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Abstract 

 

How do we make decisions, like which drink to reach and grab out of a fridge, or which 

path to take on a hike? Decades of research on decision making has led to powerful models of 

how options compete within our brains to be selected. However, these models, and the field of 

decision making in general, is split in two halves: the competition between options before a 

movement begins, and the competition between options after a movement has begun. 

Here, I propose a computational model of decision making that aims to bridge these two 

halves. Specifically, we model decision making as one process that determines when to initiate a 

movement, and another that acts to move toward an option proportional to its ongoing 

desirability. In Chapter 2, this model is compared to data collected while people were asked to 

reach and touch which of two snack foods they preferred. Despite its relative simplicity, we find 

the model can account for a diverse range of human behaviour during decision making, and is 

highly generalizable to a variety of experimental paradigms. 

In Chapter 3, I present neural data collected during a different decision making task - one 

where people were asked to decide which of two circles was brighter. These data do not align 

with many models focused on only one half of decision making, and instead provide support for 

the neural processes predicted by our model in Chapter 2. 

Together, these results support a new formal way of thinking about decision making - as 

a single, continuous competition between options, only seemingly split in half by the question 

about when to move. 
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1 - Two Halves of a Whole Decision 

 

Would you like a chocolate bar or an apple? Should you rent or buy a house? Do you 

want to read this thesis right now, or would you rather be doing something else? 

Decision making is not only ubiquitous, but has significant consequences. Our decisions 

directly influence our physical health, financial security, personal well-being, and much more. In 

this respect, it is important to study decision making - not only to understand why we choose 

what we do at a fundamental level, but because if we can understand our decisions, we may be 

able to influence them to make our lives better. 

But how exactly do we make decisions? The unfortunate answer is that we don’t know. 

But we have some strong leads. 

1.1 - Between a Stimulus and a Response 

For almost two centuries, the field of psychophysics has been presenting people with 

different intensities of a physical stimulus and measuring their responses. For instance, an 

experimenter would show a participant a light of a certain brightness, and ask whether they 

thought it was brighter than the last light they saw (not unlike a modern-day eye exam). Most 

relevant to this thesis, psychologists had been instructing subjects to make decisions regarding 

difficult to discern stimuli (e.g., whether an arrow is pointing left or right). Time and time again, 

experiments showed that (unsurprisingly) people took time to make a decision. Further, people 

take more time to respond when the decision is more difficult (McCarthy & Donchin, 1981). 

While this result should come as a surprise to no one who has spent time around any human 

being, it underlies two critical points about ourselves. First, there is a temporal delay between 

external stimuli and the brain - even automatic reflexes take time (Enns, 2004; Evarts & Tanji, 

1976). Second, even after the delay between external information and the brain, processing 
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within the brain takes time. This scaling of response time with decision difficulty has long been 

thought to indicate that harder decisions take more processing time to resolve an answer 

(Hyman, 1953). In sum, whatever our brains are computing, it is not instantaneous. 

A second, and more surprising result of these experiments is that people consistently 

make different responses to the same physical stimuli (McNicol, 2005). For example, when 

asked multiple times if an arrow tilted very slightly to the left was pointing left or right, a person 

might say “left” 80% of the time, but report “right” the other 20% of the time (see Figure 1.1). 

This result may seem benign, but it contradicts very influential ideas about human behaviour. For 

example, neoclassical economics assumes that people have stable and transitive preferences, and 

make decisions using full information (Henry, 2012). Further, mirroring the effects of decision 

difficulty on response time, researchers found that people are less accurate when the decision 

they are faced with is more difficult (McNicol, 2005). Of relevance to this thesis, human 

inconsistency despite external environmental consistency suggests the human brain is noisy. 

Noise can mean many things in neuroscience and psychology - predictable fluctuations 

tangential to what is directly relevant (Howell, 2011), degraded relevant signals (Shadlen & 

Newsome, 1994), or even random fluctuations (Ando & Graziani, 2012). Regardless of the 

source of this noise, the fact remains that humans are consistently inconsistent. While these 

results may seem intuitive, they hint at the architecture behind the fundamental cognitive process 

of decision making. 
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Figure 1.1: Mockup of a typical experimental figure in visual psychophysics. For a given 

stimulus intensity (e.g., how tilted an arrow is to the left or right, x-axis), when the participant 

needs to make one of two responses (two-alternative forced choice), there is a corresponding 

proportion the participant has responded “right” (y-axis). For this mockup, a psychometric 

function is used instead of data points, which is a widely applied inferential model that captures 

much of the data in these tasks (Gescheider, 2013). At medium stimulus intensities (e.g., an 

arrow pointing perfectly in the middle) participants tend to report “left” and “right” equally. The 

point at which subjects respond with each option equally is named the point of subjective 

equality, and can be different from true stimulus equality (and reveals that the subject has a bias 

to respond with one of the options). Of particular note, when the stimulus is slightly deviated 

from the middle stimulus intensity, participants still report the incorrect response, but less 

frequently. 

 

 

Any model of decision making must therefore account for the findings that (1) 

information to the brain is delayed, (2) cognitive processes take time, and (3) neural processing 

is noisy. Given these constraints, models must predict that when decisions are more difficult, 

people tend to (1) be less correct, and (2) take more time to report their decision.  

Several formal models have been proposed to explain decision making in humans. The 

most successful class of models in this regard are sequential sampling models of decision making 
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(Gold & Shadlen, 2007). Sequential sampling models posit that the human brain takes repeated 

samples of information relevant to a decision (i.e., evidence) over a period of time, and commits 

to a decision when there is enough information to support a particular action. The most common 

task used by modern experiments using sequential sampling models is the random dot motion 

(RDM; see Figure 1.2) task (Britten, Shadlen, Newsome, & Movshon, 1992). A circle filled with 

moving dots is presented to a participant, and they are asked to determine if in general the dots 

are moving left or right. The decision is made easier by manipulating the level of motion 

coherence (i.e., how many “coherent” dots are moving in the same direction). Additionally, the 

stimulus is noisy, as the motion of the remaining “non-coherent” dots are in a randomly 

determined direction. Sequential sampling models state that humans performing this task take a 

small sample of motion, process this information to determine whether, and how much, the 

motion favors responding left or right, and then either decide to continue sampling the motion or 

make a response. 

 

 
 

Figure 1.2: Random dot motion task stimuli. Several dots in a circle move in a specified 

direction and are periodically replaced by new dots. Trials typically have a set level of motion 

coherence, where a subset of dots move in the same direction (usually directly left or right; 

depicted as black dots), and the remainder of the dots move in a randomly determined direction 

(depicted as white dots in this mockup - all dots appear the same in the task). Participants are 

asked to determine whether the dots are moving to the left or to the right. More motion 
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coherence makes the left/right motion discrimination decision easier to participants. Reprinted 

from Zhang, J. (2012). The effects of evidence bounds on decision-making: Theoretical and 

empirical developments. Frontiers in Psychology, 3. Copyright 2012, Zhang. 

 

 

Two of the most successful and widely used sequential sampling models are race models 

(Smith & Vickers, 1988) and drift diffusion models (Ratcliff & Rouder, 1998; see Figure 3). 

Race models generally state that humans sample relevant information and after some neural 

delay, partition this information into evidence favoring each choice option. To illustrate, in the 

RDM task, this would mean that after a neural delay, each sequential sample of the world 

provides some noisy evidence for responding left, and some noisy evidence for responding right. 

Two “accumulators”, one for left motion and one for right motion, add up all of the past samples 

favoring their respective direction. When one accumulator reaches some specified threshold 

value, that accumulator wins the race and its respective action is executed. This accumulation 

process has several desirable qualities in a decision making model. Namely, it includes some 

delay between the external stimulus and processing, its processing necessarily takes time, and it 

specifies that the values of evidence favoring left and right motion are subject to internal noise. 

In this respect, it considers all three constraints of a foundational decision model. Further, it 

provides a mechanism for why people make inconsistent choices - internal processing noise. If 

many dots are moving to the left and very few to the right, but the evidence values favoring right 

motion over a period of time are high due to random internal noise, then on that trial a right 

response is more likely even though this does not align with the motion of the stimulus. Race 

models of decision making not only consider the three constraints previously mentioned, but 

have been shown to accurately predict the pattern of accuracy and reaction times in decision 

tasks as well (Bogacz, 2007). 
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Figure 1.3: Schematic of a race model (left panels) and a drift diffusion model (right panels) of 

decision making during a random dot motion task (top row). In both models, response options 

(e.g., “left” in blue, and “right” in red) are represented internally. Evidence for these response 

options is sampled from the stimulus, which leads to values for that moment favoring responding 

“left” and favoring responding “right” (second row). Here, the mean evidence for a left decision 

is higher than evidence for a right decision, as there are on average more dots moving coherently 

to the left. These momentary samples of evidence are summed up into independent accumulators 

(third row, here represented on the same plot for simplicity). Evidence arrives after some non-

decision time (tnd) because of neural and processing delays. In a race model, evidence is 

accumulated until one accumulator reaches some threshold (B). In a drift diffusion model, the 

difference in accumulated evidence is taken (fourth row), and a decision is made when the 

difference crosses a threshold (+/-B). On this example trial, both response options have 

accumulated positive evidence at similar rates, and so a race model with an absolute threshold is 

faster at arriving to a decision than a diffusion model based on relative evidence. 
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Race models make accurate predictions about human behaviour, and provide an 

explanation (at a level of abstraction) regarding how decision making may be actually 

implemented in the human brain. Not only have race models been tested with behavioural data 

from different behavioural tasks (Smith & Ratcliff, 2004), but neural recordings have shown 

patterns of activity consistent with the model (Platt & Glimcher, 1999) - a slow buildup of 

activity until a response is executed (i.e., the accumulation of evidence over time). However, 

race models fail to account for a specific but important behavioural result. In random dot motion 

tasks, evidence for one response (e.g., left moving dots) comes at the expense of evidence for the 

alternative response. In other words, having more left moving dots necessarily means fewer right 

moving dots. Therefore, both left and right options cannot have high levels of evidence at the 

same time. This proves to be a problem, as in real life sometimes we need to make choices 

between two very desirable options (e.g., watching the rest of a playoff hockey game vs. 

sleeping). While race models predict that high evidence for both of two options would lead to 

very fast decisions (both accumulators reach bound very quickly), this prediction is not borne out 

in the data (Bogacz, 2007). 

 An alternative to the race model that solves this particular issue is the drift diffusion 

model (Ratcliff & Rouder, 1998). The drift diffusion model has all of the processes and qualities 

of a race model, but instead uses the difference in accumulated evidence as determining reaction 

times and choices (see “Accumulated Evidence Difference” in Figure 1.3). Independent 

accumulators for each option are typically still present, but an online difference between these 

accumulators is calculated. When the difference reaches a positive threshold or a negative 

threshold, that respective action is selected. Because a difference in evidence is taken, it solves 

the above problem. Namely, when two highly desirable responses compete, it takes more time 
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for the difference to reach threshold (and for a response to be reported), and therefore makes this 

kind of decision a difficult one rather than an easy choice. Drift diffusion models have thus been 

applied widely and with great success on a range of tasks (Ratcliff, Smith, Brown, & McKoon, 

2016). 

Some of the strongest support for drift diffusion models, and evidence accumulation 

models in general, comes from studies of neural recordings. Single cell recordings, 

predominantly in monkey lateral intraparietal area (LIP), have shown firing rates that match 

general evidence accumulation models - namely a signal buildup for several hundred 

milliseconds that drops sharply just before a response (typically a saccade; Gold & Shadlen, 

2007; Platt & Glimcher, 1999; Shadlen & Newsome, 2001). Further, studies in humans using 

MEG (Donner, Siegel, Fries, & Engel, 2009), fMRI (Krueger et al., 2017), and EEG (O’Connell, 

Dockree, & Kelly, 2012) have shown general parietal signals that match evidence accumulation 

model predictions, despite the non-invasive nature and noisy signal resolution of these methods. 

Of particular note, activity at central parietal electrodes using EEG is consistent with a 

bounded evidence accumulation model. Termed the centro-parietal positivity (CPP; O’Connell et 

al., 2012), the timing and build-up rate of this signal are modulated by the strength of decision 

evidence. Importantly, this signal has several desirable properties for candidate decision signals. 

First, it is argued to be distinct from observed sensory encoding (steady state visually evoked 

potentials; SSVEP) and motor preparation (lateralized readiness potential; LRP) signals in EEG. 

Second, the CPP is observed when making a decision without an overt action (e.g., when 

reporting decisions at the end of a block of trials). Third, the CPP is observable for several kinds 

of decision evidence including changes in visual contrast, auditory volume, auditory frequency, 

and motion using the random dot motion task (Kelly & O’Connell, 2013; O’Connell et al., 
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2012). Further, in a Go/No-Go task, parameters of a one-choice bounded accumulation model 

were related to CPP build-up rate and peak latency (Murphy, Robertson, Harty, & O’Connell, 

2015). Finally, the CPP is broadly consistent with single cell recordings from monkey area LIP, 

as topographies strongly indicate a parietal source for this signal. For this reason, studies have 

recently argued that the CPP is synonymous with the classic P300 component in EEG research 

(Twomey et al., 2015). Together, these results suggest the brain may implement a process very 

much like a drift diffusion model. 

 While a drift diffusion model of decision making, and evidence accumulation models in 

general, are extremely appealing, they are not without criticisms and limitations. Notably, 

diffusion models are unable to account for a pattern of consistent and very early responses 

(explored in depth by LATER models of decision making; Noorani & Carpenter, 2016). 

Additionally, evidence accumulation models in general break down when trying to explain 

choices that take minutes, hours, or even days (such as buying a house). Finally, even today new 

studies are being published which show decision making is more complex than past theories and 

models can account for. For example, behavioural data and neural recordings point to the 

presence of an urgency mechanism (Thura, Beauregard-Racine, Fradet, & Cisek, 2012; Thura & 

Cisek, 2016). Sampling information takes neural resources, and not executing an action can 

sometimes lead to a missed opportunity. Researchers have proposed different mechanisms, such 

as an urgency signal multiplicative to evidence (Thura et al., 2012), or a dynamic threshold that 

collapses over time (Drugowitsch, Moreno-Bote, Churchland, Shadlen, & Pouget, 2012; 

Hawkins, Forstmann, Wagenmakers, Ratcliff, & Brown, 2015), in order to push people toward 

action. On the other hand, longer decisions have shown results inconsistent with a “pure” 

diffusion model, which have led some to propose that accumulators are leaky in nature (i.e., they 
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slowly return to baseline over time) and drive individuals to refrain from making a decision 

(Usher & McClelland, 2001). In sum, while drift diffusion models are arguably our best 

candidate for how we make decisions, many questions still remain. 

