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Abstract

This work aims to address the lack of clear theoretical foundations in computa-

tional lexical semantics, the sub-field of natural language processing pertaining to

computing with the meaning of words. Semantic tasks are of interest for end-user

applications (e.g. contextual translation), downstream tasks (e.g. semantic parsing),

and evaluating language models and contextualized representations. Nevertheless,

the linguistic phenomena on which semantic methods depend – such as senses,

synonymy, and translation – lack a clear, coherent theory, consisting of explicitly

stated assumptions, definitions, and proven theorems. Further, there is a deficiency

of prior work empirically assessing the utility of such theoretical developments.

This thesis, in short, argues for a theory of lexical semantics grounded in universal

lexical concepts, and demonstrates, via experimental evidence, that such a theory is

important for developing novel, useful, interpretable methods and resources.

The thesis begins with a novel theoretical model for wordnets, a class of re-

sources commonly used in lexical semantics. Key definitions are grounded in lexi-

cal concepts, culminating in an empirically validated set of best practices for word-

net construction. Next is an investigation of word senses and translations, beginning

at the level of lexemes, the most basic level of semantic distinction in a lexicon, and

proceeding to more fine-grained sense distinctions. This ultimately yields a novel

method semantic tagging method, with applications to word sense disambiguation.

The thesis concludes with a novel analysis of semantic tasks themselves, borrowing

from theoretical computing science the notion of reducibility, and finally proposing

the first taxonomy of semantic tasks. Taken together, these contributions represent

substantial progress toward the development of a theory of semantics, and for the

development of interpretable methods and resources for semantic tasks.
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Preface

This thesis is principally comprised of five academic papers, three of which have

been published in peer-reviewed venues. Early versions of the other two papers

are publicly available as pre-print documents. Each of these papers represents a

collaborative effort between myself and my supervisor, Dr. Greg Kondrak. I was

involved with all aspects of each paper, from the initial theoretical and empirical

design, to implementation and programming, to writing the papers. Except where

otherwise noted, I implemented and conducted all experiments presented in this

thesis.

Modifications to the published papers have been made where necessary, and to

improve formatting and ease of reading, but the content has generally been pre-

served. In particular, although I am listed as the sole author of this thesis, the use of

first-person plural pronouns (“we”, “our”, etc.) has been retained throughout.

Chapter 2 is available in pre-print (Hauer and Kondrak, 2020b).

Chapter 3 was published in the Proceedings of the AAAI Conference on Artifi-

cial Intelligence in 2020 (Hauer and Kondrak, 2020a).

Chapter 4 is available in pre-print (Hauer and Kondrak, 2021).

Chapter 5 was published in the Proceedings of the 2022 Conference of NAACL

HLT (Hauer and Kondrak, 2022).

Chapter 6 was published in the Findings of the Association for Computational

Linguistics: ACL 2023 (Hauer and Kondrak, 2023).

Citations of these and other papers published during my doctoral program are

included in the references section at the end of the thesis.

Material from these papers has in some cases been relocated, copied, or adapted

to other parts of the thesis.
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Chapter 1

Introduction

Computational lexical semantics is the study of automated processes which depend

on the meaning of words in human languages (Jurafsky and Martin, 2009). To en-

able machines to answer questions, translate text, retrieve information, or any of a

variety of other important and interesting natural language processing (NLP) tasks,

a computational representation of word meaning is required. This is complicated

by the semantic ambiguity of natural languages, the uncertainty of word meaning

caused by the ability for words to express different meanings depending on the con-

text. For example, given the question “Do bats live nearby?” an automatic question

answering system would need to infer that the user is most likely asking about the

“animal” sense of bat, rather than the “club” sense, and answer accordingly. The

task of computationally resolving this semantic ambiguity by mapping the meaning

of a word to an entry in a sense inventory – that is, of automatically identifying the

sense of a word in context – is known as word sense disambiguation (WSD), and

has long been a central focus of research in lexical semantics. Further, if it was

necessary to automatically translate the aforementioned question into, for example,

French, a translation program would need to be able to recognize that bat should be

translated as chauve-souris, rather than batte. Thus, it should be clear that resolving

semantic ambiguity, and the study of semantics in general, has been, and remains,

vital to the progress of natural language processing (NLP), the field of artificial

intelligence research involving human languages (Navigli, 2018).

Beyond applications to human end-users, as in the above examples of ques-

tion answering and translation, semantic tasks have been shown to be useful as a
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precursor to tasks outside of lexical semantics. For example, the task of semantic

parsing, in which the meaning of an input sentence must be represented in a struc-

tured machine-readable format, has been shown to benefit from the use of a WSD

system (Martı́nez Lorenzo et al., 2022). While continuous vector embeddings of

semantic knowledge have dominated the field in recent years, such findings demon-

strate that the ability to link words in context to discrete entries in a database is still

relevant to NLP research.

On the subject of contextualized embeddings, semantic tasks are also of interest

as a means of evaluating representations of linguistic phenomena. For example,

Loureiro et al. (2022) propose a novel method of creating embeddings of word

senses, via pre-trained language models based on the transformer architecture. To

demonstrate the utility of this method, they apply their embeddings to a variety

of semantic tasks such as WSD, the word-in-context (WiC) task (see Chapter 5),

and sense similarity, with stronger results being interpreted as evidence of better

representations. Lexical semantics therefore remains vital for measuring progress

in NLP, particularly with recent proposals of challenge datasets (Maru et al., 2022).

Despite its importance to NLP and AI in general, lexical semantics suffers from

a lack of a sound, human-readable theoretical foundation. Contemporary seman-

tic research is focused almost exclusively on improving performance on bench-

mark datasets (Tedeschi et al., 2023), leading to a “scientific debt” (Nityasya et al.,

2023), a sacrifice of scientific understanding and predictability in favor of a purely

engineering-based approach to achieve higher performance on benchmarks. Defi-

nitions are often inconsistent and unclear (Urešová et al., 2018); assumptions are

often unstated and untested (Yao et al., 2012). Perhaps most vitally, there is no

clearly articulated set of axioms and theorems for lexical semantics. Having a set

of fundamental assumptions, and a sound exploration of what follows from them,

would facilitate the establishment of a set of best practices, that is, what properties

methods and resources ought to have. It would also set clear expectations arising

from those practices: what we can reasonably expect to do with those methods and

resources. The intuition is that scientific results and artifacts based on a clearly

stated theory of lexical semantics will benefit from greater interpretability and pre-

2



dictability.

This thesis is comprised of five principal chapters, each one aimed at bolstering

the theoretical foundations of computational lexical semantics. Each contains a dis-

cussion of pertinent concepts (tasks, resources, etc.) as well as relevant prior work.

Each contains not only clearly stated theoretical claims, but also empirical valida-

tion on previously published datasets and resources, supporting the soundness of

our theoretical arguments. The essential thesis statement of this work is as follows:

An empirically-validated theory of sense, synonymy, translation, and lexical

concepts yields an improved understanding of lexical resources, methods and

tasks, including novel evidence for linguistic hypotheses, and a taxonomy of

semantic problems.

1.1 Prior Work on Lexical Semantics

In this section, we will give a brief overview of relevant historical trends in com-

putational lexical semantics, with a focus on its flagship task, word sense disam-

biguation (WSD), and, in particular, its relation to translation. We will follow the

development of the field from its origins in the earliest days of natural language

processing, to the present day, with methods reaching the noise ceiling imposed by

human inter-annotator agreement.

As mentioned above, WSD is the task of automatically labeling a word in con-

text with its sense, chosen from a given sense inventory. A classic example of an

ambiguous word is bank, which may be used to refer to a financial institution (as

in, “The bank hired a new manager.”), a building owned by such an institution, (as

in, “The bank is near the supermarket.”), or sloping land near a river (as in, “The

bank of the river was slippery.”). We will formulate a precise definition of sense,

alongside other terms, in Chapter 2; there we will also discuss the assumptions we

make regarding WSD. For now, it will suffice to think of a sense inventory as a list

of the meanings of a word in a dictionary, each represented by a definition or gloss

describing its meaning (indeed, early work in WSD used exactly this formulation).

The origins of lexical semantics, and word sense disambiguation in particu-

3



lar, relate to the necessity of understanding word meaning for machine translation

(Weaver, 1949). Decades later, the proliferation of machine-readable dictionaries

would enable the work of Lesk (1986), who suggested a dictionary-based WSD

method which would be come the first true baseline method for WSD.

In the 1990s, the increasing availability of multilingual resources ushered in the

era of translations as sense inventories (TSI). Brown et al. (1991) and Dagan et

al. (1991) developed statistical approaches to WSD, with the former presenting a

direct application to statistical machine translation. The central idea is that differ-

ent senses of a word translate differently; thus, knowledge of the sense of a word

could facilitate its translation, and knowledge of the translation of a word could

help identify its sense. Gale et al. (1992b) were the first to explicitly define WSD

in terms of identifying the correct translation, for example, reducing the task of

distinguishing the “tax” and “obligation” senses of duty to choosing the correct

French translation (droit or devoir). The TSI paradigm influenced the landmark

WSD work of Yarowsky (1995) and Schütze (1998). By the late 1990s, the align-

ment of sense distinctions with translation distinctions was directly proposed by

Resnik and Yarowsky (1997).

Just as multilingual data and translation dominated the WSD literature in the

1990s, WSD in the 2000s was heavily influenced by the rising popularity of Word-

Net (Miller et al., 1990). WordNet is a lexico-semantic knowledge base for English

which arranges words into sets of synonyms, or synsets. Each synset is associated

with a single part of speech: noun, verb, adjective, or adverb. Each synset is also

associated with a gloss, and, optionally, one or more example usages of the corre-

sponding concept. For example, one synset contains the words discipline, subject,

and field, with the gloss “a branch of knowledge”, and examples such as “in what

discipline is his doctorate?”. A word may be in more than one synset. For example,

field shares a different synset with plain and champaign. Synsets are further linked

by semantic relations, such as hypernymy; the plain synset has as its hypernym a

synset containing land, with the gloss “the solid part of the earth’s surface”.

Despite being originally designed for psycho-linguistics, it became popular as a

freely-available knowledge-rich machine-readable dictionary. In particular, Word-
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Net quickly became both the de facto sense inventory and a widely used knowledge-

base for English WSD (Navigli, 2009). The notion was that the senses of a word

correspond to the synsets it is an element of. Continuing the above example, field

has WordNet senses meaning “a branch of knowledge” and “extensive tract of level

open land”, among others, corresponding to the various synsets containing it. Thus,

English WSD, in practice, became the task of identifying which WordNet sense a

given word had in a given context.

While concerns were raised about the fine granularity of WordNet senses (Nav-

igli, 2006; Hovy et al., 2006), it nevertheless served as the sense inventory for the

first WSD shared tasks, international competitions which challenged contestants to

devise novel approaches to WSD on shared datasets. Among the first were shared

tasks at Senseval-2 (Edmonds and Cotton, 2001), Senseval-3 (Snyder and Palmer,

2004), and SemEval 2007 (Pradhan et al., 2007). SemCor (Miller et al., 1993), a

subset of the English Brown Corpus1 consisting of over 200,000 tokens annotated

with WordNet senses quickly found use as a standard training corpus for supervised

WSD2.

While interest in translation continued throughout the 2000s (Ide, 2000; Chan

et al., 2007; Apidianaki, 2008), such work had little apparent influence on the di-

rection of WSD. WordNet and SemCor, purely English resources, were now the

core of WSD research. As the 2010s began, Zhong and Ng (2010) published It

Makes Sense (IMS), a supervised WSD system which employed the word expert

model, training a separate supervised machine learning classifier for each word in

the training data. The release of IMS can be viewed as representing a firm end

to the era of translations as sense inventories. This freely available state-of-the-art

approach used exclusively contextual features, achieving remarkable results with

no reference to multilingual information. Iacobacci et al. (2016) demonstrated that

IMS could be enhanced through the addition of static word embeddings, such as

1http://korpus.uib.no/icame/manuals/brown/
2Following standard machine learning terminology, a computational method for solving a prob-

lem is said to be supervised if it depends on labelled data, i.e. data on which the task has already

been completed, such that the method can be trained by example. Methods with no such depen-

dency are unsupervised. A corpus refers to a large body of text, often organized and associated with

supplementary data.
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those created by WORD2VEC (Mikolov et al., 2013), a result which, being based on

dense embeddings created via neural network models, can be viewed as the begin-

ning of the modern era of WSD research. That IMS continued to see use toward,

and beyond, the end of the decade (Scarlini et al., 2019; Hauer et al., 2021b) is a

testament to its influence on the field.

In the late 2010s and early 2020s, the transformer architecture (Vaswani et al.,

2017) came to dominate countless areas of NLP research, and lexical semantics was

no exception. WSD methods leveraging transformer-based pre-trained language

models such as BERT (Devlin et al., 2019) had approached, and finally exceeded,

80% accuracy on standard WSD datasets. These include BEM (Blevins and Zettle-

moyer, 2020), ESCHER (Barba et al., 2021a), and ConSeC (Barba et al., 2021c).

The last of these, ConSeC, remained the state of the art over a year after its publi-

cation. As WSD performance now appeared bounded only by the level of human

inter-annotator agreement, researchers placed increasing focus on rare senses, with

works such as Blevins and Zettlemoyer (2020) and Yoon et al. (2022) evaluating the

performance of their models on relatively rare senses. Maru et al. (2022) presented

novel datasets designed to test the ability of models to disambiguate challenging

instances. Other works have focused on the development of new semantic tasks,

with the goal of avoiding WSD and sense inventories entirely. Examples of this

trend include the WiC task (Pilehvar and Camacho-Collados, 2019; Martelli et al.,

2021), and work on gloss generation (Bevilacqua et al., 2020). Nevertheless, WSD

remains useful for downstream applications such as linking tokens to lexical knowl-

edge bases for semantic parsing (Martı́nez Lorenzo et al., 2022).

Arriving at the present day, we find that there remain vital gaps in the litera-

ture of computational lexical semantics. While WordNet and its successors – which

we will discuss further in Chapter 2 – have undeniably had a positive impact on

the field, there remains a lack of theoretical understanding of the phenomena un-

derlying these resources, or even clear, useful definitions of the relevant terms. It

is unclear how such resources should be defined, constructed, or evaluated. The

paradigm of using translations as a means of defining sense distinctions, or as a

source of knowledge, has been largely discarded, leaving open the question of how
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– or if – multilingual knowledge can benefit contemporary lexical semantics. The

proliferation of new tasks and benchmarks for language models raises the question

of how those tasks relate to one another. These and other open questions make it

clear that, while great progress has been made in lexical semantics over the past

decades, there is still much more to be done.

1.2 Outline

Having established the history and current state of lexical semantics, this section

briefly outlines the content and contributions of this thesis.

1.2.1 A Theory of Sense, Synonymy, and Translation

Chapter 2 begins by addressing by directly addressing the lack of sound theoreti-

cal foundations for lexical semantics. In particular, it examines wordnets, lexico-

semantic resources patterned after the Princeton WordNet (see Section 1.1. Such

resources are essential to modern lexical semantics, serving as sense inventories

(Raganato et al., 2017), and sources of both structured linguistic knowledge and

semantically-disambiguated text such as glosses and examples (Huang et al., 2019).

Despite their importance, there are numerous outstanding issues with the definition,

construction, and usage of wordnets. We work to resolve these problems by pre-

senting a first-of-its-kind theory of sense, synonymy, and translation. This includes

clearly stated definitions, axioms, and theorems, along with an empirical validation

on two semantic tasks, and a discussion of the broader implications of our theory.

1.2.2 Translation and Lexical Semantics

It is well known that distinct senses of a word may translate differently. For ex-

ample, the “flat ground” sense of field can be translated into French as champ,

while the “area of study” sense is translated as domaine. On the other hand, this

need not be the case: for example, Gale et al. (1992a) observe that the financial

and psychological senses English word interest can both be translated into French

as intérêt. Having established a theoretical foundation for reasoning about lexical
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semantics, we next investigate the relation between the important linguistic phe-

nomena of senses and translations. This investigation spans Chapters 3 and 4.

In Chapter 3, we investigate the phenomenon of homonymy, a rare special case

of semantic ambiguity, in contrast to the far more common polysemy. Our princi-

pal claim in this chapter is our one homonym per translation hypothesis (OHPT),

which asserts that homonymous senses, senses which are semantically unrelated but

nevertheless share an orthographic form, must be translated differently. We further

advance the novel hypotheses that homonymous senses are not found together in

discourses, collocations, or clusterings of fine-grained senses. We describe each of

these hypotheses in detail, and demonstrate strong empirical support for each. In

the course of these experiments, we also produce a novel resource: a database of

English homonymous senses linked to WordNet.

Following that, Chapter 4 explores the historical, theoretical, and empirical use

of translation information – including fine-grained sense distinctions found in con-

temporary semantic resources such as WordNet – to semantic tasks, namely WSD.

Early WSD research (approximately speaking, prior to the year 2010) made exten-

sive use of translations as a source of knowledge not only for WSD methods, but

for defining senses themselves; indeed, Resnik and Yarowsky (1997) proposed out-

right “to restrict a word sense inventory to those distinctions that are typically lex-

icalized cross-linguistically.” This chapter discusses the assumptions which would

need to hold for this “translations as sense inventories” paradigm to be viable, and

empirically demonstrates that these conditions do not obtain. However, we demon-

strate that translation information remains useful for lexical semantics, by propos-

ing and evaluating a novel corpus tagging method which exploits the minority of

cases where the one sense per translation assumption holds. The results show that

translation information can be used to improve the accuracy even of modern WSD

systems on recently proposed datasets designed to be challenging.

1.2.3 Analysis of Semantic Tasks

Semantic tasks play a vital role in evaluating and comparing models and meth-

ods, in addition to providing information to human end-users or downstream tasks.
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Nevertheless, they are often vaguely defined (Omarov and Kondrak, 2023), and the

relations between them are poorly understood, making it difficult to interpret and

analyze results. If two tasks are closely related, claiming state-of-the-art results on

both would be less remarkable than obtaining such results on tasks which are inde-

pendent. Chapters 5 and 6 work to address this deficiency by clearly defining and

analyzing semantic tasks.

In Chapter 5, we propose the sense-meaning hypothesis: different instances of

a word have the same meaning if and only if they have the same sense. In other

words, we hypothesize that human judgements of sameness of meaning in practical

datasets tend to align with sense distinctions in lexical resources. From this hy-

pothesis, we argue that three semantic tasks – word sense disambiguation (WSD),

word-in-context (WiC), and target sense verification (TSV) – are equivalent. By

“equivalent”, we mean that the tasks are pairwise reducible to one another: given

an “oracle” method which perfectly solves one of these tasks, analogous methods

can be created for the other two, following algorithms that we specify. We then

empirically validate these reductions, and find that these experiments support the

correctness of our reductions, and the hypothesis on which they are based.

Chapter 6 expands this theoretical analysis of semantic tasks from three prob-

lems to thirteen. We generalize the sense-meaning hypothesis to the concept-meaning

hypothesis: different word instances have the same meaning if and only if they ex-

press the same concept. This generalization allows us to include cross-lingual and

multilingual tasks in our analysis. Our investigation yields a first-of-its-kind tax-

onomy of problems in lexical semantics. Six of the thirteen included tasks form a

set of wordnet-complete problems, which are all pairwise equivalent, and to which

all other problems in the taxonomy can be reduced. Once again, we provide an

empirical validation of our reductions, and the underlying hypothesis.
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Chapter 2

A Theory of Sense, Synonymy, and

Translational Equivalence

Synonymy and translational equivalence are the relations of sameness of mean-

ing within and across languages. As the principal relations in wordnets, they are

vital to computational lexical semantics, which would benefit from a common for-

mal framework to define their properties and relationship. This chapter proposes

a unifying theoretical treatment of sense, synonymy, and translational equivalence,

along with an experimental validation. The theory establishes a solid foundation

for critically re-evaluating prior work in cross-lingual semantics, and facilitating

the creation, verification, and amelioration of lexical resources.1

2.1 Introduction

Lexical semantics is crucial to natural language understanding, a field which has

been identified by Navigli (2018) as a cornerstone of artificial intelligence. Despite

its importance and long history, there remains a lack of clear theoretical foundations

for the field; instead, research is generally focused on achieving state-of-the-art re-

sults on benchmark datasets (Tedeschi et al., 2023). The Princeton WordNet is

the prototypical example of the lexico-semantic knowledge bases we call wordnets,

which are essential to modern lexical semantics. Wordnets often serve as sense

inventories and sources of knowledge for methods of solving semantic tasks. How-

ever, there is no established theoretical framework for how such resources should

1This chapter is based on Hauer and Kondrak (2020b). See the preface for details.

10



be constructed or evaluated, or how to define and reason about the essential phe-

nomena of sense, synonymy, and translation. Without a strong underlying theory, it

is unclear what properties these resources should have, or how best to satisfy them

in practice.

Wordnets are comprised of sets of synonymous words, or synsets, each associ-

ated with a gloss describing the meaning the words in the synset share. BabelNet,

a popular example of a multilingual wordnet, contains a synset with the gloss “The

child of your aunt or uncle”, which (correctly) contains the English word cousin.

However, it also contains the Spanish word prima, which refers specifically to a

female child of one’s aunt or uncle, as well as non-lexical constructions such as

primo o prima. Should such cases be strictly regarded as errors, or should wordnets

admit a degree of flexibility with respect to translations? This question, among oth-

ers, remains open, with little prior work discussing the implications of the various

possible definitions and design decisions.

In this chapter, we bolster computational lexical semantics with a theory that

is sound, empirically validated, and immediately applicable. This theory consists

of clearly stated definitions, assumptions, and theorems. In prior work, the notions

of senses, synsets, and concepts are often confused, and theoretical assumptions

are rarely stated. Our theory seeks to remedy such deficiencies; it provides an

explanation of the relationship between synonymy and translational equivalence,

as well as the role of these relations as the basis of wordnets. It also leads to the

development of a set of best practices for creating multilingual lexical resources,

which is currently lacking.

Our key theoretical results are two theorems which we prove follow from our

assumptions and definitions. In the first, we show that a key property of synsets

can be derived from a minimal set of definitions. This supports the consistency and

minimality of our theory, and confirms (often unstated) intuitions. In the second,

we show that bilingual dictionaries can be used to create a sufficient condition for

identifying literal translations. To empirically validate our theory, we carry out ex-

trinsic evaluations on two tasks: corpus sense tagging, and automatically expanding

a wordnet. In the former, we show that automatically generated sense tags can be
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greatly improved, especially on non-English text, by applying our theory. In the

latter, we show that our theory can be used to automatically expand a wordnet by

adding senses for another language. We conclude with a discussion of the notion of

universality in semantics, and the broader implications of our theory.

2.2 Related Work

In this section, we provide a brief overview of Princeton WordNet, its importance

in lexical semantics and NLP, and its generalizations to the multilingual setting.

2.2.1 Princeton WordNet

The Princeton WordNet (Miller et al., 1990), often abbreviated to WordNet, PWN,

or WN, is an English lexical knowledge base created to facilitate the study of psy-

cholinguistics, specifically theories of lexical memory. The basic unit of WordNet is

the synset, defined in the WordNet online documentation2 as “a list of synonymous

words or collocations (e.g., ‘fountain pen’, ‘take in’)”. Each synset is associated

with a specific part of speech: noun, verb, adjective, or adverb. A word may occur

in multiple synsets, with each distinct synset occurrence corresponding to a sense

of the word. For example, bank is in 10 noun synsets and 8 verb synsets. WordNet

synsets are connected via various relations, such as hyponymy, the “is a” relation,

and meronymy, the “has a” relation. Finally, each synset is associated with a gloss

describing the shared meaning of the words it contains, and, optionally, one or more

example usages.

