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Abstract

An important step of seismic data processing entails signal de-noising. Traditional de-noising

methods assume Gaussian noise model and their performance degrades in the presence of

erratic (non-Gaussian) noise. This thesis examines the problem of designing reduced-rank

noise attenuation algorithms that are resistant to erratic noise.

I first introduce a robust matrix factorization based on M-estimate and incorporate it into

the formulation of the classical Singular Spectrum Analysis (SSA) algorithm. This new

algorithm (Robust SSA) permits to de-noise seismic data that have been contaminated by

non-Gaussian noise.

I also propose a second Robust SSA algorithm that attacks the data de-noising and recon-

struct problems as low-rank matrix recovery problem that is solved by a convex optimization

algorithm. The NP-hard rank minimization problem is replaced by its tightest convex re-

laxation, the nuclear-norm minimization. An augmented Lagrangian method is used to

numerically look for the solution that minimizes the cost function.
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CHAPTER 1

Introduction

1.1 Background

Exploration geophysics is an interdisciplinary science involved with physics, mathematics,

and geology. It utilizes geophysical data observed on the surface of the earth to measure

and then invert for physical properties of the subsurface. The aim is to explore minerals,

hydrocarbons, groundwater reservoirs without the need to directly penetrate the earth’s

interior. Different geophysical methods can be used for “imaging” subsurface structures, e.g.

seismic methods, gravitational methods, electrical methods, magnetic and electromagnetic

methods. The seismic method is often used in the exploration of hydrocarbons. In this

dissertation, I will mainly focus on problems in exploration seismology.

In a seismic experiment, a controlled seismic source excites the earth and generates impulsive

sound waves that travel in the earth’s interior. The waves propagate through the earth, part

of them are attenuated in the earth’s interior, part of them are reflected back when they

reach geological boundaries. The reflected data are recorded by the receivers (geophones)

deployed on the earth’s surface. This is the first step of exploration seismology, know as

data acquisition. The simplest acquisition configuration is to deploy a source and receivers

along a line (Figure 1.1 (a)). The latter is referred to as 2-D seismic survey. The source

is fired and the seismograms are recorded by the receivers. The seismograms recorded

at different receivers are grouped together in one common shot gather. Then, the whole

acquisition system is moved along the line to the next position to repeat experiment, and

so on. The data acquisition is in shot-receiver coordinate system. While, many seismic

processing sequences are applied in midpoint-offset coordinate system (Figure 1.1 (b)). The

recorded seismic traces with the same mid-point location can be grouped together as a

common mid-point (CMP) gather. A shot gather from Yilmaz’s data set (shot 25 in the

1
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book Seismic Data Analysis) is shown in Figure 1.2. This shot gather is from a 2-D land

survey in Alberta, Canada. The survey uses a split-spread geometry where the source is

located in the center of receiver cable. Different waves are observed including direct waves,

refractions and reflections as indicated in Figure 1.2. The exploration method that uses

refractions is known as the refraction method and it is often used for near surface studies

and for crustal studies. The exploration, development and monitoring of reservoirs of oil

and gas is mainly carried out via reflected waves with the reflection method.

Recorded seismic wavefields are often contaminated by coherent and incoherent noise. Sev-

eral types of noise are presented in Figure 1.2, coherent noise such as ground roll, high-

amplitude erratic (non-Gaussian) noise and the ambient random noise presents in the whole

section.

S Ra)

S RM
b)

Figure 1.1: A simple sketch map of 2-D seismic survey (one flat layer). Red star
represents source, blue triangle represents receivers, dash line represents ray path,
and M is midpoint. a) Shot-receiver coordinates. b) Midpoint-offset coordinates.

The second step in the reflection seismology is called data processing. In this step the col-

lected data are processed and analyzed via mathematical and physical principles. In the

interpretation step, the processed data and images are interpreted as geological structures

to indicate the location of potential oil and gas reservoir. The seismic data processing can

be divided to three principal steps: deconvolution, CMP stacking, and migration. Decon-

volution removes the seismic wavelet from the seismic data to broaden the frequency band
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Figure 1.2: A shot gather from a 2-D seismic survey in Alberta.

of the data. In other words, deconvolution is used to improve temporal resolution. CMP

stacking averages NMO corrected seismic traces in each CMP gather along offset dimension

to estimate a zero-offset seismic section. It can suppress both random noise and coherent

noise to improve the signal-to-noise ratio of seismic data. Migration is an imaging process

that moves dipping events to their true subsurface positions. There are many other auxiliary

processes that are often run in between each one of the three main processes. This thesis

will study noise suppression and missing data reconstruction via reduce-rank methods. This

is a step that should be carried out before or after stacking and prior to migration. Noise

suppression can also be carried out in different domains.

1.2 Seismic noise

In exploration seismology, one wants to keep reflections and eliminate coherent and inco-

herent noise (Yilmaz, 2001). Incoherent noise, as its name implies, is not correlated from

trace to trace. That is to say, the phase of the noise is independent between adjacent traces.

Incoherent noise is also known as random noise. It can be caused by a variety of factors

such as wind, human and animal activity, rain drops, instrumental noise, etc.
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Coherent noise is energy correlated in both spatial and temporal direction, or just correlated

in time. I wound like to divide the coherent noise into two categories: spatially coherent

noise and temporally coherent noise. Spatially coherent noise includes ground roll, multiples,

reverberations, side-scattered noise, guided waves and air waves. They are correlated in

space and time. “Being correlated” means that the phases of the coherent noise in adjacent

samples have some particular relationships. Spatially coherent noises are also called source-

generated noise. Among them, ground roll, side-scattered noise, guided waves, and air waves

are called linear noise because they are almost linear in common shot gather. Ground roll is

a very common type of coherent noise in land data. Ground roll is the vertical component of

the Rayleigh wave. It has the properties of being dispersive, high-amplitude, low frequency

and low group velocity. Multiples correspond to energy that is reflected more than once

in the travel path in the subsurface. Multiples have the properties of large moveout and

periodicity. Temporally coherent noise is not generated by the seismic source, it is coherent

in the temporal direction but incoherent in spatial direction. Temporally coherent noise

includes noisy trace and noise burst. Noisy trace means that most part of the trace is

corrupted with high-amplitude noise. The examples of noisy trace are trace with power

line noise and/or traffic noise in land seismic data, trace with swell noise in marine seismic

data, noisy trace caused by electronic transients and glitches in the recording instrument.

Power line noise usually presents itself as monochromatic sinusoidal wave with frequency of

50 or 60 Hz. Swell noise is caused by bad weather during marine acquisition. It has the

properties of high-amplitude and low frequency. Its frequency ranges from 2 Hz to 10 Hz

(Elboth et al., 2010). Noise burst is high-amplitude noise lasting ten to several hundred

milliseconds (Anderson and McMechan, 1989). There is a kind of noise named noise spike

that is high-amplitude noise lasting only a few time samples. Generally, the noisy trace,

noise burst and noise spike have high-amplitude and are not modeled well by the Gaussian

distribution. They can be classified as the erratic noise (Trickett et al., 2012). We can regard

the erratic data (Claerbout and Muir, 1973) as clean data corrupted with erratic noise. In

the field of robust statistics, erratic data are referred to as outliers (Maronna et al., 2006).

The methods developed in this thesis is most suitable for noisy traces suppression.

1.3 Seismic noise attenuation methods

This section reviews some popular methods for suppressing spatially incoherent noise in-

cluding random noise and erratic (non-Gaussian) noise. Signal processing methods for noise

attenuation generally exploit differences between the signal and noise. They represent the

data in a particular domain where the signal and noise are more easily distinguished from

each other. For example, methods based on transforms map the seismic data to a domains

where signal and noise can be better separated and filtered from the noise (Ulrych et al.,
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1999). In this particular domain, the coefficients corresponding to noise are eliminated while

the remaining coefficients are inverted back to the original domain. One can also eliminate

the coefficients corresponding to the signal and keep those associated with noise. The latter

permits an estimation of a model of the noise that can be subtracted from the original data.

1.3.1 Random seismic noise attenuation

Many methods for random noise attenuation have been developed in the past several decades.

First, CMP stacking (Mayne, 1962) was propose to reduce random noise by averaging NMO

corrected seismic traces with different offsets in each common mid-point gather. There are

processes that require suppressing noise prior to stacking or to apply noise suppression after

stacking. This is why our arsenal of seismic processing algorithms often contains various

methods for noise attenuation that can operate in different domains and with pre-stack and

post-stack data.

Frequency band-pass filtering can be used for suppressing ambient noise by restricting the

amplitude spectrum of the seismic data. However, signal and noise often overlap in the

frequency domain and therefore, one might be eliminating a portion of the signal when

applying frequency domain band-pass filtering.

Random noise reduction via spatial prediction filtering has been proposed as an alternative to

frequency band-pass filtering. The prediction filters can be estimated and applied in the f -x

domain or t-x domain. The principle in this type of filters resides on the lateral predictability

of signals. Canales (1984) firstly proposed the f -x prediction technique for seismic random

noise reduction. This method assumes that noise-free seismic signal is composed of linear

or nearly linear events in t-x domain. For one particular frequency slice in f -x domain,

the signal is the superposition of a finite number of complex exponentials. The Fourier

coefficients of one particular frequency from different traces are linearly dependent with

each other. Therefore, some of the Fourier coefficients can be predicted from others, i.e.

f -x signal is linear predictable in space. This method implicitly assumes that the f -x

domain seismic data can be represented by the autoregressive (AR) model, i.e. the linearly

predictable part is the signal and the unpredictable portion is the white noise. The prediction

error filter (PEF) is firstly estimated from the data, and then the noise is estimated via

applying the PEF on the data. Gulunay (1986) named this technique as f -x deconvolution.

The f -x deconvolution is known to damage original signal if the noise level is high, i.e. it

cannot separate the signal and noise perfectly. One of the reasons is that it uses the biased

autocorrelation method that assumes the data outside the window are zero. Harris and

White (1997) propose to use the transient-free data matrix to alleviate this problem (Ulrych

and Clayton, 1976). The other reason is that, the data in f -x actually does not follow the AR
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model. In real application, a large order AR model is used for better representing the data

(Ulrych and Sacchi, 2005). Harris and White (1997) suggests to “clean up” the data matrix

before estimating the prediction filter (Tufts and Kumaresan, 1982). Later, Soubaras (1994,

1995) proposed the f -x projection filtering technique, which utilizes the additive noise model

and the concept of quasi-predictability. This technique has the advantage of preserving the

signal. It estimates the noise via applying the autodeconvolved PEF (projection filter) on

the data. Sacchi and Kuehl (2001) showed that the optimal model for linear events in f -x

domain is the autoregressive/moving-average (ARMA) model. The approach to estimate

the noise from the data in their paper is equivalent to the estimation approach in the f -x

projection filter (Soubaras, 1994). While, their result is derived from ARMA model and they

find the closed-form solution of the PEF via solving an eigendecomposition problem. The

f -x prediction filtering techniques have been widely and successfully used in oil industry for

random noise reduction. On the other hand, Hornbostel (1991) introduced the t-x prediction

filtering techniques for signal-to-noise ratio enhancement, which is more suitable when signal

or noise is non-stationary in temporal or spatial direction. It’s a 2-D adaptive least-mean-

square filter modified from Widrow et al. (1967). In t-x domain, a given sample is firstly

predicted via weighting the samples in a rectangular window. Then, the filter coefficients

(weights) are updated from the prediction error. The new prediction filter is applied on

the next sample and the described two steps are repeated: predicting sample and updating

weights. This technique does not need to divide the entire data into windows, i.e. it’s

adaptive. Abma and Claerbout (1995) propose a t-x prediction filtering method that the

prediction filter is estimated in t-x domain using conjugate-gradient method. They pointed

out the f -x prediction filter is equivalent to a t-x prediction filter that is as long as the data.

The fourth kind of methods is based on matrix rank reduction. It assumes that the matrix

formed in some particular way from the noise-free seismic signal is low rank, i.e. the singular

spectrum of this matrix is sparse. The presence of random noise in seismic data will increase

the rank of the formed matrix, but they only present as small singular values. They conclude

that rank reduction on the matrix via Truncated Singular Value Decomposition (TSVD)

can remove the random noise from the data. The Karhunen-Loeve (K-L) transform was

firstly introduced for seismic data processing by Hemon and Mace (1978). Jones and Levy

(1987) extended the K-L transform technique for incoherent and dipping coherent noise

suppression in the stacked seismic section. The assumption is that the shallowly dipping

events (linearly horizontal) are more strongly correlated from trace to trace and exhibit as

large eigenvalues in eigenspectrum of the covariance matrix. The steeply dipping events

(e.g. ground roll or marine streamer noise) and random noise are less coherent and display

as smaller eigenvalues. This allows the use of zero-lag K-L transform to filter out the noise.

They also propose the slant-KL transform that modifies the covariance matrix with time

lags determined by the dips in seismic section. It can handle dipping events situation.



CHAPTER 1. INTRODUCTION 7

This method is equivalent to using zero-lag covariance matrix after flattening the events via

linear moveout correction. Finally, a reverse linear moveout correction is applied after the

zero-lag K-L filtering. Besides, they discuss about using K-L transform to remove multiples

in CMP gather. The multiples are flattened by NMO correction and primary events are

under-corrected or over-corrected. The multiples correspond to the largest eigenvalues and

primaries correspond to smaller eigenvalues. Marchisio et al. (1988) applied the full K-

L transform that has all lags (temporal and spatial), and also the partial K-L transform

that has fewer time lags in the covariance matrix for random noise attenuation and VSP

wavefield separation. It works for data with dipping events. Al-Yahya (1991) proposes the

partial K-L transform for incoherent noise attenuation in the situation that there are several

conflict dips in the seismic section. It is an extension of Jones and Levy (1987)’s method.

For each dipping event, it is flattened by the linear moveout correction and a zero-lag K-L

filtering is followed. The inverse linear moveout correction is applied on the filtered data.

This procedure is repeated for all the dipping events and the results are summed. Freire

and Ulrych (1988) applied singular value decomposition (SVD) in t-x domain to separate

the upgoing and downgoing wavefield in vertical seismic profiling (VSP) data. They also

discussed the relationship between the SVD and the K-L transform. Ulrych et al. (1988)

discussed several applications of SVD for reflection seismic data processing such as signal to

noise enhancement, dip filtering, separation of upgoing and downgoing wavefield in VSP data

and residual static correction. They referred to this technique as eigenimage reconstruction.

The t-x domain eigenimage approach has the advantages that the regular sampling in time

or space direction is not necessary and it’s free of aliasing problems. Liu (1999) and Chiu

and Howell (2008) and Cary and Zhang (2009) applied the K-L transform or SVD for ground

roll attenuation.

The above t-x domain rank reduction methods need linear move-out correction when deal-

ing with dipping events. Mars et al. (1987) applied the spectral matrix filtering for seismic

random noise attenuation in CDP gather. They also used a synthetic example to show that

spectral matrix filtering can be used for wavefield separation. Mari and Glangeaud (1990)

applied the spectral matrix filtering for signal-to-noise ratio enhancement in VSP seismic

data, and for wavefield separation in VSP seismic data. It works in f -x domain and the

K-L transform is applied on a constructed spectral matrix. Trickett (2003) proposed the

f -xy eigenimage filtering for random noise reduction in stacked 3D seismic volumes. It

conducts rank reduction on each 2-D constant-frequency slice, which works well for dipping

events. Trickett (2002) introduced Cadzow’s algorithm for random seismic noise attenua-

tion on 2-D seismic section as an alternative to f -x prediction methods. He called it f -x

eigenimage filtering. Trickett (2008) extended Cadzow’s algorithm for seismic denoising to

three or more dimensional seismic data. He modified the name of the algorithm as Cadzow

filtering. Trickett et al. (2010) proposed to use Cadzow’s algorithm for seismic data re-
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construction. Sacchi (2009) introduced the f -x domain Singular Spectrum Analysis (SSA)

method for seismic noise suppression and discussed the relationship between SSA and Cad-

zow algorithms. SSA/Cadzow filtering can efficiently remove Gaussian noise in the presence

of dipping events with good preservation of signal. Oropeza and Sacchi (2011) applied and

integrated the Multichannel Singular Spectrum Analysis (MSSA) into the projection onto

convex sets (POCS) framework, which results in a simultaneous denoising and data recon-

struction algorithm. When the MSSA is applied on multi-dimensional data, the size of the

block structured matrix will be large, the computation of the SVD (Golub and Van Loan,

1996) is very expensive. Oropeza and Sacchi (2011) also adopted a randomized singular

value decomposition to accelerate the rank reduction in MSSA. Gao et al. (2013) extended

MSSA algorithm for 5-D seismic data denoising and reconstruction. They proposed to use

the Lanczos bidiagonalization method combined with fast Toeplitz matrix-vector multipli-

cation to reduce the computation cost. SSA/Cadzow reconstruction algorithms can not

handle regularly decimated and aliased data. Naghizadeh and Sacchi (2013) proposed a

MSSA/Cadzow based reconstruction algorithm for interpolating regularly sampled seismic

data. It extract information from low frequencies to recover the regularly missing informa-

tion at high frequencies. Chiu (2013) proposed the multichannel singular spectrum analysis

in the randomized domain for simultaneous coherent and random noise attenuation in 3D

data volume. It works well in the situation that the coherent noise is spatially aliased.

NMO correction is applied on the primary events to flatten them. For each frequency, the

randomizing operator randomly rearranges the order of data in frequency domain. Then,

primary events remains coherent and coherent noise changes to incoherent noise. Then,

MSSA is applied on the randomized data and followed by the inverse randomizing operator.

The spatial prediction filtering methods and matrix rank reduction methods are efficient for

random Gaussian noise attenuation. However, they do not perform well when the seismic

data are corrupted with erratic (non-Gaussian) noise. The reason is that they are based on

least-squares minimization that are optimal when the noise is Gaussian but are seriously

degraded when the noise is non-Gaussian.

1.3.2 Erratic seismic noise attenuation

There are different types of methods for erratic noise reduction. Conventional methods

including trace editing, CMP stacking and band-pass filtering. (a) Trace editing can be

used for removing noisy traces with high-amplitude erratic noise (Yilmaz, 2001). The noisy

traces corrupted by monofrequency signals (e.g. powerline noise) and noisy traces caused by

transient glitches are deleted in trace editing. It’s done by human interpreters. However, the

data volume of modern seismic survey is usually too large that makes manual trace editing

inefficient. Noisy trace editing, first-break refraction picking and velocity analysis are three
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seismic data processing steps that need a large amount of labor work. (b) CMP stacking

can suppresses the erratic noise. While, the stack is usually the mean estimate of traces

in CMP gathers. Mean estimate is sensitive to outliers. Also as pointed out before, some

processes may require suppressing noise prior to or after stacking. (c) Band-pass filtering

can be used for erratic noise attenuation. For example, low-cut filtering utilizes the low

frequency property of swell noise to remove it. Notch filter can be used to remove powerline

noise. However, the signal and erratic noise are not separated perfectly in frequency domain.

More automatic and robust methods for erratic noise attenuation have been proposed. (a)

Outlier diagnostic and rejection. Erratic noise is detected first and followed by damping or

interpolation. Neff and Wyatt (1986) proposed the amplitude rejection method for noise

spikes and noise burst attenuation. For each seismic trace, data values greater than a given

threshold are deleted. The threshold set by user is very crucial for both removing noise and

preserving signal. They also proposed the slope rejection method that trace regions having

slopes (difference between data values) greater than the preset slope threshold value are

regarded as noise spikes or noise bursts and removed. They suggested a radial amplitude-

slope rejection method that combines the normalized amplitude and slope for thresholding.

The gaps resulting from the removing of noise spikes and noise bursts are interpolated or

zero-filled. Berni (1987) proposed an automatic method for burst noise editing. The seismic

section is divided into time gates with equal time interval. A value describing the energy

of the data samples in each gate of each trace is calculated. It can be the average absolute

amplitude, root mean square or sum of squares of the data samples in each gate. For each

time interval, the threshold is defined as a scalar times the smoothed value or median of the

energy of nearby gates. If the energy of a particular gate in this time interval is greater than

this threshold value, it is surgically blanked. Anderson and McMechan (1989) proposed

a method for automatic editing of noisy seismic data using relative amplitude decay rates

of traces as criteria. The relative amplitude decay rate of a particular trace can reflect

its signal-to-noise ratio because the signal amplitudes decrease with time but the spatially

incoherent noise has constant amplitude. Mavko (1988) proposed to apply multivariate

statistics on each seismic trace instead of univariate statistics to detect noise spikes and noise

burst. The generalized squared distance (Mahalanobis distance) is used instead of the simple

amplitude of data sample. However, the using of covariance matrix in the generalized square

distance makes it non-robust and one also needs to define a threshold distance. Soubaras

(1995) proposed a strategy to use the f -x projection filter to attenuate erratic noise. In

each frequency slice or frequency band, the traces containing impulsive noise are detected,

invalidated and then interpolated as missing traces. Cambois and Frelet (1995) applied this

technique for swell noise attenuation. With similar framework, Schonewille et al. (2008)

implemented an iterative FX prediction filtering for swell noise attenuation via repeatedly

applying FX filter on data to improve noise attenuation. Elboth et al. (2010) designed a
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time-frequency de-noising algorithm that is also based on detecting and then attenuating.

Bekara and van der Baan (2010) proposed an expectation-maximization algorithm for high-

amplitude noise detection. After the noisy samples been detected, it is rescaled with a

constant factor. The detection procedure is automatic. Noisy-trace editing is a kind of

outlier rejection procedure (Anderson and McMechan, 1989). The performance of rejection

procedures is not as good as robust estimation procedures.

(b) Robust CMP stacking. A robust estimation method the α-trimmed mean is applied in

stacking to deal with bad seismic traces (Watt and Bednar, 1983). Elston (1990) applied

robust M-estimator method for stacking. He used different loss functions, the `1, Huber and

Biweight functions, in the robust stacking. Trickett (2007) proposed maximum-likelihood-

estimation stacking.

(c) The noise can be estimated first and then subtracted from the data. Linville and Meek

(1992) proposed a Wiener filter approach for stationary sinusoidal noise canceling. The

frequency of the sinusoidal noise is known in advance or can be automatically searched if

it’s unknown. A reference sinusoidal trace with this particular frequency is synthesized.

A Wiener filter is used to match the reference sinusoidal trace with the sinusoidal noise

in the data trace. Then, the convolution of the Wiener filter and the reference sinusoidal

trace is subtracted from the data trace. Butler and Russell (1993) proposed an alternative

estimation-subtraction procedure for harmonic noise cancellation. The harmonic noise is

modeled by a linear combination of sinusoids. The coefficients of the combination are

estimated from least-squares minimization. Then, the modeled noise is subtracted from the

raw data. Butler and Russell (2003) extended their method for multiple harmonic noise

cancellation. Dondurur and Karsl (2012) applied Wiener filter for swell noise suppression.

For each trace, the Wiener filter is derived via matching the data with the low-pass filtered

data (initially estimated swell noise). Then, the modeled swell noise is substracted from the

raw data. Dragoset (1995) used Widrow-Hoff LMS method for adaptive noise canceling.

Erratic noise has high-amplitude noise and does not follow Gaussian distribution. All the

processing steps can be seriously affected by erratic noise. Erratic noise suppression before

stacking can improve multiple removal, velocity analysis, residual statics analysis, AVO

analysis, prestack migration, etc. Sometimes, poststack data may also contain erratic noise

in it. Erratic noise suppression after stacking can provide data with higher quality and

benefit interpretation of geological structure.

1.4 Seismic data reconstruction methods

The wavefield excitated by seismic source is continuous. It’s sampled by receivers deployed

on the earth surface to discrete wavefield. The economic and logistic reasons will pose
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problems to the acquired seismic data. First, the spatial sampling interval may be too

large that the signal or coherent noise is spatially aliased. Second, the seismic data may be

irregularly sampled in space, or there may be large gap between seismic traces.

Some data processing steps rely on the well sampled condition, e.g. coherent noise attenu-

ation and seismic imaging. Therefore, the acquired seismic data need to be reconstructed

to denser and regular data. Lots of methods for seismic data reconstruction have been pro-

posed. The seismic data reconstruction methods can be divided into two major categories:

wave-equation methods and signal processing methods. Wave-equation methods reconstruct

seismic data base on wave propagation principles (Stolt, 2002; Trad, 2003; Kaplan et al.,

2010). This kind of methods generally requires the subsurface velocity structure.

The signal processing methods focus on the acquired data. They do not need the prior

information of velocity structure. The signal processing seismic data reconstruction methods

can be divided into three types. The first kind of methods relies on transformation, which

assumes that the noise-free signal is sparse in the transformation domain. The signal and

noise is well separated in this domain. Sacchi et al. (1998) and Liu and Sacchi (2004)

proposed Fourier transform method for data reconstruction, which assumes that the seismic

data is sparse in f -k domain (time series in sparse in Fourier domain). The sparse inversion

is used to induce the sparsity of model. Darche (1990) proposed parabolic Radon transform

for interpolating missing seismic traces in shot-gather. Trad et al. (2002) applied hyperbolic

and elliptical time domain Radon transforms for data interpolation. It assumes that the

seismic data is sparse in Radon domain and missing information is retrieved via sparse

inversion. Herrmann and Hennenfent (2008) adopted curvelet transform for seismic data

reconstruction.

The second important category of data reconstruction methods is based on f -x predic-

tion based filtering, which assume that the f -x noise-free seismic data is predictable in

space. The filters are data-adaptive. Spitz (1991) proposed an innovative method based

on f -x prediction for interpolating seismic traces of regularly missing pattern on regular

grids. The prediction filter is derived from low frequency data (no aliasing) and is used to

interpolate (predict) high frequency data. The f -x projection filtering was proposed for in-

terpolating aliased seismic data (Soubaras, 1997). The f -x projection filter is equivalent to

data-adaptive f -k filter. Gulunay (2003) proposed f -k domain algorithm for interpolating

aliased seismic data that similar with f -x interpolation operators.

