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Abstract

We present a model of the precession dynamics of the Moon that comprises a fluid outer

core and a solid inner core. We show that three Cassini states associated with the inner

core exist. The tilt angle of the inner core in each of these states is determined by the

ratio between the free inner core nutation frequency (ωficn) and the precession frequency

Ωp = 2π/18.6 yr −1. All three Cassini states are possible if |ωficn| > 2π/16.4 yr −1,

but only one is possible otherwise. Assuming that the lowest energy state is favoured,

this transition marks a discontinuity in the tilt angle of the inner core, transiting from

−33◦ to 17◦ as measured with respect to the mantle figure axis, where negative angles

indicate a tilt towards the orbit normal. Possible Lunar interior density structures cover

a range of ωficn, from approximately half to twice as large as Ωp, so the precise tilt angle

of the inner core remains unknown, though it is likely large because Ωp is within the

resonant band of ωficn. Adopting one specific density model, we suggest an inner core

tilt of approximately −17◦. Viscoelastic deformations within the inner core and melt and

growth at the surface of a tilted inner core, both neglected in our model, should reduce

this amplitude. If the inner core is larger than approximately 200 km, it may contribute

by as much as a few thousandths of a degree on the observed mantle precession angle of

1.543◦.

A natural extension of our Cassini state model is to investigate the impact of the

rotational dynamics of the Lunar interior on the generation of an ancient Lunar magnetic

field. Purely thermally driven convective dynamo models have had a difficult time

explaining the paleomagnetic intensities recorded in Lunar rocks. Mechanical stirring

from differential rotation at the core mantle boundary (CMB) and inner core boundary

(ICB) can generate large viscous dissipation, potentially sufficiently large in the Lunar past

to have powered a dynamo. We present estimates of the paleomagnetic field intensities

Bcmb and Bicb based on dynamos associated with viscous dissipation at the CMB and

ICB, respectively. We show that Bcmb may have been larger than 25 µT early in Lunar

history, although the dynamo would have shut off around 3.9 Gyr ago. We also show that
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the inner core radius must be larger than approximately 100 km for viscous dissipation

at the ICB to be above the dynamo threshold. Bicb can be as large as approximately 8.5

µT, weaker than Bcmb, but a dynamo from dissipation at the ICB may have persisted

until very recently.
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Chapter 1

Introduction

Being our closest celestial neighbour, the study of the Moon began thousands of years

ago, but it wasn’t until the arrival of the space age that high precision observations of the

Moon could be taken. Satellite missions starting in 1959 have revealed an abundance of

data far beyond observations made from Earth, with even more being discovered through

the manned missions to the Moon beginning in 1969. Retroreflector arrays placed on the

surface allowed for centimetre accuracy in measurements of the orientation and motions

of the Lunar surface, and along with dozens of other instruments, has allowed us to study

the Moon like never before.

Despite the wealth of knowledge now available, certain aspects of the Moon and its

past are still ambiguous. Many different models of the Lunar interior exist, with varying

fluid outer core radii and densities. The presence of a solid inner core has also been

detected although its existence is still under dispute. The rotational dynamics of these

interior structures cannot be measured directly and instead are left to mathematical

modelling. The ancient Lunar magnetic field has also been a point of contention. Most

conventional dynamo mechanisms have failed to explain either the magnitude or the

longevity seen in the paleomagnetic observations. Many other uncertainties involving the

Moon and its history exist, but for this study we will focus mainly on the ones mentioned

above. We will develop a model in order to calculate the rotational dynamics of the Moon

and its interior given a wide range of Lunar parameters. An extension of this model into

the past allows us to investigate alternate processes that could have theoretically led

to dynamo generation and hopefully provide insight into the uncertain ancient Lunar

magnetic field.

1



CHAPTER 1. INTRODUCTION 2

1.1 Exploration of the Moon

Prior to space travel all observations of our celestial neighbourhood were made using

ground based methods. The arrival of the space age introduced new methods of data

acquisition. We were now able to gather much higher quality data of our closest celestial

neighbour with the use of Lunar orbiters and probes [Heiken et al., 1991]. Unhindered

by interference of the Earth’s atmosphere, these probes yielded clearer photographs of

the Lunar surface at higher resolutions. In addition to superior image quality, the use of

complex instrumentation provided bountiful new data beyond simple photography. Luna

10 was the first spacecraft to map the chemical composition of the Moon from orbit,

with many more spacecraft in the later months of 1966 measuring selenodesy, radiation

environment and soil mechanics. The year of 1966 was concluded by Luna 13 returning

the first analysis from soil samples after making a successful soft landing on the Lunar

surface.

The following years leading up to 1969 were dominated by the Lunar Orbiter program,

a series of 5 unmanned spacecraft sent to the Moon with the purpose of mapping potential

landing sites in preparation for the future manned Apollo missions. Photographic

measurements were made of both sides of the Moon with resolutions of 60 m or better

[Heiken et al., 1991]. In conjunction with photographs, observations of the Lunar radiation

environment as well as selenodesy and meteoroids were also made to affirm that space

travel to the Moon was indeed a possibility.

Through 1969 to 1972, six manned Apollo missions were launched with each sub-

sequent mission revealing more about the Lunar environment and providing insightful

evidence into the Lunar past. The Apollo Lunar Surface Experiment Package (ALSEP)

described a collection of scientific instruments used by the Apollo missions which re-

layed detailed measurements of various Lunar phenomena and properties back to Earth.

ALSEP contained several scientific instruments such as seismometers, retroreflector arrays,

charged particle flux detectors, atmospheric composition and pressure detectors, thermal

subsurface devices, gravimeter, magnetometer and solar wind spectrometer instruments.

It was placed by the astronauts at the landing site of each respective mission, excluding

Apollo 11 which contained a smaller package with fewer instruments. Most of the ALSEP

experiments were shut off by September 30th, 1977 primarily due to budget restrictions,

however the retroreflector arrays are still in use today in measurements of Lunar motions

[Dickey et al., 1994]. In total, the Apollo missions returned 381.7 kg of samples from the

Moon, and an abundance of measurements of the Lunar environment for years to come.

Since 1972 there have been a few dozen satellite missions to the Moon, though none
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have been manned since Apollo 17. Nevertheless, valuable data has been acquired from

these missions, the most recent and notable of which were the Gravity Recovery and

Interior Laboratory (GRAIL) which produced a high quality mapping of the Moon’s

gravitational field (2011-2012), the Lunar Atmosphere and Dust Environment Explorer

(LADEE), purposed with studying the Lunar exosphere (2013) in addition to a few

Chinese lead missions. While the frequency of Lunar missions has decreased over the last

few decades, plans for many more are underway in the near future.

1.2 Lunar history

The origin of the Moon is still a highly debated subject, however one consensus is

ubiquitous: the moon had a violent and energetic birth. The first postulate of the Moon’s

origin, conceived by Darwin [1879], describes the Moon as a product of fission from a

larger body. A rapidly spinning primordial Earth could create centrifugal forces large

enough to counteract gravitational forces at its equator. Through the help from resonant

amplification from the tidal forcing of the sun and rotational instabilities of the Earth

resulting from either its atmosphere or core [Cameron and Marsden , 1966], a large mass

could have separated from the resulting equatorial bulge. This hypothesis quickly began

to raise suspicion as Chamberlin and Moulton [1909] showed the insufficient angular

momentum available to cause such a dramatic chain of events, with Earth currently

possessing only 10-20% of the required angular momentum to form the Jacobian ellipsoid

resulting in fission. A further study done by Jeffreys [1930] suggested that the tidal

bulge would be damped by internal friction, which further demonstrated that while most

qualitative features of the Moon could be explained by this hypothesis, there was more

to the birth of the Moon than the simple fission hypothesis.

A more modern version of the fission hypothesis was proposed by Wise [1963] which

states that a homogeneous proto-Earth could have reached supercritical rotation when

gravitational differentiation of the body occurred (Fig. 1.1). As the heavier elements

coalesced to the centre, the moment of inertia would have decreased thereby increasing

the rotation rate. However the fission hypothesis in general is still regarded with prudence

as it does not address its most significant pitfall of insufficient angular momentum.

Decades after Darwin proposed his widely popular theory, alternate hypotheses began

to surface. Amongst these, the two predominant ones suggest that either the Moon formed

along side the Earth as a sister planet or was gravitationally trapped from somewhere

else in the solar system. Although seemingly plausible, each of these classical hypotheses

fall short of explaining a few key abnormalities. First, the lack of iron present in the
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Figure 1.1: Sequence of events leading to Moon formation through fission from a larger

proto-Earth. From Wise [1963].

Lunar rock suggests that it did not form alongside the Earth as a separate body since

this would not explain the striking similarity of the Moon to that of the Earth’s mantle.

Secondly, the probability of a body as large as the Moon getting trapped in a stable orbit

around a relatively small body such as the Earth is rather low [Hartmann and Davis ,

1975].

The most widely accepted hypothesis today involves an impact scenario. A collision

between a large body, approximately the size of Mars, and the proto-Earth could have

created enough ejecta in order to accrete as a satellite around the Earth. Numerical

simulations done by Kipp and Melosh [1986] examine the resulting interaction between

two colliding planets. Both planets are assumed to be gravitationally differentiated to

contain iron cores with radii equal to one half of the planets’ radii. The simulation is run

from the moment of impact to 12.5 minutes afterwards and shows a large portion of the

proto-Earth’s mantle being ejected while the iron cores of each respective body remain

relatively untouched (Fig. 1.2). The numerical model was concerned primarily with the

collision between two proto-planets and did not provide much insight to the accretion

post-collision.
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Figure 1.2: A simulation of colliding planets with small iron cores from moment of impact

to 12.5 minutes post impact. From Kipp and Melosh [1986]

Further studies of the collision hypothesis were done by Canup and Asphaug [2001]

using Smooth Particle Hydrodynamics (SPH) simulations to examine the interactions

of colliding planets (Fig. 1.3). The focus of this study was the effect of relatively small

impactors with values γ < 0.115 where γ =
Mimp

Mt
, Mt being the total mass of the system,

and Mimp being the mass of the impactor. Both the proto Earth and impactor were

assumed to have small iron cores. The main constraint was matching the iron abundance

in the debris disk to be approximately equal to the mass fraction of the Lunar core

(MFe
MD

= 0.03) where MD is the total mass in the debris disk and MFe is the total mass of

iron in the disk. In addition, the resulting debris disk and post impact planet must have

had a similar mass to that of the present-day Moon. It was found that large impactors

(γ > 0.115) could produce large debris disks, but resulted in a system with too much

angular momentum to satisfy the present-day Earth Moon system. Conversely, in order

for a small impactor (0.08 < γ < 0.09) to produce enough ejecta to match the Lunar
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mass, a glancing impact would need to occur, resulting in too much iron in the debris

disk. The most successful impacts were those of an impactor to total mass ratios of

0.1 > γ > 0.11, about the mass of Mars. Despite the angular momentum problem of high

mass impactors, in a followup study, Canup [2012] showed that large impactors (γ > 0.4)

were also a viable theory, given that the angular momentum of the Earth-Moon system

was decreased by a factor of 2-2.5 through resonant evection with the sun, which was

shown to be a possibility through the work of Cuk and Stewart [2012].

Figure 1.3: Simulation between two colliding proto-planets from moment of impact to 23

hours post collision. The color represents internal energy in units of 6.67× 108 erg g−1.

From Canup and Asphaug [2001].

This modern collision hypothesis explains the Moon’s similar composition to that of

the Earth’s without imposing contrived scenarios of capture or formation. Whether a

collision between two planetary bodies of this size in the early solar system was plausible

depends on the abundance of such planetary bodies at the time of solar system formation.

A study by Hartmann and Davis [1975] explores the evolution of planetary bodies in the
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early solar system and possible sizes of neighbouring planets. It was found that secondary

planetesimals in the vicinity of the primary planet were quite common and could have

been quite sizeable even relative to the primary planet. These large bodies could have

struck the Earth within 107 - 108 years of formation, ejecting the iron-deficient mantle of

the proto-Earth into orbit (and beyond as well). The ejected material would have quickly

settled in the equatorial plane where a satellite could have formed [Canup and Asphaug ,

2001].

Despite the controversy surrounding the origin of the Moon, one conclusion can be

drawn: much more data is needed in order to confidently surmise the origin of the Moon.

The Apollo missions were thought to have brought this answer to the surface but instead

revealed that the Moon is a more complex body than we previously thought.

1.3 Lunar Laser Ranging

The orbital motion and orientation of the Moon have been extensively studied, especially

in the decades following the Apollo missions where retroreflectors arrays placed on

the surface allowed for centimetre measurement accuracy of the motions of the surface

through a method called Lunar Laser Ranging (LLR). The first observatory to acquire

LLR data was the McDonald observatory near Fort Davis, Texas and the Lick observatory

in California. The premise of LLR itself is technologically challenging [Dickey et al.,

1994]. The outgoing laser is collimated to 3-4 arcseconds which translates to an area

with a diameter of about 7 km on the surface of the Moon. The retroreflectors reflect

the photons back along the paths of incidence (deviating by up to 10 arcseconds due to

diffraction), however intercept only 10−9 of the incident ray, meaning that the overall

signal loss is on the order of 10−21. At the time, 3 Watts (1019 photons/s) was the

maximum available power of such lasers, so receiving such an attenuated signal was

no easy feat and required single photon detection. Nevertheless, abundant amounts of

data has been accumulated over the duration of this project, with four stations still

actively acquiring LLR data: Apache Point observatory, New Mexico, US, McDonald

Laser Ranging Station, Texas, US, Observatoire de la Côte d’Azur, France and Matera,

Italy [Munhemezulu et al., 2016].

The orbital and rotational dynamics of the Moon are highly sensitive to its many

parameters, meaning LLR can provide insight into many Lunar properties [Williams

et al., 2014]. For example, LLR provides a measure of moment of inertia differences
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through measurements of physical librations:

β =
C −A
B

, (1.1a)

γ =
B −A
C

, (1.1b)

where A and B are the equatorial moments of inertia, and C is the polar moment of

inertia. The second degree gravity coefficients J2 and C22 can be related to the moment

differences through:

J2 + 2C22 =
C −A
MR2

, (1.2a)

J2 − 2C22 =
C −B
MR2

, (1.2b)

4C22 =
B −A
MR2

, (1.2c)

where M is the Lunar mass and R is the mean radius. The total moment of inertia of

the Moon was found to be 1.6 % less than that of a homogenous sphere [Williams et al.,

2014] meaning any denser core would be relatively small. At the end of the 1970’s, LLR

detected dissipation on the Moon, which was found through a slight misalignment in

the orientation of the precessing mantle’s figure axis. The dissipation has since been

attributed to solid body tides, as well as power dissipation at the core-mantle boundary.

Tidal deformation has also been detected through the Love numbers h2 (vertical tides)

and l2 (horizontal tides) which can be determined through the displacement of the

retroreflector arrays.

While LLR has been paramount in the study of the Moon, it does not detect the

rotational dynamics of internal structures, at least not above the accuracies we have

today. The interior dynamics have therefore been left to mathematical modelling.

1.4 Lunar interior

Love numbers and moments of inertia found through LLR support the existence of a

liquid core with a radius of 250 - 430 kilometers [Wieczorek et al., 2006]. In addition to

LLR, Lunar seismology has also aided in constraining Lunar interior structures however

little is certain about the deep Lunar interior to this day. The four seismometers depend

entirely on passive seismic events. While global seismology on Earth yields abundant

information about its interior structure, the same cannot be said for the Moon. Most

seismic events occur deep within the Moon (700-1200 km in depth), up to 4 in magnitude,

but are often far less energetic [Heiken et al., 1991]. What can be surmised however
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is that there is a region of high attenuation in the lowermost mantle consistent with

partial melt and a fluid core with a radius ranging between 310-350 km [Weber et al.,

2011]. Another strong reflection is seen at 240±10 km in radius, and the lack of SH signal

suggests the presence of a solid inner core, although its existence is still equivocal [Garcia

et al., 2011] as gathering seismic data from the Moon’s deep interior has proved to be a

challenge and has resulted in noisy data. A possible interior structure of the Moon is

shown in Fig. 1.4, though it needs to be emphasized that the thickness of each region

remains poorly constrained. Additional seismic and gravitational data is needed in order

to further constrain the structures of the Lunar interior.

