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Abstract

We investigate some common methods for three fundamental types of graph
layout and attempt to characterize various methods with a sequence of heuris-
tics according to a framework for each graph layout. We show the heuristics
effect and their working principles in the drawing algorithms. By adding one
preprocessing heuristic, we can improve some algorithms implemented in the
existing libraries. We offer two efficient heuristics for counting the edge inter-
sections under distinct layouts. Five drawing algorithms are also empirically
studied in the thesis.

It has been shown that the problem of graph clustering is correlated with
the problem of graph drawing. We investigate a classification of auxiliary
clustering approaches for graph drawing. We also develop two clustering tech-
niques and demonstrate that the clustering-based drawing algorithms can sig-

nificantly improve the drawing aesthetic criteria for some types of graphs.
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Notations

General

area : the area of the drawing plane.
d(u,v) : the Euclidean distance between u and v.

G = (V,E) : the input graph for the drawing algorithm. V" is the vertex set
and E is the edge set.

FDP (Frozen Development Process): given the vertex number N of a graph
and a random permutation S of all (') vertex pairs, an FDP is a series
of graphs constructed by adding the edges between the vertex pair in
sequence.

N : the number of vertices in an FDP.
n : the number of vertices of G.
v : an arbitrary vertex that belonging to V.

(v, yu) is the coordinate of vertex v’s position.

Section 2.3

0(u,v) : the desired Euclidean distance between u and v.
E: the global energy.
E,, : the energy of v acted on by u.

fuv : the spring force exerted on v by the spring neighbor u such that there
is a spring between vertex u and v in the model.

F(v) : the force exerted on vertex v by the entire G.

guv : the electrical repulsion exerted on v by vertex u. It prevents v from
being too close to u.

k : the spring stiffness parameter.
optl : the desired Euclidean length of an edge.

s(u,v) : the number of edges on the shortest path between u and v.



Section 2.4

k : the number of the hierarchy levels. V = {V}, V,, ..., Vi }and V;(V; = 0 for
i#£7. .
width : the width of the drawing plane.

V; : the subset of vertices on level i.

Chapter 3
deg : the average degree of G.

deg(v) : the number of adjacent vertices of vertex v.
N(v) : the subset of vertices adjacent to v.

T : the largest index of the edges that cause vertices frozen same in an FDP.

Chapter 4
Cluster(G) : the number of clusters in graph G.

k : the number of clusters of G. This means that V' = Uf=l Viand ViV, =0
fori#3.

Vi : acluster of G, i.e. asubset of V,1 <i< k.
|[Vi] : the number of vertices in V;.

W(W, Vz, ..., Vi) : the clustering criterion function that measures the correct-
ness of all the k clusters of G.



Chapter 1

Introduction

Any domain that can be modeled as a collection of entities and pairwise re-
lationships between these entities can be represented as a graph in which
the entities are vertices and the relationships are edges. With the advent
of high-resolution displays and high-speed computations, graph visualization
has become more applicable in many fields, such as CASE tools, database
systems, VLSI systems, and network systems design. The effectiveness of the
visualization of a graph is dependent on how efficiently the associated diagram
conveys information to the viewer. A drawing of a graph is an assignment of
coordinates to each vertex and an assignment of routes to each edge. A good
drawing is worth hundreds of words, but a poor drawing can be confusing
and misleading. To automatically generate a good drawing for a graph, we
need an algorithm that assigns a location for each vertex and a route for each
edge; this is the graph drawing algorithm. G.D.Battista, P.Eades, R.Tamassia,
and 1.G.Tollis presented an annotated bibliography [BETT94] and a book
[BETT99] on this area, and the problem is currently the subject of an annual
“Graph Drawing Conference”.

In this chapter, we provide a brief overview of the graph drawing problem
in Section 1.1. The thesis is motivated by the desire to visualize the graph
collapsing phenomenon associated with the 3-Coloring phase transition, which
will be discussed in Section 1.2. We will introduce some well-known graph
drawing libraries and editors as well as our application in Section 1.3.

In Chapter 2, we will provide an overview of graph layouts and some clas-



sic drawing methods. We will discuss some implementation issues concerning
the properties of collapsed graphs and some drawing algorithms and evaluate
the performance of drawing algorithms in Chapter 3. In Chapter 4, we will
investigate graph clustering methods and present some clustering techniques
to aid graph drawing algorithms. The system architecture as well as the im-
plementation of some features of GDC are outlined in Chapter 5. Chapter 6

will provide a conclusion and ideas for future work.

1.1 Graph Drawing Overview

In this section, we will first introduce three fundamental parameters for graph
drawing methodologies: conventions for drawing graphs, drawing aesthetic

criteria and drawing constraints on graph drawings.

1.1.1 Drawing conventions

A basic rule that a drawing must satisfy to be admissible is called a drawing
convention. Drawing conventions for graphs differ from one application area

to another. Some of the most important conventions are listed below:

e Many graph drawing methods produce a grid drawing: the location of

each vertex has integer coordinates.

e Figure 1.1(b) is a polyline drawing, where the curve representing each
edge is a polyline, a chain of line segments. If each polyline is just a line

segment, the drawing is a straight-line drawing, as seen in Figure 1.1 (a).

e In an orthogonal drawing, each edge is a polyline composed of straight
line segments parallel to one of the coordinate axes. There is much re-
search on orthogonal drawings because horizontal and vertical line seg-

ments are easy to follow. Figure 1.2 is an orthogonal drawing.



(a) A Straight-line drawing (b) A polyline drawing

Figure 1.1: Straight-line Drawing and Polyline Drawings of K33

r—¢ [ o

Figure 1.2: An orthogonal Drawing of K33

1.1.2 Drawing Aesthetics

The primary requirement of graph drawing algorithms is that the output graph
should be readable; that is, it should be easy to understand and follow. It is
hard to model readability precisely because it varies from one application to
another and from one human to another; these variations imply that there are
many graph drawing problems according to the optimization goals which the
algorithms try to achieve. These goals are called drawing aesthetics, some of

which are as follows:

e Minimize the number of edge crossings. A graph drawing with none or
few edge crossings is pleasing and easy to understand. The drawing in
Figure 1.3(a) has many more edge crossings than that in Figure 1.3(b).
Obviously, the drawing in Figure 1.3(b) is pleasing and easy to under-
stand, but the drawing in Figure 1.3(a) is difficult to follow. Some recent

work on crossings approximations can be found at [EGS2000].



(a) (b)

Figure 1.3: Two Drawings of the Same Graph

e Minimize the number of bends on the edges. In polyline drawings, the

edge with fewer bends is easy to follow for many users [BETT99).

e Minimize the vertex distribution. The vertex distribution of a drawing
is characterized by the Euclidean distance between every pair of vertices.

This term prevents vertices from coming too close together.

e Maximize the symmetry display. Some mathematical models of symme-

tries in graph drawings are introduced in [HRM95][Man90].

These criteria, however, cannot be achieved optimally in polynomial time (un-
less P = NP) [Joh84]. Therefore, it is feasible to find near optimal solutions
using heuristics. Furthermore, simultaneous optimization for several criteria
might not be possible or lead to quality tradeoffs because there exist incom-
patible combinations [Joh84].

H.C.Purchase et al validated three graph drawing aesthetics: mazimization
of symmetries, minimization of edge crossings, and minimization of bends by
empirically studying the human understanding of graphs [HRM95]. Their
results indicate that minimizing edge bends and minimizing edge crossings are

more helpful to human understanding than maximizing symmetry.

1.1.3 Constraints

Some constraints on graph drawing algorithms are [BETT99):

e Cluster: A given subset of vertices should be placed close together.

4



e Shape: A given subgraph should be drawn with a predefined “shape”.

The requirements of graph drawing algorithms can be modeled in terms of
drawing conventions, drawing aesthetic criteria and drawing constraints. We

will discuss graph drawing algorithms in Chapter 2.

1.2 Vertex Collapse Phenomenon in the Phase
Transition of Graph Coloring

Random graphs are modeled as randomly choosing a subset of edges for a
graph, and we can set the fraction of all possible edges to choose. For many
graph properties, in particular for the 3-colorability in this thesis, it turns out
that there is a special value called the threshold such that if the fraction we
set is greater than the threshold, then asymptotically the probability of the
property holding is one, while for a fraction less than the threshold the proba-
bility is zero. A similar phenomenon in physics is called a phase transition, a
term used to describe any transition interval observed empirically when there
is a sharp property change. Cheeseman, Kanefsky and Taylor [CKT91] have
found that the average degree threshold for the graph coloring problem is 4.6.

This thesis will study a sequence of graphs generated throughout the Frozen
Development Process (FDP) and these graphs are used as input to drawing
algorithms. The FDP is defined as follows: given the vertex number N of a
graph and a random permutation S of all (') vertex pairs, a series of graphs
are constructed by adding the edges between the vertex pair in sequence. We
denote G; as the graph that has the first i edges fori = 1,2, ..., (5). Assuming
that G; is k-colorable, we check forward and call the vertex pair (u,v) frozen
same if and only if c(u) = ¢(v) for every valid coloring ¢ of G;. For a given
sequence, we can determine a value m* such that G,,-_; is k-colorable but G-
is non k-colorable. We denote the threshold as the average over the set of all
input sequences II of the values m*.

T(n) = ! > m*(n).

Nyl
(2 )‘ rell
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Culberson and Gent {CG2000] found that, just before the threshold, there
is a single edge which, when added, causes an average 16% of all vertex pairs
to be frozen same. We call this phenomenon catastrophic vertez collapse.

We are interested in drawing the graphs throughout the FDP and animat-
ing the phenomenon of vertex collapse. Given an FDP, the input graph for
the drawing algorithm is collapsed graph at indez i, which is constructed from
G; as follows: we scan forward the remaining ((’) — ) vertex pairs in S, and
merge the pairs of vertices that have been frozen same by one of the first i

edges.

1.3 Graph Editors and Layout Libraries

In this section, we will present some graph editors and layout libraries as well

as our application.

1.3.1 Graphlet

Graphlet (see Figure 1.4) [MHB99] is a portable object-oriented toolkit for
implementing graph editors and graph drawing algorithms. Graphlet is based
on LEDA [MN99], a well-known library of the data types and algorithms of

combinatorial computing.
Graphlet consists of the following components:

o The core system is the platform-independent part of Graphlet, and it
contains the base and universal data structure and the algorithm inter-

faces.

e The editor. This is the main component of Graphlet, which is imple-
mented in LedaScript.

o Algorithm modules. Since Graphlet is designed in a modular fashion,
algorithms may be separate programs which can be written in C++
using LEDA.



Graphlet Yinhtled
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Figure 1.4: Demonstration of Graphlet [MHB99].

Graphlet also provides a portable graph language called GM L (Graph Mod-
eling Language). This is a file format for graph representation. External

applications can communicate with Graphlet using GM L files.

1.3.2 Graph Layout Toolkit

The Graph Layout Toolkit (GLT) [Tom2000] of the Tom Sawyer Software is
composed of a graph management system, a portable drawing model and a
virtual function layout system. A graph drawing produced by the GLT is
demonstrated in Figure 1.5. The GLT provides the following four options:

e Circular layout (see Section 2.2). This layout emphasizes natural group

structures and draws them in a circle model.

o Hierarchical layout (see Section 2.4). This layout assigns each node to a
level to construct a hierarchy for the graph and generates a hierarchical
drawing.

e Orthogonal Layout. This layout produces graph drawings in which edges

7



Figure 1.5: Demonstration of GLT [Tom2000].

are drawn parallel to the axes.

e Symmetric layout. This layout emphasizes the drawing aesthetics crite-

rion of maximizing the symmetries of the graph.

1.3.3 Our Application: Graph Drawing with Clustering
techniques (GDC)

GDC is a Java applet for drawing collapsed graphs and animating the ver-
tex collapse phenomenon. The applet can be either run over the Internet or

downloaded to run on a local site.
GDC has the following features:

e GDC can layout collapsed graphs of the FDP (see Chapter 4).

e GDC can animate the vertex collapse phenomenon of the FDP (see Sec-
tion 5.2).
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Figure 1.6: Demonstration of GDC.

e GDC provides drawing algorithms of 3 graph layouts: the circular layout
(see Section 2.2), the spring layout (see Section 2.3) and the hierarchy
layout (see Section 2.4). These algorithms are easy to reuse (see Section

5.1).
e It implements two clustering aided drawing algorithms (see Section 4.5).

e GDC can export its graph drawing to a GM L format file, which can
be further processed by other graph editors and layout libraries, such as
Graphlet and VGJ [Stu96].



Chapter 2

Graph Layout

2.1 Introduction

Graph drawing algorithms are concerned with automatically generating visu-
alizations for information spaces. The process of creating a graph drawing can
be viewed as a three-stage pipeline (see Figure 2.1) [Kam89)]. The first stage,
modeling, extracts a graph from the information space. The graph is defined
as G = (V, E), where the vertices V (= {v;, v, ...,vn}) represent the abstract
entities, and the edges E (= {e;; = (vi,v;)|vi € V,v; € V}) represent the
relationships of the entities in the information space. A graph is called simple
if it contains no self-loop e;; and no multi-edges e;;. If e;; # ej;, the edge and
the graph containing it are called directed; otherwise they are undirected. In
this thesis, we will consider simple undirected graphs.