1.2 - Between a “Response” and a Response 

While cognitive models of decision making inspired by psychophysics are extremely 

attractive and useful for behaviour in psychology labs, they have until recently failed to consider 

an entire second half of decision making taking place outside of the lab - moving. When we 

make choices in our world, most require the execution of a movement that takes at least as long 

as the theorized decision (which only predicts how long it takes to react, or start moving). For 

example, whether reaching to grab a jar of creamy or crunchy peanut butter off a grocery shelf, 

or biking to a restaurant for the evening, both involve a period of time between action onset and 

the completion of a decision. The vast majority of psychology, even today, views movement as 

an output to a function, or an arrow protruding from the mysterious black box of cognition. 

These approaches largely assume that any movement required to enact a choice (e.g., 

reaching to the crunchy over the creamy peanut butter) occurs after, and is isolated from, any 

cognitive deliberation. Such models can be viewed as goods-based models of decision making 

(see Figure 1.4 A; Padoa-Schioppa, 2011). These include many traditional models of decision 

making discussed above (e.g., race, drift diffusion) which specify a competition between 

available options until a threshold determines which action to then plan and execute. 
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Figure 1.4: Architecture of different decision models as depicted in Chen & Stuphorn (2015). 

Classic decision models outlined in the previous section fall into A) Goods-based decision 

making, where a decision is made, and then the respective action is planned and executed. B) 

Action-based models of decision making state that evidence for each option is input to motor 

representations for each option, and that it is motor representations that compete for selection. C) 

A distributed consensus model of decision making states that coordinated competition occurs in 

many specialized areas, and a decision in one area is often enough to send a cascade through 

areas in order to come to a decision by consensus. D) Sequential models of decision making state 

that competition occurs at both the representation of option value, and at motor representations. 

Information about the ongoing competition regarding the value of available options continuously 

influences the competition of motor representations (and not the other way around). Reprinted 

from Chen, X., & Stuphorn, V. (2015). Sequential selection of economic good and action in 

medial frontal cortex of macaques during value-based decisions. Elife, 4, e09418. Copyright 

2015, Chen et al. 

 

 

Goods-based models of decision making have recently undergone a significant change 

because of the recent surge of interest in “changes of mind” (Albantakis & Deco, 2011; 
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Kaufman, Churchland, Ryu, & Shenoy, 2015; Kiani, Cueva, Reppas, & Newsome, 2014; 

Resulaj, Kiani, Wolpert, & Shadlen, 2009; Selen, Shadlen, & Wolpert, 2012; van den Berg et al., 

2016) – the infrequent (e.g., 5%) but reliable observation that individuals will often initiate an 

action toward one choice option, but switch to another choice option before the action is 

complete. This action switching behaviour mid-movement supports the idea that decision making 

continues even after an action is initiated. From this observation, Resulaj and colleagues (2009) 

put forth an extremely successful model which expands a drift diffusion model of decision 

making into movement. Specifically, when a threshold is reached, an action toward the winning 

option is initiated, but the drift diffusion process does not stop. If the continuing drift diffusion 

process crosses a new post-initiation threshold before a specified time into the movement, the 

participant then switches motor plans to the alternative option. This model not only includes all 

of the attractiveness of a drift diffusion model, but is also able to explain the frequency of 

changes of mind (Resulaj et al., 2009), and is able to predict confidence ratings (van den Berg et 

al., 2016). Further, it holds an intuitive value, as all of us have experienced a moment where our 

hand may reach toward one option in our environment, only to be pulled toward the alternative 

by some last second insight. 

The changes of mind model (Resulaj et al., 2009) only necessitates a slight change, if 

any, to the goods-based architecture. Instead of a goods-based competition selecting a single 

action when a threshold is reached, the goods-based competition continues to compete and sends 

a switching signal to the action system when a decision has changed. Importantly, this 

architecture makes an implicit prediction about what neural signals should look like. It would be 

unnecessary for continuous information to be relayed from the goods-based system to the action-

based system, as all the action system cares about is which singular action to take. Therefore, we 
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should observe a single burst of information from the goods system to the action system 

whenever an action is to be taken or switched, along with the classic accumulation-to-bound 

signal in decision systems (e.g., Platt & Glimcher, 1999). 

However, studies of neural signals in motor cortex instead support an action-based model 

of decision making (Figure 1.4 B), where options compete at the level of motor representations. 

The most prominent theory of this class of models is the affordance competition hypothesis 

(Cisek, 2007). This framework states that instead of a serial process of decision making, multiple 

potential actions are represented and compete in parallel. In other words, instead of a decision 

making process designating a winner to communicate to the motor system, the motor system 

already represents potential actions to all available options, which themselves compete. One of 

the benefits of such an architecture is that it affords an adaptive behavioural advantage for 

changing decisions quickly if our environment changes. While a changes of mind model affords 

the ability to change actions, an action-based model with both actions already planned is much 

quicker at this adaptation. Most notably, the affordance competition hypothesis is supported by 

neural recordings from monkey dorsal premotor cortex (Cisek & Kalaska, 2005). When monkeys 

are presented with two possible targets to reach toward on a screen, dorsal premotor neural 

population activity increased in the directions of both the potential targets. Additionally, this 

increased activity was sustained throughout a period of time when the potential options were 

removed from the screen, suggesting the activity reflects target representation rather than mere 

stimuli input. Finally, when told the direction they were to reach toward (through a central color 

cue), population activity in the correct direction increased further while activity in the incorrect 

direction was suppressed. This pattern of activity - an increase in activity associated with one 

option coincident with suppression of the alternative - suggests competition at the level of 
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premotor cortex representations. Interestingly, downstream activity in primary motor cortex only 

showed increased activity to the correct direction, suggesting that any representation and 

competition of parallel motor plans are resolved by primary motor cortex into a single coherent 

motor command for execution. 

 The affordance competition hypothesis, and action-based models of decision making in 

general, are further supported by a wealth of experimental data. If forced to move before 

participants are cued as to which of two options are correct (termed go-before-you-know tasks), 

reach trajectories reveal spatial averaging, as they initially move toward the midpoint of options 

before deviating toward one (Chapman et al., 2010). Additionally, participants show averaging 

of feedback gains, as participants apply an intermediate corrective force in response to a 

perturbation of their hand while moving (Gallivan, Logan, Wolpert, & Flanagan, 2016). These 

averaging effects suggest that if competition between parallel motor plans is not resolved, an 

average plan is taken as both options are still likely to be the ultimate winner. Further, 

trajectories have revealed that motor control and movement costs are integrated with decision 

value (Chapman, Gallivan, & Enns, 2014; Trommershäuser, Maloney, & Landy, 2008; Wolpert 

& Landy, 2012), suggesting that the motor system has a say in which option is selected. In 

addition, a recent approach in decision science has used the measurement of continuous 

movement behaviour to capture decision-making dynamics, revealing how physical movements 

read out “hidden” cognitive states (Song & Nakayama, 2009). Several recent reviews on this 

specific topic (Freeman, Dale, & Farmer, 2011; Gallivan & Chapman, 2014; Song & Nakayama, 

2009; Spivey & Dale, 2006; Wolpert & Landy, 2012) document the reliable effect that conflict 

between response options results in similarly conflicted movements (e.g., curved hand or mouse 

trajectories). For instance, when asked to move a computer mouse to click on one of two images 
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that matches a read aloud word (e.g., “picture”), mouse trajectories are more direct when 

choosing between two dissimilar options (e.g., picture and jacket), relative to images that are 

phonetically similar (e.g., picture and pickle; Song & Nakayama, 2009). These characteristic 

curved trajectories are unlikely to come from a goods-based model of decision making where 

movements are binary (i.e., straight toward one option or the alternative), and instead lend 

support to competition at some level of motor representation. 

 The most successful computational model within an action-based decision making 

architecture is able to successfully reproduce movement competition dynamics (Christopoulos, 

Bonaiuto, & Andersen, 2015), spatial averaging of trajectories in go-before-you-know tasks, and 

can additionally account for observed neural patterns during reaching tasks (Christopoulos & 

Schrater, 2015). This “biologically plausible computational theory” integrates spatial sensory 

input, expected reward of options, and task context into a dynamic neural field, which simulates 

the activity of hundreds of neural populations each tuned to a different direction in space. These 

directionally-tuned neuronal populations compete (in this case, laterally excite and inhibit each 

other), and once a population reaches a specified activity threshold, an optimal control policy 

(read: motor plan; Todorov & Jordan, 2002) for that respective direction is activated. A weighted 

average of active policies then determines how the hand moves in space, before the process is 

updated by a new state of the hand in space. 

 While this formal model aims to closely mirror the complexity of biological systems, and 

is able to explain a wealth of behavioural and neural data, it suffers the opposite problem from 

that of many goods-based models (e.g., the race and diffusion models detailed above). Namely, 

the model has not yet been shown to predict reaction times and accuracy in decision making 

tasks. In addition, the complexity of its architecture and the number of parameters (over 30) 
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make this formalization difficult to validate in order to explain human decision making 

behaviour and individual differences between decision makers. 

Although an action-based model of decision making is an appealing solution to the 

problem of decision-modulated movements, two additional architectures of decision making 

models are worth mentioning when discussing the link between the pre- and post-movement 

initiation halves of decision making. One additional architecture put forth by Cisek is the 

distributed consensus model of decision making (Figure 1.4 C; Cisek, 2012). This idea states that 

competition between available options takes place at many loci in the brain at once. A distributed 

consensus model of decision making is appealing because information can compete in areas that 

are already specialized for subsets of information (e.g., motion information competes in brain 

area MT/V5, whereas motor cost information competes in premotor areas). Additionally, this 

model predicts that decision signals can come from any of these specialized regions, which 

offers an explanation to the elusiveness of a decision making area in the brain (Katz, Yates, 

Pillow, & Huk, 2016; Yates, Park, Katz, Pillow, & Huk, 2017). However, there is little current 

evidence which supports a distributed consensus model of decision making, and studies have 

shown a lack of coordinated and recurrent connections between value and action information in 

specific brain regions as predicted by a distributed consensus model (Chen & Stuphorn, 2015). 

 Finally, Chen and Stuphorn (2015) suggest a fourth kind of decision architecture termed 

sequential models of decision making (Figure 1.4 D; not to be confused with sequential sampling 

models of decision making). In this architecture, value information competes in the goods-based 

system, is communicated continuously to the action-based system with some neural delay (50-

100 ms), and additionally competes within the action-based system. All potential actions are 

represented and compete in the action system, much like action-based models of decision 
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making, but receive inputs from the separate and competitive goods-based system. 

The sequential model of decision making is supported by recordings of directionally-

tuned neurons in the supplementary eye field (SEF), where monkeys made decisions between 

different values presented at four possible locations for a saccade (Chen & Stuphorn, 2015). 

Because target value and physical location were disentangled, the researchers were able to 

analyze the distinct contribution of value and action on firing rates in the SEF. Classification 

accuracy analysis showed a ~100 ms delay between value and action information (Chen & 

Stuphorn, 2015). In other words, neural signals in monkey SEF carry information about what 

option is going to be selected ~100 ms before information about the upcoming saccade direction 

can be decoded. Further, the authors argue that competition additionally occurs within the action 

system. Initially, activity in neurons tuned for both potential saccade directions increases, and 

later this activity is gradually increased in the to-be-selected direction and suppressed in the 

direction associated with the non-chosen option. However, while this two process model of value 

and action in decision making is promising, support for this recent model is still relatively 

limited. 

In summary, outside of traditional psychology labs, movement plays an integral part in 

decision making. Not only do we commonly execute lengthy movements after a period of 

deliberation, but studies have shown that decision making continues while we move, and even 

influences how we physically move in space. Why then is it important to identify the exact 

system with which decision making and movement are linked? Comparing processes and 

architectures of decision making is important not only because they can explain how our brains 

are organized, they also predict what we choose, when we choose it, and how we behave in 

between. For instance, any model without competition between action plans has a very difficult 
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time explaining the wealth of behavioural effects seen in reach trajectories. Further, any model 

without goods-based competition implies that there is no “pure” value signal in the brain not 

modulated by the value of an action in physical space. In sum, although the differences between 

models and architectures may seem relatively small, the implications of one model over another 

have vast consequences for human behaviour. 

1.3 - Objectives and Predictions 

 In this thesis I propose a new formal model of decision making, and provide support for 

the model with both behavioural and neural data. The proposed model is aimed at bridging the 

gap between the two halves of decision making: pre- and post-movement initiation. In short, this 

formal model blends a drift diffusion model with competition between motor representations. 

In order for this formalization to be a useful model of decision making, it must predict 

accuracy and reaction times for decisions of varying difficulties. Additionally, for the model to 

bridge pre- and post-movement initiation, it must also predict movements. Specifically, the 

model should explain key findings in the literature: changes of mind, curved movements for 

more difficult decisions, and motor averaging. Further, the model should be flexible enough to 

explain differences between individuals, and behaviour in a wide range of tasks. 

 For this model to be appealing, it must also address limitations of competing models of 

decision making. Competing models (specifically, that of Resulaj et al., 2009) cannot account for 

predictable fluctuations in reach trajectories when changes of mind are removed, cannot account 

for effects such as motor averaging behaviour, and are fit to all of the data they aim to predict. 

The new formalization should be able to address all of these shortcomings. Therefore, in the first 

part of this thesis (Chapter 2), I will spell out this new model in detail and validate the model by 

applying it to a behavioural data set from a reach decision task. 
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In the second part of this thesis (Chapter 3), I will further support this new formal model 

with neural data. Specifically, models seeking to explain foundational human behaviour do well 

to constrain possible solutions with plausible neural mechanisms and observed neural patterns. 

Many solutions to a problem can provide useful predictions, but only a subset of those solutions 

may possibly be implemented in neural architecture. For example, template matching provides a 

solution to the problem of letter recognition, but is much less resource efficient than other 

models and therefore less likely to be implemented in the human brain (Grainger, Rey, & Dufau, 

2008). Other models, like those of dopamine and reward processing may have several appealing 

models for a function of the neurotransmitter (e.g., value coding vs. reward prediction error), but 

observed firing rates of neurons push one model to be rightly favored over the alternative 

(Montague, Hyman, & Cohen, 2004). Therefore, we can use neural data to help constrain models 

of decision making. 

While our model is formalized around abstractions of several neural mechanisms, it is 

important to test key predictions of our model against observed neural data. Our model makes 

three key predictions about neural signals observed during a reaching task. (1) Our model 

predicts an accumulation-to-bound signal (specifically a diffusion process) representing a 

decision to begin movement. (2) The model predicts signals observed in sequential models of 

decision making (Chen & Stuphorn, 2015), where goods-based information is communicated to 

the action-based system with some delay. (3) Our model predicts that motor plans compete, and 

that this competition should be reflected in ongoing reach trajectories. By testing these 

predictions against observed neural patterns, we should be able to tell what parts of our model 

are supported by neural data, and more importantly what our model cannot account for. 

Additionally, applying the model to a new set of behavioural data provides a valuable 
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opportunity to test model flexibility. 