The third category of methods are the rank-reduction based methods that arise in recent

years. Trickett et al. (2010) proposed a method based on Cadzow’s algorithm for seismic

trace interpolation. Multichannel singular spectrum analysis is integrated into the projec-

tion onto convex sets (POCS) framework (Oropeza and Sacchi, 2011), which results in a

simultaneous seismic data denoising and reconstruction algorithm. The algorithm is applied
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on 3D prestack seismic volume. Gao et al. (2013) extended MSSA for 5D seismic data re-

construction. SSA/Cadzow reconstruction algorithms can not handle regularly decimated

and aliased data. Naghizadeh and Sacchi (2013) proposed a MSSA/Cadzow based recon-

struction algorithm for interpolating regularly sampled seismic data. It extract information

from low frequencies to recover the regularly missing information at high frequencies. Ten-

sor algebra for seismic data reconstruction was investigated by Kreimer and Sacchi (2012).

The higher-order singular value decomposition (HOSVD) is applied for reducing the rank

of the seismic tensor.

1.5 Motivations

The motivations of this thesis are summarized as follows:

• Propose matrix rank reduction based algorithms for simultaneou removal of Gaussian

noise and non-Gaussian noise.

• Propose matrix rank reduction based algorithm for robust eismic data interpolation

techniques that can resist non-Gaussian noise.

1.6 Organization of this thesis

This dissertation develops robust data-driven techniques for erratic noise attenuation. The

thesis is organized as follows

• Chapter 2 reviews the basic concepts of random variables, principal component anal-

ysis and the theory of traditional singular spectrum analysis method. A real data

example of using SSA for time series analysis, and a synthetic example of applying

SSA for seismic data denoising are presented.

• Chapter 3 reviews concepts of robust statistics, and proposes a new robust singular

spectrum analysis (R-SSA) algorithm for Gaussian and non-Gaussian seismic noise

attenuation. The robust SSA adopts a robust matrix factorization based on M-

estimators for rank reduction. The low-rank component is obtained via the process of

iteratively reweighted least-squares and alternating minimization. Synthetic and field

data examples are presented to examine the effectivity of the proposed algorithm.

• Chapter 4 introduces a robust SSA algorithm for Gaussian, non-Gaussian seismic

noise reduction and data reconstruction based on convex optimization. The proposed
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robust SSA involves a low-rank matrix recovery problem. It looks for the low-rank

component from the incomplete and Gaussian and non-Gaussian (impulsive) noise

corrupted data matrix. The NP-hard rank minimization problem is approximated by

its tightest convex relaxation, the nuclear norm minimization problem. It changes the

non-convex optimization problem to convex one. An augmented Lagrangian method is

used for numerically solving the optimization problem. A synthetic example is shown

to evaluate the performance of the proposed algorithm.

• Chapter 5 gives the summary and conclusions of the thesis. Moreover, future work is

discussed.



CHAPTER 2

Singular spectrum analysis and its applications in seismic

data processing

2.1 Introduction

Singular Spectrum Analysis (SSA) is a tool for signal-to-noise ratio (SNR) enhancement,

time series analysis and forecasting. It is a non-parametric method (Golyandina and Zhigl-

javsky, 2013). The origin of SSA can be even traced back to Prony’s method (de Prony,

1795) in the 18th century (Golyandina and Zhigljavsky, 2013). Broomhead and King (1986a)

developed the SSA technique for non-linear dynamical system analysis. SSA is used to

extract qualitative and quantitative information that describes the underlying dynamical

system from the observed experimental data. Their approach is based on the method of

delays (Takens, 1981) and the theory of singular system analysis (Bertero and Pike, 1982).

They illustrated the methodology by analyzing a time series generated from a Lorenz model

(chaotic dynamical system). Almost at the same time, Fraedrich (1986), in an independent

fashion, developed SSA for estimating the degrees of freedom (number of independent vari-

ables) of climate system from observations. Later, Vautard and Ghil (1989), Vautard et al.

(1992) and Allen and Smith (1996) further developed and extended the method and theory

of SSA.

In 1988, a subspace-based algorithm used for signal-to-noise ratio enhancement similar to

SSA arose in the field of signal processing (Cadzow, 1988). It is referred to as Cadzow’s

algorithm. The SSA denoising algorithm is equivalent to one iteration of Cadzow’s algo-

rithm. Trickett (2002) introduced Cadzow’s algorithm for seismic random noise attenuation

in 2-D seismic noise attenuation as an alternative to f -x prediction methods. Trickett (2008)

and Trickett and Burroughs (2009) extended Cadzow’s algorithm for seismic denoising of

14
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three or more dimensional seismic data. Sacchi (2009) introduced the f -x domain Singular

Spectrum Analysis (SSA) method for seismic random noise suppression and pointed out

the relationship between SSA and Cadzow algorithms. SSA/Cadzow method operates in

the frequency-space domain (f -x) by embedding spatial data at a given monochromatic

temporal frequency into a Hankel matrix. Then, the ideal Hankel matrix that one would

have formed in the absence of noise is found via the low rank approximation (truncated

SVD) of the Hankel matrix of the noisy observations. The elements on the anti-diagonals of

the rank-reduced matrix are averaged to get the filtered f -x data. It can efficiently remove

Gaussian noise in the presence of dipping events with good preservation of signal. Another

important advantage of the matrix rank-reduction based method is that it is easy to ex-

tend to multi-dimensional situation. In the field of nonlinear dynamics, the multichannel

singular spectrum analysis (MSSA) is an extension of SSA that applied on multivariate

time series (Broomhead and King, 1986b). In seismic data processing, MSSA is integrated

into the projection onto convex sets (POCS) framework (Oropeza and Sacchi, 2011), which

results in a simultaneous seismic data denoising and reconstruction algorithm. When the

MSSA is applied on multi-dimensional data, the size of the block Hankel (or Teoplitz) ma-

trix can be very large, the computation of the singular value decomposition (Golub and

Van Loan, 1996) is very expensive. Oropeza and Sacchi (2011) adopted a randomized sin-

gular value decomposition algorithm to accelerate the rank reduction in MSSA. Gao et al.

(2013) proposed to use the Lanczos bidiagonalization method combined with fast Toeplitz

matrix-vector multiplication to reduce the computation cost. SSA/Cadzow reconstruction

algorithms can not handle regularly decimated and aliased data. Naghizadeh and Sacchi

(2013) proposed a MSSA/Cadzow based reconstruction algorithm for interpolating regularly

sampled seismic data. It extract information from low frequencies to recover the regularly

missing information at high frequencies. SSA based methods are also developed for coherent

noise attenuation (Oropeza and Sacchi, 2010; Chiu, 2013; Nagarajappa, 2012).

2.2 Review of multivariate statistics

SSA arises from the analysis of dynamical systems and relies on multivariate statistics. This

section reviews some basic concepts of multivariate statistics.

2.2.1 Random variable (univariate)

A random variable is defined as a number x(ζ) assigned to every outcome ζ of an experiment

(Papoulis and Pillai, 2002). x(ζ) is a function of the outcome ζ. The domain of this function

is the set of all outcomes of the experiment, and the range of this function is the set of the
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numbers assigned to the outcomes. The random variable is a mapping from the set of

outcomes to the set of numbers. For example, the weight of a randomly chosen apple from a

pile of apples is a random variable. An outcome is a chosen apple and the value of the random

variable for this outcome is the weight of this apple. The set of all possible outcomes of an

experiment is defined as sample space Ω. A set of outcomes of an experiment is called event,

say event A. The probability P (A) of event A is a number that measures how likely the event

A will happen. Random variables are usually described by cumulative distribution function

(c.d.f.) or probability density function (p.d.f.). The cumulative distribution function of the

random variable x is defined as

F (x) = P{x ≤ x}, (2.1)

where {x ≤ x} is an event that denotes the set of all outcomes ζ such that x(ζ) ≤ x, x

is a given number, P{x ≤ x} indicates the probability associated with this event. There

are two categories of random variables, continuous random variable and discrete random

variable. A random variable x is continuous if its distribution function F (x) is a continuous

function. Otherwise, F (x) is a piecewise constant function, x is called discrete random

variable. The probability density function is defined as the derivative of the cumulative

distribution function

f(x) =
dF (x)

dx
. (2.2)

Because the distribution function of a discrete random variable x is discontinuous (piecewise

constant), the density function of discrete random variable x can also be expressed as

f(x) =
∑
i

piδ(x− xi), (2.3)

where xi is the discontinuous point of F (x), δ(·) is the Dirac delta function, pi = P{x =

xi} is the probability that event {x = xi} happens. Expression (2.3) is often named the

probability mass function (p.m.f.) of the discrete random variable.

2.2.2 Random vector (multivariate)

A p dimensional random vector consists of p scalar random variables

X = (x1,x2, . . . ,xp)
T
, (2.4)

where xi is a random variable, X is organized as a column vector. Each random variable xi

has its own distribution function Fi(xi), which is referred to as marginal distribution. The

marginal distributions can only describe the marginal statistical behaviour of the random

variables but not the joint statistical behaviour. The joint statistics of the random variables
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is determined by the joint distribution

F (X) = F (x1, x2, . . . , xp) = P{x1 ≤ x1,x2 ≤ x2, . . . ,xp ≤ xp}, (2.5)

where X = (x1, x2, . . . , xp)
T

is column vector of real numbers in p dimensional space.

P{x1 ≤ x1,x2 ≤ x2, . . . ,xp ≤ xp} is the probability such that event {x1 ≤ x1,x2 ≤
x2, . . . ,xp ≤ xp} happens. Considering continuous random variables x1,x2, . . . ,xp, the

joint density of them is given by

f(X) = f(x1, x2, . . . , xp) =
∂pF (x1, x2, . . . , xp)

∂x1∂x2 . . . ∂xp
. (2.6)

Each random variable xi has its own density function fi(xi), which is referred to as marginal

density.

Independence

Events A and B are said independent if and only if P (A ∩ B) = P (A)P (B). Independence

means that the occurrence of one event does not affect the probability of occurrence of the

other. Mutual independence of p events Ai, i = 1, 2, . . . , p, is an inductive generalization of

the two events case. If any k < p events are mutually independent and P (A1 ∩ A2 · · · ∩
Ap) = P (A1)P (A2) · · ·P (Ap), events Ai, i = 1, 2, . . . , p, are said to be mutual independent

(Papoulis and Pillai, 2002). If events {x1 ≤ x1}, {x2 ≤ x2}, . . . , {xp ≤ xp} are mutually

independent, random variables x1,x2, . . . ,xn are also mutually independent. Then, the

joint statistics and marginal statistics have the following relationship

F (X) = F (x1, x2, . . . , xp) = F1(x1)F2(x2) · · ·Fp(xp),

f(X) = f(x1, x2, . . . , xp) = f1(x1)f2(x2) · · · fp(xp).
(2.7)

Consider that x is a random variable with distribution F (x) defined in an experiment. If

the experiment is performed p times, there will be p random variables x1,x2, . . . ,xp. These

random variables have the same distribution F (x) and they are named independent and

identically distributed (i.i.d.) random variables.

2.2.3 Population mean, population variance, population covariance

and population correlation coefficient

The expected value or population mean of a random variable x is a function of random

variable x, say E{x}. It estimates the “center” of the random variable. For continuous
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random variable x, the expected value is defined as

E{x} =

∫ ∞
−∞

xf(x)dx, (2.8)

where f(x) is the p.d.f. of the random variable x. For discrete random variable x, the

expected value is defined as

E{x} =
∑
i

pixi, (2.9)

where pi = P{x = xi} is the probability that the random variable x takes the value xi. In

other words, the mean of a discrete random variable is actually a weighted average of all

the values of the discrete random variable, with weights as the probabilities.

The population variance measures the “dispersion” of random variable around its mean

var{x} = σ2 = E{(x− µ)2}, (2.10)

where µ is the expected value of the random variable, one can demonstrate the following

σ2 = E{(x− µ)2} = E{x2 − 2µx + µ2},

= E{x2} − (E{x})2,

= E{x2} − µ2.

(2.11)

Furthermore, if x is a continuous random variable

σ2 =

∫ ∞
−∞

(x− µ)2f(x)dx. (2.12)

If x is a discrete random variable, its variance is

σ2 =
∑
i

pi(xi − µ)2, (2.13)

where pi = P{x = xi}. The variance of a discrete random variable is a weighted average of

the squared distance between the value of the random variable and the mean.

The population covariance cij of two random variables xi and xj is defined as

cov{xi,xj} = cij = E{(xi − µi)(xj − µj)}, (2.14)

where µi and µj are the expected values of xi and xj , respectively. Covariance of two

random variable can describe how they are related. Using the linearity of the mean, the
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covariance can be expressed as follows

cij = E{xixj − µjxi − µixj + µiµj},

= E{xixj} − µjE{xi} − µiE{xj} − µiµj ,

= E{xixj} − E{xi}E{xj},

= E{xixj} − µiµj .

(2.15)

If xi and xj are continuous random variables, the population covariance can be calculated

by

cij =

∫ ∞
−∞

∫ ∞
−∞

(xi − µi)(xj − µj)fij(xi, xj)dxidxj , (2.16)

where fij(xi, xj) is the joint density function of the random variables xi and xj .

If xi and xj are discrete random variables, the population covariance can be calculated by

cij =
∑
i

∑
j

pij(xi − µi)(xj − µj), (2.17)

where pij is the joint probability function of the discrete random variables xi and xj .

The population covariance matrix of a random vector X = (x1,x2, . . . ,xp)
T

is given by

C =


c11 c12 · · · c1p

c21 c22 · · · c2p
...

...
. . .

...

cp1 cp2 · · · cpp

 , (2.18)

where the entry cij is the covariance between the random variables xi and xj . The covariance

matrix is a symmetric, nonnegative definite matrix. Using the definition (2.14), the above

expression is equivalent to

C = E{(X− E{X})(X− E{X})T }. (2.19)

The population correlation coefficient of two random variables is the normalized version of

the covariance.

ρij =
cij
σiσj

=
E{(xi − µi)(xj − µj)}

σiσj
, (2.20)

where σi and σj are the standard deviation of the random variables xi and xj , respectively.

The advantage of the correlation coefficient is that it is dimensionless, i.e. it does not depend

on physical units. Covariance and correlation coefficient have the same signs. If they are

zero, the two random variables are said to be uncorrelated or independent. It is easy to
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notice that the covariance of random variables xi, xj and the covariance of random variables

xi − µi, xj − µj are the same. This is because the means of xi − µi and xj − µj are zeros.

The correlation matrix is given by

ρ =


1 ρ12 · · · ρ1p

ρ21 1 · · · ρ2p

...
...

. . .
...

ρp1 ρp2 · · · 1

 , (2.21)

where ρij is the correlation coefficient between random variables xi and xj (Definition

(2.28)). The correlation matrix is a symmetric, nonnegative definite matrix.

2.2.4 Complex random variable

A complex random variable x = a + ib is a function with real part a and imaginary

part b are both real random variables (Papoulis and Pillai, 2002). A Complex random

variable x is statistically described by the joint distribution F (a, b) (Equation (2.5)) of the

real random variables a and b. In this case, the complex random variable x is seen as a

function of two real random variables a and b. For example, if a and b are independent

real zero mean Gaussian random variables with the same variance, x is a complex zero

mean Gaussian random variable. The amplitude of a complex Gaussian random variable x

is |x| =
√

a2 + b2 follows Rayleigh distribution. The phase of complex Gaussian random

variable x is θ = tan−1 (a/b) follows uniform distribution (Papoulis and Pillai, 2002).

The mean or expected value of complex random variable x is given as

E{x} = E{a}+ iE{b}. (2.22)

The variance of complex random variable x is given by

σ2 = E{(x− µ)(x∗ − µ∗)},

= E{|x− µ|2},

= E{|x|2} − |E{x}|2,

= E{|x|2} − |µ|2.

(2.23)

where µ = E{x}, ∗ represents complex conjugate.

A complex random vector consists of several complex random variables, i.e. X = (x1,x2, . . . ,xp)
T

.

Obviously, each complex random variable is xi = ai + ibi. A complex random vector does

not have a joint distribution or a joint density. The statistical properties of a complex ran-



CHAPTER 2. SSA AND ITS APPLICATIONS IN SEISMIC DATA PROCESSING 21

dom vector X are described by the joint density f(a1, a2, . . . , ap, b1, b2, . . . , bp) of the 2p real

random variables ai and bi. Complex random variables xi are said to be independent if

f(a1, a2, . . . , ap, b1, b2, . . . , bp) = f(a1, b1)f(a2, b2) · · · f(ap, bp). (2.24)

The covariance of two complex random variables xi and xj is

cij = E{(xi − µi)(x∗j − µ∗j )},

= E{xix∗j} − µ∗jE{xi} − µiE{x∗j}+ µiµ
∗
j ,

= E{xix∗j} − E{xi}E{x∗j},

= E{xix∗j} − µiµ∗j .

(2.25)

The covariance matrix of a complex random vector X is given by

C =


c11 c12 · · · c1p

c21 c22 · · · c2p
...

...
. . .

...

cp1 cp2 · · · cpp

 , (2.26)

where the entry cij is the covariance between complex random variable xi and xj .

C = E{(X− E{X})(X− E{X})H}. (2.27)

The correlation coefficient between the complex random variables xi and xj is

ρij =
cij
σiσj

=
E{(xi − µi)(x∗j − µ∗j )}

σiσj
. (2.28)

Similarly, the correlation matrix is given by

ρ =


1 ρ12 · · · ρ1p

ρ21 1 · · · ρ2p

...
...

. . .
...

ρp1 ρp2 · · · 1

 . (2.29)

The covariance and correlation matrices of complex random vector are both symmetric and

nonnegative definite matrix.
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2.2.5 Sample mean, sample variance, sample covariance, sample

correlation coefficient

In many cases, the distribution of random variables is not known in advance. The population

mean, variance, covariance and correlation coefficient are not known as well. In a practical

application, they can be approximately estimated by the sample mean, variance, covariance

and correlation coefficient, respectively (Johnson and Wichern, 2007). For example, the ex-

periment is repeatedly performed n times, n values x1, x2, . . . , xn (realizations) corresponds

to random variable x are observed. This procedure is referred to as sampling. Samples

x1, x2, . . . , xn are independent observations from a common density function f(x), or joint

density function f(a, b) for the complex random variable case. The variables x1, x2, . . . , xn

can actually be regarded as n independent and identically distributed random variables.

The sample mean of the observations can be expressed as

x̄ =
1

n

n∑
i=1

xi. (2.30)

The sample mean x̄ is actually the arithmetic average of the observed values xi. When

n→∞, x̄→ E{x} (Papoulis and Pillai, 2002).

Similarly, the sample variance is given by

s2 =
1

n− 1

n∑
i=1

|xi − x̄|2 =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)∗, (2.31)

where x̄ is the sample mean from equation (2.30), s is called sample standard deviation

(SD). Sample variance is a measure of spread of the observed values.

If every random variable in random vector X has n observations, the n by p data matrix

can be organized as

Xobs =



x11 x12 · · · x1k · · · x1p

x21 x22 · · · x2k · · · x2p

...
...

. . .
...

. . .
...

xi1 xi2 · · · xik · · · xip
...

...
. . .

...
. . .

...

xn1 xn2 · · · xnk · · · xnp


, (2.32)

where xik represents ith observation of the kth random variable. Each row of data ma-

trix Xobs is a measurement with p components. In other words, all the values in the

data matrix are unknown before the occurrence of the measurement. Then every element
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xik can be regarded as a random variable, every row of Xobs can be regarded as a ran-

dom vector, and matrix Xobs can be regarded as a random matrix (Johnson and Wich-

ern, 2007). If the rows of Xobs are observations from a common joint density function

f(a1, a2, . . . , ap, b1, b2, . . . , bp) and are mutual independent, they are called a random sample

from the distribution f(a1, a2, . . . , ap, b1, b2, . . . , bp) (Johnson and Wichern, 2007).

The sample covariance between complex random variables xj and xk is given by

sjk =
1

n− 1

n∑
i=1

(xij − x̄j)(xik − x̄k)∗, (2.33)

where x̄j and x̄k are the sample mean of random variables xj and xk, respectively.

The sample correlation coefficient is a normalized version of sample covariance

rjk =
sjk√

sjj
√
skk

, (2.34)

where cjk is the sample covariance between jth and kth variables, sjj and skk are the sample

variances of jth and kth variables, respectively.

To summarize the descriptive statistics, the sample means of a random vector X is given by

x̄ =


x̄1

x̄2

...

x̄p

 . (2.35)

Sample covariance matrix of the random vector X is given by

S =


s11 s12 · · · s1p

s21 s22 · · · s2p

...
...

. . .
...

sp1 sp2 · · · spp

 (2.36)

Sample correlation coefficient matrix of the random vector X is given by

R =


1 r12 · · · r1p

r21 1 · · · r2p

...
...

. . .
...

rp1 rp2 · · · 1

 (2.37)
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2.2.6 Eigendecomposition

Eigenvectors of a n by n square matrix S are vectors that do not change their direction

after they are multiplied by the matrix S (Strang, 1993)

Su = λu, (2.38)

where λ is a scalar called eigenvalue whereas u is a n × 1 vector called eigenvector. We

should note that only a square matrix has eigenvectors and eigenvalues. Zero is one of the

eigenvalues of the matrix S if it is singular. The multiplication of any nonzero scalar with

an eigenvector of S is still an eigenvector of S. The eigenvectors are usually normalized to

unit vectors. If matrix S has n linearly independent eigenvectors

Su1 = λ1u1,

Su2 = λ2u2,

...

Sun = λnun.

(2.39)

The above equations can be organized into matrix form

S (u1,u2, . . . ,un) = (λ1u1, λ2u2, . . . , λnun),

S (u1,u2, . . . ,un) = (u1,u2, . . . ,un)


λ1

λ2

. . .

λn

 .
(2.40)

Noting that U = (u1,u2, . . . ,un), Λ = diag{λ1, λ2, . . . , λn}, equation (2.40) is expressed as

SU = UΛ. (2.41)

All the n eigenvectors are assumed to be linearly independent, i.e. all column vectors of the

matrix U are linearly independent. The matrix U is invertible

U−1SU = Λ. (2.42)

This process is called matrix diagonalization and matrix S is said to be diagonalizable. Some

other matrices are nondiagonalizable because at least one of their eigenvalues is not a simple

root of the characteristic polynomial (multiple eigenvalue). They are called defective matrix.

From equation (2.42), the eigendecomposition or spectral decomposition of matrix S is given
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by

S = UΛU−1. (2.43)

Hermitian matrix (S = SH) is always diagonalizable. All eigenvalues of Hermitian matrix

are real numbers. The eigenvectors of Hermitian matrix are orthonormal. They constitute

an unitary matrix, i.e. U−1 = UH and UHU = UUH = I. The eigendecomposition (2.43)

changes to (Strang, 2006)

S = UΛUH ,

S =

n∑
i=1

λiuiu
H
i .

(2.44)

The outer product uiu
H
i is a rank 1 matrix. The eigendecomposition decomposes an n by

n Hermitian matrix into a weighted combination of n rank 1 matrices.

An n by n matrix S is defined as positive definite matrix if

uHSu > 0, (2.45)

for any nonzero complex vector u = (u1, u2, . . . , un)T . All the eigenvalues of a positive

definite matrix are positive numbers. If S is both symmetric and positive definite, it is

called a symmetric positive definite matrix. Similarly, if

uHSu ≥ 0, (2.46)

for all complex vector u, S is said to be a nonnegative definite matrix or positive semi-

definite matrix. All eigenvalues of nonnegative definite matrix are nonnegative numbers.

The population covariance/correlation matrix and sample covariance/correlation matrix are

symmetric nonnegative definite matrices.

2.2.7 Principal component analysis

Principal component analysis (PCA) is a very important tool in multivariate statistic anal-

ysis. It is widely used for data compression and interpretation. PCA is closely related

with Karhunen-Loeve transform (Karhunen, 1947; Loeve, 1948) in signal processing, sin-

gular value decomposition (Golub and Van Loan, 1996) in numerical analysis, Hotelling

transformation in image analysis, eigendecomposition in physical sciences, and empirical or-

thogonal functions in meteorology. The variables in a large data set are actually correlated

in some way. PCA transforms the original variables to a new set of uncorrelated variables,

the principal components (PCs). The first few new variables account for as much as possi-

ble of variability in the original data variables (Jolliffe, 2010). In this way, the underlying
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independent variables are extracted and the dimensionality of the data set is reduced by

PCA.

Population principal components

Consider a random vector X, which consists of p scalar random variables X = (x1,x2, . . . ,xp)
T

.

The realizations (sample observations) of the random variable xi can be a subseries mi win-

dowed from a time series (SSA) or a seismic trace (Eigenimage analysis) (Freire and Ulrych,

1988). PCA linearly transforms the random variables to a set of new variables with max-

imum variance. The new variables are called principal components (PCs). Every PC is a

linear function of all the original random variables. More specially, PCA looks for a linear

combination of the original random variables, which has maximum variance subject to the

constraint that the sum of squares of the transformation coefficients equals 1

w1 = uT1 X =

p∑
j=1

uj1xj , (2.47)

where uT1 u1 = 1, w1 is the first PC. Then, PCA looks for the second PC uT2 X with

maximum variance, which is uncorrelated with the first PC and fulfills the constraint that

uT2 u2 = 1. Similarly, the ith PC should have maximum variance under the constraint that

it is uncorrelated with all previous i − 1 PCs. The problem of computing ith PC (i > 1)

can be summarized as
ûi = argmax

ui

var{uTi X},

subject to uTi ui = 1,

cov{uTi X,uTl X} = 0 for l < i,

(2.48)

where var{uTi X} = uTi var{X}ui = uTi Cui and cov{uTi X,uTl X} = uTi Cul. Here, C is

the population covariance matrix of the random vector X. There are in total p principal

components to account for all the variability information in the original data set. However,

usually most of the variability can be explained by a small number k of principal components.

ui is called the vector of coefficients or loadings for the ith PC. Elements of ui are termed

as PC coefficients or PC loadings.

The optimization problem (2.48) can be solved via the Lagrange multiplier method (Jolliffe,

2010). The problem of computing principal components is finally addressed by the eigende-

composition of the covariance or correlation matrix of the original random variables. The

transformed coefficient vector ui of the ith PC is actually the normalized eigenvector of the
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covariance matrix C corresponding to the ith largest eigenvalue

Cu1 = λ1u1,

Cu2 = λ2u2,

...