The layout stage of the pipeline will automatically assign a position for
each vertex and a path for each edge in the visualization space. The input
graph of this stage has no position, and it can have an infinite number of graph
drawings. There is an intermediate phase called graph embedding in which we
define the drawing order of edges around each vertex without considering the

absolute positions of the vertices and paths of the edges. Obviously, a graph

information |  \odelling gaph [ payour | 9™@WiNg | Rendering | M3 _

Figure 2.1: The Relational Visualization Pipeline.
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Tree Layout | Reference Comment
RT Tree [RT81] | Places nodes on hierarchy levels and draws
Drawing isomorphic subtrees with same appearance.
H-Tree [Ead92] | All children of a node are placed on a
Drawing common line, either horizontal or vertical.
Radial Tree | [Ead92] | Places nodes on concentric circles ;
Drawing the common line is either horizontal or vertical.

Table 2.1: Drawing Methods for Tree Layout

Planar Layout | Reference Comment
Testing planarity | [HT74] | Linear time complexity.
Planar Graph [MM96] | Draws a planar graph on the basis
Drawing of the algorithm in [HT74] .

Table 2.2: Drawing Methods for Planar Layout

embedding may be mapped to many graph drawings, but a graph drawing can
be mapped only to one graph embedding. If each vertex of a graph drawing
is positioned at the point whose coordinates are integers, this is called a grid
drawing. In terms of the drawing style of edges, graph drawing algorithms can
be divided into three classes: straight-line, polyline, and curve. Usually, the
visualization space is either two-dimensional (2D) or three-dimensional (3D).
In this chapter, we will mainly survey the straight-line drawing algorithms
working in a two-dimensional rectangular plane, although these algorithms
could be updated to work in a polygon or a three dimensional sphere by
applying more heuristics.

Finally, the rendering stage produces an image of the graph drawing on a
computer screen or on paper.

This chapter concentrates on the layout stage of the pipeline. The following
five tables (Table 1,2,3,4,5) summarize some work on five graph layouts: tree
layout, planar layout, circular layout, spring layout, and hierarchy layout.

There is much research on drawing methods especially designed for tree
and other planar graphs, but they will be not discussed. We will describe a
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Circular Layout | Reference Comment
Makinen Algorithm | [Mak88] | Minimizes the circular dilation
GLT [DMM96] | Clusters by biconnectivity, ratio cut or
Circular [RS97] | vertex distance and then positions clusters
Library [ESB99] | and the nodes in each cluster.
CIRCULAR [ST99] | Places the nodes along the longest path
Algorithm around a circle.

Table 2.3: Drawing Methods for Circular Layout

Spring Layout | Reference Comment
Eades Spring | [Ead84] | Uses Hooke’s law describing the forces
Model between the nodes.
KK Spring KK89] | Force simulates the graph theoretic distance
Simulated DH91] | Uses an energy model to optimize several
Annealing (SA) | [DH96] | aesthetic criteria simultaneously.
FR [FRI1] | A variant of [Ead84] with electrical
Force-directed repulsive forces between vertex pairs.
GEM [FLM94] | A variant of [DH91] with attractive force
Force-directed towards the barycenter of a cluster.

Table 2.4: Drawing Methods for Spring Layout

Hierarchy Layout | Reference Comment
Sugiyama [STT81] | Orders the nodes on two consecutive
(Hierarchy) layers to minimize the edge crossings
Method using the barycenter of the neighbors.

Table 2.5: Drawing Methods for Hierarchy Layout

12
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Figure 2.2: Circular Layout Drawings of A Graph.

set of classic methods concerning three layouts: circular layout, spring layout

and hierarchy layout.

2.2 Circular Layout

Circular layout methods place graph vertices along the circumference of a
circle, and the edges are drawn as straight lines. The key point of circular
algorithms is to find an ordering f : V — {0,1,...,n — 1} for the vertices
optimizing the number of edge crossings. We suppose that the vertex on the
topmost of the drawing is ordered 0, and all the other vertices are ordered
clockwise. Figure 2.2 presents two circular layout drawings for a common
graph, and the ordering of vertices {x0,x1,x2,x3,x4,x5} is different for the two
drawings.

The rest of this section is devoted to surveying the various circular drawing
algorithms.

2.2.1 The Makinen Algorithm

Makinen [Mak88] proposed an algorithm attempting to minimize the number
of edge crossings by minimizing the following formula
2 (uv)ce dilation(u, v) 2.1

where the dilation(u, v) is defined as

dilation(u, v) = min(|f(u) — f(v)|, n — |f(u) — F(v)])-

13



For the drawing shown as Figure 2.2(a), Formula 2.1 is 12 and number of edge
crossings is 4. Formula 2.1 of the drawing in Figure 2.2(b) is reduced to 7, and
the number of edge crossings is reduced as well to zero. It has been proved
that it is NP-Complete to minimize Formula 2.1 [MKNF87].

The Makinen algorithm includes two steps. First, two vertices with the
highest degrees are placed at positions 0 and n — 1, which correspond to the
first position of the right and left halves in the drawing. Then the other
vertices are processed as follows. We maintain the left and right connectivity
array for all the vertices not yet placed, where the connectivity is the number of
adjacent vertices already placed on the left (or right) half in the drawing. The
vertex with the highest (right connectivity — le ft connectivity) will be placed
on the right half. Similarly, the vertex with the lowest (right connectivity —
left connectivity) will be placed on the left half. Ties are broken arbitrarily.

The drawing in Figure 2.2(b) can be produced by this algorithm.

2.2.2 The CIRCULAR Algorithm

The CIRCULAR algorithm [ST99] tries to reduce the edge crossings of a cir-
cular drawing by maximizing the number of edges appearing on the circular
circumference. To achieve this, the CIRCULAR algorithm first removes one
edge from every triangle subgraph in the cluster, then places the nodes in the
longest path of a DFS (Depth-First-Search) tree along the embedding circle,
and finally builds the corresponding vertex ordering.

2.3 Spring Layout

2.3.1 Introduction

Instead of being too concentrated on the fundamental theory of the nature
of graph drawing, the drawing methods of spring layout are based on spring
models that take advantage of other knowledge. They quantify the draw-

ing objectives with optimization goals and constraints and further transfer
the drawing problem to the CSP (Constraint Satisfaction Problem [Tsa93])

14
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searching problem.

The spring models (also known as force-directed models) were inspired by
natural systems such as springs and macro-cosmic gravity. As shown in Figure
2.3, the drawing process simulates a mechanical system in which vertices are
represented by particles, and edges are represented by springs (whose desired
lengths are optl in this case). The particles are attracted by the springs if
they are too far away and repelled if they are too close, and this is depicted as
the force exerted on the particle x0 in Figure 2.3. The spring methods assume
the straight-line style and formalize the searching objective as the equilibrium,
where the sum of the forces on each particle is zero. There is a remarkable
distinction between the force concerned here and the “force” in physics. The
former force is used to calculate the velocity for the vertices during two static
states of the drawing, but it does not involve the acceleration implied by the

latter force.

The spring model may be defined as an energy system ([KK89][DH96})
rather than a force system ([Ead84][FR91]). In this case, the spring model
may be viewed as asmgmng potential energy (based on springs and electrical
energy) to a drawing. The algorithms are formalized to search for a drawing
state in which the system energy is globally minimal.

There have been many spring layout methods developed since Eades first
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proposed the spring model in [Ead84}, and every method is comprised of var-
ious heuristics. In general, heuristics have unpredictable output quality and
time complexity, so the best way to evaluate them is do experiments with
benchmarks, which are supposed to represent the typical problem instances
(Eve99]. As a result of extensive experiments with several typical spring lay-
out methods, Brandenburg, Himsolt and Rohrer [BHR95] concluded that there
is no universal winner among these methods, and it is better to try several

methods for a new application.

2.3.2 Schematic Form for Spring Layout Methods

Imitating the schematic form of the simulated annealing method ([DH96]), we

construct a schematic form for spring layout methods within six steps.

1. Construct a spring model and quantify it with some aesthetic criteria.

2. Initialization: including parameters such as desired edge length and tem-

perature for simulated annealing algorithms and initial node positions.
3. Select a node and move that node.

4. Cooling schedule for simulated annealing algorithms. Adaptive algo-

rithms can adjust some parameters in this step as well.
5. Termination check. If the stop condition is not satisfied, go to stage 3.

6. Postprocessing: fine tuning.

In the rest of this section, we will discuss some interesting heuristics in each
step, with the intention of finding ways to help reuse the heuristics from dif-

ferent steps to build new algorithms for special requirements.

Step 1. Construct a Spring Model and Quantify it with Some Aes-
thetics Criteria.

The spring models encode the desired drawing aesthetic criterion and their

priorities into the formalized optimization objective for the methods to search
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for. In general, they can be divided into two types: the force model and the

energy model.

(1.1) The Force Model

In the undirected graph drawing, various methods have modeled two basic

types of force on an arbitrary node v:

e spring force f,, towards its spring neighbor u. It is usually used to
approach a drawing aesthetic criterion in which every spring has a desired
edge length. The edges are generally modeled as springs [FR91}, but

some models suppose springs between non-adjacent vertex pairs [KK89).

e repulsive force g, against node u. This kind of force can prevent vertices

from being placed too close to each other.

Since the computation of force law is usually the main cost of run time, extra
care should be taken with the time efficiency of the force law. We will discuss

some candidate force laws with respect to each force type.

(1.1.1) Spring Force Law.

Given a spring between vertex u and v, if the Euclidean distance d(u,v) is
equal to the desired distance §(u,v), the spring is in a stable state, and there

should be no spring force applied on v by u. This gives a basic case
fuv = 0, when d(u,v) = 8(u,v).
An ideal spring force law is Hooke’s classic law,
fun = K(d(u,v) — 6(u, v))

where k& is the spring stiffness. Although Hooke’s law is time efficient, it does
not treat extreme cases fairly, e.g. if u is either too far way from or too close
to v. Eades [Ead84] suggested a logarithmic law

d(u,v)

o = 10,0y
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The logarithmic law has the obvious disadvantage of a large computation effort.
Fruchterman and Reingold [FR91| proposed a quadratic law

o d(u, ) 8(u,v)?
fuw = (J(u, v)  d(u,v) )

which can achieve results similar to those of the logarithmic law. Based on
experiments on several functions with powers of different orders, they found
that the linear law k(gi(:—:g - g%:—::%) tends to be easily trapped into local minima,
and higher order functions do not work much better than the quadratic ones.

(1.1.2)Repulsive Force Law.

If there is no spring between vertex u and v, it will be possible that u and
v are moved very close by simply applying spring force. This conflicts with
the drawing aesthetic criterion of vertex distribution. Intuitively, the repulsive
force against another vertex will be helpful. This brings up the problem of how
to design a good repulsive force law.

As a complement of their force law, Fruchterman and Reingold [FR91] used
the repulsive force law

optl?
d(u,v)

Gus = —Fk

where (u,v) ¢ E. The smaller the distance d(u,v), the stronger the repulsive
force exerted on v against u.

In the same paper, the authors pointed out that the repulsive force from
distant vertices could be neglected in order to speed up the algorithm. An
efficient way to determine whether u is far from v is as follows: geometrically
divide the drawing plane into n/4 equivalent grids, assign each vertex a grid
coordinate (e.g. (row, = 4, col, = 3)), and check whether |row, — row,| < 1
and |coly, — coly| < 1.

There are some other types of forces for special graphs, such as

e barycenter force towards the barycenter of a group of vertices. When the
group is comprised of the neighbors of the node, and if the input graph
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is triconnected and planar, the barycenter force can guarantee that the

output drawing is convex [Tut63).

o magnetized spring force generated by a magnetic field through the draw-
ing plane. The magnetic field can help restrain the orientation of the
edges. For example, under a parallel magnetic field (where all magnetic
forces have the same direction), the edges of a directed graph appear to

be aligned along the field direction.

After the force on each node is computed, the candidate movement of a node
is proportional to its force (see step 3). Another spring model is the energy
model, which formalizes graph drawings with global energy functions, and step

3 will search a drawing with a local minimal energy.

(1.2)Energy Model

In general, energy models can be classified into two types: the force-based
energy model and the general energy model. The former tends to find a stable
state in which the Euclidean distance between vertices approaches a desired
length. However, the force-based model doesn’t consider some important draw-
ing aesthetic criteria, such as minimizing the number of edge crossings. In the
cases in which drawing quality rather than time efficiency is the main concern,
the general energy model is a good choice because it considers many specified

aesthetic criteria at the same time.
(1.2.1)Spring Energy Function

Ideally, the shortest path between u and v is spread along a line. Kamada and
Kawai ([KK89]) defined the desired spring length 6(u,v)as a function of optl
and the shortest path distance s(u,v), i.e.

0(u, v) = optl * s(u, v).

In their model, each vertex pair has a simulated spring between them. They

modeled E,,, the energy of v acted on by u, as the function

By = 3H(d(u,0) - 8(u,)?
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where, k, the stiffness parameter, is chosen by Kamada as

_c
= 8(u,v)?