Figure 1.4: Subsurface Lunar profile from seismic array-processing methods including a

solid inner core. From Weber et al. [2011]

For the purpose of this study, we assume the existence of a solid inner core, with radii

varying between 10-250 kilometers, as well as a fluid outer core with sizes ranging from

300 to 420 kilometers in radius, both of which are in agreement with the seismic data.

1.5 Lunar rotational and orbital dynamics

The Moon orbits around the Earth once every 27.3 days, and rotates around itself with

the same period. This results in a tidally locked orbit, meaning the same face of the Moon

is always pointing towards the Earth throughout its orbital motion. Its orbital plane is

inclined by 5.145° with respect to the ecliptic plane and is slightly eccentric (e=0.0549),
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Interaction Type Amplitudes

Ellipticity 20905 km

Solar perturbations 3699 & 2956 km

Jupiter perturbations 1.06 km

Venus perturbations 0.73, 0.68 & 0.6 km

Earth J2 0.46 and 0.45 km

Moon J2 & C22 0.2 m

Earth C22 0.5 mm

Lorentz contraction 0.95 m

Solar potential 6 cm

Time transformation 5 cm

Other relativity 5 cm

Solar radiation pressure 4 mm

Table 1.1: Sources of radial variation in the Lunar orbit

perturbed strongly by the solar gravitational field, Jupiter to a lesser extent and by

numerous other negligible sources (table 1.1)[Williams and Dickey , 2002; Chapront-Touzé

and Chapront , 1983].

The symmetry axis of the Moon is tilted by 1.543° with respect to the ecliptic plane

(Fig. 1.5). The Moon is in a Cassini state which is described by the last of Cassini’s

three laws as a stable configuration of its spin-symmetry and orbital axes, both of which

are coplanar with the ecliptic normal [Peale, 1969]. Due to the longevity of the LLR

project, the precessional motion of the Moon has also been well constrained. Both the

spin-symmetry axis and orbital plane normal precess in a retrograde motion with a period

of 18.6 years, meaning that the Cassini state is preserved throughout the precessional

motion. The precession of the Moon is most strongly influenced by the solar gravitational

field, and weakly by Earth’s ellipticity coefficient (J2) along with other less significant

sources listed in table 1.2 [Williams and Dickey , 2002].

In truth the Moon isn’t in a perfect Cassini state, it’s spin-symmetry axis is ahead by

0.26 arc seconds, a lead most likely caused by a dissipation mechanism at the core-mantle

boundary or solid body tidal friction, or a combination of the two [Yoder , 1981]. However

it is such a minute amount that, at least for this study, we will assume that this offset

is negligible. As successful as the LLR project is, the technique is only sensitive to the
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Interaction Type dω/dt dΩ/dt

”/yr ”/yr

Solar perturbations 146 425.38 -69 671.67

Earth J2 6.33 -5.93

Planetary perturbations 2.47 -1.44

Moon J2 & C22 -0.0176 -0.1705

Relativity 0.0180 0.0190

Table 1.2: Sources of precession of the Earth-Moon system, described in arcseconds per

year.

surface motions of the Moon, meaning the rotational dynamics of the interior are not

constrained directly.

Whether the fluid outer core follows the precessional motions of the overlying mantle

depends on its free precession mode, or the free core nutation (FCN). The FCN is the

free precessional motion of the fluid outer core when it is misaligned from the mantle’s

figure axis. If the frequency of the FCN is faster than the precession frequency of the

mantle, the fluid outer core is locked to the movement of the mantle. Conversely, if

the FCN frequency is slower than the precession frequency, the fluid outer core is not

efficiently entrained by the mantle’s precessional motion and instead remains aligned

with the ecliptic normal. Unfortunately the period of the FCN for the Moon cannot be

measured directly, but it depends on the interior density structure of the Moon and is

estimated to be likely longer than 150 years [Petrova et al., 2008]. The FCN period is

much greater than the 18.6 year precessional period of the mantle suggesting that the

fluid outer core is largely decoupled with from mantle’s movement and hence it should

be nearly aligned with the ecliptic normal [Meyer and Wisdom, 2011].

An analogous mode exists for the inner core, with its own free precession, a free

mode referred to as the free inner core nutation (FICN). As with the FCN, its period

cannot be observed directly, but based on plausible models of the Moon’s interior, its

period is estimated to be anywhere between a few years to a few decades [Dumberry and

Wieczorek , 2016], comparable to the precessional period of mantle. We therefore expect,

through resonant amplification, that the tilt angle of the inner solid core could be quite

large (upwards of 10°).
A model to compute the Cassini state of a Moon that comprises a fluid core and solid
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Figure 1.5: The Earth-Moon orbital dynamics. The plane of the Moon’s 27.322 day

orbit around the Earth (light blue) is inclined by an angle I = 5.145° with respect to the

ecliptic normal (pointing in the direction ê3). The orientation of the orbital plane (normal

vector pointing in the direction êI3) precesses in a retrograde direction at a frequency of

Ωp = 2π/18.6 yr−1 about ê3. The symmetry axis of the Moon’s mantle (pointing in the

direction êp3) is inclined by θp = 1.543° with respect to the ecliptic normal, in the same

plane as I but in the opposite direction, and is also precessing at the frequency Ωp.

inner core was presented in Dumberry and Wieczorek [2016]. The model was developed

under the assumption of small angles of precession. Although this is suitable for the

present-day mantle tilt of 1.543°, it is not valid in the past when the Moon was closer to

the Earth and the mantle tilt might have been as high as 49° [Ward , 1975]. Furthermore,

because of the proximity of the forcing frequency to being in resonance with the FICN,

the inner core could have a relatively large angle of misalignment with the mantle. One

of the objectives of this study is to develop a model of the internal Cassini states of the

Moon that is more general than the one developed in Dumberry and Wieczorek [2016],

one which remains valid for large angles of misalignment. Besides the general aim of

furthering our understanding of the precession dynamics of planetary bodies, constraining

the rotational dynamics of the Moon may provide insight into the mechanisms of ancient

dynamo action. More specifically, the tilt angles of the fluid outer core and solid inner

core are connected to the ancient Lunar dynamo, as detailed in the following section.
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1.6 Ancient Lunar magnetism

Measurements of the Lunar magnetic field taken by the Apollo 15 sub-sattelites concluded

that the only source of magnetism at present is from crustal magnetization causing an

extremely weak field [Runcorn, 1975]. Paleomagnetic analyses of Lunar crustal rocks

have suggested the existence of an ancient dynamo generated magnetic field up to 4.5 Gyr

ago, declining by an order of magnitude by 3.3 Gyr ago (see Fig. 1.6) [Weiss and Tikoo,

2014]. The strength of the ancient field at its highest was up to 120 µT, at the surface of

the Moon, implying a highly energetic dynamo source. Observations have also deduced

that a long period of low intensity magnetism (∼ 5 µT) was present well past 2 Gyr.

Given the thickness of the Lunar mantle, heat flux from the core was likely insufficient

to sustain a purely thermo-chemical convective dynamo for an extended period of time

[Konrad and Spohn, 1997; Stegman et al., 2003]. For an anhydrous Lunar mantle, a

purely thermal convective dynamo can sustain such a magnetic field up until at most 4.1

Gyr ago, however the introduction of water at 40 ppm can lengthen this period to 3.4

Gyr. Furthermore, based on dynamo scaling laws, the upper bound for the field intensity

of a convective dynamo is an order of magnitude smaller than the paleointensities inferred

from Lunar rock samples. This has raised suspicion that convection may not be the only

source of the ancient Lunar magnetic field (Fig. 1.6) [Weiss and Tikoo, 2014].

An alternative dynamo mechanism proposed by Williams et al. [2001] is based on a

precessing mantle driving mechanical stirring of the underlying fluid outer core. A recent

study by Dwyer et al. [2011] has shown that mantle precession can produce enough power

dissipation at the core mantle boundary (CMB) potentially explaining the intensity and

longevity of the ancient magnetic field (Fig. 1.7). The power available to generate a

dynamo can be assessed by the viscous dissipation associated with differential rotation at

the CMB. The latter depends on the angle of offset between the rotation of the mantle

and the fluid outer core:

P ∝ Ω3
0 sin3 θf , (1.3)

where θf is the angle of misalignment between the mantle and the fluid outer core, and

while the mantle and fluid core are in close rotation at present, the misalignment could

have been much larger in the past [Ward , 1975]. Ω0, the rotation rate of the mantle,

would also have been faster in the past, therefore increasing the power dissipation. The

non-spherical shape of the CMB may further amplify this stirring effect.

However mechanical stirring at the CMB still falls slightly short of explaining the

largest paleointensities, as seen in Fig. 1.7. In addition to this, the dynamo from

differential rotation at the CMB is expected to shut off at around 2.7 billion years ago
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Figure 1.6: Paleointensity of the dynamo generated Lunar magnetic field as a function

of time before present. These estimates are based on remnant magnetization recorded

in Lunar rock samples. The green dashed line shows the estimated intensity limit of a

purely thermochemical convective dynamo. From Weiss and Tikoo [2014]

[Dwyer et al., 2011], leaving the most recent paleomagnetic measurements unexplained.

One objective of this thesis is to investigate whether differential rotation at the inner

core boundary (ICB) may be a possible explanation for the ancient Lunar dynamo. As

mentioned in the previous section, the 18.6 year precession period of the mantle lies

within the FICN resonance band, so relatively large angles of offset between the fluid

outer core and solid inner core rotation vectors (θf − θs) are expected. Given that the

dissipation depends on sin3 (θf − θs), the stirring effect at the ICB could potentially be

quite large.

The derivation of magnetic field intensity from power dissipation used in Dwyer et al.

[2011] is based on a scaling law derived from convection dynamos. Heat dissipated at the

CMB cannot drive convection, hence raising the question as to whether the magnetic field

amplitudes predicted are valid. However, heat dissipated at the ICB can subsequently
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Figure 1.7: Magnetic field intensity as a function of Lunar semi-major axis predicted on

the basis of dynamo generated by the precession of the Lunar mantle. The two dashed

curves are close variants of one model, whereas the solid curve is a different model all

together. Data points with error bars both in intensity and age are from Lunar rocks

collected during the Apollo missions. From Dwyer et al. [2011]

lead to convection rendering these dynamo scaling laws at least more appropriate for our

stirring model.

Explaining the longevity of the low intensity field has been an area of contention

as well, considering that thermal convection has been shown to be largely inadequate

over long periods of time. Mechanical stirring at the ICB could potentially explain

this phenomenon as well. Since the FICN of the solid inner core was estimated to

range between a few years to a few decades, the forcing frequency of the Lunar system

would have been in this range throughout most of its history. Consequently, resonant

amplification could have been a long lasting phenomenon on the solid inner core, resulting

in large angles of offset for a long period of time, possibly explaining this extended period

of low intensity magnetism (Fig. 1.6).
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1.7 Main objectives of this thesis

The primary objective of this thesis is to develop a model of the Cassini state of a Moon

comprised of a mantle, fluid outer core and solid inner core. That is, a model which

allows us to predict the angle of tilt of both the fluid core and inner core in their 18.6

year precession. We developed our model so that the tilt angles can be predicted for a

given interior density structure of the Moon.

By varying the orbital parameters of the Earth-Moon system, our Cassini state model

can be extended to earlier periods in Lunar history. A natural extension of our model

allows us to investigate how viscous dissipation at both the CMB and ICB may have

changed as a function of time (or Earth-Moon distance). Based on this, the second

objective of this thesis is to build estimates of the strength of the magnetic field that

may have been generated by mechanical stirring at the CMB and ICB.

The second chapter of this thesis is focused on the development of the model of the

Cassini state of the Moon. We investigate the effects that the various Lunar parameters

have on the internal rotational dynamics and on the tilt angles of the fluid core and inner

core.

In chapter three we will discuss the process of extending our Cassini state model

in the Lunar past and the resulting dissipation and paleomagnetic intensities as they

vary over Earth-Moon distance. We will also investigate how the resulting magnetic field

changes as a function of Lunar model at various times in Lunar history.

Chapter 4 will conclude this thesis and discuss discuss the potential outlook of this

project.



Chapter 2

The Cassini states of the Lunar

inner core
1

2.1 Theory: Orbital dynamics

The rotational model of the Moon that we develop below is based on the model presented

in Dumberry and Wieczorek [2016], hereinafter referred to as DW16, which is itself an

adaptation of a model developed to study Earth’s nutations. The original nutation model

is presented in detail in Mathews et al. [1991].

The procedure that we follow is, first, to define a reference interior model of the

Moon (section 2.1.1). This interior model is constructed under the assumption that no

external torque acts on the Moon. We then place this reference model in orbit about

Earth, subject to its gravitational field, and consider how the alignment of the symmetry

axes and rotation vectors of each region is altered in the Cassini state. To do so, we

must properly define each of these vectors in the reference frame attached to the rotating

mantle, the frame in which the nutation model is developed. This is done in section 2.1.2.

The rotational model is then developed in section 2.1.3.

2.1.1 The interior density model of the Moon

We assume a simple model of the Moon of mass M with an external radius R, a solid

inner core of radius rs, a fluid outer core of radius rf , a crust of thickness hc, and a

mantle with an outer radius of rm = R− hc. The densities of the solid inner core (ρs),

fluid core (ρf ), mantle (ρm) and crust (ρc) are assumed uniform. Adopting uniform

1This chapter has been published: Stys, C. & Dumberry, M. (2018). The Cassini state of the Moon’s

inner core. Journal of Geophysical Research: Planets, 123.

17
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density layers amounts to neglecting compressibility effects from increasing pressure with

depth. Given the small pressures in the Moon’s interior (less than about 5 GPa), this is

a good first order description.

The precession model that we develop below involves the principal moments of inertia

of each region. The latter are related to the spherical harmonic degree two coefficients of

the gravity field of the Moon. For convenience, we assume a reference model in which the

principal moments of inertia of each region are aligned. Although in reality this is unlikely

to be the case because the surface topography of degree two is not aligned with the degree

two gravity field [Araki et al., 2009; Smith et al., 2010], this assumption greatly simplifies

our reference model. Since we assume uniform density layers, all contributions to the

non-spherical gravity field (i.e. all mass anomalies) are caused by topography at region

boundaries. The principal moments of inertia of each region are then connected to the

degree two topography at region boundaries, more specifically to the polar and equatorial

flattening. We define the polar flattening as the difference between the equatorial and

polar radius, divided by the mean spherical radius. Likewise, we define the equatorial

flattening as the difference between the maximum and minimum equatorial radius, divided

by the mean spherical radius. We denote the polar flattening at the inner core boundary

(ICB), core-mantle boundary (CMB), crust-mantle boundary and surface by εs, εf , εm,

and εr, respectively. The difference between the equatorial and polar radius at each of

these interfaces is then rsεs, rf εf , rmεm, and Rεr, respectively. The equatorial flattening

at the same boundaries are denoted by ξs, ξf , ξm and ξr, respectively. The difference

between the maximum and minimum equatorial radius at each of these interfaces is then

rsξs, rfξf , rmξm, and Rξr, respectively.

The polar and equatorial flattenings of each region are connected to the principal

moments of inertia of the whole Moon (C > B > A), fluid core (Cf > Bf > Af ) and

solid inner core (Cs > Bs > As). In particular, they are connected to the degree two

coefficients of the gravity potential J2 and C22 by

J2 =
C − Ā
MR2

=
8π

15

1

MR2

[
(ρs − ρf )r5

sεs + (ρf − ρm)r5
f εf + (ρm − ρc)r5

mεm + ρcR
5εr
]
,

(2.1a)

C22 =
B −A
4MR2

=
8π

15

1

4MR2

[
(ρs − ρf )r5

sξs + (ρf − ρm)r5
fξf + (ρm − ρc)r5

mξm + ρcR
5ξr
]
.

(2.1b)

where Ā is the mean equatorial moment of inertia of the whole Moon. The latter, and

the mean equatorial moments of the fluid core (Āf ) and inner core (Ās) are defined as
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Ā =
1

2
(A+B) , Āf =

1

2
(Af +Bf ) , Ās =

1

2
(As +Bs) . (2.2)

From these, we define the dynamical ellipticities of the whole Moon (e), fluid core (ef )

and solid inner core (es),

e =
C − Ā
Ā

ef =
Cf − Āf
Āf

es =
Cs − Ās
Ās

. (2.3)

These dynamical ellipticities are important parameters of our model and the way in

which they are calculated is explained in more detail in section 2.2.