Cup = λpup,

(2.49)

where λ1, λ2, . . . , λp are eigenvalues of the covariance matrix C in non-increasing order,

u1,u2, . . . ,up are the corresponding eigenvectors. The above equations can be arranged as

CU = UΛ, (2.50)

where U = (u1,u2, . . . ,up) and Λ = diag{λ1, λ2, . . . , λp}. Because C is a symmetric ma-

trix, matrix U is an orthogonal matrix. It follows that the covariance matrix C has the

eigendecomposition

C = UΛUT . (2.51)

The variance of ith PC is actually the ith largest eigenvalue of the covariance matrix C

var{uTi X} = uTi Cui = uTi λiui = λiu
T
i ui = λi. (2.52)

The principal components can be organized as a random vector

W = (w1,w2, . . . ,wp)
T = UTX, (2.53)

where U is an orthogonal matrix that consists of the eigenvectors of the population covari-

ance matrix. Then, the original random vector X can be expressed as a transformation from

the PCs

X = UW. (2.54)

There is a geometrical interpretation for population PCA (Jolliffe, 2010; Johnson and Wich-

ern, 2007). The random variables x1,x2, . . . ,xp represent the coordinate axes of the original

Cartesian coordinate system. The following quadratic form represents an ellipsoid centered

at the origin in the p dimensional Cartesian coordinate system

XTC−1X = c2, (2.55)

where X is random vector, C is the population covariance matrix, and c is a constant. The

principal axes of the ellipsoid are ±c
√
λiui, where λi and ui are the ith eigenvalue and

eigenvector of C, respectively. That is to say, the directions of the axes are determined by
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ui, and half-length of the principal axes are c
√
λi in the original coordinate system. From

relationship (2.54) and decomposition (2.51), equation of p dimensional ellipsoid (2.55) can

be changed to

(UW)TC−1(UW) = c2,

WT (UTCU)−1W = c2,

WTΛ−1W = c2,

(2.56)

where Λ is a diagonal matrix with a diagonal composed of the eigenvalues of C in decreasing

order.
1

λ1
w2

1 +
1

λ2
w2

2 + . . .+
1

λp
w2
p = c2, (2.57)

where w1,w2, . . . ,wp are the principal components. It is clear that equation (2.57) repre-

sents a p dimensional ellipsoid (Strang, 1993; Jolliffe, 2010) with the principal components

defining the direction of its principal axes. The half-lengths of the axes are c
√
λi. The

principal components are the coordinate axes of the new Cartesian coordinate system. In

fact, PCA involves a linear transformation of coordinate axes. The old coordinate axes are

the original variables and the new coordinate axes are given by the principal components.

The transformation matrix U indicating rotation and stretch from the original coordinate

axes to the new coordinate axes. Figure 2.1 uses a 2-D random vector to show the geometric

interpretation of population PCA. x1 and x2 are original random variables. The population

covariance matrix is C =

(
1 1.5

1.5 3

)
. The equation of the ellipse in Figure 2.1 is given

by equation (2.55) with the above population covariance matrix and constant c = 2. w1

and w2 are the principal components. If the random vector follows a multivariate Gaussian

distribution, the ellipsoid (Equation (2.55)) represents the constant probability density con-

tour of X. The directions of principal axes of constant probability density are determined

by the principal components. The leading principal axes determine the directions of great-

est statistical variations. Note that the PCA can also be performed with the correlation

matrix. In some situations, e.g. the units used for different variables are different, the

random variables are standardized using the standard deviation of each variable. The co-

variance matrix of the standardized variables equals to the correlation matrix of the original

variables. However, the relationship between the eigenvalues/eigenvectors of the covariance

matrix and eigenvalues/eigenvectors of the correlation matrix is not simple (Jolliffe, 2010).
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sents a p dimensional ellipsoid (Strang, 1993; Jolli↵e, 2010) with the principal components

defines the direction of its principal axes. The half-lenghs of the axes are c
p
�i. The prin-

cipal components are the coordinate axes of the new Cartesian coordinate system. In fact,

PCA involves a linear transformation of coordiante axes. The old coordinate axes are the

original variables and the new coordinate axes are given by the principal components. The

transformation matrix U indicating rotation and stretch from original coordinate axes to

new coordinate axes. It is the PC loadings matrix and consists of eigenvectors of population

covariance matrix C.
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normalized to be unit vectors. If matrix A has n linearly independent eigenvectors

Ax

1

= �

1

x

1

,

Ax

2

= �

2

x

2

,

...

Axn = �nxn.

(2.39)

The above equations can be organized into matrix format

A (x
1

,x

2

, . . . ,xn) = (�
1

x

1

,�

2

x

2

, . . . ,�nxn),

A (x
1

,x

2

, . . . ,xn) = (x
1

,x

2

, . . . ,xn)

0

BBBB@

�

1

�

2

. . .

�n

1

CCCCA
.

(2.40)

Noting U = (x
1

,x

2

, . . . ,xn), ⇤ = diag{�
1

,�

2

, . . . ,�n}, equation (2.40) is expressed as

AU = U⇤. (2.41)

All the n eigenvectors are assumed to be linearly independent, i.e. all column vectors of

matirx U are linearly independent. So, U is invertable

U

�1

AU = ⇤. (2.42)

This process is called matrix diagonalization and matrix A is said to be diagonalizable.

Some other matrices are nondiagonalizable because at least one of their eigenvalues is not a

simple root of the characteristic polynomial (multiple eigenvalue). They are called defective

matrix. From equation (2.42), the eigendecomposition or spectral decomposition of matrix

A is given by

A = U⇤U

�1

. (2.43)

Hermitian matrix (i.e. A = A

H) is always diagonalizable. All eigenvalues of Hermitian

matrix are real numbers. The eigenvectors of Hermitian matrix are orthonormal. They con-

stitute an unitary matrix, i.e. U�1 = U

H and U

H
U = UU

H = I. The eigendecomposition

(2.43) changes to (Strang, 2006)
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whereU = (u
1

,u

2

, . . . ,up) and ⇤ = diag{�
1

,�

2

, . . . ,�p}. BecauseC is a symmetric matrix,

matrix U is an orthogonal matrix. So, the covariance matrix C has the eigendecomposition

C = U⇤U

T
. (2.51)

The variance of ith PC is actually ith largest eigenvalue of covariance matrix C

var{uT
i X} = u

T
i Cui = u

T
i �iui = �iu

T
i ui = �i. (2.52)

The principal components can be organized as a random vector

W = (w
1

,w

2

, . . . ,wp)
T = U

T
X, (2.53)

whereU is an orthogonal matrix consists of eigenvectors of the population covariance matrix.

Then, the original random vector X can be expressed as a transformation from the PCs

X = UW. (2.54)

There is a geometric interpretation for population PCA (Jolli↵e, 2010; Johnson andWichern,

2007). The random variables x

1

,x

2

, . . . ,xp represent the coordinate axes of the original

Cartesian coordinate system. The following quadratic form represents an ellipsoid centered

at the origin in the p dimensional Cartesian coordiante system

X

T
C

�1

X = c

2

, (2.55)

where X is random vector, C is the population covariance matrix, and c is a constant. The

axes of the ellipsoid are ±c

p
�iui, i = 1, 2, . . . , p, where �i and ui are the ith eigenvalue and

eigenvector of C, respectively. That is to day, the directions of the axes are determined by

ui, and half of the length of the axes are c
p
�i. From relationship (2.54) and decomposition

(2.51), equation of p dimensional ellipsoid (2.55) can be changed to

(UW)TC�1(UW) = c

2

,

W

T (UT
CU)�1

W = c

2

,

W

T
⇤

�1

W = c

2

,

(2.56)

where ⇤ is a diagonal matrix with diagonal as eigenvalues of C in non-increase order.
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where w

1

,w

2

, . . . ,wp are principal components. It’s clear that equation (2.57) represents
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If random vector follows multivariate Gaussian distribution, the ellipsoid (Equation (2.55))

represents the constant probability density contour of X. The directions of principal axes

of constant probability density contour are determined by the principal components. The

leading principal axes determine the directions of greatest statistical variations.
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sents a p dimensional ellipsoid (Strang, 1993; Jolli↵e, 2010) with the principal components

defines the direction of its principal axes. The half-lenghs of the axes are c
p
�i. The prin-

cipal components are the coordinate axes of the new Cartesian coordinate system. In fact,

PCA involves a linear transformation of coordiante axes. The old coordinate axes are the

original variables and the new coordinate axes are given by the principal components. The

transformation matrix U indicating rotation and stretch from original coordinate axes to

new coordinate axes. It is the PC loadings matrix and consists of eigenvectors of population

covariance matrix C.
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normalized to be unit vectors. If matrix A has n linearly independent eigenvectors
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...

Axn = �nxn.

(2.39)

The above equations can be organized into matrix format
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, . . . ,xn) = (�
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(2.40)

Noting U = (x
1

,x

2

, . . . ,xn), ⇤ = diag{�
1

,�

2

, . . . ,�n}, equation (2.40) is expressed as

AU = U⇤. (2.41)

All the n eigenvectors are assumed to be linearly independent, i.e. all column vectors of

matirx U are linearly independent. So, U is invertable

U

�1

AU = ⇤. (2.42)

This process is called matrix diagonalization and matrix A is said to be diagonalizable.

Some other matrices are nondiagonalizable because at least one of their eigenvalues is not a

simple root of the characteristic polynomial (multiple eigenvalue). They are called defective

matrix. From equation (2.42), the eigendecomposition or spectral decomposition of matrix

A is given by

A = U⇤U

�1

. (2.43)

Hermitian matrix (i.e. A = A

H) is always diagonalizable. All eigenvalues of Hermitian

matrix are real numbers. The eigenvectors of Hermitian matrix are orthonormal. They con-

stitute an unitary matrix, i.e. U�1 = U

H and U

H
U = UU

H = I. The eigendecomposition

(2.43) changes to (Strang, 2006)

A = U⇤U

H
,

A =
nX

i=1

�iuiu
H
i .

(2.44)
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whereU = (u
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, . . . ,up) and ⇤ = diag{�
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, . . . ,�p}. BecauseC is a symmetric matrix,

matrix U is an orthogonal matrix. So, the covariance matrix C has the eigendecomposition

C = U⇤U

T
. (2.51)

The variance of ith PC is actually ith largest eigenvalue of covariance matrix C

var{uT
i X} = u

T
i Cui = u

T
i �iui = �iu

T
i ui = �i. (2.52)

The principal components can be organized as a random vector

W = (w
1

,w

2

, . . . ,wp)
T = U

T
X, (2.53)

whereU is an orthogonal matrix consists of eigenvectors of the population covariance matrix.

Then, the original random vector X can be expressed as a transformation from the PCs

X = UW. (2.54)

There is a geometric interpretation for population PCA (Jolli↵e, 2010; Johnson andWichern,

2007). The random variables x

1

,x

2

, . . . ,xp represent the coordinate axes of the original

Cartesian coordinate system. The following quadratic form represents an ellipsoid centered

at the origin in the p dimensional Cartesian coordiante system

X
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X = c
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, (2.55)

where X is random vector, C is the population covariance matrix, and c is a constant. The

axes of the ellipsoid are ±c

p
�iui, i = 1, 2, . . . , p, where �i and ui are the ith eigenvalue and

eigenvector of C, respectively. That is to day, the directions of the axes are determined by

ui, and half of the length of the axes are c
p
�i. From relationship (2.54) and decomposition

(2.51), equation of p dimensional ellipsoid (2.55) can be changed to

(UW)TC�1(UW) = c

2

,
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T (UT
CU)�1

W = c
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⇤
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,

(2.56)

where ⇤ is a diagonal matrix with diagonal as eigenvalues of C in non-increase order.
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where w
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, . . . ,wp are principal components. It’s clear that equation (2.57) represents
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If random vector follows multivariate Gaussian distribution, the ellipsoid (Equation (2.55))

represents the constant probability density contour of X. The directions of principal axes

of constant probability density contour are determined by the principal components. The

leading principal axes determine the directions of greatest statistical variations.
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defines the direction of its principal axes. The half-lenghs of the axes are c
p
�i. The prin-

cipal components are the coordinate axes of the new Cartesian coordinate system. In fact,

PCA involves a linear transformation of coordiante axes. The old coordinate axes are the

original variables and the new coordinate axes are given by the principal components. The

transformation matrix U indicating rotation and stretch from original coordinate axes to

new coordinate axes. It is the PC loadings matrix and consists of eigenvectors of population

covariance matrix C.
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normalized to be unit vectors. If matrix A has n linearly independent eigenvectors
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The above equations can be organized into matrix format
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Noting U = (x
1

,x

2

, . . . ,xn), ⇤ = diag{�
1

,�

2

, . . . ,�n}, equation (2.40) is expressed as

AU = U⇤. (2.41)

All the n eigenvectors are assumed to be linearly independent, i.e. all column vectors of

matirx U are linearly independent. So, U is invertable

U

�1

AU = ⇤. (2.42)

This process is called matrix diagonalization and matrix A is said to be diagonalizable.

Some other matrices are nondiagonalizable because at least one of their eigenvalues is not a

simple root of the characteristic polynomial (multiple eigenvalue). They are called defective

matrix. From equation (2.42), the eigendecomposition or spectral decomposition of matrix

A is given by

A = U⇤U

�1

. (2.43)

Hermitian matrix (i.e. A = A

H) is always diagonalizable. All eigenvalues of Hermitian

matrix are real numbers. The eigenvectors of Hermitian matrix are orthonormal. They con-

stitute an unitary matrix, i.e. U�1 = U

H and U

H
U = UU

H = I. The eigendecomposition

(2.43) changes to (Strang, 2006)

A = U⇤U

H
,

A =
nX

i=1

�iuiu
H
i .

(2.44)
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where X is random vector, C is the population covariance matrix, and c is a constant. The

axes of the ellipsoid are ±c

p
�iui, i = 1, 2, . . . , p, where �i and ui are the ith eigenvalue and

eigenvector of C, respectively. That is to day, the directions of the axes are determined by

ui, and half of the length of the axes are c
p
�i. From relationship (2.54) and decomposition

(2.51), equation of p dimensional ellipsoid (2.55) can be changed to

(UW)TC�1(UW) = c

2
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W

T (UT
CU)�1
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2
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W

T
⇤

�1

W = c

2
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where ⇤ is a diagonal matrix with diagonal as eigenvalues of C in non-increase order.
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where w
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2

, . . . ,wp are principal components. It’s clear that equation (2.57) represents
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If random vector follows multivariate Gaussian distribution, the ellipsoid (Equation (2.55))

represents the constant probability density contour of X. The directions of principal axes

of constant probability density contour are determined by the principal components. The

leading principal axes determine the directions of greatest statistical variations.
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sents a p dimensional ellipsoid (Strang, 1993; Jolli↵e, 2010) with the principal components

defines the direction of its principal axes. The half-lenghs of the axes are c
p
�i. The prin-

cipal components are the coordinate axes of the new Cartesian coordinate system. In fact,

PCA involves a linear transformation of coordiante axes. The old coordinate axes are the

original variables and the new coordinate axes are given by the principal components. The

transformation matrix U indicating rotation and stretch from original coordinate axes to

new coordinate axes. It is the PC loadings matrix and consists of eigenvectors of population

covariance matrix C.
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normalized to be unit vectors. If matrix A has n linearly independent eigenvectors

Ax

1

= �

1

x

1

,

Ax

2

= �

2

x

2

,

...

Axn = �nxn.

(2.39)

The above equations can be organized into matrix format

A (x
1

,x

2

, . . . ,xn) = (�
1

x

1

,�

2

x

2

, . . . ,�nxn),

A (x
1

,x

2

, . . . ,xn) = (x
1

,x

2

, . . . ,xn)

0

BBBB@

�

1

�

2

. . .

�n

1

CCCCA
.

(2.40)

Noting U = (x
1

,x

2

, . . . ,xn), ⇤ = diag{�
1

,�

2

, . . . ,�n}, equation (2.40) is expressed as

AU = U⇤. (2.41)

All the n eigenvectors are assumed to be linearly independent, i.e. all column vectors of

matirx U are linearly independent. So, U is invertable

U

�1

AU = ⇤. (2.42)

This process is called matrix diagonalization and matrix A is said to be diagonalizable.

Some other matrices are nondiagonalizable because at least one of their eigenvalues is not a

simple root of the characteristic polynomial (multiple eigenvalue). They are called defective

matrix. From equation (2.42), the eigendecomposition or spectral decomposition of matrix

A is given by

A = U⇤U

�1

. (2.43)

Hermitian matrix (i.e. A = A

H) is always diagonalizable. All eigenvalues of Hermitian

matrix are real numbers. The eigenvectors of Hermitian matrix are orthonormal. They con-

stitute an unitary matrix, i.e. U�1 = U

H and U

H
U = UU

H = I. The eigendecomposition

(2.43) changes to (Strang, 2006)

A = U⇤U

H
,

A =
nX

i=1

�iuiu
H
i .

(2.44)
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matrix U is an orthogonal matrix. So, the covariance matrix C has the eigendecomposition

C = U⇤U

T
. (2.51)

The variance of ith PC is actually ith largest eigenvalue of covariance matrix C

var{uT
i X} = u

T
i Cui = u

T
i �iui = �iu

T
i ui = �i. (2.52)

The principal components can be organized as a random vector

W = (w
1

,w

2

, . . . ,wp)
T = U

T
X, (2.53)

whereU is an orthogonal matrix consists of eigenvectors of the population covariance matrix.

Then, the original random vector X can be expressed as a transformation from the PCs

X = UW. (2.54)

There is a geometric interpretation for population PCA (Jolli↵e, 2010; Johnson andWichern,

2007). The random variables x

1

,x

2

, . . . ,xp represent the coordinate axes of the original

Cartesian coordinate system. The following quadratic form represents an ellipsoid centered

at the origin in the p dimensional Cartesian coordiante system
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X = c
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, (2.55)

where X is random vector, C is the population covariance matrix, and c is a constant. The

axes of the ellipsoid are ±c

p
�iui, i = 1, 2, . . . , p, where �i and ui are the ith eigenvalue and

eigenvector of C, respectively. That is to day, the directions of the axes are determined by

ui, and half of the length of the axes are c
p
�i. From relationship (2.54) and decomposition

(2.51), equation of p dimensional ellipsoid (2.55) can be changed to

(UW)TC�1(UW) = c
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T (UT
CU)�1
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T
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(2.56)

where ⇤ is a diagonal matrix with diagonal as eigenvalues of C in non-increase order.
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where ⇤ is a diagonal matrix with diagonal as eigenvalues of C in non-increase order.
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If random vector follows multivariate Gaussian distribution, the ellipsoid (Equation (2.55))

represents the constant probability density contour of X. The directions of principal axes

of constant probability density contour are determined by the principal components. The

leading principal axes determine the directions of greatest statistical variations.

Figure 2.1: Geometric interpretation of population PCA, a 2-variate example. x1,
x2 are the original random variable, also the original coordinate axes; w1 and
w2 are the principal components, also the new coordinate axes. w1 = uT1 X =
u11x1 +u21x2,w2 = uT2 X = u12x1 +u22x2. The ellipse is defined by the population
covariance matrix C and constant c, which can represent a constant probability
density contour of X.

Sample principal components

If the p variate random vector X is sampled n times independently, a n by p data matrix

Xobs is available.

Xobs =


x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xn1 xn2 · · · xnp

 . (2.58)

The n rows of Xobs, x1,x2, . . . ,xn, are n p-dimensional column vectors representing n inde-

pendent observations. The sample mean, sample covariance matrix and sample correlation

matrix are given by equations (2.35)(2.36)(2.37). PCA looks for uncorrelated linear combi-

nations of original variables that as much of variations in the original data can be explained

by the first few linear combinations. These linear combinations are named as sample princi-

pal components. They are derived from the sample covariance matrix or sample correlation
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matrix. The n observed values of the first linear combination are

w11 = uT1 x1 = u11x11+u21x12 + . . .+ up1x1p,

w21 = uT1 x2 = u11x21+u21x22 + . . .+ up1x2p,

...

wn1 = uT1 xn = u11xn1+u21xn2 + . . .+ up1xnp.

(2.59)

or

w1 = Xobsu1. (2.60)

The vector of coefficients u1 maximizes the sample variance 1
n−1

∑n
i=1(wi1− w̄1)2 under the

constraint that uT1 u1 = 1. w̄1 is the sample mean of wi1. The linear combination of random

variables uT1 X is defined as the 1st sample principal component (PC). wi1 is called the score

of the ith observation xi on the 1st PC. Similarly, PCA looks for second linear combination

of variables uT2 X with the optimal vector of coefficients u2. The vector u2 maximizes the

sample variance 1
n−1

∑n
i=1(wi2− w̄2)2 subject to uT2 u2 = 1 and w2 is uncorrelated with w1.

At the jth step, the problem of computing the optimal vector of coefficients ûj of the jth

sample PC (j > 1) is

maximizes
1

n− 1

n∑
i=1

(wij − w̄j)2,

subject to uTj uj = 1,

1

n− 1

n∑
i=1

(wij − w̄j)(wil − w̄l) = 0, l < j,

(2.61)

where wj = Xobsuj are the scores of observations on the jth sample PC. Linear combination

uTj X is the jth sample PC. Although there are p sample PCs in total, a small number k of

sample PCs account for much of the variability in the original data set.

In problem (2.61), the sample variance of jth sample PC uTj X is given by

1

n− 1

n∑
i=1

(wij − w̄j)2 =
1

n− 1
(wj − w̄j1n)T (wj − w̄j1n)

=
1

n− 1
(Xobsuj − x̄Tuj1n)T (Xobsuj − x̄Tuj1n)

=
1

n− 1
(Xobsuj − 1nx̄Tuj)

T (Xobsuj − 1nx̄Tuj)

=
1

n− 1
uTj (Xobs − 1nx̄T )T (Xobs − 1nx̄T )uj

= uTj Suj ,

(2.62)
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where x̄ is the sample mean vector of X, 1n is a n × 1 vector with all elements equal to

1, and S = 1
n−1 (Xobs − 1nx̄T )T (Xobs − 1nx̄T ) is the sample covariance matrix of X. The

sample covariance between jth and lth sample PC is given by

1

n− 1

n∑
i=1

(wij − w̄j)(wil − w̄l) =
1

n− 1
(wj − w̄j1n)T (wl − w̄l1n)

=
1

n− 1
(Xobsuj − x̄Tuj1n)T (Xobsul − x̄Tul1n)

=
1

n− 1
(Xobsuj − 1nx̄Tuj)

T (Xobsul − 1nx̄Tul)

=
1

n− 1
uTj (Xobs − 1nx̄T )T (Xobs − 1nx̄T )ul

= uTj Sul.

(2.63)

Following the similar Lagrange multiplier method as in population PCA (Jolliffe, 2010), the

optimal solution of PC coefficient corresponds to the jth PC is the eigenvector of sample

covariance matrix corresponding to the jth largest eigenvalue. The sample variance of PC

scores of the jth sample PC equals to the jth largest eigenvalue of the sample covariance

matrix
Suj = λjuj ,

uTj Suj = λj .
(2.64)

Grouping them together

SU = UΛ,

S = UΛUT .
(2.65)

The matrix of PC scores is linear orthonormal transformation of the data matrix

W = XobsU. (2.66)

In general, the means of each column of X are not zero. It is convenient to center the data

matrix, i.e. subtract corresponding column mean from each column of Xobs.

X̃obs = Xobs − 1nx̄ =


x11 − x̄1 x12 − x̄2 · · · x1p − x̄p
x21 − x̄1 x22 − x̄2 · · · x2p − x̄p

...
...

. . .
...

xn1 − x̄1 xn2 − x̄2 · · · xnp − x̄p

 . (2.67)

Then, the sample covariance matrix is given by

S =
1

n− 1
X̃T
obsX̃obs. (2.68)
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The new matrix of PC scores is given by

W̃ = X̃obsU. (2.69)

Now, PC scores w̃1, w̃2, . . . , w̃p have zero sample mean and same sample variances and

covariances as PC scores w1,w2, . . . ,wp.

There is also a geometric interpretation for the sample PCA. Data matrix Xobs can be

represented by a group of n points in p dimensional space, which is referred to as scatter

plot. Consider an ellipsoid, the coordinates X = (x1,x2, . . . ,xp) of the point on this ellipsoid

fulfill the following equation

(X− x̄)TS−1(X− x̄) = c2, (2.70)

where S is the sample covariance matrix, x̄ is the sample mean vector, c is a constant

representing the Mahalanobis distance from data samples to the sample mean. The equation

means that the distance between the points on the ellipsoid and the center point x̄ is a

constant. Figure 2.2 shows the geometric interpretation of sample PCA. There are 200 data

samples drawn from multivariate Gaussian distribution with population covariance matrix

C same as the one in Figure 2.1. The sample covariance matrix S can be derived from

these data samples. Ellipse in Figure 2.2 is determined by equation (2.70) with sample

covariance matrix S, sample mean vector x̄ = 0 and constant c = 2. w1 and w2 are sample

principal components. The directions of principal axes of the ellipse are determined by the

eigenvectors of sample covariance matrix. Similar with the situation in population PCA, the

sample PCA can also be based on sample correlation matrix rather than sample covariance

matrix.

2.3 Theory of SSA

This section briefly review the theory and algorithm of SSA. Some basic concepts of dynam-

ical system are also mentioned, which are just used to show the origin of SSA.

2.3.1 Dynamical system

Basically, the dynamical system can be described by a system of ordinary differential equa-

tions (ODEs). That is to say, the ODEs govern how the variables of the dynamical system

change with respect to continuous time (Broomhead and King, 1986a)

dzi
dt

= fi(z1, z2, . . . , zq), i = 1, 2, . . . , q, (2.71)
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sents a p dimensional ellipsoid (Strang, 1993; Jolli↵e, 2010) with the principal components

defines the direction of its principal axes. The half-lenghs of the axes are c
p
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cipal components are the coordinate axes of the new Cartesian coordinate system. In fact,

PCA involves a linear transformation of coordiante axes. The old coordinate axes are the

original variables and the new coordinate axes are given by the principal components. The

transformation matrix U indicating rotation and stretch from original coordinate axes to

new coordinate axes. It is the PC loadings matrix and consists of eigenvectors of population

covariance matrix C.
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normalized to be unit vectors. If matrix A has n linearly independent eigenvectors

Ax

1

= �

1

x

1

,

Ax

2

= �

2

x

2

,

...

Axn = �nxn.