Here c is a constant. Thus, the energy function becomes

_ ¢, d(u,v)

_ 132
Bu = 2 6(u,v) )

The global energy E is the sum of all the individual energies, that is

d{u,v
E = %zu,veV,u;éu(JEu,u; - 1)2’ 2.2
(1.2.2) General Energy Function

The most popular general energy model was proposed by Davidson and Harel
(|[DH91][DH96])), and its global energy E is formalized as

E= ’\lEmiistr + A2E'lmv'dcr + ’\SEelength + /\4Ecross + ’\SEvedist 23

where each term of E corresponds to the minimization of one drawing

aesthetic criterion, and \; ( = 1...5) is the priority for each aesthetic criterion:

o Vertez distribution: Eugistr = Yy yev «va);. This term prevents vertices

from coming too close together.

e Borderlines: Eporder = Y yey (5 + é—+ ;é— + &), where 1y, L, t, and b,
are the Euclidean distances from vertex v to the four borders (right, left,
top, and bottom) of the drawing plane. It prevents vertices from being

placed too close to any border of the drawing plane.

e Edge Lengths: Euength = Y., yevi(umer 9(¢,v)>- It prevents edges from

being too long.

o Edge Crossings: E...ss is the number of edge crossings in the drawing.

It aims at minimizing the edge crossings.
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e Node-edge distances: Euedist = Y yeveck Wte)f' where dist(v, e) is the
perpendicular distance from vertex v to edge e. This term ensures that

vertices are not positioned on the edges.

The General energy model is very flexible. More energy terms of drawing
aesthetic criteria can be inserted into the model, and various assignments
of priorities to the drawing aesthetic criteria can produce different solutions.
Experimental results on the priorities assignment will be discussed in Chapter
3.

Step 2. Initialization

In this step, some parameters, such as optl—the desired Euclidean length of
an edge, will be set. Also, the positions of vertices should be initialized in this

step.
(2.1) Choose optl

Kamada and Kawai ([KK89]) determined that optl as the following formula:

optl = varea

diameter

where diameter is maz{s(u,v)|u € V,v € V'}—the largest length of the short-
est path. This formula corresponds to the scenario in which the vertices on the
longest one of the shortest paths are evenly placed along the drawing plane
diagonal. If G is not connected, dummy edges can be added to make it con-
nected. This avoids the extra computation of laying out all of G’s connected
components on the drawing plane.

Fruchterman and Reingold [FR91] calculate optl as

Jarea
Jn

where c is a constant. Ideally, the vertices are distributed into exactly n

optl =c¢

area

different grid cells with the same size %Z%¢. If the drawing plane is a square,

the side of each grid cell will be %
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(2.2) Initial Vertex Positions

Most experiments confirm that the initial vertex positions have little influence
on the output pictures, but they do affect the algorithm speed of converging

to the equilibrium. Three normal initial placement ways are

o randomly place vertices;
e accept a manual initial placement.

e execute heavy-duty preprocessing. A simple example is to run another
drawing algorithm first. D.Harel and M.Sardas [HS94] supplied a prepro-
cessing algorithm particularly designed for a simulated annealing draw-
ing method [DH91}.

Step 3. Select a Node and Move that Node.

To find the equilibrium of a drawing, the algorithm should place each ver-
tex at its local minimum position with respect to the force or energy function.
When we select one vertex v to move and keep all the other vertices fixed at
their locations, we quickly converge to a local minimum of v [BW97). Itera-
tively repeating this step is a normal strategy to approach the global minimum
[Ead84][KK89][FRI1].

In the following section, we will explain how to determine which node to
move and what direction that node be moved in and how far in order to

converge to a local minimum rapidly.

(3.1) Select a Node to Move

There are three typical ways available

e randomly select a node to move [FLM94][DH91].

e sequentially select a node [FR91].
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e select a node with the extreme value in terms of node metrics. Kamada

and Kawai ([KK89]) introduced a node metric

0E
\/ (G2 + (5o

where (z,,y,) is the two-dimensional coordinate of v’s position; 2=and

g2 can be computed by the formulas (7) to (8) as noted in [KK89].

(3.2) Determine a Movement for the Node

The movement selection plays an important role in spring drawing algorithms.
In some ways, it is the kernel of all randomized layout algorithms. Based on
the force and energy models (see step 1), various movement heuristics have
been presented.

For the force model, the force on each vertex is

F)= Y fu+ ) 9w

(u,v)EE (u0)¢E

where f,, is the spring force and g, is the repulsive force. Given v’s posi-
tion (zy,yv) (or (Zy,Yu, 2v) in 3D case), the z component of the force f,, is
Suv * d(u v) , and the z component of the force gy, is guy * d(u v) The y (or z)
component of f,, and gy, has a similar expression. Summing up the compo-
nents of F(v) along each axis, we can easily determine the movement vector
for node v to neutralize F,.
For the energy model, the global energy is either expressed by Formula 2.2

or 2.3. When a local minimum of 2.2 is found, the partial derivatives of E
with respect to z, and y, should be zero, i.e.

0E OFE

bz, Oy,
The local energy minimum of v can be approached by iteratively moving vertex
v using numerical methods (e.g. the Newton-Raphson method). Assuming

that the position of v at the kth iteration is (z{°, 4¢%), (z%*Y, y{**Y) can be

=0.
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Figure 2.4: Direction of Rotation and Oscillation Areas [FLM94].

computed by solving linear equations whose coefficients are made of ¥ and yf
fori=1,2,...,n (see the details at formulas (11) to (16) in [KK89]).

The optimization problem of energy Formula 2.3 is NP-hard, because even
its individual term for minimizing the number of edge crossings is NP-hard
[EMWS86]. Assuming that after v is moved, the global energy is changed from
E1 to E2, there is an efficient way to compute E2, e.g: count the updated
aesthetic items due to v’s movement, i.e. E2 — E1. A typical movement is
to randomly select a vector length within a specified radius r (which usu-
ally becomes smaller as the temperature becomes lower). The angle of the
movement vector should be chosen carefully. If the direction of movement is
selected randomly, a vertex will rotate or oscillate around a position in some
cases, because the random movement is unlikely to move that vertex out of a
local minimum. Figure 2.4 [FLM94] demonstrates the rotation and oscillation
area for the vertex v. Arne Frick et al. [FLM94] implemented a complicated
rule to treat rotation and oscillation. Franz Brandenburg et.al [BHR95] sug-
gested a simple rule called re-enforcement: if the preceding movement makes
E2 < E1, the next movement is bound within almost the same direction, e.g.

in the sector of width -’25

General optimization strategies accept the movement if £2 < E1 but re-
ject it if E2 > E1. However, they may be not suitable for minimizing Formula
2.3. Since the general model is intended to optimize several aesthetic crite-

ria at the same time, v may have many local minima distributed among the
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drawing plane. To avoid v being entrapped into the local minima, a com-
mon optimization method used is Simulated Annealing (SA). The difference
between SA and standard iterative improvement methods is that SA allows
uphill movements—the next solution is worse than the current solution. SA
can escape from local minima by applying the rule analogous to the physi-
cal process called annealing, in which liquids are cooled to a crystalline form.
During the annealing process, the atoms will reach a thermal equilibrium at

each temperature when the system energy obeys the Boltzmann distribution:
p(E) ~ e

where p(E) is the probability of the state of energy E, and T is the temperature
and k is the Boltzmann constant [DH96]. When the system changes from the
state of energy E1 to another state of energy E2 at temperature T, that
probability is

_E2-E1
=

This formula suggests that when E2 < E1, the node v should be moved, and
if E2 > El, it is probabilistic. Kirkpatrick et al [KGV83] first modeled this
annealing procedure for general optimization problems. The SA method has
been applied successfully to spring drawing algorithms (e.g. [DH96]{FLM94]).

During the movement process, a node may be moved against the drawing
frame border. Usually a frame border is rectangular, but it can be a polygon,
e.g. the shape of an island. This constraint can be solved by several heuristics
[FRO1].

Step 4. Cooling Schedule for Simulated Annealing Algorithms

For SA algorithms, the cooling schedule is used to adjust temperature T iter-
atively. The cooling schedule is a delicate part of the SA algorithm because
it determines the ability of escaping local minima and the convergence speed.
Many cooling schedules have been developed and studied in order to speed SA
up. In general, the cooling schedule includes two parts. For the graph draw-
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ing problem, R.Davidson and D.Harel [DH96] proposed a cooling schedule as

follows:

e Initial temperature. The algorithm sets the initial temperature high
for the random initial vertex placement, but sets it low if the initial

placement does not need much improvement.

e Temperature reduction. Like most researchers, they chose a generic rule.
It is assumed T} is the temperature at kth stage and Ty = y7Tx where
0.6 < v < 0.95. At each temperature, 30 * n node movements are tried.
Their experiments showed that more trials and a quicker temperature

cooling were not helpful.

Step 5. Termination Check

Some methods set constant iteration numbers, e.g. the algorithm of [FR91]
iterates 50 times, and the algorithm of [DH96] runs at 10 different tempera-
tures. The other methods set stop conditions, e.g. the algorithm of [KK89)

terminates when the values \/ (32—3)2 + (-375":)2 of all vertices are no more than

a given boundary that is usually a small positive number.

Step 6. Postprocessing: Fine Tuning

The postprocessing phase can help refine the resulting graph. A typical fine-
tuning method is to execute step 3 c*n (c is a constant) times [FLM94][DH96].

Spring methods are widely implemented in the applications of various areas
because they work for general graphs, and they are easy to understand and
to program. They often produce highly symmetric drawings, distribute the
vertices evenly, and keep the variance of the edge lengths small. Above all,
they can be easily tuned by adding constraints to achieve the desired drawings,
e.g., special forces can be introduced to restrict some vertices to be positioned

within a given region.
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2.4 Hierarchy Layout

We will introduce various hierarchy drawing heuristics with respect to different

phases of the popular Sugiyama approach[STT81].

2.4.1 Introduction

Much research on straight-line hierarchy drawing has been done in the past
two decades. Generally, the hierarchy layout methods transfer the input graph
into a k-level hierarchy (also called multilevel) graph. If we denote V; as the
set of all the vertices on level 7 (1 < < k), we have V = Vu WV J...UVk-
When a vertex v is in the level i (i.e. v € V; or rank(v) = i), we define level
i —1 as the up-level and level i + 1 as the down-level of v or level :. We define
the ordering of V; as an assignment of indices {1,2, ...,|V;|} to vertices in V;.

The major aesthetic criterion of hierarchy layout methods is the minimiza-
tion of the number of edge crossings. A normal approach of drawing a k-level
hierarchy graph is to divide it into k£ — 1 problems of minimizing the edge cross-
ings of a 2-level graph. In this case, the ordering of one level vertices should
be fixed, and the vertex ordering of the other level will be permuted in order
to minimize the crossings. This problem is called the one sided crossing min-
imization problem or Level Permutation Problem (LPP). In other cases when
both levels can change orderings, the problem is known as the two sided cross-
ing minimization problem or Bipartite Drawing Problem (BDP). D.S.Johnson
[GJ83] proved that BDP is NP-hard, and P.Eades and S.Whitesides [EW94]
showed that LPP is NP-hard as well.

2.4.2 Sugiyama Approach

Among all the hierarchy layout methods, the most popular approach was de-
signed by Sugiyama et al. in [STT81]. When applied to the straight-line
drawing of general graphs, the Sugiyama approach consists of the following

three phases:

e Phase 1: all the vertices V are partitioned into k different levels. In the
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hierarchy drawing, the y-coordinates of the nodes in a common level are

usually same.

e Phase 2: the orders of vertices are permuted for each level to minimize
the edge crossings while keeping the vertices on other levels fixed. This
process is sequentially repeated for each level. This gives the relative

z-coordinates of the vertices.

e Phase 3: the z-coordinates of vertices for each level are iteratively im-

proved, while preserving the vertex ordering observed in phase 2.

Most hierarchy drawing heuristics are designed for a particular phase. In the
rest of this section, we will follow this scheme to discuss some well-known

heuristics with respect to each phase.

Phase 1. Partitioning vertices into layers.

For each vertex v, its level rank(v) will be calculated by one of the following:

o using Breadth First Search (BFS).
e using Depth First Search (DFS).

e trying to minimize the total edge length; here the length of an edge is the
number of layers it spans. The total edge length of G can be formulated

as the formula:
Z [rank(u) — rank(v)|.
(u,v)EE

Then the problem is to find a ranking assignment to minimize this for-
mula. One way is to solve an equivalent linear program in polynomial
time [GKNV93|. Some complicated methods were proposed to find an
optimal ranking for the edge weights [GKNV93].

When applying DFS or total edge length minimizing heuristics, we may add

dummy vertices and edges to make sure every edge spans sequential levels. The
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updated graph is then processed in phases 2 and 3. According to Sugiyama'’s
original scheme, phase 4 (which we do not discuss) will remove the dummy
vertices and edges by generating long span edges. However, the edges will need
to be drawn as polylines to preserve the number of edge crossings.

Although the ranking assignment produced by BFS cannot guarantee each
edge spans nonsequential levels, it creates the problem that edges should be
drawn between vertices on the same level. These edges can be drawn as arcs
in a two dimensional drawing if the vertices from the same level are required

to be drawn along a horizontal line.

Phase 2. Permute vertices on each layer to minimize the number of
edge crossings.

