. All the 

optimization problems studied in this chapter can be categorized as either minimizing the 
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expected total system cost subject to system reliability requirements, or maximizing 

system reliability subject to total cost limitations. Genetic Algorithm (GA) was used to 

solve these problems. The results showed that GA was a powerful tool for solving these 

kinds of problems. 

In our optimization models, there exist mutually conflicting goals: system reliability and 

total system cost. We treat one goal as the objective function of the optimization model 

and the other as the constraint. It is very difficult to specify in advance the value that 

should be given to the goal as the constraint. After a solution is obtained, we often need 

to modify the constraint value to find a better trade-off between goals such as system 

reliability and system cost. Finding the most appropriate constraint value is a trial and 

error process that can be time-consuming. In the next chapter, we will use a multi-

objective optimization tool, physical programming [19], to optimize different goals 

simultaneously. 
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Chapter 7 

Optimal Design of Multi-state Weighted 
Series-Parallel System Using Physical 
Programming and Genetic Algorithms 

In this chapter, we report a study of the reliability optimal design for multi-state weighted 

series-parallel systems. Such a system and its components are capable of assuming a 

whole range of levels of performance, varying from perfect functioning to complete 

failure, and there is a component utility corresponding to each component state. This 

system model is more general than the traditional binary series-parallel system model. Its 

logical structure is different from multi-state weighted k-out-of-n systems as studied in 

Chapter 4 and Chapter 6. Its definition has already been provided in Section 3.2.1 of 

Chapter 3. More details are given later in this chapter. The so-called component selection 

reliability optimal design problem which involves selection of components with known 

reliability characteristics and cost characteristics has been widely studied. However, the 

problem of determining system cost and system utility based on the relationships between 

component reliability and cost and component utility and cost has not been adequately 

addressed. We call it component design reliability optimal design problem which has 

been studied in Chapter 6 for the MS weighted &-out-of-n system and continued the 

research in this chapter for the multi-state weighted series-parallel systems. Furthermore, 

comparing to the traditional single-objective optimization model, the optimization model 

we proposed in this chapter is a multi-objective optimization model which is used to 

maximize expected system performance utility and system reliability while minimizing 
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system cost simultaneously. GA is used to solve the proposed physical programming 

based optimization model. An example is used to illustrate the flexibility and 

effectiveness of the proposed approach over the single-objective optimization method. A 

simpler version of materials in this chapter has been published in [15]. An extended 

version of materials in this chapter has been submitted to IEEE Transaction on Reliability 

[17]. 

7.1 Introduction 

The traditional reliability theories focus on binary reliability models, allowing for only 

two possible states for a system and its components: perfect functionality and complete 

failure. However, many of the real-world systems are composed of multi-state (MS) 

components, which have different performance levels and several failure modes. Such 

systems are called multi-state systems (MSS). In a MSS reliability model, the system and 

each component may experience states in the set {0,1,2,...,M}. When a multi-state 

component or system is in a certain state j , it can produce a certain amount of benefit. 

Such benefit is called the component or system utility. When the utility of the component 

and system is considered in the MSS model, the model is a multi-state weighted system 

model. 

In practical situations involving reliability optimization, there often exist mutually 

conflicting goals such as maximizing system utility and minimizing system cost and 

weight [11]. Most reported multi-state optimization models treat one goal as the objective 

function and the other goals as constraints. However, it is very difficult to specify in 

advance the constraint values for the goals used as constraints. After a solution is 
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obtained, we often need to modify these constraint values to find a better trade-off 

between different goals. However, finding the most appropriate constraint values is a trial 

and error process and there is no clear guideline as to how to converge to the right set of 

constraint values. Particularly, when there are many constraint values that need to be 

specified, it is almost impossible to find the most appropriate values for these constraints. 

Physical programming has proved its effectiveness in addressing a wide array of multi-

objective optimization problems ([24]; [25]; [26]; [25] and [30]). Tian, Zuo and Huang 

[33] and Tian and Zuo [34] studied the redundancy allocation problem for multi-state 

series-parallel systems using physical programming. The problem Tian, Zuo and Huang 

[33] and Tian and Zuo [34] studied is to optimize the structure of the multi-state series-

parallel systems. The problem we will study here is to optimize the parameters of the 

components in which the multi-state weighted series-parallel system structure has already 

been fixed. 

There are two classes of problems in the reliability optimal design field: 

1. There are discrete component choices with know characteristics (cost, utility, 

reliability). The objective is to determine which components to use. 

2. The more general situation: component utilities and component reliabilities are all 

treated as design variables. System cost is a pre-defined function of component 

utilities and component reliabilities. 

The first class is a component selection problem which has been studied in recent years in 

optimal design of systems of various structures. Shen & Xie [32] studied the component 

selection problem for binary parallel systems to maximize system reliability. Specifically, 
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they gave the answers for two questions: one is what is the increase of system reliability 

after parallel redundancy of a specific component, the other is which component is to be 

chosen for parallel redundancy so that the increase of system reliability is largest. Liu, 

Zuo and Meng [20] formulated the optimization model for continuous multi-state series-

parallel systems to determine the number of redundancies in order to maximize the 

system's expected utility function subject to constraints on system cost. The design goal 

is also achieved by discrete choices made from components available in the market. In a 

series of research work by Lisnianski and Levitin, most of which are recorded in their 

book [19], they studied maximizing system reliability without considering costs at all and 

minimizing system cost subject to requirement on system reliability. The system 

structures they studied include multi-state series-parallel systems, multi-state weighted 

voting system and multi-state linear consecutively-connected systems. Coit [7] studied 

the redundancy allocation problem with discrete component choices for binary series-

parallel systems. The objective function was to maximize system reliability subject to 

constraints on system cost and system physical weight. Massim et al. [22] proposed how 

to use the ant colony algorithm to choose an optimal multi-state series-parallel power 

structure configuration in order to minimize total investment cost subject to availability 

constraints. They defined the availability as the probability that the multi-state series-

parallel system will be in the state with capacity level greater than or equal to a specific 

demand at the specified moment. Li and Zuo [13] studied the component selection 

optimal design problem for binary weighted k -out-of- n systems. Nourelfath and Ait-

Kadi [29] studied the minimal cost configuration of a multi-state series-parallel system 

subject to a specified maintenance policy. A special multi-state series-parallel system is 
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constructed by the binary components which can make the system exhibit multi-state 

behavior. Ramirez-Marquez and Coit [31] studied the redundancy allocation problem of 

this kind of system with discrete component choices from a list of products available in 

the market. The objective was to minimize system cost subject to system reliability 

requirement. Gupta and Agarwal [9] studied the optimization problem for this kind of 

system to maximize system reliability subject to system cost. They used GA together 

with the penalty technique to solve the formulated problem. Agarwal and Gupta [1] 

continued their research to present the ant colony algorithm for a homogeneous series-

parallel system, exhibiting a multi-state behavior, to minimize the cost in order to provide 

a desired level of reliability. Meziane et al. [23] described how to implement the ant 

colony algorithm for finding the optimal multi-state series-parallel power system 

configurations in order to maximize system reliability subject to system performance and 

cost constraints. Furthermore, Massim et al. [21] used the ant colony method to solve the 

multi-stage expansion problem for multi-state series-parallel systems. The objective is to 

minimize the whole investment costs over the study period while satisfying availability or 

performance constraints by adding additional components selected from a list of available 

products. 