From its origins in psychology, WordNet has found widespread use in natu-

ral language processing, particularly in lexical semantics. It has become the stan-

dard sense inventory for English word sense disambiguation (Raganato et al., 2017;

Maru et al., 2022), or WSD, providing the base set of sense tags a WSD system

must use to classify a given word in context. WordNet was used as the sense in-

ventory for SemCor (Miller et al., 1993), a sense annotated corpus which remains

in use decades after its creation as training data for WSD systems (Barba et al.,

2https://wordnet.princeton.edu/documentation/wngloss7wn
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2021c). WordNet’s example sentences were used to construct the first Word-in-

Context (WiC) dataset (Pilehvar and Camacho-Collados, 2019). It has also been

used as a source of knowledge for solving semantic tasks (Huang et al., 2019;

Loureiro et al., 2022).

2.2.2 Multilinguality and Multi-Wordnets

Multilingual knowledge has played a key role in the development of lexical seman-

tics (Brown et al., 1991; Dagan et al., 1991), shared tasks (Mihalcea et al., 2010;

Lefever and Hoste, 2010), and modern WSD systems (Luan et al., 2020). This

has motivated the development of WordNet-like resources — wordnets — for lan-

guages other than English, or which include information on multiple languages.

There are two principal paradigms for creating multilingual wordnets: expand and

merge (Vossen, 1996).

The expand model adds words in other languages to the synsets of an exist-

ing base wordnet (in practice, typically Princeton WordNet). Examples include

MultiWordNet (Pianta et al., 2002), Open Multilingual WordNet (Bond and Foster,

2013), and BabelNet (Navigli and Ponzetto, 2012). Such wordnets tend to be bound

by the structure of the Princeton WordNet, with no clear method of handling lexical

gaps, that is, words or senses in the newly added language that have no equivalent

in the base language.

The merge model constructs a wordnet independently for each language, and

then links them via inter-lingual relations, similar to the intra-lingual relations which

exist within monolingual wordnets. Examples include EuroWordNet (Vossen, 2004)

and Polish WordNet (Rudnicka et al., 2012). While this method tends to mitigate

linguistic bias, it has proven less successful in practice, as both the construction and

mapping processes are complex and labor-intensive.

We observe a distinct lack of theoretical investigation or understanding of how

multilingual wordnets should be constructed. Assumptions about cross-lingual se-

mantics are often unstated and contradictory across different works (Yao et al.,

2012). It is also unclear how to define cross-lingual synonymy (Urešová et al.,

2018), and how to define and maintain the essential properties of synsets which
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contain elements from multiple languages (Kwong, 2018).

2.3 Theory

To facilitate formal description of and reasoning about semantic resources, we for-

mulate the theoretical properties of wordnets, and propose a unified treatment of

synonymy and translational equivalence. While these properties are often implic-

itly assumed in prior work, we precisely formulate their theoretical foundations,

and ensure their consistency and minimality.

We view existing lexical resources as imperfect approximations of theoretical

models. The divergence of contemporary resources from a hypothetical ideal should

not preclude their theoretical analysis.

2.3.1 Words and Sentences

Our basic definitions follow the standard usage in computational lexical semantics.

In particular, we define “word” in a way that corresponds with the units of lexical

ontologies, which are not necessarily individual orthographic words, but include

non-compositional phrases, such as single out. Lemmas represent sets of word

forms that are associated with certain morpho-syntactic properties (e.g., cut, cuts,

and cutting). This is a computational definition, which makes no distinction be-

tween words that represent a single lexeme vs. homonyms such as bank. We do

consider as distinct words that differ in part of speech (POS) or language.

Definition 1. A word is a triple consisting of a lemma, POS, and language.

Our focus is on content words, i.e. words that have semantic value (nouns,

verbs, adjectives, and adverbs), as opposed to function words (e.g. determiners,

conjunctions). Henceforth, we use the term “word” to refer to content words, unless

noted otherwise.

It is important not to conflate words in lexical ontologies (“lemmas”) with word

instances in text corpora (“word tokens” or “words in context”). We refer to the

text containing a word instance as its context, and to the word instance itself as the

focus. Contexts that consist of the same discourse but differ in focus are considered
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distinct. Following Miller (1995), we refer to the limits of a linguistic context as a

sentence, which need not necessarily correspond to an orthographic sentence.

2.3.2 The Sender Axiom

While sentences can be ambiguous, we make a simplifying assumption that any

given sentence is intended by the sender to have a single specific meaning, even if

it may appear ambiguous to the receiver. The intuition is that receivers should be

able to clarify or confirm their interpretation of the sentence by responding with a

paraphrase that the sender could verify as conveying the same meaning. We refer

to this assumption as the Sender Axiom.3

The Sender Axiom implies that each word instance in a sentence has exactly

one meaning, since a sentence containing an ambiguous word instance would nec-

essarily also be ambiguous. The Sender Axiom excludes intentionally ambiguous

expressions such as puns, as well as expressions where multiple word instances

are compressed into a single orthographic instance, e.g., “Joan subscribes to the

newspaper that Bill works for” where the second occurrence of newspaper is latent.

2.3.3 Concepts and Senses

A lexical concept, or simply concept, refers to a discrete unit of word meaning

(Miller, 1995), which is unambiguously defined by a concept gloss. A gloss is a

special type of a context, in which the entire definition is the focus (this will be

elaborated on in later chapters). We assume that an expert lexicographer can derive

a gloss from a set of contexts in which the concept is expressed.

A word that can express a given concept is said to lexicalize the concept. A

single concept may be lexicalized by multiple words; for example, the nouns path

and route express the same concept in some contexts.

Word senses correspond to distinct concepts that can be expressed by a given

word.

Definition 2. A word sense is a pairing of a word with a concept.

3In support of this axioms generality, fewer than 0.3% of word tokens in SemCor are annotated

with multiple WordNet senses.
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Language E Language F

e1 e2 e3 . . . f1 f2 . . .

C1 s1,1 t1,1
C2 s1,2 s2,2 t1,2
C3 s2,3 s3,3 t2,3
. . . . . . . . .

Table 2.1: Word senses as the intersection of words (columns) and concepts (rows).

Specifically, we could instantiate the variables with the English words e1 = earth,

e2 = ground, e3 = reason, and the Italian words f1 = terra, f2 = motivo.

For each word, there is a one-to-one mapping between its senses and the con-

cepts that it can express. The number of senses of each word is equal to the number

of concepts that it lexicalizes. A monosemous word has only one sense; a poly-

semous word has multiple senses (Miller, 1995). All homonymous words are also

polysemous; the converse is not true.

Table 2.1, adapted from Miller et al. (1990), illustrates the relationship between

words, concepts and senses: columns correspond to words, rows correspond to

concepts, and each non-empty cell is a word sense.

2.3.4 Synonymy

Synonymy is the relation of sameness of meaning (Murphy and Koskela, 2010).

Our focus is on word synonymy.

Definition 3. Synonyms are words that express the same concept given some con-

text.

For example, the words e1 and e2 in Table 2.1 are synonyms, as both can express

concept C2.

Synonymy can be established by a substitution test: Two words are considered

synonymous if they can be substituted for one another in some sentence without

changing its meaning (Murphy and Koskela, 2010). For example, the words gist

and essence are synonyms because the former can be substituted for the latter in the

phrase “we understand the gist of the argument”. Our definition of word synonymy

above implies the correctness of the substitution test: if two words are interchange-

able in a sentence, then they express the same concept given the context of that
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sentence.

In general, word synonymy is not an equivalence relation, because it is reflexive

and symmetric, but not necessarily transitive. For example, accusation and charge

are synonyms, as are charge and cost, but accusation and cost are not synonyms.

Words that have the same meaning given any context are called absolute synonyms.

(Edmonds and Hirst, 2002). Absolute synonymy is an equivalence relation.

2.3.5 Translational Equivalence

The cross-lingual analogue of monolingual synonymy is translational equivalence,

the relation of sameness of meaning between expressions in distinct languages,

which we refer to as cross-lingual synonymy (Urešová et al., 2018).

Definition 4. Translational equivalents are cross-lingual synonyms.

We postulate that the relations of monolingual and cross-lingual synonymy to-

gether constitute a single relation of multilingual synonymy, which is applicable

to any pair of words in the same or different natural languages. For example, the

words e1 and f1 in Table 2.1 are translational equivalents as both express concept

C2. Under our postulate, e1, e2, and f1 are multi-lingual synonyms.

Cross-lingual synonymy can be established by a translation test, a cross-lingual

analogue of a substitution test: two words are translational equivalents if one is

a literal translation of the other in some sentence, such that the meaning of the

sentence is preserved. More generally, the words are required to be mutual literal

translations given some context. The argument for the correctness of the translation

test is analogous to the argument for the substitution test in Section 2.3.4.

2.3.6 Wordnets and Synsets

A wordnet is a lexical ontology in which words are organized into sets of synonyms,

or synsets. Our definition of a synset follows Miller (1995):

Definition 5. A synset is the set of words that can express a given concept.

For example, in the Princeton WordNet, the synset comprised of the words

plain, field, and champaign represents a single concept which all three words can
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express, glossed as “extensive tract of level open land.” Each word instance corre-

sponds to one concept, one sense, and one synset. That synset contains the word, as

well as any other words that lexicalize the concept. It further follows that synsets

can be equivalently defined as either sets of words or sets of unique word senses.

A different definition of a synset is provided in the Princeton WordNet docu-

mentation: “a set of words that are interchangeable in some context.”4 Unfortu-

nately, this definition fails to exclude the possibility of multiple “duplicate” synsets

that correspond to the same concept but different contexts. Such duplicate synsets

are considered highly undesirable (McCrae et al., 2020), as they result in duplicate

word senses. To avoid this, a wordnet should contain only one synset that corre-

sponds to any given concept.

If this uniqueness constraint is satisfied, the following five synset properties can

be maintained in wordnets.

1. A word is monosemous iff it is in a single synset. A word is polysemous iff it

is in multiple synsets.

2. Synonyms share at least one synset. Absolute synonyms share all their synsets.

3. Words can express the same concept iff they are in the same synset.

4. Every word sense corresponds to exactly one synset.

5. Every sense of a polysemous word corresponds to a different synset.

The above synset properties follow from the preceding definitions and assump-

tions. The only one that may require a proof is synset property #2. The Wordnet

Theorem in the next section implies synset property #2, and establishes that the

implication also holds in the other direction.

2.3.7 The Wordnet Theorem

Theorem 1. Words share a synset if and only if they are synonyms.

Proof. By the definitions in Sections 2.3.4 and 2.3.5, synonyms, in the same or

different languages, can express the same concept, and thus must share the synset

that corresponds to the concept. To prove the other direction, let wx and wy be

4https://wordnet.princeton.edu/documentation/wngloss7wn
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words that share a synset. Then, both wx and wy express the synset’s concept given

the context of its gloss. Therefore, wx and wy are synonyms.

Why is this theorem important? Isn’t the term “synset” short for “synonym set”?

In fact, the basic units of wordnets are sets of word senses. Our theorem confirms

the unproven intuition that they can be represented by sets of synonyms, which is

implicitly assumed in the wordnet literature (Miller, 1995).

The Wordnet Theorem therefore establishes that the link between senses and

synonymy need not be an axiom. Rather, it can be demonstrated to follow from our

concept-based definitions. In addition, the proof of the theorem provides evidence

that our theoretical framework is consistent.

Another consequence of Theorem 1 is that attempts to substantially reducing

wordnet sense granularity, e.g. by clustering (Navigli, 2006; Hovy et al., 2006), fail

to preserve the synset properties from Section 2.3.6. Thus, while the granularity of

wordnets may occasionally be a practical inconvenience, it is a theoretical necessity.

2.3.8 Multilingual Wordnets

Under our unified treatment of monolingual and cross-lingual synonymy, the Word-

net Theorem also establishes the theoretical foundation of multilingual wordnets,

such as BabelNet (Navigli and Ponzetto, 2012) and Open Multilingual WordNet

(Bond and Foster, 2013). Like monolingual wordnets, they are comprised of inter-

connected synsets which contain words that can express a given concept. Since

the Wordnet Theorem makes no assumptions about the languages of the words, its

proof establishes that words from distinct languages share a synset if and only if

they are cross-lingual synonyms.

The synset properties specified in Section 2.3.6 must be likewise maintained in

multi-wordnets. In particular, words are translational equivalents if and only if they

share a multilingual synset (Navigli and Ponzetto, 2010).

It follows that, given a multilingual wordnet which maintains the synset proper-

ties, monolingual synsets can be obtained from the multilingual synsets by restrict-

ing them to a given language. Multilingual wordnets typically link their synsets to

the Princeton WordNet (Kafe, 2023), and so are expected to preserve its synset
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properties. However, care must be taken to maintain synonymy within synsets

(Kwong, 2018).

2.3.9 The Bitext Theorem

In this section, we state and prove a theorem which establishes a connection be-

tween multilingual wordnets and word-aligned parallel corpora (bitexts). While

bitexts can be mined for multilingual synonyms (i.e., translational equivalents), not

all translation pairs are literal (i.e. meaning-preserving). Theorem 2 provides a

way to distinguish between literal and non-literal translations. We posit that any

literal translation pair which is identified in a bitext should also share a multilingual

synset, which corresponds to the concept that both words express in their respective

languages.

Theorem 2. Let we and wf be aligned words in the sentence Se and its translation

Sf , respectively. If we and wf are synonyms then they express the same concept in

Se and Sf .

Proof. For the purposes of this proof, we assume that Sf is produced from Se by

a translation agent TA, which could be a human or a computer program. We as-

sume that in creating Sf , TA is guided by two priorities: (1) fidelity (preserving the

meaning of Se), and (2) brevity; a translation composed of fewer words is preferred

to a longer translation.

In order to preserve meaning (the first priority), for every word we in Se, TA

must identify the concept s that is expressed by we, and attempt to find a word

or phrase that expresses s in the target language. If such a cross-lingual synonym

wf can be found, TA will prefer it to a phrase, because of the second priority,

conciseness. Thus, both we and wf will express the same concept.

On the other hand, if TA cannot find a single word wf that expresses s (for

instance, due to a lexical gap), TA will prefer a phrase that preserves the meaning

of s to a word that expresses a similar but different concept, as meaning fidelity is a

higher priority than brevity. Another option available to TA is to forgo expressing

the concept s directly, and instead literally translate a longer segment of Se which
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includes we. In either case, Sf will not contain a single word wf that aligns one-to-

one with we, and so the theorem does not apply. Therefore, if the words we and wf

are present and correctly aligned, they must express the same concept.

Theorem 2 establishes a theoretical foundation for algorithmic methods for

synset construction from bitexts, which we explore in Section 2.4.2. Specifically,

if aligned sentences are literally translated, and the aligned words are synonyms,

then the two word instances express the same concept. If we can establish the sense

of one of the two words, its translation can be immediately disambiguated as well.

Furthermore, both words should be in the synset that corresponds to that concept.

2.3.10 Synonymy and Translation of Words

Yao et al. (2012) observe that prior work relating to word senses and translations,

such as Gale et al. (1992a) and Diab and Resnik (2002), tend to make one of the two

“alternate” assumptions, which have the same antecedent but different consequents:

Antecedent: Two different words ex ∈ E and ey ∈ E are aligned to the same

word f in language F .

Consequents:

1. f is polysemous (“polysemy assumption”)

2. ex and ey are synonyms (“synonymy assumption”)

Yao et al. (2012) perform experiments on two bilingual corpora, using a lexical

sample of 50 words from OntoNotes (Hovy et al., 2006), and conclude that neither

assumption holds significantly more often than the other. However, they stop short

of proposing a principled solution to the problem.

In our view, neither of the two assumptions need hold universally. For example,

although both time and weather are translations of the Italian word tempo, it would

be wrong to conclude that the two English words are synonyms. This is because

synonymy of words is not transitive in either monolingual or multilingual setting.

On the other hand, although both bundle and package are translations of the Italian

involto, this does not imply that the Italian word is polysemous; indeed, both En-

glish words translate a single sense of involto. In fact, the two consequents are not
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exclusive; for example, test and trial, which are synonyms, are both translations of

Italian prova, which is polysemous.

We postulate that the polysemy and synonymy assumptions can be integrated

into a single theorem, which entails a non-exclusive disjunction of the two conse-

quents, i.e., one or both of them may be true, but they cannot both be false.

Theorem 3. If words ex and ey in language E are both literal translations of word

f in language F then ex and ey are synonyms or f is polysemous.

Proof. The antecedent implies that there exists a concept sx which can be expressed

by both ex and f , and that there exists a concept sy which can be expressed by

both ey and f . If sx is different from sy, f can expresses multiple concepts, so

it is polysemous; otherwise, ex and ey can express the same concept, so they are

synonyms.

Since Theorem 3 is formulated at the level of lemmas, rather than word in-

stances, it is applicable to word translations in bilingual dictionaries, under the as-

sumption that such translations are literal. However, it can also be applied to word

instances in bitexts, provided that the aligned translations are literal, i.e., they ex-

press the same concepts. This can be decided on the basis of Theorem 2 from

Section 2.3.9.

In conclusion, our theory provides a theoretical explanation and resolution of

the issue raised by Yao et al. (2012): Systems that are based exclusively on one of

the two assumptions, such as Bannard and Callison-Burch (2005) or Lefever et al.

(2011), fail to consider a substantial number of relevant instances, which adversely

affects their effectiveness.

2.4 Experimental Evidence

In this section, we describe experiments that test the predictions of our theory. In

particular, we demonstrate how our theory can be used to improve sense tags on

parallel corpora and automatically expand wordnets with additional languages.
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lex(s) - word of which s is a sense

M(s) - multi-synset that contains sense s

M(w) - set of multi-synsets that contain word w

for each aligned sense pair (s, t) do do

if CL− Syn(s, t) and M(s) 6= M(t) then

C ←M(lex(s)) ∩M(lex(t))
if M(s) ∈ C and M(t) 6∈ C then

CORRECT: t← (lex(t),M(s))

if M(s) 6∈ C and M(t) ∈ C then

CORRECT: s← (lex(s),M(t))

if M(s) 6∈ C and M(t) 6∈ C then

ADD: lex(t) to M(s)
CORRECT: t← (lex(t),M(s))

Figure 2.1: Pseudocode for our sense tag correction method.

2.4.1 Automatic Sense Tag Correction

In this section, we empirically test our theory of sense, synonymy, translation, and

multilingual wordnets. Specifically, we apply Theorem 2 (Section 2.3.9), which is

based on said theory, to the task of correcting sense tags in a bitext.

Our task is, essentially, word sense disambiguation (WSD), the task of tagging a

word in context with the correct entry in a given sense inventory. More specifically,

we take as input a bitext that has been so disambiguated, and seek to improve the

sense tags by detecting and correcting errors.

Method

Figure 2.1 shows the pseudocode for our method. Similar to Luan et al. (2020),

Hauer et al. (2021c), and Mallik and Kondrak (2023), we use translation informa-

tion to post-process and correct WSD output. Our approach differs in two ways:

First, we test whether each pair of aligned words are synonyms. Under Theorem

2, the conjunction of synonymy and alignment provides strong evidence that the

aligned words express the same concept – i.e. that the translation is literal – and

therefore should have sense tags corresponding to the same multilingual synset.

Second, we posit that our theory is sufficiently strong to provide evidence of the

existence of senses not attested in the sense inventory. Our method therefore has
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the ability to tag a token with a synset that does not actually contain the word,

effectively adding a new sense to the inventory.

The method works by examining each aligned word pair such that both words

are tagged with a sense; call the senses s and t and the words lex(s) and lex(t). If

lex(s) and lex(t) are synonyms (denoted by the predicate CL − Syn(s, t)), then,

by Theorem 2, they must express the same concept. Therefore, if s and t do not

refer to the same multilingual synset (denoted M(s) 6= M(t)), our theory predicts

that either s or t must be an incorrect annotation. Following Mallik and Kondrak

(2023), if M(s), the synset to which s corresponds, contains lex(t), but M(t) does

not contain lex(s), we replace t with the sense of lex(t) corresponding to M(s).

An analogous operation is performed if the roles of s and t are reversed. Different

from prior work, if lex(s) is not in M(t) and lex(t) is not in M(s), our method

adds a sense of lex(t) corresponding to M(s) – equivalently, it adds word lex(t)

to synset M(s) – and replaces t with this new sense. In practice, the language of s

will be English; since English WSD performance is typically higher than in other

languages, we hypothesize that, in cases such as this, the English WSD output is

more likely to be correct.

Resources

We use MultiSemCor (Bentivogli and Pianta, 2005) as our bitext. MultiSemCor,

or MSC, was created by manually translating SemCor into Italian. It was then

word-aligned using a knowledge-based aligner, KNOWA (Pianta and Bentivogli,

2004), and the gold sense tags from SemCor were propagated to the Italian side

using MultiWordNet (Pianta et al., 2002). We use the sense annotations, on both

the English and Italian sides, as a ground truth to evaluate against; they are not

provided to our method.

We sense tag the corpus by applying AMuSE-WSD (Orlando et al., 2021), with

the provided AMUSE-LARGE-MULTILINGUAL-CPU model. It is these semantic la-

bels to which we apply our error correction method. The result is 116884 sense

tagged tokens on the English side, and 114629 on the Italian side.
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Language(s) EN IT EN+IT

Improved 173 5324 5497

Broken 807 24 831

Neutral 121 1001 1122

Total 1101 6349 7450

Table 2.2: Results for our sense tag correction method.

We use BabelNet 5.1 as our multilingual wordnet, accessed via the Python API5.

This is used to identify the synsets of a given word, as required by Algorithm 2.1.

We do not use BabelNet to implement the CL-Syn function, in an effort to keep

the synonymy predicate independent of our multilingual wordnet. Instead, to eval-

uate the cross-lingual synonymy predicate, we use the freely available Wiktextract

(Ylonen, 2022) and PanLex6 dictionaries. Specifically, given an aligned sense pair

(s, t), CL − Syn(s, t) is true if and only if the words of which s and t are senses

are translations according to either of those dictionaries.

Results

Table 2.2 shows the results of our experiment on MSC. Here, “improved” indicates

an incorrect sense tag was changed to a correct tag, with the sense annotations

provided with MSC serving as the gold standard. Contrariwise, “broken” indicates

that a correct sense tag was changed to be incorrect. Finally, “neutral” indicates that

the sense tag was incorrect before and after the change.

The results on Italian are particularly strong. Our algorithm proposes more than

6000 corrections to AMuSE-WSD’s sense tags, and approximately 84% improve

the disambiguation with respect to the gold tags. Of the remaining 16%, almost all

are neutral, and so have no impact on the accuracy of the sense tags. Overall, our

method, based on Theorem 2, substantially improves Italian WSD.

On English, our method proposes roughly one sixth as many corrections, of

which the majority are erroneous. We attribute this to AMuSE-WSD’s relatively

high reported accuracy on English, exceeding 80% on some datasets. If the auto-

matic sense tags given to our method are already of relatively high quality, then a

5https://babelnet.org/guide
6https://dev.panlex.org/interface/
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change in those tags is more likely to be incorrect. This empirically justifies our de-

cision to “trust” the English annotation in the event that M(s) 6∈ C and M(t) 6∈ C.

Overall, of the 7450 corrections proposed by our algorithm, 74% are improve-

ments, while 15% are neutral. Only about 11% degrade the quality of the input

sense tags, almost all of them on the English side. We therefore conclude that this

experiment provides strong support for the soundness and empirical utility of our

theory.

2.4.2 Automatic Wordnet Expansion

One of the central contributions of our theory is a formalization of the wordnet

model, particularly the properties of synsets in multilingual wordnets. In this sec-

tion, we test this theoretical framework by applying it to the task of automating the

expand model of multilingual wordnet construction. In particular, we are given a

wordnetW which covers language E, and are tasked with adding words from lan-

guage F to the synsets of W . We assume access to an E-F bilingual dictionary,

and an E-F machine translation model.

Prior approaches to WordNet expansion have depended on large text corpora

(Fišer and Sagot, 2015), manual input by lexicographers (Pianta et al., 2002), word

sense disambiguation systems (Diab, 2004), other wordnets (De Melo and Weikum,

2009), or other resources (Navigli and Ponzetto, 2010). Our approach therefore

serves to demonstrate how a sound theory of multilingual lexical semantics can be

used to devise methods which are easier to apply in practice, due to making fewer

assumptions about available resources. Moreover, since our method is based on

clearly articulated definitions, axioms, and results, the created resources are more

readily interpretable.