(2.1) The DOWN-UP procedure

The drawing of a k-level graph G = (ViU V2l ...|J Vi, E) can be divided into
k-1 LPPs of subgraph G; = (V;|J Vi1, E). However, the LPP of G; is related
to the LPPs of G;;, and G;_,. The Sugiyama approach [STT81] suggested
using the DOWN-UP procedure, which consists of a DOWN procedure and an
UP procedure. The DOWN procedure processes (k —1) two-level graphs in the
order of Gy, Ga, ..., Gk—2, Gk_1, and changes the vertex positions (e.g. order or
z-coordinate) of V;,; on the basis of V; for each G;. Similarly, the UP proce-
dure processes (k — 1) two-level graphs in the order of Gi-1, Gk-2, ..., G2, Gy
and changes the vertex positions of V; on the basis of V;4, for each G;. Each
round of the DOWN-UP procedure involves 2 * (k — 1) 2-layer subgraphs and
a corresponding adjustment of vertex ordering of 2 * (k — 1) levels, namely
Va, Va, ooy Viets Vies Vi1, V-2, ..., V2, V1. In practice, the algorithm can iterate
the DOWN-UP procedures until it runs a given number of times or the prop-
erties of vertices appear periodically.

In the DOWN-UP procedure, each level is processed based only on ei-
ther its up-level or down-level, whichever was processed in the preceding step.
Sugiyama et al. tested another procedure in which each level is processed by
considering both its up-level and down-level. In their examples, the DOWN-
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UP procedure was always better[STT81].

Given a two-level graph G = (V; U V,, F) and a linear vertex ordering of
V4, the objective of LPP is to find a linear ordering of V, that minimizes the
number of edge crossings. Since LPP is NP-hard, the algorithm efficiency of
this phase determines the performance of the drawing method. In the past 20
years, therefore, many heuristics have been suggested for solving LPP.

Junger and Mutzel [JM97] empirically showed that the barycenter (BC)
heuristic [STT81] and the median (ME) heuristic [EW86] significantly outper-
form some other LPP heuristics, e.g., split, greedy-insert, and greedy-switch
heuristics [EK86].

(2.2) The Barycenter heuristic

For the hierarchy drawing problem, the barycenter heuristic was introduced
in [STT81], where the barycenter specifies a vertex property derived from
its neighbors on its adjacent levels. The barycenter property could be the
vertex order, or the vertex z-coordinate. In this phase, the vertex’s barycenter
property is the vertex order, but the vertex z-coordinate is used in a similar
barycenter heuristic of phase 3.

Given a two-level graph G = (V; U V,, E) and vertex ordering of V;, the
indez up-barycenter (upbCinge:) of any vertex v € V5 is defined as

upbCindez (v) = Euevg(:;vc)zZufZ‘;ez(u)

where

o=} EEE
Figure 2.5(a) is the original graph, and (b) is the graph after ordering vertices
in V, by their up-barycenter. This work reduces the number of edge crossings
from 15 to 7.
Similarly, given a two-level graph G = (V] U V2, E) and a vertex ordering
of V3, the indez down-barycenter (downbc;ngez) of any vertex v € V; is defined
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Figure 2.6: A Demonstration of the down-barycenter.

Y uev, a1, v) * indez(u)
ZueVg a(u, U)

Figure 2.6(a) is same as Figure 2.5(b), and Figure 2.6(b) is the graph after

downbcingez (v) =

ordering vertices in level 1 by their down-barycenter. This work further reduces
the number of edge crossings from 7 to 5.

For simplification, we define the bc;.-,,m as the upbcinger in the DOWN
procedure and the downbc;nq.. during the UP procedure. At each step of the
DOWN-UP procedure, we compute the b¢inqg.- Of the vertices in one level and
then sort the bcinger in an ascending order and change the vertex’s order with
its index in the sorted bcingez. In case of a tied bcinger, it is a good practice to
reverse the ordering' of tied nodes at the end of the current step [STT81].

Let us denote c,, (resp c,y) as the number of crossings of edges incident to
u and v when we order v in front of u. Assuming c,, < cyy, We say that the
barycenter ordering is correct if bCingez(V) < bCinder (u).

The correctness of LPP heuristics can be evaluated by generating a matrix
defined by [War77]. Sugiyama et al. [STT81] introduced a specific generating
matrix to analyze the correctness of BC heuristics. The matrix is based on
verifying the correctness of the barycenter ordering of many simple 2-layer

graphs G = (L U V,, E). Here, V; has r ordered nodes and its ordering is
1The tied nodes ordering is consistent with the preceeding ordering of this level.
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known, and V5 has only 2 nodes, {u, v}, which are randomly connected to V).
The matrix emulates the 2" * (2" — 1) distinct graphs to check whether the
barycenter ordering of {u, v} is correct.

E.Makinen constructed an example in which bCingez(v) < bCingez(u) but
Cou > | VT — 2] * ¢y [Mak90]. On the other hand, the rate of correct ordering
is remarkably high [STT81}: no more than 3.02% for r up to 10 [Mak90].

(2.3) The Median heuristic

Given a two-level graph G = (V, U V5, E) and a vertex ordering of V;, for any
vertex v € V3, we denote v’s neighbor in V; as (y1,¥2, ..., ¥:). Then the median
heuristic (ME) defines

me(v) = rank(ym)

where m = [%] . According to the ascending order of me, vertex ordering can
be determined.

Although the correctness of ME is much less than that of the BC heuristic
at least for r up to 10 [Mak90], Eades and Wormald [EW86] showed that
me(u) < me(v) implies ¢,, < 3¢y for all pairs of vertices u and v. They
further concluded that the number of edge crossings in the drawings produced
by the ME heuristic is bounded and not more than three times that in the
optimal drawing.

Phase 3: Positioning of vertices

Sugiyama et al. developed the Priority Layout method to improve the z-
coordinates of vertices on each level according to an assigned vertex priority
(e.g. vertex degree), while preserving the reduced number of edge crossings
by satisfying the vertex ordering obtained in phase 2. Similar to the phase
2 method, this one improves the z-coordinates of vertices on each level with
the DOWN-UP procedure and the barycenter heuristic. But instead of using
vertex order, this phase chooses the horizontal position (i.e. z-coordinate)

as the barycenter property. As with phase 2, there are two barycenters for
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each vertex with respect to the up-level and the down-level: the position up-
barycenter (upbcyos) and the position down-barycenter (downbcp,s). For a two-
level graph G = (V; U V, E) and any vertex v € V5, there is the following
definition:

_ Y uev; a(u, v) * pos(u)
upbcpos(v) = EVZuevl a(u’v)

and for any vertex v € V}

Zuevz a(u,v) * pos(u)
ZuEVz a(u! v)

where a(u,v) was defined in phase 2. We define bcp,s as upbcpes in the DOWN

procedure and as downbcp,s during the UP procedure.

downbcpes(v) =

Phase 2 determines the vertex ordering by sorting the bcinger, and it has
no other constraint. However, this phase aims to determine the z-coordinates
(i.e. position) of vertices on each level by considering the following constraints
in every step of the DOWN-UP procedure: (1) the vertex ordering should be
preserved; (2) high-priority vertices select positions earlier than low-priority
ones, and their positions cannot be changed prior to the end of this step; (3)
a vertex should be positioned as close as possible to its bcy,s; (4) the position
should be an integer between 1 and width, and no two vertices can take the
same positions.

The Priority Layout method has three steps.

Step 1: Initialize the position for vertex v with the formula

pos(v) = of fset + interval * indez(v)

where pos(v) is the z-coordinate of v, and of fset and interval are integers.
Step 2: Iteratively execute step 3 to improve the positions of vertices in
each level by following the DOWN-UP procedure. In each level, the vertex
is processed in the sequence according to an assigned priority. Figure 2.7
demonstrates an example input graph for positioning the vertices. In this case,

we chose degree as the vertex priority and set of fset = 0 and interval = 10.
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priority(degree): 3 2 1
upbCpos: 20 35 40

Figure 2.7: An Example of a Graph with Vertex priority and upbcpss.
Vi-1

Vi

Figure 2.8: The Resultant Graph after Positioning V; .

We will change the positions of vertex v € V; in a DOWN procedure in the
next step.

Step 3: At first, a new pos(v) is selected. This pos(v) should be close to
bCpos(v) (upbepos(v) in this case), and does not overlap with the positions of
other vertices with higher priority. Then we may need to move some lower-
priority vertices in order to preserve the vertex ordering derived from phase 2,
but these movements should be as small as possible.

For example, the position tuple of vertices in V; in Figure 2.7 will develop
in the sequence as (10, 20, 30), (20, 21, 30), (20, 35, 36), (20, 35,40), and then
the graph becomes Figure 2.8.

2.5 Summary

In this chapter, we mainly investigate the graph layout. We have described
some definitions related with graph layout, and presented some remarkable
methods for the circular layout, the spring layout and the hierarchy layout.
For each graph layout, we have attempted to characterize the drawing methods
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with a sequence of heuristics according to a framework. Many drawing algo-
rithms introduced here have been realized in GDC, and the implementation
details will be given in Chapter 3.
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Chapter 3

The Collapsed Graph and the
Drawing Algorithms’
Implementation and Analysis

3.1 The Collapsed Graph

3.1.1 The Representation of Collapsed Graphs

Given an original graph G with N isolated vertices, we index these vertices
with numbers from 0 to N-1. We then represent each edge (u,v) of the Frozen
Development Process (FDP, defined in Section 1.2) of G with a four tuple
(v1,v2, edge type, frozen edge index), where u # v, vl = min(u,v), v2 =
maz(u,v). The frozen type indicates whether vl and v2 are frozen same' or
not, and the frozen edge indez points to the edge that causes v1 and v2 to

be frozen same or records the current edge index. Table 3.1 lists the value

domain for each field of the tuple.

We instantiate the k-Coloring problem with k = 3, which determines that

11t is defined in Section 1.2, and means that v1 and v2 have to be colored with the same

color.

vl v2 frozen type frozen edge index
[0,N-2] | [1,N-1] | 1: not frozen same [0, (7)-1]
3: frozen same {0, T

Table 3.1: Domain of the Fields in Edge Tuples of FDP
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8, 15 1, 33)
(5, 17, 1, 34)
(12, 14, 3, 33)
(2, 18, 1, 36)

Table 3.2: A Sample Section of the Edge Tuples of an FDP.

all the vertices will finally fall into 3 clusters. In this sense, the process of
vertex collapse in the FDP can be viewed as follows: initially each vertex is
a cluster, and when two vertices are frozen same by the current edge, their
corresponding clusters will merge. Thus, the vertices in a common cluster are
kept frozen same with each other, and they should take the same color. In
Table 3.1, T is the largest index of the edges that cause vertices frozen same.
Our test graphs show T < 5% N for N < 200. In the CGr (i.e., collapsed
graph at index T, defined in Section 1.2), the vertex collapse terminates and
a triangle is formed.

A sample section of the edge tuples of an FDP is given in Table 3.2. In
this instance (8,15,1,33) indicates that the endpoints of edge 33—vertices 8
and 15—are not frozen same by any previous edge; (12,14,3,33) implies that
vertices 12 and 14, the endpoints of this edge, have been frozen same by edge
33, i.e. the addition of edge (8,15) to the C'G3; causes vertices 12 and 14 to
be frozen same.

In order to compress the ©(N?) edge storage of the FDP, we represent
the edges whose indices are greater than T by a hashtable in which the key
(left column) is the edge index and the value (right column) is a subset of
the clusters to be merged. Table 3.3 is a section of the hashtable of the FDP
described above. To build up the hashtable, we first identify each cluster
with the largest index of its vertices. We then apply the union-find algorithm
[BG2000] to track the cluster merging process.

As we see in the table of edge tuples, vertex 12 is merged with vertex 14
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30|19, 14

33|19, 12

Table 3.3: A Section of a Hashtable Describing the Information about Vertices
to be Merged.

by edge 33. According to the hashtable above, vertex 14 has been merged to
vertex 19 by edge 30, and the cluster is identified as 19. Since the cluster is
identified as the largest index of the vertices inside, instead of “14, 12", “19,
12” is a value of key (edge) 33.

The number of rows in the hashtable is no more than N — 3 because each
row will reduce the number of clusters by at least one. Combined with the
first T edge tuples, this hashtable can represent a collapsed graph with the
focus on the vertex collapse infomation.

As the edge index i increases from 0 to (J) throughout a complete FDP,
each CG; can be snapshot and laid out individually. There are three types of

vertices in CG;:

e an unborn vertez: a vertex that is not involved in the edges (i.e. vertex

pairs) from 0 to i. Obviously, it is not merged and has degree 0.

o a live verter: a vertex that occurs in the edges from 0 to ¢. The live

vertex has not been merged to another vertex.

o a dead vertez: a vertex that occurs in the edges from 0 to ¢ and has been

merged to another vertex.

For example, CGy has one edge, N-2 unborn vertices, 2 live vertices and no
dead vertices; CGr has no unborn vertices, 3 live vertices and N-3 dead ver-
tices. Both the unborn vertices and the dead vertices are isolated and easily
visualized, so the induced subgraph of CG; with the live vertices constitutes
the input graph for the drawing algorithms. Thus, we represent CG; with its
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Figure 3.1: The Vertex Numbers and the Average Degree Domain of Collapsed
Graphs for an FDP with N = 100.

live vertices and all of its edges. For each CG;, we denote n as the number of

the (live) vertices and m as the number of the edges .