The second class of problems represents the more general situation where we can also 

design and produce the components to our desired specifications. If the manufacturers not 

only assemble the system but also produce components by themselves, they would be 

interested in solving the second class of problems. However, based on our study, all 

reported studies focused on the first class of problems. The second class is much more 

complicated than the first. The reason is that it is hard to develop a function to describe 
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the relationship between component cost, reliability and utility. Generally, the empirical 

data are not adequate to fit such a function. Even they are, different systems' data may 

provide different functions. Li and Zuo [14] and [18] studied the second class of 

problems for multi-state weighted k -out-of- n systems by formulating the component 

cost function through analyzing some practical data of the Western Digital Hard Disks 

and the Archos MP3 player Compact Flash Memory Card. 

In this chapter, we focus on the second class of problems for multi-state weighted series-

parallel systems. We present a multi-objective optimization model, which optimizes the 

goals of expected system utility, investment cost and system reliability simultaneously. 

The decision variables are the component reliability distribution matrix P and the 

component utility distribution matrix U as we would like to determine the parameters of 

the components to be used in the optimal system design. 

7.2 Multi-state weighted series-parallel system 

Barlow and Wu [3] defined the coherent multi-state series-parallel system model. A MS 

series-parallel system consists of subsystems,Sl, S2, ..., SN, connected in series. Each 

subsystem, Si9 has «,. different MS weighted components connected in parallel. So 

N 

there are totally ns components in the system where ns = V nt. Each component may be 
1=1 

in M + l states: {0,1,2,---,M}. Component / has a probability pvm statey. If the 

coherent multi-state system is a series system, then the state of its "worst" component is 

assigned to the system as the system state. If the coherent multi-state system is a parallel 

system, then the state of its "best" component is assigned to the system as the system 
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state. The "worst" component here means the component with the lowest state. The 

"best" component here means the component with the highest state. 

When this coherent MS series-parallel system is extended to the MS weighted series-

parallel system. The system is still a coherent system and consists of subsystems, S{, 

S2, ..., SN, connected in series. Each subsystem, St, has n(. different MS weighted 

components connected in parallel. Each component may be in M + l states: 

{0,1,2,-••,M}. Component / has a probability ptJm s tate/ , and there is a utility 

value utj corresponding to each component state. The utility value w,yis used to describe 

the component performance capability in that state. The component reliability 

distribution matrix P is: 

Ao P\\ Pa ••• Pxu 

P20 P21 P22 '" P2M 

Pn,0 Pn3\ Pns2 "' Pn„M 

where ptJ is the probability of component / in state j , i e {1,2 • • •, ns} , and 

J€{0,l,2-,M}. 

and the component utility distribution matrix U is: 

wio un % "' U\M 

u20 u2l u22 ••• u2M 

Uns0
 Uns\

 Uns2 "' UnsM 

where M(;/is the utility of component /instate j , i s {1,2-••,ns} and j G {0,1,2---,M}. 

The structure of a multi-state weighted series-parallel system is as shown in Figure 7.1. 
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Figure 7.1: Structure of a multi-state weighted series-parallel system 

In the traditional MS series-parallel system model, because there is no parameter to 

describe the component (system) performance capacity, we have to assume that the 

people using the model know the component (system) performance capacity 

corresponding to each state. When the MS series-parallel system model is extended to the 

MS weighted series-parallel system model, the above assumptions can be removed which 

makes the model more effective and flexible. The published reliability optimal design 

research work for MS series-parallel systems has been summarized in Section 1. This 

chapter on the reliability optimal design of MS weighted series-parallel systems makes 

the following contributions. It is the first reported work on the component design problem 

for MS weighted series-parallel systems which have stronger modeling ability than the 

traditional MS series-parallel systems. The system reliability, total investment cost and 

expected system utility are considered together in one optimization model. Furthermore, 

the expected system utility is based on the component utility distribution, while Aven [2], 

Tian, Zuo and Huang [33] and Tian and Zuo [34], assumed it to be a given value. 

Li and Zuo [14], [14] and [18] studied the reliability evaluation and component design 

optimization of MS weighted k -out-of- n systems separately. The component selection 
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reliability design of the binary weighted k -out-of- n system which is a special case of 

MS weighted k -out-of- n system was addressed in Li and Zuo [13]. The MS weighted 

series-parallel system has a different logical structure from the MS weighted k -out-of-

n systems. The definition of MS weighted series-parallel systems and the reliability 

evaluation approach are described in the following subsections. 

7.2.1 The definitions of MS weighted series-parallel systems 

MS weighted series systems 

Suppose that the MS weighted components are connected in series. The system is in state 

j or above if and only if every component's utility is equal to or bigger than the given 

value kj, a pre-specified value, where kj < kJ+l, forj = 0,1,2, • • •, M - 1 . 

Based on this definition, the MS weighted series system utility is the utility of the worst 

component. For example, two three-state components are connected in series. Their state 

distributions are given in Table 7.1 and Table 7.2. 

Table 7.1: State distribution of component 1 

State 
Utility 

Probability 

0 
0 

0.1 

1 
3 

0.2 

2 
4 

0.7 

Table 7.2: State distribution of component 2 

State 
Utility 

Probability 

0 
0 

0.3 

1 
5 

0.5 

2 
7 

0.2 

Givenk0 = 0, kx = 3 andk2 = 4, the system utility distribution is listed in Table 7.3. 
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Table 7.3: Utility distribution of the MS weighted series system 

System state 

State 0 

State 1 

State 2 

Component utility 
0 0 
0 5 
0 7 
3 0 
4 0 
3 5 
3 7 
4 5 
4 7 

System utility 

0 

3 

4 

Probability 
0.03 
0.05 
0.02 
0.06 
0.21 
0.10 
0.04 
0.35 
0.14 

0.37 

0.14 

0.49 

The system has a probability of 0.37 in state 0 with a utility of 0, a probability of 0.14 in 

state 1 with a utility of 3, and a probability of 0.49 in state 2 with a utility of 4. 

In order to illustrate the application of this model, an example is given as follows. 

Example 7.1: There are three cities: A, B and C. There is a fiber optic cable connecting 

city A and city B, and another one connecting city B and city C. Each cable may work 

under three states: failed, marginal and perfect. The bandwidth of each cable is its utility, 

since it is the index describing the performance capability of a cable. When any cable 

fails, the bandwidth is 0 Mbps (megabit per second). When the cable between A and B is 

working in the marginal state, the bandwidth is 5 Mbps. When it is working in the perfect 

state, the bandwidth is 10 Mbps. When the cable between B and C is working in the 

marginal state, the bandwidth is 10 Mbps. When it is working in the perfect state, the 

bandwidth is 20 Mbps. Considering each cable as a multi-state weighted component, the 

communication system from city A to city C via city B is a multi-state weighted series 

system. The utility of the system is the smaller value of the two cables' utilities. 

MS weighted parallel systems 
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Suppose that the MS weighted components are connected in parallel. The parallel system 

is in state j or above if at least one component's utility is equal to or bigger than a given 

value kj, a pre-specified value, where kj < kj+l, for/ = 0,1,2, • • •, M - 1 . 