Method

Given a wordnet W containing words from a single language E, we first select a

subset of its synsets, S (we will describe how we choose S in the next section). For

each synset S ∈ S , we retrieve the set L of lemmas it contains, its part of speech

p (noun, verb, adjective, or adverb), and its gloss g. We then create a sentence
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using the template ‘In this context, the p “lemma” means “g”.’ Here, lemma is a

randomly selected element of L. Thus, we create a template sentence corresponding

to each synset S ∈ S .

We then translate these sentences from language E to language F . For each

such sentence, we identify the translation of lemma, call it t, by extracting the

first quoted string. This heuristic assumes that the translation system preserves the

meaning and ordering of quoted strings; this assumption holds reliably in practice.

We then consult the E-F bilingual dictionary, to verify that t is indeed a trans-

lation of lemma. If so, Theorem 2 predicts that the translation is literal, that is, the

translation t expresses the same concept as lemma in the given context, and is not

e.g a hypernym or otherwise related word. If this condition holds, we add t to the

synset S corresponding to that sentence; equivalently, we create a sense consist-

ing of the lemma t and the concept corresponding to synset S. These new senses

comprise the output of our method. We refer to this method as BIDICTNET.

Resources

We use PWN as our wordnet W , making English our source language E. Our

language of translation F is French. The set S of synsets is comprised of 1000

PWN synsets chosen at random. (This was done to reduce the running time of

our method and the evaluation.) We take this approach in order to avoid biasing

our evaluation toward more frequent senses, or otherwise artificially skewing the

distribution of concepts.

For translating the template sentences, we use a commercial translation ser-

vice provided by DeepL7. We lemmatize the translations using SpaCy8, specifically

the FR CORE NEWS MD model. We derive an English-French dictionary from the

union of Wiktextract and PanLex, analogous to Section 2.4.1.

Results

Of the 1000 PWN synsets in our random sample, our method creates a total of 426

French senses. That is, for 426 of the template sentences, the English lemma and

7https://www.deepl.com/translator
8https://spacy.io/
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its French translation are found in our dictionary. Note that, since we generate one

template sentence per synset, and translate each such sentence once, our method is

limited to creating at most one sense per synset. So, in short, our method expands

426 PWN synsets by adding a French lemma.

To automatically evaluate these French senses, we compare them to three freely-

available multilingual wordnets: BabelNet (BN), Open Multilingual WordNet (OMW),

and Universal Wordnet (UWN). Each of these resources provides links between its

synsets and those of PWN. We access BabelNet through the Python API, as before,

OMW through the Python NLTK library, and UWN through the provided database9.

We consider a sense correct if it is found in the corresponding synset of at least one

of BN, OMW, or UWN.

We found that 345 of the 426 senses proposed by our method are correct, in-

dicating a precision of 81.0%. We also found that 147 of the 1000 synsets do not

contain any French senses in any of BN, OMW, and UWN; under our criteria, it

is not correct to propose any French sense for these synsets (they may, for exam-

ple, represent lexical gaps). Since our method proposes correct French senses for

345 out of 853 synsets with plausible French senses, we interpret this as a recall of

40.4%. These values yield an F1 score of 53.9%.

Comparison to prior work is complicated by the lack of a generally accepted

framework for evaluating wordnets. Metric definitions and gold standards vary

widely across the literature, and often involve highly subjective manual evaluation.

Further complicating analysis is the wide variety of resources used, assumptions

made, and manual effort involved in wordnet construction. The most directly com-

parable example is Sagot and Fišer (2008), who report 80% accuracy upon manual

evaluation of their French wordnet WOLF, which we interpret as being comparable

to our 81% precision. We perform a more controlled comparison in the next section.

Comparison to UWN

To further evaluate BIDICTNET, and in an effort to develop an evaluation frame-

work for multilingual wordnets, we directly compare the French senses it extracts to

9http://wordnets.org/
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MLWN Evaluation P R F

UWN Senses 50.6 14.1 22.0

BIDICTNET Senses 77.9 12.2 21.1

UWN Synset 59.6 27.6 37.7

BIDICTNET Synset 77.9 33.2 46.6

Table 2.3: Comparison of UWN and our BIDICTNET.

those found in UWN. We chose UWN due to its dependence on automatic methods

of identifying synset translations. As our gold standard, we use BN and OMW; that

is, a French sense found in UWN or BIDICTNET is correct if it is in BN or OMW.

We consider two approaches to calculating precision and recall: sense-level

evaluation and synset-level evaluation. They vary in how the metrics precision and

recall depend on – true positives, false positives, and false negatives – are defined.

In sense-level evaluation, a sense is counted as a true positive (i.e. correct) if it is

in BN or OWM, otherwise it is a false positive (i.e. incorrect). A sense which is

in BN or OMW, but which is not in the wordnet to be evaluated, is a false negative

(i.e. an omission).

Synset-level evaluation instead computes these metrics at the level of synsets.

A synset is counted as a true positive if a correct sense is proposed for that synset,

a false positive if an incorrect sense is proposed for that synset, and a false negative

if there is a correct sense that is not proposed. A single synset may, under these

conditions, be counted as a true positive, a false positive, and a false negative (or

any subset of the three); one can view this as a variant of sense-level evaluation

in which each synset contributes at most one to the number of true positives, false

positives, and false negatives. In this way, synset-level evaluation avoids giving

greater influence to synsets with more target language senses.

In both cases, we sum the true positive, false positive, and false negative values

across all synsets, and compute precision, recall, and F1 score using the standard

formulae. The results are shown in Table 2.3. Under both evaluation strategies, our

BIDICTNET method has substantially higher precision compared to UWN. Using

sense-level evaluation has a disproportionately negative impact on BIDICTNET due

to its inability to propose more than one sense per synset: for a synset with k senses,
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BIDICTNET will incur at least k − 1 false negatives. Despite this, BIDICTNET

achieves a recall within 2% of UWN, and an F1 result within 1%.

Using synset-level evaluation, BIDICTNET gains the advantage in terms of re-

call, outperforming UWN by 5.6%, while the gap in precision narrows only slightly.

BIDICTNET achieves an F1 score 8.9% higher than that of UWN.

We interpret these results as strong evidence that our theory-driven, dictionary-

based method for expanding a monolingual wordnet is effective, yielding senses

which are more precise, and achieving comparable or greater coverage on a random

sample of synsets. This finding provides further evidence for the soundness and

utility of our theory.

2.5 Discussion

In this section, we discuss the universality of concepts, and the implications of our

theory for wordnets.

2.5.1 Universality of Concepts

Lexical concepts are the semantic equivalence classes of word senses, and, equiva-

lently, of words in context. Since wordnet senses are induced by concepts, they are

discrete and well-defined, unlike dictionary senses which are designed by lexicog-

raphers independently for each word (Kilgarriff, 1997). In a monolingual wordnet,

the set of concepts is grounded in word synonymy; one way of verifying synonymy

is the substitution test (Section 2.3.4).

While different languages lexicalize different sets of concepts, we posit that all

lexical concepts are universal. That is, any lexical concept from any language can

be expressed in any other language (not necessarily by a single word). For example,

the concept expressed by the Spanish adverb anteayer corresponds to a lexical gap

in English, but it can be expressed as day before yesterday. We refer to this thesis

as concept universality.

Concept universality implies that concepts are not language specific, but rather

they are drawn by different languages from a single, shared pool of concepts.
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If an English word and a Chinese word share meaning, then they lexicalize the

same language-independent concept, rather than distinct, language-specific con-

cepts. Once a new concept is lexicalized in any natural language, it is immediately

available for other languages to adopt, which is often accomplished by “borrowing”

the form of the word.

Concept universality can be equivalently formulated in terms of translation: any

word in context can be literally translated into any other language (either by a word

or a phrase). This thesis can be viewed as a word-level analogue of the translatabil-

ity thesis of Katz (1976: 39), which states that any sentence can be literally trans-

lated. For brevity, we will employ the phrase translate a concept to mean literally

translate a word instance that expresses that concept. Thus, we can succinctly ex-

press the concept translatability thesis as every concept can be literally translated

into any language.

2.5.2 Glossability of Concepts

Concept universality underlies the idea of multilingual wordnets because every

synset gloss (i.e., concept definition) is an expression of the corresponding con-

cept. We posit that a gloss of any lexical concept in any language can be expressed

in any language. We refer to this thesis as concept glossability.

We further postulate that concept glossability implies concept universality. That

is, if a concept can be glossed in a given language, then it can be expressed in that

language. This is because a concept gloss expresses the concept in any context

(Section 2.3.3), so it can always serve as a translation of the concept.

Conversely, we postulate that concept universality implies concept glossability.

A concept gloss can be derived from a set of contexts in which the concept is ex-

pressed (Section 2.3.3). Such a set of contexts can be obtained by translating the

contexts in which the concept is lexicalized in some source language. This is always

possible as concept universality guarantees that any lexical concept can be literally

translated into any other language.

We conclude that concept universality, translatability, and glossability are all

mutually equivalent. This proposition can be viewed as a lexical semantics ana-
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logue to Turing Completeness. Just as Turing Completeness establishes a universal

set of computable functions, the three concept theses establish a universal set of

expressible concepts across natural languages.

2.5.3 Universal Wordnet

Concept universality implies a matching between lexicalized concepts across lan-

guages, in which no two matches share a concept. The matching between mono-

lingual concepts is grounded in translational equivalence, which is demonstrable

by the translation test (Section 2.3.5). If a lexicalization of concept sx can literally

translate a lexicalization of concept sy, then sx = sy. We can refer to a hypothetical

wordnet that encompasses all concepts lexicalized in at least one natural language

as universal wordnet.10

Each concept in the universal wordnet corresponds to exactly one universal

synset. Universal synsets are sets of intra-lingual and cross-lingual synonyms. The

meaning of any word in context corresponds to exactly one universal synset. We

posit that other semantic relations, such as hypernymy and meronymy, are also uni-

versal. That is, they can be uniquely defined on the set of universal concepts, such

that they are consistent with the set of relations in any individual language.

In practice, wordnets should avoid conflating distinct concepts in a single synset.

This is particularly important to avoid if a multilingual wordnet is created accord-

ing to the expand paradigm. If any language makes a lexical distinction between

concepts then those concepts need to be represented by distinct synsets.11 This is

necessary to ensure that synsets contain all and only translational equivalents, as

stipulated by Theorem 1 in Section 2.3.7.

On the other hand, if two distinct synsets in a wordnet correspond to the same

universal concept, this should be regarded as an error and corrected. This is par-

ticularly important to avoid if a multilingual wordnet is created according to the

merge paradigm. We can view a pair of monolingual wordnets as a bipartite graph

10This theoretical term should not be confused with Universal Wordnet (UWN) (De Melo et al.,

2012), which includes only a small fraction of natural languages.
11For example, a multilingual wordnet covering English and Chinese should separate lexicaliza-

tions of the concepts of “sister”, “elder sister”, and “younger sister” into their respective synsets, of

which the last two would contain no English words.
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in which nodes are synsets, and edges represent the relation of translational equiva-

lence. Every node in the graph should have a degree of at most one: a synset in one

language should not correspond to more than one synset in another language. This

is necessary to maintain the synset properties enumerated in Section 2.3.6.

2.5.4 English Hegemony

Our theory entails several practical guidelines for constructing multilingual word-

nets on the basis of lexical translation, In particular, it provides a principled so-

lution to the problem of bias towards the set of concepts lexicalized by the base

language, which is inherent in the expand model. Multi-wordnets that are founded

on the synset structure of the original Princeton WordNet often lack synsets that

correspond to lexical gaps in English.12 This can be resolved by first creating new

synsets for all concepts in the target language that are not represented in the base

wordnet, and then expanding those synsets to include lexicalizations from all lan-

guages under consideration.

Another major source of errors in the expand model is the unconstrained use

of contextual translations for populating synsets, which may results in adding non-

synonymous target lexicalizations.13 Our work suggests a principled solution to this

problem, which is to only admit translations that can express the same concept. In

practice, the literalness of a given translation in context can be verified by a word

synonymy check, as stipulated by Theorem 2 (Section 2.3.9).

Our theory also provides guidance for the implementation of the merge model.

The merge model avoids the issue of lexical gaps by starting from two complete

wordnets. Multilingual synsets can be effectively constructed by adding synonymy

links between monolingual synsets. However, as explained above, no synset should

be “merged” with more than one other synset, in order to guarantee that the linked

synsets correspond to a single universal concept. In addition, our theory supplies a

practical method for identifying matching synsets, which is to apply a translation

12For example, OMW and MWN have no synset for the concept of “female cousin.” As a result,

words that lexicalize this concept in other languages may be altogether missing from these resources.
13For example, the BabelNet synset for “cousin” includes both prima and primo, even though the

two Spanish words lexicalize the antonymous concepts of female and male cousins, respectively.

This is analogous to including mother and father in the same synset.
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test (Section 2.3.5) to the corresponding lexicalizations given the context of a synset

gloss.

We hope that our work will lead to more accurate representation of concep-

tual distinctions in multilingual wordnets, which would facilitate the evolution of

these resources away from the hegemony of English, and toward greater linguistic

diversity.

2.6 Conclusion

We have proposed a unifying treatment of the notions of sense, synonymy and

translational equivalence. The resulting theory formalizes the relationship between

words and senses in both monolingual and multilingual settings. In the future,

we plan to expand on the application of our theory to the automatic construction

of interpretable semantic resources, such as wordnets. We also expect that sound

theoretical foundations will also lead to improvements in important semantic tasks.
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Chapter 3

One Homonym per Translation

The study of homonymy is vital to resolving fundamental problems in lexical se-

mantics. In this chapter, we propose four hypotheses that characterize the unique

behavior of homonyms in the context of translations, discourses, collocations, and

sense clusters. We present a new annotated homonym resource that allows us to test

our hypotheses on existing WSD resources. The results of the experiments provide

strong empirical evidence for the hypotheses. This study represents a step towards

a computational method for distinguishing between homonymy and polysemy, and

constructing a definitive inventory of coarse-grained senses.1

3.1 Introduction

Many words are semantically ambiguous, in that they have multiple senses. The re-

lationship between two senses of a word is called polysemy if they are semantically

related, and homonymy otherwise (Jurafsky and Martin, 2009). Senses that belong

to the same homonym are polysemous (e.g. #2 and #5 in Table 3.1), while senses

of distinct homonyms are homonymous (e.g. #2 and #1 in Table 3.1).

The differentiation of homonymous and polysemous word senses is one of the

central problems of lexicography (Mel’čuk, 2013). A textbook on theoretical se-

mantics devotes an entire chapter to the problem, concluding that it may be in-

soluble, as the intuitions of native speakers cannot be relied upon (Lyons, 1995).

1This chapter is based on Hauer and Kondrak (2020a). See the preface for details. We thank

Genna Cockburn, Amy Hua, and Jacob Skitsko for the assistance in preparing the homonym re-

source. We thank Yixing Luan and Haozhou Pang for performing additional experiments and anal-

ysis.
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BANK1
n BANK2

n

#2 financial institution #1 sloping land

#5 stock held in reserve #3 long ridge or pile

#6 funds held by a house #4 arrangement of objects

#8 container for money #7 slope in a road

#9 building #10 flight maneuver

Table 3.1: The senses of the noun “bank” from WordNet 3.0, grouped by its two

homonyms.

Psycho-linguistics furnishes evidence for a common representation of closely re-

lated senses in the mental lexicon (Brown, 2008), which suggests that NLP appli-

cations would benefit from the ability to distinguish homonym-level meaning dif-

ferences (Utt and Padó, 2011). In fact, standard neural machine translation systems

make a substantial number of errors on homonyms (Liu et al., 2018).

The study of homonymy is also of utmost importance to the problem of estab-

lishing the set of senses for a given word. In word sense disambiguation (WSD),

which is the task of selecting the intended sense of an ambiguous word token, the

quality and granularity of the sense inventory greatly influences the design, eval-

uation, and utility of any system. The standard sense inventory, WordNet (Miller,

1998), makes no distinction between homonymy and polysemy, and is widely con-

sidered to be excessively fine-grained for many practical applications (Navigli,

2018), as evidenced by a low inter-annotator agreement (Snyder and Palmer, 2004).

This has inspired substantial prior work on clustering fine-grained senses to create

more coarse-grained sense inventories (Hovy et al., 2006; Navigli, 2006; Snow et

al., 2007; Dandala et al., 2013; McCarthy et al., 2016).

Following the observation that different senses of a word often correspond to

distinct words in another language (Resnik and Yarowsky, 1997), another branch

of prior work has sought to use translations to define sense inventories (Resnik and

Yarowsky, 1999; Diab and Resnik, 2002; Ng et al., 2003; Chan et al., 2007; Apidi-

anaki, 2008; Bansal et al., 2012; Taghipour and Ng, 2015). In order to be successful,

such an approach would have to resolve the challenging issues of mapping senses

to translations in a set of diverse target languages, as well as projecting them onto a

standard sense inventory, such as WordNet.
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In summary, clustering fine-grained senses and defining sense distinctions us-

ing translations are two competing methodologies for creating coarse-grained sense

inventories. Regardless of which one is adopted, an understanding of the nature

and characteristics of homonymous senses is a necessary step toward a principled

method of defining senses and sense distinctions. In particular, distinctions between

homonymous senses must be preserved in any sense inventory. This motivates our

study, which contributes to such an understanding by directly linking homonymy to

the concepts of translation and sense clustering, and thus bridging the gap between

the two approaches.

The contributions of this work are both theoretical and empirical. The main

goal is to create theoretical foundations for the study of homonymy, which could

pave the way for developing a computational method for distinguishing between

homonymy and polysemy, and facilitate the task of constructing a definitive in-

ventory of coarse-grained senses. We propose four hypotheses about the unique

behavior of homonyms in the context of translations, discourses, collocations, and

sense clusters. The hypotheses are formulated using established semantic concepts,

and formalized in mathematical notation. Our principal hypothesis, as stated in the

title, implies a sufficient condition for polysemy which is observable and replicable.

Apart from introducing the hypotheses, we perform experiments to provide em-

pirical evidence for them. It is clear from prior work that what is true at one level

of semantic granularity may not be true at another. For example, the well-known

hypotheses one sense per discourse and one sense per collocation have been found

not to hold consistently for WordNet senses. It is critical that all claims be for-

mally stated and experimentally tested, regardless of whether the results are con-

sidered surprising; we have found no prior work that fulfills this requirement with

respect to the four hypotheses presented in this chapter. To facilitate our experi-

ments, we create a new annotated resource, by identifying nearly three thousand

English homonyms, and mapping them onto WordNet senses. The results of our

experiments on multiple annotated corpora and language pairs strongly support our

hypotheses.
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3.2 Homonym Hypotheses

In this section, we formally define the notion of a homonym, and formulate our

hypotheses using set notation. We attempt to keep the notational complexity to a

minimum, while at the same time striving to avoid ambiguity.

3.2.1 Preliminaries

Lexemes are units of language that are represented in the lexicon (Murphy and

Koskela, 2010). Words are sets of word-forms that represent lexemes, and are

associated with certain morpho-syntactic properties. This definition of words in-

cludes compounds, such as ‘single out’, as is the case in WordNet. We consider

both lexemes and words that differ in part of speech as distinct. We write lexemes

in capital letters, abstract words in single quotes, actual word-forms in italics, and

sense meanings in double quotes. For example, the lexeme CUTv is represented

by the verb ‘cut’, with the word-forms cut, cuts, and cutting. A lexeme is called

polysemous if it contains multiple senses, and monosemous if it has only a single

sense. Senses that belong to the same lexeme are semantically related, and therefore

polysemous (Jurafsky and Martin, 2009).

A homonymous word (e.g., the noun ‘bank’ in Table 3.1) represents more than

one lexeme, and those lexemes are called homonyms. Senses associated with dis-

tinct homonyms are unrelated and therefore homonymous (Murphy and Koskela,

2010). Consequently, the problem of deciding whether two senses of a homony-

mous word are polysemous is equivalent to deciding whether they belong to the

same lexeme. Furthermore, since a non-homonymous word represents only a sin-

gle lexeme, all of its senses are polysemous.

We are now ready to formally define homonyms. Let L andW denote the sets

of lexemes and words of a given language, respectively, and let w: L 7→ W be a

function that maps each lexeme to the word that represents it. In later sections, we

will use w−1: W 7→ P(L) to denote the function which maps each word to the set

of lexemes it represents. We define the set of homonymous words H as the set of

all words that represent multiple lexemes:

38



H
def

= {W ∈ W | ∃L,L′ ∈ L : (L 6= L′) ∧ (w(L) = w(L′) = W )}

For example, w(BANK1

n) = w(BANK2

n) = ‘bank’ ∈ H.

3.2.2 One Homonym per Translation

In general, there is no simple correspondence between word senses and their trans-

lations: a single sense may be translated by any of several synonyms, and different

senses of the same word may have the same translation. Ide and Wilks (2007)

observe that cross-lingual distinctions often correspond to homonym-level disam-

biguation. We posit a direct relationship between translations and homonyms. In-

tuitively, if we randomly selected two different words from a bilingual dictionary,

we would not expect them to have translations in common. The same reasoning

applies to homonyms, since they are semantically unrelated lexemes that coinci-

dentally share the same form. We formalize this insight as our principal hypothesis.

Put simply, the one homonym per translation hypothesis (OHPT) states that

homonyms have disjoint translation sets. Formally, let T (L) be a set of translations

of a lexeme L, and let w−1 be as defined as in Section 3.2.1. Then,

∀H ∈ H : ∀L,L′ ∈ w−1(H) : (L 6= L′)⇒ T (L) ∩ T (L′) = ∅

For example, the Italian translations of the noun ‘yard’ can be partitioned into

two disjoint sets T (YARD1

n) = {‘iarda’,‘yard’} and T (YARD2

n) = {‘cortile’, ‘gia-

rdino’}, which correspond to two English homonyms, with the meanings of “unit”

and “garden”, respectively.

This hypothesis implies an important generalization: the existence of a shared

translation is a sufficient condition for polysemy. Indeed, for homonymous words,

senses that can be translated by the same word must belong to the same lexeme,

and so are polysemous. As all other words represent only single lexemes, all their

senses are polysemous by definition (Section 3.2.1). Therefore, we consider the

OHPT hypothesis as a major step towards solving the problem of distinguishing

between homonymy and polysemy.
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3.2.3 One Homonym per Discourse

The one sense per discourse (OSPD) hypothesis was introduced in the seminal pa-

per of Gale et al. (1992a). They observe that “well-written discourses tend to avoid

multiple senses of a polysemous word”, and confirm that the property holds with

high probability on a set of 82 instance pairs involving 9 ambiguous words. How-

ever, Krovetz (1998) reports that OSPD holds for only 67% of ambiguous words

in SemCor, and conjectures that the hypothesis may only apply to homonymous

senses.

We formulate Krovetz’s conjecture as the one homonym per discourse hypoth-

esis (OHPD), which can be viewed as a specialization of OSPD to homonyms. The

hypothesis states that all occurrences of a homonymous word in a discourse repre-

sent the same homonym. A possible explanation of this phenomenon is that writers

avoid the use of homonyms by employing their synonyms in order to reduce ambi-

guity in a discourse. Another explanation is that most discourses cover topics within

a single domain, and therefore are unlikely to contain lexemes that are completely

unrelated to each other.

Our formulation of the OHPD hypothesis states that no more than one lexeme

of a homonymous word occurs in any given discourse. Formally, let D be the set of

lexemes that occur in a discourse, and let w be again the function that maps lexemes

to words. Then,

∀L,L′ ∈ D : (w(L) = w(L′))⇒ (L = L′)

We close this section by considering the relationship between OHPD and the

one translation per discourse (OTPD) hypothesis of Carpuat (2009). They report

that approximately 80% of French words have a single English translation per doc-

ument, which they interpret as strong support for their hypothesis. We note that

the conjunction of our OHPT and OHPD hypotheses does not imply OTPD. In-

deed, consider the example in Figure 3.1, which shows how the occurrence of three

Spanish translations of the homonymous noun ‘span’ in two different documents

leads to a violation of OTPD, but not of OHPD or OHPT.
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[word-to-right = hired] then BANK2

n (“ridge”) is unlikely to occur in this collo-

cation.