3.1.2 Characteristics of Collapsed Graphs

In the FDP of an original graph G with N isolated vertices, the CG; has
different n’s (n < N) and m’s for each 1.

Figure 3.1 shows the combinations between n and the average degree deg
(= 2 * m/n) by plotting points. This figure clearly exhibits that the points
form three parts:

e an almost continuous curve from the left-bottom to the right-top. The
curve increases slowly when n is much less than N, and it becomes steep
when n approaches N. These points correspond to the collapsed graphs
before the catastrophic vertez collapse (defined in Section 1.2).

e several points sparsely distributed from the right-top to the middle-top.
The catastrophic vertex collapse happens at this point.
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Figure 3.2: The Vertex Numbers and the Average Degree Domain of Collapsed
Graphs. N = 20, 50, 100, 150, 200.

e a few points densely crowded in the left-middle area. These points depict
the collapsed graphs as we aproach the final triangle (i.e. n = 3 and
deg = 2).

Figure 3.2 demonstrates 5 sample FDPs with different N’s in one picture.
This figure shows that the points of different FDPs have a similar distribution.

In order to evaluate the performance of the drawing algorithms, we con-
struct the test set by choosing 13 sample collapsed graphs whose corresponding
points in Figure 3.2 are listed in Table 3.4. These collapsed graphs are selected
on the basis of N and deg. A collapsed graph is called small if N < 100 and
large if N > 100, and is called sparse if deg < 3.0 and dense otherwise. We
will use the tuple (deg, N) to identify each test graph in the thesis.

3.2 Introduction to the Evaluation of Drawing
Algorithms

A good experimental comparison of graph drawing algorithms is the report
[BHR95], which compared five spring layout algorithms (FR [FR91], KK [KK89],
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N 20 50 100 150
n | 15|18 |42 |45 |44 | 87 |97 | 99 | 89 | 130 | 141 | 147 | 132
deg |2.01{29]2013.0/38[20(30{4.0[{44]20]30}{40]|45
Graph Type Test Graphs (deg, N)
small and sparse (2.0, 20), (2.0, 50), (2.9, 20), (3.0, 50)
small and dense (3.8, 50)

large and sparse | (2.0, 100), (2.0, 150), (3.0, 100), (3.0, 150)
large and dense | (4.0, 100), (4.0, 150), (4.4, 100), (4.5, 150)

Table 3.4: N, n, deg and Type of Thirteen Test Graphs.

SA [DH91], GEM [FLM94], Tun [Tun94]) by evaluating two drawing metrics
(the number of edge crossings, the ratio of the longest edge to the shortest
edge) and the run time. Also, Davidson and Harel [DH91] and Fruchterman
and Reingold [FR91] mutually compared their algorithms.

To compare our drawing algorithms and implementations, we mainly use
the run time and two drawing aesthetic criteria—the number of edge crossings

and the vertex distribution. They are defined as follows

o edge crossings E_,s = %26#”53 f(e1,e2) where f(e;,e3) = 1 when
edge e, intersects with e; and f(e;,e2) = 0 otherwise. The aim is to

minimize the number of edge crossings.

o vertex distribution Eugistr = 5 Yy veviuge T':;;; where d(u, v) is the Eu-
clidean distance between vertex u and v. This term aims to ensure that

vertices do not come too close to each other.

We program the drawing algorithms using Java and try to minimize these
aesthetic criteria and the run time for each algorithm. As an accessory drawing
criterion, the minimization of edge length is introduced in order to balance the

drawing aesthetics in our SA algorithm. The edge length is defined as follows

o edge length Euengen = Xy, ) g d(u, v)*. This prevents edges from being

too long.

41



However, our observation of graph drawings suggests that minimizing the num-
ber of edge crossings and the vertex distribution aids human understanding

more than minimizing the edge length.

3.3 The Implementation of Drawing Algorithms
in GDC

We implemented five different graph drawing algorithms: the Circular lay-
out algorithm [ST99] (see Section 2.2.2), three spring layout algorithms-KK
[KK89], FR [FR91) and SA [DH96] (see Section 2.3), and the Hierarchy layout
algorithm [STT81] (see Section 2.4). In this section, we will describe some

details of our algorithm’s implementation.

3.3.1 The Circular Layout Algorithm

The circular layout is straightforward. Its special constraint is to force the
vertices to be laid along a simple shape—the circumference of a circle. Qur
circular layout algorithm includes two steps: (1) it initializes the ordering of
vertices using the CIRCULAR method [ST99] (see Section 2.2.2); (2) and it
applies the greedy algorithm to swap vertices minimizing the number of edge

crossings.

3.3.1.1 The Implementation of the CIRCULAR. Algorithm

The CIRCULAR algorithm selects paths in the graph and places the nodes in
the path along a circle’s perimeter. This algorithm involves searching for the
path with the longest length in a DFS (Depth-First-Search) tree. Here, the
length of a path is defined as the number of vertices in the path. We denote
length(z,y) as the length of the path between vertex z and y. The longest
path will either be from the root to a leaf or between two leaves (see Figure
3.3). Assuming that the longest path is from vertex a to b and vertex u is
the vertex that is in the path and closest to the root, we can decompose the

longest path into two paths: the one from u to a and another one from u to b.
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(a) the longest path is between (b) the longest path is
the root and a leaf between two leaves

Figure 3.3: The Longest Path in a Tree.

To find u, a and b, we assign two three tuples (length, leaf node, preceding
node) to each internal node v of the DFS tree in order to store the information
about the top two longest paths from the leaf node to v. Here, the length is
the path length from v to the leaf node, and the preceding node is the node
such that it is in the path between the leaf node and v and its distance to the
root is one more than that of v. The path information can be obtained by
updating the information of the internal node based on that of its children,
and this can be done in ©(n) time. Thus, u is the vertex having the largest
sum of length of the top two longest paths, and the two leaf node’s of u are a
and b.

After the vertices in the longest path are placed along a circle, the other
unplaced vertices are positioned as follows. We repeatedly find paths in the
DFS tree and place the vertices in each path along the circle. Such paths can

be found by scanning the DFS tree from an unplaced leaf node toward the

root until it comes to a placed node.

3.3.1.2 The Greedy Algorithm that Iteratively Switches Vertices
(GSV Algorithm)

Based on the initial ordering produced by the CIRCULAR method, we apply
a greedy algorithm to swap vertices in order to reduce the number of edge
crossings. We denote r(z,l) as the vertex on the lth position from vertex z
in the clockwise direction. In each trial, we randomly choose a vertex v and
generate n different graphs, G®, G, ..., G®~1) where G@ is constructed from
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u=r(v,l) v v u=r(v,n-1)
(a) Graph G*" (b) Graph G”

Figure 3.4: Switching Vertices Along a Circle.

GG~V for i = 1,2,...,n — 1 by swapping v with r(v, 1) (see Figure 3.4).

We compute the number of edge crossings in all of G®, G, ..., G™~1) and
choose the graph with the minimum number as the initial graph for the next
trial.

For graph G®, we define C¥) as the number of edge crossings and C{) as
the number of edge crossings in which u or v is involved.

We claim C® = Ct6-) — ¢ + %)

Proof: We define E; = {(z,y) € E} for z € V. For both G¢ %) and
G, we consider three subsets of E: E,, E,, and E,=FE \ (E, U E,), and all
edge crossings can be partitioned into four types: (1) an edge in E, intersects
another edge in E,; (2) an edge in F, intersects another edge in E,; (3) an
edge in E, intersects another edge in E,; (4) an edge in F, intersects another
edge in F,. Only edge crossings of type 1 can be affected because just u and

v change their relative orders. A

When computing C in a trial, we already know C~1). To compute Cy 7,
we use an auxiliary array A for v and define A[k] = }_,_,5 . Plv,7(v, )]
for kK = 3,4,..,n — 1 and A[2] = 0, where P[z,y] = 1 if (z,y) € F and
Plz,y] =0if (z,9) ¢ E . We have Cis " = Y g5 ooy AlK] * Plu,r(v, k)],
which can be computed in ©(n) time. Similarly, C% can be obtained. This
gives us a ©(n) algorithm for computing Ct).

The GSV algorithm first computes the C(® at the first trial by checking all



edge pairs of the graph, and this costs time ©(m?). Then the GSV computes
C® on the basis of C~1) (i = 1,...,n — 1) for each trial. At the end of each
trial, the GSV finds the graph with the minimum number of edge crossings in
graphs G, G, .. G™Y and uses it as the G(® of the next trial. According
to our experimental practice, the number of trials is chosen to be ©(n). So the
time complexity of the GSV is ©(m? +n?), and that is ©(n3) for the collapsed
graphs in which m € O(n) (see Figure 3.2).

When the graph is large and sparse, we can further improve the time
complexity of computing c¥ using the efficient algorithm in Table 3.5.

Given graph G®’s adjacency list and circular ordering of the vertices, ar-
rays X[0..deg(u) — 1] and Y[0..deg(v) — 1] are generated such that r(v, X[a]) €
N(u) and r(v,Y[b]) € N(v) fora =0,...,deg(u) — 1 and b =0, ...,deg(v) — 1,
where N(z) is? the subset of vertices adjacent to vertex z and deg(z) is the
number of vertices in N(z). We sort arrays X and Y in ascending order, and
this time complexity is ©(deg(u)*lg deg(u)+deg(v)*lg deg(v)). We increase ei-
ther a or b by 1 each time after comparing X[a] with Y'[5], and this comparison
complexity is ©(deg(u) + deg(v)). So this algorithm can compute c
O(deg(u)*lg deg(u)+deg(v) *lgdeg(v)), compared with ©(n) for the algorithm
discussed earlier. For the collapsed graphs with n < 200, the deg is generally
less than 5 (see Figure 3.2), so ©(deg(u) * g deg(u) + deg(v) * 1g deg(v)) tends
to be a constant. In this case, the time complexity of the GSV algorithm is
reduced to ©(n?).

in time

Figure 3.5 is a graph drawing created by the GSV algorithm. The same
collapsed graph (N = 50, deg = 3.0) will be used to demonstrate the graph
drawing of the other layout algorithms.

3.3.2 Spring Layout Algorithms

The spring layout algorithms have been widely implemented in many appli-

cations. In Section 2.3, we present some details of three typical spring layout
2If (u,v) € E, this algorithm will remove v from N(u) and remove u from N(v).
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Input: Graph G®'’s adjacency list and circular ordering of vertices; u and v.
Output: cl).

Generate arrays X[0..deg(u) — 1] and Y[0..deg(v) — 1] whose entries store
the distance from v to u's and v's neighbors.
Sort arrays X and Y in ascending order.
a = 0; a is the index of a u's neighbor
b =0; b is the index of a v's neighbor
p = 0; p is the number of v's neighbors located between v and a u's neighbor
cl) =0;
do{
if (b < deg(v)) /* at least one of v's neighbor has not been processed */

if (X[a] > Y[b]) /* r(v,Y[b]) is more close to v than r(v, X[a]) */

p=p+1
b=b+1;

else /* edge (u,r(v, X[a])) intersects p edges in which v is involved */

W =l +p;
a=a+1l;
if (@ > deg(u) — 1) /* all u's neighbors have been processed */

break;
}

}
else /* all v's neighbors have been processed */

CS) = CR) + p+ (deg(u) — a);
break;

} while (true);

return C',(g;

Table 3.5: An Efficient Algorithm for Computing cl.
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Crossings=63, Vertex Distribution=0.098, Edge Length=1691927.0.

Figure 3.5: A Circular Layout Drawing of a Collapsed Graph Using GDC.
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#Connected Components Vs Graph Degree & N
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Figure 3.6: The Number of Connected Components Vs Graph deg and N.

methods: KK [KK89], FR [FR91] and SA [DH96]. Considering the proper-
ties of the collapsed graph and the applicability of the drawing heuristics, we
implement our FR algorithm based on LEDA [MN99] and the KK algorithm
based on VGJ [Stu96]. We build our SA algorithm by following the algorithm
specification described in {[DH96][FLM94]. In this section, we will introduce

some interesting techniques applied in our implementation.

3.3.2.1 Making the Graph Connected

In all test graphs, five are not connected and the number of their components
can be seen in Figure 3.6.

Figure 3.6 conveys that a graph with a low average degree is likely to be
disconnected. This brings up the problem of how to lay out the connected
components in one drawing plane so that no two components are entangled
or too far away. An easy solution is to add auxiliary springs (dummy edges)
between the connected components [KK89]. Assuming that the graph has k
connected components C), Cy, ..., Cx to be laid out, we add one edge between
C; and Cj;, for i = 1,...,k — 1 and one edge between C; and C;. Thus we
make the graph connected. In the process of determining which vertex in each
component is to be used as the endpoint of the dummy edge, we choose the
one with the lowest degree in the component.

This preprocessing of the graph can be helpful in achieving better vertex
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Figure 3.7: Vertex Distribution Vs the Number of Connected Components.

distribution with a trivial change in the run time and the number of edge
crossings. In Figure 3.7, FR1 is the FR algorithm with no procedure to make
the input graph connected and FR2 is the FR algorithm using that procedure.
The figure shows that the greater the number of connected components, the
smaller the vertex distribution that FR2 produces, as compared tc that of
FRI1.