Based on this definition, the MS weighted parallel system utility is the maximum of all 

the component utilities. Givenk0 = 0 , kx =3and k2 = 5, still using the two three-state 

components in Table 7.1 and Table 7.2, the MS weighted parallel system utility 

distribution is listed in Table 7.4. 

Table 7.4: Utility distribution of the MS weighted parallel system 

System state 
State 0 

State 1 

State 2 

Component utility 
0 0 
3 0 
4 0 
4 5 
0 5 
3 5 
4 7 
0 7 
3 7 

System utility 
0 
3 
4 

5 

7 

Probability 
0.03 
0.06 
0.21 
0.35 
0.05 
0.10 
0.14 
0.02 
0.04 

0.03 

0.27 

0.70 

From Table 7.4, we can see when the system is in state 1, the system utility can be 3 and 

4. When the system is in state 2, the system utility can be 5 or 7. Therefore, weighted 

average utility values may be calculated to describe the system's average performance 

ability in state 1 and 2. The weighted average system utility in state 1 can be calculated as 

follow. 

(3*0.06+4*0.21)/0.27=3.7778 

The weighted average system utility in state 2 can be calculated as follow. 

[5*(0.35+0.05+0.1) +7*(0.14+0.02+0.04)]/0.70= 5.5714 
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Therefore, this MS weighted parallel system has a probability of 0.70 in state 2 with a 

weighted average utility of 5.5714. It also has a probability of 0.27 in state 1 with a 

weighted average utility of 3.7778, and has a probability of 0.03 in state 0 with a utility of 

0. 

In order to illustrate the application of this model, an example is given as follow. 

Example 7.2: There are two cities: A and B. Two fiber optic cables connect them 

together. Each cable can work under three possible states: failed, marginal and perfect. 

The bandwidth of each cable is its utility. When a cable fails, the bandwidth is 0. When 

the first cable between A and B is working in the marginal state, the bandwidth is 5 Mbps. 

When it is working in the perfect state, the bandwidth is 10 Mbps. When the second cable 

between A and B is working in the marginal state, the bandwidth is 10 Mbps. When it is 

working in the perfect state, the bandwidth is 20 Mbps. Considering each cable as a 

multi-state weighted component, the two cable communication system between city A 

and B is a multi-state weighted parallel system. The utility of the system is the utility of 

the better cable of the two. 

MS weighted series-parallel systems 

Combining the MS weighted parallel system and the MS weighted series system, we get 

the MS weighted series-parallel system. Such a system has N subsystems connected in 

series. Subsystem i has «,• components connected in parallel, 1 <, i < N. A MS weighted 

series-parallel system is in state j or above if in every parallel subsystem at least one 

component's utility is equal to or bigger than a given value k} , which also means every 

subsystem has to be in state j or above. 
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According to the definitions of the MS weighted series system and the MS weighted 

parallel system, the utility of a MS weighted parallel system is defined to be the utility of 

the best component in the system, and the utility of a MS weighted series system is 

defined to be the utility of the worst component in the system. Hence, the system utility 

of the MS weighted series-parallel system is: 

7(tt) = minmax«„ 
v ' lmnN Injun, J 

(7.1) 

where utJ is the utility of the y'th component in the /th subsystem, and u is the vector 

representing the utilities of all components in the MS weighted series-parallel system. 

The structure of an example MS weighted series-parallel system is illustrated in Figure 

7.2. The state distributions of component 1 and 2 are already listed in Table 7.1 and Table 

7.2. The state distributions of component 3 and 4 are listed in Table 7.5 and Table 7.6. 

We will use this example to illustrate how to calculate the MS weighted series-parallel 

system utility. 

Sub-system 1 Sub-system 2 

Figure 7.2: An example of MS weighted series-parallel system 

Table 7.5: State distribution of component 3 

State 
Utility 

Probability 

0 
0 

0.1 

1 
3 

0.3 

2 
5 

0.6 
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Table 7.6: State distribution of component 4 

State 
Utility 
Probability 

0 
0 
0.3 

1 
1 
0.3 

2 
4 
0.4 

Givenk0 = 0 , kx =3and&2 = 5 , the example MS weighted series-parallel system utility 

distributions in each state are listed separately in Table 7.7 to Table 7.9. 

Table 7.7: Utility distribution of the MS weighted series-parallel system in state 0 

Component 
utility 

0 0 0 0 
0 0 0 1 
0 0 0 4 
0 0 3 0 
0 0 3 1 
0 0 3 4 
0 0 5 0 
0 0 5 1 
0 0 5 4 
0 5 0 0 
3 0 0 0 
0 7 0 0 
3 5 0 0 
3 7 0 0 
4 0 0 0 
4 5 0 0 
4 7 0 0 

System 
utility 

0 

Probability 

0.0009 
0.0009 
0.0012 
0.0027 
0.0027 
0.0036 
0.0054 
0.0054 
0.0072 
0.0015 
0.0018 
0.0006 
0.0030 
0.0012 
0.0063 
0.0105 
0.0042 

0.0591 

Component 
utility 

0 7 0 1 
3 0 0 1 
3 5 0 1 
3 7 0 1 
4 0 0 1 
4 5 0 1 
4 7 0 1 
0 5 0 1 

System 
utility 

1 

Probability 

0.0006 
0.0018 
0.0030 
0.0012 
0.0063 
0.0105 
0.0042 
0.0015 

0.0291 

From Table 7.7, we can see that the MS weighted series-parallel system has a probability 

of 0.0882=0.0591+0.0291 in state 0. In state 0, the system has a probability of 0.0591 

with a utility 0 and has a probability of 0.0291 with a utility 1. So the weighted average 

system utility is 0.3299= (0.0591*0+0.0291*1)/0.0882. 
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Table 7.8: Utility distribution of the MS weighted series-parallel system in state 1 

Component 
utility 

0 5 3 0 
0 5 3 1 
0 7 3 0 
0 7 3 1 
3 0 0 4 
3 0 3 0 
3 0 3 1 
3 0 3 4 
3 0 5 0 
3 0 5 1 
3 0 5 4 
3 5 3 0 
3 5 3 1 
3 7 3 0 
3 7 3 1 
4 0 3 0 
4 0 3 1 
4 5 3 0 
4 5 3 1 
4 7 3 0 
4 7 3 1 

System 
utility 

3 

Probability 

0.0045 
0.0045 
0.0018 
0.0018 
0.0024 
0.0054 
0.0054 
0.0072 
0.0108 
0.0108 
0.0144 
0.0090 
0.0090 
0.0036 
0.0036 
0.0189 
0.0189 
0.0315 
0.0315 
0.0126 
0.0126 

0.2202 

Component 
utility 

0 5 0 4 
0 5 3 4 
0 7 0 4 
0 7 5 4 
3 5 0 4 
3 5 3 4 
4 7 0 4 
4 7 3 4 
0 7 3 4 
3 7 0 4 
3 7 3 4 
4 0 0 4 
4 0 3 4 
4 0 5 0 
4 0 5 1 
4 0 5 4 
4 5 0 4 
4 5 3 4 