3.2.5 One Homonym per Sense Cluster

Sense clustering is the task of grouping together senses that are closely related

(Dandala et al., 2013). Although the criteria for eliminating sense distinctions vary

depending on the purpose of the sense inventory, a common motivation is to reduce

the excessive granularity of WordNet (Snow et al., 2007). In particular, a manual

clustering of WordNet senses was created as part of the OntoNotes project, with

the objective of increasing the inter-annotator agreement on WSD to 90% (Hovy et

al., 2006). Sense clustering has been shown to improve performance on a number

of NLP tasks (Pilehvar et al., 2017), and can serve as an extrinsic evaluation for

learned representations of senses (Mancini et al., 2017).

Since homonyms are distinct lexemes, we posit that any well-grounded cluster-

ing approach must avoid merging homonymous senses. Formally, let C be a sense

clustering, a set of disjoint sets of senses, and let S(L) be the set of senses of lexeme

L. Then,

∀C ∈ C : ∃L ∈ L : C ⊆ S(L)

In plain words, while the senses of a homonym may be divided between multiple

clusters, no cluster should contain senses from different homonyms.

3.3 Homonym Data

In order to provide experimental evidence for our homonym hypotheses, we need

a large set of “gold” homonyms, as well as a mapping between those homonyms

and the sense annotations in existing corpora. Since no such resource is publicly

available, we create our own collection of English homonyms (see Table 3.2). In

this section, we present a binary typology of homonyms, our methodology for cre-

ating a list of homonyms, and the method for mapping those homonyms onto the

WordNet sense inventory.
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3.3.1 Typology of Homonyms

There are generally two ways of defining homonyms. In linguistics (and in this

chapter), homonyms are considered to be distinct lexemes that happen to share the

same form (Murphy and Koskela, 2010). In lexicography, homonymy is sometimes

defined more narrowly, by additionally requiring the etymological origins of the

lexemes to be different (Stevenson, 2010). Homonyms can therefore be divided

into two types: those that satisfy the requirement of different origins, and those that

do not. Due to the lack of commonly-accepted terminology, we refer to these two

types of homonyms simply as Type-A and Type-B, respectively.

The two types of homonyms, which are schematically illustrated in Figure 3.2,

stem from different diachronic phenomena. Type-A homonyms arise from a con-

vergence of distinct words into a single form. This can occur through the process

of sound change or inter-lingual borrowing. For example, both the Old English

word cæg “locking implement” and the 17th-century Spanish borrowing cayo “is-

land” evolved into the modern English key. Type-B homonyms, on the other hand,

arise when a single lexeme splits into two lexemes due to the process of semantic

drift. For example, the two meanings of staff, “pole” and “people”, have developed

from a single etymon, which is attested in Old English as stæf. Importantly, as na-

tive speakers are generally unaware of the etymological history of words, these two

types of homonyms are indistinguishable in the synchronic analysis of languages

(Lyons, 1995).

The crucial methodological advantage of Type-A homonyms is that they can be

objectively identified by consulting existing etymological dictionaries. Even though

the process of compiling an exhaustive list of Type-A homonyms for any language

is time-consuming, it is still much easier and less controversial than conducting psy-

chological experiments with human subjects Brown (2008), or obtaining consensus

within teams of linguistic experts (Weischedel et al., 2013). We have accomplished

this task for English by creating a homonym resource that we describe next.
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Table 3.2 shows sample entries from our resource. The list contains 2759 Type-

A homonyms that correspond to 804 lemmas, 1601 unique lemma/POS pairs, and

1967 distinct etymologies. The number of distinct etymologies per lemma ranges

from two to six. Each entry includes etymological information (the form and the

language of origin), and a list of possible parts of speech (noun, verb, adjective,

adverb). For the purpose of disambiguation in subsequent stages of annotation,

each entry was manually assigned a brief English gloss, as well as a single French

translation. We excluded from our list all proper nouns and abbreviations.

About two dozen of the homonymous words in our resource represent homo-

graphs, which are homonyms that differ in pronunciation. For example, the noun

‘bass’ is pronounced [bæs] or [bes] depending on whether it refers to a fish or a

musical instrument, respectively. Although most of the dictionary words with alter-

native pronunciations appear to involve Type-A homonyms, we found a number of

exceptions. They include Type-B homonyms (e.g. ‘pension’), polysemous words

(e.g. ‘undertaking’), common vs. proper nouns (e.g. ‘job’), matching word-forms

of distinct lemmas (e.g. ‘putter’), as well as pronunciation variants (e.g. ‘puis-

sance’). Since our focus is on written language, our resource excludes homophones,

such as ‘cellar’ vs. ‘seller’.

Although we make no claim about the completeness of our homonym resource,

we consider it to be representative of English homonyms in general. This is based

on the fact that Type-A and Type-B homonyms cannot be distinguished without

access to etymological expertise.

3.3.3 Mapping WordNet Senses to Homonyms

In order to test our homonym hypotheses, we must be able to convert the existing

word sense annotations into homonym annotations. For example, we need to know

which homonym from our list is represented by a word token spans which is sense-

annotated as “two items of the same kind” in some corpus. The standard sense

inventory for WSD is WordNet. In this section, we describe our method of mapping

the homonyms in our new resource to WordNet senses.

Because of the large number of fine-grained senses in WordNet, it was not prac-
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tical to directly map each WordNet sense of each homonymous word to the cor-

responding homonym. Instead, we made use of the existing clustering (Navigli,

2006), which was created by automatically mapping WordNet 2.1 senses to more

coarse-grained senses defined by the Oxford Dictionary of English (ODE). Our

804 homonymous lemmas correspond to 2644 sense clusters, which contain 5361

senses. We manually mapped each cluster of senses to a single homonym on the

basis of their WordNet sense glosses.

The resulting mapping is imperfect for two reasons. First, the ODE clustering

itself is not always correct, which sometimes results in homonymous senses be-

ing placed in the same cluster. Second, our human annotator made some errors in

mapping clusters to homonyms. We performed the following validation experiment

in order to estimate the accuracy of the overall mapping. A second annotator per-

formed a direct mapping of 268 WordNet senses corresponding to a random sample

of 77 homonymous words, without any reference to the ODE clustering. We found

that the two independent mappings of the 268 senses differed in only 17 instances,

which implies that the overall error rate has an upper bound of 6%.

The errors in the sense-to-homonym mapping are a source of “false alarms”

in the experiments described in Section 3.4. We are confident in our ability to

determine which of the apparent exceptions are actual exceptions to our hypotheses

by careful analysis of the available data. While the distinction between homonymy

and polysemy can be highly subjective, the mapping of WordNet senses to known

homonyms is much easier, as confirmed by our validation experiment described

above.

3.4 Homonym Evidence

In this section, we describe the experiments that test the four hypotheses formulated

in Section 3.2 using the full set of homonyms in our new homonym resource from

Section 3.3.
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3.4.1 SemCor and Translations

For testing the OHPD and OHPC hypotheses, we use SemCor (Miller et al., 1993),

a large sense-annotated English corpus which was created as part of the WordNet

project (Petrolito and Bond, 2014). In particular, we adapt the version of SemCor

from Raganato et al. (2017).5 The number of word tokens, types, and senses are in

Table 3.3 (words are defined as lemma/POS pairs)

For testing the OHPT hypothesis, we require not only sense annotations, but

also the corresponding translations. At the minimum, we need a large word-aligned

bitext that has both sense and part-of-speech annotations on the source side, and

lemma annotations on both sides. In addition, the sense inventory has to be the

same as the one in our homonym resource. Although such resources are rare, we

managed to adapt two bitexts to meet these requirements: MultiSemCor (Bentivogli

and Pianta, 2005), and JSemCor6 (Bond et al., 2012). These corpora, which we

refer to as MSC and JSC, contain partial word-aligned translations of SemCor into

Italian and Japanese, respectively.

3.4.2 WordNet

The use of WordNet presents a number of technical challenges. For the purpose of

replicability, we describe here two major issues.

The first issue concerns two distinct conventions for referring to individual

WordNet senses: sense keys (used in SemCor, JSC, and the ODE clustering) and

sense numbers (used in MSC and OntoNotes). We converted the former into the

latter using the WordNet::SenseKey package.7 Because the mapping is not always

one-to-one, 16 out of 60,655 WordNet senses in the ODE clustering had to be ex-

cluded; however, none of the affected words are in our homonym resource.

The second issue is the mapping between different WordNet versions. We con-

verted the sense keys from WordNet 2.1 – the version of WordNet used in the clus-

tering described in Navigli (2006) – to WordNet 3.0 – the version used by all other

5http://lcl.uniroma1.it/wsdeval
6Experiments on JSemCor were performed by Yixing Luan, a native Japanese speaker.
7https://metacpan.org/release/LINAS/WordNet-SenseKey-1.03
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SemCor MSC JSC

Word tokens 226,034 92,992 58,257

Word types 20,399 11,451 8,445

WordNet senses 33,308 17,875 12,516

Table 3.3: The size of the English side of each corpus.

Hypothesis Focus Corpus Instances
Exceptions Support

Apparent Actual (in %)

OHPT translations MSC 1093 7 1 99.9

OHPT translations JSC 1093 3 2 99.8

OHPD documents SemCor 2126 14 9 99.6

OHPC collocations SemCor 522 16 11 97.99

OHPSC sense clusters OntoNotes 1578 23 2 99.9

Table 3.4: Summary of the evidence for the homonym hypotheses from our five

experiments.

resources in this chapter – using WordNetMapper.8 The package failed to map 551

out of 60,655 senses in the ODE clustering, which resulted in 22 WordNet senses

being excluded from our homonym resource. Due to these issues, we decided not

to further map all WordNet senses in our resources to WordNet 3.1.

3.4.3 One Homonym per Translation

The OHPT hypothesis characterizes the relationship between homonymous words

and their translations in another language. We validate the hypothesis on two lan-

guage pairs using the annotated bitexts described in Section 3.4.1.

In the experimental evaluation, we compute the percentage of type-level in-

stances that are consistent with the OHPT hypothesis. For each English word (i.e.

lemma/POS pair) that appears in our homonym resource, we identify the set of its

translations on the target side of the bitext. Each unique word/translation pair con-

stitutes a single instance. An instance is consistent with the OHPT hypothesis if and

only if all of its occurrences in the bitext represent the same homonym. For exam-

ple, the Italian translation ‘gioco’ corresponds to three different senses of the noun

‘game’ in MSC, but since all of them belong to the same homonym, this instance is

consistent with OHPT.

8https://github.com/cltl/WordNetMapper
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The results of the evaluation on the MSC and JSC bitexts are shown in Rows 1

and 2 of Table 3.4. Coincidentally, MSC and JSC have the same number of unique

word/translation pairs (1093). The two corpora contain only 3 actual exceptions

to OHPT. The single actual exception in MSC involves the homonyms represented

by the noun ‘band’ which is often translated in Italian as ‘banda’. In this case,

the homonymy in English (“ring” vs. “group”) is mirrored by an analogous case of

homonymy in Italian. The two actual exceptions in JSC involve the English lexical

loans ‘case’ and ‘club’, which have the same Katakana written form regardless of

the homonym they represent. We attribute these exceptions to the phenomenon of

parallel homonymy, which may arise in the process of lexical borrowing.

In addition to the 3 actual exceptions, the experiment identified 7 exceptions that

are caused by data errors in the two corpora. The data errors can be divided into four

categories: (1) incorrect sense annotations in SemCor, e.g. “the case of Jupiter”

annotated with the sense of “container”; (2) an incorrect sense translation in MSC:

flag in the sense of “flower” translated as bandiera instead of iride; (3) errors in

the ODE clustering, e.g. two homonymous senses of ‘club’ (“team” and “playing

card”) in the same cluster; (4) an error in our manual mapping between the ODE

clustering and the homonyms: ‘light’ in the sense of “free from troubles” being

mapped to the homonym “not dark”. We conclude that the OHPT hypothesis is

supported in over 99.8% of instances in either bitext.

In order to verify that partitioning of translations is a property of homonyms, and

not simply of any sense clusters, we perform an additional experiment on MSC. We

randomly select two sets of 20 words (i.e. lemma/POS pairs) from our homonym

resource and the OntoNotes clusters, respectively. We consider only words that

are represented in MSC by senses from exactly two homonyms or two OntoNotes

sense clusters. None of the OntoNotes words occur in our homonym resource.

This yields 40 words with a similar number of sense-annotated tokens: 6.80 per

homonym, and 7.25 per OntoNotes cluster, on average. We find that 16 of the 20

homonym pairs, and 6 of the 20 OntoNotes cluster pairs exhibit strict translation

partitioning in MSC. In total, there are 4 instances of overlapping translations be-

tween 4 homonym pairs (a subset of the 7 apparent exceptions in Table 3.4), and 17
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such instances between 14 OntoNotes cluster pairs (3 cluster pairs share multiple

translations). This result is statistically significant (p < 0.005) according to the χ2

test. We conclude that homonyms are significantly more likely to exhibit translation

partitioning than OntoNotes sense clusters.

3.4.4 One Homonym per Discourse

The OHPD hypothesis predicts that all tokens of a given homonymous word in a

discourse correspond to the same homonym. We validate the hypothesis on English

SemCor (Section 3.4.1), taking each of its documents as a single discourse.

In the experimental evaluation, we compute the percentage of type-level in-

stances that are consistent with the OHPD hypothesis. For each English word (i.e.

lemma/POS pair) that appears in our homonym resource, we identify all its occur-

rences in the corpus. Each unique word/document pair constitutes a single instance.

An instance is consistent with the OHPD hypothesis if and only if all of the occur-

rences of the word in the document represent the same homonym.

When a homonymous word occurs only once in a document, there is of course

no possibility of an actual OHPD violation. However, we consider those instances

to support the hypothesis as well, because the writer may have chosen to replace a

homonym with one of its synonyms in order to avoid potential ambiguity.

The results of the evaluation are shown in Row 3 of Table 3.4. SemCor is

divided into 352 documents, with an average of 642 sense-annotated open-class

words per document. A careful analysis of the 14 apparent exceptions reveals that

four of them are caused by sense annotation errors in SemCor (e.g., sharp bow of a

skiff is annotated as “weapon for shooting arrows”), and one results from an error

in the ODE clustering. The 9 actual exceptions involve the homonymous nouns

‘bank’, ‘lead’, ‘list’, ‘port’, ‘rest’, and ‘yard’, as well as the verb ‘lie’. We conclude

that fewer than 0.5% of instances in SemCor contradict the OHPD hypothesis.

9This number is a lower bound estimate.
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3.4.5 One Homonym per Collocation

The OHPC hypothesis predicts that only one homonym of a word appears in any

given collocation. Due to the broad definition, wide variety, and large number of

possible collocations, it is difficult to definitively establish the extent to which the

OHPC hypothesis holds for a given corpus. Instead, we follow the methodology of

Yarowsky (1993) and Martinez and Agirre (2000), who test the OSPC hypothesis

by analyzing the performance of a supervised WSD system in which each feature

corresponds to a distinct type of a collocation. The rationale is that the accuracy

of the WSD system indicates the level of support for the hypothesis in the training

corpus.

For the experimental evaluation, we adopt the IMS system of Zhong and Ng

(2010). IMS learns a separate classification model for each ambiguous word in the

training data, with each class corresponding to one sense of the word. The system

employs three types of features, which broadly correspond to different kinds of

collocations: (1) the presence of specific content words in specific positions relative

to the focus word; (2) the set of POS tags in the context of the focus word; (3) the

presence of specific content words in the bag-of-words context of the focus word.

We train IMS on English SemCor, and test on the concatenation of five benchmark

datasets of Raganato et al. (2017).

The results of the experiment strongly support the OHPC hypothesis. The test

set contains 528 occurrences of words from our homonym resource. Six of those

words, each appearing in one instance, are not attested at all in SemCor. IMS selects

a sense of the correct homonym in 506 out of the remaining 522 instances. Of the

16 classification mistakes, three are attributable to errors in the ODE clustering, and

two are due to the WordNet mapping issues described in Section 3.4.2. Thus, the

effective accuracy of IMS on the homonymous words in the test set is 97.9%.

Analysis of the remaining 11 errors made by IMS shows that their principal

cause is insufficient training data. For example, the noun ‘match’ in the sense of

“piece of wood” occurs only once in the entire SemCor corpus, which prevents

IMS from reliably recognizing this sense. Other obvious mistakes, such as “follow

the lead” misclassified as “metal,” are explained by the lack of training examples
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involving the collocations that occur in the test set. We conclude that the IMS

accuracy on the test set should be interpreted as a lower bound for the applicability

of OHPC.

3.4.6 One Homonym per Sense Cluster

We test our fourth hypothesis, OHPSC, by searching an existing resource for clus-

ters that contain senses from distinct homonyms. We cannot perform this experi-

ment on the ODE clustering because we use it to derive our mapping from WordNet

senses to homonyms (Section 3.3.3). Instead, we run it on the high-quality, hand-

crafted OntoNotes clustering10, which previously used as a gold standard by Snow

et al. (2007). The clustering includes 439 of the 1601 lemma/POS pairs that are

listed in our homonym resource. Those words involve 2467 WordNet senses that

are grouped into 1578 clusters, of which 1555 (98.5%) are found to contain no

homonymous senses, as our hypothesis predicts.

We manually analyze the 23 clusters that appear to combine senses from distinct

homonyms. The vast majority (21) of these apparent exceptions are artifacts of

errors in the ODE clustering. The errors are easy to spot by native speakers because

senses within a single cluster clearly correspond to distinct coarse-grained senses

in ODE. In the remaining two cases, OntoNotes clusters two pairs of homonymous

senses: (1) the noun ‘tap’ as “the sound made by a gentle blow” and “a faucet for

drawing water,” and (2) the verb ‘pose’ as “introduce” and “be a mystery to.” Even

though we find these two clustering decisions somewhat debatable, we treat them

as actual exceptions to our hypothesis. We conclude that the OHPSC hypothesis is

corroborated in over 99.8% of the OntoNotes clusters.

3.5 Conclusion

We have investigated the concept of homonymy, formulating four hypotheses that

follow a common pattern. Taken together, our hypotheses suggest that, figuratively

speaking, homonyms seem to repel each other, like particles with the same electric

10https://catalog.ldc.upenn.edu/LDC2013T19
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charge. The experiments performed using our new resource confirm that distinct

homonyms are rarely observed in connection with a single translation, discourse,

collocation, or sense cluster. In addition, they demonstrate that contraventions of

the empirical predictions made by our theory more often than not identify errors in

existing resources.

We envisage several directions for building upon the theoretical basis estab-

lished in this chapter. In order to extend our homonym resource, we plan to develop

an operational method for identifying Type-B homonyms on the basis of translation

sets involving multiple languages. We anticipate that translations extracted from

parallel corpora will facilitate the creation of high-quality coarse-grained sense in-

ventories via sense clustering. As a step towards this goal, we will investigate the

problem of automated mapping between senses and translations.

3.6 Addendum: Distinguishing Between Homonymy

and Polysemy

While the preceding chapter discusses the theoretical properties of homonymous

senses, it leaves for future work the task of automatically distinguishing between

homonymy and polysemy. Following the publication of the material in this chapter,

such work was published by Habibi, Hauer, and Kondrak (2021). They developed

and tested methods for classifying a given word as homonymous – i.e. having two

semantically unrelated senses, as defined in Section 3.2.1 – or not. I was a major

contributor to, and second author of, this publication, and so I consider it pertinent

to summarize the findings of that research here11.

This work seeks to improve upon prior methods for homonymy classification

and related tasks. In particular, Dyvik (2004) leverage parallel corpora to evaluate

the relatedness of word senses. Utt and Padó (2011) model homonymy as a con-

tinuous phenomenon, and grade the degree of homonymy a word exhibits using a

statistical model. van den Beukel and Aroyo (2018) apply WordNet-based similar-

ity metrics, while Beekhuizen et al. (2018) use vector representations of words and

11The first author, Amir Ahmad Habibi, performed the experiments in this paper.
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contexts.

All six of the methods proposed by Habibi et al. (2021) utilize a graph model,

with senses as vertices and edges representing semantic relatedness between senses.

They differ in the criteria for considering two vertices to be semantically related.

Of particular interest here is their “Two Senses, One Translation” method, which

is explicitly described as applying OHPT to homonymy detection. This approach

considers two senses to be semantically related if they have a translation in com-

mon.

Significantly, in support of this method, they state and prove a theorem which

“generalizes the OHPT hypothesis to account for the few exceptions found [in Sec-

tion 3.4]”. The theorem states that, if senses x1 and x2 of word x can both be

translated by word y, then exactly one of the following holds: (1) x1 and x2 are

semantically related; (2) x and y exhibit parallel homonymy. Their proof of this

theorem uses the theoretical properties of synsets formulated in Chapter 2. Given

the results in Section 3.4.3 which show that parallel homonymy is very rare in

practice, this theorem and its proof imply, as Habibi et al point out, that the high

reliability of OHPT follows from our theory of sense, synonymy, and translation set

out in Chapter 2.

The authors evaluate their homonym classification methods, including the OHPT-

based method, on a dataset of English words. This dataset was constructed using

a manually expanded and corrected version of the homonym database discussed in

Section 3.3. They find that OHPT sets a new state of the art for homonym detection,

outperforming all other methods tested, including that of van den Beukel and Aroyo

(2018), and therefore claim a new state-of-the-art result.

In sum, this paper not only provides a theoretical justification for OHPT, but

also demonstrates the utility of our work for an interesting lexico-semantic task.

They also continue the work undertaken earlier in this chapter, working to complete

and correct the homonym resource. Taken together, the work described in this

chapter represents a strong demonstration of how linguistic phenomena, theoretical

arguments, and empirical hypothesis testing can be combined to achieve new results

in lexical semantics.
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Chapter 4

One Sense per Translation

Word sense disambiguation (WSD) is the task of determining the sense of a word

in context. Translations have been used in WSD as a source of knowledge, and

even as a means of delimiting word senses. In this chapter, we define three the-

oretical properties of the relationship between senses and translations, and argue

that they constitute necessary conditions for using translations as sense invento-

ries. The key property of One Sense per Translation (OSPT) provides a foundation

for a translation-based WSD method. The results of an intrinsic evaluation experi-

ment indicate that our method achieves a precision of approximately 93% compared

to manual corpus annotations. Our extrinsic evaluation experiments demonstrate

WSD improvements of up to 4.6% F1-score on difficult WSD datasets.1

4.1 Introduction

Word sense disambiguation (WSD) is the task of classifying a word in context ac-

cording to its sense. For example, given the context “the field was covered in green

grass,” a WSD system would need to classify field as having its “flat open land”

sense, rather than its “area of study” sense. Throughout its history, WSD has been

associated with translation (Weaver, 1949), as it is understood that different senses

of a word may translate differently. For instance, in the above example, field could

be translated into French as champ, but not as domaine (the latter could, however,

translate the “area of study” sense of field). In this chapter, we address the open

1This chapter is based on Hauer and Kondrak (2021). See the preface for details.
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question, to what extent can a translation-based method improve modern WSD?

This question is surely an important one: WSD remains an active area of re-

search (Blevins and Zettlemoyer, 2020; Barba et al., 2021a; Barba et al., 2021c),

but despite the rapid improvements brought on by transformer-based (Vaswani et

al., 2017) language models such as BERT (Devlin et al., 2019), substantial room

for improvement remains (Maru et al., 2022). WSD has been used as a benchmark

to compare and analyze transformer-based language models (Loureiro et al., 2021).