Although the density discontinuity at the crust-mantle boundary is taken into account

in the interior mass distribution, the solid outer shell region that comprises both the

crust and mantle constitute a single body in terms of the rotational dynamics. For short,

in the development of the rotational model below, we will refer to this outer region as

the mantle. If we define the direction of the figure axis of this “mantle” by êp3, then the

ellipsoidal figures of each region of our reference model are aligned, and are in uniform

rotation at the sidereal frequency 2π/27.322 day−1 about êp3.

2.1.2 Definition of the reference frames, symmetry axes and rotation

vectors

The focus of our study is to describe the equilibrium Cassini state of the Moon. As such,

we focus on the long timescale dynamics, and only consider the response of the Moon to

the gravitational torque by Earth averaged over one orbit. In other words, we neglect

the modulation of the torque over one orbit and the small latitudinal and longitudinal

librations of the Moon that result from it. This assumption is implicit in the presentation

of our model and in the discussion of all our results.

To describe the Cassini state of the Moon, we must first define the possible reference

frames in which to view the orbital and rotational dynamics. We use three different

reference frames in our study. The first is the inertial reference frame, defined by unit

vectors (ê1, ê2, ê3), with ê3 aligned with the ecliptic normal. The second is a reference

frame attached to the rotating mantle, defined by unit vectors (êp1, ê
p
2, ê

p
3). We have

already defined êp3 to be aligned with the maximum (polar) moment of inertia of the

mantle. êp1 and êp2 are aligned, respectively, with the minimum and intermediate moments

of inertia (both in equatorial directions). This is the frame in which we develop our

dynamical model. As mentioned in the introduction, the Cassini state is characterized

by a tilt of êp3 from ê3, though both remain co-planar with the orbit normal (êI3). It is

convenient to refer to the plane which contains all three as the “Cassini plane”. Viewed
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in the inertial frame, the Cassini plane is rotating in the retrograde direction at frequency

Ωp about an axis aligned with the ecliptic normal (ê3). A third reference frame in which

to view the rotational dynamics is then one attached to this Cassini plane. We refer to

this reference frame as the Cassini frame, defined by unit vectors (êc1, êc2, êc3). Direction

êc3 is aligned with the ecliptic normal, and the Cassini plane coincides with the surface

defined by êc1 and êc3. Direction êc2 is perpendicular to the Cassini plane and is aligned

with the line of the descending node of the Lunar orbit on the ecliptic plane.

When viewed in the Cassini frame, the orientation of the orbit normal (êI3) and

mantle figure axis (êp3) remain at fixed orientations with respect to the ecliptic normal

(êc3 = ê3) (Fig. 2.1a). As defined earlier, the angle of tilt between êp3 and êc3 is denoted

by θp and LLR observations suggest that it is equal to θp = 1.543◦. This tilt is caused by

the gravitational torque that the Earth exerts on the ellipsoidal shape of the mantle and,

secondarily, by internal torques from the inner core and the fluid core. It is the tilt angle

that allows to balance the total torque acting on the mantle with a change in its angular

momentum at the same rate as the precession of the orbit, and therefore to maintain a

stationary configuration in the Cassini frame.

Likewise, the ellipsoidal inner core is also subject to a gravitational torque from Earth

and to internal torques from the mantle and fluid core. For the inner core, the internal

torque – especially the gravitational torque from the fluid core and mantle – is much

more important than the torque from Earth (DW16). As is the case for the mantle, the

orientation of the figure axis of the inner core (denoted by ês3) should evolve to that

which allows to balance the torque acting on it with a change in its angular momentum

at the same rate as the orbit precession. In other words, the inner core is also in a Cassini

state and, viewed in the Cassini frame, the orientation of ês3 remains fixed. We expect

ês3 to differ from êp3 because the inner core is subject to a different torque balance than

the mantle. We define the angle of inner core tilt θn as the angle of misalignment of ês3
with respect to the mantle figure axis êp3.

The rotation and symmetry axes of the mantle – and similarly those of the inner

core – are expected to remain in close alignment, but they do not coincide exactly. The

rotation vector of the fluid core is expected to be misaligned from that of the mantle,

remaining instead in a close alignment with the ecliptic normal. Each of these rotation

vectors lie on the Cassini plane and their orientations remain fixed when viewed in the

Cassini frame (Fig. 2.1b). We define the rotation vector of the mantle as Ω, misaligned

by an angle θm with respect to the mantle figure axis. The rotation vectors of the fluid

core and inner core are defined as Ωf and Ωs. Their misalignment angles, respectively

θf and θs, are defined with respect to the mantle rotation vector Ω (Fig. 2.1b).
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To be formal in our definition of the different angles of misalignment, I is defined

positive pointing from êc3 to êI3. Angles θp, θn, θm, θf and θs are defined positive in the

clockwise direction when viewed in the Cassini frame. According to this convention, θf

as depicted in Fig. 2.1 is negative, and we expect this to be the case since Ωf should be

closely aligned with the ecliptic normal (êc3 = ê3).

The mean gravitational torque that Earth exerts on the mantle, averaged over one

orbit, can be replaced by that produced by a ring of mass equivalent to that of Earth

encircling the Moon on a plane with normal vector êI3. Viewed in the Cassini frame,

the amplitude of this mean torque remains constant and in direction −êc2 (the direction

of the line of the ascending node), perpendicular to the Cassini plane. Likewise, the

gravitational torque that Earth exerts on the inner core is also perpendicular to the

Cassini plane. The direction of the torque depends on the sign of the sum of (I+ θp+ θn):

if it is positive, the torque is in direction −êc2; if it is negative, the torque is instead in

direction êc2.

Although the mantle figure axis êp3 remains at a fixed orientation in the Cassini frame,

the two equatorial directions êp1 and êp2 do not since the mantle is rotating about êp3.

Viewed in the Cassini frame, the period of rotation of êp1 and êp2 around êp3, must be

equal to the time it takes for the Moon to return to the ascending node of its orbit. The

frequency of this rotation, which we denote Ωc, is equal to 2π/27.212 day−1.

We develop our rotational model in a frame attached to the rotating mantle. As seen

by an observer on the mantle, the longitudinal orientation of the Cassini plane is rotating

in the retrograde direction about êp3 at frequency Ωc (Fig. 2.1c,d). The unit vectors êI3,

êc3 and ês3 and the rotation vectors Ω, Ωf and Ωs remain at fixed orientations, but are

precessing about êp3 in the retrograde direction at frequency Ωc. Since the gravitational

torque by Earth remains perpendicular to the Cassini plane, as seen by an observer on

the mantle, this torque is periodic, with a retrograde frequency equal to Ωc. Following

the nutation model of , it is convenient to introduce a frequency factor ω, connected to

Ωc by Ωc = −ωΩo, where Ωo = 2π/27.322 day−1 is the amplitude of the rotation vector

of the mantle. To a good approximation, Ωo is related to Ωc and Ωp by

Ωo = Ωc − Ωp cos(θp) . (2.4)

The frequency factor ω is then equal to

ω = −Ωc

Ωo
= −1− cos(θp) δω , (2.5)

where δω = Ωp/Ωo= 27.322 days / 18.6 yr = 4.022 × 10−3 is the Poincaré number,
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expressing the ratio of precession to rotation frequency. ω represents then the frequency

of the periodic gravitational forcing that Earth applies on the Moon, expressed in units

of cycles per Lunar day, as seen by an observer on the mantle.

The time-dependent longitudinal orientation of the Cassini plane, as seen by an

observer on the mantle, and expressed in terms of ω, can be written as

êp⊥(t) = cos(ωΩot)ê
p
1 + sin(ωΩot)ê

p
2 , (2.6)

where t is time and direction êp1 has been chosen to be aligned with the projection of êc1
onto the equator of the mantle at t = 0 (Fig. 2.1c,d). It can be shown that

d

dt
êp⊥(t) = ωΩo

(
êp3 × êp⊥(t)

)
, (2.7)

where the time derivative is taken in the mantle frame. Note that the direction of

êp3 × êp⊥(t) = êc2 (see Fig. 2.1c,d). Since ω is negative, the time derivative of êp⊥(t)

points in direction −êc2, the same direction as the gravitational torque from Earth on

the mantle.

Using the definition of êp⊥(t) in Eq. (2.6), we can express the direction of the normal

to the ecliptic ê3 and the figure axis of the inner core ês3, as seen in the mantle frame, by

ê3 = êc3 = cos θp ê
p
3 − sin θp ê

p
⊥(t) , (2.8a)

ês3 = cos θn ê
p
3 + sin θn ê

p
⊥(t) . (2.8b)

In appendix A, we present the definitions of the rotation vectors of the mantle,

fluid core and inner core for the tidally locked spin-orbit configuration of the Moon.

The amplitude of each of these rotation vectors differ from one another, although the

difference between them is small (at most of the order of δω) and it is convenient for the

development of our model to approximate all three vectors as having the amplitude Ωo

defined in Eq. (2.4). The rotation vectors of the mantle, fluid core and inner core can be

written, respectively, as

Ω = Ωo

(
cos θm êp3 + sin θm êp⊥(t)

)
, (2.9a)

Ωf = Ωo

(
cos(θm + θf )êp3 + sin(θm + θf )êp⊥(t)

)
, (2.9b)

Ωs = Ωo

(
cos(θm + θs)ê

p
3 + sin(θm + θs)ê

p
⊥(t)

)
. (2.9c)
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Figure 2.1: The Cassini state of the Moon viewed (a, b) in the Cassini frame and (c, d)

in a frame attached to the rotating mantle. The Cassini frame is defined by unit vectors

(êc1, êc2, êc3), the mantle frame by unit vectors (êp1, êp2, êp3). Viewed in the Cassini frame

(a, b), the orbit normal (êI3), the symmetry axes of the mantle (êp3) and inner core (ês3),

and the rotation vectors of the mantle (Ω), fluid core (Ωf ) and inner core (Ωf ) remain

at fixed orientations. The light grey, white, and dark grey ellipsoid in panels (a) and

(b) represent a polar cross-section of the mantle, fluid core and inner core, respectively.

Blue shaded parts show the equatorial cross section. The black curved arrow in the

equatorial plane of panels (a) and (b) indicates the direction of rotation, at frequency

Ωc, of the mantle frame axes êp1 and êp2 about êp3. Viewed in the frame attached to the

rotating mantle (c, d), the Cassini plane is rotating at frequency −Ωc in the longitudinal

direction. The unit vector êp⊥(t) captures the time-dependent longitudinal orientation of

the Cassini plane as seen in the mantle frame; it points in the direction of the projection

of êc1 on the equatorial plane of the mantle.
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It is further convenient to introduce ωf and ωs, the perturbation in the rotation of the

fluid core and inner core, respectively, with respect to that of the mantle, defined as

ωf = Ωf −Ω , (2.10a)

ωs = Ωs −Ω . (2.10b)

2.1.3 The rotational model

Our goal is to determine the Cassini state of the whole of the Moon. That is, to determine

the precession dynamics of our reference interior model of the Moon when placed in orbit

around Earth and subject to its gravitational torque. In short, our goal is to determine

the five angles θp, θn, θm, θf and θs for a given Lunar interior density structure. These

angles obey a system of five equations. The first three describe respectively the evolution

of the angular momentum of the whole Moon (H), the fluid outer core (Hf ) and solid

inner core (Hs) in the reference frame rotating with the mantle,

d

dt
H + Ω×H = Γ , (2.11a)

d

dt
Hf − ωf ×Hf = 0 , (2.11b)

d

dt
Hs + Ω×Hs = Γs , (2.11c)

where Γ is the gravitational torque from Earth acting on the whole Moon and Γs is the

total gravitational and pressure torque exerted on the inner core. The final two equations

of the model are kinematic relations, one to express the change in the orientation of the

inner core figure resulting from its own differential rotation, and the second describing

the invariance of the ecliptic normal in the inertial frame as seen in the frame attached

to the mantle. They are respectively,

d

dt
ês3 + ês3 × ωs = 0 , (2.12a)

d

dt
ê3 + Ω× ê3 = 0 . (2.12b)

The combination of Eqs. (2.11) and (2.12a) forms the foundation of the nutation

model of that takes into account internal coupling between inner core, fluid core and
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mantle subject to an external torque. Eq. (2.12b) allows us to connect this model to

the tilt of the figure axis of the Moon’s mantle to the ecliptic. Note that Eq. (2.12a) is

different from the one used in DW16; we use here the original equation of the nutation

model of Mathews et al. [1991] (see their equation 19). Also note that in DW16, Eq.

(2.12b) was replaced by a second dynamical equation for the Moon, similar to Eq. (2.11a),

but viewed in the ecliptic frame. It was shown that the two dynamical equations for

the Moon were tied by the condition expressed in Eq. (2.12b), introduced by Eckhardt

[1981], and it is more convenient to simply use the latter here.

Definitions for H, Hf and Hs are given by

H = I ·Ω + If · ωf + Is · ωs (2.13a)

Hf = If ·Ωf (2.13b)

Hs = Is ·Ωs (2.13c)

where Is, If , and I are the moment of inertia tensors of the solid inner core, fluid core

and the whole Moon, respectively. Explicit definitions for these are given in Eq. A9 of

DW16; they involve the principal moments of inertia of the whole Moon, fluid core and

solid inner core.

We neglect the triaxial shape of the Moon in the development of the expression of

the angular momentum vectors of each region. In other words, we assume that the two

equatorial moments of inertia are equal to one another and given by the mean values

defined in Eq. (2.2). We also neglect elastic deformations. Proceeding this way, the

expansion of the angular momentum vectors gives

Hs = ĀsΩo

[
cos(θm + θs)ê

p
3 + sin(θm + θs)ê

p
⊥(t)

]
+ ĀsesΩo cos(θn − θm − θs)

[
cos(θn)êp3 + sin(θn)êp⊥(t)

]
, (2.14a)

Hf = ĀfΩo

[
(1 + ef ) cos(θm + θf )êp3 + sin(θm + θf )êp⊥(t)

]
− α1ĀsesΩo cos(θn − θm − θf )

[
cos(θn)êp3 + sin(θn)êp⊥(t)

]
,

+ α1ĀsesΩo cos(θm + θf )êp3 (2.14b)

H = Ωo

[
(C − Cf − Cs) cos(θm)êp3 + (Ā− Āf − Ās) sin(θm)êp⊥(t)

]
+ Hf + Hs ,

(2.14c)

where α1 is related to the density contrast between the solid and fluid core. The

coefficient α1 and the related coefficient α3 = 1− α1 that we introduce below are defined
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in Eq. A8 of DW16. For uniform density layers, they simplify to

α1 =
ρf
ρs
, α3 = 1−

ρf
ρs
. (2.15)

As explained in the previous section, the gravitational torque from Earth points in

direction −êp3 × êp⊥(t). Hence, we can write the gravitational torque acting on the whole

of the Moon as

Γ = −Γ
(
êp3 × êp⊥(t)

)
, (2.16a)

where Γ is the amplitude of the torque averaged over one orbit. Valid to second order in

ellipticity, it is equal to

Γ =
3

2

Mn2

(1− e2
L)3/2

[(
C −A

)
−
(
Cs −As

)
α3

]
sin(I + θp) cos(I + θp)

+
3

2

Mn2

(1− e2
L)3/2

[(
Cs −As

)
α3

]
sin(I + θp + θn) cos(I + θp + θn)

+
3

8
Mn2

[(
B −A

)
−
(
Bs −As

)
α3

](
1− 5

2
e2
L −

(
1 +

11

2
e2
L

)
cos(I + θp)

)
sin(I + θp)

+
3

8
Mn2

[(
Bs −As

)
α3

](
1− 5

2
e2
L −

(
1 +

11

2
e2
L

)
cos(I + θp + θn)

)
sin(I + θp + θn) ,

(2.16b)

where eL is the orbit eccentricity, n is the mean motion of the Moon, and M =

ME/(M + ME), where ME is the mass of Earth. In the absence of an inner core

(Cs = Bs = As = 0), the torque in Eq. (2.16b) is equal to that given in Peale [1969].