System 
utility 

4 

Probability 

0.0020 
0.0060 
0.0008 
0.0048 
0.0040 
0.0120 
0.0056 
0.0168 
0.0024 
0.0016 
0.0048 
0.0084 
0.0252 
0.0378 
0.0378 
0.0504 
0.0140 
0.0420 

0.2764 

Table 7.9: Utility distribution of the MS weighted series-parallel system in state 2 

Component utility 
0 5 5 0 
0 5 5 1 
0 5 5 4 
0 7 5 0 
0 7 5 1 
3 5 5 0 
3 5 5 1 
3 5 5 4 
3 7 5 0 
3 7 5 1 
3 7 5 4 
4 5 5 0 
4 5 5 1 
4 5 5 4 
4 7 5 0 
4 7 5 1 
4 7 5 4 

System utility 

5 

Prol 
0.0090 
0.0090 
0.0120 
0.0036 
0.0036 
0.0180 
0.0180 
0.0240 
0.0072 
0.0072 
0.0096 
0.0630 
0.0630 
0.0840 
0.0252 
0.0252 
0.0336 

Dability 

0.4152 



From Table 7.8 we can see that the MS series-parallel system has a probability of 

0.4966=0.2202+0.2764 in state 1. In state 1, the system has a probability of 0.2202 with a 

utility 3 and has a probability of 0.2764 with a utility 4. Thus the weighted average 

system utility is 3.5566= (0.2202*3+0.2764*4)/0.4966. 

From Table 7.9 we can see the system has a probability of 0.4152 to be in state 2. The 

system utility is 5. 

The state distribution of this example MS series-parallel system is summarized in Table 

7.10. 

Table 7.10: State distribution of the MS series-parallel system 

State 
Average Utility 

Probability 

0 
0.3299 
0.0882 

1 
3.5566 
0.4966 

2 
5 

0.4152 

Here we have used the enumeration method to calculate the average system utility. In our 

future research, we will try to find more efficient methods. 

In order to illustrate the application of this model, two examples are given as follow. 

Example 7.3: Extending the system in Example 7.2 to three cities: A, B and C. The two 

fiber optic cables connecting B and C aire the same as the two cables between A and B. So 

totally there are four cables in the system. Considering each cable as a multi-state 

weighted component, the four cable communication system between city A and C is a 

multi-state weighted series-parallel system. The utility of each MS weighted parallel 

subsystem (cables between A and B and cables between B and C) is the utility of the 

better cable in that subsystem. And the utility of this MS weighted series-parallel system 

is the utility of the worse of the two subsystems. 
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Example 7.4: Several sets of conveyors work together in series because of the long 

distance to transmit coal. At the same time, in every set, there are several conveyors work 

together in parallel. During the life of a conveyor, its state will deteriorate from perfect 

working to failed. When its state deteriorates, it can not work at full capacity any more. 

That means corresponding to different states, it has different utilities. This system can 

also be modeled as a MS weighted series-parallel system. 

7.2.2 Reliability evaluation of MS weighted series-parallel systems 

According to the definition of the MS weighted series-parallel system, the probability 

that the system in state j or above ( j = 0, 1, ..., M) is 

P r (^ (« )^y) = P r ( r ( i i ) ^ * y ) - n P r ( r / ( i ^ ) ^ * y ) (7.2) 

where u is the vector representing the utilities of all components in the system, 0(u) is 

the structure function of the system, ^(«) = 0, 1, 2, •••, M , y{u) is the system utility 

function, «. denotes the utilities of all the components in the /th parallel subsystem, 

/,(«;)is the /th parallel subsystem's utility function, and kjis the pre-specified utility 

value. Equation (7.2) says that for the system to be in state j or above, the system utility 

should not be less than the pre-specified valuek.. Thus, the utility of each parallel 

subsystem should not be less thanA .̂. As illustrated in Equation (7.2), the reliability of the 

multi-state weighted series-parallel system is a function of component utility distribution 

matrix U and component reliability distribution matrix P: Pr(^(x) > j) = RJ
S (U, P). 
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As shown in Equation (7.2), in order to calculate the reliability of the whole system, we 

have to calculate the reliability of each parallel subsystem first. Given 0,(x,) is the 

structure function of the /th parallel subsystem, the probability of this subsystem being 

in state j or above is: 

Pr(^.(x,)>y) = Pr( r,.(W,)>^.) 

= Pr{(Wn>^)U(W(2>^)-U(«,>A:y)U-U(^>^)} 

where ni is the number of components in the /th parallel subsystem and uir is the 

utility of the r th component in the i th parallel subsystem. Here we suppose that all 

components are independent. 

According to the above analysis, the MS weighted series-parallel system can be 

decomposed into a binary series-parallel system. Actually, since the MS weighted series-

parallel system is extended from the coherent MS series-parallel system, it is also a 

coherent system. As the coherent MS series-parallel system can be decomposed into a 

binary series-parallel system [3], [4] and [5], the MS weighted series-parallel system can 

also be decomposed into a binary series-parallel system. Thus the reliability evaluation 

method of the binary series-parallel system can be used to evaluate the probability 

distribution of the MS weighted series-parallel system. 

We can use the following method to decompose a MS weighted parallel system into a 

binary parallel system: for all the component states with a utility value not less than kj, 

adding the state probability together to be the reliability of that component in the 

corresponding binary parallel system. By this way, we can form a binary parallel system. 
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The reliability of this binary parallel system is equal to Pr{^(xi) - J) - m e probability of 

the corresponding MS weighted series-parallel system to be in state j or above. With the 

same method, given different k, ( j = 0, 1, ..., M ), the probability of the system to be in 

state 7 (7 = 0, 1, ..., M) or above can be calculated. 

After we get iV {$(*,)> 7} for i=\,2,...N for every MS weighted parallel subsystem, 

we can use Equation (7.2) to calculate the probability of the MS weighted series-parallel 

system in state j or above. 

7.3 Design model 

For the second class of optimal design problems, we need to have a function to describe 

the relationship between the component cost, component reliability and component 

utility. The following function developed in chapter 6 can be used to describe this 

relationship. 

ct = 8i • exp(£7, - C/u) + exp[(l -fty
 P* ~~_̂ " ] (7.4) 

'max i 

where U, = V „7?,,-w,, mdP - V ,/?;,-, 

• pi : minimum probability of component i being in states higher than state 0 

• pt : maximum probability of components i being in states higher than state 0 

• f. : feasibility of increasing the probability of component / being in states 

higher than state 0 (0 < ft < 1) 

• U] : minimum value for the weighted average utility of component / in all 

possible states 
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• gt : feasibility of increasing the weighted average utility of component i in all 

possible states (g, > 0) 

• ci : cost of component i 

• Pt : the probability of component / being in states higher than state 0 

Actually Equation (7.4) is just Equation (6.5) without superscript I. The parameters and 

the physical meaning of the cost function have been explained in chapter 6. 

With the relationship given above, the total investment cost can be calculated as. 

C,=£c„ (7.5) 

N 

wherens = ^ « ( , c,is the cost of component /which is a function of component utility 
1=1 

and reliability distributions. 

The following index of system utility is used to measure the performance of a multi-state 

weighted series-parallel system: 

M 

£/, = £ t / y • Pr (<*(*) = /) , (7.6) 

where Us is the expected system utility, and Uj is the weighted average utility when 

system is in state j . The way to calculate £/. has been addressed in Section 2.1. 