It has also been shown to have applications to tasks such as translation (Liu et al.,

2018), semantic parsing (Martı́nez Lorenzo et al., 2022), and metaphor detection

(Maudslay and Teufel, 2022). New variants of the task are still being proposed,

such as visual WSD, in which candidate senses are represented by images (Ra-

ganato et al., 2023). Clearly, the ability to map a word in context to an entry in

a discrete lexical knowledge base remains relevant in natural language processing,

for both human end users and downstream tasks.

Incorporation of translation information has been shown to be useful for both

classic (Dagan et al., 1991) and modern (Luan et al., 2020) WSD methods. Despite

such proof-of-concept works, current state-of-the-art WSD methods do not explic-

itly leverage translation, leaving a potential source of knowledge untapped. It is

therefore of interest to the lexical semantics community to investigate the extent

to which senses and translations correspond, and how this correspondence can be

leveraged in practice.

Our investigation has the following structure: (1) We begin by clearly defining

the theoretically “ideal” mapping between senses and translations. (2) We show

that such mappings are rare in practice, even between unrelated languages, offering

an explanation as to why translation-based WSD methods became less common

as the field developed. (3) We posit that it is possible to improve supervised WSD

performance by leveraging instances where the translation of a word does determine

its sense. (4) We propose and evaluate a translation-based disambiguation method

to test this hypothesis. (5) We discuss the relationship between various theoretical

properties and synonymy and polysemy.

Our empirical results strongly support our hypothesis. A large-scale intrin-
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sic evaluation of our method using existing lexical knowledge bases shows that

it achieves very high precision. Our extrinsic evaluation shows that synthetic train-

ing data produced by our method, when used to train a supervised model, can yield

improvements in F1-score of up to 4.6% on difficult WSD benchmark datasets. We

conclude that the explicit incorporation of contextual translations has great potential

to improve WSD research, and lexical semantics research in general.

The principal goal of this chapter is the examination of the sense-translation

connection from both theoretical and empirical perspectives in a modern context.

Thus our contributions are twofold: a theoretical analysis of the relationship be-

tween senses and translation, supported by empirical analysis; and a method for ef-

ficient, unsupervised, large-scale semantic annotation via translations, which yields

substantial WSD improvements.

4.2 Related Work

The use of translations as a source of information about word senses rose to promi-

nence in the 1990s, supported by the increasing availability of machine-readable

multilingual resources. Brown et al. (1991) and Dagan et al. (1991) developed

statistical approaches to WSD, with the former presenting a direct application to

statistical machine translation. Gale et al. (1992b) were the first to explicitly define

WSD in terms of identifying the correct translation: they identify a set of six En-

glish words, each with two senses, with a one-to-one mapping between those senses

and their French translations. This paradigm of translation-informed WSD influ-

enced the landmark WSD works of Yarowsky (1995) and Schütze (1998), among

others. By the late 1990s, translation was so prevalent in the WSD literature that

Resnik and Yarowsky (1997) explicitly proposed “to restrict a word sense inventory

to those distinctions that are typically lexicalized cross-linguistically.”

Interest in translation in the WSD literature continued throughout the 2000s

(Ide, 2000; Chan et al., 2007; Apidianaki, 2008), culminating in two SemEval-2010

shared tasks: cross-lingual lexical substitution (Mihalcea et al., 2010), and cross-

lingual WSD (Lefever and Hoste, 2010). The former can be viewed as the task of
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finding translations for a word in a given context. In the latter, translations from

word-aligned parallel corpora were used to create a “multilingual sense inventory”.

The dataset was limited to small lexical samples, and involved substantial manual-

annotation effort for each tested language pair. Neither the exact annotation criteria

nor the datasets themselves are available. The successes and difficulties of this task

motivate further research into the use of translations as sense inventories.

Yao et al. (2012) observed that prior work made conflicting assumptions about

the correspondence between senses and translations. They consider the case where

a single word e in a parallel corpus is aligned, in different contexts, with two dif-

ferent words, f1 and f2, in another language. They point out that some prior works,

such as Lefever et al. (2011), assume that e is polysemous, with f1 and f2 translat-

ing distinct senses of e, while others, such as Bannard and Callison-Burch (2005),

instead assume that f1 and f2 translate a single sense of e, and so are synonymous.

Our work builds upon this observation, analyzing the various possible relations be-

tween senses and translations in greater detail, and leveraging them them to improve

WSD.

Despite the early successes of translation-based WSD, methods based on mono-

lingual resources, namely WordNet (Miller et al., 1990) and SemCor (Miller et al.,

1993), became prominent in the 2010s. It Makes Sense (Zhong and Ng, 2010),

a supervised WSD system based entirely on monolingual contextual features, re-

mained state-of-the-art for most of the decade (Papandrea et al., 2017) before being

replaced by methods based on contextual embeddings (Hadiwinoto et al., 2019).

In the early 2020s, WSD systems leveraging increasingly sophisticated pre-trained

language models approached and finally exceeded 80% accuracy on standard WSD

datasets (Blevins and Zettlemoyer, 2020; Barba et al., 2021a; Barba et al., 2021c).

In response to these advances, Maru et al. (2022) proposed to focus on more dif-

ficult WSD instances, such as those involving rare senses, or on which modern

WSD systems tend to make errors. We support this proposal, and make use of their

“challenge” datasets in our experiments.
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4.3 Mapping Senses and Translations

While the use of translation information to identify or even define word senses was

frequent in early WSD research, today it primarily serves as supplementary data,

rather than as the core of the method (Luan et al., 2020). In this section, we lay

the theoretical groundwork for explaining this paradigm shift; an empirical analysis

follows in the next section.

Given an ideal one-to-one mapping between senses of a word and its lexical

translations, each sense could be unambiguously defined by a distinct translation,

and each translation would indicate a different sense. Figure 4.1 shows a graphical

representation of a sense-translation mapping which does not conform to this ideal,

with three Italian translations of the English noun wood. An edge between a sense

and a translation indicates that the former can be translated by the latter. As the

sense-translation mapping is not bijective, we cannot use translation knowledge

alone to determine the sense of an instance of wood.

We can analyze the theoretical properties of such a mapping in terms of three

word-level binary predicates, which are defined on a given source word e and lan-

guage of translation F . Each of these predicates is a necessary condition for such an

ideal mapping to exist. Moreover, in conjunction, they represent a sufficient condi-

tion for using a word’s translations as a sense inventory. The three sense-translation

mapping predicates are discussed in the following subsections.

4.3.1 One Sense per Translation (OSPT)

One Sense per Translation (OSPT) is the key predicate for translation-based WSD,

as it facilitates the inference of a word’s sense from its translation. OSPT underlies

the method that we propose in Section 4.5.

OSPT(e, F ) := “all senses of the word e have disjoint sets of lexical translations

in language F ”

If OSPT holds, each translation of e corresponds to exactly one sense, and so we

can use the sense-translation mapping to perform WSD. Exceptions to OSPT occur

when words from different languages share multiple senses, a phenomenon which
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4.3.2 One Translation per Sense (OTPS)

The One Translation per Sense (OTPS) predicate can be viewed as a dual of OSPT,

reversing the roles of senses and translations.

OTPS(e, F ) := “each sense of the word e has at most one lexical translation in

language F ”

In other words, no pair of translations translate the same sense. Exceptions to

OTPS are instances of synonymy between translations of a given source word.2

For example, the “forest” sense in Figure 4.1 maps to two distinct translations,

bosco and selva, violating OTPS. This presents a challenge to the proposal to use

translations as sense inventories (Resnik and Yarowsky, 1997) by creating cases

where instances of a word need not be distinguished by their translations. Moreover,

this also poses a problem for aligning sense distinctions with translation distinctions

(Lefever and Hoste, 2010), as bosco and selva must somehow be “clustered” to

avoid identifying instances of wood with these translations as being semantically

distinct. Note, however, that unlike violations of OSPT, translations that cause

OTPS violations can still be used to disambiguate the translated word in some cases.

4.3.3 No Lexical Gaps (NoLG)

The No Lexical Gaps (NoLG) predicate reflects the importance of lexical gaps

(Bentivogli and Pianta, 2000) in multilingual semantics.

NoLG(e, F ) := “each sense of the word e has at least one translation in lan-

guage F ”

Since it is not practical to enumerate all possible phrasal translations of each

sense, such lexical gaps generally preclude translation-based WSD: we cannot iden-

tify a sense based on its lexical translation if it doesn’t have a lexical translation.

For example, the “golf” sense of wood in Figure 4.1 corresponds to a lexical gap,

and so would need to be translated into Italian by a compositional phrase, such as

“legno da golf”.

2Interestingly, the WSD algorithm of Diab and Resnik (2002), which disambiguates English

words based on their French translations, is based on the assumption that all target-language words

are monosemous.
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In summary, an ideal one-to-one sense-translation mapping seems to be a very

brittle structure. Any exception to OSPT, OTPS, or NoLG would complicate the

use of translations to define sense inventories. Moreover, any exception to OSPT or

NoLG will outright preclude the use of translations alone for WSD. The viability

of translation-informed WSD therefore rests on the extent to which these properties

hold in practice, which we investigate in the next section.

4.4 Empirical Analysis

We focus on English, with three languages of translation which represent various

degrees of relatedness to English: Italian, Polish, and Chinese, For each language,

we compute the proportion of English words for which OSPT, OTPS, and NoLG

hold in BabelNet (Navigli and Ponzetto, 2012), a large lexical knowledge base fre-

quently used as a sense inventory for multilingual WSD (Pasini et al., 2021). We

consider only English words with at least two senses in WordNet 3.0 (BabelNet

inherits senses from WordNet), and at least one translation in the target language

in BabelNet 4.0. There are 20,426 such words with Italian as the target language,

17,404 for Polish, and 19,973 for Chinese.

Table 4.1 summarizes the results. The NoLG values indicate that the majority

of English words involve at least one lexical gap in any of the three languages of

translation. The OTPS row shows that even fewer words have no more than one

translation per sense. The OSPT property is more reliable, covering almost 60%

words with Italian as the language of translation, and approaching 80% with less

related languages such as Polish or Chinese. However, the last row in the table

demonstrates that only a very small percentage of English words satisfy all three

properties at the same time.

Since we have argued that the conjunction of the three properties is a necessary

condition for an ideal one-to-one sense-translation mapping, these empirical results

provide an explanation why using translations as sense inventories is infeasible in

practice. Furthermore, even if we had a sense inventory with a complete mapping

between senses and translations (something BabelNet and comparable resources
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Italian Polish Chinese

OSPT 59.5 77.4 75.7

OTPS 16.3 22.8 10.3

NoLG 47.4 38.3 40.3

ALL 1.9 2.6 1.5

Table 4.1: The percentage of English polysemous words in BabelNet which ex-

hibit each of the three sense-translation mapping properties with respect to three

languages of translation.

aspire to provide), the OSPT values in our results table indicate that a substantial

portion of words cannot be disambiguated on the basis of their translations alone.

We conclude that this was a key factor in the abandonment of the use of translations

to induce sense inventories, or perform WSD on all words. Nevertheless, we posit

that translations can be leveraged to improve WSD, specifically be exploiting those

cases where a translation of a word in context uniquely determines its sense. In the

next section, we present and apply a method for using translations to tag a subset of

the tokens in a parallel corpus.

4.5 Corpus Tagging with OSPT

Although the results in Section 4.4 demonstrate that translations alone are not suf-

ficient for all-words WSD, prior work such as Gale et al. (1992b) and Lefever and

Hoste (2010) have shown that they can still be applicable to lexical samples. In this

section, we explore the idea of using translations to improve WSD on modern stan-

dard datasets. Specifically, we leverage those cases where the translation of a word

corresponds to exactly one of its senses in order to create supplementary training

data for a supervised WSD system.

4.5.1 Corpus Tagging

The generation of “silver datasets” for WSD is a way to address the knowledge

acquisition bottleneck (Pasini, 2021), the difficulty of obtaining training data for

supervised WSD. To this end, the goal of semantic corpus tagging is not to dis-
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ambiguate all word tokens, or any particular subset of lemmas; rather, the goal is

to partially sense-annotate a corpus to produce supplementary training data for a

supervised WSD system.

Automatic sense tagging has been a popular area of research in lexical seman-

tics. Taghipour and Ng (2015) used a mapping of Chinese translations to English

senses to annotate the English side of an English-Chinese parallel corpus; however,

this mapping is not available. Pasini and Navigli (2017) sense-tag Wikipedia arti-

cles using a variant of the personalized page-rank algorithm (PPR), while Delli Bovi

et al. (2017) applies a similar approach to the EuroParl parallel corpus. Barba et al.

(2020) use a pre-trained language model to identify semantically-equivalent trans-

lations of manually sense-annotated tokens. Most recently, Hauer et al. (2021b)

propose a family of pipeline approaches employing WSD methods, machine trans-

lation, lexical resources, and various filtering techniques.

Our work differs from prior work on using translations for WSD in that (a) we

show that our method can achieve good results with only one language of transla-

tion, (b) our method is independent of statistical information such as relative sense

frequencies, and (c) our method does not explicitly require any contextual infor-

mation. In contrast, the method of Apidianaki and Gong (2015) backs off to the

BabelNet first sense (BFS), a frequency-based baseline, if it is unable to narrow

down the sense of the target word. This back-off strategy is particularly undesirable

for tagging tokens that correspond to rare word senses. Moreover, their method

is tested only with multiple languages of translation, and is applied directly to all-

words WSD on a parallel corpus, rather than to generation of high-precision train-

ing data. The method of Bonansinga and Bond (2016) similarly depends on sense

frequency information, and is evaluated only intrinsically, with multiple languages

of translation. The method of Luan et al. (2020) depends on an existing disam-

biguation of the text, in addition to translations. Thus, our method is unique in that

it can produce supplementary WSD training data with minimal assumptions about

the available resources.
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for each token e on the S side of C do

if ∃ token f aligned with e then

Me ← the set of synsets containing e
Mf ← the set of synsets containing f
if |Me ∩Mf | = 1 then

Let s be the sole synset in Me ∩Mf

Tag e with sense (e, s)

Figure 4.2: Pseudo-code for the sense tagging algorithm.

4.5.2 Method

Our method is inspired by Loureiro and Camacho-Collados (2020). They sense

annotate only tokens that correspond to monosemous words, i.e., those that have

only one sense, which is a trivial task in itself. However, they also show that a

WSD method which propagates information between senses of different words can

benefit from these annotations. For example, the monosemous word airplane is a

synonym of the word plane, which is polysemous. Therefore, an annotated instance

of airplane can inform a model about the context in which the corresponding sense

of plane may appear.

In our approach, instead of monosemous words, we sense tag tokens which can

be disambiguated based on their translations. For example, the English noun vault

has four senses, corresponding to a burial vault, a bank vault, an arched ceiling,

or a jump over an obstacle. The Polish word wolta can translate only the “jump”

sense. Therefore, if we find an instance of vault translated as wolta, we can annotate

vault with its “jump” sense, as no other sense could have been so translated. The

absence of parallel polysemy between vault and wolta is a sufficient condition for

the correctness of this annotation, regardless of whether OSPT holds for all Polish

translations of vault. Our method uses this approach to partially annotate a parallel

corpus, creating new sense-annotated WSD training data. Our hypothesis is that

adding our translation-based annotations to a standard training corpus will improve

the results of a supervised WSD system.

We follow the theoretical framework established in Chapter 2. The sense in-

ventories, as well as the mapping between senses and translations, can be obtained
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from a multilingual wordnet, such as BabelNet. Multilingual wordnets consist of

synonym sets, or synsets, each corresponding to a concept, and containing the words

which can express that concept. The synsets that contain a word correspond to its

senses; a sense can be viewed as a pair of a word and a synset that contains it. The

target-language words in that synset are the words which can translate that sense.

For example, in Figure 4.1, a multilingual wordnet should have a synset corre-

sponding to the concept of “wood (material)” which contains wood and legno, but

not selva.

The pseudo-code of the algorithm is shown in Figure 4.2. It takes as input a

sentence-aligned parallel corpus C, involving the source language S (in our exper-

iments, English) and the target language T , which has been tokenized, lemmatized,

POS-tagged, and word-aligned. The algorithm generates sense tags for a subset of

the tokens on the source side of C. The algorithm consults a wordnet that covers

languages S and T . For each content word token e on the source side aligned with

a single target-language token f , we determine the number of synsets which con-

tain both e and f . Since each sense of a word uniquely corresponds to a synset

containing that word, this is equivalent to determining how many senses of e can

be translated by f . If the result is exactly one, we annotate e with its sense corre-

sponding to the synset s that it shares with f . For example, if an instance of wood is

aligned with selva, it is tagged with its “forest” sense, given that it is the only sense

of wood which selva can translate.

Our method is unsupervised, efficient, scalable, and fully explainable. Its run-

ning time scales linearly with the size of the corpus. The resources upon which

it depends are freely available for a wide variety of languages. These include the

parallel corpora our method annotates, a multilingual wordnet, as well as tools for

tokenization, POS-tagging, and alignment. It operates purely on the basis of con-

textual translation, without the need for additional tools such as knowledge-based

WSD systems or contextual embeddings.
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4.5.3 Intrinsic Evaluation

We test our translation-based corpus-tagging method on the manual sense anno-

tations in MultiSemCor, or MSC (Bentivogli and Pianta, 2005), a word-aligned

sense-annotated bitext, which was created by manually translating SemCor (Miller

et al., 1993). It is tokenized, POS-tagged, and word-aligned with a knowledge-

based aligner. There are 91,937 English word tokens in MSC annotated with ex-

actly one WordNet 1.6 sense, and aligned with a single Italian word. We randomly

select 10,000 of these tokens, and strip them of their sense annotations to form our

test set.

As our multilingual wordnet, we use MultiWordNet, or MWN (Pianta et al.,

2002) version 1.5.0. MWN was created by expanding Princeton WordNet 1.6 by

adding Italian translations, as well as new synsets to cover English lexical gaps.

Each English word in each multilingual synset is associated with a corresponding

WordNet 1.6 sense, and each such English sense is associated with a (possibly

empty) set of Italian translations. This provides the basis for our mapping of English

senses to Italian translations. To mitigate the sense omission errors in MWN, we

enrich it with 81,937 sense-translation pairs from MSC, excluding those which are

in our 10k-token test set.

The results of the application or our method to the 10,000 annotated tokens in

the test set yield a coverage of 33.3% and a precision of 92.6%, with the majority

of errors caused by missing translations in MWN. Thus, our unsupervised method

achieves higher precision than contemporary supervised WSD systems on standard

English WSD datasets (Barba et al., 2021c). While these results are not directly

comparable due to the different test sets, we interpret this as strong evidence for the

efficacy and utility of our method for generating high-quality WSD training data.

4.5.4 Extrinsic Evaluation

Having demonstrated that our method can accurately disambiguate a subset of the

tokens in a corpus, in this section we test whether sense-annotated data produced

in this way can be used to improve the performance of a supervised WSD system.
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Corpus Tokens Senses Lemmas

SemCor 226,036 33,316 22,899

F10 219,793 28,589 23,033

FFSC 117,646 16,818 15,329

FFLC 90,616 13,147 12,406

Table 4.2: Statistics on the sets of sense annotations generated using the three fil-

tering procedures.

This is achieved by appending the data that our translation-based method produces

to SemCor, a standard training corpus for English WSD. Note that no manual sense

annotations exist for the corpus that we annotate in these experiments; we are cre-

ating novel sense-annotated data.

Experimental Setup

Our parallel corpus is the English-Italian part of the OpenSubtitles corpus (Lison

and Tiedemann, 2016), which contains approximately 35M sentence pairs. We tok-

enize, lemmatize, and POS-tag both sides of the corpus with TreeTagger (Schmid,

2013) using pre-trained models.3 We perform word alignment with BabAlign (Luan

et al., 2020), which refines the output of FastAlign (Dyer et al., 2013) by leveraging

BabelNet as a source of lexical knowledge.

We again derive a sense-translation mapping from MultiWordNet, but this time

without adding information from MultiSemCor. Since MultiWordNet is based on

WordNet 1.6, we map each sense annotation to its most probable WordNet 3.0

equivalent, using a publicly available probabilistic mapping.4

As our supervised WSD system, we adopt the latest version of LMMS (Loureiro

et al., 2022), which exploits relations between senses derived from WordNet in

order to share information across related senses.

Filtering Annotations

Supervised WSD systems tend to exhibit a bias toward senses which are more fre-

quent in the training data (Loureiro et al., 2020). Therefore, even a set of perfectly

3https://cis.uni-muenchen.de/˜schmid
4http://www.lsi.upc.es/˜nlp
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Dataset Full MFS LFS ZSS ZSL

SE2 2,282 1,486 796 385 255

SE3 1,850 1,213 637 198 112

S07 455 250 205 53 20

S13 1,644 1,031 613 341 202

S15 1,022 623 399 204 103

ALL 7,253 4,603 2,650 1,181 692

Table 4.3: Number of instances in each of the subsets of each dataset and the con-

catenation of all five datasets.

correct sense annotations may degrade the model’s performance if the sense fre-

quency distribution in the newly produced data diverges from that of the test data,

which is not known in advance. We therefore filter the generated annotations to

avoid greatly altering the sense frequency distribution of SemCor.

Following the example of Loureiro and Camacho-Collados (2020), we limit the

number of annotated instances of each individual sense to 10, selected at random.

This not only helps to prevent highly unbalanced sense frequency distributions,

but also reduces the training time on the generated corpora. We refer to this set

of instances as F10. In order to focus on gaps in the coverage on SemCor, we

also test two additional filtering strategies that are applied to the annotations in

F10. The first filters for lemma coverage (FFLC), by removing all annotations for

lemmas which appear in SemCor. The second filters for sense coverage (FFSC), by

removing all annotations for senses which appear in SemCor. Therefore, the FFLC

annotations are a subset of the FFSC annotations, which in turn are a subset of the

F10 annotations.

Datasets

We obtain baseline results by training LMMS on SemCor, specifically the version

provided by Raganato et al. (2017). To test our method, we train three additional

LMMS models which augment SemCor annotations with F10, FFSC, and FFLC,

respectively. The sizes of these generated supplementary datasets, and of SemCor

itself, are shown in Table 4.2.

We evaluate our models on the standard WSD benchmark of Raganato et al.

(2017), henceforth “R17”. In addition to providing the baseline SemCor training
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corpus, R17 also contains five English WSD test sets created for five shared tasks:

Senseval-2, or “SE2” (Edmonds and Cotton, 2001), Senseval-3, or “SE3” (Sny-

der and Palmer, 2004), SemEval-2007, or “S07” (Pradhan et al., 2007), SemEval-

2013, or “S13” (Navigli et al., 2013), and SemEval-2015, or “S15” (Moro and Nav-

igli, 2015). Following prior work, we use the S07 dataset to develop our method.

We also evaluate our models on the concatenation of all five datasets, referred to

as ALL5, using the provided evaluation program; since LMMS disambiguates all

words, the metrics precision, recall, F1, and accuracy are all equal throughout these

experiments.

Following Blevins and Zettlemoyer (2020), we also test on the following subsets

of ALL:

1. MFS (most frequent sense): Instances for which the correct sense is the Word-

Net first sense (i.e. the most frequent in SemCor).

2. LFS (less frequent sense): Instances for which the correct sense is not the

WordNet first sense.

3. ZSS (zero-shot senses): Instances for which the sense is not in SemCor.

4. ZSL (zero-shot lemmas): Instances for which the lemma is not in SemCor.

MFS and LFS are disjoint, and their union is the complete dataset; ZSL is a subset

of ZSS. Table 4.3 shows the size of each such subset.

We also test our models on five new benchmark datasets of Maru et al. (2022):

1. 42D: A newly created set, designed to be challenging by ensuring that all

correct sense tags are neither the most frequent sense of their word, nor ob-

served in SemCor. In other words, by design, all instances in this set satisfy

the conditions for LFS and ZSS.

2. ALLamended (ALLa): A revised version of ALL from R17.

3. S10amended (S10a): A revised version of the dataset from SemEval-2010

Task 17 (Agirre et al., 2010).