“All models are wrong, but some are useful” (Burnham & Anderson, 2007). While the 

proposed model is aimed at capturing important aspects of the process of decision making as it is 

actually implemented in the human brain, it will of course be wrong. The human brain is much 

more rich and complicated. However, this model is aimed at building upon the important work 

outlined (and missed) in the above introduction, by fusing concepts to address current limitations 

in the field. Ultimately, the goal of this thesis is to define decision making as a single, continuous 

process in which deciding and moving are intimately linked.   
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2 - Modelling Movement as an Ongoing Decision 

Here, we put forth our own formal computational model of how decision making and 

movement are linked. This model is inspired by action-based and sequential models of decision 

making (Chen & Stuphorn, 2015), and aims to act as a bridge between models largely focused on 

only one half of decision making (e.g., pre-movement initiation, Resulaj et al., 2009; post-

movement initiation, Christopoulos et al., 2015). 

In this chapter, we model decision making as two competitive processes arising from the 

same evidence: one representing the decision to begin a movement, and one representing the 

ongoing desirability of potential actions. We adapt a drift diffusion model to explain reaction 

times of participants in a reaching task, as in Resulaj et al. (2009). The diffusion process acts as a 

goods-based competition, as options compete based on the accumulating differences in 

subjective value. The result of the diffusion process is a “go” signal to the action-based system to 

begin moving when the goods-based system is confident enough in the selection of an option. In 

addition, we implement a parallel accumulation process in the action system, which begins at the 

same time as the goods system but has no bound. The action system is continuously fed 

information from the goods system, and integrates this information into motor representations. 

These motor representations compete, and once a participant is moving, act to shift the 

participant's hand toward options proportional to their desirability. In this way, we aim to explain 

when people begin to move, how they move in physical space, and ultimately what they choose. 

Here in Experiment 1, participants were presented with a choice between two food items 

and were simply asked to reach and touch the one they prefer. While we argue that any decision 

making mechanism would remain almost entirely the same between this value-based decision 

making task and other more traditional decision making tasks (e.g., random dot motion task; 
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commonly termed “perceptual decision making”; Gold & Heekeren, 2014), there are several 

differences of note. While most other experiments ask participants to make a judgement about a 

tightly controlled physical stimulus, here participants are instead asked to choose between 

familiar snack items. Participants in this experiment all have unique preferences for each of the 

items, which we argue better reflects natural tasks. Further, while other experiments state that 

evidence for a decision is derived from sampling an external stimulus, the evidence in our 

experiment is derived from internally generated samples from memory (Shadlen & Shohamy, 

2016). While internally generated evidence is argued to follow the same general mechanism, the 

pathway with which evidence arrives (e.g., visual pathway vs. memory retrieval) is worth 

keeping in mind. Importantly, many previous tasks have used a noisy stimulus (e.g., random dot 

motion), and past studies and models have shown that hand trajectories are sensitive to random 

fluctuations in physical sensory evidence (Resulaj et al., 2009). Here, we use static stimuli, and 

so any fluctuations in decision making are due entirely to noisy internal processes. Finally, our 

task involves two spatially separate stimuli as opposed to a single central stimulus (e.g., random 

dots), which we argue again better reflects natural task requirements and may provide clearer 

insight into spatial mechanisms for movement. 

2.1 - Methods 

2.1.1 - Behavioural experiment. Thirty-two right-handed undergraduates made right-

hand reaches to indicate which of two projected images of food items they preferred on every 

trial (see Figure 2.1). There were four unique food items (Dairy Milk, Oh Henry, Doritos, and 

Lays Original chips) presented in all six non-matching pairs. Each pair was presented 60 times 

(side counterbalanced) for a total of 360 test trials. On each trial participants started with their 

finger near a home position and waited 1-2 seconds (random and uniformly distributed) for the 
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images to appear (and a coincident beep). Images always appeared 40 cm forward from the start 

position, and were positioned 20 cm to the left and right of the midline. Black outlined squares 

(+/- 7.5 cm) appeared around the images to indicate the area where the participant should touch 

to select that option. Once the choice options were available, the participants had 2.5 s to initiate 

their movement. Once movement had been initiated, participants had a further 2.5 s to complete 

their choice movement by touching the option they preferred. Consistent with our intent to have 

participants comfortably self-initiate their movements and choices, reaction and movement times 

did not approach these time constraints (RT M = 442 ms, range: 52-1527 ms; MT M = 600 ms, 

range: 216-2366 ms). To motivate consistent and veridical preferences, at the end of the test 

session, two trials were selected at random and the treats selected for those particular trials were 

given to the participant (consistent with past value-based decision making studies; e.g., Krajbich, 

Armel, & Rangel, 2010). Finally, at the end of the reaching trials, participants rated how much 

they liked the treats on a 9-point scale, from -4 (dislike very much) to +4 (like very much), and 

rank ordered the 4 treat items from most to least preferred. The rankings were used to collapse 

trials into three decision difficulties: easy (rank difference of 3; i.e., 1 vs. 4), medium (rank 

difference of 2; i.e., 1 vs. 3, 2 vs. 4), and hard (rank difference 1; i.e., 1 vs. 2, 2 vs. 3, 3 vs. 4). 

Collapsing conditions into easy, medium, and hard was additionally supported by an analysis of 

accuracy and reaction times (see Appendix A.1). In this task, correct choices were defined as the 

trials where participants chose the more preferred option (according to their self-report at the end 

of the experiment). This is a common definition in value-based decision making research 

(Krajbich & Rangel, 2011), but nonetheless assumes that participants’ preferences are stable 

across the experiment, and that their self-report matches their true preferences. Finally, unlike 

many other reaching experiments, this task is intuitive and simple for participants, as they are 
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asked to simply “touch what you like when it appears.” 

 

 
Figure 2.1: Depiction of experiment setup for Experiment 1. Six motion tracking cameras 

captured the three-dimensional position of a reflective marker on the participant’s right index 

finger. A projector displayed the start position and available options on each trial onto the table 

in front of the participant. 

 

 

2.1.2 - Data analysis. Participants’ responses were recorded at 60 Hz using Optitrak 

motion tracking cameras via a reflective motion-tracking marker placed near the tip of their right 

index finger. Reaction time was defined as the time between choice option presentation and 

when a participant started moving, determined by velocity and distance criteria (Gallivan & 

Chapman, 2014). Movement time was defined as the time between movement onset and when 

the participant’s finger touched one of the two choice options. Consistent with past research, a 

change of mind was said to have occurred if the area between the midline and the hand trajectory 

on the side of space opposite to the final chosen side of space exceeded 0.1 cm
2
 (Resulaj et al., 

2009; van den Berg et al., 2016). Trials with a reaction time < 100 ms were rejected (2.4% of all 
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trials), as were trials where the participant initiated movement before the choice options appeared 

or were slower than the experimentally mandated 2.5 s reaction and movement time limits 

(6.6%). Initial choices were defined as the side of space of the hand at 20% through each 

reaching movement (~6 cm). This criterion was chosen to reduce biomechanical biases that 

significantly inflated estimated changes of mind (see Appendix A.2). As such, changes of mind 

were calculated exclusively after 20% of each reaching movement for both behavioural data and 

model simulated data. 

2.1.3 - Primer on drift diffusion parameters. We model a drift diffusion process as 

determining when to begin a reaching movement (as in Resulaj et al., 2009). Our specific 

implementation relies on 5 model parameters. Before we explain our model in depth, it may be 

useful for some readers to familiarize themselves with what these parameters mean, and their 

impact upon the process and results. 

 A diffusion process typically begins with a randomly sampled non-decision time on each 

simulated trial (see Figure 2.2). This non-decision time acts to simulate the neural delay between 

external information and the decision process (and typically includes delay between deciding on 

an action and responding using a keypress or saccade as well). Non-decision time is sampled 

from a normal distribution with mean tnd and some variance (usually a fixed number). tnd is the 

first parameter of the diffusion process, which can vary between individuals (i.e., some people 

are faster at processing information than others) and tasks (i.e., some tasks take less time for 

information to reach the decision system than others). All else held equal, longer non-decision 

times result in longer reaction times, and shorter non-decision times result in shorter reaction 

times. 

 The second parameter is sensitivity to evidence (k). In perceptual decision making, an 



26 

 

exact value of external information is given to the participant (e.g., luminance in candela per 

square metre). Remember from Chapter 1 that in evidence accumulation models, evidence at 

each time point is randomly sampled from a gaussian distribution with a mean proportional to 

external evidence (e.g., for a luminance of 400 cd/m
2
, evidence is sampled from a distribution 

with mean 400). However, participants each have their own sensitivity to this evidence, which 

acts as a multiplier on the external evidence to determine the internal impact of this information 

(e.g., k * 400 cd/m
2
 = kC = u = mean evidence). A greater sensitivity value results in more 

extreme evidence, while a smaller sensitivity value means less extreme impact of external 

information on evidence accumulation. When k is zero, external information has no impact on 

evidence accumulation, which results in random choices without regard for external information. 

 The third and final parameter in a “pure” drift diffusion model is the decision bound (B). 

This bound, or threshold, determines how much information is needed in order to commit to an 

action. When the difference in accumulated evidence crosses the upper or lower bound on a 

simulated trial, that respective action is taken. Here, +B represents the left option, and -B 

represents the right option. A higher decision threshold means that participants are more 

conservative, and need a greater difference in evidence between options to commit to a decision. 

This hesitation to respond means participants are more likely to be correct, but take more time to 

act. Conversely, a lower decision threshold means participants require little difference in 

evidence favoring one option to commit to it, which makes decisions quicker and more 

impulsive. In this way, a drift diffusion model can be analogous to signal detection theory 

(Pleskac & Busemeyer, 2010). 

 Additionally, we implement two more commonly used parameters which both act to 

explain different aspects of response bias. The initial drift offset (y0) determines where the drift 
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diffusion process initially starts. If y0 is zero, then there is no bias, and the model simply reduces 

to the three-parameter “pure” diffusion model. However, if y0 is positive, then less of a 

difference in evidence is needed in order to reach +B, and relatively more evidence is needed to 

reach -B. In this way, the initial drift offset biases participants to choose the option on one side of 

space faster, and more often. 

 Finally, the second response bias parameter (and fifth and final parameter in our 

implementation) is drift bias (u0). This bias parameter influences the mean of the momentary 

evidence distributions on each side of space. Remember that evidence at each time point is 

sampled from a gaussian distribution with mean u = kC, and some variance, where C is the 

amount of external evidence (e.g., 400 cd/m
2
), and k is the person’s sensitivity to that evidence. 

Drift bias acts to shift the mean of these distributions, such that the above equation is now u = kC 

+ u0 for the left option and  u = kC - u0 for the right option. For instance, if u0 is positive, then 

the mean of evidence for the option on the left will be positively shifted, while the mean of 

evidence favoring the right option will be negatively shifted. In this way, drift bias acts to 

constantly pull the evidence for one option toward threshold, and push the alternative away. Like 

initial drift offset (y0), drift bias (u0) also acts so that one side of space is chosen more often than 

the other, and the reaction times for the biased side are faster. The critical difference between 

these two parameters is the nuanced way in which they shape reaction time distributions for left 

and right choices. 

 To summarize, we implement five parameters for our drift diffusion model: non-decision 

time (tnd), sensitivity to evidence (k), movement initiation bound (B), initial drift offset (y0), and 

drift bias (u0). The first three parameters are part of a “pure” drift diffusion model (Ratcliff & 

Rouder, 1998), while the last two parameters give us flexibility to account for side of space 
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biases commonly seen in reaching and decision making tasks (Gallivan & Chapman, 2014). 

 
Figure 2.2: Schematic of a five-parameter drift diffusion model. An external stimulus (C) is 

sampled by the system, which has some sensitivity to this information (k). Along with a constant 

side of space bias (drift bias, u0), this determines the mean of a random samples of evidence (u = 

kC + u0). After some time between stimulus onset and this information reaching the decision 

system (non-decision time, tnd), sequential sampling begins. At every time point, the stimulus is 

sampled, which results in a noisy value of evidence for choosing left and for choosing right. 

Evidence is accumulated, and a difference in accumulated evidence is calculated. When the 

difference in accumulated evidence crosses a decision threshold (+/- B), the corresponding 

response is made. 

 

 

2.1.4 - Modelling of reaction times. Here, we model decision making and movement as 

effectively two accumulation processes arising from the same evidence: one representing the 
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decision to begin moving, and one representing the ongoing desirability of choice options in 

physical space for movement. A drift diffusion process determines reaction times (as in Resulaj 

et al., 2009), and another accumulation process based on the same evidence determines how 

much each motor representation influences reach trajectories. 

We implemented a simplified drift diffusion processes (Gold & Shadlen, 2007; Palmer, 

Huk, & Shadlen, 2005; Resulaj et al., 2009; Smith & Ratcliff, 2004) that accumulated evidence 

for choosing the left option and choosing the right option on each trial. Starting at y0 (initial drift 

offset) the difference between the two accumulators is computed, and the process ends when the 

difference between accumulators reached a fixed bound (+/- B). The time it takes for the 

difference between accumulators to reach bound (td), along with some sensory and motor delay 

(tnd) determines movement initiation time after stimuli are presented (i.e., reaction time = td + 

tnd). 

Evidence at each sequential sample for each accumulator was drawn from individual 

normal distributions with mean u = kC + u0, and a standard deviation of σ, where C is the 

subjective value of the option at that location (empirically, from the rank-order questionnaire 

data, so values of C could range from 0.25, the lowest ranked snack food, to 1, the best ranked 

snack food), k is sensitivity to evidence, u0 is the constant bias to choose an option on a particular 

side of space (drift bias), and σ is evidence noise per unit time. This is a common 

implementation of a drift diffusion model, and has been shown to explain initial choices (which 

side of space the hand begins reaching to initially), final choices (which option the participant 

ultimately selects), reaction times using key presses, eye movements, and reaching movements, 

as well as neural recordings (Smith & Ratcliff, 2004; Palmer, Huk, Shadlen, 2005; Gold & 

Shadlen, 2007; Resulaj et al., 2009). 



30 

 

We fit five parameters for each participant: sensitivity to evidence (k), movement 

initiation bound (B), non-decision time (tnd), drift bias (u0), and initial drift offset (y0). Models 

with similar parameters have been previously found to give acceptable fits for initial choice 

behaviour in a similar reaching task (Resulaj et al., 2009; van den Berg et al., 2016). Fits were 

obtained by minimizing the negative log likelihood of initial choice accuracy using a binomial 

distribution, and mean reaction times using a Gaussian distribution, for each of the three 

conditions (easy, medium, hard), for each side of space (left preferred, right preferred), and for 

each of the 32 participants. Consistent with past models, we only fitted reaction times from 

correct trials (van den Berg et al., 2016) because of the exclusion of a collapsing bound (e.g., 

Drugowitsch et al., 2012) in our formalization. Fits were computed using fminsearchbnd in 

MATLAB. One set of five drift diffusion parameters was used as an initial guess, and then 

fminsearchbnd attempted to find the best fitting parameters starting from these initial guess 

parameters. This process was repeated with 32 different sets of initial parameters, which results 

in 32 different solutions for each person. The solution with the best fit was used for that 

participant. 32 runs were used to increase the probability the final parameters for each person 

were at global minimum. 