Because of the synchronous rotation of the Moon around Earth, the torque involves the

full triaxial definition of the moment of inertia. For small (I + θp), the last two terms of

Eq. (2.16b) are small compared to the first two terms, and they were neglected in DW16.

Likewise, the torque acting on the inner core can be written as

Γs = −Γs

(
êp3 × êp⊥(t)

)
. (2.17a)

Valid to second order in ellipticity, the amplitude of the torque Γs is
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Γs =
3

2

Mn2

(1− e2
L)3/2

(
Cs −As

)
α3 sin(I + θp + θn) cos(I + θp + θn)

+
3

8
Mn2

(
Bs −As

)
α3

(
1− 5

2
e2
L −

(
1 +

11

2
e2
L

)
cos(I + θp + θn)

)
sin(I + θp + θn)

+ Ω2
oĀsesα3αg sin(θn) cos(θn)

+ Ω2
oĀsesα1 sin(θm + θf − θn) cos(θm + θf − θn) , (2.17b)

where the coefficient αg captures the strength of gravitational coupling by the rest of

the Moon on a tilted inner core. This coefficient is derived in, and is also defined in Eq.

A14b of DW16; for uniform density layers, it simplifies to

αg =
8πG

5Ω2
o

[ρc(εr − εm) + ρm(εm − εf ) + ρf εf ] , (2.18)

where G is the gravitational constant. The first two terms that enter Eq. (2.17b)

represent the gravitational torque from Earth. The last two represent, respectively,

the gravitational torque from the mantle and fluid core and the pressure torque at the

inner-core boundary. In contrast to the torque from Earth, these internal torques involve

the mean equatorial moment of inertia. This is because these torques result from the

precession between the different layers. Thus, over one orbit, they involve an average of

the torque about As and Bs.

Using the definition of the torques in Eqs. (2.16) and (2.17), the three angular

momentum equations of Eqs. (2.11) and the two kinematic relations of Eqs. (2.12) form

the following set of five conditions,

Ā
[(
ω − e cos(θm)

)
sin(θm)

]
+ Āf

[
sin(θf ) + ω

(
sin(θm + θf )− sin(θm)

)
− ef sin(θm)

(
cos(θm + θf )− cos(θm)

)]
+ Ās

[
sin(θs) + ω

(
sin(θm + θs)− sin(θm)

)
− es sin(θm)

(
α1 cos(θm + θf )− cos(θm)

)]
+ Āsesα3 cos(θn − θm − θf )

(
ω sin(θn) + sin(θn − θm)

)
= − Φp

β

(
Āβ − Āsβsα3

)
− Φn

βĀsβsα3 − Φp
γ

(
Āγ − Āsγsα3

)
− Φn

γ Āsγsα3 , (2.19a)
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Āf

[
sin(θf ) + ω sin(θm + θf ) + ef cos(θm + θf )

(
sin(θm + θf )− sin(θm)

)]
+ Āsesα1

[
cos(θn − θm − θf )

(
−ω sin(θn)− sin(θn − θm)− sin(θm + θf − θn)

)]
+ Āsesα1

[
cos(θm + θf )

(
sin(θm + θf )− sin(θm)

)]
= 0 , (2.19b)

[
sin(θs) + ω sin(θm + θs) + esα3αg sin(θn) cos(θn)

]
+ es cos(θn − θm − θs)

[
ω sin(θn) + sin(θn − θm)

]
− es cos(θn − θm − θf )

[
α1 sin(θn − θm − θf )

]
= − Φn

ββsα3 − Φn
γγsα3 , (2.19c)

ω sin(θn) + sin(θm + θs − θn)− sin(θm − θn) = 0 , (2.19d)

ω sin(θp) + sin(θm + θp) = 0 , (2.19e)

where we have defined

Φp
β =

3

2

M
(1− e2

L)3/2
sin(I + θp) cos(I + θp) , (2.20a)

Φn
β =

3

2

M
(1− e2

L)3/2
sin(I + θp + θn) cos(I + θp + θn) , (2.20b)

Φp
γ =

3

8
M
(

1− 5

2
e2
L −

(
1 +

11

2
e2
L

)
cos(I + θp)

)
sin(I + θp) , (2.20c)

Φn
γ =

3

8
M
(

1− 5

2
e2
L −

(
1 +

11

2
e2
L

)
cos(I + θp + θn)

)
sin(I + θp + θn) , (2.20d)

and

β =
C −A
B

≈ C −A
Ā

, βs =
Cs −As
Bs

≈ Cs −As
Ās

, (2.21a)

γ =
B −A
B

≈ B −A
Ā

, γs =
Bs −As
Bs

≈ Bs −As
Ās

. (2.21b)
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Note that the mantle rotation rate Ωo is approximately equal to the sidereal frequency

n and we have set n = Ωo, which removes a factor of n2/Ω2
o multiplying the right-hand

sides of Eqs. (2.19a) and (2.19c). The five conditions of Eqs. (2.19) constitute the set of

non-linear conditions on the five angles θp, θn, θm, θf and θs that must be simultaneously

satisfied to determine the complete Cassini state of the Moon. In the limit of small

angles,

cos(θi)→ 1 , sin(θi)→ θi , (2.22)

and for Φp
γ = Φn

γ = 0, we retrieve the linear system of equations presented in DW16,

where the parameter M was omitted, and where the parameter βs that appears in Eqs.

(2.19a) and (2.19c) was approximated as es.

For a Moon model with no core, the system of conditions reduces to

Ā
(
ω − e cos(θm)

)
sin(θm) = −Φp

βĀβ − Φp
γĀγ , (2.23a)

ω sin(θp) + sin(θm + θp) = 0 , (2.23b)

which can be combined to form

Ā
(
ω − e cos(θm)

)(
− ω − cos(θm)

)
tan(θp) = −Φp

βĀβ − Φp
γĀγ . (2.23c)

Using C = Ā(1 + e), ω defined in Eq. (2.5), and also that Ωp/Ωo � 1 and θm � 1, we

retrieve (in our notation) the condition on θp given in Eq. (19) of that defines the Cassini

state of a single body Moon

C
Ωp

Ωo
sin(θp) = Φp

βĀβ + Φp
γĀγ . (2.23d)

A condition similar to Eq. (2.23d) but for the inner core of the Moon can be derived.

Before we do this, it is convenient to introduce here the frequency of the FICN, ωficn,

which as we show below, turns out to be a fundamental component of the Cassini state

of the inner core. The FICN describes the free precession of the spin-symmetry axis of

the inner core when it is misaligned from the mantle. The FICN frequency depends on

the sum of the torques exerted on the inner core and, when expressed in cycles per Lunar

day, it is approximately equal to (see DW16)

ωficn = esα1 − esαgα3 −
3

2

βsα3

(1− e2
L)3/2

(cos2 I − sin2 I) . (2.24)
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For the Moon, the gravitational torque exerted by the fluid core and mantle on the inner

core (second term on the right-hand side of Eq. 2.24) is much larger than the pressure

torque at the ICB and the gravitational torque from Earth (first and third terms of Eq.

2.24, respectively), so ωficn is negative and the FICN mode is retrograde.

It is also convenient to derive alternate forms of conditions (2.19d) and (2.19e). First,

using the definition of ω in Eq. (2.5) and cos(θm)→ 1 allows one to write the condition

of Eqs. (2.19e) as

sin(θm) = δω sin(θp) . (2.25a)

This expresses the connection between the misalignment of the rotation vector of the

mantle from its figure axis and the tilt of the latter with respect to the ecliptic normal.

They are related by the Poincaré number δω. Because the Poincaré number is small,

θm � θp. Using this, the condition of Eq. (2.19d) can be written as

sin(θm + θs − θn) = δω sin(θp + θn) , (2.25b)

which is the analogous relationship for the inner core, connecting in the same manner

the angle of misalignment of its rotation vector from its figure axis (θm + θs − θn) to the

tilt of its figure axis with respect to the ecliptic normal.

The Cassini state of the inner core can be derived on the basis of its angular momentum

balance (Eq. 2.19c). Using Eqs. (2.25a-2.25b), and setting θs ≈ θn (see DW16), one can

show that

sin(θs) + ω sin(θs + θm) ≈ −δω sin(θp + θn) , (2.25c)

es cos(θn − θm − θs) [ω sin(θn) + sin(θn − θm)] ≈ −esδω sin(θp + θn) , (2.25d)

so that Eq. (2.19c) can be written as

− (1 + es) δω sin(θp + θn) + esα3αg sin(θn) cos(θn)

− esα1 cos(θn − θm − θf ) sin(θn − θm − θf ) = −Φn
ββsα3 − Φn

γγsα3 . (2.26a)

On using δω = Ωp/Ωo, Cs = Ās(1 + es), θm + θf ≈ −θp (expressing the fact that the

rotation vector of the fluid core remains almost aligned with the ecliptic normal), Eq.

(2.26a) becomes
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Cs
Ās

Ωp

Ωo
sin(θp + θn) =

Φn
ββsα3 + Φn

γγsα3 + esα3αg sin(θn) cos(θn)− esα1 sin(θn + θp) cos(θn + θp) .

(2.26b)

This last equation determines the Cassini state of the inner core of the Moon. Because

internal torques dominate the gravitational torque from Earth in the present-day Moon

(DW16), Eq. (2.26b) can be further simplified if we set Φn
β = Φn

γ = 0. As our results

will confirm, θn is typically much larger than θp = 1.543◦, so we can approximate

sin(θn + θp) cos(θn + θp) as sin(θn) cos(θn). Furthermore, since the dynamical ellipticity

of the inner core is small, Cs ≈ Ās. Upon using the expression of the FICN frequency

ωficn given by Eq. (2.24), the Cassini state of the inner core of the Moon simplifies to

Ωp

Ωo
sin(θp + θn) + ωficn sin(θn) cos(θn) = 0 . (2.26c)

As we will show, this last equation provides a very good prediction of the tilt angle of

the inner core θn. Importantly, it shows that the interior density structure of the Lunar

interior influences θn only through the way in which it affects ωficn; different interior

models of the Moon that share the same ωficn have the same θn.

Before we present results, a few points about our model are worth noting. First, we

have neglected all elastic deformations in our derivation, assuming that solid regions are

perfectly rigid. The k2 Love number of the Moon is small, approximately 0.02 [Williams

et al., 2014], thus assuming a rigid mantle is not a bad approximation. However, elastic

(or viscoealstic) deformations deep inside the Moon may be important.

Second, we have adopted an oversimplified representation of flow motion in the fluid

core, restricted to a simple solid body rotation. In truth, the fluid core can sustain

different types of waves, including inertial waves, which can interact with, and alter the

FCN and FICN precession modes [Rogister and Valette, 2009].

Third, although we have retained the triaxial shape of the Moon in the expression

of the mean torque from Earth, the angular momentum response is based on axially

symmetric model. The convenience of doing this is that, for each region, we can combine

the two equatorial angular momentum equations into a single equation. To first order,

considering the fully triaxial shape of the Moon should not alter much the frequency

of the FCN [Van Hoolst and Dehant , 2002]. By extension, we assume here that the

other free precession mode with a retrograde period close to one Lunar day (when seen

in the rotating mantle frame), the FICN, is also not significantly altered by triaxiality.
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Since the orientations of the fluid core spin axis and the inner core spin-symmetry axis

are primarily determined by the FCN and FICN frequencies, respectively, our axially

symmetric model should, to first order, capture the salient features of the Cassini state.
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2.2 Results

2.2.1 Interior Moon models

The numerical values for the Lunar parameters used in our calculations are listed in

Table 2.1. To compute all other parameters that enter our rotational model, we need

to build models of the interior density structure of the Moon. The first step involves to

determine the radial density structure. We assume a mean Lunar radius of R = 1737.151

km [Williams et al., 2014]. We then choose values for the inner core radius (rs), fluid

core radius (rf ) and crustal thickness (hc) and values for the density of the inner core

(ρs) and crust (ρc). The density of the mantle (ρm) is then determined by matching the

moment of inertia of the solid Moon Ism. The value of Ism from Williams et al. [2014]

listed in Table 2.1 in principle includes a contribution from the inner core, though it is

small compared to that of the outer shell (mantle and crust). Here, we assume that Ism

represents the moment of inertia of the mantle and crust alone and calculate ρm using

Eq. (13) of DW16. The density of the fluid core (ρf ) is then found by matching the

bulk mass of the Moon M = (4π/3)ρ̄R3, where ρ̄ is the mean density, using Eq. (12) of

DW16. Once all radii and densities are defined, the mean equatorial moments of inertia

Ā, Āf and Ās are calculated from Eq. (14) of DW16. The second step is to determine

the polar (ε) and equatorial (ξ) flattenings at all boundaries. These are determined

on the basis of the reference Moon model defined in section 2.1 in which the principal

moments of inertia of each regions are aligned. We assume that both the ICB and CMB

are at hydrostatic equilibrium, in which case their flattenings can be written in terms

of the flattenings at the surface and crust-mantle boundary as given by Eqs. (18-20) of

DW16. Under this assumption, the expression for J2 given by Eq. (2.1a) can be written

in terms of εr and εm, and likewise, C22 given by Eq. (2.1b) can be written in terms of

ξr and ξm. We use the surface flattenings εr = 1.2899 × 10−3 and ξr = 2.4346 × 10−4

corresponding to the (normalized) topography spherical harmonic coefficients c20 and c22

taken from Araki et al. [2009]. The values of εm and ξm are then determined by matching

the observed values of J2 and C22 (see Table 2.1). The values of (εs, ξs) and (εf , ξf )

are then computed from (εr, ξr) and (εm, ξm) based on the assumption of hydrostatic

equilibrium. Once the polar flattening of each boundary is known, αg can be determined

from Eq. (2.18) and the dynamical ellipticities es, ef and e defined in Eq. (2.3) are then

computed from Eq. (15) of DW16.

The parameters β and γ defined in Eq. (2.21) that are involved in the torque from

Earth are related to J2 and C22 by
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Moon Parameter Numerical value

rotation rate, Ωo 2.6617× 10−6 s−1

orbit precession rate, Ωp 2π/18.6 yr−1

Poincaré number, δω = Ωp/Ωo 4.022× 10−3

mean planetary radius, R 1737.151 km

mass, M 7.3463× 1022 kg

mean density, ρ̄ 3345.56 kg m−3

moment of inertia of solid Moon, Ism 0.393112 ·MR2

J2 2.03504× 10−4

C22 2.24482× 10−5

polar surface flattening, εr 1.2899× 10−3

equatorial surface flattening, ξr 2.4346× 10−4

Table 2.1: Reference parameters for the Moon. The values of R, M , ρ̄, Ism, J2 and

C22 are taken from Williams et al. [2014]. The values for the unnormalized potential

coefficients J2 and C22 include the permanent tide from synchronous rotation with Earth,

and are obtained after multiplying the reported values in Williams et al. [2014] by a

factor 1.000978 to take into account our choice of using the mean planetary radius as

the reference radius for our calculations instead of the reference radius of 1738 km used

in the GRAIL-derived gravity field. εr and ξr are taken from Araki et al. [2009] and

converted to our choice of normalization.
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β = e

(
1 + 2

C22

J2

)
, γ = 4e

C22

J2
. (2.27)

The parameters βs and γs are directly related to the polar and equatorial flattenings at

the ICB through

βs = εs +
ξs
2
, γs = ξs . (2.28)

There is a small inconsistency in our procedure that must be pointed out. The

contribution of the inner core to J2 and C22, as written in Eq. (2.1), assumes an inner

core aligned with the mantle. These expressions should really involve the average over

one orbit of the polar and equatorial flattenings of a tilted inner core. However, these

depend on the angle of tilt of the inner core, which a-priori we do not know. This implies

that the amplitude of the torque from Earth on the inner core determined by βs and

γs in Eq. 2.28 is slightly incorrect. However, because the torque that the mantle and

fluid core exerts on a tilted inner core is much larger than the torque from Earth, this

inconsistency has little influence on the results presented in the next section.