Although the form of Equation (7.6) is similar to the expected system utility function in 

Aven [2], they are different. Aven [2] assumed Uj is a given value in their system utility 

function. However, in our system utility function, Uj is calculated based on the 

component utility distribution. This is an advantage of our model. Aven [2] assumed the 
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people who use that model such as the engineers already knew the system performance 

capacity corresponding to each state. It may not always be true. In his model, £/. value 

can only be obtained based on engineering experiences which may not be accurate 

enough. In our model, U. value is calculated based on the component utility 

distribution. Aven's assumption has been relaxed here to make the model more flexible. 

The system reliability, total investment cost and expected system utility are three 

important parameters in the system optimal design. Based on Equations (7.2), (7.5) and 

(7.6), given a specific value ofy and A:., the system reliability, total investment cost and 

expected system utility are all functions of component utility distribution matrix U and 

component reliability matrix P. The MS weighted series-parallel system reliability here 

means the probability that the system is at state j or above, given a specific value ofy 

andkj. The multi-objective optimization problem can then be described as how to find 

the optimal values of [/and Pto get a balance among the following three different 

objectives, minimizing system cost, maximizing system performance utility, and 

maximizing system reliability simultaneously. In the following, the physical 

programming approach is used to address the conflicting nature of these different 

objectives. Genetic algorithm is to be used to solve the physical programming based 

optimization models. 

Physical programming (Messac, [24]) provides the means for direct expression of the 

designer's preference, which fundamentally impacts the design process. Rather than 

spending substantial efforts tweaking weights and re-optimizing until a given set of 

preferences is achieved, the designer is allowed to concentrate more on the physical 
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problem at hand and less on the art of converging to satisfactory weights. Within the 

physical programming procedure, design metrics which are characteristics or properties 

of a system or process, being designed, are classified into three classes: 

1) Class-1: Smaller-Is-Better (SIB), 

2) Class-2: Larger-Is-Better (LIB), and 

3) Class-3: Center-Is-Better (CIB). 

Physical Programming is explicitly incorporates the designer's preferences on each 

design metric into the optimization process. For each class, there are two so-called class 

functions, one soft and one hard, with respect to each class. The hard class functions are 

used to represent the constraints, while the soft class functions become additive 

constituent components of the aggregate objective function (to be minimized) of the 

optimization model. Consider for example the case of Class-1 soft class function (Class 

1-S), the qualitative meaning of the preference function is depicted in Figure 3. The value 

of the design metric, gt, is on the horizontal axis, and the corresponding class function, 

gt, is on the vertical axis. A lower value of the preference function is better than a higher 

value thereof. 

Figure 7.3: Qualitative meaning of soft class function 
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Physical programming allows the DM to express ranges of differing levels of preference 

with respect to each design metric with more flexibility and specificity than by simply 

declaring minimize, maximize or equal to. For Class 1-S, shown in Figure 7.3, the ranges 

are defined as follows. 

Highly desirable range: g{ < gn, 

Desirable range: gn < g, < gl2, 

Tolerable range: gn < g, < gn, 

Undesirable range: gi3 < gt < gi4, 

Highly undesirable range: gi4 < gi < gi5, 

Unacceptable range: g, > gi5. 

The parameters gn through gl5 are physically meaningful constants associated with 

each design metric /. What the DM needs to do in the physical programming framework 

is just to specify the values of the parameters g„, ga, gl3, gl4, and gi5 for each design 

metric /, and the class function can be completely determined by these parameters. For 

further details of physical programming, please refer to Messac [24]. 

Two key advantages of physical programming are: (1) Once the designer's preferences 

are articulated, obtaining the corresponding optimal design is a non-iterative process - in 

stark contrast to conventional weight-based methods. (2) It provides the means to reliably 

employ optimization with minimal prior knowledge thereof. 

In our proposed physical programming based optimization models, the design metrics 

under consideration are system utility, system cost and system reliability. The system 
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utility and system reliability, which are to be maximized, are both described using the 

class-2S class function in the physical programming approach framework. The system 

cost, which is to be minimized, is described using the class-IS class function. 

The multi-objective optimization model of the multi-state weighted series-parallel system 

is formulated as: 

i^g(t/,P) = tog10|i[gu(^(^P)) + i4^I(t/,P)) + ic(CI(C/,JP))]} 

s.t. 

US(U,P)>U0 

*',(£/,/>)£*„ (7.7) 

CS{U,P)>C0 

M 

YPiJ=l,0<PiJ<l (i = \,2,-,ns;j = Q,\,2,-,M) 

ul0 =0,utJ > 0 (i = \,2,---,ns;j = l,2,---,M) 

where g(U, P) is the aggregate objective function, gv, gR and gc are the class 

functions of system utility, system reliability and system cost, respectively, Uis the 

component utility distribution matrix, and Pis the component reliability matrix. U0, 

R0 and C0 are the constraint values, which are equal to the boundaries of the acceptable 

ranges of the corresponding design metrics. 

In order to illustrate the advantages of the multi-objective model, single-objective models 

are also built as follow to compare with the multi-objective optimal model. The single-

objective model which the system reliability is used as the objective, and investment cost 

and expected system utility are used as constraints is as follow: 
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max Rl(U,P) 
V,P

 v ' 
s.t. 
US(U,P)>U0 

CS(U,P)<C0 (7-8) 
M 

5><,=1, 0</7 y <l (/ = l,2,...)/i,;y = 0 , l , 2 J - ,M) 
7=1 

"ra=°> "y ^0( / = l,2,---,w,;7 = l,2,---,A/') 

The single-objective model which the expected system utility is used as the objective, and 

investment cost and system reliability are used as constraints is as follow: 

maxU(U,P) 
U,P V ' 

s.t. 

RJ
s(U,P)>R0 

CS(U,P)<C0 (7-9) 
M 

2 > , = 1 , 0< /7 ,< l (/ = l,2,...,/i,;/ = 0,l,2,".,M) 
7=1 

ul0=0, utj>0 (i = l,2,---,ns;j = l,2,---,M) 

The single-objective model which the investment cost is used as the objective, and 

system reliability and expected system utility are used as constraints is as follow: 

mmCs(U,P) 
u,p s v ' 

si. 

US(U,P)>U0 

# ( t / , P ) ^ (7.10) 
M 

£ / V = l , 0£/>«,<£! (z = l ,2 , - ,« , ;y = 0,l,2,...,M) 
7=1 

ul0=0, uiJ>0(i = l,2,---,ns;j = l,2,---,M) 
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7.4 Solution approach and an illustration example 

Genetic Algorithm (GA) is the most widely used meta-heuristic approach to solve large 

complex optimization problems and it has been proved to perform much better than 

traditional optimization algorithms in finding global optimal solutions. 

GA has two key advantages: (1) Flexibility in modeling the problem. GA has no strict 

mathematical requirements, such as derivative requirement, on the objective functions 

and constraints. The only requirement is that the objective functions and constraints can 

be evaluated in some way. GA is also suitable for dealing with those problems including 

discrete design variables. (2) Global optimization ability. GA has been recognized as one 

of the most effective approaches in searching for the global optimal solution. 