To reduce the number of parameters that needed to be fit and to remain consistent with 

past accumulation models of reaching decision making, we fixed evidence noise per timestep (σ) 

to 1 SD per second, and set the standard deviation of non-decision times (σtnd) to 60 ms (Burk et 

al., 2014; van den Berg et al., 2016). 

Fits of drift diffusion model parameters were obtained by simulating 10,000 trials at 500 

Hz for each condition (easy, medium and hard), for each side (more preferred option on the left 

and more preferred option on the right). This large number of simulated trials was used to assure 
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stability in the estimates of initial choices and reaction times, as the process is noisy. Seven 

participants (21.9%) were removed from model analysis because of the inability of their drift 

diffusion model fits to predict reaction time, or initial choice accuracy. Prediction ability was 

quantified using the proportion of variance that the model could account for in the behavioural 

data (i.e., coefficient of determination; R
2
). R

2
 was calculated by dividing the sum of squared 

residuals (sum of squared deviations between easy, medium, and hard conditions for model and 

data) by the total sum of squares (sum of squared deviations between easy, medium, and hard 

conditions in the data about their own grand mean). Any participants where the R
2
 of both 

reaction time and initial choices was less than zero was excluded (see Appendix A.3). Poor fits 

are not unexpected given our relatively small trials per participant. Without a reasonable drift 

diffusion fit for these participants, modelling of reach trajectories for these participants will fail, 

and therefore these participants were excluded. 

2.1.5 - Modelling of reach trajectories. Here, we conceptualize movements as reflecting 

an ongoing, competitive, and graded accumulation of evidence. This simple formalization is 

inspired by more complex network models of decision making (Bogacz, Brown, Moehlis, 

Holmes, & Cohen, 2006; Christopoulos et al., 2015), and recordings showing competition 

between options in premotor cortex (Cisek & Kalaska, 2005). 

Starting at the same time as the drift diffusion model (i.e., choice option onset), two 

independent “motor” processes accumulate the difference of accumulated evidence at each 

timepoint.  

 

Where aLeft and aRight are the independent evidence accumulators at time point t, mLeft and 
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mRight are accumulated differences in accumulated evidence, and R is a free parameter (which we 

fit to the actual reach data, see below) that dictates the degree of competition between motor 

plans. An R value of 0 means that the accumulator for the left option is unaffected by the right 

option, and vice versa, and so these accumulators continue to increase with respect to their 

accumulated evidence. Alternatively, an R value of 1 means the difference between accumulated 

evidence for the options is added to the winner and subtracted from the loser, assuring any bias 

for one option comes at the equal bias away from the alternative. R can be conceptualized as the 

resistance in an electrical circuit, or in a neural network framework as the weight of an inhibitory 

connection from the source of evidence for one motor representation onto the competing motor 

representation.  

The mLeft and mRight values are then used as weights in a circular mean, where the angles 

are reach angles pointing straight toward both targets. When mLeft and mRight are both positive, the 

resulting mean reach angle will be somewhere in between both targets. When one of mLeft and 

mRight dominates the other, the resulting reach angle will be straight toward that target. In this 

way, reach trajectories are an average of motor representations weighted by their current 

desirability. 

One important aspect of using a weighted circular mean to determine reach angles is if a 

weight is negative, mean angles move away from the respective target. In this way, our model 

already incorporates obstacle avoidance. However, research using obstacle avoidance tasks have 

shown that people still reach toward targets even when very undesirable obstacles are in the way 

(Chapman & Goodale, 2008; Fajen & Warren, 2003). To account for asymmetries in 

approaching targets and avoiding obstacles, any negative weights were attenuated by distance. 

Specifically, negative weights were multiplied by the squared distance to the obstacle divided by 
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total reach length (i.e., the distance from start position to the targets). As such, spatial avoidance 

of an obstacle decreases as the simulated hand moves farther away from the obstacle. In other 

words, something undesirable far away has no effect on movements, while something 

undesirable close by biases movements away from that location. 

For our model to generalize to go-before-you-know tasks (Chapman et al., 2010), mLeft 

and mRight start at insignificantly small positive values. Neural recordings show that before option 

presentation, potential target directions are already positively weighted (Cisek & Kalaska, 2005). 

Further, network models have changed this anticipatory weighting (using reinforcement 

learning) to explain eye gazes, hand trajectories, and motor averaging behaviour (Christopoulos 

et al., 2015). For our current model, adding this anticipatory start value as another free parameter 

fit to the data (along with R) did not improve our ability to predict reach behaviour. Therefore, 

instead of fitting this value, an insignificant positive starting value (eps in MATLAB) was used 

for all participants so both potential locations for a target were positively weighted before option 

onset. This value is supported by several studies, and assures that if participants begin reaching 

with no information (go-before-you-know), they equally approach all potential target locations. 

To approximate motor noise, gaussian noise (SD = 10°) was added to each reach angle at 

each time step. This was done to approximate variability in reach trajectories, seen even on 

single target trials (Chapman et al., 2010). Additionally, to approximate the smooth and sluggish 

changes in reaching movements in our behavioural data, trajectories were smoothed online with 

a weighted exponential moving average over the last six timepoints. Smoothing over past reach 

angles was performed simply because sharp and instantaneous changes in reach direction are 

biologically impossible. For simplicity, reach movements were modelled as having a constant 

velocity. Reach distance for each time step was calculated as the distance from the start position 
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to average reach endpoint divided by minimum movement time (M = 101 cm/s). This velocity 

was calculated for each participant individually. As such, we are purposefully unable to account 

for movement times and are extremely limited in our ability to account for biomechanical biases 

or effects. 

We estimated the value of R, the competitiveness of motor representations, for each of 

the remaining 25 participants. R fits were obtained for each person by minimizing the negative 

log likelihood of two aspects of reaching behaviour we argue captures the competitiveness of 

motor representations. First, the difference in average correct reach trajectories for hard vs. easy, 

and hard vs. medium trajectories at 50% of the reaching movement was fit using Gaussian 

distributions. This aspect was chosen because it captures how much trajectories were forced to 

be straight by midway to the target (i.e., how often the competing motor representation was 

suppressed below a weight of zero). Second, we fit to the proportion of reaches on hard trials 

initially heading left, right, or center (based on +/- 2 SD of reach trajectories on easy trials at 

20% of the reaching movement). We argue this aspect estimates motor representation 

competitiveness at the onset of reaches. These values were modeled using a multinomial 

distribution. Fitting R to these two aspects of reaching behaviour helps estimate the degree to 

which motor plans compete throughout time (i.e., at reach onset and at midway to the target). R 

fits were performed after fitting the five drift diffusion parameters for each subject, and therefore 

did not influence the pre-movement decision process. Fits were computed using fminsearchbnd 

in MATLAB using 12 initial seed parameters, and simulated using 1000 reaches per condition 

per side per person. 

Our formalization is a gross simplification intended to approximate the result of much 

more involved neural processing. We expect such a process implemented at the circuit level to 
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include delays between evidence accumulation and the motor system. Additionally, rather than 

two competing motor representations, we expect a population of neurons tuned to hundreds of 

specific reach angles to excite and inhibit each other dynamically based on variables such as 

preferred angle difference (Christopoulos et al., 2015; Georgopoulos, Schwartz, & Kettner, 

1986). Finally, we purposefully ignore the important and influential work on motor costs 

(Wolpert & Landy, 2012), optimal control theory (Todorov & Jordan, 2002), and biomechanics 

(Cos, Bélanger, & Cisek, 2011) for model simplicity. 
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Figure 2.3: A) Model schematic with an example from one trial with a change of mind. B) 

Simulated reach trajectory from the example trial in the model schematic. The model uses a drift 

diffusion process, where options are sampled to derive evidence for choosing each option. 

Evidence is accumulated, and when a difference between accumulators reaches a threshold (+/-

B), a movement is initiated. In parallel, the independent evidence accumulators feed into 

additional accumulators for motor representations of the options. Accumulated evidence boosts 

the related motor representation, and inhibits the competing motor representation as determined 

by the R parameter. When movement starts, the values of the motor representations are used as 

weights for a circular average between reach angles to each option. The resultant vector is the 

intended trajectory for that time step. In this example, initially evidence favors the dairy milk bar 

(blue) and eventually switches to prefer the doritos (red) which determines movement initiation. 

Evidence continues to accumulate during the reach, and eventually switches to again prefer the 

dairy milk bar shortly after movement initiation. When the evidence that signals the preferred 

option has switched is enough to overcome and switch the motor representation values, the reach 

angle begins to shift toward the dairy milk bar. 

 

 

2.2 - Results 

2.2.1 - Behavioural results. All p-values are greenhouse-geisser corrected where 

applicable. Repeated measures ANOVA showed that, as expected, participants initiated their 

movements faster for easy decisions relative to medium decisions, and medium decisions relative 

to hard decisions (F(2,62) = 28.43, p = 1.32e-8; all multiple comparisons p < .001). Further, 

repeated measures ANOVAs supported that participants were more accurate for easier decisions 

in the expected pattern, both for initial accuracy (F(2,62) = 48.39, p = 1.80e-11, all multiple 

comparisons p < .02), and final accuracy (F(2,62) = 19.37, p = 9.37e-5, all multiple comparisons 

p < .002). Average correct reach trajectories were more curved for more difficult decisions 

(repeated measures ANOVA, F(2,62) = 29.82, p = 1.31e-10), with easy correct trajectories 

straighter than medium and medium trajectories straighter than hard (all ps < .017). Although the 

spatial differences between conditions at 50% of reaching movement are <1 cm, all differences 

are statistically significant. 
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Repeated measures ANOVA showed a significant difference in the amount of changes of 

mind between decision conditions (F(2,62) = 25.41, p = 4.22e-8), with more changes of mind 

during hard decisions than medium decisions (t(31) = 5.82, p = 2.03e-6), but not significantly 

more changes of mind during medium decisions than easy decisions (t(31) =1.97, p = .058). 

Further, there were more corrective (initial choice incorrect and final choice correct) than 

erroneous (initial choice correct and final choice incorrect) changes of mind (t(31) = 5.10, p = 

1.60e-5), replicating a key finding in past research that additional decision information during a 

reaching movement is used to improve accuracy (Resulaj et al., 2009). 

To further test between a goods-based model where a single trajectory is able to switch 

online (Resulaj et al., 2009), and an action-based model where trajectories can be a mixture of 

multiple motor plans, we removed all changes of mind from the behavioural data. Despite the 

removal of all trajectories identified where participants switched motor plans, we still find a 

difference in average reach trajectories at midpoint (repeated measures ANOVA, F(2,62) = 5.25, 

p = .011). Multiple comparisons show a significant difference in the expected direction between 

easy and hard decisions (t(31) = 4.01, p = .00035), but no difference between medium and hard 

(t(31) = 1.83, p = .077), nor easy and medium (t(31) = 1.15, p = .26). This result suggests that a 

switching mechanism does not account for an important aspect of reaching trajectories, as there 

is still some trajectory modulation with decision difficulty, even after removing all changes of 

mind. 

2.2.2 - Model results. Here we directly compare data generated by model simulations to 

actual participant behaviour. The similarity between the model and behavioural data is reported 

as the proportion of variance that the model explains in the behavioural data (R
2
). All R

2
 values 

are reported first as the average proportion of variance of individual participants’ behavioural 
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data accounted for by the model, and second as the proportion of variance in the group mean data 

accounted for by the group mean of model simulations. We expect the average R
2
 of individuals 

to be smaller than that of the grand mean, as it is harder for the model to fit small samples of data 

from variable individuals than general patterns of decision behaviour in a population. 

Our model is able to accurately account for movement initiation times (R
2
 = 0.69; 0.95) 

and initial choices (R
2
 = 0.47; 0.80). While these results are to be expected - our model was fit to 

these data, the drift diffusion framework has been shown to account for these behaviours in other 

work (Resulaj et al., 2009), and participants with particularly poor fits were removed - it is 

significant that these accurate fits extend to value-based decision making in a reaching task with 

different effectors and task geometry. 

Critically, our model extends beyond movement initiation to explain several statistics of 

reaching and decision behaviour. Our model is able to explain the proportion of correct final 

choices, or what people ultimately choose (R
2
 = 0.29; 0.77). Further, our model is able to predict 

the proportion of changes of mind for a given decision difficulty (R
2
 = 0.45; 0.86), and 

reproduces the finding that changes of mind are more likely to correct for an initial error than 

switch from an initially correct movement, t(24) = 5.85, p = 4.97e-6 (see Figure 2.5). The 

similarity between changes of mind observed in our model and in the behavioural data is 

especially noteworthy, as our model was not fit to these characteristics, unlike previous models 

(Resulaj et al., 2009; van den Berg et al., 2016). In other words, the pattern of changes of mind 

simply falls out of our model when it was fit to align with other aspects of behaviour. 

Average simulated reach trajectories are more curved for more difficult decisions as in 

the behavioural data (repeated measures ANOVA, F(2,48) = 76.37, p =1.22e-15), with easy 

correct trajectories straighter than medium, and medium trajectories straighter than hard (all ps < 
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1.13e-8). Finally, we compared the pattern of average trajectories between the model and data. 

For left and right reaches for all three conditions (easy, medium, hard), we collapsed the lateral 

deviation for each averaged trajectory (100 normalized time points) into one array (1 x 600 each 

for model and data). In this way, the model accounts for a large proportion of variance of 

average reach trajectories as seen in Figure 2.6 (R
2
 = 0.97; 0.98). While our model was partially 

fit to the differences between average trajectories at midline, the similarity between model and 

data average trajectories throughout the whole reach is especially noteworthy. 

 

 
Figure 2.4: Comparison of behavioural data and model results for easy (green), medium (blue), 

and hard (red) conditions. Reaction times z-scored within individuals and collapsed across 

individuals for both model (dashed line) and data (solid line). Despite fitting only to mean 

reaction times, the distribution of model RTs closely align with that of the behavioural data - a 

powerful aspect of a drift diffusion model. 
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Figure 2.5: Comparison of group averaged behavioural data (filled circles) and model (black 

line) results for easy (green), medium (blue), and hard (red) conditions. All error bars are S.E.M. 

A) Group averaged reaction time (R
2
 = 0.95). B) Group averaged choice accuracy for initial 

choices (light colors; R
2
 = 0.80) and final choices (dark colors; R

2
 = 0.77). C) Group average 

proportion of changes of mind (R
2
 = 0.86) for corrective changes (dark colors) and erroneous 

changes (light colors). 

 

 

 
 

Figure 2.6: Average trajectories from correct trials (calculated as in Gallivan & Chapman, 2014) 

for behavioural data and model simulations (R
2
 = 0.98). 

 

 

Qualitatively, the model is also able to reproduce idiosyncratic reaching behaviour (see 

Figure 2.7). For instance, participant 16 displayed very straight reaches, almost all of which were 

correct. In contrast, participant 8 had many curved reaches, suggesting that ongoing competition 
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between options was resolved during movement more often than observed in participant 16. 