2.2.2 The Cassini states associated with the inner core

The set of five conditions in Eqs. (2.19a-2.19e) is solved by a Newton-Raphson method for

nonlinear systems. Each solution presented below is obtained with initial guesses for θp,

θm and θf taken as 1.5◦, 0◦ and −1.5◦, respectively. The initial guess for θn is set equal

to θs and chosen randomly between −90◦ and 90◦. For each set of model parameters, to

ensure all possible solutions are found, we repeat the search with a number of random

initial guesses for θn (typically 50). Solutions for which any of the five angles falls outside

the bounds of [−90◦, 90◦] are discarded.

We also present results based on a small-angle limit of our model, by taking cos(θi) ≈ 1

and sin(θi) ≈ θi for each of the five angles, and using the following approximations

sin(I + θp) cos(I + θp) ≈ cos I sin I +
(
cos2 I − sin2 I

)
θp , (2.29a)

sin(I + θp + θn) cos(I + θp + θn) ≈ cos I sin I +
(
cos2 I − sin2 I

)
(θp + θn) , (2.29b)

sin(I + θp) ≈ sin I + (cos I)θp . (2.29c)

In this small-angle limit, the model is now linear in the five unknown angles. Note that

this small-angle solution is very close, but not exactly equal to that from the model

presented in DW16. The difference is caused by the addition here of the γ and γs terms
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in the torque from Earth, the inclusion of the factor M in the amplitude of the torque,

and because in DW16 the parameter βs was approximated as es.

Fig. 2.2 shows θn, θf , θp and θm obtained from our generalized model and in the

small-angle limit. θs is not shown, as it is virtually identical to θn (the relative difference

between the two is of the order of δω). Results are shown for a Moon model with a crust

of thickness hc = 38.5 km and density ρc = 2550 kg m−3 an inner core of radius rs = 200

km and density ρs = 7700 kg m−3 [Matsuyama et al., 2016], and a range of possible outer

core radius between rf = 310 km and 400 km compatible with seismic studies [Weber

et al., 2011; Garcia et al., 2011]. As explained in the previous section, the densities of

the fluid core and mantle change for each value of rf , so as to match M and Ism; from

rf = 310 to 400 km, ρf changes from 7355.7 to 4772.5 kg m−3, and ρm changes from

3376.1 to 3377.9 kg m−3.

The range of rf values covered in Fig. 2.2 samples different interior Lunar density

distributions which in turn samples different frequencies of the FICN, ωficn. As predicted

by Eq. 2.26c, the tilt angle of the inner core should be primarily controlled by ωficn. The

way in which ωficn (computed from Eq. 2.24) changes for each choice of rf is shown on

the top axis in each panels of Fig. 2.2. For small rf , ωficn is slower (in the retrograde

direction) than δω = Ωp/Ωo = 4.022 × 10−3, the Poincaré number, or the retrograde

frequency of the forced precession expressed in cycles per Lunar day. For large rf , the

retrograde ωficn is instead faster than δω.

The dominant contribution to ωficn, as given by Eq. (2.24), is from the gravitational

coupling term, −esα3αg. The change in ωficn with rf shown in Fig. 2.2 is a consequence

of the change in ρf with rf in our interior models, which results in a change in both α3

(see Eq. 2.15) and αg (see Eq. 2.18). From rf = 310 to 400 km, α3 changes from 0.0447 to

0.3802, and αg changes from 105.75 to 85.76. The dynamical ellipticity of the inner core

es also changes with rf , but the change is modest, from 1.7865× 10−4 to 1.8286× 10−4.

When ωficn = −δω, which occurs at rf ≈ 347 km in Fig. 2.2, the FICN mode is in

perfect resonance with the forcing period. At that location, solutions in the small-angle

limit diverge towards ±∞. In contrast, solutions from our general model remain finite,

even in the proximity of the FICN resonance. Furthermore, although only one solution

is possible when |ωficn| < δω, three possible solution branches exist for |ωficn| > δω.

This is analogous to the different possible Cassini states of a single-body Moon first

highlighted by Peale [1969] who identified four possible states, numbered 1 to 4. Ward

[1975] showed (his Fig. 2) an example of how states 1, 2 and 4 may have evolved as a

function of Earth-Moon distance. State 3 features a tilt angle larger than ±90◦, so a

rotation direction opposite to the orbital rotation, and is believed to be unstable when
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Figure 2.2: The tilt angles (a) θn, (b) θf , (c) θp and (d) θm as a function of the fluid core

outer radius (bottom axis) and FICN frequency (top axis). The red, blue and green lines

correspond to the states A, B and C, respectively, of our general model. The grey line is

the solution of the linear system in the small-angle limit. θp is measured with respect

to the ecliptic normal; θn, and θm are measured with respect to the mantle frame; θf is

measured with respect to the mantle frame plus θm. Solid inner core radius set at 200

km.
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tidal dissipation is taken into account [Peale, 1974]. Currently, the Moon – or more

formally, the outer solid shell made up of its mantle and crust – occupies state 2, the

only state possible when the frequency of the free retrograde precession of the Moon

(ωfp) is smaller (in magnitude) than the Poincaré number δω. But in the past when

|ωfp| > δω, states 1, 2, and 4 were all possible solutions. The number of possible Cassini

states, and the angle of mantle precession θp for each, depends essentially on how ωfp

compares with δω [Peale, 1974].

By analogy, the different branches shown on Fig. 2.2 show the different possible

Cassini states that are associated with the inner core. The controlling factor to determine

which states are possible, and the angle θn in each of these states, is how the FICN

frequency compares with δω (see Eq. 2.26c). We have labelled these states A, B and C to

avoid a possible confusion with the Cassini states associated with the mantle and crust.

State B, the only state possible when |ωficn| < δω, features negative values of θn: as seen

in the Cassini frame, the inner core is tilted away from the mantle, in the direction of

the orbit normal. States A and C, which are only possible when |ωficn| > δω, instead

have θn > 0: the inner core is tilted further away than the mantle from the orbit normal.

A state which features 90◦ < |θn| < 180◦ is also a solution (the analogy of state 3 of the

solid shell of the Moon), though we deem such a state impossible as it would feature an

inner core rotating in reverse direction with the rest of the Moon.

The point of merging between states A and C (at rf ≈ 357 km in Fig. 2.2) correspond

to a saddle-point bifurcation. States A and C exist for rf < 357 km but as purely

imaginary solutions, complex conjugates of one another. Although for rf > 357 km all

three states are valid mathematical solutions, state A is preferred because tidal dissipation

is expected to drive the system towards its lowest energy state [Peale, 1974]. The inner

core core would then be in state B for rf < 357 km and state A for rf > 357 km. The

transition at rf ≈ 357 km marks the location of the maximum possible precession angle

of the inner core in each of these states. The solutions shown in Fig. 2.2a suggest that

θn could be as large as 17◦ if in state A, or as large as −33◦ (in the reverse direction) if

in state B. The exact value depends on the FICN frequency of the Moon.

The Cassini state of the inner core manifests itself on the other precession angles. θf

(Fig. 2.2b) shows variations correlated with the variations in θn, though much smaller in

amplitude. At the transition between states A and B, θf varies from −1.59◦ to −1.71◦, a

change in amplitude of ∆θf = 0.12◦ that is attributable to the inner core. Likewise, θp

and θm (Fig. 2.2c,d) are also adjusted. At the transition between states A and B, the

change in amplitude of θp attributable to the inner core from state A to B is ∆θp = 0.003◦.

Note that in all solutions on Fig. 2.2, θf is always larger in amplitude than θp. In other
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words, as seen in the Cassini frame, the spin axis of the fluid core is not exactly aligned

with the ecliptic normal, but is tilted towards the orbit normal by a small angle of the

order of 0.05◦ to 0.17◦ with respect to the ecliptic normal.

Away from the FICN resonance, states A and B converge to the solution in the

small angles limit. In fact, provided |θn| ≤ 10◦, or equivalently, provided ωficn differs

from δω by more than approximately 15%, the small angle approximation is reasonably

accurate. Note that there is a small offset between the general solutions and the small

angle approximation solutions of θp and θm. This is caused by the approximations of

Eqs. (2.29a-2.29c). Also note that away from the FICN resonance, the solution that we

obtain for θp ≈ 1.540◦ does not match the observed mantle tilt angle of 1.543◦. This

small difference is caused primarily by the omission in our model of the Solar torque

acting on the Moon.

According to Eq. 2.26c, the tilt angle of the inner core that characterizes its Cassini

state depends on the interior density structure of the Moon but only insofar as it influences

the frequency of the FICN. To demonstrate this, Fig. 2.3 shows how θn varies as a

function of ωficn for three different choices of inner core radii: 100, 180 and 250 km. In

each case, the same range of rf = [320, 400] km is used. Although the range of ωficn

values that is accessed by each choice of rs is different, the solution for θn versus ωficn

remains unchanged. Eq. 2.26c provides a very good fit to the variations of θn as a function

of ωficn shown in Fig. 2.3.

Eq. (2.26c) also reveals why the transition from one to three Cassini states is connected

to ωficn. When the magnitude of ωficn is smaller than δω (on the right-hand side of the

dashed line in Fig. 2.3), sin(θp + θn) must be smaller than sin(θn) cos(θn), which is only

possible if θn is negative (state B). Conversely, when the magnitude of ωficn is larger

than δω, sin(θp + θn) must be larger than sin(θn) cos(θn). For θn of the same order as θp,

this is only possible if θn and θp add up to a larger angle, in other words, if θn is positive

(state A on Fig. 2.3). For θn � θp, Eq. (2.26c) becomes

δω + ωficn cos(θn) = 0 , (2.30)

and this balance is only possible for |ωficn| > δω, and admits a pair of solutions ±θn;

these are the solutions of states B and C on the left-hand side of the dashed line on

Fig. 2.3. Eq. (2.26c) also explains why the transition from one to three Cassini states does

not occur precisely at the location of the FICN resonance as it involves trigonometric

functions of θp and θn. The transition is instead displaced to a larger retrograde value of

ωficn ≈ −0.00455 in cycles per Lunar day, or ωficn ≈ −2π/16.4 yr−1.

Though the branches of solutions of θn versus ωficn are independent of the interior
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Figure 2.3: The tilt angle of the inner core θn as a function of the FICN frequency ωficn,

computed for a range of outer core radii rf = [320, 400] km and three different choices

of inner core radius rs: 100 km (orange), 180 km (black) and 250 km (light blue). The

thickness of each line is varied to reveal that solutions overlie one another. The location

of the FICN resonance is indicated by the vertical dashed line.
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density structure, it is not the case for θp, θf and θm. For the latter three angles, the

degree of separation of the solutions into three distinct branches reflects how the mantle

and fluid core adjust in response to a tilted inner core. The amplitude of this response

depends on the importance of the inner core in the angular momentum balance of the

Moon. To illustrate this, Fig. 2.4 shows how the amplitude of the transition between

states A and B for θp and θf (denoted ∆θp and ∆θf , respectively) changes as a function

of inner core radius. The larger the inner core, the more important its influence is in the

angular momentum dynamics of the Moon. Therefore, the greater the manifestation of

the Cassini state associated with the inner core is on θf and θp. For an inner core smaller

than 100 km, the Cassini state of the inner core has a vanishingly small influence on

θf and θp. But for an inner core as large as 250 km, ∆θp gets close 0.01◦. This implies

that, for a large inner core, the observed mantle tilt angle of 1.543◦ could include a small

though non-negligible contribution from the inner core, the exact amount depending on

the inner core size and how close to resonance the frequency of the FICN is. A large

inner core has a more dramatic influence on θf because the moment of inertia of the

fluid core is much smaller than that of the solid shell. For an inner core radius of 250

km, ∆θf gets as large as approximately 0.5◦.

Lastly, it is instructive to show how the shape of the branches of solution change

when the geometry of torque by Earth is modified. Fig. 2.5 shows how the branches of

solutions of θn are altered for three different choices of the orbital inclination: I = 5.145◦,

I = 2◦ and I = 0.01◦. As I approaches zero, the point of merging between states A

and C approaches the location of the FICN resonance and the transition from three to

one state approaches the shape of a pitchfork bifurcation. Eq. (2.26c) remains a very

good approximation to the solutions shown in Fig. 2.5; the change in the shape of the

solutions occurs because as I → 0, θp → 0.
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Figure 2.4: The amplitude of change of θp (red, multiplied by a factor 100) and θf (blue)

at the transition between Cassini states A and B associated with the inner core as a

function of inner core radius.

Figure 2.5: The tilt angle of the inner core θn as a function of the FICN frequency ωficn

for three different choices of the orbital inclination: I = 5.145◦ (red); I = 2◦ (green);

I = 0.01◦ (blue). The location of the FICN resonance is indicated by the vertical dashed

line.
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2.3 Discussion

We showed in this study that the angle of tilt of the inner core of the Moon that

characterizes its Cassini state depends on the frequency of the FICN, ωficn. More

specifically, that it depends on how the magnitude of ωficn compares with the Poincaré

number δω = Ωp/Ωo. For the present-day Moon, with its rotation rate of Ωo = 2π/27.322

days−1 and precession frequency Ωp = 2π/18.6 yr−1, we can cast our results in terms of a

comparison between ωficn and Ωp both given in frequency units. Denoting the tilt angle

of the inner core with respect to the mantle as θn, our results show that if |ωficn| � Ωp,

θn is positive but approaches zero (state A on Fig. 2.3 and see also DW16): the inner

core remains closely aligned with mantle. If instead |ωficn| � Ωp, θn is negative and

small (state B on Fig. 2.3), but does not converge to zero: a small misalignment with the

mantle remains (see DW16). In between these two extremes, θn can be large, as the inner

core precession is resonantly amplified by the proximity of ωficn to the forcing frequency

Ωp. Assuming the lowest energy state is favoured, the largest positive θn in state A is

17◦ and the largest negative θn in state B is −33◦. The transition between these two

extremes does not occur exactly at ωficn = −Ωp, but instead at ωficn = −2π/16.4 yr−1.

The precise angle of tilt of the inner core depends then on the knowledge of ωficn,

which in turn depends on the knowledge of the interior structure of the Moon. The

uncertainty in the latter is large enough that a considerable range of ωficn values are

possible, from approximately half to twice as large as Ωp (DW16). This places ωficn

within the resonance band of the forced 18.6 yr precession. Consequently, we expect the

inner core to be substantially misaligned with the mantle. As an illustrative example, let

us calculate the FICN frequency for one possible interior structure model. We pick as a

basis one of the model presented in Matsuyama et al. [2016], specifically the model in

their Table 2 without a low velocity layer at the bottom of the mantle, and constrained to

match the Lunar mass, the moment of inertia, and the observed values of k2 and h2 (and

the model for which h2 is derived from LLR). Using the central values for the density

and radius of each layer, the central values for the densities of the inner core and crust,

we find ρm= 3358 kg/m3 and ρf= 5878.6 kg/m3 from fitting Ism and M by the method

described in section 3.1. These are compatible with the range of values of ρm and ρf

given in Table 2 of Matsuyama et al. [2016]. The FICN frequency that we calculate for

this specific model is ωficn = −2π/19.48 yr−1. According to our adopted denomination,

the inner core would be in state B and its tilt angle (predicted by Eq. 2.26c) would be

approximately −17.16◦. That is, as seen in the Cassini frame, the inner core is offset

from the mantle axis by ∼ 17◦, towards the ecliptic normal (Fig. 2.6).
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Figure 2.6: The Cassini state of the inner core, as seen in the Cassini frame. The red

shaded arc shows the possible range of inner core precession angles, from +17◦ to −33◦,

measured with respect to the mantle figure axis. Adopting a Lunar interior density

model close to that of Matsuyama et al. [2016] gives a precession angle of −17◦. Angles,

ellipticities and region thicknesses are not drawn to scale.
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However, because of the proximity of ωficn to Ωp, the precise value of the inner

core tilt is very sensitive to small changes in the interior density structure. So we must

emphasize that the uncertainty on the inner core precession angle remains large, and it

could take any values between −33◦ and 17◦ (Fig. 2.6). Additionally, we have assumed

here the mantle to be a simple one layer model. The latest models of the Lunar interior

allow for a higher density, low seismic velocity layer at the bottom of the mantle [Weber

et al., 2011; Matsuyama et al., 2016], which would further influence the exact frequency

of the FICN, and thus the tilt angle of the inner core.