(2.39)

The above equations can be organized into matrix format

A (x
1

,x

2

, . . . ,xn) = (�
1

x

1

,�

2

x

2

, . . . ,�nxn),

A (x
1

,x

2

, . . . ,xn) = (x
1

,x

2

, . . . ,xn)

0

BBBB@

�

1

�

2

. . .

�n

1

CCCCA
.

(2.40)

Noting U = (x
1

,x

2

, . . . ,xn), ⇤ = diag{�
1

,�

2

, . . . ,�n}, equation (2.40) is expressed as

AU = U⇤. (2.41)

All the n eigenvectors are assumed to be linearly independent, i.e. all column vectors of

matirx U are linearly independent. So, U is invertable

U

�1

AU = ⇤. (2.42)

This process is called matrix diagonalization and matrix A is said to be diagonalizable.

Some other matrices are nondiagonalizable because at least one of their eigenvalues is not a

simple root of the characteristic polynomial (multiple eigenvalue). They are called defective

matrix. From equation (2.42), the eigendecomposition or spectral decomposition of matrix

A is given by

A = U⇤U

�1

. (2.43)

Hermitian matrix (i.e. A = A

H) is always diagonalizable. All eigenvalues of Hermitian

matrix are real numbers. The eigenvectors of Hermitian matrix are orthonormal. They con-

stitute an unitary matrix, i.e. U�1 = U

H and U

H
U = UU

H = I. The eigendecomposition

(2.43) changes to (Strang, 2006)
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,
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�iuiu
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i .

(2.44)
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whereU = (u
1
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, . . . ,up) and ⇤ = diag{�
1

,�

2

, . . . ,�p}. BecauseC is a symmetric matrix,

matrix U is an orthogonal matrix. So, the covariance matrix C has the eigendecomposition

C = U⇤U

T
. (2.51)

The variance of ith PC is actually ith largest eigenvalue of covariance matrix C

var{uT
i X} = u

T
i Cui = u

T
i �iui = �iu

T
i ui = �i. (2.52)

The principal components can be organized as a random vector

W = (w
1

,w

2

, . . . ,wp)
T = U

T
X, (2.53)

whereU is an orthogonal matrix consists of eigenvectors of the population covariance matrix.

Then, the original random vector X can be expressed as a transformation from the PCs

X = UW. (2.54)

There is a geometric interpretation for population PCA (Jolli↵e, 2010; Johnson andWichern,

2007). The random variables x

1

,x

2

, . . . ,xp represent the coordinate axes of the original

Cartesian coordinate system. The following quadratic form represents an ellipsoid centered

at the origin in the p dimensional Cartesian coordiante system

X

T
C

�1

X = c

2

, (2.55)

where X is random vector, C is the population covariance matrix, and c is a constant. The

axes of the ellipsoid are ±c

p
�iui, i = 1, 2, . . . , p, where �i and ui are the ith eigenvalue and

eigenvector of C, respectively. That is to day, the directions of the axes are determined by

ui, and half of the length of the axes are c
p
�i. From relationship (2.54) and decomposition

(2.51), equation of p dimensional ellipsoid (2.55) can be changed to

(UW)TC�1(UW) = c

2

,

W

T (UT
CU)�1

W = c

2

,

W

T
⇤

�1

W = c

2

,

(2.56)

where ⇤ is a diagonal matrix with diagonal as eigenvalues of C in non-increase order.
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where w

1

,w

2

, . . . ,wp are principal components. It’s clear that equation (2.57) represents
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If random vector follows multivariate Gaussian distribution, the ellipsoid (Equation (2.55))

represents the constant probability density contour of X. The directions of principal axes

of constant probability density contour are determined by the principal components. The

leading principal axes determine the directions of greatest statistical variations.
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sents a p dimensional ellipsoid (Strang, 1993; Jolli↵e, 2010) with the principal components

defines the direction of its principal axes. The half-lenghs of the axes are c
p
�i. The prin-

cipal components are the coordinate axes of the new Cartesian coordinate system. In fact,

PCA involves a linear transformation of coordiante axes. The old coordinate axes are the

original variables and the new coordinate axes are given by the principal components. The

transformation matrix U indicating rotation and stretch from original coordinate axes to

new coordinate axes. It is the PC loadings matrix and consists of eigenvectors of population

covariance matrix C.
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normalized to be unit vectors. If matrix A has n linearly independent eigenvectors
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Axn = �nxn.

(2.39)

The above equations can be organized into matrix format
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(2.40)

Noting U = (x
1

,x

2

, . . . ,xn), ⇤ = diag{�
1

,�

2

, . . . ,�n}, equation (2.40) is expressed as

AU = U⇤. (2.41)

All the n eigenvectors are assumed to be linearly independent, i.e. all column vectors of

matirx U are linearly independent. So, U is invertable

U

�1

AU = ⇤. (2.42)

This process is called matrix diagonalization and matrix A is said to be diagonalizable.

Some other matrices are nondiagonalizable because at least one of their eigenvalues is not a

simple root of the characteristic polynomial (multiple eigenvalue). They are called defective

matrix. From equation (2.42), the eigendecomposition or spectral decomposition of matrix

A is given by

A = U⇤U

�1

. (2.43)

Hermitian matrix (i.e. A = A

H) is always diagonalizable. All eigenvalues of Hermitian

matrix are real numbers. The eigenvectors of Hermitian matrix are orthonormal. They con-

stitute an unitary matrix, i.e. U�1 = U

H and U

H
U = UU

H = I. The eigendecomposition

(2.43) changes to (Strang, 2006)

A = U⇤U

H
,

A =
nX

i=1

�iuiu
H
i .

(2.44)
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, . . . ,�p}. BecauseC is a symmetric matrix,

matrix U is an orthogonal matrix. So, the covariance matrix C has the eigendecomposition

C = U⇤U

T
. (2.51)

The variance of ith PC is actually ith largest eigenvalue of covariance matrix C

var{uT
i X} = u
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i Cui = u

T
i �iui = �iu

T
i ui = �i. (2.52)

The principal components can be organized as a random vector
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T = U

T
X, (2.53)

whereU is an orthogonal matrix consists of eigenvectors of the population covariance matrix.

Then, the original random vector X can be expressed as a transformation from the PCs

X = UW. (2.54)

There is a geometric interpretation for population PCA (Jolli↵e, 2010; Johnson andWichern,

2007). The random variables x
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,x

2

, . . . ,xp represent the coordinate axes of the original

Cartesian coordinate system. The following quadratic form represents an ellipsoid centered

at the origin in the p dimensional Cartesian coordiante system
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, (2.55)

where X is random vector, C is the population covariance matrix, and c is a constant. The

axes of the ellipsoid are ±c

p
�iui, i = 1, 2, . . . , p, where �i and ui are the ith eigenvalue and

eigenvector of C, respectively. That is to day, the directions of the axes are determined by

ui, and half of the length of the axes are c
p
�i. From relationship (2.54) and decomposition

(2.51), equation of p dimensional ellipsoid (2.55) can be changed to
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where ⇤ is a diagonal matrix with diagonal as eigenvalues of C in non-increase order.
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where w
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, . . . ,wp are principal components. It’s clear that equation (2.57) represents
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If random vector follows multivariate Gaussian distribution, the ellipsoid (Equation (2.55))

represents the constant probability density contour of X. The directions of principal axes

of constant probability density contour are determined by the principal components. The

leading principal axes determine the directions of greatest statistical variations.
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defines the direction of its principal axes. The half-lenghs of the axes are c
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�i. The prin-

cipal components are the coordinate axes of the new Cartesian coordinate system. In fact,

PCA involves a linear transformation of coordiante axes. The old coordinate axes are the

original variables and the new coordinate axes are given by the principal components. The

transformation matrix U indicating rotation and stretch from original coordinate axes to

new coordinate axes. It is the PC loadings matrix and consists of eigenvectors of population

covariance matrix C.
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normalized to be unit vectors. If matrix A has n linearly independent eigenvectors
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The above equations can be organized into matrix format
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Noting U = (x
1

,x

2

, . . . ,xn), ⇤ = diag{�
1

,�

2

, . . . ,�n}, equation (2.40) is expressed as

AU = U⇤. (2.41)

All the n eigenvectors are assumed to be linearly independent, i.e. all column vectors of

matirx U are linearly independent. So, U is invertable

U

�1

AU = ⇤. (2.42)

This process is called matrix diagonalization and matrix A is said to be diagonalizable.

Some other matrices are nondiagonalizable because at least one of their eigenvalues is not a

simple root of the characteristic polynomial (multiple eigenvalue). They are called defective

matrix. From equation (2.42), the eigendecomposition or spectral decomposition of matrix

A is given by

A = U⇤U

�1

. (2.43)

Hermitian matrix (i.e. A = A

H) is always diagonalizable. All eigenvalues of Hermitian

matrix are real numbers. The eigenvectors of Hermitian matrix are orthonormal. They con-

stitute an unitary matrix, i.e. U�1 = U

H and U

H
U = UU

H = I. The eigendecomposition

(2.43) changes to (Strang, 2006)

A = U⇤U

H
,

A =
nX

i=1

�iuiu
H
i .

(2.44)
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where X is random vector, C is the population covariance matrix, and c is a constant. The
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�iui, i = 1, 2, . . . , p, where �i and ui are the ith eigenvalue and

eigenvector of C, respectively. That is to day, the directions of the axes are determined by
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where ⇤ is a diagonal matrix with diagonal as eigenvalues of C in non-increase order.
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where w

1

,w

2

, . . . ,wp are principal components. It’s clear that equation (2.57) represents
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If random vector follows multivariate Gaussian distribution, the ellipsoid (Equation (2.55))

represents the constant probability density contour of X. The directions of principal axes

of constant probability density contour are determined by the principal components. The

leading principal axes determine the directions of greatest statistical variations.
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sents a p dimensional ellipsoid (Strang, 1993; Jolli↵e, 2010) with the principal components

defines the direction of its principal axes. The half-lenghs of the axes are c
p
�i. The prin-

cipal components are the coordinate axes of the new Cartesian coordinate system. In fact,

PCA involves a linear transformation of coordiante axes. The old coordinate axes are the

original variables and the new coordinate axes are given by the principal components. The

transformation matrix U indicating rotation and stretch from original coordinate axes to

new coordinate axes. It is the PC loadings matrix and consists of eigenvectors of population

covariance matrix C.
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normalized to be unit vectors. If matrix A has n linearly independent eigenvectors

Ax

1

= �

1

x

1

,

Ax

2

= �

2

x

2

,

...

Axn = �nxn.

(2.39)

The above equations can be organized into matrix format

A (x
1

,x

2

, . . . ,xn) = (�
1

x

1

,�

2

x

2

, . . . ,�nxn),

A (x
1

,x

2

, . . . ,xn) = (x
1

,x

2

, . . . ,xn)

0

BBBB@

�

1

�

2

. . .

�n

1

CCCCA
.

(2.40)

Noting U = (x
1

,x

2

, . . . ,xn), ⇤ = diag{�
1

,�

2

, . . . ,�n}, equation (2.40) is expressed as

AU = U⇤. (2.41)

All the n eigenvectors are assumed to be linearly independent, i.e. all column vectors of

matirx U are linearly independent. So, U is invertable

U

�1

AU = ⇤. (2.42)

This process is called matrix diagonalization and matrix A is said to be diagonalizable.

Some other matrices are nondiagonalizable because at least one of their eigenvalues is not a

simple root of the characteristic polynomial (multiple eigenvalue). They are called defective

matrix. From equation (2.42), the eigendecomposition or spectral decomposition of matrix

A is given by

A = U⇤U

�1

. (2.43)

Hermitian matrix (i.e. A = A

H) is always diagonalizable. All eigenvalues of Hermitian

matrix are real numbers. The eigenvectors of Hermitian matrix are orthonormal. They con-

stitute an unitary matrix, i.e. U�1 = U

H and U

H
U = UU

H = I. The eigendecomposition

(2.43) changes to (Strang, 2006)

A = U⇤U

H
,

A =
nX

i=1

�iuiu
H
i .

(2.44)
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whereU = (u
1

,u

2

, . . . ,up) and ⇤ = diag{�
1

,�

2

, . . . ,�p}. BecauseC is a symmetric matrix,

matrix U is an orthogonal matrix. So, the covariance matrix C has the eigendecomposition
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The variance of ith PC is actually ith largest eigenvalue of covariance matrix C

var{uT
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whereU is an orthogonal matrix consists of eigenvectors of the population covariance matrix.
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There is a geometric interpretation for population PCA (Jolli↵e, 2010; Johnson andWichern,
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, . . . ,xp represent the coordinate axes of the original

Cartesian coordinate system. The following quadratic form represents an ellipsoid centered

at the origin in the p dimensional Cartesian coordiante system

X

T
C

�1

X = c

2

, (2.55)

where X is random vector, C is the population covariance matrix, and c is a constant. The

axes of the ellipsoid are ±c

p
�iui, i = 1, 2, . . . , p, where �i and ui are the ith eigenvalue and

eigenvector of C, respectively. That is to day, the directions of the axes are determined by

ui, and half of the length of the axes are c
p
�i. From relationship (2.54) and decomposition

(2.51), equation of p dimensional ellipsoid (2.55) can be changed to

(UW)TC�1(UW) = c
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⇤
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where ⇤ is a diagonal matrix with diagonal as eigenvalues of C in non-increase order.
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where ⇤ is a diagonal matrix with diagonal as eigenvalues of C in non-increase order.
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If random vector follows multivariate Gaussian distribution, the ellipsoid (Equation (2.55))

represents the constant probability density contour of X. The directions of principal axes

of constant probability density contour are determined by the principal components. The

leading principal axes determine the directions of greatest statistical variations.

Figure 2.2: Geometric interpretation of sample PCA, a 2-variate example. x1, x2

are the original random variable, also the original coordinate axes; w1 and w2 are
the sample principal components, also the new coordinate axes. w1 = uT1 X =
u11x1 + u21x2,w2 = uT2 X = u12x1 + u22x2. u1 and u2 are the eigenvectors of the
sample covariance matrix S. The asterisks represent 200 data samples drawn from
multivariate Gaussian distribution with covariance matrix C and zero mean. The
ellipse is defined by the sample covariance matrix S and constant c.

or

ż = f(z), (2.72)

where dynamical variables z := (z1, z2, . . . , zq) indicate a state of the dynamical system,

ż := dz
dt = (dz1dt ,

dz2
dt , . . . ,

dzq
dt ). f := (f1, f2, . . . , fq) is referred as a vector field. If f is a

non-linear operator, the dynamical system is a non-linear dynamical system. Otherwise,

the dynamical system is a linear one. The space spanned by variables zi, i = 1, 2, . . . , q is

referred to as phase space, S ∈ Rq. Each state can be regarded as a point in the phase space.

Given an initial value z0, the solution z(t) of the ODEs corresponds to a curve in the phase

space. This curve is named trajectory or orbit of the dynamical system, which portraits the

evolution of the dynamical system with time under the initial condition. The ensemble of

solutions to all possible initial conditions corresponds to a collection of trajectories in the

phase space, which is called the flow.
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2.3.2 Embedding into a trajectory matrix

Each measurement di of a time series is a function of a state of the system at the particular

time. The N data points time series d = (d1, d2, . . . , dN ) ∈ RN is windowed into vectors

mi ∈ RL, i = 1, 2, . . . , N − L+ 1 in the embedding space RL

m1 = (d1, d2, . . . , dL)T ,

m2 = (d2, d3, . . . , dL+1)T ,

...

mN−L+1 = (dN−L+1, dN−L+2, . . . , dN )T ,

(2.73)

where L is the dimension of embedding space referred to as embedding dimension or window

length, N−L+1 vectors mi are called snapshots (Elsner and Tsonis, 1996). This procedure

is referred as embedding, it is a mapping from manifold to the embedded vector space RL.

The snapshots represent a discrete trajectory in the phase space of the system. These vectors

are then constructed to a so-called trajectory matrix (Golyandina and Zhigljavsky, 2013)

M = (m1,m2, . . . ,mN−L+1) (2.74)

= H[d] =


d1 d2 · · · dN−L+1

d2 d3 · · · dN−L+2

...
...

. . .
...

dL dL+1 · · · dN

 , (2.75)

where operator H constructs a vector to a Hankel matrix, which is named Hankel operator.

Hankel matrix means that the element on ith row and jth column is mij = di+j−1, i.e. the

elements on the anti-diagonals (i + j is constant) is the same. All the column vectors and

row vectors of M are subseries windowed from the original time series d. The trajectory

matrix relates the single time series to the multivariate statistics analysis. M can be seen as

N−L+1 observations on a L-variate random vector. To make the notation simpler, we will

note L = m and N − L+ 1 = n in the following discussions (M ∈ Rm×n). The rank of the

trajectory matrix is the dimensionality of subspace that contains the embedding manifold

(attractors) if there is no measurement noise (Broomhead and King, 1986a). .

2.3.3 Trajectory matrix decomposition

PCA is used to reveal the underlying structure of the trajectory matrix. The PC coefficients

are calculated by singular value decomposition of the trajectory matrix. Before going fur-

ther, I would like to point out that the times series should be centered (subtracting mean)
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and normalized before the application of SSA. If the mean value is not subtracted first, it

will be contained in the first principal component. Because the time series is normalized by

the same scalar, all elements in the trajectory matrix are normalized by the same scalar.

The sample covariance matrix before and after normalization will have the same eigenvectors

but different eigenvalues. The ratio of corresponding eigenvalues of the covariance matrix

before and after normalization is the normalization scalar.

Singular value decomposition

As I mentioned before, principal component analysis is an analysis tool in multivariate

statistics for analyzing the concealed independent variables in the original data set. The PC

coefficients can be calculated via eigendecomposition of the sample covariance matrix. It

also can be calculated via Singular Value Decomposition (SVD) of the centered data matrix.

SVD is a matrix decomposition tool. Eigendecomposition is used for square matrices. While,

SVD can factor an arbitrary rectangular or square matrix. Any m by n matrix M can be

diagonalized as (Golub and Van Loan, 1996)

UTMV = diag{σ1, σ2, . . . , σp} ∈ Rm×n, p = min{m,n} (2.76)

where U = (u1,u2, . . . ,um) ∈ Rm×m and V = (v1,v2, . . . ,vn) ∈ Rn×n are orthogonal

matrices, i.e. UTU = UUT = Im×m and VTV = VVT = In×n, σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0.

σi is the ith largest singular value of M, ui is the ith left singular vector of M and vi is

the ith right singular vector of M, corresponding to singular value σi. The collection of

singular values ordered from large to small is named singular spectrum. Because of U and

V are orthogonal, M has the decomposition

M = UΣVT , (2.77)

where Σ = diag{σ1, σ2, . . . , σp} ∈ Rm×n.

Suppose that m > n

M =



u11 u12 · · · u1n · · · u1m

u21 u22 · · · u2n · · · u2m

...
...

. . .
...

. . .
...

un1 un2 · · · unn · · · unm
...

...
. . .

...
. . .

...

um1 um2 · · · umn · · · umm





σ1 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σn

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0




v11 v12 · · · v1n

v21 v22 · · · v2n

...
...

. . .
...

vn1 vn2 · · · vnn


T

.

(2.78)
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There are zero rows in Σ, some information is redundant. A more economical version of

SVD is available as

M = UΣVT =

n∑
i=1

σiuiv
T
i , (2.79)

where U ∈ Rm×n(m > n), Σ = diag{σ1, σ2, . . . , σn} ∈ Rn×n and V ∈ Rn×n. This version

of SVD is called thin SVD (Golub and Van Loan, 1996). Express above equation in the

form of elements

M =



u11 u12 · · · u1n

u21 u22 · · · u2n

...
...

. . .
...

un1 un2 · · · unn
...

...
. . .

...

um1 um2 · · · umn




σ1 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σn




v11 v12 · · · v1n

v21 v22 · · · v2n

...
...

. . .
...

vn1 vn2 · · · vnn


T

,

(2.80)

where V is still an orthogonal matrix, VVT = VTV = In×n. However, U is not an

orthogonal matrix. The columns of U are orthonormal but the rows of U are not, i.e.

UTU = In×n and UUT 6= Im×m.

The rank of a matrix is defined as the number of linearly independent rows or columns of

the matrix. It equals to the number of nonzero singular values of the matrix (Hansen, 1998).

If rank of matrix M is r (r < p)

M = UrΣrV
T
r =

r∑
i=1

σiuiv
T
i = I1 + I2 + . . .+ Ir, (2.81)

because σr+1 = σr+2 = · · · = σp = 0, outer product uiv
T
i is a rank 1 matrix, it’s called ith

eigenimage (Andrews and Hunt, 1977; Ulrych et al., 1988). Each eigenimage is weighted by

the corresponding singular value. The matrix Ii = σiuiv
T
i is referred to as the ith weighted

eigenimage. The SVD provides an efficient way for computing the principal components

in PCA. SVD of a matrix is closely related with the eigendecomposition of the sample

covariance matrix. Remember that M ∈ Rm×n represents a set of n observations of a

m-variate variable vector (Section 2.3.2).

In SSA, the covariance matrix is defined as S = MMT =
∑n
j=1 mjm

T
j . There is a scalar

difference 1/n with the one defined in (Broomhead and King, 1986a), it does not influence

the eigenvectors and only has a scalar effect on the singular values. Covariance matrix is a

symmetric, nonnegative definite matrix. From the SVD decomposition formula, MMT is
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given by

S = MMT = UΣVTVΣTUT

= UΣΣTUT

= UΛm×mUT ,

(2.82)

where Λm×m = ΣΣT . Remember that Σ is a m by n rectangular diagonal matrix. It is

easy to see that Λ is a square diagonal matrix, and the element on the diagonal has the

relationship λi = σ2
i . Moreover, U is an orthogonal matrix. Examining equation (2.44), we

can find that (2.82) is indeed the eigendecomposition of S. In conclusion, the ith largest

singular value σi of M is the square root of ith largest eigenvalue λi of S. The ith left

singular vector ui of M is the eigenvector of S corresponding to the ith largest eigenvalue

λi. Here, the principal components are given by (equation (2.69))

W = UTM, (2.83)

or 
wT

1

wT
2

...

wT
m

 =


uT1

uT2
...

uTm


(

m1 m2 · · · mn

)
, (2.84)

where wT
i = uTi M is the ith principal component, i.e. the trajectory matrix projected

onto the ith eigenvector ui. Applying SVD decomposition, the principal components can

be expressed as (Freire and Ulrych, 1988)

W = UTM = UTUΣVT = ΣVT , (2.85)

and

M = UW = UΣVT =

m∑
i=1

uiw
T
i =

m∑
i=1

σiuiv
T
i , (2.86)

where the ith principal component is wi = σivi, and m ≤ n is assumed. The covariance

matrix of principal components is

WWT = (ΣVT )(ΣVT )T = ΣVTVΣT = ΣΣT = Λ. (2.87)

This demonstrates that the principal components are uncorrelated.

Similarly, T = MTM is referred to as structure matrix of the trajectory in SSA (Broomhead
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and King, 1986a). Applying SVD decomposition, we can get the following relationship

T = MTM = VΣTUTUΣVT

= VΣTΣVT

= VΛn×nVT ,

(2.88)

where the matrix Λn×n = ΣTΣ, with diagonal elements λi = σ2
i . In conclusion, the ith

right singular vector vi of M is the eigenvector of MTM corresponding to the ith largest

eigenvalue. The trajectory are confined in a subspace of embedding space, which is spanned

by the singular vectors ui, i = 1, 2, . . . , r (Broomhead and King, 1986a). The dimension

of the subspace is the rank of trajectory matrix. Moreover, rank(M) = rank(MTM) =

rank(MMT ).

2.3.4 Rank reduction and Eigenimage grouping

While, the presence of white noise will increase the rank of the matrix X to full rank. The

observed time series consists of deterministic component and stochastic component.

di = d̄i + ni, i = 1, 2, . . . , N, (2.89)

where d̄i is the underlying true signal, i.e. the deterministic part, and ni is the zero mean

white noise with standard deviation ε. The trajectory matrix has the form

M = M̄ + N, (2.90)

MMT = M̄M̄T + M̄NT + NM̄T + NNT . (2.91)

Because of the white noise assumption,

E{MMT } = M̄M̄T + ε2I. (2.92)

Thus, the additive noise component N increase all the eigenvalues of E{MMT } by ε2, and

does not change the eigenvectors. There is a group of small singular values and a gap

between large and small singular values in the singular value spectrum. In this case, the

matrix is called rank deficient (Hansen, 1998). Large singular values indicates the direction

of highly correlation in trajectory matrix, which correspond to oscillatory components in

the original times series. Small singular values account for random noise in the original

time series. SVD provides a way to estimate the “nearest” low rank approximation to a

matrix. The “nearest” is defined in the Euclidean metric sense. The problem of low rank
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approximation with respect to Euclidean metric is summarized as

Mk =Rk(M) = argmin
M̂

‖M− M̂‖2F ,

subject to rank(M̂) = k,

(2.93)

where k < r, ‖ · ‖F is the matrix Frobenius norm, ‖E‖F =
√∑m

i=1

∑n
j=1 |eij |2 for matrix

E ∈ Rm×n. The optimal rank k approximation to M is given by the truncated SVD(TSVD)

(Eckart and Young, 1936)

Mk = UkΣkV
T
k =

k∑
i=1

σiuiv
T
i

= σ1u1v
T
1 + σ2u2v

T
2 + . . .+ σkukv

T
k .

(2.94)

This is the well-known Eckart-Young theorem. From equation (2.86) and (2.94), rank re-

duction of M has the alternative formulation (Freire and Ulrych, 1988)

Mk = UkU
T
kM, (2.95)

where Rk := UkU
T
k is referred to as a rank reduction opertator or a “rank filter”. In

conclusion, TSVD can reveal the underlying k-dimensional subspace, which contains the

“useful” information, buried in the embedding space Rm.

Note that it is not necessary to group the first k weighted eigenimages together. It is pos-

sible to group arbitrary several weighted eigenimages together if they represent meaningful

information (Golyandina and Zhigljavsky, 2013).