Further, multiple changes of mind within a single reach can be seen in both data and model 

trajectories for several participants, including participant 17. Additionally, when the left option 

was more preferred, participant 17 often began reaching to the right side of space before quickly 

moving their hand to the more preferred, left side of space. The interaction between drift 

diffusion parameters and the R parameter seems to capture much of the qualities seen in an 

individual participant’s reaching movements during decision making. 
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Figure 2.7: Randomly selected individual reach trajectories by condition for three selected 

subjects. Dark trajectories represent reaches ending to the left, while light trajectories represent 

reaches ending to the right. Solid trajectories indicate a correct decision, and dashed trajectories 
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indicate an incorrect decision. 

 

 

2.2.3 - Additional model analyses. Our model is highly generalizable to several other 

influential motor and decision making tasks. Here we use the same model and set of fitted 

subject parameters as representative of decision making in a general reaching study sample. 

With minor changes, we can successfully replicate the pattern of results seen in Chapman 

et al. (2010). This “go-before-you-know” task and its hallmark spatial averaging results have 

been used to argue that multiple motor plans are maintained in parallel, and that evolving 

evidence during movement time shapes reaching behaviour. In Chapman et al. (2010), the 

correct reaching target was filled in at movement onset (i.e., 0 ms). Here, instead of movement 

initiation beginning when the drift diffusion process crosses threshold, we force our model to 

begin a reaching movement 100 ms after stimuli onset. Additionally, during single target trials 

the alternative motor plan is inactivated. With these two changes, we are able to reproduce the 

spatial averaging seen in go-before-you-know experiments (see Figure 2.8). 

We find that the model captures the pattern observed in go-before-you-know tasks best if 

the model begins reaching movements at ~100 ms after stimuli onset, rather than at 0 ms as in 

Chapman et al. (2010). This may reflect a difference between stimuli in our task and that of 

Chapman et al. (2010). Above, we used snack food items in a value-based decision making task, 

whereas go-before-you-know tasks use low level visual information to cue a participant to the 

correct target. It is likely that evidence from low level visual features influences the decision 

system faster than evidence about personal preferences for snack foods. The non-decision times 

(tnd) in our model are fit to value-based information, and therefore our model likely 

overestimates the delay between stimuli onset and low level visual information beginning to 

influence reaching movements. This difference between our model and the task in Chapman et 
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al. (2010) task may explain why our model performs better if given another 100 ms. Regardless, 

the similarity between average trajectories in a task far removed from pointing at snack foods is 

striking. 

 
Figure 2.8: A) Average correct reach trajectory data from Chapman et al. (2010) Experiment 1, 

where participants were presented with one or two possible targets. When participants began a 

reaching movement, the correct target was filled in. B) Simulated group data from parameters fit 

to our 25 participants. Figure adapted from Christopoulos, V., & Schrater, P. R. (2015). Dynamic 

integration of value information into a common probability currency as a theory for flexible 

decision making. PLoS Computational Biology, 11(9), e1004402. Copyright 2015 Christopoulos, 

Schrater. Original data from Chapman, C. S., Gallivan, J. P., Wood, D. K., Milne, J. L., Culham, 

J. C., & Goodale, M. A. (2010). Reaching for the unknown: multiple target encoding and real-

time decision-making in a rapid reach task. Cognition, 116(2), 168-176. Copyright 2010 

Elsevier. 

 

 

 Additionally, our model generalizes to the obstacle avoidance literature. Almost all 
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studies on reaching and decision making have focused on the competition between options of 

varying positive relevance or value. However, a significantly overlooked, but equally important 

aspect of moving and deciding is the ability to avoid choosing or moving toward something that 

is of negative value (e.g., disliked food, potentially dangerous territory, hot stove elements). 

Again using the same model and parameters for each subject, but now changing the physical 

layout of the options and the value of the to-be-disliked option, we see behaviour that reproduces 

key aspects of obstacle avoidance. Reaching movements tend to avoid the negatively valued 

option proportional both to its negative value, and to its distance (Chapman, Gallivan, Wong, 

Wispinski, & Enns, 2015; Chapman & Goodale, 2008). A singular mechanism to approach 

valuable options in space, while steering clear of negatively valued options is behaviourally 

adaptive, and neurally efficient. Further, theory and experiments have shown that obstacles take 

more time to be repulsive for reach trajectories than targets take to be attractive (Chapman, 2010; 

Chapman et al., 2015). Our model is consistent with these ideas, as potential targets start at a 

small positive value (Chapman et al., 2010; Christopoulos et al., 2015; Gibson, 2014), and are 

then either boosted further by positive evidence for that action, or take time to become negatively 

valued if given negative evidence. 

Of note, reach trajectories in this simulation make sharper angular changes than seen in 

obstacle avoidance experiments (Fajen & Warren, 2003). This is likely due to equal velocity time 

steps in our model, whereas a real reaching movement has higher velocities near the middle of 

the reach, and lower velocities at the start and end. Further, sharper changes than usual may be 

due to the absence of motor planning mechanisms in our model, which take time to plan full 

trajectories before movement initiation (Kawato, 1999). In contrast, our model calculates reach 

trajectories online without any pre-planning. While our model fits well for tasks with few objects 



46 

 

and simple geometries, we expect our model to deviate more from behavioural results with more 

complex task requirements without the addition of a motor planning component (Stewart, 

Gallivan, Baugh, & Flanagan, 2014). 

 
 

Figure 2.9: Group average reaching trajectories from model simulations. A) We place a target 

(valued at 1) at [0, 40] and a point obstacle at [0, 20]. We simulate three different conditions: 

where the obstacle is attractive as in a medium decision (obstacle value 0.5; green trajectory), 

where the evidence toward reaching to the obstacle is zero (obstacle value 0; blue trajectories), 

and where the action for reaching to the obstacle accumulates negative evidence (obstacle value -

1; red trajectories). B) We hold value constant (target value 1, obstacle value -0.25) and we 

instead change the physical location of the obstacle. As we move the obstacle further from the 

reach path, average trajectories deviate less away from the obstacle. When the obstacle is at [-15, 

20], we see little interference with the reach trajectory, similar to a single target trial. 

 

 

2.3 - Discussion 

Here we leveraged an existing model of decision making to conceptualize movements as 

an ongoing, graded competition between available actions. Using our new formalization, we are 

able to account for a diverse range of behaviour: reaction times, initial choices, changes of mind, 

reach curvature, and accuracy. In addition, our model is highly generalizable to tasks such as 
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value-based reaching, go-before-you-know tasks, and obstacle avoidance. Our results point to a 

new formal way of thinking about movements - not as a singular command read out by cognition 

(Padoa-Schioppa, 2011), nor as a noisy result of binary switching between actions (e.g., Resulaj 

et al., 2009), but as a graded, time-evolving competition intimately tied to ongoing decision 

making. 

Several recent studies have proven the power of using this concept of movements as 

continuous decision making. By regressing multiple attributes of available options in a reaching 

task onto incremental changes in the angle of reach trajectories, these studies are able to infer the 

ongoing evolution of bias toward each of two options (Dshemuchadse, Scherbaum, & Goschke, 

2013; Scherbaum, Dshemuchadse, Fischer, & Goschke, 2010; Sullivan, Hutcherson, Harris, & 

Rangel, 2015). This not only suggests that the hand is continuously moving with respect to 

fluctuating evidence, but that momentary evidence is dynamic and biased by many sources that 

evolve in time. 

Why don’t we simply wait until we have enough evidence, and then enact the most 

efficient, straight path to our selected target? In real world decision making, waiting has a cost. 

Not only does continuously integrating evidence take up neural resources, but options may pass 

you by while you are waiting. Additionally, the world is dynamic, and potential options and 

actions can change almost any time. For these reasons, it may be more efficient to begin moving 

once you are confident enough, and revise your decision if the world changes. However, the 

efficiency difference in switching between straight paths to options (Resulaj et al., 2009) 

compared to sometimes moving toward a midpoint is less clear. Certainly, if one option is the 

most likely to be desired, a frequent straight path toward it and a less frequent but more costly 

switching movement may be optimal. However, if an option is less likely to be desired all the 
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time, a middling trajectory to reduce frequent switching costs may be more optimal. The relative 

efficiency of these different mechanisms depends on a number of factors including biomechanic 

costs of switching, neural resources used by integrating and transmitting evidence, decision 

difficulty and consequences, and task parameters. While both mechanisms are not mutually 

exclusive, we argue that moving toward options proportional to their current desirability is the 

singular general mechanism that most captures human behaviour. 

Like all models, ours is a simplification. The current formalization neglects movement 

times, motor costs, biomechanics, motor planning, and ballistic reaching movements - all which 

are known to influence behaviour in reaching tasks. Despite these limitations, we argue that our 

model, by simply fitting a single parameter after a drift diffusion model, is powerful in the range 

of behaviour it can explain, and in the way it conceptualizes the link between movements and 

decision making. 
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3 - Neural Signals of Decision Making 

Here in Chapter 3, we present results of our own study of neural activity during decision 

making. Specifically, we record brain activity during a reaching decision making task, unlike 

most other studies which neglect having an overt and extended movement as the “output” of a 

decision. As outlined in Chapter 1, here we use reaching tasks as a window into naturalistic 

decision making, where people are faced with potential actions, and must choose between 

actions by completing movements. By observing neural patterns when deciding and moving, we 

hope to uncover the process and architecture behind a general decision making mechanism. This 

goal is further accomplished by using EEG, as it allows measurements of neural activity in 

humans because of its non-invasive nature, and is particularly adept at capturing the fast and 

dynamic process of decision making because of its high temporal resolution. While studying 

decision making in humans using EEG does not allow for high spatial resolution or signal-to-

noise ratios as available in invasive monkey recordings, humans are (1) the system of specific 

interest, (2) able to execute controlled decisions with little training, and (3) require relatively low 

resources to collect data, which allows many more participants in a sample. 

As mentioned in Objectives and Predictions in Chapter 1, models seeking to explain 

foundational human behaviour do well to constrain possible solutions with plausible neural 

mechanisms and observed neural patterns. While the following EEG and reaching data is a rich 

dataset, our analyses will focus on how neural patterns do and do not align with our model in 

Chapter 2, and which architectures of decision making they most support. 

Our model makes three key predictions about neural signals observed during a reaching 

task. (1) Our model predicts an accumulation-to-bound signal (specifically a diffusion process) 

representing a decision to begin movement. (2) The model predicts signals observed in 
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sequential models of decision making (Chen & Stuphorn, 2015), where goods-based information 

is communicated to the action-based system with some delay. (3) Our model predicts that motor 

representations compete, and that this competition should be reflected in ongoing reach 

trajectories. While the analyses in this chapter are not yet fully complete, we will address the first 

two of these model predictions. 

In this experiment, we ask participants to attend to two bilateral circles. Participants are 

asked to identify which of these circles is brighter, or which of these circles are darker 

(counterbalanced). Critically, this decision relies on relative luminance difference. Sometimes 

circles may both change in luminance, but in the same direction. Therefore, participants must 

sample the luminance of both circles, and compare these luminance values together. Again, we 

manipulate the decision difficulty using the amount of relative luminance difference. Easy 

decisions are called “double difference”, and have a large relative luminance difference. More 

difficult decisions have a lower level of relative luminance difference, and are called “single 

difference”. Finally, some trials have no relative luminance difference throughout, and therefore 

no evidence. These trials are called “no difference” trials. One set of our participants were asked 

to respond by keyboard, as is the norm, while the other set responded by reaching to touch the 

circle they thought was brighter (or darker). Unlike random dot motion tasks, participants here 

when responding using reaches are sampling evidence from the same physical location as they 

need to act toward. We argue this more accurately reflects task demands outside of the lab - 

sampling information at locations for potential actions. 

 In this experiment, we focus our EEG analyses on the centro-parietal positivity, or CPP 

(O’Connell et al., 2012). As outlined in the Introduction, the CPP is thought to reflect evidence 

accumulation in posterior parietal areas. It is modulated by decision difficulty, is independent of 
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the modality of decision evidence, is distinct from sensory and action signals, and is even 

observed when no action is required at all (O’Connell et al., 2012; Kelly & O’Connell, 2013; 

Murphy et al., 2015). Therefore, we look to the CPP as an index of a goods-based system in 

decision making, where evidence is compared distinct from motor representations. Our model in 

Chapter 2 predicts a drift diffusion process in a goods-based system that determines reaction 

times for competing motor representations in the action system. Therefore, we predict that the 

CPP reflects a decision to begin moving. This result has not yet been seen because other studies 

use verbal or keypress responses, where action initiation and final response are tightly linked in 

time. 

Of note, studies have argued that the CPP is best observed under circumstances where 

stimuli change gradually. This is argued to reduce signal contamination from strong stimuli-

onset signals (e.g., visually evoked potentials; VEPs). Therefore, the current task uses stimuli 

that slowly change in luminance over time. However, this means that evidence in the current task 

also changes gradually over time, and that participants therefore have relatively long reaction 

times. Finally, the current task is a perceptual decision task, rather than a value-based task. In 

other words, evidence comes from an external, rather than an internal source. Taken together, the 

current task is very different from the task in Chapter 2, and provides a demanding test for the 

flexibility of our formalization.  

3.1 - Methods 

3.1.1 - Experiment. 23 participants completed the keypress version of the experiment, 

while a different set of 19 participants took part in the reaching version of the experiment. All 

participants were right-handed and had normal or corrected-to-normal vision. All experiments 

were approved by the University of Alberta’s Research Ethics Office, and all participants 
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provided written consent before the experiment. 

Participants sat in a dimly lit room centered, at eye level, and 50 cm away from a 

computer monitor with a refresh rate of 120 Hz (VIEWPixx/EEG, VPixx Technologies, Quebec, 

Canada). For participants responding using reaching movements, six wall-mounted motion 

tracking cameras (Optitrak V100: R2 cameras; NaturalPoint, Inc., Corvallis, Oregon) captured 

the participant’s hand position in space at 60 Hz, synchronized to the monitor refresh rate. The 

position of the single reflective finger marker on the participant’s right index fingernail was co-

registered in space with the monitor and tabletop for each participant. Participants who 

responded with button presses instead had a computer keyboard (USB polling rate of 1000 Hz) 

placed on the table in front of them. Participants were asked to press the left and right Ctrl keys 

with their index fingers to respond. 

Participants were directed to answer the question “Which circle is [brighter/darker]?” on 

every trial, counterbalanced across participants. The experimenter explained that two flashing 

circles would appear, and after some variable delay, the circles might change in luminance. 

When answering the question, participants were directed to consider the relative luminance 

difference between the two circles, and not if there was any absolute change in luminance for 

any of the circles. 

For the reaching condition, participants started each trial by moving their right index 

finger to the start position. Participants were asked to simply touch the circle that they thought 

was [brighter/darker] when they had detected a relative luminance difference. For participants 

responding using a keyboard, participants were asked to press the key on the same side of space 

as the circle they identified as being relatively [brighter/darker]. All participants were notified 

that a third of the time there would be no relative luminance difference, and to not respond if 
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they did not detect one. All participants were directed to maintain fixation on a central fixation 

cross throughout the experiment. 