Our results also indicate that if the inner core is sufficiently large, it can contribute to

the observed tilt angle of the solid outer shell of the Moon of θp = 1.543◦. By exactly how

much depends on the inner core size and how close the FICN frequency is to resonance.

Because the inner core tilt can be either positive (if in state A) or negative (if in state

B), it can lead to either a negative or a positive contribution to θp, respectively. For

an inner core as large as 250 km, this contribution could be of the order of ±0.005◦.

Conversely, this implies that parameters inferred from fitting the observed θp can take

different numerical values when determined on the basis of a Moon model with a large

inner core versus one with a small or no inner core. This is the case notably for the

parameter β given in Eq. (2.21). Since β involves the moments of inertia, a change in its

numerical value corresponds to a different constraint on the Moon’s interior structure.

Consequently, interior models constructed on the basis of this constraint would then also

be altered.

Likewise, a large inner core can induce a substantial change in the orientation of the

rotation vector of the fluid core. The latter is typically assumed to be closely aligned

with the ecliptic because the frequency of the FCN is much smaller than the forcing

precession frequency [Meyer and Wisdom, 2011]. But as we have shown here, if the

FICN frequency is very close to the resonance, a large inner core can entrain a significant

misalignment of the fluid core spin axis from the ecliptic of the order of ±0.2◦. One

improvement to our model would be to include elastic deformations, which we have

neglected. The prediction of the mantle tilt angle in our model is θp ≈ 1.540◦, off by

approximately 0.19% from the observed tilt of θp = 1.543◦, dominantly because we have

neglected the torque from the Sun. Including elastic deformations would not contribute

to a large additional correction to θp, but changes in the tilt angles of the inner core and

fluid core could be more important. The largest force acting on a tilted inner core is

from gravitational coupling with the mantle and fluid core. Elastic deformations would

act to realign the inner core with the mantle, so would lead to a decrease in the inner

core tilt angle. The range of possible inner core tilt angles quoted above, from −33◦ to
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17◦, could be slightly diminished.

Perhaps more importantly, viscous relaxation within the lower portion of the mantle

[Harada et al., 2014] or within the inner core may also substantially alter our results. In

particular, an inner core that can deform viscously would realign its shape to match the

surface of hydrostatic equilibrium imposed by the mantle gravity field. As was shown in

DW16, if the viscous relaxation timescale of the inner core is of the order of one Lunar

day, gravitational coupling with the mantle would prevent a misalignment of the inner

core of more than 1◦.

Another process that acts to realign the ICB to the surface of hydrostatic equilibrium

imposed by the mantle is melting and crystallizing at the top of the inner core. Within the

fluid core, hydrostatic equilibrium implies that surfaces of constant gravitational potential,

density and pressure are all aligned. Linked to pressure and density by an equation

of state, surfaces of constant temperature follow the same alignment. The ICB marks

the transition from the solid to liquid phase of the core Fe-alloy, so at equilibrium its

temperature should coincide with the liquidus (melting temperature). A tilted ellipsoidal

inner core however has its ICB misaligned from the liquidus (Fig. 2.7). Parts of the ICB

that are at a higher radius than the liquidus undergo melting, parts that are at a lower

radius are the seat of crystal growth. A tilted inner core is precessing at frequency ωΩo

in the frame of the mantle, so over the course of one Lunar orbit around Earth, a given

point on the ICB goes through a cycle of melting and crystallizing. At each moment in

this cycle, melt or growth of the ICB is always directed towards an alignment with the

liquidus. Over a long period of time, this should act to realign the shape of the ICB with

the liquidus, and thus to realign the figure axis of the inner core with that of the mantle.

These considerations have not been taken into account in our model. A more proper

determination of the tilt angle of the inner core would involve a balance between two

characteristic timescales: the timescale of realignment of the ICB to the liquidus by melt

and growth versus the timescale for the inner core to assume the tilt angle of its Cassini

state when starting from an alignment with the mantle.

The important point to stress is that both viscous relaxation and the process of

melting and solidification of the ICB act to reduce the amplitude of the inner core tilt

predicted by our simple model. Indeed, this may be part of the reason why the periodic

degree 2 and order 1 gravity signal associated with the inner core, which is expected

to be above detection level [Williams , 2007; Zuber et al., 2013], has so far remained

undetected [Williams , 2015]. In fact, for the interior model with a predicted inner core

tilt of −17◦ presented above, this signal should be of the order of 2 − 3× 10−10, large

enough enough to be detected. The non-detection of this gravity signal may then reflect
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Figure 2.7: The surface of a tilted ellipsoidal inner core (red) with respect to the mantle

figure (grey) is misaligned with the liquidus temperature (dashed line). Regions of the

inner core boundary at a larger (smaller) radius than the liquidus experience melting

(crystallizing). Ellipticities and region thicknesses are not drawn to scale.

the importance of viscous relaxation or melting/solidification acting to reduce the inner

core tilt. Alternately, the non-detection may be because the inner core is too small, the

density contrast at the ICB is too small, or that the FICN frequency is not near the

resonance so the inner core tilt is too small.

We have applied our model of the Cassini state of the inner core to the present-day

orbital configuration of the Moon. But the orbit of the Moon has evolved with time. The

rotation rate of the 1:1 spin-orbit resonance has decreased as the Earth-Moon distance

increased. This implies a change in the FICN frequency with time. Likewise, the orbital

precession frequency, and thus the forced precession frequency, is also changing in time.

For a fixed Lunar interior structure, the changing ratio of ωficn to Ωp implies that the

tilt angle of the inner core is expected to also change in time. It is even possible that a

transition from one Cassini state to another may have occurred in the past, or will occur

in the future. In fact, Fig. 2 of Ward [1975] illustrates precisely this, showing how the

different Cassini states associated with the solid outer shell of the Moon have evolved as

a function of the Earth-Moon distance. The transition between states 1 (θp < 0) and 2

(θp > 0) marks the resonance crossing of the free precession of the Lunar mantle in space.

This will be investigated in the next chapter.

These results are important in regards to the origin of the past Lunar dynamo [Weiss

and Tikoo, 2014]. One suggestion that has been proposed is that the dynamo may have
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been sustained by mechanical forcing from differential rotation at the CMB [Williams

et al., 2001; Dwyer et al., 2011], when the tilt angle of the spin symmetry axis of the

mantle with respect to the ecliptic was larger [Ward , 1975]. In this model, the fluid core

spin axis is assumed to be perfectly aligned with the ecliptic normal. But as we showed

in our study, the fluid core spin axis may be sufficiently offset from the ecliptic if the

inner core is large and the FICN frequency is close to resonance. Furthermore, in the

past, the FCN frequency was larger, principally because of the faster rotation rate of the

Moon [Meyer and Wisdom, 2011], and thus the FCN was closer to being in resonance

with the forced precession frequency. Consequently, even for a small or no inner core, the

offset of the fluid core spin axis with the ecliptic was larger in the past, thus enhancing

the power available to drive a mechanical Lunar dynamo. The factor of enhancement

depends on the Lunar interior model and on the details of the evolution of the Lunar

orbit.

Since, as we have illustrated in our study, the spin vectors of the solid and fluid cores

are likely misaligned, it follows then that the resulting differential rotation at the ICB

may also potentially lead to a dynamo by mechanical stirring. Clearly, if this mechanism

is possible, then the differential velocity at the ICB at present is too small for dynamo

action, either because the inner core is too small, or because the differential precession

angle between the inner core and the spin axis of the fluid core is too small, or both.

But if it is because of the latter, the different ratio between ωficn and Ωp in the past

may have lead to a much larger inner core tilt – even possibly a resonance crossing of

the FICN – and a sufficiently large differential rotation at the ICB for dynamo action.

Whether this may have occurred depends on the evolution of the Lunar orbit parameters,

the Lunar interior structure and on how the latter may have evolved (for instance by

inner core growth). This will also be a point of focus of the next chapter.



Chapter 3

Mechanical stirring as a source of

dynamo action

One of the proposed mechanisms to explain the ancient dynamo of the Moon is that

it may have been produced by mechanical stirring from the precessional motion of the

fluid outer core with respect to the mantle. Because of the elliptical shape of the CMB

and secondarily because of the viscous friction, a precession of the fluid core cannot be

represented by a simple rigid body rotation [Tilgner , 2015]. A boundary layer flow must

be present, which may be confined to the boundaries but may destabilize the flow in

the whole volume. Moreover the Reynolds number of the core precession is of the order

of 1010 [Williams et al., 2001] and turbulent instabilities are expected to develop. The

geometry of the flow is important to generate and maintain a magnetic field by dynamo

action [Jones, 2015]. Whether a dynamo can be produced by precession and the form

of the flows that are most suited to do so is an active area of research [Tilgner , 2005;

Malkus , 1968; Cébron et al., 2018]. An example of such a flow driven by precession is

displayed in Fig. 3.1. The magnetic field resulting from such a system is rarely dipolar.

Due to the turbulence at the CMB, the dynamo is instead dominated by small scale

magnetic fields [Cébron et al., 2018].

Here, instead of investigating the details of the flow that can generate a dynamo, we

look at the basic energy balance. The power required to generate a dynamo must be

equal to the ohmic dissipation in the core [Nimmo, 2015]. Hence, without investigating

whether the flows generated by the precession can sustain a dynamo, a simpler question

is to ask whether there is sufficient energy.

This was the purpose of the study done by Dwyer et al. [2011]. They used the

dissipation from viscous torque at the CMB predicted from LLR [Williams et al., 2001]

49
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Figure 3.1: An example of a flow pattern resulting from a precessing spherical shell,

represented as vorticity along the fluid’s rotational axis, without the presence of a solid

inner core. From Cébron et al. [2018].

and estimated a magnetic field strength in the Lunar past based on the basis of a power

scaling law derived from convective dynamos. In this chapter, we extend this idea to

differential motion at the ICB. We investigate whether the precessional motion of the

inner core and fluid core may have lead to sufficient dissipation in the past to have

generated a dynamo, and if so, what was the strength of the magnetic field.

3.1.1 Viscous torque from laminar flow

Estimates of the power dissipation can be derived from the viscous torque at the CMB

and ICB. Let us first explore the viscous torque based on the assumption of laminar

flow. While we do not expect the flow in the fluid outer core to be laminar, it provides a

good foundation for the derivation of the turbulent torque at the CMB and ICB that will

be presented in the next section. We begin with the definition of viscous shear stress,

representing the traction exerted on a solid boundary

τ = ρfν
∂

∂z
u , (3.1)
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where ρf is the density of fluid core, ν is the kinematic viscosity and u is the velocity

profile of the flow. For rotating flows, the latter is assumed to be of the form [Pedlosky ,

1987],

u(z) =
[
1− e−z/δ cos

z

δ

]
u0 + sin

z

δ
e−z/δẑ × u0 , (3.2)

where z is the vertical distance away from the boundary and into the fluid, δ =
√
ν/Ω0

is the Ekman depth, and u0 is the flow in the mean stream. The differential velocity

between the solid boundary and the bulk of the flow is thus equal to u0. For the rotational

flows involved in precession, the maximum differential velocity at the CMB and ICB can

be written as ∣∣∣ucmb
0

∣∣∣ = rfΩ0 |sin θf | , (3.3a)∣∣∣uicb
0

∣∣∣ = rsΩ0 |sin (θf − θs)| . (3.3b)

Taking the derivative of Eq. (3.2) with respect to z we obtain an expression for the

viscous shear stress in terms of the differential velocity u0,

τ = ρ
√
νΩ0[u0 + ẑ× u0] . (3.4)

Integrating the viscous shear stress over a sphere gives the torque exerted on the solid

boundary at that radius. The viscous torques exerted on the mantle at the CMB (Γcmb)

and on the inner core at the ICB (Γicb) can be written as [Mathews and Guo, 2005]

Γcmb = iΩ2
0ĀfKcmb sin θf , (3.5a)

Γicb = iΩ2
0ĀsKicb sin (θf − θs) , (3.5b)

where the non-dimensional coupling constants Kcmb and Kicb are given by:

Kcmb =
1√
2
π
r5
fρ

cmb
f

Af
E

1
2
cmb(0.195− 1.976i) , (3.6a)

Kicb =
1√
2
π
r5
sρ
icb
f

As
E

1
2
icb(0.195− 1.976i) . (3.6b)

In the above expressions, Ecmb and Eicb are the Ekman numbers based on the CMB and

ICB radii respectively, given by

Ecmb =
ν

r2
fΩ0

, Eicb =
ν

r2
sΩ0

. (3.7)
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An equivalent form for the coupling constants is then

Kcmb =
π√
2

r4
fρ

cmb
f

Af

1

Ω0

√
νΩ0(0.195− 1.976i) , (3.8a)

Kicb =
π√
2

r4
sρ
icb
f

As

1

Ω0

√
νΩ0(0.195− 1.976i) . (3.8b)

3.1.2 Viscous coupling from turbulent flow

In the case of turbulent flow, the shear stress at the boundary can be written as

τ = fρ |u0|u0 , (3.9)

where f is a dimensionless coefficient of friction, and u0 again is the mean stream flow

away from the boundary layer. A comparison between Eqs. (3.4) and (3.9) reveals

that the expression for the traction in the direction of u0 in the turbulent case involves

substituting a term
√
νΩ0 by f |u0|. Using the same substitution in the expressions for

the coupling constants (Eq. (3.8)), they become

Ktcmb =
π√
2

r5
fρ

cmb
f

Af
f |sin θf | (0.195− 1.976i) , (3.10a)

Kticb =
π√
2

r5
sρ
icb
f

As
f |sin (θf − θs)| (0.195− 1.976i) . (3.10b)

The friction coefficient f depends on the surface roughness and may be different at the

ICB versus the CMB. In the next section we show how f can be estimated from LLR

observations. In principle, we can include the viscous torques in our angular momentum

system defined in Eq. (2.11). However dissipation in the Moon is weak and therefore can

be neglected in a first order calculation of our system. The solutions of θf and θs from

the Cassini states found from the method derived in the previous chapter can be used to

find the values of Ktcmb and Kticb.

3.1.3 Constraints on viscous torque from LLR observations

Constraints from viscous friction at the CMB of the Moon at present day can be derived

from LLR observations [Williams et al., 2001]. The rotational model of the Moon used

to fit LLR data simply consists of a rigid mantle and a fluid core. Viscous dissipation is

incorporated into the model by adding a viscous torque on the mantle in the form

Γcmb = K(∆ωcmb) , (3.11)
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where K is a dimensionless coupling coefficient between the mantle and fluid core, and

∆ωcmb is the differential angular velocity at the CMB. From LLR data, along with data

from the GRAIL mission, a recent estimate of KC is [Williams et al., 2014]

K
C

= (1.64± 0.17)× 10−8days−1 = (1.9± 0.20)× 10−13s−1 , (3.12)

where C is the polar moment of inertia of the whole Moon. Note that this model is

derived assuming no solid inner core, meaning that both Ktcmb and Kticb are mapped into

this single value of KC . Unfortunately, separating this friction coefficient into CMB and

ICB components is complicated and beyond the scope of this thesis and will be left for a

future study. We will use KC as given by Eq. (3.12), in order to derive, in an order of

magnitude sense, a numerical value for the friction parameter f that enters Eqs. (3.10).

Defining the differential angular velocity at the CMB associated with the Cassini state as

∆ω = Ω0 sin θf , (3.13)

and equating the torque in Eq. (3.11) to our definition of the torque at the CMB given

in Eq. (3.5a) we obtain

Im(Ktcmb) = −K
C

C

Cf

1

Ω0
. (3.14)

Approximating the ratio between polar moment of inertia of the whole moon and fluid

outer core (C/Cf ) as Ā/Āf , Eq. (3.14) can be expressed as

Im(Ktcmb) = −1.976
π√
2

r5
fρ

cmb
f

Āf
f |sin θf | . (3.15)

Using the definition of Ktcmb given in Eq. (3.10a), f is found to be equal to

f =
K
C

Ā
√

2

1.976Ω0πr5
fρ

cmb
f sin θf

. (3.16)

It is worth noting that in the above equation, we are trying to match the parameter

f for today’s Lunar system, and in doing so need to use present day values for Ω0 and

θf , where Ω0 ≈ 2.6616× 10−6 s−1. We can easily calculate θf values using our non-linear

Cassini state model described in the previous chapter, however since θf for today is

about −1.6° and doesn’t vary much with Lunar model, we will assume that θf = −1.6°
for todays value in the calculation of f . For each interior model that we use, the present

day value of f that we calculate is consistent with the observations from GRAIL and

LLR. We then assume that this friction parameter defines properties of the solid-fluid

boundary and has remained unchanged going back in the past.
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3.1.4 Dissipation

Viscous dissipation can be calculated as the product of the torque and the angular velocity

at a given boundary,

Q = Γ ·∆ω , (3.17)

where ∆ω is the differential angular velocity. At the CMB, |∆ω| = Ω0 sin θf . Taking

the real part of Γcmb in Eq. (3.5a) and Ktcmb from Eq. (3.10a) gives us the dissipation at

the CMB

Qcmb = 1.976
π√
2
r5
fρff |Ω0 sin θf |3 . (3.18)

In a similar fashion, the dissipation at the ICB can be calculated from Γicb in Eq.