2.3.5 Time series reconstruction

The rank-reduced matrix Mk is not a Hankel matrix any more, i.e. the rank-reduction

operator does not preserve the Hankel structure. The elements on the anti-diagonals of Mk

are averaged to estimate a reconstructed time series d̂ = (d̂1, d̂2, . . . , d̂m+n−1). Remember

that Mk is a m by n matrix. To make the discussion more convenient, we assume that

m < n. The following operator conduct the anti-diagonal averaging operation (Golyandina

and Zhigljavsky, 2013). If m > n, the matrix can be transposed first, and the following

operation can still be applied on the transposed matrix. Here, Mk(i, j) represents the
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element of Mk on ith row and jth column.

d̂s =



1

s

s∑
t=1

Mk(t, s− t+ 1) for 1 ≤ s < m,

1

m

m∑
t=1

Mk(t, s− t+ 1) for m ≤ s ≤ n,

1

m+ n− s

m∑
t=s−n+1

Mk(t, s− t+ 1) for n < s ≤ m+ n− 1,

(2.96)

where s indicates the index of anti-diagonals and t indicates the index of elements on the

anti-diagonal. It’s obvious that the reconstructed times series d̂ depends on the choice of

eigenimages.

2.4 SSA for time series analysis

In this section, the basic SSA algorithm is demonstrated on a well-known climatic time

series: the Southern Oscillation Index (SOI). Rasmusson et al. (1990) used SSA on SOI

data from 1950-1987 for studying the time scales of El Nino-Southern Oscillation (ENSO)

variability. Ghil et al. (2002) applied SSA on SOI data from year 1940 to 2000 for signal-

to-noise ratio enhancement, data compression and dynamical system interpretation. Here,

I use a more complete SOI data from year 1876 to 2013 to illustrate the procedure of

SSA for time series decomposition. The SOI data were downloaded from the Bureau of

Meteorology of Australia (http://www.bom.gov.au/climate/current/soihtm1.shtml). It is

a complete SOI data from January 1876 to July 2013. The “Troup SOI” is defined as 10

times the standardized and centered differences between the monthly means of the sea level

pressures at Tahiti and Darwin, i.e. SOI = 10
∆P −Mean(∆P )

SD(∆P )
. In the given data, the

mean (for centering) and standard deviation (for standardizing) were calculated from SOI

data over the period 1933 to 1992, not the whole time period. For constructing the trajectory

matrix, the window length is chosen to be 72. It represents the time interval of 72 months

or 6 years. The singular spectrum of the trajectory matrix is shown in Figure 2.4. There

are six large singular values and a group of smaller singular values in the singular spectrum.

The six leading eigenvectors of covariance matrix S are plotted in Figure 2.5. We can find

that the eigenvectors are behaved in pairs. Eigenvector 1 and 2 are similar in shape but

have a shift in phases. They are called in quadrature (Rasmusson et al., 1990; Ghil et al.,

2002). Eigenvector 3 and 4 are another eigenvector pair and have similar behaviour. The

eigenvectors of covariance matrix are the transformation bases of SSA. They are derived

from data itself and not necessarily harmonic functions (Ghil et al., 2002). This property

gives SSA a better chance over other transformations to represent anharmonic oscillations.
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Figure 2.3: Southern Oscillation Index (SOI) from January 1876 to July 2013.

That is to say, some anharmonic oscillations may need many Fourier bases (harmonics) to be

represented but only a few eigenvectors in SSA. Figure 2.6 shows the principal components

1 to 6 of the trajectory matrix. They are were computed by projecting the trajectory

matrix onto eigenvectors 1 to 6, respectively. That is to say, the ith principal component

is given by wT
i = uTi M. uTi is the ith eigenvector of the covariance matrix S and M is

the trajectory matrix. Principal components 1 and 2 are similar in shape, they have a

period of about 4 years. Principal components 3 and 4 are similar in shape, their period

are about 2 years. Figure 2.7 shows the time series reconstructed from eigenimages 1 to 6,

respectively. That is to say, the ith reconstructed time series is given by Equation (2.96)

with eigenimage Mk = Mi = σiuiv
T
i . Reconstructed time series 5 displays a nonlinear

trend and an oscillatory component. The oscillation patterns in the reconstructed time

series 6 (or principal component 6) is dominated by oscillatory noise. The signal-to-noise

ratio enhanced SOI time series are reconstructed by adding the first 4 reconstructed time

series (Figure 2.8). We can find that the reconstructed time series captures most of the

oscillation behaviour of the time series with a reduction of noise.
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Figure 2.4: The singular spectrum of trajectory matrix of Southern Oscillation
Index. There are six leading singular values and remaining smaller singular values.
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Figure 2.5: Six leading eigenvectors of the covariance matrix. From top to bot-
tom, the eigenvalues corresponding the eigenvectors decrease. These transformation
bases are derived from the data itself.
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Figure 2.6: Six principal components. They are the projection of trajectory matrix
onto eigenvectors 1 - 6, respectively.
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Figure 2.7: Six reconstructed time series by eigenimages 1-6, respectively.
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Figure 2.8: Original SOI time series (black line) and reconstructed time series by
first 4 eigenimages (red line).

2.5 Applications of SSA in seismic data processing

In seismic data processing, SSA is applied in frequency-space domain (Sacchi, 2009). Each

frequency slice of seismic data is a complex valued “spatial series”, similar to time series.

SSA algorithm can be extended to complex-valued time series by replacing the transpose

operator T by complex conjugate operator H (Golyandina and Zhigljavsky, 2013).

2.5.1 Signal model in Fourier domain

Consider a noise-free seismic data section consists of one single linear event, the data can

be expressed as

d(t, x) = a(t− px), (2.97)

where a(t) is a source wavelet, d is the propagated waveform, t is time, x is spatial position

and ray parameter p = 1/V = ∆t/∆x is the slope or dip of the linear event. The Fourier

transform changs the time delay to phase shift

D(ω, x) = A(ω)e−iωpx, (2.98)
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where ω is frequency, complex coefficient A(ω) is the Fourier transform of the wavelet a(t).

Assume that the spatial interval between traces is regular, x = (j − 1)∆x, j = 1, 2, . . . , N is

the trace index in the spatial axis and ∆x is the spatial interval between two adjacent traces.

Here, we use j − 1 to indicate that the first trace has zero offset. The Fourier coefficient at

frequency ω of jth trace is

D(ω, (j − 1)∆x) = A(ω)e−iωp(j−1)∆x. (2.99)

To be more convenient, we note Dj(ω) = D(ω, (j − 1)∆x)

Dj(ω) = A(ω)e−iωp(j−1)∆x, (2.100)

The fourier coefficient at frequency ω at trace j − 1 is

Dj−1(ω) = A(ω)e−iωp(j−2)∆x = A(ω)e−iωp(j−1)∆xeiωp∆x = eiωp∆xDj(ω), (2.101)

In other words, there is a linear recursion relationship between adjacent traces

Dj(ω) = PDj−1(ω), (2.102)

where P = e−iωp∆x. The linear predictable property of one single linear event in f -x domain

is shown in Figure 2.9. The frequency slice of Fourier transform of seismic section consists

of one single linear event is a complex harmonic. The real part of the frequency slice is a

sinusoid (Figure 2.9(c)).
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Figure 2.9: The predictable property of linear events in f -x domain. a) A seismic
section consists of one single linear event in t-x domain. b) Amplitude spectra of
the t-x data. c) The real part of the data in f -x domain. d) The real part of the
complex Fourier coefficient at 20 Hz.
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Now, we consider more general case. If a noise-free seismic section consists of K linear events

with Kdistinct ray parameters pk, it can be represented in the frequency-space domain via

the superposition of plane waves

Dj(ω) =

K∑
k=1

Ak(ω)e−iωpk(j−1)∆x, (2.103)

where complex coefficient Ak(ω) is the Fourier transform of the wavelet of event k. The

number of events should be smaller than the number of traces. Arrange the expression of

superposition of plane waves at N traces together
D1(ω)

D2(ω)
...

DN (ω)

 =


1 1 · · · 1

e−iωp1∆x e−iωp2∆x · · · e−iωpK∆x

...
...

. . .
...

e−iωp1(N−1)∆x e−iωp2(N−1)∆x · · · e−iωpK(N−1)∆x




A1(ω)

A2(ω)
...

AK(ω)

 ,

(2.104)

or note as

d(ω) = S(ω)a(ω), (2.105)

where S(ω) is a Vandermonde matrix. Because all the events have distinct ray parameters

pi and we assume that there is no aliasing, the rank of S(ω) is K. Any row is a linear

combination of K other rows, i.e. any complex coefficient at one trace can be predicted

from coefficients in K other traces. For example, the jth row of S(ω) can be written as the

linear combination of previous K rows.(
e−iωp1(j−1)∆x, e−iωp2(j−1)∆x, · · · , e−iωpK(j−1)∆x

)
,

= (PK(ω), PK−1(ω), . . . , P1(ω))


e−iωp1(j−K−1)∆x e−iωp2(j−K−1)∆x · · · e−iωpK(j−K−1)∆x

e−iωp1(j−K)∆x e−iωp2(j−K)∆x · · · e−iωpK(j−K)∆x

...
...

. . .
...

e−iωp1(j−2)∆x e−iωp2(j−2)∆x · · · e−iωpK(j−2)∆x


(2.106)

Multiply the vector a(ω) to two sides of above equation, we can get the linear recursion

relationship

Dj(ω) = (PK(ω), PK−1(ω), . . . , P1(ω))


Dj−K(ω)

Dj−K+1(ω)
...

Dj−1(ω)

 , (2.107)
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or

Dj(ω) =

K∑
k=1

Pk(ω)Dj−k(ω) = P1(ω)Dj−1(ω) + P2(ω)Dj−2(ω) + . . .+ PK(ω)Dj−K(ω).

(2.108)

This linear recursion relationship is the basis of f -x SSA, f -x prediction and f -x projection

seismic data processing methods. f -x prediction and f -x projection methods derive the

prediction filter (PK(ω), PK−1(ω), . . . , P1(ω)) from the data. f -x SSA embeds the frequency

slice into Hankel matrix and derive the subspace which contains the signal.

2.5.2 Embedding

The SSA method constructs a trajectory matrix by embedding spatial data at one frequency,

i.e. D(ω) = [D1(ω), D2(ω), · · · , DN (ω)]T into the following Hankel matrix

M(ω) = H[D(ω)] =


D1(ω) D2(ω) · · · DN−L+1(ω)

D2(ω) D3(ω) · · · DN−L+2(ω)
...

...
. . .

...

DL(ω) DL+1(ω) · · · DN (ω)

 ,

where the symbol H is Hankel operator. I will use M to represent trajectory matrix in

SSA for seismic data processing. In SSA for time series analysis, the window length L will

influence the singular spectrum and singular vectors. It is relatively important to choose

a suitable window length in SSA for time series analysis. While, the results of SSA for

noise attenuation are not very sensitive to the selection of window length. For convenience,

we choose L = bN2 c+ 1 to make the Hankel matrix approximately square (Trickett, 2008).

M(ω) ∈ CL×(N−L+1) is a complex matrix and we will omit the symbol ω and understand

that the analysis is carried out for all frequencies. We also use L = m and N − L + 1 = n

in the following discussions. Because of the linear recursive relationship for exponentials

(2.108), we can prove that the rank of the matrix M equal to the number of linear events
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in the seismic section.

M =


D1 · · · DK DK+1 · · · DN−L+1

D2 · · · DK+1 DK+2 · · · DN−L+2

...
. . .

...
...

. . .
...

DL · · · DK+L−1 DK+L · · · DN



=


D1 · · · DK

∑K
k=1 PkDK+1−k · · ·

∑K
k=1 PkDN−L+1−k

D2 · · · DK+1

∑K
k=1 PkDK+2−k · · ·

∑K
k=1 PkDN−L+2−k

...
. . .

...
...

. . .
...

DL · · · DK+L−1

∑K
k=1 PkDK+L−k · · ·

∑K
k=1 PkDN−k


(2.109)

It means that each column can be written as the linear combination of previous K columns.

Therefore, rank(M) = K. The presence of random noise will increase the rank of M

because they are not linearly predictable and there is no exact linear relationship between

the columns.

2.5.3 Decomposition

Singular value decomposition can extract the subspace that contains signal from the whole

space. The SVD of a complex matrix is very similar to the SVD of a real matrix except

that we replace the transpose operator with the complex conjugate operator.

M = UΣVH , (2.110)

where Σ = diag{σ1, σ2, . . . , σp} ∈ Rm×n(p = min{m,n}) is the matrix containing singular

values of M on its diagonal. U ∈ Cm×m is an unitary matrix such that UHU = UUH = Im.

V ∈ Cn×n is an unitary matrix such that VHV = VVH = In.

2.5.4 Rank reduction

If the seismic section is composed of K linear events and small amplitude random noise, the

singular spectrum of M will have K relative large singular values and p−K relative small

singular values. Similar with rank reduction in real matrix case, the rank K approximation

of the complex matrix M can be found by solving the following problem

MK = RK [M] = argmin
M̂

‖M− M̂‖2F ,

subject to rank(M̂) = K,

(2.111)
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where ‖ · ‖F is the Frobenius norm of complex matrix, ‖E‖F =
√∑m

i=1

∑n
j=1 |eij |2 of

the matrix E ∈ Cm×n. The rank reduction problem has an unique analytic solution, the

truncated singular value decomposition (TSVD)

MK =RK [M] = UKΣKVH
K

=UKUH
K M,

(2.112)

where UK ∈ Cm×K and VK ∈ Cn×K are matrices containing singular vectors associated

to the first K-largest singular values σj , j = 1 . . .K which are also the diagonal elements of

the matrix ΣK ∈ RK×K .

2.5.5 Anti-diagonal averaging

The rank-reduced matrix MK does not have Hankel structure, an anti-diagonal averaging

procedure is needed to recover the filtered frequency slice. It is done with the same anti-

diagonal averaging equation (2.96) in SSA for time series analysis. The filtered frequency

slice at frequency ω is D̂(ω) = A [MK(ω)], where A is the anti-diagonal averaging operator.

For each frequency, the f -x SSA filters the complex data by D̂(ω) = A [RK [H [D(ω)]]].

2.5.6 Inverse Fourier transform

After the filtering, the complex coefficient in frequency-space domain are transformed back

to time-space domain via applying inverse Fourier transform to each channel of the data.

2.5.7 Examples

Figure 2.10 demonstrates the relationship between the number of distinct dips and the rank

of the trajectory matrix if the seismic data is noise-free. Figure 2.10 (a) is a noiseless seismic

section consists of three linear events. The analyzing frequency band ranges from 1 to 40

Hz. Figure 2.10 (b) shows the singular spectrum for each frequency. We can find that each

of the singular spectrum only has three nonzero singular values. I would like to say that

the signal is sparse in the “singular spectrum domain”. Figure 2.10 (c) is the real part of

the frequency slice at 10 Hz, which is the superposition of three monochromatic sinusoids.

Each frequency slice is a superposition of three complex exponentials. Figure 2.10 (d) is

the singular spectrum of the trajectory matrix constructed from the frequency slice at 10

Hz, which has three nonzero singular values. In other words, the rank of the trajectory

matrix is 3. But note that, the number of nonzero singular values corresponding to the real

part of frequency slice is 6 because that each sinusoid is the superposition of two complex
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exponentials. Each complex exponential can be represented by one nonzero singular value

in singular spectrum of trajectory matrix. Figure 2.11 (a) is the result of applying SSA

filtering on noise-free seismic section 2.10 (a). The rank for rank-reduction in SSA is chosen

as 3. Figure 2.11 (b) is the data after f -x deconvolution. The length of prediction filter

and regularization parameter in f -x deconvolution are 10 and 0.001, respectively. Both the

two methods recovered the signal. Figure 2.11 (c) and (d) are the error panels of SSA and

f -x deconvolution, respectively. There is almost no energy in the error panels, both the two

methods do not damage the original signal.

As discussed in previous section, the presence of random noise will increase the rank of the

trajectory matrix. This is demonstrated in Figure 2.12. Figure 2.12 (a) is a seismic section

consists of three linear events that is same with the events in Figure 2.10 (a). However, the

seismic section here is also corrupted with random Gaussian noise with signal-to-noise ratio

(SNR) equals to 1. The SNR is defined as the maximum amplitude of the signal divided by

the maximum amplitude of the noise. The analyzing frequency band ranges from 1 to 40

Hz. Figure 2.12 (b) shows the singular spectrum for each frequency slice. For each singular

spectrum, we can find that the random Gaussian noise presents as small singular values in

the whole spectrum. Figure 2.12 (c) is the real part of the frequency slice at 10 Hz of data

in 2.12 (a), which is a superposition of sinusoids but corrupted with random noise. Figure

2.12 (d) is the singular spectrum of the trajectory matrix constructed from frequency slice

at 10 Hz. We can find that there are 3 largest singular values and 17 small singular values in

the singular spectrum. Note that, if the noise is strictly white, i.e. uncorrelated from trace

to trace, it will enlarge all the 20 singular values as discussed in equation (2.92). However,

we find that the first three singular values in Figure 2.12 (d) is smaller that the first three

singular values in Figure 2.10 (d). This is caused by the fact that the random noise we added

to the seismic section is smoothed (Hanning window) white Gaussian noise. It is actually

not strictly uncorrelated. Figure 2.13 (a) is the data after SSA filtering. The rank for

reconstruction in SSA is chosen to be 3. Figure 2.13 (b) is the data after f -x deconvolution

filtering. The length of prediction filter and regularization parameter in f -x deconvolution

are 10 and 0.001, respectively. SSA and f -x have relatively similar capability for random

noise reduction. However, SSA has the advantage of preserving the original signal (Figure

2.13(c)). While, f -x deconvolution tends to damage the original signal (Figure 2.13(d)). It

is caused by the fact it uses AR model to approximate the ARMA model.

In this example, we show that the performances of SSA and f -x deconvolution degenerate

drastically when the seismic data is corrupted with erratic noise. We added a sinusoid noise

with frequency 10 Hz to the seismic data to simulate the erratic noise (Figure 2.14(a)).

The erratic noise presents as a large spike in the f -x domain (Figure 2.14(c)). Therefore,

the trajectory matrix also contains elements with very large values, i.e. outliers (Chapter

3). The least-squares estimation TSVD breaks down with the presence of outliers. We
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can find that there are several very large singular values in the singular spectrum, which

is caused by the outliers (Figure 2.14(d)). Figure 2.15(a) is the result after SSA filtering

(rank = 3). We can see that the high-amplitude erratic noise spreads out in the adjacent

traces (Figure 2.15(a)). The f -x deconvolution also can’t completely remove the erratic

noise (Figure 2.15(b)), and it damages original signal (Figure 2.15(d)). The prediction filter

length is 10 and regularization parameter is 0.001 in f -x deconvolution. Both the SSA and

f -x deconvolution belong to least-squares estimations, which are very sensitive to outliers

(non-Gaussian). Robust estimation procedure is needed to cope with outliers. Figure 2.16

(a) shows the result of robust SSA applied on seismic section corrupted with Gaussian noise

and erratic noise. Both the erratic noise and Gaussian noise are effectively suppressed.

Moreover, the robust SSA algorithm preserves the original signal (Figure 2.16(b)). More

details about robust statistics and the robust SSA algorithm are given in next chapter.

2.6 Summary

In this Chapter, we reviewed basic concepts of multivariate random variable and principal

component analysis. We also reviewed the method of singular spectrum analysis. The ob-

served time series is centered and normalized. Then it is embedded into a Hankel matrix.

The singular value decomposition is used to decompose the Hankel matrix into different

weighted eigenimages. A new reconstructed low rank matrix can be estimated by com-

bining several particular weighed eigenimages. The reconstructed time series is computed

by averaging the elements of the anti-diagonals of the reconstructed matrix. SSA allows

decomposition, analysis and SNR enhancement of the original time series. The example of

SOI time series is used to show the ability of SSA for time series analysis. The application

of SSA for seismic data random noise attenuation is also reviewed in this chapter. SSA is

applied on each frequency slice of seismic data in the f -x domain. The SSA was tested on a

synthetic seismic section with random noise. The result is compared with f -x deconvolution.

SSA has the advantage of preserving the amplitude of the desired signal.
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Figure 2.10: a) Noise-free seismic data section consists of three linear events. b)
The singular spectra of the trajectory matrices constructed from different frequency
slices. c) The real part of the frequency slice at 10 Hz. d) The singular spectrum
of the trajectory matrix constructed from frequency slice at 10 Hz.
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Figure 2.11: a) Noise-free data after SSA filtering. b) Noise-free data after f -x
deconvolution filtering. c) Difference between noise-free data and SSA filtered data.
d) Difference between noise-free data and f -x deconvolution filtered data.
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Figure 2.12: a) Seismic data section consists of three linear events, corrupted with
Gaussian noise (SNR=1). b) The singular spectra of the trajectory matrices con-
structed from different frequency slices. c) The real part of the frequency slice at 10
Hz. d) The singular spectrum of the trajectory matrix constructed from frequency
slice at 10 Hz.
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Figure 2.13: a) Data corrupted with Gaussian noise after SSA filtering. b) Data
corrupted with Gaussian noise after f -x deconvolution filtering. c) Difference be-
tween noisy data and SSA filtered data. d) Difference between noisy data and f -x
deconvolution filtered data.
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Figure 2.14: a) Seismic data section consists of three linear events, corrupted with
Gaussian noise (SNR=1) and erratic noise. b) The singular spectra of the tra-
jectory matrices constructed from different frequency slices. c) The real part of
the frequency slice at 10 Hz. d) The singular spectrum of the trajectory matrix
constructed from frequency slice at 10 Hz.
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Figure 2.15: a) Data corrupted with Gaussian noise and erratic noise after SSA
filtering. b) Data corrupted with Gaussian noise and erratic noise after f -x de-
convolution filtering. c) Difference between noisy data and SSA filtered data. d)
Difference between noisy data and f -x deconvolution filtered data.
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Figure 2.16: a) Data corrupted with Gaussian noise and erratic noise after robust
SSA filtering. b) Difference between noisy data and robust SSA filtered data. c)
Real part of the frequency slice at 10 Hz of the robust SSA filtered data. d) Singular
spectrum of the frequency slice at 10 Hz of the robust SSA filtered data.



CHAPTER 3

Robust singular spectrum analysis for erratic noise

attenuation

3.1 Introduction

The matrix rank-reduction techniques used in previous SSA algorithms, e.g. truncated

SVD (Sacchi, 2009; Golub and Van Loan, 1996), rank-reduction based on randomized SVD

(Oropeza and Sacchi, 2011; Halko et al., 2011), rank-reduction based on Lanczos bidiagonal-

ization (Gao et al., 2013; Golub and Van Loan, 1996; Simon and Zha, 2000), all adopt the

quadratic error criterion (Equation (2.93)). Least-squares estimation is optimal when the

observed data (or say the noise in the data) follow Gaussian distribution. It is suboptimal

when the noise is non-Gaussian. This chapter proposes a new robust SSA algorithm based

on M-estimate for simultaneous Gaussian and erratic (non-Gaussian) seismic noise atten-

uation. In the field of statistics, the Gaussian distribution assumption has been used for

almost two centuries. It is the base for regression analysis and multivariate analysis. The

statistical methods based on Gaussian distribution assumption are referred to as classical

statistical methods (Maronna et al., 2006). They are widely used in many fields because

the derivation of optimal estimators is simple and the Gaussian assumption is relatively

reasonable for many data sets.

In reality, not all observed data follow the Gaussian distribution. There may be a group of

atypical data that are far away from the majority of data. Atypical data are referred to as

outliers or gross errors, which follow other distributions or there is no clear distribution to

describe them. The probability distribution describing the data set containing outliers has a

nearly Gaussian shape in the center and heavier tail than the one in Gaussian distribution.

It is referred as heavy-tailed distribution. Classical statistical methods are very sensitive to

60



CHAPTER 3. ROBUST SSA 61

outliers. Even one single outlier drastically degrades the estimated results. More robust

estimates are needed such that they are acceptable even when the data do not strictly fol-

low the given distribution. Robust methods provide almost the same estimation results as

classical methods when no outliers are present in the data, and should get almost the same

results as the classical methods applied on the available “clean” data when the data contain

outliers. Compared with classical statistics, this kind of statistics is called robust statistics.

Robust statistics combines the parametric and nonparametric approaches. It uses paramet-

ric models for deriving information from the data, but this procedure does not critically

depend on the assumptions in the parametric models (Hampel et al., 1986). In late 19th

and early 20th century, scientists did leading preliminary work on robust estimates resisting

outliers, e.g. geophysicist Harold Jefferys, astronomer Simon Newcomb and astrophysicist

Arthur Stanley Eddington (Huber, 1981).

As for geophysics, atypical data (outliers) are also often contained in the seismic data such

as noise bursts, incoherent signals arising from improper geophone coupling, and source

generated noise. Claerbout and Muir (1973) explored the application of absolute value

error criteria (`1 norm) for different kinds of robust geophysical data fitting when the data

are contaminated with outliers. In that paper, they referred to these data as erratic data.

They also proposed to use `1 norm for sparse promoting, which is the first application

of `1 norm for sparsity (Candès et al., 2008). Taylor et al. (1979) borrowed idea from

Claerbout and Muir (1973) and applied `1 norm for data fitting and model constraint

in seismic deconvolution. Chave et al. (1987) proposed to use M-estimator method for

computing robust power spectra, coherences, and transfer functions, and illustrated it on

electromagnetic data. Scales and Gersztenkorn (1988) and Scales et al. (1988) investigated

the method of least-absolute deviation (LAD or `1 norm) for robust inversion, and applied it

on inverse scattering and traveltime tomography. The approximate solution is computed by

iteratively reweighted least squares (IRLS) with conjugate gradient (CG) as linear system

solver. Bube and Langan (1997) proposed hybrid `1/`2 minimization with the IRLS as

solver and applied it on tomography. Guitton and Symes (2003) proposed to use Huber

norm for robust inversion, which is solved via a quasi-Newton method. Their algorithm is

tested for velocity analysis. Trickett et al. (2012) present a robust Cadzow filtering, which is

similar with the POCS framework used in MSSA for denoising and interpolation (Oropeza

and Sacchi, 2011).

3.2 Review of robust statistics

The estimates in classical statistics, e.g. sample mean, sample variance, sample covariance,

sample correlation, linear regression via least-squares and principal component analysis are
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seriously adversely influenced by outliers. Robust estimates are needed in robust statistics

that fit the major part of “clean” data and are not (or not very much) influenced by outliers.