4. hardEN (hEN): Those instances from 42D, ALLa, and S10a which were

found to be answered incorrectly by all of a selection of WSD systems.

5. softEN (sEN): Those instances from 42D, ALLa, and S10a which are not in

5This includes S07, as is standard in the WSD literature.
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Training Data R17 M22

SE2 SE3 S07 S13 S15 ALL 42D ALLa S10a hEN sEN

SemCor (Baseline) 76.1 73.9 67.0 75.2 77.4 75.0 35.9 74.9 77.3 12.6 78.0

SemCor + F10 74.9 72.6 65.9 72.8 78.2 73.7 40.5 73.3 77.1 15.1 76.6

SemCor + FFLC 76.7 73.9 67.5 75.0 77.5 75.1 34.9 75.1 76.6 13.4 77.9

SemCor + FFSC 76.2 72.3 66.8 73.5 78.3 74.3 38.4 74.1 76.3 14.7 77.1

Table 4.4: F1-scores (in %) on the 10 WSD test sets. SE07 is the development set.

The best results are in bold.

hardEN.

We henceforth refer to these datasets collectively as M22.

Results

The results in Tables 4.4 and 4.5 show that adding supplementary training data

created by our method generally increases WSD accuracy, especially on rare and

unseen senses. On the recently proposed 42D and hardEN challenge sets, we ob-

serve accuracy improvements of 4.6% and 2.5% respectively, using the F10 fil-

tering strategy. This same approach yields improvements on LFS, ZSS, and ZSL

partitions of the R17 ALL set, demonstrating that our method makes models more

robust against such instances. We interpret these results as evidence for the efficacy

and utility of our translation-based corpus tagging method.

The results further suggest that filtering generated annotations has a substantial

impact on the resulting model. The frequency with which a word can be tagged

with a particular sense by leveraging lexical translation need not correlate with the

frequency of that sense in practice. Therefore, when using such generated corpora,

care should be taken to select an appropriate filtering strategy. For instance, in

a corpus where unseen senses or words are expected (e.g., in an unusual genre

or domain), the FFSC filtering strategy may be the best option, as shown by its

accuracy yields on ZSS and ZSL instances.

We conclude that our method for translation-based sense tagging offers sub-

stantial benefits, especially on difficult instances (Blevins et al., 2021). These im-

provements are obtained using a recent WSD method which is based on pre-trained

transformer-based language models. This demonstrates that lexical translation can

be a useful source of information even for modern WSD systems.
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Training Data R17 - ALL

MFS LFS ZSS ZSL

SemCor (Baseline) 85.4 51.2 58.9 88.9

SemCor + F10 83.1 52.1 61.7 89.5

SemCor + FFLC 85.5 51.3 60.1 89.6

SemCor + FFSC 83.9 51.9 62.7 89.7

Table 4.5: F1-scores (in %) on subsets of the concatenation of all R17 datasets. The

best results are in bold.

As a final note, we note that since the phenomenon of parallel polysemy is

closely related to that of parallel homonymy, our approach is well-suited to homonym-

level disambiguation. In Chapter 3, we argued that homonym distinctions are the

coarsest possible sense inventory, and that almost all homonyms have disjoint sets

of translations. Therefore, unlike OSPT, One Homonym per Translation (OHPT)

does hold in general. Our translation-based approach could therefore be applied

with near-perfect accuracy to disambiguate words at the homonym level.

4.6 Discussion

Our theoretical analysis in Section 4.3 established that OSPT is a sufficient condi-

tion for the ability to determine the sense of a word given its translation in context.

However, the subsequent empirical analysis in Section 4.4 showed that OSPT does

not hold in general. Nevertheless, our experiments in Section 4.5 provide clear evi-

dence that we can leverage translations to produce high-precision sense annotations

on the subset of word instances for which OSPT holds. These results demonstrate

the importance of investigating the relations between senses, synonymy, polysemy,

and translation. In this section, we further explore these ideas, taking the assump-

tions examined by Yao et al. (2012) (c.f., Section 4.2) to their logical extremes.

4.6.1 One Concept per Word: No Polysemy

First, let us consider an extreme scenario: a hypothetical language in which poly-

semy does not exist; that is, every content word has exactly one sense. In such a

language, there could be no semantic ambiguity, and so WSD would be trivial: any

given word could only express a single concept, regardless of its context. OSPT
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would always hold in such a language, no matter the language of translation, since

each translation of a word could only translate its single sense.

To the best of our knowledge, no natural language contains only monosemous

words. For example, 77.8% of English words in BabelNet occur in only one synset,

with many of those being rare or technical terms. Similarly, Loureiro and Camacho-

Collados (2020) observe that nearly 80% of lemmas in WordNet have only one

sense, which allows them to generate useful resources for WSD. Only some con-

structed languages, such as Lojban/Loglan, strive to enforce complete monosemy

on the lexicon (Cowan, 1997).

The untenable position that rejects any partitioning of word meanings into senses

(“one sense per word”) relates to various approaches to both theoretical and com-

putational linguistics. In theoretical linguistics, the monosemist approach holds

that different observed senses of a polysemous word result from a combination of

its unique core meaning with the pragmatics of each specific context (François,

2008). In computational linguistics, methods that rely on exclusive use of static

word embeddings, such as those learned by word2vec (Mikolov et al., 2013) make

no allowance for discrete senses or sense embeddings.

4.6.2 One Word per Concept: No Synonymy

Now, let us consider the opposite extreme: a hypothetical language without syn-

onymy. If a wordnet were constructed for such a language, every synset would

contain exactly one word. For any given concept, there would be at most one word

that could be used to express it. One Translation per Sense (OTPS) would always

hold if such a language was used as the language of translation.

Again, it is unlikely that the entire lexicon of any natural language could sat-

isfy this requirement. A language could perhaps be constructed according to this

principle: for example, in Esperanto, synonymy and homonymy are considered un-

desirable (Puškar, 2015). Moreover, there will be a subset of any language which

does satisfy this property. Indeed, approximately 56% of WordNet 3.0 synsets con-

tain only one word (e.g., proton).

A similar position in computational linguistics (“one sense per context”) is di-
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ametrically opposite to the monosemist approach described above. For example,

Martelli et al. (2021) propose “dropping the requirement of a fixed sense inven-

tory” and instead using representations which assign each word token a unique

contextualized embedding. Such a position can be interpreted as an assignment of

a unique sense to every occurrence of a given word in a distinct context. In view of

our theoretical investigation, such an approach is effectively incompatible with our

definition of synonymy. Nevertheless, the existence of synonymy in any human lan-

guage is widely accepted in linguistics. In addition, computational linguistics tasks,

such as machine translation, need to account for synonymy, given that the goal is to

produce fully fluent, rather than just semantically correct texts and utterances.

4.6.3 One Word ≡ One Concept

If the two constraints described above are combined, it would result in a language

that has neither polysemy nor synonymy. We refer to this hypothetical language as

Interlingua. In Interlingua, every concept could be expressed by exactly one word,

which could express only that concept; every synset would have a size of one, and

every word would be in one synset. Assuming a sense-translation mapping is avail-

able, e.g. via a multilingual wordnet which includes Interlingua, lexical translation

into Interlingua could be reduced to identifying the sense of the source word. The

converse also holds: the sense of a word could always be identified, given its trans-

lation into Interlingua. Working in the other direction, given a perfect multilingual

wordnet, finding a translation for an Interlingua word would only require selecting

a word from the corresponding synset in the target language.

Perhaps the most direct application for Interlingua is language-independent se-

mantic parsing. Martı́nez Lorenzo et al. (2022) propose the BabelNet Meaning

Representation (BMR), a semantic parsing formalism which converts an input sen-

tence into a language-independent representation. Each content word is mapped to

the unique identifier of the BabelNet synset corresponding to the concept it refers

to. This creates a formal meta-language in which every concept is unambiguously

expressed in exactly one way: by the corresponding BabelNet synset ID. Hence,

the BMR satisfies one “word” per concept and one concept per “word”, with Ba-
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belNet IDs taking the place of words. There is no synonymy, as each ID is by

design unique in representing its particular concept, nor is there polysemy, as each

ID is unambiguous in its reference to some lexicalized concept. Thus, what may

appear as a completely hypothetical and abstract construct can in fact be viewed as

a theoretical model of a modern semantic approach.

4.7 Conclusion

In this chapter, we formulated several propositions related to senses, translations,

synonymy, and polysemy. We show empirically that the assumptions that would

allow translations to serve as a sense inventory hold simultaneously only for a small

fraction of words. Nevertheless, we also demonstrate that the link between word

senses and translations is not merely of theoretical interest. In particular, we present

a method for leveraging translations to perform high-precision unsupervised sense

annotation. We observe substantial WSD improvements especially on senses or

lemmas that are less frequent or not found at all in existing training data.

Considering the above applications to constructed languages, contextual em-

beddings, and semantic parsing, we intend to continue our theoretical investigations

into open issues in multilingual lexical semantics, and guide empirical research to-

ward more explainable models and results.
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Chapter 5

WiC = TSV = WSD: On the

Equivalence of Three Semantic Tasks

The word-in-context (WiC) task has attracted considerable attention in the NLP

community, as demonstrated by the popularity of the recent MCL-WiC SemEval

shared task. Systems and lexical resources from word sense disambiguation (WSD)

are often used for the WiC task and WiC dataset construction. In this chapter, we

establish the exact relationship between WiC and WSD, as well as the related task

of target sense verification (TSV). Building upon a novel hypothesis on the equiv-

alence of sense and meaning distinctions, we demonstrate through the application

of tools from theoretical computer science that these three semantic classification

problems can be pairwise reduced to each other, and therefore are equivalent. The

results of experiments that involve systems and datasets for both WiC and WSD

provide strong empirical evidence that our problem reductions work in practice.1

5.1 Introduction

This chapter answers an open question about the the relation between two important

tasks in lexical semantics. Word sense disambiguation (WSD) is the task of tagging

a word in context with its sense (Navigli, 2009). The word-in-context (WiC) prob-

lem is the task of deciding whether a word has the same meaning in two different

contexts (Pilehvar and Camacho-Collados, 2019). A crucial difference between the

1This chapter is based on Hauer and Kondrak (2022). See the preface for details.
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two tasks is that WSD depends on a pre-defined sense inventory2 while WiC does

not involve any identification or description of word meanings. Despite ongoing in-

terest in both tasks, there is substantial disagreement in the literature as to whether

WiC is a re-formulation of WSD (e.g. Levine et al. (2020)) or an entirely distinct

task (e.g. Martelli et al. (2021)).

By establishing that WSD and WiC are equivalent, we construct a theoretical

foundation for the transfer of resources and methods between the two tasks. WSD

has been intensively studied for decades, while WiC has recently attracted consider-

able attention from the research community. For example, the MCL-WiC SemEval

shared task (Martelli et al., 2021) attracted 48 teams, and WiC instances have been

integrated into the SuperGLUE benchmark (Wang et al., 2019). Understanding

how the two tasks relate to each other allows us to correctly interpret and confi-

dently build upon those results, including prior work on using WSD systems for

WiC (e.g. Loureiro and Jorge (2019)).

We establish the theoretical equivalence of WiC and WSD by specifying reduc-

tion algorithms which produce a solution for one problem by applying an algorithm

for another. In particular, we employ the target sense verification (TSV) task (Breit

et al., 2021) as an intermediate step between WSD and WiC, and specify three re-

ductions: WiC to WSD, WSD to TSV, and TSV to WiC. We formalize the three

problems using a common notation, and provide both theoretical and empirical ev-

idence for the correctness of our reductions. While we focus on English in this

chapter, we make no language-specific assumptions.3

The soundness of all three tasks hinges on the consistency of judgments of

sameness of word meaning, whether with respect to discrete sense inventories as

in WSD, a representation of a single sense in TSV, or two occurrences of a word

in WiC. We posit that different instances of a word have the same meaning if and

only if they have the same sense. This empirically falsifiable proposition, which

we refer to as the sense-meaning hypothesis, implies that WiC judgements induce

2For the purposes of this chapter, we assume that the WSD sense inventory, the discrete enumer-

ation of the senses of each content word, is the WordNet sense inventory (Miller et al., 1990), which

is a standard practice in WSD (Raganato et al., 2017).
3Hauer et al. (2021a) leverage translations from multiple languages for the WiC task by applying

the substitution test for the synonymy of senses (see Chapter 2).
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sense inventories that correspond to word senses. This counter-intuitive finding

has intriguing implications for the task of word sense induction (WSI), as well as

algorithmic wordnet construction.

We empirically validate our hypothesis by conducting multiple experiments and

analyzing the results. In particular, we test our WSD-to-WiC and WiC-to-WSD

reductions on standard benchmark datasets using state-of-the-art systems. We find

that our reductions perform remarkably well, revealing no clear counter-examples

to our hypothesis in the process.

Our contributions are as follows: (1) We answer the open question of the rela-

tion between WiC and WSD by constructing a theoretical argument for their equiv-

alence, which is based on the novel sense-meaning hypothesis. (2) We carry out

a series of validation experiments that strongly support the correctness of our re-

ductions. (3) We release the details of our manual analysis and annotations of the

instances identified in the validation experiments.

5.2 Theoretical Formalization

In this section, we formally define the three problems, present a theoretical argu-

ment for their equivalence, and specify the reductions.

5.2.1 Problem Definitions

Senses in our problem definitions refer to wordnet senses. A wordnet is a theoretical

construct which is composed of synonym sets, or synsets, such that each synset

corresponds to a unique concept, and each sense of a given word corresponds to a

different synset. Actual wordnets, such as Princeton WordNet (Miller et al., 1990;

Fellbaum, 1998), are considered to be imperfect implementations of the theoretical

construct.

In the problem definitions below, C,C1, C2 represent contexts, each of which

contains a single focus word w used in the sense s. We assume that every content

word token is used in exactly one sense.4

4This is empirically supported by the fact that 99.7% of annotated tokens in SemCor are assigned

a single sense.
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• WSD(C,w): Given a context C which contains a single focus word w, return

the sense s of w in C.

• TSV(C,w, s): Given a context C which contains a single focus word w, and

a sense s, return TRUE if s is the sense of w in C, and FALSE otherwise.

• WiC(C1, C2, w): Given two contexts C1 and C2 which contain the same fo-

cus word w, return TRUE if w has the same meaning in both C1 and C2, and

FALSE otherwise.

5.2.2 Problem Equivalence

The theoretical argument for the sense-meaning hypothesis is based on the assump-

tion that the relation of sameness of word meaning is shared between the three prob-

lems. This is supported by the lack of distinction between meanings and senses

in the original WiC task proposal.5 On the other hand, WordNet exhibits a strict

one-to-one correspondence between distinct meanings, synsets, and concepts (see

Chapter 2), with each word sense corresponding to a specific synset. This implies

that senses are ultimately grounded in sameness of meaning as well.6 Therefore,

every word meaning distinction should correspond to a pairwise sense distinction.

Contrariwise, if two tokens of the same word express different concepts, their mean-

ing must be different. This equivalence also includes the TSV problem, provided

that the given sense of the focus word corresponds to a single synset.

5.2.3 Problem Reductions

We now present the three problem reductions. For our purposes, a P-to-Q reduction

is an algorithm that, given an algorithm for a problem Q, solves an instance of a

problem P by combining the solutions of one or more instances of Q.

Proposition 1. WiC is reducible to WSD.

To reduce WiC to WSD, we directly apply the sense-meaning hypothesis from

Section 5.1 by assuming that the focus word has the same meaning in two contexts

5“The proposed dataset, WiC, is based on lexicographic examples, which constitute a reliable

basis to [. . . ] discern different meanings of words.” (Pilehvar and Camacho-Collados, 2019).
6“[Each] synonym set represents one underlying lexical concept. [. . . ] Word meaning [refers]

to the lexicalized concept that a [word] form can be used to express.” (Miller, 1995).
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sense inventory. We return the sense for which the TSV instance returns TRUE

(Figure 5.1b). The correctness of this reduction hinges on the assumption that every

content word in context is used in exactly one sense.

Proposition 3. TSV is reducible to WiC.

To reduce TSV to WiC, we again leverage our sense-meaning hypothesis by

assuming that a content word used in a particular sense will be judged to have the

same meaning as in an example sentence for that sense. Formally:

TSV(C,w, s)⇔WiC(C,Cs, w)

where Cs is a context in which w is unambiguously used in sense s. So, given

a method for solving WiC, we can solve a TSV instance by replacing the given

sense representation with an example, yielding a WiC instance (Figure 5.1c). This

reduction depends on the existence of an algorithm E that, given a sense s of a word

w, can generate an example sentence Cs that contains w used in sense s.7

These three reductions are sufficient to establish the equivalence of WSD, TSV,

and WiC. A method which solves any of these problems can be used to construct

methods which solve the other two, using a sequence of at most two of the above

reductions.

In particular, we can reduce WSD to WiC:

Corollary 1. WSD is reducible to WiC.

To reduce WSD to WiC, first reduce the WSD instance to TSV, producing one

TSV instance for each sense s of w. Then, reduce each of these TSV instances to a

WiC instance, by pairing the context of the WSD instance with an example context

for each sense. Succinctly:

WSD(C,w) = s⇔WiC(C,Cs, w)

Thus, solving the original WSD instance can be achieved by identifying the

single positive instance in the list of k WiC instances.

7This is related to a well-defined and actively researched task known as exemplification mod-

elling (Barba et al., 2021b).
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5.3 WiC Datasets

In this section, we discuss and analyze the existing WiC datasets with the aim of

finding a dataset suitable for validating our equivalence hypothesis. An instance

that contradicts one of the reduction equivalences in Section 5.2.3 would be an

exception to the hypothesis. Since natural language is not pure logic, falsifying

the hypothesis would require finding that such exceptions constitute a substantial

fraction of instances, excluding apparent exceptions caused by errors and omissions

in lexical resources.

5.3.1 WiC

WiC was originally proposed as a dataset for the evaluation of contextualized em-

beddings, including neural language models (Pilehvar and Camacho-Collados, 2019).

The original WiC dataset consists of pairs of sentences drawn mostly from Word-

Net, which were further filtered to remove fine-grained sense distinctions. The

reported inter-annotator agreement was 80% for the final pruned set, and only 57%

for the pruned-out instances.

Since, regardless of the source, all instances were annotated automatically by

checking the sense identity in WordNet, the WiC dataset cannot, by its construc-

tion, contain any exceptions to the equivalence hypothesis. Therefore, we do not

use the original WiC dataset in our experiments. Nevertheless, it is possible to auto-

matically identify both senses in about half the instances in the dataset by matching

them to the sense usage example sentences in WordNet 3.0. It is interesting to note

that combining such a WordNet lookup with a random back-off on the remaining

instances results in correctly solving 76.1% of the WiC instances in the test set,

which exceeds the current state-of-the-art results of 72.1% (Levine et al., 2020).

5.3.2 WiC-TSV

Breit et al. (2021) propose target sense verification (TSV), the task of deciding

whether a given word in a given context is used in a given sense. TSV is similar to

WiC in that it is also a binary classification task, but only one context is provided.
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TSV is also similar to WSD in that there is an explicit representation of senses,

but there is only one sense to consider. Three sub-tasks are defined depending on

the method of representing a sense: (a) definition, (b) hypernyms, and (c) both

definition and hypernyms.

Approximately 85% of the instances in the WiC-TSV dataset are derived di-

rectly from the original WiC dataset, and so are ultimately based on WordNet

senses.8 Specifically, the sense of the focus word was established by reversing

the process by which the WiC instances were created, as in the WordNet lookup

procedure applied to the WiC dataset in Section 5.3.1. Because of this construction

method, no exceptions to the equivalence hypothesis can be found in the WiC-TSV

dataset.

5.3.3 MCL-WiC

Martelli et al. (2021) introduce the Multilingual and Cross-lingual Word-in-Context

dataset. The English portion of the dataset consists of 10k WiC instances, divided

into a training set (8k instances), as well as development and test sets (1k instances

each). The task is exactly the same as the original WiC task, and matches our

WiC problem formalization in Section 5.2.1. In particular, while the dataset covers

multiple languages, the task itself remains monolingual, in the sense that the system

need only consider one language at a time; that is, all input and output for a given

instance is in a single language.

In contrast with the original WiC dataset, which was largely derived from Word-

Net, the sentence pairs in MCL-WiC were manually selected and annotated. An-

notators consulted “multiple reputable dictionaries” to minimize the subjectivity of

their decisions on the identity of meaning. As a result, both the inter-annotator

agreement (κ = 0.968), and the best system accuracy (93.3% on English (Gupta et

al., 2021)) are much higher than on the original WiC dataset.

The MCL-WiC dataset (Section 5.3.3) is especially valuable for testing our

sense-meaning equivalence hypothesis because it does not rely on pre-existing Word-

8Three smaller sets are devoted to cocktail, medical, and computer terms, respectively, and ap-

pear more related to named entity recognition than to WSD.
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Net sense annotations, and is agnostic toward WordNet sense distinctions. For this

reason, we make the MCL-WiC dataset the focus of our empirical validation exper-

iments in the next section.

5.4 Empirical Validation

In this section, we aim to quantify and analyze any apparent counter-examples to the

sense-meaning hypothesis which are identified in the process of testing the WSD-

to-WiC and WiC-to-WSD reductions. We are particularly interested in the excep-

tions that cannot be attributed to errors in the resources that are used to implement

the reductions, because such exceptions represent potential evidence against our

hypothesis.

5.4.1 Systems

In order to implement the WSD-to-WiC and WiC-to-WSD reductions, we adopt

two recent systems designed for the WiC and WSD tasks, respectively.

Our WiC system of choice is LIORI (Davletov et al., 2021). In the MCL-WiC

shared task, LIORI obtained an accuracy of 91.1% on the English test set, which

was within 2% of the best performing system. LIORI works by concatenating each

sentence pair into a single string, and fine-tuning a neural language model for binary

classification. We use the code made available by the authors9, and derive our model

from the MCL-WiC English training set.

As our WSD system, we adopt ESCHER (Barba et al., 2021a). ESCHER re-

formulates WSD as a span extraction task: For a given WSD instance, the context is

concatenated with all glosses of the focus word into a single string, from which the

gloss of the correct sense is extracted. We derive our model using the implemen-

tation and training procedure provided by the authors10. The training data includes

SemCor (Miller et al., 1993). In our replication experiments, this model achieves

80.1% F1 on the standard WSD benchmark datasets of Raganato et al. (2017).

9https://github.com/davletov-aa/mcl-wic
10https://github.com/SapienzaNLP/esc
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5.4.2 Solving WSD with WiC

Our first experiment involves an implementation of the reduction of WSD to WiC.

For each WSD instance, we construct a set of WiC instances that correspond to its

possible senses, solve them with LIORI, and return a single sense, in accordance

with the reduction specified in Corollary 1 from Section 5.2.3. We then present and

analyze the results on a standard WSD dataset.

Implementation of the Reduction

Given a WSD instance consisting of a focus word w in a context C, we create a set

of k WiC instances, where k is the number of senses of w. In WordNet 3.0, each

sense s has a gloss gs, and sometimes also a usage example of w being used in sense

s. Since not all synsets are accompanied by usage examples, we instead generate

a new synthetic usage example Cs for each sense of w using the following pattern:

Cs := “ ‘w’ in this context means gs”. Thus Cs represents an unambiguous example

of w being used in sense s. The resulting WiC instance for s is then composed of

contexts C and Cs, both of which include the focus word w.

Our LIORI model returns a binary classification and a score for each of the con-

structed WiC instances. While LIORI may classify zero, one, or more instances as

true, LIORI also produces a score for each instance, and our implementation returns

only the sense with the highest score. This is in accordance with the definition of the

WSD task as identifying a single correct sense for a word in context (Section 5.2.1).