In this chapter, we use the GA approach to solve the design problems formulated in 

Section 3. A system with four components (ns =4 ) wherein each component has four 

states (M = 3) is used as an example to illustrate the optimization problems and their 

solutions. The system structure is as shown in Figure 7.2. 

Given, ko=0, kj=\, kf=2, k3=3 andj--=2, the parameters used in the component cost 

function Equations (7.4) are in Table 7.11. Other parameters used in the physical 

programming are given in Table 7.12. The utility constraint value, the cost constraint 

value and the reliability constraint value are chosen as C0 = 15, U0 = 1 and R0 = 0.5. 

Table 7.11: Parameters used in the component cost function 

g\ =Si 

1 

A =fi 

0.99 

lmm *"mm 

1 0.93 

P =P 
1 2 

0.9999 
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Table 7.12: Physical programming class functions setting 

Utility 

Cost 
Reliability 

(Probability of the system in state 2 or above) 

Si 

2.5 

1 

1.0 

s2 

2 

5 

0.8 

S3 

1.8 

7 

0.7 

SA 

1.5 

10 

0.6 

Ss 

1 

15 

0.5 

After developing the objective functions and their constraints as shown in Equation (7.7) 

to (7.10), we used the GA toolbox (Houck et al., [10]) in Matlab R2006a to solve the 

problems. We used a computer with 2.00GHZ AMD Opteron (tm) Processor and 3.00 GB 

RAM under Windows XP operating system to run these programs. The population data 

type has been set to be double and population size to be 20. Elite count and crossover 

fraction are all set to be the default values in Matlab R2006a GA toolbox. The uniform 

function was used as the population creation function. The adoptive feasible function was 

used as the mutation function. The rank function was used as the scaling function. The 

scattered function was used as the crossover function. The stochastic uniform function 

was used as the selection function. Stopping criteria are set as 1000 generations, 500 stall 

generations, 100 stall time limit and 10"9 function tolerance. The reason we set the 

stopping criteria like this is that we found the results can be convergent for all the 

calculations. There are 28 decision variables in each of the above optimization problem. 

These problems are all non-linear non-integer optimization problems. It is hard to use 

traditional optimization approaches to solve these problems. However, by using GA, they 

were solved within a few minutes. 

157 



Table 7.13: Comparison of the single-objective optimization results and multi-objective 

optimization results for multi-state weighted serials-parallel 

Reliability 

Utility 

Cost 

Reliability 
distribution 

U 

P 

Single-objective 
optimization results 

Minimize Cost 

0.5000 

1.5766 

10.2824 

0.0079 

0.0000 

0.0000 

0.0000 

0.0000 

0.0700 

0.0700 

0.0546 

0.0552 

0.4921 

2.1599 

2.0000 

1.0049 

1.1465 

0.3101 

0.3100 

0.4691 

0.3152 

0.5000 

1.0205 

2.0076 

2.3147 

2.0162 

0.3099 

0.3100 

0.1326 

0.3152 

0.0000 

1.1192 

1.2393 

1.0326 

2.0000 

0.3100 

0.3100 

0.3437 

0.3144 

Single-objective 
optimization results 

Maximize Reliability 

0.9946 

2.0355 

15.0000 

0.0025 

0.0000 

0.0000 

0.0000 

0.0000 

0.0398 

0.0509 

0.0081 

0.0407 

0.0029 

2.0048 

2.0542 

2.8870 

2.0647 

0.3856 

0.3164 

0.3307 

0.2312 

0.9946 

2.1948 

2.0019 

2.0114 

1.0374 

0.2887 

0.3163 

0.3307 

0.3203 

0.0000 

2.0428 

2.0000 

2.0000 

2.0066 

0.2859 

0.3164 

0.3305 

0.4078 

Single-objective 
optimization results 
Maximize Utility 

0.6236 

2.2283 

15.0000 

0.0087 

0.0689 

0.0550 

0.0667 

0.0689 

0.0000 

0.0000 

0.0000 

0.0000 

0.3677 

0.3102 

0.1720 

0.3111 

0.3101 

1.0052 

1.1569 

2.5796 

0.5271 

0.3105 

0.1720 

0.0965 

0.3104 

0.6010 

Multi-objective 
optimization results 

0.8538 

2.0626 

11.9884 

0.004 

0.0666 

0.0001 

0.14220.85380.0000 

0.3116 0.3110 0.3108 

0.51020.24490.2448 

0.31110.31110.06820.3076 0.3093 0.3149 

0.31020.31080.06890.14450.64190.1447 

1.82843.00360.00002.5001 

2.7357 

2.9613 

1.01623.0001 

2.5000 0.0000 

1.47540.0000 

1.82360.0000 

2.0147 

1.0578 

1.06941.1391 

2.1277 2.1435 

1.06252.6498 

1.78212.14062.8452 

In Table 7.13, the reliability distribution is the probability of the system in each state. We 

can observe that even the components have four states, the system may only have three 

states or even two states (binary system). In the single-objective optimization problem 

which the system cost is used as the objective, the optimal system is a three-state system. 

It makes sense. Because a three-state system is more cost effective than a four-state 

system with the same requirements in system utility and the probability of the system in 

state 2 or above. In the single-objective optimization problem which the probability of the 

system in state 2 or above is used as the objective, the optimal system is almost a two-

state system (the probability in state 0 and state 1 are too less to compare with the 

probability in state 2). First, a three-state system is more cost effective than a four-state 

system with the same requirements in the probability of the system in state 2 or above, so 
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the probability in state 3 is 0. Second, the cost limitation is enough to put a much higher 

probability in state 2 than in state 0 and state 1 when the objective is to maximize the 

probability of the system in state 2 or above. So the result comes up with an almost 

binary system. 

From the optimization procedures and results, we can see that the physical programming 

method has advantages over the single-objective optimization method. A problem of 

using single-objective optimization approach is that maybe the resulting optimal 

reliability and utility are good while the cost objective is totally unsatisfying. Of course 

we can adjust the constraint functions when encountering this problem, but we can not 

ensure that the optimal results will be satisfactory next time. When using the physical 

programming approach, however, with class functions accurately describing the decision 

maker's preferences on each objective and with the One vs. Others rule as the inter-

criteria preference, we can ensure to get satisfactory optimal results with respect to each 

design criterion. The class function provides the preference inside a single objective, and 

the One vs. Others rule of physical programming provides the preferences among 

different objectives. Therefore, physical programming will drive the optimal values of 

different objectives to preference ranges close to one another. 

7.5 An alternative model of the system 

Based on different application situations, an alternative model of MS weighted series-

parallel system is presented here: 

The MS weighted series-parallel system is in state j or above if in every parallel 

subsystem, the utility of at least one component in state j or above is equal to or 
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bigger than the given value kj , which also means every subsystem has to be in 

state j or above. 

This model will be referred to as the alternative model, while the one given in Section 2.1 

will be referred to as the original model in the following discussion. The two types of MS 

weighted series model are based on different practical application situations. In the 

original model, we do not care about the state (the health situation) of the component and 

only consider the utility of the component. In the alternative model, we not only care 

about the utility of the component but also the state (the health situation) of the 

component. Sometime even the component has the utility as we need, because its health 

situation is not good enough which is symbolized by its state, it can not meet the system 

requirement. Let's see an example. 