Figure 3.8, 3.9 and 3.10 present the graph drawings produced by spring
layout algorithms for the same input graph in Figure 3.5. As we can see
from these three figures, these force-directed algorithms assist in making every
edge have same length and preventing vertices from being too close. The SA
drawing is better than the other two, because it has smaller number of edge
crossings and vertex distribution. Similar to the KK drawing in Figure 3.9,
the FR one in Figure 3.8 has some vertices crowded closely, such as vertices
9,32,46 in Figure 3.8 and vertices 8,46,48 in Figure 3.9. According to the
vertex distribution, the drawing in Figure 3.10 is a little better than those in
Figure 3.8 and 3.9, and this may comply with most reader’s perception.

3.3.2.2 Efficient Computing of the Global Energy

In GDC, the global energy function (see Section 2.3) is A * Ecross + A2 * Eydistr +
A3 * Eetengen where Ay, A2 and A3 are the weights of the drawing criteria. Each
time after displacing a vertex, the SA algorithm needs to calculate the new
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Figure 3.8: A Spring FR Layout Drawing of a Collapsed Graph Using GDC.

Crasngs=19, Vertes Distribution=0.119, Edge Lengih=187297.0.

Figure 3.9: A Spring KK Layout Drawing of a Collapsed Graph Using GDC.
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Cromings= 18, Vertex Distribution=0.086, Edge Lengsh=250307.0.

Figure 3.10: A Spring SA Layout Drawing of a Collapsed Graph Using GDC.

energy. Assuming that vertex v is selected to be moved, we call the vertex v
when v is moved to the new position. We define Eioss, Eudistr and Eeengtn
as the values of the drawing criteria before v is moved and denote E,,,
E, gy a0d E ., as the values of the criteria when v is moved to v'. Given
Ecrossy Eudistr and Eetengnand the coordinates of v and v', we will show how
to compute E,.,,, B4 and E;,mg,,, in an efficient way.

According to the definitions given above, we have

1 1 1
E gistr — Budgistr = 3 ( Z d(u,v')? Z d(u, v)’)

ueVupy ueVu#v

which can be solved in linear time. Similarly, there is Ej e — Eetength =
Y uen(w(@(u,v')? — d(u,v)?). This is also cheap to calculate. So the com-
putation efficiency of the energy function is dependant on the procedure of
computing E.,,, directly or calculating E,. ., — Ecross-

When computing E'm,, without using Ecross, We can use the uniform grid
technique [Tun94] that works best in those cases that the force-directed al-
gorithms tend to produce in which the vertices are distributed evenly in the
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LwLe

Figure 3.11: Computing the Number of Edge Crossings after Moving v to v'.

drawing plane. Given a g x g uniform grid to partition the drawing plane, the
best time complexity of the uniform grid algorithm is O(nlog(g) + (n/¢%)?)
[ASB94], where g should be chosen to be not too large and not too small.
Instead of calculating E..,,, directly, we try another efficient way to com-
pute E..,,, — Ecrass in GDC. As shown in Figure 3.11, u is a neighbor of v,
and u, v and v form a triangle that is displayed in shadow. In most cases,
the distance between v and v’ is much less than the width or the height of
the drawing plane, and the area of the shadow is very small compared with
the complete drawing area, in particular when n becomes large. To compute
E'm,, — Eoss, We need only consider the edge crossings that involve either
edge (u,v) or edge (u,v') for all u € N(v). Given edge (u,v) and an edge
not adjacent to v, if both endpoints of this edge have been determined to be
(1)west of Lw, or (2)east of Le, or (3) north of Ln, or (4)south of Ls (see Figure
3.11), this means that this edge does not intersect with edge (u,v) or (u,v').
So we do not have to run the time-consuming procedure of checking the edge
intersection, although the number of edges to be checked against edge (u,v)
is still m — 1. Thus, we can save the effort of computing E’;.m — Eoss, Which

is especially effective when the graph is large.
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3.3.3 The Hierarchy Layout Algorithm

Most hierarchy layout methods apply the Sugiyama strategy [STT81] (see
Section 2.4). Based on the pseudo code of the Sugiyama algorithm presented
by Ivan Bowman [Bow98], we implement our hierarchy layout algorithm, which

has two phases, as follows:

e Phase 1. Partition vertices into layers. We assign each vertex to the
layer of the level on which it appears in the BFS (Breadth First Search)
tree. This prevents the edge from crossing nonadjacent layers, but brings

up the problem that edges can connect with vertices on the same layer.

o Phase 2. Permute vertices on each layer to minimize the number of edge
crossings. We use the barycenter heuristic combined with the DOWN-
UP procedure (see Section 2.4) to iteratively order the vertices on one
level according to their order down- or up-barycenter (defined in Section
2.4). We reverse the order of nodes with equal barycenters to break the
ties. For those edges appearing on one layer, we draw them with arcs
instead of straight-lines and apply the greedy algorithm to swap nodes
on the given layer to reduce the number of edge crossings in which both
the edges within that layer and the edges between distinct layers are

involved.

The hierarchy layout drawing of the collapsed graph demonstrated in Figure
3.5 (and 3.8, 3.9, 3.10) is displayed in Figure 3.12.

Figure 3.12 demonstrates the display window of the graph drawing in our
application GDC. The top row of text on the window presents some informa-
tion concerning the collapsed graph, e.g., the FDP name “50_1" implies this
FDP has N = 50 and “73” indicates the current edge index. The second row
of text gives three drawing criteria that are further used for evaluating the
algorithm’s performance. The graph drawing pane is divided into three parts:
the left one is used for drawing unborn vertices, the right one for dead ver-

tices, and the midd!e one for the live vertices and all the edges of the collapsed
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collapsed graph
information

Collapsed Graph at Index 73 of FDP g30_l: n=45, m=68, degw=3.0
iCroseinge=40, Vertex Distribution=0.002, Dige Length=315043.0

live vertices’ drawing area

Figure 3.12: A Hierarchy Layout Drawing of a Collapsed Graph Using GDC.
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graph.

3.4 Experimental Results and Analysis

In this section, we will first analyze the relationship between the quality of the
drawing criteria and their weights in SA. Then we will evaluate the drawing
algorithms (Circular, KK, FR, SA and Hierarchy) of various layouts (Circular,
Spring and Hierarchy) in terms of the number of edge crossings, the vertex
distribution and the run time .

All the experimental results (in both Chapter 3 and Chapter 4) are obtained
based on the assumption that all the drawing algorithms have the same draw-
ing plane, the same running environment {Dual Pentium III 450M CPU/256M
Memory/Linux 2.2.10), a common test graph set (see Table 3.4), and 50 trials
per test graph.

3.4.1 Experimental Results and Analysis of the SA Al-
gorithm

In Section 3.3.2.2, we have introduced the SA parameters A;, A2 and A3, which
represent the weights of three drawing criteria: edge crossings, vertex distri-
bution and edge length. The minimization of edge crossings is an important
objective of graph drawing, and the vertex distribution should be minimized
at the same time. However, the cost function composed of these two criteria
will not work at the low temperature during the annealing process, when the
vertex distribution is likely to dominate such cost function and forbid new
vertex movement. Thus the minimization of the edge length is introduced to
balance the vertex distribution in order to get out of local minima. Unlike
the cost function used in [DH96], ours do not contain another two drawing
criteria: borderlines and node-edge distance (defined in Section 2.3.2). The
minimization of borderlines is discarded because it is not useful when the ver-
tices are not initially placed on the border of the drawing area. We get rid of

the minimization of the node-edge distance because its effect has been covered
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Figure 3.13: Number of Edge Crossings Against the SA Parameter Groups.

by the process of minimizing the vertex distribution and the edge length.

The configuration of these weights can affect the drawing criteria. First, we
choose five groups of SA parameters (A;, A2, A3) for evaluation, and they are
(0,1,1), (0.1,1,1), (1,1,1), (10,1,1) and (100,1,1). These parameter groups stand
for a sequence of increasing priorities of the edge crossings in the objective
function with fixed Ay/A3 (=1). In the experiments, the weight parameters
A; are normalized and all the SA algorithms with different parameter groups
use the same initial graph drawing. Figure 3.13 presents the edge crossings
against these groups of SA parameters. Generally, the larger m is, the
smaller the number of edge crossings will be.

Secondly, we compare another five parameter groups: (1,1.1,1), (1,1,0.9),
(1,1,1), (1,0.6,1) and (1,1,1.1). The A/ is 1.1 for the former two groups, 1 for
the third one and 0.9 for the latter two. These parameter groups are verified
to produce reasonable graph drawings in practice3. The )Ay/); is bounded

between 0.9 and 1.1 in our experiments, because the number of crossings tends

3As a counterexample, (0,0,1) produces a graph in which vertices are too crowded to be

distinguishable.
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Vertex Distribution Against the SA Parameter Groups
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Figure 3.14: Vertex Distribution Against the SA Parameter Groups.

to be high when A/ )3 is large and the vertex distribution is likely to be ruined
when Ap/); is small.

Figure 3.14 and 3.15 present the vertex distribution and the edge length
against the SA parameter groups respectively. Obviously, in both figures,
the curve of (1,1.1,1) almost overlaps that of (1,1,0.9). Similarly, the curve
of (1,0.9,1) almost overlaps that of (1,1,1.1). As regarding the vertex distri-
bution, (1,1.1,1) and (1,1,0.9) work better than (1,1,1), which is better than
(1,0.9,1) and (1,1,1.1). This complies with the increasing order of A2/A;. In
the contrast, the ordering of parameter groups is reversed in terms of the edge
length. According to Figure 3.15, (1,0.9,1) and (1,1,1.1) perform better than
(1,1,1), which is better than (1,1.1,1) and (1,1,0.9). So we can say the larger
A2/ A3 is, the smaller the vertex distribution is and the larger the edge length
is.

As described before, the calculation of crossings is time consuming. Com-
pared with other parameter groups, (0,1,1) always requires much less run time
because it avoids computing the number of edge crossings. This can be seen

in Figure 3.16, which shows the run time of our SA algorithm with or without
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Edge Length Against the SA Parameter Groups
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Figure 3.16: Run Time Against Whether Computing the Number of Crossings.
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computing crossings for all test graphs.

Finally, we conclude with the relationship between A;/A; and A2/A; based
on our experimental results. When (A2/A3) > 1, the larger 2zt
" /:: +§’J\13 —7) is, the larger the number of crossings is and the smaller the

vertex distribution is. Since (1,1,1) can achieve balanced crossings and vertex

(i.e.

distribution at the same time, it is chosen as the parameter group for our

testing of SA algorithm.

3.4.2 Experimental Results and Analysis of Different
Layout Algorithms

In this section, we will evaluate the drawing algorithms according to their
performance, namely the number of edge crossings, the vertex distribution
and the run time. The edge length will not be discussed because it appears to
be not strongly related to the readability of the graph drawing according to
our observations.

While testing the drawing algorithms, we start SA with a good initial
drawing—the output of FR—and initialize the other drawing algorithms with
the simple node placement in which all the vertices are laid along a circle in
the order of their indices.

Figure 3.17 presents the number of crossings of the drawing algorithms.
For those graphs whose deg = 2.0, the numbers of edge crossings is zero or
very small, implying that they are likely to be planar graphs. In contrast, the

dense graphs are probably not planar.

For convenience in representing the ranking of the drawing algorithms, we
use “algorithml<algorithm2” to demonstrate that algorithml is much better
than algorithm2 and “algorithm1<algorithm?2” to present that algorithml is a
little bit better than algorithm2 in most cases with respect to the criterion in
use. Thus, according to Figure 3.17, we can represent the ranking of algorithms
with Table 3.6.

The table suggests that the spring layout algorithms are better than the
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Figure 3.17: Number of Edge Crossings Versus Collapsed Graphs.
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Collapsed Graphs | Algorithm Ranking w.r.t #Edge Crossings
small SA < FR < KK < Hierarchy < Circuiar
large SA < KK < FR < Circular < Hierarchy

Table 3.6: Algorithm Ranking With Respect to the Number of Edge Crossings.

Collapsed Graphs | Algorithm Ranking w.r.t Vertex Distribution
small Circular < Hierarchy < SA < KK < FR
large and sparse Hierarchy < SA < KK < Circular < FR
large and dense SA < KK < Circular < Hierarchy < FR

Table 3.7: Algorithm Ranking With Respect to the Vertex Distribution.

algorithms of the other two layouts, while the Hierarchy algorithm is better
than the circular one for small graphs, and the circular algorithm is better
than the Hierarchy one for large graphs. For sparse graphs, all the algorithms
produce a small number of crossings. However, the Hierarchy and the circular
algorithms become less effective in terms of minimizing the number of edge
crossings in dense graphs. The spring algorithms work well because they al-
low the vertex to be positioned at any point (with real coordinates) in the
drawing plane, whereas, the circular algorithm restricts the vertices to place-
ment onto n points along a circle, and the Hierarchy algorithm does not use
the areas between layers for positioning the vertex. As the graph becomes
dense, the plentifulness of the positions available for locating vertices aids the
minimization of the number of edge crossings.