There is a branch of methods called outlier diagnostic. The outliers are firstly detected

and then deleted or modified from the data. Then, classical statistical estimation methods

are applied on the cleaned data. The detection of outliers is based on an initial classical

statistical fit to the data. For example, the residuals between the data and classical statistical

fit is examined and analyzed. There are some drawbacks of this method. First, this is a

more subjective way for estimation because the detection procedure depends on the user’s

decision. Second, the initial statistical fit for detection is based on classical statistics that

is that robust. Instead of diagnostic, there should be a robust estimation method that fits

the bulk of the “clean” data and not sensitive to the outliers. The robust method we will

discuss is a more automatic or semi-automatic and data-adaptive approach in the sense that

it detects outliers by examining the departure between the data and a robust fit to it.

3.2.1 Location estimation

Suppose that x = (x1, x2, . . . , xn)T are n observations of a random variable. For example,

the data from measuring the weight of an apple n times. x1, x2, . . . , xn can also be considered

as n random variables because they are unknown before the measurements. The location

model is given by

xi = µ+ εi, i = 1, 2, . . . , n (3.1)

where µ is the true value or say deterministic term, ε1, ε2, . . . , εn are the measurement

errors or say stochastic term. If the measurements are repeatedly conducted under same

conditions, ε1, ε2, . . . , εn can be assumed to be independent and follow the same probability

density function fε(x), i.e. they are independent and identically distributed (i.i.d.). In other

words, x1, x2, . . . , xn are also i.i.d.. The aim of location estimation is to derive an estimate

from the observations that approaches µ.

In classical statistics, the sample mean provides an estimate of the center position of the

observations (Definition 2.30)

x̄ =
1

n

n∑
i=1

xi. (3.2)

Sample mean x̄ is an optimal estimate (MLE) when the observed data x1, x2, . . . , xn follow

Gaussian distribution N(µ, σ2).

Sample median is a robust alternative for location estimation when the data contain outliers.

The sample median is defined as the numerical value such that the number of observations

larger than it equals to the number of observations smaller than it. If the n real observations
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x1, x2, . . . , xn are ordered from small to large

x(1) ≤ x(2) ≤ . . . ≤ x(n), (3.3)

x(i) is named the ith order statistic. If n is odd, x( n+1
2 ) is the sample median. If n is

even, any value between x( n
2 ) and x( n

2 +1) can be regarded as sample median. Usually, the
1
2 (x( n

2 ) +x( n
2 +1)) is taken. Sample mean is an optimal estimate (MLE) if the observed data

x1, x2, . . . , xn follow Laplace distribution. Figure 3.1 demonstrates the robustness of sample

median over sample mean.

1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 3.1: Gaussian distributed samples (black solid circles), population mean
(green five-pointed star), the sample mean (red arrow below axis) and sample me-
dian (blue arrow below axis) of 14 “clean” samples, the sample mean (red arrow
above axis) and sample median (blue arrow above axis) of 15 samples containing
one outlier.

There are 15 data samples in the example of Figure 3.1. In the data set, 14 samples are

drawn from Gaussian distribution N(2, 0.52). They are represented by black solid circles

in the figure. The 15th sample is an outlier with the value of 50. It is not plotted in

the figure because it is too large. The green five-point star indicates the true center of

the variable, i.e. the population mean. The sample mean (red arrow below the horizontal

axis) of the samples with outlier removed is 1.8813. The sample median (blue arrow blow

horizontal axis) of samples with outlier removed is 1.7085. The sample mean (red arrow

above horizontal axis) of samples containing the outlier is 5.0892. We can also see from

the figure that the sample mean is far away from the bulk of data samples, and it can

not describe the appropriate center of the samples any more. While, the sample median

(blue arrow above horizontal axis) of samples with outlier is 1.7798. It is still valid and not

influenced by the outlier.

3.2.2 Scale estimation

Except for the center position of samples, the spread, dispersion or variability of the samples

should also be described by some quantities. In classical statistics, the description of spread
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of the observations is given by sample standard deviation (SD).

s =

[
1

n− 1

n∑
i=1

(xi − x̄)2

] 1
2

, (3.4)

where x̄ is the sample mean, s is called unbiased estimate of standard deviation. For the

example in last section, the sample standard deviation of 14 “clean” samples is 0.4897.

While, the sample standard deviation of 15 samples is 12.4331. The SD breaks down with

the presence of one single outlier in data.

The mean absolute deviation (MD) about mean is given by

MD(x) =
1

n

n∑
i=1

|xi − x̄|, (3.5)

where x̄ is the sample mean. Unfortunately, the mean absolute deviation about the mean

is not robust to outliers because of the non-robustness of x̄. In the above example, the MD

for samples without and with outlier are 0.4219 and 5.9881, respectively.

A robust alternative and important estimate for scale is the median absolute deviation

(MAD)

MAD(x) = med|x−med(x)|, (3.6)

where “med” represents taking the median. In other words, MAD takes the median value

of the absolute residuals about the sample median Med(x). The median absolute deviation

of the clean 14 samples is 0.4019, and it is 0.3656 for the 15 samples with one outlier.

It’s interesting to note that adding one outlier may sometimes reduce the MAD because

the sample median changes after adding one sample. The MAD of a standard normal

distributed (∼ N(0, 1)) random variable is 0.6745 (Maronna et al., 2006). The MAD of a

normal distributed (∼ N(µ, σ2)) random variable is 0.6745σ. The normalized MAD (NMAD)

NMAD(x) =
MAD(x)

0.6745
, (3.7)

is used more often in order to be consistent with the standard deviation. That is to say,

NMAD of a Gaussian distributed (∼ N(µ, σ2)) random variable is its standard deviation σ.

3.2.3 Linear regression

Linear regression aims at modeling the relationship between a response variable and one

or more explanatory variables. It is named simple linear regression if there is only one

explanatory variable. It is called multiple linear regression if there are more than one
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explanatory variable. The general multiple linear regression model is given by

yi =

p∑
j=1

xijαj + εi, i = 1, 2, . . . , n, (3.8)

or

y = Xα + ε, (3.9)

where y = (y1, y2, . . . , yn)T and yi is the ith observation on response variable, X = (x1,x2, . . . ,xp)

and (xi1, xi2, . . . , xip) is the ith observation on p explanatory variables, and α = (α1, α2, . . . , αp)
T

are the p regression coefficients. Sometimes, there is also an intercept term α0 included in

the regression model

yi = α0 +

p∑
j=1

xijαj + εi, i = 1, 2, . . . , n, (3.10)

or 
y1

y2

...

yn

 =


1 x11 x12 · · · x1p

1 x21 x22 · · · x2p

...
...

...
. . .

...

1 xn1 xn2 · · · xnp




α0

α1

...

αp

 +


ε1

ε2
...

εn

 . (3.11)

Consequently, it can still be noted as

y = Xα + ε, (3.12)

where the elements of the first column of X are 1 and the first element of α is α0.

In classical statistics, the estimate of regression coefficients α is via least-squares estimate

α̂ = argmin
α
‖Xα− y‖22. (3.13)

The optimal solution is the stationary point where the derivative of cost function with

respect to parameters α equals to zero

XTXα = XTy. (3.14)

This system of equations is referred to as normal equations. If X has full column rank, the

analytic solution of normal equations is given by

α̂ = (XTX)−1XTy. (3.15)

Least-squares result is the maximum likelihood estimate (MLE) if the noise follows multi-

variate Gaussian distribution. A robust alternative for linear regression when data contain
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outliers is the Least Absolute Deviations (LAD) regression

α̂ = argmin
α
‖Xα− y‖11. (3.16)

It is applied by Claerbout and Muir (1973) for robust modeling in geophysical problems.

For LAD regression estimation, there is no analytic solution as the Least-squares regression

estimation. It can be solved by linear programming (LP) or iteratively reweighted least-

squares (IRLS).

When there is only one explanatory variable, multiple regression model reduces to simple

linear regression model as follows

yi = µ+ xiα+ εi, i = 1, 2, . . . , n, (3.17)

or

y = µ1 + αx + ε, (3.18)

where y1, y2, . . . , yn are response variable values, x1, x2, . . . , xn are explanatory variable

values, α is regression coefficient, µ is intercept, and ε1, ε2, . . . , εn are noise terms. The

simple linear regression analysis is actually a straight-line fitting problem with α as slope and

µ as intercept. If considered in least-squares sense, the solution of simple linear regression

is given by (3.14), as

α̂ =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
,

µ̂ = ȳ − α̂x̄,
(3.19)

where x̄ is the sample mean of explanatory variable values and ȳ is the sample mean of

response variable values.

3.3 M-estimate method

Even though the derived results of least-squares (`2 norm) estimation and least absolute

deviations (`1 norm) are relatively simple, `2 norm estimator is not robust to outliers and

`1 norm estimator has low efficiency (statistical efficiency, not the computation efficiency)

at Gaussian distribution (Maronna et al., 2006). In location model, the variance of sample

median is larger than the variance of sample mean if the samples follow Gaussian distri-

bution. Here, sample mean and sample median are considered as random variables and

have probability distributions because they are functions of samples (random variables).

If xi ∼ N(µ, σ2), the sample mean has distribution N(µ, σ
2

n ) and the sample median has

distribution N(µ, 1.57σ
2

n ). `1 norm considers small residuals and large residuals in the same
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way. In many real data sets, the majority of data contain only Gaussian noise (i.e. the

residuals are small) and a small fraction of data are outliers. The data approximately follow

Gaussian distribution but has heavy tails in the probability distribution. There should be

some kinds of estimations that are both efficient for Gaussian noise and robust to outliers.

This is the basic motivation of robust estimation methods. There are three basic classes of

robust estimates, M-estimates, L-estimates and R-estimates (Huber, 1981). L-estimates are

based on linear combination of order statistics. R-estimates are derived from rank tests. M-

estimate method is a generalization of maximum likelihood estimate (MLE) method. MLEs

are special cases of M-estimates. The MLE method estimates the parameters of a statistical

model from samples by maximizing the likelihood function. It is very important in statisti-

cal inference. Least-squares (`2 norm) and least absolute deviations (`1 norm) estimates are

special cases of M-estimate. The M-estimates are the most flexible among the three classes

of robust estimators. They also can be straightforwardly generalized to multiparameter

problems, e.g. regression model and multivariate analysis. I applied M-estimate method for

robust rank reduction in this dissertation.

3.3.1 M-estimates of location

In location model, error terms ε1, ε2, . . . , εn are independent, identically distributed with

the common density fε(x). In other words, samples x1, x2, . . . , xn are also independent,

identically distributed with the common density fx(x), fx(x) = fε(x − µ). Because the

observations are independent random variables, the joint probability density function is

given by

L(µ|x1, x2, . . . , xn) = fx(x1, x2, . . . , xn|µ) =

n∏
i=1

fx(xi|µ) =

n∏
i=1

fε(xi − µ), (3.20)

which is referred to as likelihood function. The maximum likelihood estimate of µ maximizes

the likelihood function L

µ̂ = argmax
µ

L = argmax
µ

n∏
i=1

fε(xi − µ), (3.21)

where µ̂ is referred to as maximum likelihood estimate. It is the optimal solution if the

probability distribution is known exactly. It is more convenient to use the logarithm of L

log L =

n∑
i=1

log fε(xi − µ). (3.22)
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Then, the maximum likelihood estimate µ̂ is given by

µ̂ = argmax
µ

log L = argmax
µ

n∑
i=1

log fε(xi − µ), (3.23)

Noting function ρ = −log fε, equation (3.23) reduces to

µ̂ = argmin
µ

n∑
i=1

ρ(xi − µ), (3.24)

where ρ is called loss function. If the error terms strictly follow fε and fε is exactly known,

solutions of equation (3.21), equation (3.23) and equation (3.24) are the same (the MLE).

When fε is only approximately known, more attention is paid on solving optimization prob-

lem (3.24) instead of the probability distribution. The solution of (3.24) is referred to as

maximum likelihood type estimate or M-estiamte (Huber, 1981). If function ρ is differen-

tiable with respect to µ, the optimal solution of equation (3.24) can be obtained by setting

the derivative equal to zero
n∑
i=1

ψ(xi − µ̂) = 0, (3.25)

where ψ(u) = ∂ρ(u)
∂u . Now, the M-estimation problem is reduced to solving the M-estimating

equation (3.25). Sample mean and sample median are two special cases of M-estimate. Their

corresponding probability model are exactly known: Gaussian and Laplace distribution.

Their derivation from the distribution model are used as examples to show the derivation

procedure of M-estimates. If residuals follow a common standard normal (Gaussian) distri-

bution, say εi ∼ N(0, 1) and samples xi ∼ N(µ, 1). We have

fε(x) =
1√
2π
e−x

2/2, fx(x) =
1√
2π
e−(x−µ)2/2,

ρ = −log fε =
x2

2
+ log(

√
2π).

(3.26)

In location estimation, the cost function is minimized with respect to location parameter µ

µ̂ = argmin
µ

n∑
i=1

(xi − µ)2

2
+ nlog(

√
2π),

= argmin
µ

n∑
i=1

(xi − µ)2.

(3.27)

The ψ function corresponds to this ρ function is ψ(u) = u. It is not hard to prove that

the solution of (3.27) is the sample mean x̄. If the residuals εi follow a common Laplace



CHAPTER 3. ROBUST SSA 69

distribution,

fε(x) =
1

2
e−|x|, fx(x) =

1

2
e−|x−µ|,

ρ = −log fε = |x|+ log 2.

(3.28)

The maximum likelihood estimate µ̂ is

µ̂ = argmin
µ

n∑
i=1

|xi − µ|+ log 2,

= argmin
µ

n∑
i=1

|xi − µ|.
(3.29)

ψ function is ψ(u) = ∂ρ(u)
∂u = sgn(u). The solution of (3.29) is given by sample median.

3.3.2 A weighted least-squares view

Robust location M-estimate can be interpreted as a weighted mean with weights given by

w(u) =
ψ(u)

u
. (3.30)

Using ψ(u) = ∂ρ(u)
∂u , we can get

w(u) =
∂ρ(u)

∂u

1

u
. (3.31)

Now, the M-estimating equation (3.25) changes to

n∑
i=1

w(xi − µ̂)(xi − µ̂) = 0. (3.32)

Note that this is a non-linear equation that the weights w(xi − µ̂) depend on the model

parameter µ̂. Solution of (3.32) can be expressed as

µ̂ =

∑n
i=1 wixi∑n
i=1 wi

, (3.33)

where wi = w(xi − µ̂). It suggests an iteratively reweighted least-squares (IRLS) algorithm

for calculating the M-estimate.

3.3.3 Scale equivariant M-estimate of location

Suppose that µ̂ is the M-estimate of samples (x1, x2, . . . , xn). If µ̂+ b is the M-estimate of

samples (x1 + b, x2 + b, . . . , xn + b), M-estimate µ̂ is said to be shift equivariant. If aµ̂ is the
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M-estimate of sample (ax1, ax2, . . . , axn), the M-estimate µ̂ is said to be scale equivariant.

Sample mean and sample median are both shift equivariant and scale equivariant. General

M-estimates are shift equivariant but not necessary scale equivariant. A scale parameter is

usually needed in M-estimation procedure to fix this problem.

µ̂ = argmin
µ

n∑
i=1

ρ

(
xi − µ
σ

)
, (3.34)

where σ is a scale parameter. Result (3.34) also comes from the generalizing maximum

likelihood estimate that will be shown as follows. Now, consider the location model

xi = µ+ ξi = µ+ σεi, i = 1, 2, . . . , n, (3.35)

where ξi are the new error terms. That is to say, the variance of noise inflated by σ times.

The pdf of εi, ξi and xi are fε, fξ and fx, respectively.

fx(x) = fξ(x− µ) =
1

σ
fε

(
x− µ
σ

)
, (3.36)

where 1
σ is the normalization value to make

∫ +∞
−∞ fx(x) = 1. There are three different

situations for scale σ: (1) σ is known a priori (not the case for many real data set), (2)

σ is computed a priori (e.g. by NMAD, often used) and (3) σ is derived by M-estimation

procedure (Huber, 1981) (more complicated way).

First situation, the scale parameter σ is known, and the likelihood function is

L(µ|x1, x2, . . . , xn) =
1

σn

n∏
i=1

fε

(
xi − µ
σ

)
. (3.37)

Remember that ρ = −log fε, with leads to the maximum likelihood estimate µ̂

µ̂ = argmin
µ

n∑
i=1

ρ

(
xi − µ
σ

)
+ nlog σ

= argmin
µ

n∑
i=1

ρ

(
xi − µ
σ

)
.

(3.38)

The optimal solution which minimizes the cost function is the stationary point, the M-

estimating equation is
n∑
i=1

ψ

(
xi − µ̂
σ

)
= 0, (3.39)

where ψ(u) = ∂ρ(u)
∂u .
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In the second situation, the scale parameter σ is approximated by a priori calculated scale

σ̂, e.g. the robust scale estimate normalized median absolute deviation

σ̂ = NMAD(x) =
1

0.6745
Med (|x−Med(x)|) . (3.40)

With the computed scale, the likelihood function is

L(µ|x1, x2, . . . , xn) =
1

σ̂n

n∏
i=1

fε

(
xi − µ
σ̂

)
. (3.41)

Using ρ = −log fε, the maximum likelihood estimate µ̂ is given by

µ̂ = argmin
µ

n∑
i=1

ρ

(
xi − µ
σ̂

)
+ nlog σ̂

= argmin
µ

n∑
i=1

ρ

(
xi − µ
σ̂

)
.

(3.42)

The optimal solution is the stationary point, the M-estimating equation is

n∑
i=1

ψ

(
xi − µ̂
σ̂

)
= 0, (3.43)

where ψ(u) = ∂ρ(u)
∂u .

In the third situation, σ is unknown and is calculated using the M-estimation method. The

likelihood function is a function of two parameters µ and σ.

L(µ, σ|x1, x2, . . . , xn) =
1

σn

n∏
i=1

fε

(
xi − µ
σ

)
. (3.44)

Two unknown parameters µ and σ have to be optimized

(µ̂, σ̂) = argmax
µ,σ

L(µ, σ|x1, x2, . . . , xn) = argmax
µ,σ

1

σn

n∏
i=1

fε

(
xi − µ
σ

)
. (3.45)

With ρ = −log fε

(µ̂, σ̂) = argmin
µ,σ

n∑
i=1

ρ

(
xi − µ
σ

)
+ nlog σ (3.46)

Parameters µ and σ are coupled together, so an alternating minimization framework is

required. From the previous discussion, the parameter µ is the solution of the M-estimating
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equation
n∑
i=1

ψ

(
xi − µ̂
σ̂

)
= 0, (3.47)

where ψ(u) = ∂ρ(u)
∂u = −f ′ε(u)/fε(u). Parameter σ is also estimated via the M-estimation

procedure, given by

1

n

n∑
i=1

θ

(
xi − µ̂
σ̂

)
= κ, 0 < κ < θ(∞), (3.48)

where θ(u) = −uf ′ε(u)/fε(u) = ψ(u)u. The details of M-estimate of scale σ are described as

follows in section 3.3.4. The simultaneous estimation of µ and σ is an alternating procedure

between equation (3.47) and equation (3.48). Note that the location parameter estimated

by simultaneous M-estimation of location and scale is not as robust as the location estimate

via M-estimators with a previously computed scale. Therefore, I will choose to compute the

approximated scale a priori via the normalized absolute deviation.

3.3.4 Auxiliary step: M-estimate of scale

L(σ|x1, x2, . . . , xn) =
1

σn

n∏
i=1

fε

(
xi − µ̂
σ

)
. (3.49)

σ̂ = argmax
σ

L(σ|x1, x2, . . . , xn) = argmax
σ

1

σn

n∏
i=1

fε

(
xi − µ̂
σ

)
. (3.50)

Taking the logarithm of L

log L =

n∑
i=1

log fε

(
xi − µ̂
σ

)
− nlog σ. (3.51)

σ̂ = argmax
σ

log L = argmax
σ

n∑
i=1

log fε

(
xi − µ̂
σ

)
− nlog σ. (3.52)

Setting derivative ∂log L/∂σ = 0, we can get

− 1

n

n∑
i=1

1

fε(
xi−µ̂
σ̂ )

dfε(
xi−µ̂
σ̂ )

d(xi−µ̂
σ̂ )

(
xi − µ̂
σ̂

)
= 1. (3.53)

Set θ(u) = −uf ′ε(u)/fε(u), and the above equation reduces to

1

n

n∑
i=1

θ

(
xi − µ̂
σ̂

)
= 1. (3.54)

Scale estimates of Gaussian and Laplace distribution will be illustrated as examples. If
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εi ∼ N(0, 1), ξi ∼ N(0, σ) and xi ∼ N(µ, σ).

fε(x) =
1√
2π
e−x

2/2 (3.55)

fx(x) =
1√
2πσ

e−(x−µ)2/2σ2

(3.56)

θ(x) = x2 (3.57)

1

n

n∑
i=1

(
xi − µ̂
σ̂

)2

= 1 (3.58)

σ̂ =

[
1

n

n∑
i=1

(xi − µ̂)
2

]1/2

, (3.59)

where µ̂ is given by sample mean x̄, σ̂ is the MLE of standard deviation under Gaussian

distribution assumption. Similarly, when errors follow Laplace distribution

fε(x) =
1

2
e−|x| (3.60)

fx(x) =
1

2σ
e−|x−µ|/σ (3.61)

θ(x) = |x| (3.62)

1

n

n∑
i=1

∣∣∣∣xi − µ̂σ̂

∣∣∣∣ = 1 (3.63)

σ̂ =
1

n

n∑
i=1

|xi − µ̂| , (3.64)

where µ̂ can be given by sample median, σ̂ is called mean absolute deviation about median.

Any solution of the following equation is an M-estimate of scale (Maronna et al., 2006).

1

n

n∑
i=1

θ

(
xi − µ̂
σ̂

)
= κ, 0 < κ < θ(∞), (3.65)

where κ is a constant. Scale estimate is said to be equivariant if σ̂(ax1, ax2, . . . , axn) =

aσ̂(x1, x2, . . . , xn) for any a > 0. Scale M-estimate is equivariant.

3.3.5 Iteratively reweighted least-squares

The weighted least-square view of location M-estimate suggests an iteratively reweighted

least-squares method to compute it. The scale σ is computed a priori by the normalized

median absolute deviation. The algorithm is summarized as
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Algorithm 1 M-estimate of location via IRLS with previously computed scale

1: Compute scale σ̂ = NMAD(x)
2: Initialization: µ̂0 = Med(x)

3: While
|µ̂k+1 − µ̂k|

σ̂
> ε or k < kmax do:

4: wki = w

(
xi − µ̂k

σ̂

)
, i = 1, 2, . . . , n

5: µ̂k+1 =

∑n
i=1 w

k
i xi∑n

i=1 w
k
i

6: k ← k + 1
7: End

3.3.6 Loss function ρ, ψ function and weight function

It is very important to point out that robust statistics actually focus on the robust estimates

in (3.24) with a given loss function ρ, the estimates are not necessary the MLEs of any

distributions (Maronna et al., 2006). Holland and Welsch (1977) discussed several different

loss functions ρ. There are two frequently used loss functions: Huber function and biweight

functions. Huber function (Huber, 1964) is as follows

ρH(x) =


x2

2
|x| ≤ τ

τ |x| − τ2

2
|x| > τ,

(3.66)

where τ is a tuning constant in Huber function. The corresponding ψ-function is

ψH(x) =

{
x |x| ≤ τ
τsgn(x) |x| > τ,

(3.67)

Huber estimate belongs to monotone M-estimates because that ψH(u) is a monotonic func-

tion (Figure 3.3). The weight function of Huber-estimate is

wH(x) =

 1 |x| ≤ τ
τ

|x|
|x| > τ,

(3.68)

The biweight function proposed by Beaton and Tukey (1974) is

ρB(x) =


1

6
τ2

{
1−

[
1−

(x
τ

)2
]3
}

|x| ≤ τ

1

6
τ2 |x| > τ,

(3.69)
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where τ is a tuning constant in biweight function. The corresponding ψ-function is

ψB(x) =

 x

[
1−

(x
τ

)2
]2

|x| ≤ τ

0 |x| > τ.

(3.70)

Biweight estimate belongs to redescending M-estimates because that ψB(u) is not monotonic

function (Figure 3.3). Redescending M-estimates are more suitable than monotone M-

estimates when the data contains extreme outliers. Biweight M-estimate completely rejects

outliers, while Huber M-estimate limits the influence of outliers. Biweight estimate is not

MLE for any distribution (Maronna et al., 2006). The weight function of biweight estimate

is

wB(x) =


[
1−

(x
τ

)2
]2

|x| ≤ τ

0 |x| > τ.

(3.71)

Biweight estimation gives zero weight to outliers, it completely removes outliers with the

fitting of the bulk of the “clean” data. Remember that the loss function, ψ-function and

weight function of least-squares estimation are ρQ(x) = 1
2x

2, ψQ(x) = x and wQ(x) = 1.

Three different loss functions are plotted in Figure (3.2). Quadratic function increases fastest

among the three, Huber function takes the second place and biweight function increases

slowest. Quadratic and Huber functions are convex functions. While, biweight function is

non-convex.
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Figure 3.2: Three loss functions. Quadratic function, Huber function and Biweight
function. τH is the tuning constant in Huber function, τB is the tuning constant in
biweight function.
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Figure 3.3: Three ψ functions corresponding to Quadratic function, Huber function
and Biweight function. τH is the tuning constant in ψ function of Huber function,
τB is the tuning constant in ψ function of biweight function.

The ψ functions are shown in Figure 3.3. ψQ and ψH are monotone functions, ψB is a

“redescending” function. ψQ is a linear function, ψH and ψB are nonlinear.
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Figure 3.4: Weight functions corresponding to Quadratic function, Huber function
and biweight function. τH is the tuning constant in weight function of Huber
function, τB is the tuning constant in weight function of biweight function.



CHAPTER 3. ROBUST SSA 77

Figure 3.4 show the comparison of weight functions for quadratic, Huber and biweight es-

timates. Quadratic function gives equal weights to small and large errors, Huber function

gives less weight to large errors and biweight function gives zero weights to outliers. The

important tuning constant τ controls the robustness and statistical efficiency (at Gaussian

distribution) of the M-estimate. The asymptotic efficiency of an M-estimate is defined as the

ratio of the asymptotic variance of the maximum likelihood estimate at target distribution

(e.g. Gaussian distribution) and the asymptotic variance of the M-estimate. It measures

how near the M-estimate is to the optimum. For example, sample mean has 100% efficiency

at Gaussian distribution, sample median has 63.69% efficiency at Gaussian distribution. In

M-estimation, the smaller value τ is, the more data with large residuals are considered as

outliers, and the more robust the estimation procedure is. But smaller τ can result in lower

statistical efficiency of the estimate. There is a trade-off between robustness and efficiency.