Example 7.5: There are three cities: A, B and C. Two fiber optic cables connect city A 

and city B. Another two fiber optic cables connect city B and city C. Each cable can work 

under three states: fail, marginal and perfect. The bandwidth of each cable is its utility. 

The utility distribution of each cable is the same as in Example 7.3. If we require each 

cable provide at least 5 Mbps bandwidth whatever the state it is in, the original model is 

suitable to be applied. If we require each cable provide at least 5 Mbps bandwidth and 

must work in the perfect state, the alternative model should be used. 

For the same reason as mentioned before, a weighted average utility value should be used 

to describe the system utility in each state. The calculation process is similar as in the 

original model. The only thing needed to be kept in mind is that in the alternative model, 

only the component in state j or above can contribute to the system utility in state j . 
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After the weighted average utility value in each state has been calculated, Equation (7.6) 

can be used again to calculate the system utility. 

In the alternative model, in order to let the system be in state j or above, in each 

parallel subsystem at least the utility of one component in state j or above is equal to or 

bigger than the given value kj. The probability of the ith parallel subsystem in state j 

or above is: 

Pr(4MM = Pr(fiM**y) 
= Pr{(^>^)U(4s^)-U(^>^)U-U«>^)} 

where n. is the number of components in the zth parallel subsystem and u\r is the 

utility of the rth component in the rth parallel subsystem when that component's state 

is equal to or greater than j . According to the above analysis, in a similar way as in the 

original model, the alternative MS weighted series-parallel system model can also be 

decomposed into a binary series-parallel system. And then the binary series-parallel 

system reliability evaluation methods can be applied to evaluate the system reliability. 

For the alternative model, another component cost function developed in Li and Zuo [14] 

and [18] can be used to describe the relationship between component cost, reliability and 

utility: 

cj = g\ • exp(£// - U{min) + exp[(l -f/)- jf^p] (7.12) 
lmax ' 

where U(
 j = ^ = j Pt,r * ut,r ^d p/ = E " , P,,r 
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• P/ : minimum probability of component i being in the state j or above 

• P. : maximum probability of components i being in the state j or above 

• f.J: feasibility of increasing the probability of component / being in the state 

jor above 

• Uj : minimum value for the weighted average utility of component / being in 

the state j or above 

• gf: feasibility of increasing the weighted average utility of component i being 

in the state j or above 

• c{ : cost of component i for the alternative model if the component can 

contribute to the system in the state j or above 

• PJ : the probability of component i being in state j or above 

Actually Equation (7.12) is just Equation (6.7) without superscript II. As we have 

mentioned in chapter 6, the difference between the original model and the alternative 

model is whether the components whose states are below j are making any 

contribution for the system to be in state j or above. In the alternative model, only the 

components whose states are in state j or above can make contributions for the system 

to be in state j or above. It is the reason why we have U/ = ]T =. pir * ujr 

andP/ = V ,pir. The physical meaning of parameters in Equation (7.12) is similar like 

in Equation (7.4). Equation (7.12) is to calculate the cost of each component. The total 
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investment cost can be calculated by adding the cost of each component together just as 

shown in Equation (7.5). 

Table 7.14: Comparison of the single-objective optimization results and multi-objective 

optimization results for the alternative multi-state weighted serials-parallel system 

Reliability 

Utility 

Cost 

Reliability 
distribution 

U 

P 

Single-objective 
optimization results 

Minimize Cost 

0.5000 

1.5055 

10.0007 

0.0166 

0.0000 

0.0000 

0.0000 

0.0000 

0.0284 

0.0349 

0.0322 

0.0325 

0.4834 

0.0000 

0.0000 

0.0000 

0.0000 

0.0335 

0.0356 

0.0331 

0.0348 

0.5000 

1.0084 

1.0018 

2.0042 

2.0058 

0.4688 

0.4651 

0.4664 

0.4584 

0.0000 

2.0004 

2.0004 

1.0083 

1.0351 

0.4683 

0.4649 

0.4674 

0.4733 

Single-objective 
optimization results 

Maximize Reliability 

0.9971 

2.0923 

15.0000 

0.0006 

0.0000 

0.0000 

0.0000 

0.0000 

0.0028 

0.0318 

0.0013 

0.0222 

0.0023 

0.0000 

0.0000 

0.0000 

0.0000 

0.0036 

0.0338 

0.0036 

0.0118 

0.9971 

2.1765 

2.0051 

2.0152 

1.3663 

0.4969 

0.4673 

0.4981 

0.4780 

0.0000 

2.2186 

2.4756 

2.0115 

2.1777 

0.4969 

0.4678 

0.4974 

0.4875 

Single-objective 
optimization results 
Maximize Utility 

0.9328 

2.2303 

15.0000 

0.0090 

0.0000 

0.0000 

0.0000 

0.0000 

0.0349 

0.0338 

0.0276 

0.0347 

0.0582 

0.0000 

0.0000 

0.0000 

0.0000 

0.0335 

0.0335 

0.0350 

0.0351 

0.9328 0.0000 

Multi-objective 
optimization results 

0.9005 

2.1147 

12.7993 

0.0088 0.0943 0.9005 0.0000 

1.71092.46980.00000.00002.11172.2493 

2.3696 

2.2149 

2.4714 

0.4674 

0.4669 

0.4732 

0.4653 

2.1504 

2.2237 

1.6142 

0.4652 

0.4668 

0.4651 

0.4660 

0.0000 

0.0000 

0.0000 

0.0270 

0.0335 

0.0348 

0.0335 

0.0000 

0.0000 

0.0000 

0.0345 

0.0338 

0.0349 

0.0335 

2.2706 

2.2266 

1.4695 

0.4738 

0.4156 

0.4654 

0.4670 

1.1068 

2.2501 

1.6054 

0.4657 

0.5182 

0.4659 

0.4670 

With the functions of system reliability, expected system utility and total investment cost 

for the alternative model, we can formulate the same single-objective optimal design 

models and the multi-objective model as in Section 3 (Equation (7.7) to (7.10)). Using 

the same data and approach as in Section 4, the single-objective optimization results and 

multi-objective optimization results are compared for the alternative model and illustrated 

in Table 7.14. Clearly, from Table 7.14 we can obtain the same observations as from 

Table 7.13 about the advantages of the multi-objective optimization approach. 
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7.6 Conclusions 

This chapter brought forward two models for the multi-state weighted series-parallel 

system and provided the approach to calculate system reliability and the expected system 

utility. This chapter also proposed a multi-objective optimization model for multi-state 

weighted series-parallel system optimal design. This model seeks to maximize system 

reliability and performance utility while minimizing system cost simultaneously. Physical 

programming is used as an effective approach to build the optimal model within this 

multi-objective optimization framework. Genetic algorithm is used in solving the 

proposed physical programming based optimization models. Finally, an example for each 

multi-state weighted series-parallel model has been given to illustrate the flexibility and 

effectiveness of the proposed physical programming over the single-objective method. 