(3.5b) and Kticb from Eq. (3.10b):

Qicb = 1.976
π√
2
r5
sρff |Ω0 sin (θf − θs)|3 . (3.19)

The dissipation can now be estimated on the basis of the solutions of θs and θf from

our Cassini state model of chapter 2. The one parameter which is highly uncertain in

this calculation is the friction coefficient f . Even though our estimate of this parameter

is retrieved from LLR, it needs to be emphasized that it only represents an order of

magnitude at best. Hence, our calculations of the dissipation at the CMB and ICB

presented in the next section should be viewed as order of magnitude estimates.

3.2 Results

As in the previous chapter on the Cassini state of the inner core, we have a rather large

parameter space to investigate, especially when considering how these variables change

over Lunar history. The main focus of this study is to see how dissipation and magnetic

field intensity vary over time. First, we determine which orbital parameters have changed

and how they vary as a function of time. Next, the relationship between the dissipation

at the CMB and the ICB, as well as their associated magnetic fields will be investigated

as a function of time, and compared to the model by Dwyer et al. [2011]. Finally, we will

take distinct periods in the past to see how the dissipation and the resulting magnetic

fields vary as a function of Lunar parameters at specific moments throughout Lunar

history.
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3.2.1 Evolution of the Lunar orbit

In chapter 2, we used numerical values appropriate for today’s Lunar orbital inclination

of I = 5.145°, precession frequency of Ωp = 2π/18.6 yr−1 and sidereal frequency of

Ω0 = 2π/27.322 days−1. However I, Ωp and Ω0 had different values in the past. To

calculate the past Lunar Cassini states we must first determine how the aforementioned

variables have varied through time. Touma and Wisdom [1994] have carried out numerical

integrations of the tidal evolution of the Earth-Moon system and have constrained many

orbital and rotational parameters thus allowing the extension of our model int the past.

For instance, Figs. 3.2 and 3.4 show how the precession period and inclination I have

changed as a function of Earth-Moon distance.

Figure 3.2: Precession period of the Moon, with both Lunar and solar tides accounted

for, as a function of semi-major axis expressed in Earth radii. Present day orbital radius

shown with the red arrow. From Touma and Wisdom [1994].

As Fig. 2.5 in chapter 2 shows, the impact of orbital inclination on the Cassini state

of the inner core can be rather significant. However, Fig. 3.4 shows that changes in I
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have not been significant after aL > 33 RE , where RE is the Earth’s radius. To simplify,

we will assume that I has remained constant (and equal to 5.145°) and restrict our

investigation in the past to Lunar orbital radii greater than 33 RE . The same assumption

was made by Dwyer et al. [2011].

As for the mean sidereal period, Ω0, assuming the Moon to be tidally locked into a

1:1 spin orbit resonance, using Kepler’s 3rd law, the rotational frequency of the Moon in

the past (Ω0(aL)) when the Moon was orbiting at a distance of aL is given by

Ω0(aL) =

[
a0

aL

]3/2

Ω0(a0) , (3.20)

where a0 is the present-day semi-major axis. Relating the semi-major axis to time is

a difficult problem and many different models exist. The temporal evolution of the

Lunar orbit depends highly on tidal dissipation on the Earth. Geological observations

of dissipation span up until about 0.6 Gyr ago, prior to which little can be accurately

constrained [Williams , 2000]. Consequently the evolution of the Earth-Moon system in

its early stages remains uncertain. For this reason, we will only show how our results

vary as a function of Lunar orbital radius, and will not attempt to translate them in

terms of a specific timescale. This means that the exact time correlation of our predicted

magnetic field and paleomagnetic data cannot be calculated with great certainty. A few

models showing how the semi-major axis evolved as a function of time are shown in Fig.

3.3, which delineates the non-uniqueness when converting Lunar semi-major axis into

time before present.

3.2.2 Evolution of Lunar Cassini states

Before delving into power dissipation and magnetic field intensities, we find it useful to

examine the evolution of the Cassini states as a function of orbital radius. Using the

same model as in chapter 2 but with different values of Ωp (from Fig. 3.2), Ω0 (from

Eq. (3.20)) as a function of aL, Fig. 3.5 shows an example of how the tilt angle of the

mantle (θp), the spin axis of the fluid core (θf ) and the inner core (θs) have evolved. This

particular Moon model has a fluid outer core radius of rf = 350 km and a solid inner

core radius of rs = 250 km. The densities of the inner core and crust are set at ρs = 7700

kg/m3 and ρc = 2550 kg/m3, respectively, with a crust thickness of 38.5 km. Fig. 3.5

shows the magnitude of the tilt angle of the mantle can reach up to 45°, consistent with

the results shown in Ward [1975]. The variation of θf is slightly larger and tracks the

changes in θp, though with the reverse sign. Recall that θf is measured from the mantle

frame, so the rotation axis of the fluid core remains close to the ecliptic normal, except
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Figure 3.3: A variety of models displaying the evolution of Lunar semi-major axis as a

function of time. The model in red is the one chosen for the study done by Dwyer et al.

[2011]. Figure from Dwyer et al. [2011].

for aL < 40 RE where it may have been offset by up to 10° (Fig. 3.5, bottom). In the

same manner that Fig. 2.3 in chapter 2 shows that the different branches of the Cassini

state associated with the inner core can be accessed depending on the FICN frequency,

Fig. 3.5 shows that different branches can also be accessed by changing Ωp and Ω0. Note

also that there are multiple Cassini states that the solid inner core can inhabit in the

recent past, but for this specific Moon model, only state B was possible for aL < 53 RE .

Assuming that the lowest energy state is favoured, this implies that as the Moon moved

away from the Earth, a transition at around 53 RE would have occurred.

Whether such a Cassini state transition occurred depends on the interior Moon

model, more specifically it depends on whether the FICN frequency of the Lunar model
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Figure 3.4: Orbital inclination vs semi-major axis expressed in Earth radii. A significant

variation can be seen prior to aL< 33 RE , after which little change occurs. Present day

orbital radius shown with the red arrow. From Touma and Wisdom [1994].

crosses the transition frequency (closely related to the Poincaré number). In chapter 2 we

concluded that FICN values below the transition frequency will result in a single Cassini

state, while values greater could yield three (Fig. 2.3). But this transition frequency

changes with Ωp and Ω0. The evolution of the Cassini states associated with the solid

inner core of two models are shown in Fig. 3.6, first the model with rf = 350 km, rs = 250

km shown in Fig. 3.5 which features a Cassini state transition at aL ≈ 53 RE . Second, a

model with rf = 340 km, rs = 250 km which does not undergo transition (it remains

in state B). We also show in Fig. 3.6 how the transition frequency (i.e. the frequency

that coincides with the merging of states A and C) has change with aL, along with how

the FICN frequency of each model has changed with aL. The FICN frequency changes

because the parameter αg depends on Ω0 (see Eqs. (2.18) and (2.24)). Fig. 3.6 shows
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Figure 3.5: Top: The evolution of the Cassini states of a given Moon model (fluid outer

core = 350 km, solid inner core = 250 km). θp is shown in red, θf in green and θs in

blue. Bottom: The absolute angle of offset between the ecliptic normal and the spin axis

of the fluid outer core (green) and the spin axis of the fluid outer core and that of the

solid inner core (blue) as a function of Earth-Moon distance. Present day orbital radius

shown with the red arrow.
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that a transition occurs when the FICN frequency matches the transition frequency,

which occurs at aL ≈ 53 RE for the first model. No crossing has occurred for the second

model, though one would eventually occur for aL > 70 RE .

Figure 3.6: Left: Evolution of the Cassini state of the inner core for two different Lunar

models, one with fluid outer core radius of 350 km (blue) and the other with an fluid

outer core radius of 340 km (green), both having a solid inner core radius of 250 km.

Right: Evolution of the FICN frequency (in cycles per Lunar day) for the same two

models. The black curve shows the evolution of the point of merging between states A

and C as a function of time. The vertical dashed red line displays the point at which the

FICN frequency of the model shown in blue crosses the transition frequency (black).

These transitions can have large implications for the dissipation at the ICB. As seen

in Fig. 3.6, changing Cassini states can result in a sudden change in the tilt angle of

the spin axis of the inner core (from −40° to 10°), the consequences of which will be

discussed further in the next section.

3.2.3 Power dissipation over Lunar history

Through Eqs. (3.18) and (3.19), the power dissipation at the CMB and ICB can be

expressed as a function of semi-major axis. Let us now investigate dissipation for the

same Lunar model of rf = 350 km and rs = 250 km, whose tilt angles evolutions are

shown in Fig. 3.5. The power dissipation calculated at the CMB from this model is shown

in Fig. 3.7. We also show the dissipation model by Dwyer et al. [2011] for comparison,

which is computed from

Qcmb ≈ 3× 1020W × sin 3θp

(aL(t)/RE)(9/2)
, (3.21)
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The difference between the two models originates from two sources. First, Eq. (3.21)

is based on a dissipation at present day of Qtodaycmb ≈ (6.0± 1.6)× 107 W which is itself

derived from a viscous coupling coefficient of K/C ≈ 1.122± 0.257× 10−8 day−1. Using

instead the updated value of K/C given in Eq. (3.12) gives us a larger present day

dissipation of 8.60± 0.91× 107 W. The higher dissipation from our model is due in part

to this. Second, the model used in Dwyer et al. [2011] makes the implicit assumption

that the fluid core has remained aligned with the ecliptic normal. As Fig. 3.5 (bottom)

shows, the fluid core is not simply aligned with the ecliptic normal (|θf | > |θp|), in fact it

is tilted in the opposite direction of the mantle slightly, resulting in an even larger angle

of offset between the mantle and fluid outer core. This difference is larger the further we

go back in time and explains why our dissipation values are larger.

The dynamo threshold value is described in Dwyer et al. [2011] as the power required

to sustain an adiabat within the fluid core, below which no dynamo can exist. The

threshold value (Qth) has a value of 4.7× 109 W and is shown in Fig. 3.7 as the black

dashed line. The intersection between Qcmb and Qth occurs at about aL ≈ 49 RE , or

about 3 Gyr before present, depending on which temporal evolution model is used (see

supplementary information, Dwyer et al. [2011]).

When Qcmb ≤ Qth, not enough energy is present to sustain a dynamo. Hence, for the

model shown in Fig. 3.7, the dynamo shuts off at aL ≈ 49 RE . We also show on Fig.

3.7 the power dissipated at the ICB. Not only is dissipation at the ICB higher than the

CMB for aL > 40 RE , it remains above the threshold value for a much longer period of

time, therefore allowing for a much longer period of dynamo action. The sudden drop

in Qicb at aL ≈ 53 RE is due to a transition of the Cassini state of the inner core, from

state B to state A. The differential rotation is much smaller in state A than in state B,

thus causing the sharp drop in Qicb. Note that a large scale flow reorganization in the

core may accompany this Cassini transition, which would lead to a spike in Qicb (and

also Qcmb), before settling to the lower energy state. However, we cannot model this

with our simplified description of a rigidly precessing flow.

The changes of Qicb with aL vary greatly with the choice of parameters, ultimately

depending on the FICN of the system. Fig. 3.8 depicts the dissipation at the ICB of

four different Lunar models, with fluid outer core radii spanning 340 to 370 km, and all

sharing the same solid inner core radius of 250 km.

The difference in fluid outer core radius results in very different FICN profiles (recall

that the FICN varies as a function of semi-major axis as well (Fig. 3.6)). In Fig. 3.7 we

see that the solid inner core experiences a Cassini state transition at about 53 RE . In the

previous section we attributed the transition of Cassini states to the FICN of the system
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Figure 3.7: Power available to drive a dynamo estimated from viscous dissipation at

the CMB (blue) and the ICB (green) as a function of semi-major axis. The dissipation

at the CMB from the model presented by Dwyer et al. [2011] is shown in red. Lunar

model with a fluid outer core and solid inner core radius of 350 km and 250 km was

used, respectively. Threshold power below which dynamo will cease is shown as the black

dashed line.
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Figure 3.8: Dissipation at the ICB for multiple Lunar models, ranging in fluid outer

core radius from 340 to 370 km. Solid inner core radius for all models kept at 250 km.

Threshold power below which dynamo will cease is shown as the black dashed line.

becoming greater than the transition frequency (Fig. 3.6). This is precisely the cause of

this rapid decline in dissipation in three of the models in Fig. 3.8. The smaller the fluid

outer core radius, the later in Lunar history the transition occurs. For the model with

rf = 340 km, the transition has not yet occurred.

3.2.4 Paleomagnetic intensity from power dissipation

To convert dissipation into magnetic field intensity Dwyer et al. [2011] used a scaling law

derived in Christensen et al. [2009], on the basis of numerical dynamo models powered

by convection. This scaling may not be entirely suitable for a dynamo generated by

mechanical stirring at the CMB, but no equivalent scaling law exists for precessional

dynamos. It should be noted that, while heat dissipated at the CMB is not available to

drive convection, heat dissipated through stirring at the ICB may be used to power a

conventional thermally driven dynamo. Hence, the scaling law derived in Christensen

et al. [2009] is more appropriate for dissipation at the ICB. We will be using the notation

Bcmb and Bicb to describe the magnetic field intensity resulting from dissipation at the

CMB and ICB, respectively. The conversion of power dissipation to magnetic field

strength at the Lunar surface (given in micro-Teslas) is
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B ≈ 6d

[
Qdyn(t)

3× 1011W

]1/3

, (3.22)

where d is the ratio of the dipolar magnetic field to the total field at the CMB [Dwyer

et al., 2011]. For simplicity we set it equal to 1. The Qdyn(t) in the equation above is the

dissipation readily available to power the dynamo

Qdyn = Qcmb −Qth , (3.23)

and similarly for the ICB using Qicb. For values of Qcmb and Qicb ≤ Qth the dynamo

shuts off and magnetic field intensity would decrease to 0. Fig. 3.9 shows the predicted

magnetic field strength from dissipation at the CMB and at the ICB as a function of aL,

for the different Moon models shown in Fig. 3.8.

Figure 3.9: Paleomagnetic field intensities as a function of Earth-Moon distance for a

range of fluid outer core (FOC in figure) radii (340-370 km). Thick coloured lines: Based

on dissipation at the ICB; thin lines: Bcmb from viscous dissipation at the CMB (for

rf=340 and 370 km)

Dissipation at the CMB leads to a significant magnetic field, upwards of 25 µT, however

it quickly becomes negligible as Qcmb approaches Qth. Note also that a transition in
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Cassini states decreases the period of dynamo action at the CMB slightly as well, resulting

in an earlier shutoff. Conversely, while not as strong as the CMB dynamo earlier in

Lunar history, the dynamo at the ICB is stable for a much longer period. Supposing

that the scaling law of Eq. (3.22) is appropriate, the estimates of the magnetic field

strength shown in Fig. 3.9 are upper bounds because they are based on d = 1. The ratio

of dipolar to total field at the CMB is undoubtedly smaller than 1. Since the strength of

B scales linearly with d, the predictions of Fig. 3.9 would decrease in proportion with

d. Furthermore, the dissipation and magnetic field strength at the ICB are shown for a

large inner core radius of 250 km. Since Qicb scales with r5
s (see Eq. (3.19)) and thus Bicb

scales with r
5/3
s (from Eq. (3.22)), it is clear that smaller choices of ICB radius would

yield smaller Qicb and Bicb. We need to evaluate how the size of the inner core affects

the prediction of Qicb, Qcmb, Bicb and Bcmb, which is done in the next section.