Remarkably, SA generally produces the smallest number of edge crossings.
This also implies that SA does indeed improve the result of FR although it
allows uphill movement—the next solution is worse than the current solution.

We can describe the ranking of algorithms in Table 3.7 according to Figure
3.18 with respect to the vertex distribution. For all the small graphs and the
large graph whose deg is very small (say 2.0, which implies that the graph is
very likely to be planar or even a tree), the Circular and Hierarchy algorithm
are superior to the spring algorithms. When a large graph becomes dense, the
KK and SA algorithm change the vertex distribution slowly, and the perfor-
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Collapsed Graphs Algorithm Ranking w.r.t Run Time
small Circular < FR < Hierarchy < KK < SA
large and sparse | Circular < FR < Hierarchy < KK < SA
large and dense | FR < Circular < KK < Hierarchy < SA

Table 3.8: Algorithm Ranking With Respect to the Run Time.

mance of the Hierarchy algorithm turns bad quickly. This is because when the
graph is dense (and as a result is not like a tree), the BFS tree of the graph
(see Section 2.4.2) tends to have small number of levels and thus more vertices
are likely to be crowded on each level.

As well as minimizing the number of edge crossings, SA also improves the

vertex distribution on the basis of the results of FR. in most cases.

According to Figure 3.19, the ranking of algorithms with respect to the
run time is given in Table 3.8.

On the basis of all the algorithm rankings in the table, we can abstract two
partial rankings: (FR, Circular)<(KK, Hierarchy)<SA. The FR and Circular
algorithm are generally much faster than the others, and SA is always the
slowest. This table also suggests that the run time of the Hierarchy algorithm
and SA is strongly related to the deg of the graph when N is fixed, while the
other algorithms seem not to be affected too much. This is because the SA
and the Hierarchy algorithm spend much time computing the number of edge
crossings, and this computation becomes more time consuming as the graph
becomes denser. For the graph that is likely to be planar (i.e. deg = 2.0), the
Circular, FR and Hierarchy algorithms run very fast.

3.5 Summary

This chapter begins with describing the representation and characteristics of
the collapsed graphs. We have discussed some implementation issues of graph
drawing algorithms. It has been shown that a preprocessing heuristic can
improve the FR and KK algorithms implemented in the existing libraries.
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Collapsed Graphs | Recommended Algorithms
small and sparse | FR, Circular, KK, Hierarchy

small and dense FR, SA
large and sparse KK, Hierarchy
large and dense FR, KK

Table 3.9: Recommended Algorithms for Various Types of Graphs

Since the procedure of calculating the number of edge crossings is recognized
as the most time consuming part for many drawing algorithms, two efficient
heuristics of counting the edge intersections are offered.

By evaluating the experimental results of various drawing algorithms, we
suggest specific types of algorithms for different graphs. If the run time is a
concern, Table 3.9 provides appropriate algorithms for various types of graphs.

Otherwise, the minimization of the number of edge crossings should be the

major concern, and thus the SA algorithm is the best choice for all the graphs.
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Chapter 4

Graph Clustering and
Clustering-Based Drawing
Algorithms

4.1 Introduction

Clustering [AK95]{Mir96] is the process of discovering groupings or classes in
data based on a chosen semantics. Graph clustering is partitioning a graph
G = (V,E) into subsets of nodes W, V5, ..., Vi such that Uf=lV,- = V and
V:NV; = 0! fori # j. W,Va,..., Vi are called clusters. Some intuitive un-
derstanding of what constitutes a cluster exists, but there is no universally
accepted formal definition of “cluster”. The graph clustering problem is to
maximize or minimize W(V;, V2, ..., Vx)—the clustering criterion function of
all the k clusters, where k is initially specified or automatically determined by
the algorithm. The W(V}, V%, ..., Vi) is used to quantify the clustering objec-
tives, and it can be a function of the graph structural formulation [AK95] (e.g.
the ratio cut introduced in Section 4.4.1.2), the geometric distance (e.g. the
sum of the Euclidean distances between each node and its cluster barycenter)
that is usually used for clustering a graph with geometric coordinates, or an
evaluation function of the cluster assignment for each node based on given
semantic qualities (e.g. the associated IP address in a subnet).

We define the clustering problem as graph bisection when £ = 2 and

1We do not consider those cases where clusters could overlap.
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Figure 4.1: Revised Visualization Pipeline: Clustering a Graph after Graph
Layout.

[Vi] = |Va|; otherwise, the problem is called the multi-way graph clustering
problem. Many applications, such as parallel computing, require both £ to be
a power of 2 and balanced cluster sizes, in which case recursive bisection (RB)
is preferable. However, H.Simon and S.Teng [ST97] have shown that an ideal
RB may produce a clustering ©(n?/k?) times worse than a proper multi-way
graph clustering. Ulrich Elsner [Els2000] collected more than 100 papers on
graph bisection.

In this chapter, we will survey some auxiliary clustering approaches for
graph drawing. Graph clustering can be applied either prior to or following
the layout stage from the perspective of the visualization pipeline (see Figure
4.1 and 4.2). So the input of graph clustering can be either a graph without
geometric coordinates or a drawing in which each vertex has been laid out by
the layout stage. The process of a clustering stage will output k& clusters as
well as a backbone, a reduced graph used to represent the original graph. The
backbone of G is the superstructure of its clusters V}, V5, ..., Vi: each cluster of
G is represented by a vertex in the backbone. The edges of the backbone can
be induced from G by the cluster connectivity or some other definition such
as abridgment [HE98]. These simple graphs—clusters and the backbone—will
be further positioned by a layout stage.
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Figure 4.2: Revised Visualization Pipeline: Clustering a Graph before Graph
Layout.

4.2 On Determining a Graph’s Clusters and
the Number of Clusters

The clusters can be determined directly if the cluster definition falls into one
of the following categories: (1) a semantical classification of the node metrics;
(2) a function of some graph structures, e.g. biconnectivity [DMM96]. Con-
sequently, the number of clusters, k, is determined. Otherwise, we have two
choices: select a ¥ manually or let the algorithm find a suitable k.

If k is given by the user, iterative improvement can be used to search
for a better clustering assignment on the basis of the output of the current
clustering trial. If k is not constrained, a good clustering approach is hierar-
chical clustering, which clusters the graph gradually in a sequence of phases.
This involves two types of heuristics: agglomerative algorithms and divisive
algorithms. The agglomerative algorithm starts from n clusters (initially sin-
gle vertices) to construct a smaller-sized graph by applying some cluster-merge
rules, while the divisive algorithm starts from the whole graph G (i.e. 1 cluster)
to construct a larger-sized graph by using some cluster-split rules. The hierar-
chical clustering (see Figure 4.3) runs level by level with each level producing
a coarsened or uncoarsened graph for the next level and can be automatically

terminated by an evaluation function of the clustering criterion development
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Figure 4.3: A Structure Induced by Hierarchical Clustering.

as the levels grow. When the clustering process stops, the number of clusters
can be determined. Since each node has a single inheritance path throughout
the clustering hierarchy, the final cluster assignments for each cluster can be
consistently found.

According to its definition, after the clusters are generated, the backbone
can be created correspondingly. In the following, we will describe some clus-

tering algorithms.

4.3 Clustering a Graph Based on Geometric
Information

To achieve good aesthetics, the layout approaches, in particular the force-
directed approach, tend to distribute vertices evenly in the drawing area and
place the connected vertices (i.e. related objects) closely (see Figure 4.4). The
experiments show that the group of highly connected vertices is not likely to
be fragmented after repeatedly running the layout algorithm. So it is reason-
able to partition the closely positioned vertices into a cluster and then transfer
the clusters and the backbone to the layout algorithm to process these simpli-
fied graphs (see Figure 4.1). In this sense, the clustering problem takes on a

function of the Euclidean distance as the clustering criterion.
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Figure 4.4: A Sample Graph Drawing.

Given a graph with geometric information (like the drawing in Figure 4.4),
the clustering approaches can be generally divided into two categories: clus-

tering with a given k£ and hierarchical clustering.

4.3.1 Clustering with a Given &k
4.3.1.1 Bisection

The simplest geometric bisection is to find a hyperplane orthogonal for a given
coordinate axis to cluster the vertices into two equal parts. For instance, if the
z-coordinate is chosen to separate the nodes, we can sort the z-coordinates of
the nodes and use the median value to separate the nodes.

Instead of choosing a hyperplane orthogonal for some fixed axis, the inertial
bisection [HL94] searches for a hyperplane (or a line in 2D) which minimizes
the sum of the squares of the distances of the nodes to the hyperplane. The
method is derived from the physical model of minimal rotational inertia. For
example, given a two-dimensional drawing area, the algorithm will look for a
line L which goes through the barycenter (ITI/T Y vev Tus ﬁ Yvev y,,) of nodes
and minimizes Y, pd*(v, L) where pd(v, L) is the perpendicular distance
from node v to the line L.
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4.3.1.2 Multi-way Clustering

The k-means algorithm [Ric97] works as follows: (1) it initializes k cluster
means (such as barycenters) my, mg, ..., mg; (2)it assigns each node v to cluster
V; such that m; has the shortest Euclidean distance to v among all the cluster
means; (3) on the basis of clustering derived from step (2), it recomputes each
cluster mean m; with the coordinates of vertices in cluster V;, and repeats step
(2) until two consequent runs produce the same clustering or the iteration time

reaches a given maximum.

4.3.2 Hierarchy Clustering
4.3.2.1 Agglomerative Algorithms

The original graph G is grown in a sequence of graphs G,,Gy,...,G, and
in a bottom-up way (see Figure 4.3), where G; = G, Cluster(G) = n and
Cluster(G;) > Cluster(Gi4,) for i = 1,2, ..., h — 1. Here, Cluster(G) denotes
the number of clusters in graph G. The agglomerative algorithm generates
Gi41 on the basis of G; by merging clusters in G;. One typical cluster-merge
heuristic is to merge the two clusters whose distance is shortest. There are
two definitions for cluster distance. Given two clusters Vj, and V;; of graph
Gi, the cluster distance can be defined as min{d(u,v)ju € V;5,v € V;}, or
maz{d(u, v)|u € Vp,v € Vi } [LS99] where d(u,v) denotes the Euclidean dis-

tance between u and v.

4.3.2.2 Divisive Algorithms

In contrast to the agglomerative algorithms, the divisive algorithm reduces the
original graph G into a sequence of graphs Gi,Ga,...,Gs in a top-down way
(see Figure 4.3). G, = G, Cluster(G) = 1 and Cluster(G;) < Cluster(Gi+1)
fori=1,2,...,h — 1. The divisive algorithm derives G;4, from G; by splitting
some clusters in G;. A divisive method constructs the Minimal Spanning Tree?

(MST) of all the nodes in the drawing area and uses the MST as the unique
2We assume each pair of nodes has an edge whose weight is its Euclidean distance.
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cluster of G to split. In this case, a good cluster-split heuristic is to remove

the longest edge in the clusters [LS99].

4.4 Clustering a Graph Based on the Graph
Structure

There are two criteria by which we can evaluate the quality of the clusters
generated. Both metrics can be used as the clustering criteria for the structural

clustering algorithms.

o Cluster density [AK95): Assuming a cluster has n; nodes and m; intra-
. ity is i
cluster edges, its density is C;'j

e Cut [RS97]: This is the sum of the cuts between all pairs of clusters.
The cut C(W,, V3, ..., V%) is defined as

k
URZATES S S

=1 ueVpw¢V,

where ¢, is the number (or the weight) of the edges between a vertex

pair (u,v).

The structural clustering approaches can be divided into two categories: clus-

tering with a given k and agglomerative hierarchical clustering.

4.4.1 Clustering with a Given k&
4.4.1.1 Bisection

Kernighhan and Lin introduced an iterative algorithm in [KL70]. Given an
initial graph clustering V; and V;, the KL algorithm iteratively swaps a ver-
tex in V; with another vertex in V; such that the cut decreases most by the
switching. The algorithm proceeds in a series of passes, and in each pass every
vertex is swapped exactly once, even though some pair-swaps increase the cut.
The next pass takes the output of its preceding pass as the initial clustering.
The algorithm stops when the pass does not produce a smaller cut than the
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previous pass. The KL algorithm can climb out of local minima because it

allows the pair-swap that increases the cut.

4.4.1.2 Multi-way Clustering

Kernighan-Lin’s two-way ratio cut algorithm [KL70] was extended to a multi-
way ratio cut by T.Roxborough and A.Sen [RS97], who defined the multi-way

ratio cut as

C(‘/lv ‘/21 >eey ‘/k)
Vil x [Va| x .. x |Vil

The clustering problem becomes an attempt to split the graph into & clusters

R(Vi, V3., Va) =

with the minimum ratio cut. The number of all the possible split ways is in

the order of 6(@‘)’7);).

4.4.2 Agglomerative Hierarchy Clustering

After finding a match for a cluster, the two matched clusters can be merged
into one cluster. Assuming cluster u is to be matched, the following three
matching algorithms [KK99] select another cluster to match u with different

considerations.

e Random maximal matching randomly selects one of the unmatched clus-

ters adjacent to u.

o Heavy edge matching selects an unmatched adjacent cluster v such that
(u,v) has the largest weight (e.g. the number of inter-cluster edges) of

all the cluster pairs composed of cluster u and its adjacent clusters.

e Heavy clique matching finds an unmatched adjacent cluster v such that
the merged cluster u and v has the largest cluster density of all the

cluster pairs composed of cluster u and its adjacent clusters.