Holland and Welsch (1977) gives the tuning constants of several different estimation func-

tions for 95% asymptotic efficiency at the Gaussian distribution. They suggests τ = 1.345

for Huber function and τ = 4.685 for biweight function for 95% asymptotic efficiency at the

Gaussian distribution.

Figure 3.5 show the results of biweight M-estimate of location with previously computed

scale parameter. The iteratively reweighted least-squares (Algorithm 1) was adopted for

this example. The green arrows above and below the horizontal axis are the biweight M-

estimator of location of 15 samples and 14 “clean” samples, respectively. The presence of

outlier does not change the M-estimate of location too much.

1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 3.5: Gaussian distributed samples (black solid circles), population mean
(green five-pointed star), the sample mean (red arrow below axis), sample median
(blue arrow below axis) and M-estimate of location using biweight function (green
arrow below axis) of 14 “clean” samples, the sample mean (red arrow above axis),
sample median (blue arrow above axis) and M-estimate of location using biweight
function (green arrow above axis) of 15 samples containing one outlier.
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3.4 Robust SSA

This section proposes a robust singular spectrum analysis algorithm that adopts the M-

estimate procedure. The truncated SVD in traditional SSA is based on least-squares min-

imization. It is quite sensitive to outliers. As seen in Figure 2.15, even one trace with

erratic noise will degrade the performance of SSA. Instead of TSVD, we propose to use a

robust low rank approximation based on M-estimate in the SSA framework. Robust low

rank approximation, or called robust rank-reduction or robust matrix factorization is an

application of robust M-estimation in multivariate analysis.

3.4.1 Robust low rank approximation

We now propose to replace the Frobenius metric for distance between two matrices in

equation (2.93) by a robust metric (Verboon and Heiser, 1994; De la Torre and Black,

2003; Maronna and Yohai, 2008). The new problem becomes

MK = RK(M) = argmin
M̂

‖M− M̂‖ρ

subject to rank(M̂) = K,

(3.72)

where ||M−M̂||ρ =
∑m
i=1

∑n
j=1 ρ(

mij−m̂ij

σ ), mij is the element at i-th row and j-th column

of M, σ is a scale parameter for function ρ. When ρ is not quadratic, problem 3.72 is a non-

convex optimization problem. No closed-form solution exists for this problem in general and

further more the non-convex cost function has local minima. These make solving for global

minimum not an easy task.

Matrix Factorization

The low rank approximation problem 3.72 can be addressed in a matrix factorization view

min
M̂
||M− M̂||ρ,

s.t. M̂ = UVH ,
(3.73)

where U ∈ Cm×K , V ∈ Cn×K are the two factor matrices. K is the dimension of the

approximated subspace. The reason for replacing the constraint of rank function by the

product of two factor matrices is that approximating a matrix by rank K is equivalent to

fitting the matrix by a matrix product UV, where the size of U and V is m × K and

K × n, respectively (Gabriel and Zamir, 1979). Or rewrite the above problem 3.73 to an
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unconstrained one

min
U,V
||M−UVH ||ρ. (3.74)

Robust M-estimate

The goal is to find the approximation matrix UVH to minimize the following cost function

E(U,V) =

m∑
i=1

n∑
j=1

ρ

(
mij −

∑K
q=1 uiqv

∗
jq

σ

)
=

m∑
i=1

n∑
j=1

ρ
(rij
σ

)
, (3.75)

where σ is a robust measurement of the noise variation (dispersion estimate). We use the

same scale parameter σ for all the elements in the residual matrix because the noise in D

is assumed to be independent and identically distributed (i.i.d.). The selection of σ is given

in the Parameter Selection section. The function ρ
( rij
σ

)
is not an analytic function with

respect to rij in the complex domain. According to Wirtinger’s Caculus (Brandwood, 1983),

ρ
(
rij
σ ,

r∗ij
σ

)
is regarded as a function of both rij and r∗ij and the partial complex-variable

derivative is applied here. More details are given in appendix. By taking the derivative of

equation 3.75 with respect to U∗ and V∗, we get the following M-estimate equations

n∑
j=1

ψ1

(raj
σ

)
vjb = 0, a = 1, . . . , n b = 1, . . . , p,

m∑
i=1

ψ2

(ric
σ

)
uid = 0, c = 1, . . . , n d = 1, . . . , p

(3.76)

where ψ1(x) =
∂ρ(x)

∂x∗
and ψ2(x) =

∂ρ(x)

∂x
are the ψ-functions. The above M-estimate

equations can be reformed as the weighted least squares problem

n∑
j=1

w
(raj
σ

)
rajvjb = 0, a = 1, . . . , n b = 1, . . . , p,

m∑
i=1

w
(ric
σ

)
r∗icuid = 0, c = 1, . . . , n d = 1, . . . , p,

(3.77)

where w(x) =
ψ1(x)

x
=
∂ρ(x)

∂x∗
1

x
=
ψ2(x)

x∗
=
∂ρ(x)

∂x

1

x∗
=

1

2

∂ρ(x)

∂|x|
1

|x|
is the weight function.

Note that Equation (3.77) is non-linear, the weights w depends on the model and the model

depends on the weights. This non-linear problem can be solved by the iteratively reweighted

least squares (IRLS) method. The weights are approximately obtained from the residual of
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the previous iteration. The cost function 3.75 is approximated by

EW (U,V) = ||W 1
2 � (M−UVH)||2F =

m∑
i=1

n∑
j=1

wij |mij −
K∑
q=1

uiqv
∗
jq|2, (3.78)

where 1
2 on the upper right of the matrix indicates elementwise square root of the matrix.

W ∈ R+m×n is the weighting matrix calculated from the residuals of previous IRLS itera-

tion. The symbol � represents the Hadamard product (elementwise product). wij is the ith

row and jth column of W given by wij = w(
rij
σ ). The alternating minimization algorithm

(Gabriel and Zamir, 1979) can be approximated by

EW (V) = ||W 1
2 � (M−UVH)||2F =

n∑
j=1

(mj −Uvj)
HWj(mj −Uvj),

EW (U) = ||W 1
2 � (M−UVH)||2F =

m∑
i=1

(mi −Vui)
HWi(mi −Vui),

(3.79)

where

M =
(
m1 m2 · · · mn

)
=
(
m1 m2 · · · mm

)H
, (3.80)

here all the vectors are column vectors; mj is the jth column of M; mi is the conjugate

transpose of ith row of M. Similarly,

U =
(
u1 u2 · · · uK

)
=
(
u1 u2 · · · um

)H
,

V =
(
v1 v2 · · · vK

)
=
(
v1 v2 · · · vn

)H
,

(3.81)

Wj = diag{wj} ∈ R+n×n is the diagonal weighting matrix containing the jth column of

W. Wi = diag{wi} ∈ R+m×m is diagonal weighting matrix containing the ith row of W.

Equation 3.79 can be broken up into smaller optimization problems

for i = 1, 2...,m min
ui

(mi −Vui)
HWi(mi −Vui), (3.82a)

for j = 1, 2, ..., n min
vj

(mj −Uvj)
HWj(mj −Uvj). (3.82b)

The updating of U and V is an alternating procedure. The closed-form solutions of the

above equations are given by

for i = 1, 2...,m VHWiVui = VHWimi, (3.83a)

for j = 1, 2, ..., n UHWjUvj = UHWjmj . (3.83b)
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For the examples in this dissertation, QR factorization (Golub and Van Loan, 1996) is used

for solving the weighted least-squares minimization problems (Equation (3.82)).

The choice of the robust function ρ depends on the how many outliers are there in the

data or how robust the algorithm is desired. Redescending M-estimate is more robust than

monotone M-estimate with the price of non-convexity. In this thesis, we use the Tukey’s

bisquare function (Beaton and Tukey, 1974). The bisquare function in the complex domain

is given by

ρB(x) =


1

6
τ2

1−

[
1−

(
|x|
α

)2
]3
 |x| ≤ τ

1

6
τ2 |x| > τ

. (3.84)

The weighting function for bisquare function is

wB(x) =


[

1−
(
|x|
τ

)2
]2

|x| ≤ τ

0 |x| > τ

, (3.85)

where the tuning constant α is chosen to get both high efficiency for attenuating Gaussian

noise and robustness for eliminating outliers. The selection of α will be discussed in the

Parameter Selection section.

Iterative Algorithm

The robust low rank approximation algorithm can summarized as follows

(1) Start with initial model U and V.

(2) Calculate residual matrix R = M−UVH .

(3) Calculate weighting matrix W using equation 3.85.

(4) Update factor matrix U by solving least-squares minimization problem (3.82a) with QR

factorization.

(5) Update factor matrix V by solving least-squares minimization problem (3.82b) with QR

factorization.

(6) Iterate steps (4) - (5) until convergence or reach a maximum iteration number.

(7) Iterate steps (2) - (6) until convergence or reach a maximum iteration number.

Parameter Selection and Initialization

We adopt the normalized MAD as the robust scale

σ = 1.4826 MAD = 1.4826 med | r−med | r ||, (3.86)
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where r is the residual vector obtained by reshaping the misfit matrix R from the previous

iteration. The multiplication of 1.4826 is used for adjusting the bias between MAD and

standard deviation (SD) at Gaussian noise distribution. Holland and Welsch (1977) rec-

ommend to fix the scale σ because the convergence is supported by known theory. There

is only convergence theory for iterating scale when Huber loss function is used (Huber,

1981). Holland and Welsch (1977) states that if the scale is iterated and/or least-squares

initialization is used, it is better to iterate the algorithm with Huber loss function with

scale iterated using equation 3.86 until convergence and use a non-convex loss function with

the scale fixed using Huber scale. However, the least-squares initialization TSVD is quite

skewed by the outliers. We prefer to use a non-convex loss function directly with the scale

iterated in each iteration using equation (3.86). For initialization, I adopt the TSVD of the

matrix med(vec(M)) × rand(m,n). Here, vec(·) is a vectorization operator, med(·) is used

to get the median of a vector and rand(m,n) indicates a m by n matrix whose elements

are random numbers between 0 and 1.This initialization strategy is used throughout this

work. More robust and complicated initialization strategies are also possible, but generally

they are more computationally demanding. For the tuning constant α, Holland and Welsch

(1977) recommend to take α = 4.685 for the bisquare function to get 95% asymptotic effi-

ciency at standard normal distribution. Maronna et al. (2006) gives different α values for

different asymptotic efficiency at the standard normal distribution. The value ασ performs

as the threshold to distinct outliers and inlierss. Smaller ασ will penalize the outliers more

heavily which results in a robust estimation.

3.5 Examples

We present a synthetic example in t-x domain to test the performance of robust low rank

approximation. The results of TSVD and robust low rank approximation are compared.

Then, we present a synthetic example and also two field data examples to illustrate the

proposed robust SSA algorithm. We compare the performance of the robust SSA, classical

SSA and f -x deconvolution for erratic and Gaussian noise attenuation.

3.5.1 t-x domain robust rank reduction

Figure 3.6 shows the comparison of TSVD and robust low rank approximation on 2D t-x

seismic data section. Figure 3.6 (d) is a synthetic seismic section with four flat events.

High-amplitude non-Gaussian noise is added to this data as shown in Figure 3.6 (a). Figure

3.6 (b) is the result after TSVD filtering. The rank for reconstruction is chosen to be 2.

There is still high-amplitude non-Gaussian noise left in the result. Figure 3.6 (c) is the
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result after robust low rank approximation filtering. The rank chosen for rank reduction is

2. More non-Gaussian noise is suppressed. Both TSVD and robust low rank approximation

(Figure 3.6 (e) and (f)) preserve the signal.
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Figure 3.6: a) 2D synthetic data with four flat events and non-Gaussian noise. b)
Data after TSVD filtering (rank=2). c) Data after robust low rank approximation
filtering (rank=2). d) 2D noise-free synthetic data. e) Difference between noisy
data and result of TSVD filtering. f) Difference between noisy data and result of
robust low rank approximation filtering.
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3.5.2 Synthetic Example

Figure 3.7 (b) shows a 2-D synthetic t-x data set, which has 40 traces and a total time

of 1.2 s with sampling interval 0.004 s. It contains Gaussian noise with signal-to-noise

ratio (SNR) equal to 1, and isolated noisy traces. The SNR here is defined as the ratio

between the maximum amplitude of the clean data and the maximum amplitude of the

Gaussian noise. The amplitude of the erratic noise traces is 3 and 2 times of the maximum

amplitude of the uncorrupted data. The wiggles have been clipped (clip=1 in Seismic

Unix) when plotted and it’s the same for other wiggle plots in this synthetic example.

The processing frequency band ranges from 1 to 40 Hz. We select the size of subspace

of the reconstructed data in SSA and robust SSA methods to be K = 3. We choose the

number of external iterations (for updating weights) equal to 10 and number of internal

iterations (for alternating minimization) equal to 5. The tuning constant α for bisquare

estimator is set to be 4.685. The length of prediction filter in f -x deconvolution is 10,

the trade-off parameter is 0.001. The results of f -x deconvolution, SSA and robust SSA

are compared. Figure 3.7 (a) is the noise free data, Figure 3.7 (b) is the contaminated

noisy data and Figure 3.7 (c) is the added noise. Figure 3.8 (a) shows the result of f -x

deconvolution, we can see that the result is not very good because large amplitude noise

leaks over several traces in the output panel. Shorter prediction filter can remove more noise

but it also distorts the signal more seriously. No matter what parameters are chosen, the

f -x deconvolution cannot eliminate the high-amplitude erratic noise. The outlier (atypical

observations) affects the estimation of correct prediction filter in f -x deconvolution. Figure

3.8 (b) shows the result of the classical non-robust SSA implemented via the TSVD. Again,

we observe that the erratic noise has not been properly removed and noticeable artifacts

are present in the output gather. The TSVD used in classical SSA cannot correctly extract

the singular vectors/values which properly explain the variances of signal from the outliers

corrupted Hankel matrix. The result of robust SSA method is shown in Figure 3.8 (c). In

this case, the Gaussian and erratic noise were successfully suppressed. By examining the

error panels (input noisy data minus filtered data) of the three methods (Figure 3.9), we can

see the obvious energy leakage of the f -x deconvolution (Figure 3.9(a)). However, robust

SSA preserves the original signal (Figure 3.9(c)). We also compare the result of robust SSA

on data corrupted with erratic noise and Gaussian noise (Figure 3.8(c)), with the result of

classical SSA on data with only Gaussian noise (Figure 3.10(b)). Note that the Gaussian

noise in Figure 3.10(a) is the same with Gaussian noise in Figure 3.7(b). We can find

that the two results are quite similar to each other. We evaluate the denoising performance

by evaluating the factor Q = 10 log
||d0||2F
||d0−d̂||2F

, where d0 is the noise free data, d̂ is the

reconstructed data. Larger value of Q means better denoising performance. The Q value

of f -x deconvolution is Qfx = 7.7, the Q value for SSA is Qssa = −2.8 and the Q value of
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robust SSA is Qrssa = 12.8. The Q value of the classical SSA on data with only Gaussian

noise (Figure 3.10) is QssaG = 13.1. These values indicate that the robust SSA method

offers a good alternative to SSA and f -x deconvolution when the data are contaminated by

erratic noise.
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Figure 3.7: The synthetic data with three linear events. (a) Clean data. (b) Data
with Gaussian noise and erratic spatial noise. (c) The noise added to the data.
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Figure 3.8: (a) Data in Figure 3.7(b) after f -x deconvolution. (b) Data after
classical SSA filtering. (c) Data after robust SSA filtering.
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Figure 3.9: Error panels of f -x deconvolution (a), SSA (b), and robust SSA (c).
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Figure 3.10: (a) Data corrupted with only Gaussian noise. (b) Data after classical
SSA filtering. (c) Error panel of classical SSA.
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3.5.3 Field Data Example

Western Canadian Sedimentary Basin

Figure 3.11(a) is a poststack data section from a survey in Western Canadian Sedimentary

Basin. It has 800 traces and 1500 time samples with the time sample interval equals to 2

ms. Figure 3.11(b) and Figure 3.11(c) are the zoomed data section in the left and right

rectangular windows highlighted in Figure 3.11(a), respectively. We can see high-amplitude

noise in this data set. The whole data are divided into overlapped windows with suitable

size. Then, all windows are filtered and added back to recover the clean data. In spatial

direction, each window has 50 traces and the overlap between two adjacent windows is 25

traces. In temporal direction, each window has 300 samples (0.6 s) and the overlap between

two adjacent windows is 100 samples (0.2 s). All the three filtering methods are applied for

frequencies in the band of 1-80 Hz. The size of the reconstructed subspace in both SSA and

robust SSA methods is set to be 2. The reason for choosing this rank is that the data are

only a two dimensional data set and also the events in each small window are relatively flat.

In robust SSA, the external iterations (for updating weights) is 10 and number of internal

iterations (for alternating minimization) is 5. We set the tuning constant α for bisquare

estimator as 3.3. We set the length of f -x prediction filter as 6 and the trade-off parameter

as 0.001. We use the same parameters for the whole data set. Again, we compare the

performance of f -x deconvolution, SSA and robust SSA on noise attenuation. To compare

the results of three methods objectively, all the image plots (Figure 3.11(a), Figure 3.12,

Figure 3.13) have been clipped to the same value. The wiggle plots corresponding to the left

rectangular window (Figure 3.11(b), Figure 3.14) have been clipped to the same value. The

error panels (Figure 3.15) have been clipped to another same value to better compare the

details of the estimated noise of the three methods. Similarly, wiggle plots corresponding to

the right rectangular window (Figure 3.11(c), Figure 3.16) have been clipped to the same

value. The error panels (Figure 3.17) have been clipped to another same value. The results

of the three methods applied on the whole data set are shown in Figure 3.12. Robust SSA

suppresses much more high-amplitude erratic noise than f -x deconvolution and classical

SSA. The comparison of error panels (Figure 3.13) shows that the f -x deconvolution leaks

more signal energy into the noise section than robust SSA. We show the zoomed results

for window to the left in Figure 3.11(a) as Figure 3.14. The results for window to the

right of Figure 3.11(a) are shown in Figure 3.16. Robust SSA is more effective than f -x

deconvolution and SSA. We can find that there are more details for deep layers appear

after robust SSA filtering than the other two. The error panels (Figure 3.15, Figure 3.17)

of the two particular windows highlighted in Figure 3.11(a) do not show obvious energy

leakage of the signal. Note that the using of patching technique makes the estimation of f -x

filters or least-squares singular vectors in one particular patch (e.g. shallower windows) not
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influenced by the erratic noise in other patches (e.g. deeper windows). This causes the fact

that the performance of f -x deconvolution and classical SSA in the shallow part of data is

not that bad.
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Figure 3.11: Poststack field data. (a) The whole data set. (b) The data in the left
rectangular window. (c) The data in the right rectangular window.

Alaska data set

We also test the algorithms on a data set which has more complex geological structure. It

is a poststack data section from a 2-D land survey in Alaska (Figure 3.18(a)). There is low

amplitude random noise in the data. High-amplitude sinusoids with various frequencies (1-

60 Hz) and amplitudes (maximum amplitude is as large as 4 times the signal) are added to

the data to simulate erratic noise. In total, ten percent of the traces are corrupted with this

kind of noise. Again, the patching technique is used for processing here. Each small window

is composed of 36 traces with 16 overlapping traces between adjacent windows in spatial
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Figure 3.12: The comparison of the results of three different methods. (a) Data
after f -x deconvolution filtering. (b) Data after classical SSA filtering. (c) Data
after robust SSA filtering.

direction and, 300 time samples (0.6 s) with 75 overlapping samples (0.15 s) in temporal

direction. The processing frequency band for all the three methods ranges from 1 to 60 Hz.

The size of subspace of the reconstructed data is chosen to be K = 3 in both robust SSA

and SSA. In robust SSA, the outer iteration (for reweighting) number is set to be 10 and the

inner iteration (for alternating minimization) number is set to be 5. The tuning constant

α for bisquare estimator used here is 4.2. The prediction length and trade-off parameter of

f -x deconvolution are 8 and 0.001, respectively. The results of the f -x deconvolution, SSA

and robust SSA are compared. All the image plots and wiggle plots are clipped to the same

value to make the results are better compared. Robust SSA (Figure 3.18 (d)) thoroughly

removes the high amplitude erratic noise. While, both f -x deconvolution (Figure 3.18 (b))

and SSA (Figure 3.18 (c)) are not efficient for erratic noise attenuation. Figure 3.19 show

the error panels of the three methods. Still, we can find that robust SSA preserves signal
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Figure 3.13: The comparison of error panels of three different methods. Error panels
of f -x deconvolution (a), SSA (b), and robust SSA (c).

and f -x deconvolution damages signal. To show the details better, we display the zoomed

results and error panels in the rectangular window as Figure 3.20.

3.6 Summary

In this Chapter, we first reviewed the basic concepts for robust statistics with an emphasis

on M-estimators. We propose a robust version of the SSA method which can remove Gaus-

sian and non-Gaussian (erratic) noise. The robust matrix factorization is used in the new

method instead of the truncated SVD. A t-x domain synthetic example shows the advantage

of robust matrix factorization over TSVD with the presence of non-Gaussian noise in the

data matrix. Another synthetic example shows that the proposed robust SSA can remove

Gaussian and erratic noise, while the least-squares minimization based methods SSA and
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Figure 3.14: The comparison of results of the data in the left rectangular window
by three different methods. (a) Data after f -x deconvolution filtering. (b) Data
after classical SSA filtering. (c) Data after robust SSA filtering.

f -x deconvolution do not perform well. The field data examples from Western Canadian

Sedimentary Basin and Alaska are used to analyze the performance of the new algorithm on

real data. One possible concern is the computation cost of the robust algorithm. Compu-

tational time can be reduced by adopting windowing strategies to minimize the size of the

Hankel matrices to factorize. Another strategy is to truncate the number of iterations of the

alternating minimization algorithm and IRLS solvers in a way that an inexact factorization

is estimated. We have noticed that an inexact factorization can yield better results than

conventional non-robust Rank-reduction via the truncated SVD.
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Figure 3.15: The comparison of error panels of three different methods in the left
rectangular window. Error panels of f -x deconvolution (a), SSA (b), and robust
SSA (c).
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Figure 3.16: The comparison of results of the data in the right rectangular window
by three different methods. (a) Data after f -x deconvolution filtering. (b) Data
after classical SSA filtering. (c) Data after robust SSA filtering.
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Figure 3.17: The comparison of error panels of three different methods in the right
rectangular window. Error panels of f -x deconvolution (a), SSA (b), and robust
SSA (c).
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Figure 3.18: Field data example from Alaska. (a) Poststack data with erratic noise.
(b) Data filtered by f -x deconvolution. (c) Data filtered by SSA. (d) Data filtered
by robust SSA.
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Figure 3.19: Error panels of (a) f -x deconvolution, (b) SSA, (c) robust SSA.
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Figure 3.20: Zoomed sections correspond to the rectangular window. (a) Original
data with erratic noise. (b) Data filtered by f -x deconvolution. (c) Data filtered
by SSA. (d) Data filtered by robust SSA. (e) Error panel of f -x deconvolution. (f)
Error panel of SSA. (g) Error panel of robust SSA.



CHAPTER 4

Matrix rank reduction approximated by nuclear-norm

minimization

4.1 Introduction

As mentioned in the introduction, seismic data acquired in field may have too large spatial

sampling interval, may have large gap between traces, or may be irregularly sampled in

space. Cadzow/SSA based methods have been applied for irregularly decimated seismic

data reconstruction (Trickett et al., 2010; Oropeza and Sacchi, 2011; Gao et al., 2013). In

this case, the constructed Hankel matrix is not only perturbed by random Gaussian noise

but also incomplete. Many elements of the matrix are missing in an irregular pattern.

Trickett et al. (2010) proposed a Cadzow filtering based method for multidimensional trace

interpolation. It applies an algorithm of matrix completion instead of the direct TSVD on

the incomplete Hankel matrix. Oropeza and Sacchi (2011) proposed a seismic data recon-

struction method similar with the projection onto convex sets (POCS) (Abma and Kabir,

2006) that replaces the frequency spectrum thresholding in POCS by MSSA filtering. The

rank reduction is based on a randomized SVD instead of naive SVD for acceleration. Gao

et al. (2013) extended the MSGEO-2013-0350SA reconstruction to 5D. The rank reduction

is based on Lanczos bidiagonalization, and the Toeplitz matrix-vector multiplication is ac-

celerated by the Fast Fourier Transform (FFT). These methods works for regular data grid

with irregular missing pattern. They can not deal with aliasing problem. Naghizadeh and

Sacchi (2013) proposed a MSSA/Cadzow based reconstruction algorithm for interpolating

regularly sampled seismic data. It extract information from low frequencies to recover the

regularly missing information at high frequencies.

The methods mentioned above do not consider erratic data (Claerbout and Muir, 1973).

98
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The least-squares minimization performs poorly in this situation because its breakdown

point is zero. Even one outlier will destroy the resulting fit. Other robust error criterions are

required for the data fitting to robustify the inversion procedure. In this chapter, we propose

a robust singular spectrum analysis method for removing the Gaussian, erratic noise and

interpolating missing data simultaneously. First, the frequency domain data is embedded

into a Hankel matrix, which contains dense Gaussian error, sparse outliers and missing

elements. Then, a robust low rank approximation of this corrupted and incomplete matrix

is achieved by solving a low-rank matrix recovery problem (Candès et al., 2009; Zhou et al.,

2010). It minimizes a weighted combination of nuclear-norm, `1 norm and `2 norm terms. In

this Robust SSA algorithm, the size of the reconstructed subspace is detected automatically.

There are several fast first order algorithms that exist to solve the low-rank matrix recovery

problem. We choose the alternating splitting augmented Lagrangian method (Tao and Yuan,

2011) to retrieve the low-rank component. Our 2D synthetic examples show that the new

robust singular spectrum analysis method performs well.