Stimuli were presented on a black background with a white central fixation cross. At the 

start of each trial, only the fixation cross was present for a baseline epoch of 750 to 1250 ms, 

random and uniformly distributed. After baseline fixation, two bilateral flashing grey circles 

appeared 9 cm apart, and were present for five seconds. Circles were always an intermediate 

grey at baseline (126 in 8-bit grayscale) and flickered at ~17.14 Hz and 20 Hz with the stimuli 

being present on the screen for 1 frame per cycle (8 ⅓ ms). Changes in luminance occurred 

between 750 and 2250 ms after the onset of both circles, randomly drawn from a uniform 

distribution. Regardless of condition, luminance changes always occurred at the same linear rate 

of 100 8-bit grayscale points over 1750 ms, and 100 points over 1000 ms, for changes and return 

to baseline, respectively. Once the circles had returned to baseline luminance, they remained at 

baseline for any remainder of the five second stimuli time. Stimuli presentation were controlled 

with Matlab using Psychtoolbox (Version 3, Brainard, 1997). 

Participants completed trials of three critical decision types: (1) no relative luminance 

difference, (2) “single difference” (i.e., maximum luminance difference of 100 8-bit grayscale 

points), and (3) “double difference” (i.e., maximum luminance difference of 200 8-bit grayscale 

points; see Figure 3.1 B). For trials where the two circles were never of a different luminance, 

both circles remained at baseline, both increased in luminance, or both decreased in luminance. 

For single difference trials, one circle increased in luminance while the other remained 

unchanged, or one decreased while the other remained unchanged. Finally, for double difference 

trials, one circle increased in luminance while the other decreased. Conditions were 

counterbalanced for side of space (i.e., which change occurred on the left vs. right side of the 
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screen), and all conditions were counterbalanced for flicker frequency (~17 vs. 20 Hz). This 

resulted in 18 unique conditions, each with different physical stimuli pattern. All unique 

conditions were repeated 25 times each (for a total of 450 trials), randomized by block so that no 

unique condition could appear again before all others had been presented. 

The computer monitor was fixed to be 35 cm forward from the start circle, and 

participants were seated so that the screen was 50 cm from their eyes. Circles were centered on 

the screen with 8 cm between them. For reaching participants, movement onset was determined 

using standard velocity and distance criteria (Gallivan & Chapman, 2014). Further, if 

participants had moved > 1 cm from the start circle before stimuli onset, the trial would be 

flagged as “Too Early”. 

During EEG preparation, participants completed the UPPS-P impulsive behaviour scale 

(Lynam, 2013) and the gambling related cognitions scale (GRCS; Raylu & Oei, 2004). These 

data were not analyzed and are not discussed further. 

 
 

Figure 3.1: A) Experiment setup. Participants were seated 50 cm from a monitor at eye level and 

responded either using a keyboard, or by reaching. B) Diagram of experimental stimuli. At the 

start of each trial, participants saw 750-1250 ms of a fixation cross to establish a baseline for 
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EEG recordings. Then participants were presented with two grey circles for a variable period of 

time before they started to change. Changes occurred for 1750 ms, and returned from peak 

change back to baseline by a further 1000 ms. Three critical conditions were presented, no 

difference (black), single difference (red), or double difference (blue). On each trial, one circle 

flickered at ~17 Hz, and the other at 20 Hz. On this example trial in the diagram, the left circle 

flickering at 20 Hz increased in luminance while the right circle at ~17 Hz remains at baseline 

luminance. 

 

 

3.1.2 - EEG collection and preprocessing. EEG was recorded using a wet 32-channel 

Ag/AgCl active electrode system (EasyCap, Herrsching, Germany), with 30 scalp channels 

(10/20 system) and two channels (TF9/TF0) modified for mastoid recording. Recordings were 

referenced online to the right mastoid, and offline re-referenced to the average of both mastoid 

electrodes. The ground electrode was placed at the frontal midline electrode site (Fpz). Before 

recording, impedance of all electrodes was reduced to below 10 kΩ. Bipolar vertical and 

horizontal EOG was recorded using five sintered ring electrodes (EasyCap, Herrsching, 

Germany), two on the left and right temples, two above and below the left eye, and one ground 

electrode between eyebrows. EEG was recorded at 1000 Hz using BrainVision Recorder (Brain 

Products, München, Germany) and amplified using an actiCHamp amplifier (Brain Products). 

Data were filtered online with a low-pass filter at 280 Hz. No high-pass filter was used online. 

Pixel-associated triggers from the VIEWPixx/EEG were used to mark the EEG data. 

EEG processing was conducted using EEGLAB (Delorme & Makeig, 2004) with the 

ERPLAB (Lopez-Calderon & Luck, 2014) and CSD (Kayser & Tenke, 2006a, 2006b) toolboxes. 

Data were high-pass filtered at 0.1 Hz, low-pass filtered at 30 Hz, and baseline corrected to the 

750 ms before stimuli onset. Noisy channels (where >10% of epochs were rejected because of 

channel noise) were deleted and were not interpolated because of subsequent ICA and CSD 

analyses. Epochs were manually rejected before computing and removing stereotypical ICA 



56 

 

components associated with common artifacts such as blinks, eye movements, or muscle 

clenching. After ICA rejection, epochs were manually rejected again using the same methods. 

Epochs were created to include 750 ms of fixation baseline and all five seconds of stimuli 

presentation on each trial (epoch length 5750 ms). Finally, a surface Laplacian was applied to the 

remaining data using the CSD toolbox in Matlab (Kayser & Tenke, 2006a; Kayser & Tenke, 

2006b) in order to remove low spatial frequencies from the data. Applying a surface Laplacian 

before examining the CPP has been performed in past studies because of the strong anatomical 

predictions of the source of CPP (and decision making) activity, and to attenuate low spatial 

frequency activity such as movement artifacts (Kelly & O’Connell, 2013). 

Participants were excluded from analysis if fewer than 50% of all trials remained after all 

EEG epoch rejection, or if fewer than 40 trials remained in any of the three critical conditions. 

This left 19 (17% rejected) participants in the keyboard response version, and 16 (16% rejected) 

in the reaching response version. Epoch and participant rejection left an average of 349 and 307 

epochs remaining for analysis for the keyboard and reaching experiments, respectively. No 

channels were rejected for the keyboard participants, while an average of 0.84 channels were 

rejected per reaching participant. Incorrect or too early trials were removed from EEG analysis, 

except in the generation of the raster plots in Figures 3.6 and 3.9. For response- or movement 

onset-locked analyses, trials from the no difference condition were locked to the grand mean 

reaction time within that participant, as participants were asked not to respond on those trials. 

3.1.3 - Model. As stated above, it is useful to directly apply our model in Chapter 2 to 

neural data to investigate if actual neural traces match those predicted by our model. While 

analyzing the similarity between model and data for behavioural measures in the current task can 

also lend or detract support for our model, the comparison between EEG data and model traces is 
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the main focus of Chapter 3. To date, only participants responding by keyboard have had a 

model applied to their data. Without a reaching component to their data, only a drift diffusion 

model was used. Nonetheless, we can test most of the predictions of our model architecture with 

a drift diffusion model determining reaction times. 

Evidence in support of a decision (C) was modelled as the luminance of the option at that 

location (as a difference from baseline, 0, and ranging from -1 to 1). Critically, evidence in the 

current task changes over time as the luminance of each option changes gradually throughout 

2750 ms. Changing evidence over time simply means a shifting C value, and so the means of 

noisy momentary evidence shift as well. This increase in evidence over time leads to an increase 

in the rate of evidence accumulation, which results in exponential rather than linear accumulation 

rates. 

Fits were obtained by minimizing the negative log likelihood of responses (left, right, 

none), and mean reaction times, for each of the three conditions (double difference, single 

difference, no difference), for each side of space (left preferred, right preferred), for each person. 

Because participants were asked not to respond on no difference trials, reaction times for this 

condition were not used to fit the model. Fits of the drift diffusion model parameters were 

obtained by simulating 10,000 trials at 120 Hz (the screen refresh rate, and twice the motion 

capture sampling rate) for each condition, for each side, for each parameter iteration. Like in the 

experiment, each trial simulated five seconds of time where the stimuli were present on the 

screen. Changes in evidence began to occur at a random time between 750 to 2250 ms after 

stimuli onset. If the difference in accumulated evidence crossed either +B or -B at any time 

within these 5 seconds, a simulated keypress was made. Otherwise, it was assumed the simulated 

participant did not respond on those trials. Drift diffusion traces were brought back to baseline 
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after a response to simulate the cessation of the process. 

To compare drift diffusion traces to the CPP data, the no difference conditions of both 

grand mean EEG and model traces were aligned at the first time point. As well, the model traces 

were scaled to the CPP by aligning the maximum value of the double difference conditions. This 

was simply done so that both model and EEG data were of the same absolute range to calculate 

R
2
, and did not change the pattern of any results. Further, absolute EEG amplitude can vary due 

to many factors such as scalp conductivity, skull shape, and individual variability in brain 

structure, and so the absolute values for this comparison are not of interest - only the relative 

patterns. 

3.2 - Results 

3.2.1 - Behavioural results. Repeated measures ANOVA returns a significant main 

effect of condition (F(2,66) = 4.37, p = .017) and response type (F(1,33) = 9.42, p = .004) on 

accuracy, with no significant interaction (F(2,66) = 2.38, p = .10). Multiple comparisons show 

that participants are more accurate when responding with a keyboard relative to reaching (t(20) = 

2.89, p = .009). As expected, participants are more accurate in the double change condition 

relative to the single change condition (p = .0001), with accuracy in the no change condition 

being not significantly different from either. 

For reaction time, repeated measures ANOVA returns a significant main effect of 

condition (F(1,36) = 318.3, p < 2e-16) and no main effect of response type (F(1,36) = 1.27, p = 

.27), with a significant condition-by-response type interaction (F(1,36) = 11.30, p = .002). This 

interaction seemed to be primarily driven by a marginal difference in single change RT means 

between response types (p = .057), with faster RTs for single change reaching responses relative 

to single change keyboard responses. Multiple comparisons show that, as expected, participants 
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are faster at initiating actions in the double change condition relative to the single change 

condition (p = 2.2e-16). For clarity, reaction times were not analyzed in the no change 

conditions, because participants were asked not to respond in this condition (and correctly did 

not respond on average 85% of the time). 

Overall, participants are more accurate and faster at initiating movements when presented 

with more evidence for a decision. Of note, relatively long RTs are not unexpected in this task 

given the slow rate of change of the stimuli, and high accuracy for all conditions suggests 

participants find this task easy (as intended). Further, participants are initiating their action, be it 

keypress or reaching movement, before the peak of luminance difference (average RTs ~1125 

ms, relative to an evidence peak at 1750 ms). This suggests that participants feel they have 

enough evidence to make a decision earlier on, and that they are not using a peak in evidence as 

a cue for movement. 

Analysis of average correct reach trajectories for conditions where participants were 

asked to make a response (single and double difference) were analyzed using methods outlined 

in Gallivan & Chapman (2014). Of note, 18 participants had reach data sufficient for this specific 

analysis (some of which were not included in EEG analyses). The absolute lateral deviation at 

each normalized time point was used, and uncorrected t-tests of a difference between single and 

double difference trajectories against a mean of zero were computed for each of 100 normalized 

time points. In this sample, there was no significant difference between reach trajectories in 

conditions with different levels of evidence, despite a descriptive difference between conditions 

in the expected pattern (see Figure 3.2). However, this result may be due to the relatively small 

sample size compared with reaching studies (18, relative to a typical 30), and the small distance 

between targets compared to other reaching studies, including in Chapter 2 (8 cm apart, relative 
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to 30 cm apart in Chapter 2). 

 

Figure 3.2: A) Average correct reach trajectories for double difference (blue) and single 

difference (red) conditions. B) Difference plot over 100 normalized reach distance points 

between double and single difference conditions. At no point was the difference between 

conditions significantly greater than the null hypothesis of 0. All error bars are S.E.M. 

 

3.2.2 - EEG results. Analysis of the CPP (O’Connell et al., 2012) locked to RTs show 

patterns predicted by general evidence accumulation models (see Figure 3.3). Specifically, 

midline parietal voltage increases for several hundred milliseconds up until movement is 

initiated, and then returns to baseline levels. Importantly, this increase only occurs for conditions 

where there is decision evidence present. Uncorrected t-tests at every 1000 Hz time point show 

that voltages in the single difference condition are significantly greater than in the no difference 

condition for 67% of the 500 ms window before response in the keyboard group, and for 84% 

before movement initiation in the reaching group. Further, for the 500 ms preceding action 

initiation, voltages in the double difference condition are greater than those in the single 

difference condition for 22% and 5% of the time window for keypress and reach responses, 
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respectively. This suggests that the CPP is greater for conditions where there is more evidence. 

Interestingly, we also find a significant decrease in CPP voltage ~700 ms post-movement 

initiation for conditions where participants made a reach (single difference vs. no difference 

significant for 49% of the time window 500 to 1000 ms after movement initiation). This decrease 

was not present in any keypress conditions. Additionally, this decrease in the reaching group was 

sensitive to evidence, with the double difference condition more negative than the single 

condition for 18% of the same 500 to 1000 ms post-movement initiation window (compared to 

0% in the keyboard group). While this effect may be solely movement related, it occurs at the 

later end of reaching movements (mean movement time = 822 ms). Further analyses are needed 

to determine if this decrease is decision-related. 

While the pattern of the CPP locked to movement initiation time is consistent with 

general evidence accumulation models, it suggests that evidence accumulation stops at 

movement onset. This result is consistent with our model proposed in Chapter 2, where a drift 

diffusion process determines reaction times, and then stops, while individual accumulators and 

motor representations continue until action completion. This result is also consistent with purely 

goods-based models of decision making where a decision is made before a singular motor 

command is executed. Further, this result is inconsistent with action-based models of decision 

making, where competition occurs at the level of motor representations until action completion. 

While Resulaj et al. (2009) also posit a diffusion process that begins movement initiation, the 

diffusion process in their model continues past movement initiation to determine changes of 

mind. The pattern of the CPP here does not support the model of Resulaj et al. (2009), as the 

CPP does not continue past movement initiation (at least visibly, and in the same pattern as pre-

movement initiation). 
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Figure 3.3: RT-locked event-related potentials (ERPs) from midline parietal electrode. Blue 

represents double difference conditions (e.g., easy), red represents single difference conditions 

(e.g., hard), and black represents the conditions with no relative luminance difference (locked to 

the grand mean response time for each subject). Only correct trials were included. Data were 

baselined to the 500 ms window just before stimuli began to change. Error bars represent S.E.M. 

Grand mean ERPs were filtered at 10 Hz for presentation purposes only. Black bars on the 

bottom of each figure show where a t-test between the no difference (black) and single difference 

(red) conditions reached conventional significance (p <.05), and blue bars across the top 

represent significant t-tests comparing the double difference (blue) and single difference (red) 

conditions. A) Keypress response group. B) Reach response group. Conditions where decision 

evidence (i.e., a relative luminance difference) was present show an increase in voltage for 

several hundred milliseconds until action initiation occurs, consistent with evidence 

accumulation models. 