In [DMM96], U. Dogrusoz et al. proposed a tree reducing heuristic for graph
clustering: the degree one node is recursively merged to its adjacent vertex
until the graph has no degree one node left. The clustering algorithm will then
cluster the reduced graph.
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4.5 Clustering-Based Drawing Algorithms

Graph clustering can be applied either before or after the layout stage (see
Section 4.1), and it can increase the performance of layout algorithms. In
this section, we propose some new clustering-based drawing algorithms that

involve finding the clusters of the graph and laying out the clusters.

4.5.1 Switching Clusters in a Circular Layout Drawing

The Circular algorithm of Section 3.3.1.2 rotates one vertex around a circle
each time in an attempt to find the best position to minimize the number of
edge crossings. As an indirect consequence, connected vertices are aggregated
together. For instance, after applying the Circular algorithm, many vertices
in Figure 4.5 are connected to their neighbors with adjacent orders, i.e. many
edges appear on the circular circumference. Given the ordering (defined at
Section 2.2) of the vertices along the circle, we denote s; as the vertex at
position i (0 < 7 < n—1). In the circular layout drawing, we define the cluster
as a subset of vertices C = {s;,, Si,,- .. , S, } such that 0 < 4y,43,...,54 <n—1

and (ig4) ~4) modn =1and sys;,,, € Efor1 <k <l

Given a circular layout drawing generated by the GSV (the Greedy algo-
rithm that iteratively Switches Vertices. See Section 3.3.1.2), we can scan
the vertex ordering to find the clusters, while minimizing the number of
clusters. In Figure 4.5, 18 vertices are partitioned into 5 clusters: {2,9},
{17,12,15,6,10,16}, {1,14,7,11,0}, {5,19,8,3}, {18}. Then we apply an-
other greedy algorithm that iteratively switches clusters to minimize the num-
ber of edge crossings. When a cluster is chosen to be swapped with another
cluster, we test not only the original ordering but also the reversed ordering
of this cluster. For example, when swapping cluster {5,19, 8,3}, we try both
{5,19,8,3} and {3, 8,19, 5} to find a good vertex ordering that causes the least
number of edge crossings. At the end of each iteration in which a cluster has

been switched with that of other clusters, if an improved vertex ordering is
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Cromings=13, Vertex Distribution=0.0060, Edge Length=1139248.0.

Figure 4.5: A Circular Layout Drawing Generated by the GSV.

obtained, we recompute the clusters according to the new vertex ordering.

Figure 4.6 shows a graph drawing improved by the GSC (the Greedy algo-
rithm that iteratively Switches Clusters). Compared with the graph drawing
in Figure 4.5, the one in Figure 4.6 reduces the number of edge crossings from
13 to 7.

Figure 4.7 presents the number of edge crossings reduced by the GSC on
the basis of the drawing generated by the GSV. Figure 4.8 gives the ratios of
the number of crossings reduced by the GSC to the original number of the
GSV. It seems that the GSC is more applicable for small and sparse graphs,
for which the GSC algorithm can reduce relatively more edge crossings. In
contrast, the GSC reduces large number but small percentage of crossings for
the large dense graphs.

For all test graphs (except the planar ones), the GDC can reduce the num-
ber of edge crossings in the drawing generated by the GSV, as indicated by

Figure 4.7. This is because the GDC can move both one or more vertices
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O,
Crossings=7, Vertex Distribution=0.0060, Edge | ength=:984789.0.

Figure 4.6: A Circular Layout Drawing Generated by the GSC.
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Figure 4.7: The Number of Edge Crossings Reduced by GSC Based on GSV
Vs Graph deg and N.
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Figure 4.8: Performance of GSC over GSV Vs Graph deg and N.

(e.g. {2,9} in Figure 4.5), but the GSV moves only one vertex at one time.
Instinctively, the GSV helps to form the clusters and to minimize the num-
ber of crossings of intra-cluster edges, and the GSC improves the drawing by

minimizing the number of crossings of inter-cluster edges.

4.5.2 Zooming in on the Dense Vertex Cluster of the
Spring Layout Drawing

In this section, a clustering technique is proposed to improve graph drawing
generated by spring layout algorithms, which usually stabilize and yield vertex
clusters that are visually apparent (see Figure 4.4). In GDC, we implement an
algorithm that can detect the dense clusters in which the vetices are crowded
together and then zoom in on the drawing region of this cluster and zoom out
to the rest of the drawing plane. The algorithm’s details are as follows.

Given a spring layout drawing (see Figure 4.9), we divide the whole drawing
area into [/n1]® uniform grid cells.

In most cases, the spring layout drawing produces good vertex distribution
in that the number of vertices in a grid cell is small (e.g. 0, 1 or 2). However,
our observation shows that there usually exists a dense cluster of grid cells in

which the number of vertices is much greater than the number of cells. For

77



This dense
cluster will
be zoomed
in on.

Crossings=17, Vertex Distribution=0.069, Edge Length=273104.0.

Figure 4.9: A Spring Layout Drawing Before Zooming in on the Dense Vertex
Cluster
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Table 4.1: Vertex Density Matrix of Grid Cells.

example, Figure 4.9 has 42 nodes distributed into 49 grid cells, as in Table 4.1.

We select a rectangular-shaped cluster of grid cells to zoom in on, e.g.
a 2 x 2 rectangle. It is easy to find the dense cluster (having bold font in
the Table 4.1) that hold the largest number of nodes by enumerating all the
possible 2x 2 rectangles in this matrix. In this case, 7 nodes are crowded within
4 grid cells. The dense vertex cluster makes the inner vertices more likely to
have less geometric distance between them and hence difficult to distinguish
from each other. A basic improvement of the vertex distribution is to zoom
in on the rectangular region of the dense vertex cluster. When a rectangular
region inside the drawing plane is magnified and the other drawing area is
shrunk accordingly (see Figure 4.10), we try to preserve the graph embedding
(defined in Section 2.1) and prevent the number of edge crossings from being
significantly increased.

In comparison with Figure 4.9, Figure 4.10 illustrates a reduction in the
vertex distribution from 0.069 to 0.058 and an increase in the number of edge
crossings from 17 to 19. In Figure 4.11, we present the vertex distribution
of the spring layout drawing before and after zooming in on the dense vertex
cluster. For all the test graphs, the vertex distribution is improved, especially
when the graph is large and dense. Figure 4.12 shows that this technique does
not increase the number of edge crossings as significantly as it reduces the

vertex distribution for all the test graphs.
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Crossings=19, Vertex Distribution=0.058, Edge Length=364780.0.

Figure 4.10: A Spring Layout Drawing After Zooming in the Dense Vertex
Cluster.
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Figure 4.11: Vertex Distribution Vs Graph deg and N.
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Figure 4.12: The Number of Edge Crossings Vs Graph deg and N.

4.6 Summary

In this chapter, we have shown that graph clustering is strongly correlated
with graph layout, because graph clustering can simplify the input graph
for drawing with the graph’s geometric or structural information. We have
presented a hierarchy of classifications of auxiliary clustering approaches for
graph drawing. We have also developed two clustering techniques and com-
bined them with the drawing algorithms of Chapter 3 to improve the quality of
the graph drawing. The empirical results show these clustering-based drawing
algorithms can significantly improve the drawing aesthetic criteria for some

types of graphs.
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Chapter 5

GDC System Implementation

5.1 The GDC System Architecture

The system architecture of GDC is shown in Figure 5.1, in which the compo-
nents inside the rounded rectangle are I/O (flat files or memory variables) and
the other components are programs (libraries or applications). The central
component of GDC is two hashtables that maintain only generic information
concerning the graph to be drawn. Each FDP (Frozen Development Process)
uses two files to store its edge list and the information about the vertices
that are frozen same (see Section 3.1.1). These files can be converted to the
graph hashtables when the current edge is specified by the GUI (Graphics
User Interface). The algorithm classes of GDC are written in Java, as doing
so makes them platform independent, although they run less efficiently than
C program. The algorithm classes interpret the input graph with the graph
hashtables and store their results back to the hashtables. The algorithm library
of GDC provides interfaces (whose typical arguments are the graph hashtables,
the drawing method and the drawing area) to be called by any Java program.

In Figure 5.1, we see the relationship between three other components and
the GDC system architecture. The GML (Graph Modeling Language) is a
file format for graph representation used by some popular graph editors and
layout libraries, such as Graphlet [MHB99] and VGJ [Stu96]. For any custom
application, the GDC drawing library and the graph hashtables can be easily

reused.
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. File containing Information
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: are Frozen Same in an FDP
read/write
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— calt | )
Customer Applications : Algorithm Classes of Graph Layout (Java)

Figure 5.1: The GDC System Architecture.
5.2 Algorithm Animation

GDC can animate the process of adding edges and merging vertices throughout
an FDP. As an important part of the GUI of GDC, the window of the control

panel (see Figure 5.2) controls the animation.

If a file (i.e. FDP) is chosen from the file list, the information about the
edges in this FDP will be filled in the “edge list”, from which the user can
select the current edge to view the collapsed graph. If the current edge causes
some vertices to be frozen same, the information about these vertices will be
displayed at the bottom right of the control panel.

Figure 5.3 demonstrates an animation of merging vertices in GDC. In this
case, vertex 4 will be merged into vertex 11. To highlight the vertices to be
merged, we enlarge the label sizes of vertices 4 and 11 and blink their colors as
well. Then vertex 4 is pulled toward vertex 11 in a sequence of frames. Once
vertex 4 has been merged into vertex 11, we increase the label size of vertex

11 and make vertex 4 gray to exhibit the effect of vertex collapse.

We employ multithreading in the implementation of the animator to pro-
vide more responsive feedback to the user. Similar to the animation of merging

vertices, we implement the animation of adding edges to the collapsed graph.
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Figure 5.2: The Control Panel Window in GDC.

5.3 Three Dimensional Drawing and Visual-
ization

We implement the 3D (three dimensional) spring algorithm based on LEDA
[MN99] and the 3D visualization based on the Java 3D demos of Sun Microsys-
tems.

In Section 2.3, we have discussed spring layout methods all of which can be
applied in both a 2D (two dimensional) and a 3D drawing space. Unlike 2D
drawing, 3D drawing must maintain an extra coordinate variable z. Similar to
coordinate z and y, coordinate z is moved by a force function of the Euclidean
distances between vertices. However, when the vertices of the input graph
initially have no coordinate z, z should be initialized with scattered values in
order to prevent the forces along the axis z from being zero.

Figure 5.4 presents a sample 3D drawing of the spring layout. The graph
can be rotated with the mouse, providing the convenience of viewing the graph

from various perspectives.
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Figure 5.4: 3D Drawing of the Spring Layout.
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5.4 Summary

In this chapter, we have described the system architecture of GDC and pre-
sented the relationship between the library of drawing algorithms in GDC
with other applications. We have also outlined some practical concern and
implementation techniques of the algorithm animation and 3D visualization

provided in GDC.
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Chapter 6

Conclusion and Suggestions for
Future Work

6.1 Conclusion

The thesis is motivated by the desire to visualize the graph collapsing phe-
nomenon associated with the 3-Coloring phase transition. We began by de-
scribing general graph drawing methodologies and discussing the Frozen De-
velopment Process (FDP) as well as the collapsed graph, a type of graph that
represents the FDP and needs to be laid out. We selected a set of collapsed
graphs to test drawing algorithms. We provided an overview of the graph
drawing problem, including the drawing aesthetic criteria that can be used
to measure the quality of graph drawing. We introduced the features of two
famous graph drawing libraries and editors and our application—GDC.

We gave some definitions and described some problems related to the graph
drawing problem. We investigated some widely used methods for three fun-
damental types of graph layout and attempted to represent various methods
with a sequence of heuristics according to a framework for each graph layout.
We empirically studied five drawing algorithms, and provided some imple-
mentation details and experimental analysis. We also presented preferable
algorithms for different types of graphs. When the number of edge crossings
is mostly concerned, the SA algorithm is likely to be the best.

We investigated the problem of graph clustering. We showed that graph
clustering is strongly correlated with graph layout. Graph clustering can help
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graph drawing by reducing the input graph with geometric or structural infor-
mation about the graph. We classified graph clustering methods into various
categories. We also developed two clustering techniques and showed that the
clustering-based drawing algorithms can significantly improve the drawing aes-
thetic criteria for some types of graphs.

We outlined the system architecture of GDC and proposed ways to reuse
some components of GDC. We demonstrated how algorithm animation and

three dimensional visualization work in GDC.

6.2 Future Work

This thesis discusses methods of graph drawing and graph clustering for draw-
ing collapsed graphs. The techniques may be further investigated in the fol-

lowing ways:

e We have drawn the graph with only the straight-line drawing convention.

The poly-line drawing convention needs to be investigated.

e We have applied two clustering techniques to find the clusters of a graph.
Thus, we simplified the graph into small clusters of vertices for layout.
More research is needed to comprehensively discover the correlation be-
tween the graph clustering and the graph drawing algorithms and visual

comprehension.
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