4.2 Theory

4.2.1 Notation

Several notations are introduced here. The Frobenius norm of matrix X ∈ Rm×n is ||X||F =√∑m
i=1

∑n
j=1 |xij |2, which is the `2 norm of the vector of singular values and the `1 norm is

||X||1 =
∑m
i=1

∑n
j=1 |xij |. ‖X‖0 is the `0 norm indicating the number of non-zero elements

of matrix X. The nuclear-norm of a rank r matrix X is defined as the sum of the singular

values ||X||∗ =
∑r
k=1 σk, with X =

∑r
k=1 σkukv

H
k is the singular value decomposition of X.

Nuclear-norm is the `1 norm of the vector of singular values. The nuclear-norm minimization

is the tightest convex relaxation of the rank minimization problem, which is similar as the

fact that `1 norm minimization is the tightest convex relaxation of the `0 norm minimization

problem (Candès and Plan, 2009). Nuclear-norm measures the 2-D sparsity of the matrix.

The inner product of two matrix in Euclidean space is denoted as 〈X,Y〉 = trace(XHY).

In this chapter, the linear mapping operators are denoted by calligraphic letters, e.g. O(X).

4.2.2 Singular spectrum analysis

Remember that the SSA algorithm is summarized as, for each frequency slice, D̂ = A(R(H(D))),

where A is anti-diagonal averaging operator, R is the truncated SVD filtering operator and

H is the Hankel operator. If we consider missing observations, D̃ denotes the completely

observed data and Γ denotes the support of the index set of observations in D, i.e. only
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the entries {D̃i, i ∈ Γ} are recorded. Then, the PΓ indicates the projection onto the space

of vectors supported on Γ. We call it the sampling operator, D = PΓ(D̃). Most of the

singular spectrum analysis methods apply least-squares minimization in the rank reduction,

e.g. the truncated SVD (Trickett, 2008), the method based on Random SVD (Oropeza and

Sacchi, 2011) and the method based on Lanczos bidiagonalization (Gao et al., 2013). It is

well known that the least-squares process is not robust. Even one single outlier will result

in an erroreous solution. The erratic noise in the seismic data need robust algorithm to

suppress. The extraction of low-rank component from the incomplete and corrupted matrix

is achieved by solving a low-rank matrix recovery problem (Candès et al., 2009).

4.2.3 Low-rank matrix recovery

We utilize a robust low rank approximation other than the truncated SVD to recover the

low-rank component from the partly observed and grossly corrupted matrix M. Our Robust

SSA algorithm is summarized as follows

For each frequency slice :

D̂ = A(MR(H(D))),
(4.1)

where MR denotes the operator for solving the low-rank matrix recovery problem, D̂ is

the reconstructed frequency slice. Let M̃ denotes the Hankel matrix from the completely

sampled data D̃, i.e. M̃ = H(D̃). H is a Hankel operator. Matrix M̃ can be decomposed

to three components as:

M̃ = L + S + N, (4.2)

where L is the low rank matrix embedded from the f -x signal, S is a sparse matrix corre-

sponding to impulsive noise and N is a dense perturbation matrix representing Gaussian

noise. If there is only impulsive noise (N = 0), the problem is recovering low-rank compo-

nent from completely observed but impulsive noise corrupted matrix. It is also referred to

as the robust principal component analysis problem (Candès et al., 2009). The solution can

be obtained from solving the matrix rank minimization problem

min
L,S

rank(L) + γ‖S‖0,

subject to M̃ = L + S,
(4.3)

where γ is a trade-off parameter balancing the low-rank of L and the sparsity of S. Unfor-

tunately, both rank function and `0 function are non-convex. This low-rank matrix recovery

problem is NP-hard because the combinational nature of rank function and `0 norm. Candès

et al. (2009) proved that the low-rank and sparse component can be solved by a relaxed
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convex program, the Principal Component Pursuit

min
L,S
‖L‖∗ + λ‖S‖1,

subject to M̃ = L + S,
(4.4)

the rank minimization is relaxed to the nuclear norm minimization and the `0 norm min-

imization is relaxed to `1 norm minimization, λ is a trade-off parameter to balance the

sparsity and low rank. The nuclear-norm guarantees the low rank of component L, the `1

norm induces the sparsity of component S, i.e. the robustness of this recovery algorithm

with respect to outliers. However, the seismic data are usually corrupted with dense Gaus-

sian noise, i.e. N 6= 0. The problem changes to the recovery of low-rank matrix from a

matrix that is corrupted with sparse impulsive noise and small dense Gaussian noise. Zhou

et al. (2010) proved that this problem can be solved by the convex program Stable Principal

Component Pursuit

min
L,S

||L||∗ + λ||S||1,

subject to ||M̃−L− S||F ≤ δ,
(4.5)

where the Frobenius norm induce the stability towards Gaussian noise perturbation, δ is

the Gaussian noise level.

When the observed data is under sampled (D = PΓ(D̃)), the constructed Hankel matrix

has missing elements. Suppose that Ω is the support of nonzero elements of matrix M,

i.e. entries {M̃ij , (i, j) ∈ Ω} are the recorded elements. PΩ denotes the sampling operator

acted on the complete observed matrix M̃, i.e. M = PΩ(M̃). Now, the problem changes

to recover the low-rank component from a fraction of the grossly corrupted and randomly

perturbed entries of the matrix. It can be expressed as

min
L,S

||L||∗ + λ||S||1,

subject to ||PΩ(M̃− L− S)||F ≤ δ.
(4.6)

When PΩ is the identity operator, 4.6 recovers low-rank matrix from completely observed,

Gaussian and impulsive noise corrupted matrix 4.5. When PΩ is the identity operator and

σ = 0, it recovers low-rank matrix from completely observed, impulsive noise corrupted

matrix 4.4. When σ = 0, λ = 0 and S = 0, it solves the matrix completion problem

(Candès and Recht, 2009). When λ = 0 and S = 0, it solves the matrix completion with

Gaussian noise problem (Candès and Plan, 2009).

The penalized version of convex program 4.6 is

min
L,S

||L||∗ + λ||S||1 +
1

2µ
||PΩ(M̃− L− S)||2F , (4.7)
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where µ is a parameter balancing the Frobenius norm and the other two terms in cost

function. The cost function is a non-smooth convex function, several first order algorithms

exists to solve it. The augmented Lagrangian based Method (Lin et al., 2010; Tao and Yuan,

2011) is adopted in this thesis.

4.2.4 Augmented Lagrangian method

Here, we simply describe the general augmented Lagrangian method designed for solving

the following equality constrained optimization problem (Bertsekas, 1982)

min
x

f(x),

subject to g(x) = 0,
(4.8)

where f : Rn → R and g : Rn → Rm are given functions. The augmented Lagrangian is

defined as

LA(x,y, β) = f(x) + 〈y, g(x)〉+
β

2
||g(x)||2F . (4.9)

where y is the dual variable or Lagrange multiplier, and β > 0 is the penalty parameter.

Note, the augmented Lagrangian has an additional term β
2 ||g(x)||2F comparing with the stan-

dard Lagrangian. The algorithm of general augmented Lagrangian method is summarized

as

Algorithm 2 General augmented Lagrangian method

1: ρ ≥ 1
2: while not converge do
3: Compute xk+1: xk+1 = argmin

x
LA(x,yk, βk).

4: Update yk+1: yk+1 = yk + βkg(xk+1).
5: Update βk+1: βk+1 = ρβk.
6: end while

The update of the Lagrange multiplier yk+1 is obtained from the maximizing the dual

function. This is the so-called gradient ascent update. ρ is a parameter for updating the

penalty parameter β in each iteration.

To use the augmented Lagrangian method, Equation 4.7 is firstly transformed to the equality

constrained optimization problem (Tao and Yuan, 2011). Recall that M = PΩ(M̃) is the

real observations, a part of M̃ is unknown in advance. A new variable matrix is introduced

Z = M−L−S = PΩ(M̃)−L−S. Therefore, PΩ(Z) = PΩ(PΩ(M̃)−L−S) = PΩ(M̃−L−S).
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Equation 4.7 is modified as

min
L,S,Z

||L||∗ + λ||S||1 +
1

2µ
||PΩ(Z)||2F ,

subject to L + S + Z = M.

(4.10)

The elements outside the set Ω in L + S are compensated by corresponding elements in Z.

Then the augmented Lagrangian function of Problem 4.10 is

LA(L,S,Z,Y, β) = ||L||∗+λ||S||1+
1

2µ
||PΩ(Z)||2F−〈Y,L+S+Z−M〉+β

2
||L+S+Z−M||2F ,

(4.11)

where Y is the Lagrange multiplier, β is the penalty parameter. The general augmented

Lagrangian method optimizes all the variables together (Lk+1, Sk+1, Zk+1) at step 3 in

Algorithm 2 and then update the Lagrange Multiplier Yk+1 and penalize parameter βk+1.

Tao and Yuan (2011) further explore the separable structure of the cost function and con-

straint in 4.11 and propose a more efficient alternating splitting augmented Lagrangian

method (ASALM), which compute the three components separately, i.e. Lk+1, Sk+1 and

then Zk+1. The idea of splitting is similar with the inexact augmented Lagrangian method

(Lin et al., 2010) and the alternating direction method (ADM) (Yuan and Yang, 2009). The

three variables are updated via solving three sub-problems

Zk+1 := arg min
Z

1

2µ
||PΩ(Z)||2F − 〈Yk,Lk + Sk + Z−M〉+

β

2
||Lk + Sk + Z−M||2F ,

Sk+1 := arg min
S

λ||S||1 − 〈Yk,Lk + S + Zk+1 −M〉+
β

2
||Lk + S + Zk+1 −M||2F ,

Lk+1 := arg min
L
||L||∗ − 〈Yk,L + Sk+1 + Zk+1 −M〉+

β

2
||L + Sk+1 + Zk+1 −M||2F ,

Yk+1 := Yk − β(Lk+1 + Sk+1 + Zk+1 −M),

(4.12)

where the penalize parameter β is fixed in the ASALM method. The most important

benefit is that each subproblem has closed form solution. They can be obtained by setting

the gradient (Frobenius norm) or subgradient (`1 norm, nuclear-norm) to zero. It’s easy to

see that the update in Equation 4.12 is the same as the following problems (Tao and Yuan,

2011)

Zk+1 := arg min
Z

1

2µ
||PΩ(Z)||2F +

β

2
||Lk + Sk + Z− 1

β
Yk −M||2F ,

Sk+1 := arg min
S

λ||S||1 +
β

2
||Lk + S + Zk+1 − 1

β
Yk −M||2F ,

Lk+1 := arg min
L
||L||∗ +

β

2
||L + Sk+1 + Zk+1 − 1

β
Yk −M||2F ,

Yk+1 := Yk − β(Lk+1 + Sk+1 + Zk+1 −M),

(4.13)
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where the update of Sk+1 and Lk+1 can be obtained from two well-known shrinkage operators.

Usually, the soft shrinkage operator (Chen et al., 1998) Sτ : R→ R is defined as Sτ (x) =sgn(x)max(|x|−
τ, 0). Because we apply the method in frequency domain, we use the soft shrinkage oper-

ator defined in the complex domain (Sardy, 2000): Sτ : C → C is defined as Sτ (x) =
x

|x|
max(|x| − τ, 0). It is extended to the case of matrices

(Sτ (X))ij :=
Xij

|Xij |
max(|Xij | − τ, 0), X ∈ Cm×n. (4.14)

Sτ (X) is the solution of the following minimization problem

min
Y

τ ||Y||1 +
1

2
||Y −X||2F . (4.15)

Suppose the rank r matrix X ∈ Cm×n has the following singular value decomposition

X = UΣVH , (4.16)

where U ∈ Cm×r is the matrix containing left singular vectors, V ∈ Cn×r is the matrix

containing right singular vectors and Σ = diag{σ1, σ2, · · · , σr} is the matrix containing sin-

gular values. The singular value shrinkage operator Dτ applied on X is defined as following

(Cai et al., 2008)

Dτ (X) = USτ (Σ)VH . (4.17)

Dτ (X) is the solution of the following minimization problem

min
Y

τ ||Y||∗ +
1

2
||Y −X||2F . (4.18)

So the solutions of Equation 4.13 can be expressed using the above shrinkage operator and

singular value shrinkage operator. The alternating splitting augmented Lagrangian method

(ASALM) (Tao and Yuan, 2011) is summarized as following Algorithm 3

The proof of convergence of the ASALM algorithm is given in Tao and Yuan (2011). The

dominant cost of the algorithm is given by the cost of the singular value shrinkage operator.

4.2.5 Parameter Selection and Stopping Criterion

Candès et al. (2009) and Zhou et al. (2010) proved that the selection of λ = 1/
√

max(m,n)

can guarantee good recovery result in the (Stable) Principal Component Pursuit program.

It is fixed in the algorithm. µ and β are tuning parameters that depend on the data. Tao
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Algorithm 3 Alternating Splitting Augmented Lagrangian Method (ASALM)
for Low Rank Matrix Recovery

1: Initialization: L0 = 0, S0 = 0, Y0 = 0, λ = 1/
√

max(m,n), µ, β.
2: while not converge do
3: Compute Tk = 1

βYk + M− Lk − Sk.

4: Compute Zk+1:

Zk+1
ij =

 Tk
ij when (i, j) /∈ Ω;
µβ

1 + µβ
Tk
ij when (i, j) ∈ Ω.

5: Compute Sk+1: Sk+1 = Sλ/β( 1
βYk + M− Lk − Zk+1).

6: Compute Lk+1: Lk+1 = D1/β( 1
βYk + M− Sk+1 − Zk+1).

7: Update Yk+1: Yk+1 = Yk + β(M− Lk+1 − Sk+1 − Zk+1).
8: end while

and Yuan (2011) recommend to choose the parameters based on the following strategy

µ =
1

10

√
min(m,n) +

√
8min(m,n)σ,

β = η
|Ω|
||M||1

,
(4.19)

where σ is the standard derivation (SD) of Gaussian noise. The coefficient η depends on the

percentage of the outliers in the matrix, |Ω| is the cardinality of the set Ω, i.e. the number

of elements of set Ω. The stopping criterion is chosen to be (Tao and Yuan, 2011)

SP =
||(Lk+1,Sk+1)− (Lk,Sk)||F

||(Lk,Sk)||F + 1
≤ ξσ, (4.20)

where ξ is a coefficient which is tunable. The stopping criterion measures the change of the

low-rank component and sparse component in two consecutive iterations.

4.3 Examples

We present two synthetic examples to test the proposed algorithm.

4.3.1 Synthetic Example 1

We first test a simple synthetic data that is incomplete and corrupted with large amplitude

erratic noise (coherent in temporal direction). Because the outliers do not appear in all

the frequencies, we analyze the behavior of the Algorithm 3 in different situations. For
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the frequency slices which contain outliers and missing elements, it is actually a Gaussian

noiseless (N = 0) low-rank matrix recovery problem (σ = 0 in convex program 4.6).

min
L,S
||L||∗ + λ||S||1,

subject to PΩ(L+S) = PΩ(M̃) = M.
(4.21)

Similarly, with the replacement L + S + Z = M, it can be changed to

min
L,S
||L||∗ + λ||S||1,

subject to L + S + Z = M, PΩ(Z) = 0,
(4.22)

In this case, the augmented Lagrangian is

LA(L,S,Z,Y, β) = ||L||∗ + λ||S||1 − 〈Y,L + S + Z−M〉+
β

2
||L + S + Z−M||2F , (4.23)

with PΩ(Z) = 0. The algorithm for convex program 4.21 is a special case of Algorithm 3

with parameter µ = 0.

For the frequency slices which do not contain outliers, they only contain missing elements.

The constructed Hankel matrix is incomplete but noise free. The problem changes to a

noiseless matrix completion problem

min
L
||L||∗,

subject to PΩ(L) = PΩ(M̃) = M.
(4.24)

with the replacement L + Z = M, it is changed to

min
L
||L||∗,

s.t. L + Z = M, PΩ(Z) = 0.
(4.25)

The augmented Lagrangian is

LA(L,Z,Y, β) = ||L||∗ − 〈Y,L + Z−M〉+
β

2
||L + Z−M||2F , (4.26)

with PΩ(Z) = 0. The algorithm for noiseless matrix completion problem is (Lin et al., 2010)

Algorithm 4 is a particular case of Algorithm 3 with µ = 0 and S = 0. With a good

thresholding parameter λ/β in Algorithm 3, the elements in S does not contain the signal.

That is to say, the matrix S will stay as zero matrix during the iterations. Then, it is
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Algorithm 4 Alternating Splitting Augmented Lagrangian Method (ASALM)
for Matrix Completion

1: Initialization: L0 = 0,Y0 = 0, β.
2: while not converge do
3: Compute Tk = 1

βYk + M− Lk.

4: Compute Zk+1:

Zk+1
ij =

{
Tk
ij when (i, j) /∈ Ω;

0 when (i, j) ∈ Ω.

5: Compute Lk+1: Lk+1 = D1/β( 1
βYk + M− Zk+1).

6: Update Yk+1: Yk+1 = Yk + β(M− Lk+1 − Zk+1).
7: end while

reasonable to use Algorithm 3 with setting µ = 0 for all the frequency slices in this synthetic

example.

The synthetic data has 80 traces with time sampling interval 0.004 s. There are 5 traces

corrupted with large amplitude (1 to 7 times the amplitude of wavelet) time coherent noise

and 50% traces randomly missing. Figure 4.1 (d) shows the noise free data, Figure 4.1 (a)

shows the data with missing traces and corrupted with erratic noise. We use Algorithm 3 to

recover the low-rank component L and then the reconstructed data D̂. The frequency band

to be processed is 1-40 Hz. For parameter selection, we simply set µ = 0 and β = 0.15
|Ω|
||M||1

.

The stopping criterion is chosen as: SP ≤ 10−7. Figure 4.1 (b) is the reconstructed result,

Figure 4.1 (e) is the difference between noise free data and the reconstructed data. Figure

4.1 (c) is the recovered sparse component. We can see that the robust SSA via low-rank

matrix recovering exactly reconstructed the signal and also the time coherent noise. We

use the quality factor Q = 10 log
||d0||2F
||d0 − d̂||2F

to evaluate the result. The Q = 114 in this

synthetic example.
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Figure 4.1: (a) Synthetic seismic data with 50% traces missing and 5 traces cor-
rupted with erratic noise. b) Data filtered by robust SSA via low-rank matrix recov-
ering. (c) Sparse erratic noise obtained from robust SSA. (d) Noise-free synthetic
data. (e) Difference section between noise-free synthetic data and data filtered by
robust SSA.

4.3.2 Synthetic Example 2

The synthetic data is both undersampled and corrupted with large amplitude time coherent

noise and smoothed Gaussian noise. If frequency slice D has outliers, the recovering of L is

achieved by solving convex program 4.6.
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If there is no outlier in frequency slice D, it changes to a Gaussian-noisy matrix completion

problem

min
L,Z

||L||∗ +
1

2µ
||PΩ(Z)||2F ,

subject to L + Z = M.

(4.27)

The augmented Lagrangian function is

LA(L,Z,Y, β) = ||L||∗ +
1

2µ
||PΩ(Z)||2F − 〈Y,L + Z−M〉+

β

2
||L + Z−M||2F (4.28)

The algorithm of alternating splitting augmented Lagrangian method for Gaussian-noisy

matrix completion problem is

Algorithm 5 Alternating Splitting Augmented Lagrangian Method (ASALM)
for Matrix Completion with Noise

1: Initialization: L0 = 0, Y0 = 0, µ, β.
2: while not converge do
3: Compute Tk = 1

βYk + M− Lk.

4: Compute Zk+1:

Zk+1
ij =

 Tk
ij when (i, j) /∈ Ω;
µβ

1 + µβ
Tk
ij when (i, j) ∈ Ω.

5: Compute Lk+1: Lk+1 = D1/β( 1
βYk + M− Zk+1).

6: Update Yk+1: Yk+1 = Yk + β(M− Lk+1 − Zk+1).
7: end while

Algorithm 5 is a special case of Algorithm 3 with S = 0. In this situation, if a suitable

threshold parameter λ/β is selected in Algorithm 3, matrix S will remain a zero matrix.

Algorithm 3 can be applied on all the frequency slices. Figure 4.2 (d) is the noise-free data,

Figure 4.2 (a) is the incomplete and corrupted data. The erratic noise added is the same

with the one in Example 1. There are 25% traces missing in the original data set. The SNR

of the Gaussian noise is 2. The frequency band to be processed is 1-40 Hz like previous

examples. As to the parameters, µ = 0.1
√

min(m,n) +
√

8min(m,n)σ, β = 0.1
|Ω|
||M||1

.

The stopping criterion is selected to be SP ≤ 10−7σ. Figure 4.2 (b) is the reconstructed

result. We can find that the algorithm removed the Gaussian noise and erratic noise and

also recovered the missing traces. The quality factor of the reconstructed result is Q = 24.

Figure 4.2 (c) shows the erratic noise recovered by the sparse matrix S. However, there is

a little energy in the difference section Figure 4.2 (e).
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4.4 Summary

In this chapter, we propose a robust SSA method for erratic noise suppression and missing

data interpolation via solving low-rank matrix recovery problem. The low-rank matrix

recovery is achieved by solving a convex program, i.e. minimizing the weighted combination

of nuclear-norm `1 norm and Frobenius norm. We present some preliminary synthetic

results. It shows that the proposed algorithm can remove Gaussian and erratic noise and

interpolating missing traces simultaneously. There are several possible directions for the

future works. First, the soft thresholding of the singular values allows the processing of

curvature events situation. It is natural to extend the method to 3D and 5D situations.
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Figure 4.2: (a) Synthetic seismic data with 25% traces missing, Gaussian noise
(SNR=2) and 5 traces corrupted with erratic noise. b) Data filtered by robust SSA
via low-rank matrix recovering. (c) Sparse erratic noise obtained from robust SSA.
(d) Noise-free synthetic data. (e) Difference section between noise-free synthetic
data and data filtered by robust SSA.



CHAPTER 5

Conclusions

This thesis focuses on the subject of non-Gaussian seismic noise suppression in seismic

data processing. More specially, we propose robust matrix rank-reduction methods for

simultaneous Gaussian and non-Gaussian seismic noise attenuation.

I have proposed a new method that permits to robustify the SSA denoising method. This

is achieved by introducing robust matrix factorization and nuclear norm minimization into

the formulation of the SSA algorithm.

In Chapter 1, I briefly described the seismic data processing sequences in reflection seis-

mology. Different types of seismic noise are described and different kinds of seismic noise

attenuation methods were reviewed. I also reviewed methods for seismic data reconstruc-

tion. In Chapter 2, I reviewed concepts in multivariate statistics and linear algebra. The

principal component analysis, singular value decomposition and eigendecomposition are de-

scribed and their relationships are discussed. I described the algorithm of singular spectrum

analysis for time series analysis. It is applied to the Southern Oscillation Index (SOI).

The f -x SSA for seismic random noise attenuation is shown in this chapter as well. It is

an alternative to the f -x deconvolution for random seismic noise attenuation and it has

the advantage of preserving the amplitudes of seismic signals. I have recognize that SSA

cannot cope with erratic noise and consequently chapter 3 gives a overview of the robust

statistics with an emphasis on the M-estimators method. Loss functions other than the

quadratic function (`2 norm) were described and I proposed a robust singular spectrum

analysis method for Gaussian and non-Gaussian seismic noise attenuation that utilize ro-

bust loss functions. The TSVD in traditional SSA is replaced with the robust low rank

approximation that is based on the M-estimate method. The biweight function was chosen

as the loss function for our algorithm and iteratively reweighed least-squares and alter-

nating minimization was used for numerically computing the robust factorization. Both

112
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synthetic and field data examples show the superiority of the proposed robust SSA over

the traditional SSA and f -x deconvolution for erratic seismic noise attenuation. Moreover,

the robust SSA inherits the merit of traditional SSA that preserves the amplitude of the

original signal. In Chapter 4, I proposed an algorithm for simultaneously removing Gaus-

sian and non-Gaussian noise and interpolating missing traces. The recovering of low-rank

matrix from incompletely observed and Gaussian and impulsive noise corrupted data matrix

is solved through a convex optimization program. It minimizes a weighted combination of

nuclear-norm, `1 norm and Frobenius norm. The augmented Lagrangian method is applied

for the optimization. Preliminary synthetic examples are given to evaluate the performance

of the proposed algorithm.

I conclude that incorporating robust statistics in reduced-rank (SSA) noise attenuation

algorithms enables us to design algorithms that are resistant to outliers and erratic noise.

This idea is important for processing land and marine seismic data that are often corrupted

by noise that does not obey the Gaussian distribution.

There are several possible directions for future work: Extend the proposed robust SSA to

the multidimensional case and improve the computational efficiency of the proposed robust

algorithm via accelerating the robust low rank approximation step.
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APPENDIX A

Gradient in Complex Domain

Here, I describe how to use the partial complex derivative to compute the weighting function

of the cost function (3.75):

E(U,V) =

m∑
i=1

n∑
j=1

ρ

(
mij −

∑K
q=1 uiqv

∗
jq

σ

)
=

m∑
i=1

n∑
j=1

ρ
(rij
σ

)
. (A.1)

If the matrix V is fixed, E is a function of U. Similarly, E is a function of V if U is fixed.

However, even though V is fixed, E is not a complex analytic function with respect to U.

The complex derivative does not exist. By using Wirtinger’s Caculus (Brandwood, 1983),

we can regard U and U∗ as independent variables. Either setting the partial derivative
∂E
∂U or ∂E

∂U∗ to zero lead to stationary points. Usually, ∂E
∂U∗ is preferred because it gives the

direction where the cost function E has the maximum rate of change with respect to U
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(Brandwood, 1983).

∂E
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(A.2)

where w(x) = ∂ρ(x)
∂x∗

1
x with x =

raj

σ is the weighting function that is different from real value

case. In the above equations, ρ is not an analytic function of raj or r∗aj therefore, we applied

the chain rule to the complex partial derivative of raj and r∗aj . Due to the relationship
∂|x|
∂x∗ = 1

2
x
|x| , we have that w(x) = ∂ρ(x)

∂x∗
1
x = ∂ρ(x)

∂x
1
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2
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1
|x| .

Similarly, we can compute ∂E
∂V∗
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where w (x) = ∂ρ(x)
∂x

1
x∗ = ∂ρ(x)

∂x∗
1
x = 1

2
∂ρ(x)
∂|x|

1
|x| with x = ric

σ .
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