 

 

Analysis of the CPP locked to stimuli change times again show a pattern consistent with 

evidence accumulation models, with slower rates of accumulation in conditions with less 

evidence (see Figure 3.4). As with response-locked ERPs, differences waves were analyzed 

using uncorrected t-tests. Here, we focus on the 1000 ms time window starting 500 ms after 

stimuli began any luminance change to capture the expected period of evidence accumulation 

after accounting for neural delay and slowly changing stimuli. For keyboard responses, we see a 

difference between the no difference condition and the single difference condition for 9% of the 

time window. We also see a significant difference between the single difference and double 

difference conditions for 27% of this time window. For keyboard responses, all significant 
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differences are in the expected direction. For reach responses, we see a difference between the no 

difference condition and the single difference condition for 80% of the time window. We also 

see a significant difference between the single difference and double difference conditions for 

80% of this time window. However, not all significant differences are in the expected direction. 

Again, we see a post-movement initiation dip in the CPP during and after reaching movements, 

in the opposite pattern than pre-movement initiation. While this suggests that the CPP may 

reflect some decision-related information during reaching movements, further evidence is 

needed. Taken together, these results again suggest that the CPP scales with decision evidence in 

the pattern expected by evidence accumulation models before an action, but breaks down during 

actual movements. 

 

 
 

Figure 3.4: Luminance change-locked event-related potentials (ERPs) from midline parietal 

electrode. Blue represents double difference conditions (e.g., easy), red represents single 

difference conditions (e.g., hard), and black represents the conditions with no relative luminance 

difference. Data were baselined to the 500 ms window just before stimuli began to change. Error 

bars represent S.E.M. Grand mean ERPs were filtered at 10 Hz for presentation purposes only. 

Black bars on the bottom of each figure show where a t-test between the no difference (black) 

and single difference (red) conditions reached conventional significance (p <.05), and blue bars 

across the top represent significant t-tests comparing the double difference (blue) and single 

difference (red) conditions. A) Keypress response group. B) Reach response group. Consistent 

with past findings, the CPP rises proportional to the amount of presented decision evidence. 

 

 



64 

 

Past studies of the CPP have shown that it precedes the lateralized readiness potential 

(LRP) by >100 ms (Kelly & O’Connell, 2013). The LRP has long been associated with motor 

preparedness, and is measured by taking the difference of contra- and ipsilateral electrodes over 

motor cortex (Mordkoff & Gianaros, 2000). Here, we calculate the LRP for both left and right 

correct responses for all conditions locked to response time (no difference conditions were again 

locked to the grand mean RT within participants; see Figure 3.5). We analyzed the time at which 

both single and double difference conditions were significantly different from the no difference 

condition for a consecutive five time points. When looking at the CPP, we find for keyboard 

response participants that the difference conditions first become statistically different from the no 

difference condition 457 ms before response time. Analysis of the LRP showed this significant 

difference first occurred 171 ms before response time. Together, the difference between the CPP 

and LRP (286 ms) suggests that the motor system is downstream of evidence accumulation. 

Reach responses, which we are all made with the right hand, were not predicted to, and did not 

show a reliable LRP pattern, and were therefore not included in this analysis. 
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Figure 3.5: RT-locked event-related potentials (ERPs) for keypress participants. A) CPP. B) 

Lateralized readiness potential (LRP), which is argued to index motor preparedness. Blue 

represents double difference conditions (e.g., easy), red represents single difference conditions 

(e.g., hard), and black represents the conditions with no relative luminance difference (locked to 

the grand mean response time for each subject). Only correct trials were included. Data were 

baselined to the 500 ms window just before stimuli began to change. Error bars represent S.E.M. 

Grand mean ERPs were filtered at 10 Hz for presentation purposes only. Black bars on the 

bottom of each figure show where a t-test between the no difference (black) and single difference 

(red) conditions reached conventional significance (p <.05), and blue bars across the top 

represent significant t-tests comparing the double difference (blue) and single difference (red) 

conditions. Black arrows denote the time where both single and double difference conditions 

were significantly different from the no difference condition for 5 consecutive time points. Here, 

the difference (red and blue) conditions diverge from the no difference (black) condition faster 

for the CPP than the LRP, suggesting that information flows from one (goods-based system) to 

the other (action-based system).  
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Figure 3.6: Raster plot of CPP voltage locked to the time when stimuli began to change in 

luminance. Trials are ordered by RT, binned into groups of 40 trials, and averaged to reduce 

noise. All trials are baselined to the 500 ms window just before stimuli change. Trials are z-

scored within each individual and collapsed together. Raster plots for double difference, single 

difference, and no difference conditions are from top to bottom, respectively.  A) Keyboard 

responses. Black curved line represents average RT for each of the 40 trial bins. CPP voltage 

increases until RT before returning to baseline voltage levels. B) Reaching responses. Black line 

represents average movement initiation time, while the grey line represents the average time 

when participants touched the screen to indicate their choice. CPP voltage is locked to movement 

onset times, and not to movement completion times. 

 

In sum, parietal signals in our task are consistent with a decision to initiate a movement, 

and do not appear to continue in time. These results are consistent with our model in Chapter 2, 

but are inconsistent with a changes of mind model (Resulaj et al., 2009), as discussed in more 

detail below. Additionally, we extend the findings of O’Connell et al. (2013) to a different task 

with two spatially separated stimuli and find the same pattern of CPP signal that falls off with a 

keypress to indicate a decision. 

3.2.3 - Model results. Here we directly compare data generated by model simulations to 

participant behaviour and EEG data in the keyboard task. Again, all R
2
 values are reported first 

as the average R
2
 of individuals, and second as the R

2
 of group mean data. Only group mean R

2
 

are reported for EEG data because of EEG variability between individuals. 

The drift diffusion model is able to accurately account for reaction times (R
2
 = 0.55; 0.90) 
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but not choices (R
2
 = 0.06; 0.00; see Figure 3.7). While the similarity between reaction times is 

reassuring for the use of a drift diffusion model, the lack of a drift diffusion model to account for 

correctly not responding on no difference trials is of interest and discussed further below. 

Further, while the drift diffusion model was fit to these data, and has been shown to accurately 

account for these aspects of behaviour in other studies, the similarity between model and data (at 

least for reaction times) is reassuring as this is a novel task with evidence that changes over a 

long period of time, unlike most other tasks. 

As stated above, we assume that the CPP is a direct reflection of a drift diffusion process 

actually implemented in the brain that determines movement onset in the current task. From this 

assumption, we predict that the CPP should follow the pattern of drift diffusion accumulation-to-

bound. When organizing drift diffusion traces by reaction time from model simulations as is 

performed for the EEG data, we find that a drift diffusion model can account for 40% of the 

variance in the response-locked CPP (R
2
 = 0.40; see Figure 3.8 A), but cannot account for 

variance in the CPP when locked to the onset of luminance changes (R
2
 = 0.00; see Figure 3.8 

B). While visually these traces are similar, especially in the raster plot (Figure 3.9), there are 

several dissimilarities. First, while the model predicts a peak at response, and a sharp drop off 

indicating the end of the process, the CPP seems to peak slightly earlier and takes more time to 

return to baseline. Further, in the stimuli change-locked traces, the model predicts slower 

accumulation than is suggested by the CPP, perhaps pointing to a mismatch between predicted 

and actual non-decision times. This is further supported by the notably long non-decision times 

(mean tnd = 352 ms) that are output from model fitting. Finally, a difference between the peaks of 

single and double difference traces in the CPP may suggest an additional mechanism - 

specifically a collapsing bound. This is discussed further in the General Discussion. 
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Figure 3.7: A) Reaction times for keyboard responses in our EEG task (filled circles), along 

with model RTs from a drift diffusion model fit to these data (black lines). B) Accuracy for 

keyboard responses, and predicted accuracy from model simulations. 

 

 
Figure 3.8: CPP data from keyboard participants (solid lines with S.E.M.) and drift diffusion 

traces from model simulations (dotted lines). A) Response-locked data (R
2
 = 0.40). B) 

Luminance change-locked data (R
2
 = 0.00). 
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Figure 3.9: Raster plot of A) CPP from keyboard response group, and B) drift diffusion traces 

from model simulations. Trials were sorted by RT within condition, and averaged in order to 

reduce noise (bins of 40 for actual EEG data, and bins of 3000 for simulated data). All trials are 

baselined to the 500 ms window just before stimuli change. Trials are z-scored within each 

individual and collapsed together. Raster plots for double difference, single difference, and no 

difference conditions are from top to bottom, respectively. Black curved line represents average 

RT for each of the trial bins. 

 

3.3 - Discussion 

Here, we aimed to probe the architecture and process of decision making in the human 

brain using neural data from EEG. Specifically, we recorded neural data during a reaching 

decision making task in order to investigate the dynamics of goods- and action-based systems in 

decision making. We find that the CPP, a signal thought to reflect evidence accumulation in a 

goods-based system, rises to a bound, but quickly returns to baseline at movement onset and 

remains low throughout the movement. This result helps us distinguish between different 

candidate architectures of decision making. Specifically, an accumulator stopping at the onset of 

action supports a pure goods-based model of decision making where options are selected before 

a movement is planned and executed. This result does not support an action-based architecture of 

decision making as competition should occur before and during movement at the level of motor 

representations. 

The finding that the CPP ceases at movement onset additionally helps distinguish 
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between formal models. Our model proposed in Chapter 2 predicts a drift diffusion process that 

determines reaction times before ceasing to be of use. Neural patterns in Chapter 3 support this 

prediction. Further, the changes of mind model (Resulaj et al., 2009) posits a diffusion process 

that determines reaction times, but predicts that this same process continues throughout most of 

the movement. This prediction is not borne out in the neural data - at least as observable in the 

CPP. 

Our formal model, and the sequential architecture of decision making (Chen & Stuphorn, 

2015) are further supported by these data. We find that the CPP, a neural signal argued to reflect 

goods-based competition, precedes similar patterns in the LRP, a neural signal argued to reflect 

motor preparation. This result generally replicates a similar result in a past CPP study (Kelly & 

O’Connell, 2013), but under different circumstances. In short, these results support a neural 

delay between goods-based information reaching the action-based system during decision 

making. While our estimates of this delay were much larger than that of Chen & Stuphorn (2015) 

and Kelly & O’Connell (2013), all three studies show a similar delay using different techniques 

and tasks. 

Finally, we directly support our formal model by applying it to these data. We see that 

our model can accurately account for reaction times in this experiment, even though the task is 

very different from that of Chapter 2, and decision making tasks in general. However, we cannot 

account for accuracy in this task. Specifically, our model has an issue accounting for when 

people correctly decide not to move on no difference trials. Our model when applied to this task 

is essentially a three-alternative forced choice task, where reaching a positive or negative drift 

diffusion threshold determines left and right choices, but failing to reach either threshold during 

the trial time indicates a no movement choice. This implementation is simple, and with precedent 
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(Murphy et al., 2015), but comes with issues. Specifically, this implementation assumes that 

people accumulate noisy evidence for the whole trial period. Taken to its extreme, if people 

observed two unchanging stimuli for an infinite period of time, noisy evidence would eventually 

reach a bound and cause a decision. However, the human brain likely conserves energy as 

sampling information comes with metabolic cost (Drugowitsch et al., 2012). Further, people 

likely learn that changes only occur during a range of times in the task, and so may cease to 

consider actions if this time has passed. Together, this suggests that there is perhaps a different 

mechanism to not move, or to cease consideration of options, that we have not explored. 

Finally, our formal model is supported by the degree of similarity between simulated drift 

diffusion traces, and actual CPP patterns. Here we assume the CPP reflects a drift diffusion 

process to determine reaction times, and our model simulation supports this idea. However, there 

are still open questions. Specifically, in our data and in others’ (Kelly & O’Connell, 2013), the 

CPP only rises to a threshold to determine action, but does not decrease to a lower threshold. A 

schematic of the drift diffusion (see Chapter 1) shows that both a positive and negative threshold 

can determine action initiation. In our simulation, we simply flip all traces to rise to a threshold. 

However, it is unclear how this may happen neurally. This difference raises many interesting 

questions about neural circuits, and electrical interactions within the brain that propagate to be 

measured using EEG. However, these questions are unfortunately outside the scope of this thesis. 

Another issue arises when considering a past CPP result. One study found the CPP is still 

present when no action is required (O’Connell et al., 2012). Specifically, participants were asked 

to only count the number of changes they detected, and this count had to be reported after blocks 

of trials. In this case, participants may still be making small actions, which were not measured in 

the experiment, to count their decision within a block. Further, a decision to begin moving may 
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still be computed, but an actual action may be suppressed downstream due to participants having 

no physical goals for movement. However, these explanations remain unsupported and require 

more study. Additionally, this issue raises an interesting question about whether one makes a 

decision to not move. This is, again, a fascinating question but beyond the scope of this thesis. 

Overall, by measuring neural responses during a reaching decision making task, we are 

able to distinguish between models of decision making, and support our formal model proposed 

in Chapter 2. Our formal model makes three predictions: (1) The CPP reflects a diffusion process 

which determines movement initiation times, (2) goods-based information is communicated to 

the action-based system with some delay, and (3) competition occurs at motor representations 

and this competition should be reflected in ongoing reach trajectories. We find support for the 

first two predictions, while the third prediction has yet to be tested. We find a parietal signal that 

reflects theorized mechanisms which initiate movements during decision making. This signal 

aligns well with the specific predictions made by our model. Further, we find an expected delay 

between theorized goods- and action-based systems in the brain, again supporting our formal 

model and a general sequential model of decision making. While our neural data here cannot 

prove or disprove any model of decision making, it suggests our formalization in Chapter 2 may 

be plausibly implemented in the human brain. 
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4 - General Discussion 

 

Decision making has been, and continues to be conceptualized as a relatively simple, 

serial process. Like a thunderdome, two response options enter, but only one may leave. This 

understanding of decision making has proven to be quite useful in psychology labs, where two 

response options are available to a person, information is presented, and then a button is pressed. 

However, human behaviour is much more rich and complex. We move around our world, and are 

presented with potential actions with every step - like a grocery aisle, where every change in our 

physical position changes the number of objects available to grasp. In addition, not only are we 

changing in our environments, but our environments are also changing around us - a quarterback 

may see a sudden opening in the line of defense, or a car may cut us off in traffic. In this way, 

movement is of special importance to decision making. We must be able to evaluate options in 

physical space, and alter movements quickly should our circumstances change. This process is so 

important for our biological success, that some even argue brains evolved specifically for this 

process (Llinás, 2002). 