Results and Discussion

To estimate the expected accuracy of the above implementation, we first apply

LIORI to the 1000 instances in the MCL-WiC English development set. LIORI

achieves an accuracy of 88.0%, which we use as an estimate of the probability

that LIORI correctly classifies any given WiC instance. The average number of

senses per instance in our WSD dataset is approximately 8.5. Since any error by

LIORI can cause the WSD-to-WiC reduction to output the wrong sense, we esti-

mate the expected probability that LIORI correctly classifies a single WSD instance

as 0.8808.5 ≈ 0.34.
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We test the reduction on the SemEval 2007 dataset, as provided by Raganato et

al. (2017). This test set contains 455 WSD instances, all but four of which (over

99%) are annotated with exactly one sense. Our reduction implementation obtains

an accuracy of 47.9% by returning a single predicted sense for every WSD instance

in the test set. As this result is substantially higher than the expected accuracy of

34%, we interpret it as evidence in favor of our hypothesis.

In theory, for each WSD instance, LIORI should classify as true exactly one

of the constructed WiC instances, which represents the single correct sense. In

practice, this is the case in only 48 out of 455 cases. Our reduction implementation

predicts the correct sense for 38 out of 48, yielding a precision of 79.2%. We

verified that ESCHER, trained on over 226k sense annotations in SemCor, correctly

annotates 39 of these 48 instances. On this subset of instances, our WSD-to-WiC

reduction based on LIORI is therefore competitive with state-of-the-art supervised

WSD systems, despite not depending on any sense-annotated training data. This

constitutes further evidence for the correctness of our reduction, and our hypothesis.

5.4.3 Solving WiC with WSD

In this experiment, we apply a state-of-the-art supervised WSD system to solve,

via our WiC-to-WSD reduction, all WiC instances in an independently-annotated

test set. We then manually analyze a sample of the errors to assess whether the

experiment supports our hypothesis and the correctness of our reduction.

Implementation of the Reduction

The implementation of the WiC-to-WSD reduction is conceptually simpler that the

previously described WSD-to-WiC reduction.11 Given a WiC instance consisting

of contexts C1 and C2 for a word w, we create two corresponding WSD instances:

(C1, w) and (C2, w). Both WSD instances are passed to ESCHER, which indepen-

dently assigns senses s1 and s2 to w in each of the two contexts. We classify the

WiC instance as positive if and only if s1 = s2.

11In fact, Loureiro and Jorge (2019) implicitly apply this reduction on a WiC dataset with their

WSD system LMMS.
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There are two types of possible counter-examples to our hypothesis: (1) a WiC

instance which is annotated as positive (i.e., the same meaning) in which both focus

tokens have different senses; and (2) a WiC instance which is annotated as negative

(i.e., different meanings) in which both focus tokens have the same sense. These

two types could arise from WSD sense distinctions that are too fine-grained or too

coarse-grained, respectively.

Expected Accuracy

The expected accuracy of the WiC-to-WSD reduction is more complex to calcu-

late than that of the WSD-to-WiC reduction. Our calculation is based on the sim-

plifying assumption that all WSD errors are independent and equally likely. For

the probability that ESCHER disambiguates any WSD instance correctly, we use

the value of p = 0.801, based on our replication result in Section 5.4.1. The av-

erage number of senses per focus token in the dataset used in our experiment is

k = 4.73. Since there are k−1 incorrect senses for each WSD instance, we approx-

imate the probability of predicting a given incorrect sense in either WiC sentence

as q = (1− p)/(k − 1) = 0.053.

In order to estimate the probability of a correct classification, we consider two

main cases.

1. A positive WiC instance is correctly classified as positive if either (1.1) both

corresponding WSD instances are disambiguated correctly, or (1.2) both in-

stances are tagged with the same incorrect sense: P1 = p2 + (k − 1)q2 =

0.642 + 0.011.

2. A negative WiC instance is incorrectly classified as positive if either (2.1) one

of the corresponding WSD instances is disambiguated correctly and the other

is incorrectly tagged with the same sense, or (2.2) both instances are tagged

with the same incorrect sense: P2 = 2pq + (k − 2)q2 = 0.085 + 0.008.

Assuming that the dataset is balanced, the expected probability of classifying a WiC

instance correctly is therefore: P1/2 + (1− P2)/2 = 0.779.

87



Results and Discussion

We test the reduction on the MCL-WiC English development set, which consists of

500 positive and 500 negative WiC instances. We tokenize, lemmatize, and POS-

tag all 2000 sentences with TreeTagger12 (Schmid, 1999) as a pre-processing step.

ESCHER is then applied to predict the sense of the focus word in each sentence.

In 25 cases, ESCHER failed to make a sense prediction, that is, one or both focus

words were not disambiguated, due to TreeTagger tokenization or lemmatization

errors. The accuracy on the remaining 975 instances is 78.5%, which is within

1% of our theoretical estimate in Section 5.4.3. We conclude that this experiment

provides strong empirical support for our hypothesis and the correctness of our

reductions.

Analysis

To further evaluate our WiC-to-WSD reduction, we manually analyzed a sample

of 10 false positives and 10 false negatives from this experiment. The sample was

not random; instead, we attempted to automatically select the instances that were

most likely to represent exceptions to our equivalence hypothesis. Specifically, we

restricted the analysis to WiC instances that were correctly classified by LIORI, in

order to reduce the impact of erroneous annotations, which are unavoidable in any

gold dataset. As a result, the accuracy of ESCHER on the WSD instances in this

sample is expected to be lower than in the entire dataset. In fact, in 13 of the 20

instances (six false positives, seven false negatives), the misclassification was due

to an error made by ESCHER.

In three of the seven remaining cases (all false positives), the WiC misclassifi-

cation was caused by the WordNet sense inventory not including the correct sense

of one of the focus tokens. Since we require ESCHER to produce a WordNet sense

as output, such omissions preclude the correct disambiguation of the focus word.

In all such cases, we were able to find the omitted sense in one of the dictionaries

that we consulted (Oxford or Merriam-Webster). For example, the correct sense

of the verb partake in the WiC sentence “he has partaken in many management

12https://cis.uni-muenchen.de/˜schmid/tools/TreeTagger
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Lemma Gloss Dict

1 partake (v) join in (an activity) OED

2 instant (adj) prepared quickly and

with little effort

OED

3 familiar (adj) of or relating to a

family

MW

4 breach (v) to leap out of water MW

5 spotter (n) a member of a motor

racing team

OED

6 campaign (n) an organized course

of action to achieve a

goal

OED

7 campaign (n) a set of organized ac-

tions that a political

candidate undertakes

in an election

OED

8 drive (n) determination and

ambition to achieve

something

OED

9 drive (n) an organized effort

by a number of peo-

ple

OED

10 wedding (n) a marriage ceremony

with accompanying

festivities

MW

11 wedding (n) an act, process, or in-

stance of joining in

close association

MW

12 analyst (n) someone who ana-

lyzes

Wik

13 analyst (n) a financial analyst; a

business analyst

Wik

Table 5.1: Examples of senses that are not in WordNet (Rows 1-5), and sense dis-

tinctions found in external dictionaries (Rows 6-13): OED (Oxford English Dictio-

nary), MW (Merriam-Webster), Wik (Wiktionary).

courses” is “join in (an activity)” which is in the Oxford English Dictionary, but not

in WordNet 3.0. The missing WordNet senses for each of these instances are shown

in rows 1-3 of Table 5.1.

Among the remaining four instances, in one anomalous case we were unable to

reach a consensus on the WordNet sense of the adverb richly in the phrase richly

rewarding. However, in the other three cases, ESCHER’s annotations were unques-
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tionably correct. We defer the discussion of those three interesting instances to the

next section.

5.4.4 Manual Annotation Experiment

To further expand our analysis, we manually analyzed 60 additional randomly se-

lected instances from the English MCL-WiC training set. The size of the sample

was limited because WSD instances are difficult and time-consuming to analyze,

especially when multiple annotators are involved and an effort is made to avoid any

unconscious bias.

For each such instance, we assigned WordNet senses to each of the two focus

tokens, without accessing the gold MCL-WiC labels. Our judgments were based on

the glosses and usage examples of the available senses, as well as the contents of

the corresponding synsets and their hypernym synsets. Subsequently, we analyzed

each instance where the WiC prediction obtained by applying the WiC-to-WSD

reduction did not match the WiC classification in the official gold data.13

We found that 55 out of 60 instances (91.7%) unquestionably conform to the

equivalence hypothesis. The remaining five instances can be divided into three

categories: (1) tokenization errors in MCL-WiC, (2) missing senses in WordNet,

and (3) possible annotation errors in MCL-WiC. We discuss these three types of

errors below.

In two instances, word tokenization errors interfere with the MCL-WiC annota-

tions: (1) together in “the final coming together” is annotated as an adverb instead

of a particle of a phrasal verb, and (2) shiner in “shoes shiners met the inspector”

is annotated as a stand-alone noun instead of a part of a compound noun. These

tokenization errors prevent the proper assignment of WordNet senses.

In two instances (rows 4 and 5 in Table 5.1), one of the senses of the focus

word is missing in WordNet: (1) breach referring to an animal breaking through the

surface of the water, and (2) spotter referring to a member of a motor racing team

who communicates by radio with the driver. Neither of these senses is subsumed

13We publish the annotated set of 60 WiC instances at https://webdocs.cs.ualberta.

ca/\˜kondrak
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by another sense in WordNet, and both of them are present in one of the consulted

dictionaries.

In the final problematic instance, MCL-WiC classifies the noun campaign as

having the same meaning in the contexts “during the election campaign” and “the

campaign had a positive impact on behavior.” Since the distinction between these

two senses of campaign is found in the Oxford English Dictionary, which was

among the ones consulted by the MCL-WiC annotators (Martelli et al., 2021), we

classify it as an MCL-WiC annotation error (rows 6 and 7 in Table 5.1).

Similarly, we posit an MCL-WiC annotation error in each of the three outstand-

ing false negatives from Section 5.4.3, which could not be attributed to ESCHER,

based on the verification in external dictionaries. For example, unlike WordNet,

Oxford and Merriam-Webster both distinguish the emotional and organizational

meanings of drive. Similar analysis applies in instances involving the words wed-

ding and analyst (rows 8-13 in Table 5.1). Since the meanings of the focus words

in these contexts are distinguished in a dictionary, they should be considered dis-

tinct meanings according to the annotation procedure of Martelli et al. (2021). We

conclude that in these cases, the MCL-WiC label is incorrect, and so they do not

constitute exceptions to our hypothesis.

In summary, a careful analysis of 25 apparent exceptions made by our reduc-

tion across 80 instances, using both automatic and manual WSD, reveals no clear

evidence against the correctness of our reduction. We therefore conclude that the

results of these experiments strongly support our hypothesis.

5.5 Discussion

Having presented theoretical and empirical evidence for the equivalence of WiC,

WSD, and TSV, we devote this section to the discussion of the relationship between

WordNet and WiC.

Most English WiC and TSV datasets are based, in whole or in part, on Word-

Net. If no sense inventory is used for grounding decisions about meaning, the

inter-annotator agreement is reported to be only about 80% (Pilehvar and Camacho-
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Collados, 2019; Breit et al., 2021). For the MCL-WiC dataset, however, annotators

consulted other dictionaries, and obtained “almost perfect agreement” (Martelli et

al., 2021). This suggests that sense inventories, and semantic resources in general,

are crucial to reliable annotation for semantic tasks. However, because the ex-

act MCL-WiC procedure for resolving differences between dictionaries is not fully

specified, and because such dictionaries vary in their availability, the correctness of

the annotations cannot be readily verified (c.f. Section 5.4.4).

Our experiments provide evidence that, even when the WordNet sense inventory

is not explicitly used in constructing WiC datasets, WiC annotations nevertheless

tend to agree with WordNet sense distinctions, as our hypothesis predicts. Namely,

the MCL-WiC instances in which both focus tokens have the same sense are almost

always annotated as positive by the MCL-WiC annotators. The converse also holds,

with any exceptions being explainable by errors in the resources. Thus, empirical

validation confirms our sense-meaning hypothesis, which implies that the meaning

distinctions induced by WiC judgements closely match WordNet sense inventories.

This is a remarkable finding given the high granularity of WordNet.

We postulate that the adoption of WordNet as the standard sense inventory for

WiC would have several practical benefits: (1) it has been adopted as the standard

inventory for WSD, and so would simplify multi-task evaluation; (2) it allows seam-

less application of systems across datasets; (3) it facilitates rapid creation of new

WiC datasets based on existing sense-annotated corpora; (4) it is freely available;

(5) it can be modified and extended to correct errors and omissions (McCrae et al.,

2020); and finally (6) it can be extended to facilitate work with other languages, as

in the XL-WiC dataset (Raganato et al., 2020).

In addition, WordNet has strong theoretical advantages. Its fine granularity is

a consequence of its grounding in synonymy and lexical concepts. Therefore, the

sense distinctions found in other dictionaries either already correspond to different

WordNet concepts, or should lead to adding new concepts to WordNet. Further-

more, unlike in dictionaries, senses of different words in WordNet are linked via

semantic relations such as synonymy and hypernymy, which facilitate an objec-

tive assignment of every word usage to a single WordNet concept. This property of
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WordNet may be the reason that the WSD methods based on sense relation informa-

tion have surpassed the inter-annotator agreement ceiling of around 70% (Navigli,

2006).

5.6 Conclusion

We formulated a novel sense-meaning hypothesis, which allowed us to demonstrate

the equivalence of three semantic tasks by mutual reductions. We corroborated our

conclusions by performing a series of experiments involving both WSD and WiC

tools and resources. We have argued that these relationships originate from the

WordNet properties, which are highly desirable in semantics research. We expect

that our findings will stimulate future work on system development, resource cre-

ation, and joint model optimization for these tasks.

93



Chapter 6

Taxonomy of Problems in Lexical

Semantics

Semantic tasks are rarely formally defined, and the exact relationship between

them is an open question. We introduce a taxonomy that elucidates the connection

between several problems in lexical semantics, including monolingual and cross-

lingual variants. Our theoretical framework is based on the hypothesis of the equiv-

alence of concept and meaning distinctions. Using algorithmic problem reductions,

we demonstrate that all problems in the taxonomy can be reduced to word sense dis-

ambiguation (WSD), and that WSD itself can be reduced to some problems, making

them theoretically equivalent. In addition, we carry out experiments that strongly

support the soundness of the concept-meaning hypothesis, and the correctness of

our reductions.1

6.1 Introduction

This chapter proposes a taxonomy of several problems in lexical semantics, con-

sisting of a clear definition of each task, and a theory-driven analysis establishing

the relationships between them (Figure 6.1). The taxonomy includes word sense

disambiguation (WSD), word-in-context (WiC), lexical substitution (LexSub), and

word synonymy (Syn). We consider their monolingual, cross-lingual, and multilin-

gual variants. With the exception of WSD, they are all defined as binary decision

problems.

1This chapter is based on Hauer and Kondrak (2023). See the preface for details.
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Our theoretical problem formulations correspond to well-studied semantic tasks.

In practice, these tasks are rarely precisely defined, and instead depend on annotated

datasets. For example, the definitions of lexical substitution differ between publica-

tions, and involve imprecise terms, such as “the overall meaning of the context” or

“suitable substitute.” The exact relationships between these tasks have not been rig-

orously demonstrated. Altogether, the recent literature suggests that a more detailed

taxonomy is very much needed.

We start by formally defining the problems in terms of concepts and contexts,

and proceed to determine their relative hardness by specifying reduction algorithms

which produce a solution for one problem by applying an algorithm for another.

In particular, we demonstrate that all problems in the taxonomy can be reduced

to WSD, which confirms the principal role of this problem in lexical semantics.

Furthermore, we show by mutual reductions that WSD and multilingual variants of

WiC and LexSub are theoretically equivalent. Finally, we shed light on how they

relate to lexical translation and wordnets.

The soundness of the problems in the taxonomy hinges on the consistency of

judgments of sameness of word meaning. In Chapter 5, we demonstrated the the-

oretical equivalence of the monolingual WiC and WSD via mutual reduction. We

posit the following generalization of their sense-meaning hypothesis to multilin-

gual concepts: different word instances have the same meaning if and only if they

express the same concept. This empirically falsifiable proposition, which we refer

to as the concept-meaning hypothesis, allows us to incorporate multilingual tasks,

including lexical synonymy and substitution, into our theoretical framework.

In addition to showing that our theoretical propositions follow directly from our

definitions and assumptions, we perform a series of experiments for the purpose

of testing their empirical applicability and soundness. In particular, we test three

problem reductions on standard benchmark datasets using independently developed

systems based on pre-trained language models. Manual error analysis reveals no

counter-examples to our concept-meaning hypothesis.

Our main contribution is a novel taxonomy of formally-defined problems, which

establishes the reducibility or equivalence relations between the principal tasks in
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6.2.2 Contexts and Concepts

Alternatively, we can categorize semantic problems according to the number of

contexts which must be considered in each instance: zero, one, or two, respectively,

in the leftmost three columns of Figure 6.1. Contexts are denoted by the variable

names starting with C. We broadly define a context as a discourse (not necessarily

a sentence) with a focus, which is a word or sequence of words that express a

specific concept. Contexts that consist of the same discourse but differ in focus are

considered distinct. The expression “a word expresses a concept given a context”

signifies that the word can be used to refer to the concept that corresponds to the

focus of that context. Note that the word itself is not required to occur in the context,

or even match the language of the context.

For example, consider the context “bats live in caves” which disambiguates the

word bat to its animal sense. The underlined word represents the focus of the

context, which can be expressed by the words bat or its synonym chiropteran. The

languages of the word and the context need not be the same. For example, the

Spanish context “un murciélago entro en mi casa” disambiguates the English word

bat as an animal rather than an instrument.

A lexical concept, or simply concept, refers to a discrete word meaning. A

concept gloss, such as “flying nocturnal rodent,” is a special type of a context, in

which the entire definition is the focus, and which uniquely determines the concept.

We assume that the concept gloss Cs which defines the meaning of the concept s

can be expressed in any language.

We assume the availability of complete sets of words (i.e., lexicons) and lexical

concepts. The methods for creating such resources are beyond the scope of this

work.

6.2.3 Monolexical Problems

We first define three problems that take a single word argument. We refer to these

theoretical problems by the same acronyms as their corresponding computational

tasks: WSD, TSV, and WiC.
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Word sense disambiguation (WSD) is the task of classifying a word in context

according to its sense, given an inventory of possible senses for each word. For

each word, there is a one-to-one mapping between its senses and the concepts that

it can express. We can therefore define the WSD problem more generally, to return

a concept rather than a sense. This avoids the need for a predefined sense inventory

for each word.

WSD(C,w) := “the concept which is expressed by the

word w given the context C”

Note that this formulation does not require the word to occur in the context. By

convention, the return value of the WSD predicate is undefined if the word is not

meaningful given the context; for example, the English word metre does not express

any concept given the Italian context “la metro di Roma è efficiente” (“the Rome

metre is efficient”). In contrast, any binary predicate is assumed to return FALSE in

such cases.

Target sense verification, or TSV (Breit et al., 2021), is the binary classification

task of deciding whether a given word in a given context expresses a given sense.

As with WSD, we define the TSV problem on concepts rather than senses. We

assume that the concept s is represented by its gloss Cs.

TSV(C,w, s) := “the word w expresses the concept s

given the context C”

The TSV problem can be viewed as a binary analogue of the WSD problem,

such that the following equivalence holds:

TSV(C,w, s)⇔WSD(C,w) = s

The word-in-context task (WiC) is a binary classification task proposed by Pile-

hvar and Camacho-Collados (2019): given a pair of sentences, decide whether or

not a word has the same meaning in both sentences. We define the corresponding

WiC problem using concepts, on the basis of the concept-meaning hypothesis:

WiC(Cx, Cy, w) := “the word w expresses the same con-

cept given the contexts Cx and Cy”

In Chapter 5, we demonstrated the equivalence of WiC, TSV, and WSD by

pairwise reductions, which are denoted by purple arrows in Figure 6.1. In particular,
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the following formula specifies the reduction of WiC to WSD:

WiC(Cx, Cy, w)⇔WSD(Cx, w) = WSD(Cy, w)

6.2.4 Word-in-Context Problems

We now introduce a set of binary predicates which include WiC and its variants.

We start with the most general problem of the set, MultiWiC, and then define

MonoWiC, and CL-WiC as its special cases, in which the two words wx and wy

are constrained to be either in the same or different languages, respectively.

MultiWiC(Cx, Cy, wx, wy) := “the words wx and wy ex-

press the same concept given the contexts Cx and Cy, re-

spectively”

The WiC problem defined in Section 6.2.3 is a special case of MonoWiC, in

which wx = wy.

MonoWiC(Cx, Cy, wx, wy):= “the words wx and wy from

the same language express the same concept given the

contexts Cx and Cy, respectively”

Martelli et al. (2021) extend the WiC task to include cross-lingual instances,

which consist of a pair of contexts in different languages, in which the two focus

words have the same meaning.2 Our definition of the corresponding theoretical

problem is similar:

CL-WiC(Cx, Cy, wx, wy): “the words wx and wy from

different languages express the same concept given the

contexts Cx and Cy, respectively”

Clearly, any instance of MultiWiC is either an instance of MonoWiC or CL-

WiC.

6.2.5 Lexical Substitution Problems

The next set of problems each involve a pair of words in a single context. These

problems formalize the semantic task of lexical substitution (McCarthy and Nav-

2An instance was annotated as positive “if and only if the two target word occurrences were used

with exactly the same meaning or, in other words, if, using a dictionary, the definition of the two

target words was the same” (Martelli et al., 2021).
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igli, 2007), and its different variants and settings, such as cross-lingual substitu-

tion (Mihalcea et al., 2010). Our definitions are more precise than conventional

ones, as we define substitutes on the basis of identity of expressed concepts. By

virtue of our concept-meaning hypothesis, the definitions formalize the notions of

“meaning-preserving substitutions” and “correct translations” present in previous

work. However, they are restricted to lexical substitutions, excluding compositional

compounds and phrases.

MonoLexSub(C,wx, wy) := “the words wx and wy from

the same language express the same concept given the

context C”

In other words, wx and wy are mutually substitutable given the context C. For

example, MonoLexSub returns TRUE given C = “the gist of the prosecutor’s argu-

ment”, wx = core, and wy = heart.

The CL-LexSub problem is a cross-lingual counterpart of MonoLexSub. The

definition of CL-LexSub is the same as that of MonoLexSub, except that the two

words are required to be in different languages. For example, MonoLexSub(“she

batted the ball”, bat, murciélago) returns FALSE.

CL-LexSub(C,wx, wy) := “the words wx and wy from

different languages express the same concept given the

context C”

Finally, we define a multilingual lexical substitution problem which generalizes

MonoLexSub and CL-LexSub by removing their respective language constraints:

MultiLexSub(C,wx, wy) := “the words wx and wy from

any language(s) express the same concept given the con-

text C”

While the goal of many conventional lexical substitution datasets is to produce

sets of substitutes, these generative problems are reducible to the corresponding

binary classification problems by iterating over the set of substitution candidates.

More formally, the problem of generating lexical substitutes reduces to MultiLex-

Sub by returning the set: {w | MultiLexSub(C,wx, w)}.
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6.2.6 Word Synonymy Problems

Our final set of semantic problems are defined on a pair of word lemmas, without

any context parameters.

The MonoSyn predicate formalizes the relation of word synonymy in the mono-

lingual setting. Given two words in the same language, it returns TRUE iff they are

mutually substitutable in some context.

MonoSyn(wx, wy) := “the words wx and wy from the

same language express the same concept in some context”

For example, MonoSyn(core, heart) is TRUE because there exist a contexts in

which the two words express the same concept (c.f., Section 6.2.5). The MonoSyn

problem formalizes the linguistic Substitution Test for synonymy: wx and wy are

synonyms if the meaning of a sentence that contains wx does not change when wy

is substituted for wx (Murphy and Koskela, 2010).

We define the cross-lingual synonymy problem CL-Syn in a similar manner.

The only difference with MonoSyn is that the two words are required to be from

different languages.