From Chapter 4 to Chapter 7, we introduced three reliability system models: binary 

weighted &-out-of-« system, MS weighted k-out-of-n system and MS weighted series-

parallel system. The definitions and reliability evaluation methods have been described 

for each model in details. Different reliability optimal design problems have been studied 

for these models. For the binary weighted k-out-of-n system, the most commonly studied 

reliability optimal design problem - component selection problem has been studied. For 

the MS weighted &-out-of-« system, we brought forward and solved the new more 

general reliability optimal design problem - component design problem. For the MS 

weighted series-parallel system, we not only studied the component design problem 

similar as for MS weighted k-out-of-n system, but also studied the multi-objective 

optimization model which can provide more reasonable optimal solutions. In the next 
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chapter, we will summarize all the research in this thesis and discuss the directions in the 

future research. 
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Chapter 8 

Conclusions and Future Work 
Reliability is one of the most critical performance measures of today's complex systems, 

one emphasized more and more by academia, industry and government. The reliability of 

a system needs to be evaluated accurately; this can be achieved through optimal 

reliability design. 

8.1 Conclusions 

Traditional reliability theory simplified all the real-world systems into a binary model — 

both systems and components can take only two possible states: completely working and 

totally failed. However, engineering systems typically have multiple partial failure states 

in addition to the above-mentioned completely working and totally failed states. Multi-

state reliability theory recognizes the multiple possible states of engineering systems. It 

can map the performance of components to system performance more accurately, and be 

able to provide better solutions through the optimal reliability design. In this thesis, we 

brought forward a new MS system model — the MS weighted system model. The 

research on MS weighted system reliability modeling, evaluation and optimal design 

makes significant contributions to MS system reliability theory, and has potential 

applications in the oil & gas production industry, manufacturing industry, power industry 

and so on. The main contributions of this thesis are summarized below. 

1. An efficient algorithm for the reliability evaluation of MS weighted A>out-of-« 

systems 
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We have proposed two definitions for the multi-state weighted &-out-of-« system 

model. They may be applied in different situations when the contributions of 

relatively weak components may or may not be useful. Recursive algorithms are 

developed for evaluation of system distribution under both definitions. The UGF 

approach is compared with recursive methods for the binary weighted k-out-of-n 

system defined by Wu and Chen [1] and the proposed two types of multi-state 

weighted k-out-of-n systems. It is found that recursive methods are generally more 

efficient than the UGF approach. 

2. An algorithm for the reliability evaluation of MS weighted series-parallel 

systems 

Based on a different logical structure from the MS weighted &-out-of-w system model, 

we brought forward two types of MS weighted series-parallel system models. As a 

coherent system, the MS weighted series-parallel system can be decomposed into the 

traditional binary system. Then, traditional binary system reliability evaluation 

methods can be used to evaluate the MS weighted series-parallel system reliability. 

We developed the decomposing approach based on the MS weighted series-parallel 

system construction function. 

3. Reliability optimal design based on component selection for binary weighted k-

out-of-n systems 

Although the component selection optimal design problem has been widely studied, 

in this thesis, it is studied for the binary weighted k-out-of-n system for the first time, 
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and two optimal models are formulated. One minimizes the expected total cost while 

guaranteeing a system reliability greater than a pre-specified value; the other 

maximizes system reliability with the constraints on total system cost. Genetic 

Algorithm (GA) and Tabu Search (TS) methods are both used to solve the resulting 

optimization models. The results show that both are powerful tools for solving these 

kinds of problems, but TS is more efficient. 

4. Reliability optimal design based on component design for MS weighted A-out-of-

n systems 

Although the "component selection problem", which involves selection of 

components with known reliability and cost characteristics has been widely studied, 

less adequately addressed has been the more general problem of determining system 

cost and utility based on the relationship between component reliability, cost and 

utility. In this thesis, this optimal design has been addressed for the first time. Two 

optimal design problems have been studied for MS weighted k-ouX-of-n systems in 

this thesis, one is to minimize the expected total system cost subject to system 

reliability requirements, the other is to maximize system reliability subject to total 

system cost limitations. The resulting optimization problems are too complicated to 

be solved by traditional optimization approaches, therefore Genetic Algorithm (GA) 

is used to solve them. Our results show that GA is a powerful tool for solving these 

kinds of problems. 

5. Multi-objective optimal design for MS series-parallel systems based on 

component design 
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In the general single-objective optimization models, there exist mutually conflicting 

goals such as system reliability and total system cost. We treat one goal as the 

objective function of the optimization model and the other as the constraint. It is very 

difficult to specify in advance the value that should be given to the goal that acts as a 

constraint. After a solution is obtained, we often need to modify the constraint value 

to find a better trade-off between goals such as system reliability and system cost. 

Finding the most appropriate constraint value is a trial and error process that can be 

time-consuming. In contrast to the traditional single-objective optimization model, 

the optimization model proposed here is a multi-objective optimization model which 

is used to maximize expected system performance utility and system reliability while 

simultaneously minimizing total investment cost. Physical programming technique is 

used to build these multi-objective optimization models. Genetic algorithm is used to 

solve the proposed physical programming based optimization model. The flexibility 

and effectiveness of the proposed multi-objective models are confirmed through 

comparison with single-objective models with regard to optimal solutions. 

With these efficient reliability evaluation methods and effective reliability-based design 

approaches for multi-state engineering systems, the research results will provide useful 

tools for achieving highly reliable and cost effective engineering systems. 

8.2 Future work 

In the future, research can be focused on investigations along the following directions and 

applying the research results to practice: 
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Multi-State Weighted Component Criticality and Importance Analysis: 

In general, importance measures are used to evaluate and rank the criticality of 

component or component states with respect to system reliability. The focus of my 

study will be to provide intuitive and clear importance measures that can be used to 

direct our reliability design work from two perspectives: (1) how a specific 

component affects multi-state weighted system reliability and (2) how a particular 

component state or set of states affects multi-state weighted system reliability. In 

addition, the multi-state weighted redundancy importance will be studied to identify 

where to allocate component redundancy in order to improve system reliability. 

Evaluation and Fault-Tolerant Design of Multi-State Weighted Network Systems: 

Many real-world systems are multi-state weighted networks; among these are 

computer and communication systems, power transmission and distribution systems, 

transportation systems, and oil/gas production systems. Evaluating network reliability 

is an important topic with regard to the planning, designing, and control of systems. 

However, at present, most of the research in the literature still simply considers the 

network as a binary system. In the future, I will extend the research to the reliability 

evaluation and fault-tolerant design of network systems based on the multi-state 

weighted model, which refers to system performance evaluation based on continuous 

degradation and design of a network so it will continue to operate, possibly at a 

reduced level at they undergo what is known as "graceful degradation". 
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3. Condition Based Maintenance Systems Based on Multi-State Weighted 

Reliability Theory: 

Maintaining and repairing industrial facilities constitutes a significant portion of many 

companies' annual operating budgets. Although the idea of CBM (Condition Based 

Maintenance) which uses the facility health condition data to make maintenance 

decisions is not new, utilization of new technologies such as degradation reliability 

models and multi-state reliability theory in CBM is a new direction of research. The 

objective of my research is to develop an innovative and effective CBM decision 

making system by combining my multi-state weighted research results with remaining 

life prediction and maintenance scheduling optimization techniques. 

Based on the research I have done for this thesis, this proposed research will assuredly 

make significant contributions to both academia and industry. 
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