Several architectures of decision making have attempted to capture the interaction 

between deciding and moving. Goods-based architectures argue that one option is chosen and 

then communicated to the motor system. Formal models within this architecture argue that 

deciding can continue during movement as well, and tell the motor system to switch actions if 

circumstances change (Resulaj et al., 2009). Other architectures posit that decision making 

occurs at the level of movement plans, and so movements can reflect ongoing competition 

between targets (Cisek, 2007). These two architectures of decision making are extremely 

influential, and deservedly so. However, each suffers the opposite shortcoming. Goods-based 

models provide a convincing solution to what the brain does between the start of a decision and 
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the start of a movement. However, they cannot explain important aspects of human behaviour 

while moving. Conversely, action-based models provide a strong argument for how decision 

making occurs during movement, but fall short when explaining what came before these actions. 

In this way, the field is split between two halves of decision making. 

In this thesis, I attempted to bridge models of decision making which focus largely on 

only one half of decision making (pre-movement initiation, Resulaj et al., 2009; post-movement 

initiation, Christopoulos et al., 2015). We put forth our own formal computational model of how 

decision making and movement are linked in Chapter 2, and supported this model with neural 

data in Chapter 3. Ultimately, the goal of this thesis was to use a computational model to 

redefine decision making as a single, continuous process in which deciding and moving are 

intimately linked. 

Specifically, we formalized decision making as two parallel competitive processes 

occurring in both the goods-based and action-based systems. In the goods-based system, a drift 

diffusion process determines when people are confident enough to begin a movement. In the 

action-based system, motor representations compete to move us toward and away from options 

proportional to their ongoing desirability. Importantly, both processes are derived from the same 

evidence for a decision, which is sequentially sampled either from the environment (Chapter 3), 

or from memory (Chapter 2). Our model is one formalization within a sequential architecture of 

decision making, as proposed by Chen & Stuphorn (2015). 

In a task where people are simply asked to touch the snack food they most prefer, we can 

account for reaction times, initial choices, changes of mind, reach curvature, and accuracy. In a 

second task, where people are asked to determine which of two circles appears brighter, we are 

able to account for reaction times, and neural responses at measured at parietal and motor sites. 
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Beyond its application to reaching tasks in perceptual and value-based decision making, our 

model generalizes to explain behaviour in go-before-you-know tasks and obstacle avoidance. 

While our formalization is certainly not how the brain actually works, the amount of behaviour it 

can explain despite having only implemented a single parameter after a drift diffusion model 

reinforces the power of this approach. 

Of course, our model is not without limitations. Most notably, our formalization 

overestimates the degree of competition during decision making. We estimate more changes of 

mind on hard trials than is observed, systematically underestimate accuracy in both tasks, and 

slightly overestimate the curvature of average reach trajectories. This systematic overestimation 

of competition in our model may be because we have not implemented the best mechanism for 

the competition of motor representations. However, our overestimation may also be due to the 

exclusion of an additional mechanism, which would complicate our model. Further testing is 

needed to investigate this gap between our predictions and behaviour. 

 Another additional mechanism which may improve the performance of our model is the 

ability to cease to decide on an action. In our EEG task, we cannot account for people’s accuracy 

to correctly not move on no difference trials. This is because noise within our five second time 

window reaches a movement initiation threshold much more often than it should for this 

condition. Including leaky accumulators, or a cut off for the decision process may help to bridge 

this gap. 

 One aspect of the EEG data briefly mentioned was the difference in CPP amplitude at 

response between single and double difference conditions. If the CPP truly represents 

accumulation to a fixed bound, then both of these accumulators should peak at the same 

amplitude. This difference may point to the presence of a collapsing bound, which would explain 
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why single difference trials, which tend to have longer RTs, have a lower CPP peak at response 

time. Another CPP study has found small but significant differences in CPP peak amplitude at 

response as well (O’Connell et al., 2012). A recent analysis of several datasets applied to several 

kinds of decision bound found that fixed thresholds better explain the majority of decision 

making data (Hawkins et al., 2015). One exception is in primate neurophysiology studies, where 

a collapsing bound tends to be a better fit to the data. In this study, the authors propose that 

perhaps decision bounds can change shape based on task, and that tasks where participants have 

an extreme amount of practice may lend themselves to collapsing bounds. However, the addition 

of a collapsing bound runs counter to the point above about underestimating the proportion of 

trials where participants correctly do not move in the EEG task. Adding a bound that collapses 

over time would result in even more false starts than already estimated in the model. Altogether, 

further research in this area is needed. 

 What if there are more than two options to choose between? Is the drift diffusion process 

just a simplification of a more general process with n available options? This question is 

arguably understudied, although some solutions do exist. Some propose a three-dimensional drift 

diffusion model for three option choices (Krajbich & Rangel, 2011). Others propose a threshold 

for a kind of ratio of evidence between an option and all of its alternatives, or simply reducing 

decision making to sequential choices between two options at a time (Bogacz et al., 2006). 

However, the difficulty of systematically collecting enough data where there are several potential 

options remains a barrier to answering this important question. Models focused on action may 

have a more convincing solution to this problem (e.g., our model, or that of Christopoulos et al., 

2015), as several motor plans or representations can theoretically compete at once. However, this 

still leaves open a question about what mechanism determines movement initiation in these 
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cases. 

 Another outstanding question is whether the brain actually accumulates evidence at all. 

Several studies have shown signals matching evidence accumulation in the firing rates of 

monkey LIP neurons (Gold & Shadlen, 2007; Platt & Glimcher, 1999; Shadlen & Newsome, 

2001). One study has even shown that microstimulation of LIP neurons has a causal effect on 

decisions (Hanks, Ditterich, & Shadlen, 2006). However, a recent study that observed the same 

signals in monkey LIP showed that decisions were largely unaffected if the same area was 

pharmacologically inactivated (Katz et al., 2016). Further, simultaneous recordings showed that 

area MT represented momentary motion evidence in the random dot motion task as expected, but 

that LIP accumulation rates did not match noisy MT fluctuations (Yates et al., 2017). These 

results raise two important unanswered questions. First, does the brain even accumulate 

evidence, or is evidence used for decision making in some other mechanism? Second, if the brain 

does accumulate evidence, then where? Currently we have no answers, but it does not seem like 

area LIP is the singular neural seat of decision making like was once thought. Of particular 

relevance, if there is no true evidence accumulation in LIP, then the CPP signal recorded using 

EEG likely does not reflect causal evidence accumulation despite all its decision-like properties. 

Another possibility is that the CPP does reflect evidence accumulation - just not in LIP. To 

speculate, whatever neural mechanism gives rise to the CPP may not necessarily be evidence 

accumulation itself, but may reflect a downstream readiness signal in preparation to initiate an 

action. Overall, the existence and possible location of an accumulation process is an area of 

intense study and debate in the field. 

 Biological mechanisms for making decisions likely evolved to be adaptive in the 

situations animals faced throughout millenia. These situations likely include foraging for food 
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and shelter, mate selection, social communication, and detection of predators in complex and 

natural environments. It seems likely that if these are the situations where animals have 

constantly needed to make decisions, that nature would choose a mechanism best optimized for 

these kinds of decisions. This may be the reason why humans are such notably suboptimal 

decision makers in new environments such as financial markets or casinos (Taleb, 2007). 

Understanding the situations humans evolved in, and situations we find more difficult, may help 

us to select better models of decision making. Further, these considerations may be able to help 

uncover causes and treatments for people who are affected by systematically maladaptive 

decision making (like seen in problem gambling). 

 In conclusion, while this thesis is short on definitive answers, it aims to help bias our 

search for the mechanism behind how we make decisions. Uncovering the mechanisms of 

decision making as implemented in the human brain is not only exciting for foundational 

science, but also promises to make our world a better place - and indeed, studying decision 

making already has. Studies inspired by tracking mouse trajectories have found individual 

differences in healthy eating biases, and include potential interventions for healthier eating 

(Sullivan et al., 2015). Additionally, researchers have exploited systematic biases in human 

decision making to “nudge” people in the United States to save millions more for retirement 

(Thaler & Sunstein, 2008). Further, studies of decision and movement signals in the brain have 

helped create brain-computer interfaces, which hold growing potential for those affected by 

movement disorders to operate desktop computers or prosthetic devices (Santhanam, Ryu, Yu, 

Afshar, & Shenoy, 2006). In sum, while we continue to refine our search for models of decision 

making, findings along the way will continue to shape our decisions and actions for the better. 
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Appendix 

 

A.1 - Collapsing across rank difference 

 

We opted to collapse Experiment 1 trials across conditions with the same rank difference 

(e.g., rank 1 vs. 3, rank 2 vs. 4) for both model and experimental data. This decision was 

supported by an analysis of behavioural reaction times and final choices. Additionally, the 

selection of a diffusion model of decision making (relative evidence) over a race model (absolute 

evidence) suggests that it is the difference in evidence between options that should be of primary 

interest (see section A.4). 

While the collapsing of trial type by rank difference allows us greater trials per condition 

for statistical power and for model fitting, it is limited in that it assumes participants’ subjective 

rankings of the food items are linear, and does not take into account research showing relative 

evidence is not all that matters in reaching decision making (Wispinski, Truong, Handy, & 

Chapman, 2017). 

 
Figure A.1: Group mean reaction times and accuracy for all six unique conditions, which were 

subsequently collapsed to three critical conditions based on rank difference. Significance bars 

marked with an asterisk signify statistical significance after bonferroni-corrected multiple 

comparisons (15 comparisons per dependent variable). While differences between unique 
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conditions across critical conditions are not all significant (7 of 11 for RT and 3 of 11 for 

accuracy), no unique conditions were significantly different from each other within a given 

critical condition (0 of 4 for RT and 0 of 4 for accuracy). 

 

A.2 - Initial choices and biomechanical bias 

 

Previous models linking decision making to movements have used “initial choices” to 

represent which bound a decision variable has crossed to initiate a movement (Resulaj et al., 

2009; van den Berg et al., 2016). The natural assumption is that if evidence reaches a bound in 

favor of the left option, movements should begin toward the left. In these studies, initial choices 

have been defined by looking at the final choice and if a change of mind had occurred. If no 

change of mind had occurred, the initial choice is the same as the final choice. However, if a 

trajectory indicated a change of mind, the initial choice and final choice were defined as not 

matching (Resulaj et al., 2009). The definition of initial choices is critical in these models, as it is 

used to give an accurate estimate of a person’s decision parameters. 

In our current study, we conceptualize movement as a continuous weighting of 

competing movement angles. This may lead to averaged trajectories up the midline, or reaches 

where more than one change of mind occurs. Therefore, it is ineffectual to define initial choices 

by tracing trajectories backward in time. We instead define initial choices by the lateral position 

of the hand at the start of the reach. However, in the current study several of our subjects 

exhibited significant biomechanical biases. This resulted in a strong pattern of hand trajectories 

that initially deviated to one side, only to be compensated for naturally. These biases may arise 

from seated posture, the participant’s arm configuration during the experiment, or by several 

other motor variables. Since these biases were extremely consistent and corrected very early in 

the reach relative to the distribution of changes of mind for our other participants or in other 

studies (Albantakis & Deco, 2011), we argue they almost entirely reflect non-decision making 
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behaviour. 

 

 
 

Figure A.2: All raw trajectories from participant 4. We argue the consistent and early lateral 

deviation rightward off the start position results almost entirely from biomechanics, and is 

therefore outside of the scope of our model. 

 

As biomechanical and other motor biases are outside the scope of our current model, we 

aimed to minimize these biases by defining initial choices as the lateral side of space of the hand 

at 20% through each reaching movement (~6 cm) for every subject. This method takes advantage 

of the natural compensation of a person’s hand later on in the movement, but comes at the cost of 

capturing fewer “true” decision-related changes of mind that occur early in the reach. 
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Figure A.3: Plot of changes of mind over time for all 32 participants. Changes of mind were 

calculated in bins of 5% of total normalized reach distance. The proportion of changes of mind 

early in the reach is much higher than observed in past studies (Resulaj et al., 2009; Albantakis 

& Deco, 2011). Dashed line represents our proposed changes of mind cutoff in order to remove 

changes of mind due mostly to biomechanics instead of decision processing. 

 

A.3 - Rejecting bad drift diffusion fits 

 

 In Chapter 2, participants who had an R
2
 of 0 for both RT and accuracy were rejected for 

further analysis. We argue that if a drift diffusion model does not provide a good fit for a 

subject’s data, then modelling of their reaches based on a diffusion process will fail. These 

rejections were always for participants who showed RT and Accuracy patterns that could not be 

explained by the model. For example, participant 11 was faster for medium decisions than hard 

decisions. This is perhaps due to a mismatch between their self-reported preferences and their 

true preferences. 
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Figure A.4: Example RT and accuracy fits for three individuals from Chapter 2. Subject 11 was 

rejected because the drift diffusion fit could not account for reaction time, nor accuracy. In 

contrast, participants such as subject 7 and subject 32 were accepted for reach modelling. Of 

note, subject 7 did not have an adequate fit for initial accuracy, but did have an acceptable fit for 

reaction time (as did several other subjects). 

 

 

A.4 - Drift diffusion vs. race models 

 

Sequential sampling models in cognitive psychology and neuroscience most often take 

the form of drift diffusion (Ratcliff & Rouder, 1998) or race (Smith & Vickers, 1988) models. 

Formal models linking decision making to movement have used both drift diffusion (Resulaj et 

al., 2009; Burk et al., 2014), race (van den Berg et al., 2016), and others such as neurodynamical 
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models (Christopoulos, Bonaiuto, & Andersen, 2015). To select the most appropriate framework, 

we compared our behavioural data in Chapter 2 to both theorized race and diffusion models. 

Normally it is difficult to distinguish between race and diffusion models because of their 

similarity and the kinds of tasks typically used in perceptual decision making. However, our 

experiment included several conditions which allowed us to distinguish between these two 

models. Critically while the diffusion process relies on a relative difference in accumulated 

evidence to reach bound, a race model’s independent accumulators only consider the absolute 

level of evidence for each option. Here we can take conditions where the absolute value of the 

best option is unchanged while the alternative option is of a varying value (see Figure A.4 A). 

Additionally, we can take conditions where the relative value difference between options is 

constant, but the absolute values vary (see Figure A.4 B). While we had few trials per person in 

these conditions, a group-level analysis allows us to distinguish whether absolute or relative 

value drives reaction time. 

Overall, the reaction times in the current experiment are more driven by relative value 

difference between options as opposed to the absolute value of the options. We find that the 

diffusion model provides a better fit to our data compared to a race model. Therefore we elected 

to implement a drift diffusion model to explain reaction times, in line with earlier (Resulaj et al., 

2009) but not later (van den Berg et al., 2016) models. 
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Figure A.5: Grand mean reaction times from behavioural data (black), and theorized race (red) 

and drift diffusion (blue) models. Gray lines are individual subject means. Error bars are S.E.M. 

A) Three conditions where the best ranked option is always present. A race model generally 

predicts the most valued option reaches threshold first regardless of its competitor, whereas a 

diffusion model that takes the relative difference between values predicts faster initiation times 

with a larger relative difference between options. B) Three conditions where the subjective value 

difference between options is constant. Here a diffusion model generally predicts the same 

reaction time because of a constant value difference between options, whereas a race model 

predicts faster reaction times when a higher valued option is available. 
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A.5 - Tables of model parameters 
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