CL-Syn(wx, wy) := “the words wx and wy from different

languages express the same concept in some context”

The CL-Syn predicate corresponds to the relation of translational equivalence

between words. Two words in different languages are translationally equivalent

if there exists a context in which they are literal translations. For example, CL-

Syn(heart/EN, cœur/FR) is TRUE because the two words are mutual translations

given the context “the heart of the matter.”

As with the other problem families, we unify MonoSyn and CL-Syn into a sin-

gle predicate, MultiSyn, which places no constraints on the language of the given

words:

MultiSyn(wx, wy) := “the words wx and wy from any lan-

guage(s) express the same concept in some context”

MultiSyn is not only a generalization but also the union of the relations of syn-

onymy and translational equivalence, which are represented by MonoLexSub and

CL-LexSub, as postulated in Chapter 2.
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6.3 Problem Reductions

Given an algorithm for a problem Q, a P-to-Q reduction solves an instance of a

problem P by combining the solutions of one or more instances of Q. The reducibil-

ity of P to Q is denoted P ≤ Q. Mutual reductions of two problems to one another,

i.e. P ≤ Q and Q ≤ P, demonstrate their equivalence.

In this section, we present several problem reductions, which constitute the main

contribution of this chapter. The reductions are shown in Figure 6.1 by the directed

arrows from P to Q. The black arrows denote the special cases, which immediately

reduce to the more general problems. Taken together, the reductions establish the

equivalence of six problems: WSD, TSV, WiC, MonoWiC, MultiWiC, and Multi-

LexSub. A method which solves any of these problems can be used to construct

methods which solve the other problems by applying a sequence of reductions. As

well, a method for one of those six problems can be used to solve any of the other

problems in Figure 6.1, again via reductions.

6.3.1 *Syn ≤ *LexSub ≤ *WiC

We first present a set of six reductions, which are denoted by blue arrows in Fig-

ure 6.1. Each of the corresponding nine problems involves comparing the meanings

of a pair of words, given some contexts.

The three lexical substitution problems defined in Section 6.2.5 can be viewed

as special cases of the corresponding word-in-context problems, in which both con-

texts are identical. Succinctly:

*LexSub(C,wx, wy)⇔ *WiC(C,C,wx, wy)

The asterisk in these and the following reductions can be replaced on both sides by

“Mono”, “CL-”, or “Multi”. To reiterate, a cross-lingual problem explicitly assumes

that the input words are in different languages, while a multilingual problem can

accept inputs in the same or different languages.

The three word synonymy problems defined in Section 6.2.6 are reducible to

the corresponding lexical substitution problems. In particular, to reduce MultiSyn
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to MultiLexSub, we search for a concept gloss Cs in which both words express the

same concept. Succinctly:

*Syn(wx, wy)⇔ ∃s : *LexSub(Cs, wx, wy)

The correctness of these six reductions follows from the fact that the (infinite)

set of all contexts is partitioned into equivalence classes, each of which corresponds

to a single concept.

6.3.2 Reductions to WSD

The reductions in the preceding section demonstrates that all theoretical problems

defined in Section 6.2 can be reduced to MultiWiC. We next demonstrate that all

those problems, including MultiWiC itself, can also be reduced to WSD. Thus, an

algorithm that solves WSD would be sufficient to solve all other problems. For

clarity, the nine reductions in this section are not shown explicitly in Figure 6.1,

with the exception of the crucial MultiWiC-to-WSD reduction, denoted by a red

arrow.

Given a method for solving WSD, we can solve any *WiC instance by checking

whether the concepts expressed by the two words in the corresponding contexts are

the same. This set of reductions generalize the WiC-to-WSD reduction (Chapter 5)

to MonoWiC, CL-WiC, and MultiWiC:

*WiC(Cx, Cy, wx, wy)⇔WSD(Cx, wx) = WSD(Cy, wy)

Similarly, to solve any *LexSub instance, it is sufficient to check the identity of

the concepts expressed by the two words in the given context:

*LexSub(C,wx, wy)⇔WSD(C,wx) = WSD(C,wy)

Finally, the word synonymy problems can be solved by searching for a concept

which can be expressed by both words:

*Syn(wx, wy)⇔ ∃s : WSD(Cs, wx) = WSD(Cs, wy)

The correctness of the reductions in this section follows directly from the concept-

meaning hypothesis which underlies our theory.
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6.3.3 MultiWiC ≤MultiLexSub

We close this section by demonstrating that MultiWiC is reducible to MultiLexSub,

which is denoted by a red arrow in Figure 6.1. This reduction, along with the reverse

reduction presented in Section 6.3.1, establishes the equivalence between the two

problems. Formally:

MultiWiC(Cx, Cy, wx, wy)⇔ MultiLexSub(Cx, wx, wy) ∧MultiLexSub(Cy, wy, wx) ∧

∀w : MultiLexSub(Cx, wx, w)⇔ MultiLexSub(Cy, wy, w)

The first two terms on the right-hand side of the reduction formula test whether

the two words are mutually substitutable in their respective contexts. The universal

quantifier ensures that every substitute in one of the contexts is also an appropriate

substitute in the other context, and vice versa.

The correctness of this reduction hinges on the assumption that there are no

universal colexifications (stated and empirically supported by Bao et al. (2021)),

i.e. that for any pair of concepts, there exists some language which lexifies but does

not colexify them. In other words, there exists a language in which no word can

express both concepts. Therefore, if the sets of contextual synonyms of wx in Cx

and wy in Cy are identical, the concept expressed by the two word tokens must be

the same.

In theory, the universal quantifier in the reduction formula is defined over all

words in all languages. In practice, only the synonyms and translations of the two

words need to be checked, and a smaller set of diverse languages may be sufficient

to obtain good accuracy.

6.4 Relationship to Synsets

A wordnet is a theoretical construct which is composed of synonym sets, or synsets,

such that each synset corresponds to a unique concept, and each sense of a given

word corresponds to a different synset. Actual wordnets, such as Princeton Word-

Net (Miller, 1995), are considered to be imperfect implementations of the theoreti-

cal construct.
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We define the following monolexical problem, which decides whether a given

word can express a given concept:

Sense(w, s) := “the word w expresses the concept s in

some context”

An algorithm for the Sense problem could be used to decide whether a given

word belongs to the synset that corresponds to a given concept.

6.4.1 *Syn ≤ Sense ≤WSD

The word synonymy problems defined in Section 6.2.6 are reducible to the Sense

problem. Two words are synonyms if they both express the same concept in some

context. In particular, to reduce MultiSyn to Sense, we search for a concept which

can be expressed by both words.

MultiSyn(wx, wy)⇔ ∃s : Sense(wx, s) ∧ Sense(wy, s)

A monolingual wordnet can be converted into a thesaurus, in which the entry for

a given word consists of all of its synonyms. A bilingual wordnet can be converted

into a translation dictionary, in which the entry for a given word consists of all its

cross-lingual synonyms possibly grouped by sense, and accompanied by glosses.

Given a method for solving WSD, we can solve a Sense instance by checking

whether the word expresses the concept given the context of its gloss. Formally:

Sense(w, s)⇔WSD(Cs, w) = s

The correctness of this reduction follows from the assumption that a concept

gloss uniquely determines the concept. Under our definitions, given a concept gloss,

the WSD predicate can only return the corresponding concept, and does so if and

only if the given word can express that concept; otherwise the return value is unde-

fined.

The reducibility of Sense to WSD implies that implementing the WSD pred-

icate as it is defined in Section 6.2.3 would make it possible to construct synsets

from nothing more than a list of concept glosses, as well as correct and expand

existing wordnets to new domains and languages. In fact, any of the set of six
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WSD-equivalent problems (Figure 6.1) could be used for these tasks; we therefore

refer to them as wordnet-complete or WN-complete.

6.4.2 Substitution Lemma

The final proposition formalizes the relationship between synsets, senses, and lex-

ical translations. It follows directly from the previously stated definitions, reduc-

tions, and assumptions.

MultiLexSub(Cx, wx, wy)⇔ Sense(wy,WSD(Cx, wx))

The lemma provides a theoretical justification for methods that associate contex-

tual lexical translations and synonyms with the synset identified by a WSD model.

For example, BabelNet synsets are populated by translations of word instances that

correspond to a given concept (Navigli and Ponzetto, 2010). Specifically, the ex-

istence of a translation pair (wx, wy) in a context Cx implies that wy lexicalizes

the concept expressed by wx in Cx. Another example is the method of Luan et al.

(2020), which leverages contextual translations to improve the accuracy of WSD.

6.5 Empirical Validation

In this section, we implement and test three principal reductions: MultiWiC to WiC,

MultiWiC to WSD, and MultiLexSub to WSD. For each reduction, we reiterate its

theoretical basis, describe our implementation, and discuss the results. We em-

phasize that the goal of our experiments is not challenging the state of the art, but

rather empirically testing the reductions, and, by extension, the hypothesis they are

based on. Since the resources used for the implementations are necessarily imper-

fect, and the systems are each designed and optimized for a different target task, the

reductions are expected to produce much less accurate predictions on the existing

benchmark datasets compared to state-of-the-art methods.

Our primary interest is in identifying any possible counter-examples to our

concept-meaning hypothesis. However, it must be noted that the presence of a

small number of such exceptions in the existing datasets does not invalidate the the-

ory. On the other hand, the scarcity of counter-examples should not be interpreted
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as a proof, but rather as supporting evidence for the correctness of our theoretical

claims.

6.5.1 Solving MultiWiC with WiC

We first empirically test the counter-intuitive proposition that a multilingual seman-

tic task can be reduced to a set of monolingual instances. In particular, given a

method for solving WiC, we can solve any MultiWiC instance by deciding whether

there exists a concept such that both given words express the concept given their

corresponding contexts and the concept gloss. Formally:

MultiWiC(Cx, Cy, wx, wy)⇔ ∃s : WiC(Cx, Cs, wx) ∧WiC(Cy, Cs, wy)

The correctness of this reduction follows from the assumption that a concept

gloss uniquely disambiguates every word that can express the concept.

Implementation of the Reduction

In practice, instead of checking all possible concepts, we limit our search to con-

cepts that can be expressed by either of the two words. For each such concept,

we create two WiC instances, one in each language, using a gloss retrieved from a

lexical resource, and translated, as needed, into the language of each instance. We

then solve each of the created WiC instances using a model trained exclusively on

WiC data in that language. The reduction returns TRUE iff both WiC instances are

classified as positive.

We test the reduction on the English-French test set of the MCL-WiC shared

task (Martelli et al., 2021), which contains 1000 English-French MultiWiC in-

stances. The dataset is agnostic toward WordNet sense distinctions and annotations.

We train the English WiC model on the English training and development sets (8k

and 1k instances, respectively), and the French WiC model on the French develop-

ment set (1k instances). The latter set is quite small, but we are not aware of any

larger dedicated French WiC training data.

We create each WiC instance by prepending the input word, followed by a sep-

arator token, to each input context, including concept glosses. We retrieve concept
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glosses from BabelNet (Navigli and Ponzetto, 2010), using the Python API.3 While

English lemmas are provided in the dataset, French lemmas are not. We there-

fore lemmatize French words using the SpaCy FR CORE NEWS MD model. Since

BabelNet does not contain French glosses for all concepts, we generate them by

translating the first English gloss in BabelNet using the OPUS-MT-EN-FR model

from Helsinki NLP.4

We train our English and French WiC models using LIORI (Davletov et al.,

2021). All training was completed in under eight hours on two NVIDIA GeForce

RTX 3090 GPUs. With the default hyper-parameter settings, the models obtain the

accuracy of 87.0% and 73.3% on the English and French monolingual test sets,

respectively. This is lower than the 91.1% and 86.4% results reported by Davletov

et al. (2021). We attribute this to our use of smaller, purely monolingual training

data, which is in line with our theoretical reduction. Based on these numbers, we

estimate the probability of a pair of WiC instances being both correctly classified

as 0.870 ∗ 0.733 = 0.638.

Results and Discussion

Our implementation correctly classifies 631 out of the 1000 instances in the test

set. This is very close to the estimate computed in the previous section, which

suggests that our reduction is approximately as reliable as our imperfect resources

and systems allow.

We manually analyzed a random sample of 50 MultiWiC classification errors.

For each of the 25 false negatives, LIORI returned FALSE for all sentence pairs in

either English (12 instances), French (8 instances), or both languages (5 instances).

Each instance could be explained by either a LIORI error, or a missing sense in

BabelNet. For the 25 false positives, we identified one or more incorrect positive

WiC classifications. The final false positive was caused by an incorrect tokenization

of the target word in the MCL-WiC dataset: The target word is disordered, however

in the given context this token is actually part of the compound adjective mentally

3https://babelnet.org/guide\#python
4https://huggingface.co/Helsinki-NLP
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disordered. As a result, LIORI’s classifications pertaining to disordered were not

reliable, leading to a spurious false positive classification.

Since all errors can be attributed to the systems and resources, they constitute

no evidence against the correctness of our reduction. On the other hand, these

results support our theoretical finding that multilingual problems can be reduced to

monolingual problems. This in turn supports our methodology of grounding lexical

semantics in the expression of language-independent concepts.

6.5.2 Solving MultiWiC with WSD

In this section, we test our MultiWiC-to-WSD reduction. In doing so, we generalize

the WiC-to-WSD reduction in Chapter 5 to multiple words and languages. Given a

MultiWiC instance, we apply a WSD system to each context-word pair, and classify

it as positive iff both words are tagged with the same BabelNet synset:

MultiWiC(C,C ′, w, w′)⇔WSD(C,w) = WSD(C ′, w′)

Implementation of the Reduction

Our system of choice is AMuSE-WSD (Orlando et al., 2021). It provides pre-

trained WSD models for a diverse set of languages, and handles all stages of the

WSD pipeline, including tokenization, lemmatization, and part-of-speech tagging.

We apply the provided AMUSE-LARGE-MULTILINGUAL-CPU model, with all other

parameters left at their default values.

As in Chapter 5, we estimate an upper-bound on the performance of our reduc-

tion, using analogous notation and formulae. For the expected accuracy of English

and non-English WSD, we use the English-ALL and XL-WSD accuracy results

reported by the AMuSE-WSD authors, 0.739 and 0.673. This estimation method

also depends on the average number of senses per target word. Per the BabelNet

API5, an average MCL-WiC target word has 14 senses. The resulting overall accu-

racy estimate is 0.752, which is the average of 0.539 and 0.965 for the positive and

negative MultiWiC instances, respectively.

5https://babelnet.org/guide\#python
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Results and Discussion

The results on the MCL-WiC test sets range from 51.8% on English-Arabic to

55.1% on English-French. While the estimate in the previous section is substan-

tially higher, it does not take into account tokenization errors and missing senses in

BabelNet. On the English-French dataset, we found that false negatives outnumber

false positives by a factor of six; the accuracy is 22.8% and 87.4% on the positive

and negative MultiWiC instances, respectively.

For our manual analysis, we randomly selected 25 false positives and 25 false

negatives produced by our implementation on the English-French test set. In 41 of

the 50 cases, we determined the cause of the incorrect MultiWiC classification to

be an incorrect sense returned by AMuSE-WSD for one or both target words. In

addition, 7 of the 50 cases represent tokenization errors. One MultiWiC instance,

which involves English reflected and French consignée, is most likely a MCL-WiC

annotation error. The final error is attributable to a sense missing from BabelNet,

which prevents AMuSE-WSD from considering it as a candidate. Specifically, it is

the “administer” sense of the verb dispense (as in “dispense justice”), which can be

found in the Merriam-Webster Online Dictionary.6

Since manual analysis yields no counter-examples to our theory, we interpret

the results as empirical support for this reduction, and, by extension, our taxonomy

of semantic tasks, and the hypothesis on which it is based.

6.5.3 Solving MultiLexSub with WSD

In the final experiment, we test the MultiLexSub-to-WSD reduction derived in Sec-

tion 6.3.2:

MultiLexSub(C,w,w′)⇔WSD(C,w) = WSD(C,w′)

The overall method is similar to that of Guo and Diab (2010), but using our precise

binary formulation of lexical substitution.

6https://www.merriam-webster.com/dictionary/dispense
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Implementation of the Reduction

We use the dataset from the SemEval 2010 shared task on cross-lingual lexical

substitution (Mihalcea et al., 2010), which consists of a trial set of 300 instances,

and a test set of 1000 instances. Each instance consists of an English sentence

which includes a single target word and a list of Spanish gold substitutes provided

by annotators.

Since our formulation of lexical substitution is binary rather than generative

or ranking-based, we convert each of the SemEval instances into a pair of binary

instances: one positive and one negative. For the positive instance, we take the first

Spanish substitute, the one that was most frequently suggested by the annotators.

For the negative instance, we randomly select a Spanish word from the set of all

substitutes in the dataset for that English target word, provided that it is not among

the gold substitutes for that specific instance. If there is no such substitute, we

instead choose a random Spanish word from the dataset.

For each binary instance created in this way, we create two WSD instances using

a simple template: ‘w’ as in ‘C’, where w is the target word, and C is the context.

We obtain the context for the Spanish word by translating the English context via

Helsinki NLP’s OPUS-MT-EN-ES model. We return a positive MultiLexSub classi-

fication iff AMuSE-WSD assigns the same BabelNet synset ID to both English and

Spanish target words.

Our procedure for estimating the expected accuracy of our reduction is the same

as in Section 6.5.2. The only difference is the average number of senses per word,

which in this case is 23, yielding an estimated accuracy of 75.8%.

Results and Discussion

The binary classification accuracy of our implementation on 2000 MultiLexSub

instances created from the SemEval test set is 63.2%, which is substantially below

the estimate in the previous section. This can be partially explained by a relatively

high number of tokenization errors in the test set. We again observe a strong bias

toward negative classification: the results on the positive and negative instances are

27.1% and 99.3% accuracy, respectively. Because of this, we selected only positive
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instances for our error analysis.

We manually analyzed a sample of 50 randomly-selected false negatives from

the test set. In 44 of the 50 cases, the cause of the misclassification was an AMuSE-

WSD error (on English in 30 cases, on Spanish in at least 14). Some of those

errors may be caused by an imperfect translation of the English context, or a miss-

ing BabelNet sense of the Spanish gold substitute. In 5 cases, the English input

was incorrectly tokenized; for example, the compound noun key ring was split into

two word tokens, with one instance having ring as its focus. The final case likely

involves an annotation error in the SemEval dataset: campo as a translation of field

given the context of “effective law enforcement in the field.”

We conclude that all incorrect classifications can be attributed to a resource or

system used by our implementation, and thus none of them represents a counter-

example to our hypothesis.

6.6 Conclusion

Starting from basic assumptions about the expression of concepts by words in con-

text, we have developed consistent formulations of thirteen different problems in

lexical semantics. We have shown that a “wordnet-complete” subset of these tasks

can each be used to solve any of the others via reduction. These problems can be

used to construct, correct, or expand multilingual synonym sets, the building blocks

of important linguistic resources such as WordNet and BabelNet. We believe that

this work will lead to a greater understanding of lexical semantics and its underlying

linguistic phenomena, as well as new applications and better interpretation of em-

pirical results. Based on our theory, we intend to develop methods for constructing

fully explainable and interpretable linguistic resources.
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Chapter 7

Conclusion

This document began with the following thesis statement: An empirically-validated

theory of sense, synonymy, translation, and lexical concepts yields an improved

understanding of lexical resources, methods and tasks, including novel evi-

dence for linguistic hypotheses, and a taxonomy of semantic problems. Each

of the five preceding chapters presented novel research contributions which demon-

strate this statement.

In Chapter 2, we formulated a first-of-its-kind theory of lexical semantics. The

theory relates senses, synonymy, translation, and wordnet synsets to the unifying

notion of lexical concepts. We showed that this theory can be used to construct a

formal model of wordnets, and argued for the soundness of this theory on the ba-

sis of two experiments, one of which demonstrated that our theory can be applied

to the construction of multilingual wordnets. We also argued for concept univer-

sality, a linguistic hypothesis postulating a universal set of concepts which may be

expressed, by words or phrases, in any language.

In Chapters 3 and 4, we examined the relation between word senses and trans-

lations in the context of modern natural language processing. Chapter 3 presented

a novel, formal treatment of homonymy and polysemy. By considering the se-

mantic relatedness between the concepts expressed by word senses, we provided

novel evidence for four hypotheses relating to lexical translation, discourses, col-

locations, and sense clusters. Chapter 4 demonstrated that the connection between

word senses and translations rarely conforms to an ideal one-to-one mapping, but

that nevertheless, this relation can be exploited to improve the performance of even
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a contemporary WSD system. Taken together, these two chapters show how a

theory-driven approach to lexical semantics can allow us to test hypotheses and

discover useful new methods.

In Chapters 5 and 6, we extended our theoretical analysis from semantic phe-

nomena – senses, synonymy, translations, etc. – to semantic tasks themselves.

Taken together, we argued in these chapters that the space of word meaning can

effectively be discretized on the basis of lexical concepts. This novel concept-

meaning hypothesis implies that human judgements of word meaning will tend to

align with discrete word senses, as defined by our theory in terms of concepts. On

the basis of this hypothesis, we formulated a series of problem reductions involving

thirteen semantic tasks, leading to a first-of-its-kind taxonomy of semantic tasks,

culminating in an argument for the class of wordnet-complete problems. A series

of experiments yielded no substantial evidence against our hypothesis, with appar-

ent exceptions being generally attributable to errors in the methods and resources

we used in our implementations. This demonstrates that our concept-based theory

of lexical semantics can indeed be used to study semantic tasks, further supporting

the thesis statement.

A brief note on the limitations of this thesis: While we made an effort to in-

clude multilingual datasets in our experiments, our error analysis was often limited

to languages of the Indo-European family (e.g. English, French, Spanish, etc.). In

addition, it is possible to question some of the assumptions made in our theory,

which should be kept in mind when considering our work. For example, we as-

sume that, for each content word token in a discourse, there exists a single concept

which that word is intended by the sender to express, regardless of whether it ap-

pears unambiguous to the receiver. However, unlike in mathematics, theoretical

assumptions may not always hold in practice; for example, puns often exploit mul-

tiple meanings of a word for humorous effect. While such cases are not frequently

considered in lexical semantics, we can expect exceptions to almost any assumption

or conclusion regarding human languages.

Considering the field of lexical semantics as a whole, it is not sufficient to sim-

ply strive for ever-greater performance on benchmark datasets. Rather, scientific
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understanding is necessary to ensure that the resources and results we produce re-

main interpretable and open to analysis and improvement. Beyond this thesis, fu-

ture work could apply methods for wordnet-complete problems to the construc-

tion of wordnets given only basic resources, such as text corpora and machine

readable dictionaries and thesauri. This could be particularly beneficial for low-

resource languages, those with little or no representation in standard knowledge

bases, and, more broadly, could move the field away from the “English first” (or

perhaps “WordNet first”) paradigm which has dominated lexical semantics since its

inception.

Another avenue for future work would be theory-driven analysis of language

models and contextualized representations. Our taxonomy of semantic tasks pro-

vides insight into the relative hardness of various problems: if a solution to problem

Q can be used to construct a solution to task P, then P is no harder than Q. We pos-

tulate that, when language models are tested on various tasks, the relative hardness

of those tasks should be taken into consideration.

Finally, it must be noted that, while this thesis has focused on lexical semantics,

the study of semantics does not end at the meaning of words. The study of meaning

at the level of sentences, and even entire documents and discourses, is very much

relevant to modern natural language processing, and, we believe, is just as much

in need of careful theoretical treatment and analysis. How, for instance, would our

insights into lexical translation generalize to the task of translating entire sentences?

How could the link between word meanings and discrete concepts be applied to

improve the state of semantic parsing? These and other questions are likewise fertile

ground for future work.

In closing, this thesis has demonstrated that, despite promising recent advances

in the tools, methods, and resources applied to semantic tasks, and despite the rapid

pace of improvement on increasingly challenging benchmarks, the study of lexical

semantics is far from complete. The need for scientific understanding, theoretical

analysis, explainability, and predictability are greater than ever. Even with the long

and venerable history of lexical semantics, dating to the earliest days of natural

language processing, there is still much to be done.
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