3.2.5 Power dissipation and magnetic field intensity for different Lunar

models

The previous section showed that the amplitude of the dissipation and magnetic field

from differential rotation at the ICB depends sensitively on the interior Lunar model.

Likewise, the Lunar model is also important for dissipation at the CMB. Let us now

investigate how Qcmb, Qicb, Bcmb and Bicb vary for a range of interior Lunar models. We

do so by focusing on three specific snapshots in Lunar history at aL = 33 RE , aL = 49

RE and aL = 60 RE .

First, as our results from the previous section show, Qcmb tends to increase the further

we go back in time (decreasing aL). Therefore the maximum values of Qcmb and by

extension Bcmb would occur at the smallest aL, which for our model is at aL = 33 RE .

Fig. 3.10 (top) shows Qcmb at aL = 33 RE as a function of fluid outer and solid inner

core radius. The dissipation at the CMB does not vary greatly as a function of rf and rs,

staying constant at approximately 3.2×1013 Watts. This is mainly because θf does not

change substantially for all combinations of rf and rs. A complementary way to show

these results is to show how Qcmb changes as a function of FICN frequency and inner

core radius (Fig. 3.10 bottom). The white shaded areas mark regions where a given

combination of rs and FICN frequency would require the density of the fluid core to be

higher than the inner core, or below densities that are deemed acceptable [Matsuyama

et al., 2016]. These would not be viable Lunar models and have therefore been neglected

in our calculations. This is the way we will be presenting our models proceeding forward.

The dissipation at the ICB at aL = 33 RE as a function of rs and FICN frequency

is shown in Fig. 3.11. A major difference compared with Qcmb is the range of change
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Figure 3.10: Viscous dissipation (in Watts) at the CMB at aL = 33 RE estimated from

Eq. (3.18) as a function of rs and rf (top) and FICN frequency and rs (bottom).
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of Qicb for different Lunar model; from approximately 102 to 1011 W. The red contour

shows Qth, below which a dynamo is not expected to be present, meaning that for some

Lunar models dissipation is insufficient to power a dynamo. This is the case notably for

rs ≤ 120 km. A requirement for a dynamo powered by dissipation at the ICB is thus

that the inner core radius must be larger than ≈ 120 km.

Figure 3.11: Viscous dissipation (in Watts) at the ICB at aL = 33 RE estimated from

Eq. (3.19) as a function of FICN frequency and rs. Qth = 4.7× 109 W is shown by the

red line.

The corresponding magnetic fields from both Figs. 3.10 and 3.11 are shown in Fig.

3.12. As expected (and shown in Fig. 3.7), the magnetic field intensity generated at the

CMB is invariably larger than that at the ICB, with values ranging from about 28 to 29.2

µT. In regions of the parameter space where Qicb is below Qth, the predicted magnetic

intensity falls to zero. When it is above, the magnetic field intensity can be as high as

5.3 µT. For all interior Lunar models at aL = 33 RE , the inner core is in Cassini state B.
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Figure 3.12: Magnetic field intensities (in µT) at aL = 33 RE estimated from Eq. (3.22)

as a function of FICN frequency and rs, from dissipation at the CMB (top) and ICB

(bottom).
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The next epoch that we investigate is right after the cessation of the dynamo from

dissipation at the CMB, at aL = 49 RE . For all Lunar models at this epoch, Qcmb is

below Qth. Fig. 3.13 shows how Qicb and the corresponding magnetic field intensity, Bicb,

vary with FICN frequency and rs.

Two major differences between Bicb at aL = 33 and 49 RE are immediately discernible.

First, the magnitude of the magnetic field has increased from a maximum of 5.8 µT

at aL = 33 RE to a maximum of 6.3 µT at 49 RE . This is due to the fact that the

angle of offset between the fluid outer core and the solid inner core is larger at aL = 49

RE . The second difference is the narrower parameter space of models for which dynamo

action is possible. In particular, only models for which the FICN frequency is between

approximately −1.6× 10−3 to −3.5× 10−3 are above threshold.

For completeness we also include a model of Qicb and Bicb at aL = 60 RE , representing

the current state of the Lunar system. Again, Qcmb < Qth for every Lunar model at this

epoch. Predictably, Qicb and Bicb at aL = 60 RE follow the same pattern as the two

previous epochs. The magnitude of the maximum magnetic field has decreased to 4.1

µT, and the region of parameter space of dynamo above threshold has narrowed, further

restricted to rs ≥ 150 km and FICN frequencies between −3.7× 10−3 and −4.4× 10−3.

However there is still a range of models that allow for dynamo action today, more

specifically models for which the inner core remains in Cassini state B (Fig. 3.6) and

have a higher differential velocity at the ICB.

3.3 Discussion: Mechanical stirring as a source of dynamo

action

We have shown that the magnetic field strength estimated from viscous dissipation at

the CMB may have been as high as 25-29 µT when aL = 33 RE . The precise amplitude

depends on the interior Lunar model. This estimate is slightly larger than predicted

in Dwyer et al. [2011] (closer to 20 µT) and this is for two reasons. First, we used an

updated and slightly larger estimate of the dissipation in the present-day Moon. Second,

we take into account in our model the fact that the spin axis of the fluid core is not

aligned with the ecliptic but further misaligned from the mantle axis by as much as

≈ 10° at aL = 33 RE (Fig. 3.5, bottom). Though the choice of interior model affects the

amplitudes of the magnetic field and when dynamos may have shut off, the dependence

is weak and for all Lunar models, Bcmb has shut off by aL = 49 RE .

The novel contribution from our study concerns the contribution of a similar estimate

of a magnetic field but from a dynamo powered by viscous dissipation at the ICB. We
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Figure 3.13: Viscous dissipation at the ICB (top in Watts), Bicb (bottom, in µT) at

aL = 49 RE as a function of FICN frequency and rs.
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Figure 3.14: Viscous dissipation at the ICB (top in Watts), Bicb (bottom, in µT) at

aL = 60 RE as a function of FICN frequency and rs.
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have shown that whether the dissipation is above the threshold depends sensitively on

the Cassini state of the inner core. Furthermore, we have shown that a transition of

the Cassini state associated with the inner core may have occurred as the Lunar orbit

evolved, marking a significant and sudden transition from a high energy state (state

B), to a low energy state (state A) (Fig. 3.5 top). Whether a Cassini state transition

occurred depends on the evolution of the FICN frequency relative the the transition

frequency, as discussed in the previous section (Fig. 3.6). For all plausible Lunar models,

the solid inner core inhabited the higher energy state as the system progressed further

back in time, which was tilted opposite to the spin-symmetry axis of the mantle.

The largest amplitudes of magnetic field predicted by our model are of the order

of 8.5 µT, which occur at aL ≈ 40 RE . Though smaller than Bcmb, it can persist for

much longer. The two main criteria for dissipation at the ICB to be above the dynamo

threshold are: one, the inner core must be larger than approximately 100 km; two, the

inner core must be in Cassini state B (although it is possible to be above threshold in

state A, the field amplitudes are weaker).

The amplitude of Bicb was also found to be very dependent on the Lunar model

chosen. Models that feature a Cassini transition reached higher peak paleomagnetic

intensities but died off earlier due to the transition to a lower energy state. Meanwhile,

models that did not exhibit a transition stayed on the same state (Fig. 3.6), resulting

in the paleointensity to slowly decay over time, keeping above the threshold dissipation

(Qth) for a long period of time. Even at present there are models that could theoretically

sustain a magnetic field generated at the ICB, with an intensity of up to 3.7 µT. The fact

that the Moon does not have an on-going dynamo implies then that: one, the inner core

radius is smaller than than 150 km; or, two, that the FICN frequency for the present

day Moon does not fall between −3.7 × 10−3 and −4.9 × 10−3. However, if the FICN

frequency is outside but close to this interval and if rs > 150 km, a Lunar dynamo

powered by precession at the ICB may have shut down only very recently. Hence it is

possible that such a dynamo may be responsible for the longevity of the Lunar magnetic

field (Fig. 1.6). The amplitude of the magnetic field that we predict are consistent with

the paleomagnetic intensities of the order of 5-10 µT at the Lunar surface that persist

after 3 Gyr on Fig. 1.6 [Weiss and Tikoo, 2014]. Though this is encouraging, we need

to recall that these are obtained while making the assumption that all the magnetic

energy is being used in the dipole component. More realistically, only a fraction of the

magnetic energy is in the dipole field, and our estimates should be then reduced by the

same fraction.

Accordingly, this suggests that differential motion at the ICB cannot generate sufficient
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energy to explain the field intensities in the Lunar paleomagnetic data. However, we

need to remember that our magnetic field estimates only takes into account the heat

dissipated at the ICB which is then available to power a convective dynamo. In addition

to this, the precession motion of an elliptical inner core will generate flow by mechanical

stirring. If such flows lead to global instabilities and large scale eddies [Lin et al., 2016],

they may contributed to dynamo action. If so, the magnetic field produced as a result of

differential motion at the ICB may be larger than we have estimated.

Further complicating the picture is the fact that, once a magnetic field is present in

the Lunar core, electromagnetic coupling at the ICB will act to reduce the differential

rotation between the fluid and solid cores (DW16). On one hand, this will reduce the

differential rotation at the ICB and thus reduce the viscous dissipation, reducing the

energy available to power a dynamo and the resulting magnetic field. On the other hand,

dissipation associated with the electromagnetic torque would likely be much larger than

that from viscous torque. Hence, for the same angle of differential rotation, it would

deposit a larger amount of heat at the ICB. Taking into account the reduction in the

differential rotation that electromagnetic coupling would entail, it is unclear whether this

would lead to larger or smaller dissipation at the ICB and thus the magnetic intensity

estimates.

As shown by Dwyer et al. [2011] and further illustrated in our study, viscous dissipation

at the CMB alone fails to explain the largest paleomagnetic intensities inferred from

Lunar rocks. The addition of the magnetic field generated from viscous dissipation at

the ICB could help supplement Bcmb in the early stages. Although the largest values we

get from Bicb are of the order of 10 µT, added to Bcmb it could explain many of the data

points seen between 4-3 Gyr in Fig. 1.6. But the more impactful result of our study is

that we have shown that dissipation at the ICB could explain the peculiar long lasting

Lunar dynamo, with intensities on the order of 5-10 µT well beyond 3 Gyr, up to nearly

present day. The narrowing parameter space of Lunar models which predicts a dynamo

with time can explain why there is no dynamo generated field on the Moon at present.

We have neglected inner core growth from crystallization in our study, however this

is not entirely correct. The radius of the solid inner core should increase as a function of

time. The precise history of the inner core growth depends among other things on the

initial composition of the fluid core and on the evolution of the heat flux at the CMB

[eg. Laneuville et al., 2014]. The shortest Earth-Moon distance in our study, aL = 33

RE , should correspond to approximately 4 Gyr before present, possibly before the inner

core had started nucleating. Taking inner core growth into account, the amplitude of

the magnetic field on Fig. 3.9 should be weaker for smaller Earth-Moon distances, and
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null before the ICB radius got larger than ≈ 100 km. On the one hand, this implies that

the largest magnetic field predictions from our model at aL ≈ 40 RE , are likely much

smaller, and dynamo action from dissipation at the ICB may only have started once aL

was larger than 40 RE . On the other hand, if the gap in paleomagnetic intensities in Fig.

1.6 between 1.5 and 3 Gyr before present reflect the absence of Lunar dynamo in that

time interval, perhaps the late Lunar dynamo after 1.5 Gyr ago reflects when the inner

core reached critical size to power a precession dynamo at the ICB.



Chapter 4

Conclusions

In the second chapter of this study we have shown that:

• The tilt angle of the inner core of the Moon can reach large angles even at present-

day (upwards of 10°).

• The rotational dynamics of the mantle are influenced by the Cassini states of the

fluid core, and the inner core to a lesser extent.

• The Cassini states of the inner core ultimately depend on ωficn, the frequency of

the FICN.

• The orbital inclination influences the shape of the Cassini states of the solid inner

core. Orbital tilt angles larger than 0° will increase the FICN frequency at which

the transition occurs.

• As a result of tidal dissipation, the inner core would most likely inhabit the Cassini

state with the smallest absolute angle of offset.

• Predictions from this model may be used in conjunction with gravitational data in

order to further constrain the size of the solid inner core.

.

In the third chapter we have shown that:

• The dissipation at the CMB due to viscous torque arising from differential velocity

was very high in the distant past (aL = 33 RE) however decreased as the fluid core

and mantle became more aligned.

75



CHAPTER 4. CONCLUSIONS 76

• The dissipation at the ICB is dependent on whether the inner core undergoes a

Cassini state transition through the evolution of the Earth-Moon system, which is

ultimately dependent on the FICN frequency.

• Models with smaller fluid outer core radii tend to stay in the higher energy Cassini

state for longer periods of time, thus displaying higher power dissipation for longer.

• Bcmb can reach relatively high values, of nearly 30 µT, however die off at around

aL = 49 RE .

• Bicb reaches a maximum of 8.5 µT and can stay active for a much longer period of

time.

• Variation in Lunar interior parameters does not have a large effect on Bcmb, however

is very significant in Bicb.

• Many Lunar models do not permit dynamo action at the ICB, even at aL = 33 RE ,

however there are still models today that allow for dynamo action.

• It is possible for mechanical stirring at the ICB to explain the long lasting, low

intensity paleomagnetic observations seen in Fig. 1.6.

Future research:

• Include elastic deformation and viscous relaxation in our Cassini state model in

order to more accurately calculate Cassini states.

• Investigate further the melting and solidification cycle of the tilted inner core.

• Allow for changes in I in order to extend the dynamo model further into the past.

• Study the consequences of a Cassini state transition on the fluid dynamics of the

fluid outer core.

• Apply electromagnetic coupling to our initial Cassini state model, which could

significantly impact the Cassini state evolution. Electromagnetic coupling could

also be an important source of dissipation in order to power a dynamo.

• Apply our Cassini state model to other planets or the icy shell satellites of other

planets in order to provide insight into the precession dynamics of these bodies.



Appendix A

Description of the Lunar orbit, rotation and references

frames used in our model

The Moon is rotating around Earth on an eccentric orbit inclined by an angle I = 5.145◦

with respect to the ecliptic plane. This orbital plane is precessing about the ecliptic

normal in a retrograde direction with a frequency of Ωp = 2π/18.6 yr−1. To describe the

position of the Moon as it orbits about the Earth, we define a coordinate system attached

to the inertial reference frame, centred on Earth, and specified by unit vectors (ê1, ê2, ê3).

Direction ê3 is aligned with the normal to the ecliptic. The normal to the orbital plane,

defined by a normal unit vector êI3, is then precessing about ê3 at frequency −Ωp.

As shown in Fig. A.1a, the position of the Moon is described by an angle F , the mean

angle from the orbit’s ascending node, and by an angle Ω, the longitude of the ascending

node with respect to ê1. The rate of change of Ω is related to the precession frequency

by dΩ
dt = −Ωp. The time it takes for the Moon to complete one orbit with respect to the

inertial frame is defined as the sidereal period and is equal to 27.322 days. The sidereal

frequency is equal to the mean motion, n = 2π/27.322 day−1. Since the Moon is in

a tidally locked 1:1 spin-orbit resonance, the rate of the Moon’s rotation around itself

averaged over one orbit is closely related to n, though not exactly equal, as we develop

below.

Because the orbit is precessing, the Moon does not return to the same point in inertial

space after one sidereal period. The time it takes for the Moon to return to the ascending

node of the orbit is slightly shorter than the sidereal period, and is equal to 27.212 days.

Defining this orbital frequency by Ωc = 2π/27.212 day−1, the mean rate of change of F

averaged over one orbit is related to Ωc by dF
dt = Ωc. The mean motion is linked to Ωc

and Ωp by n = Ωc − Ωp.

The half-period modulation of the gravitational torque by Earth over one orbit and

the eccentricity of the orbit lead to small latitudinal and longitudinal librations of the
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Figure A.1: a) The orbit of the Moon (M) around Earth (E) as seen in the inertial

frame (ê1, ê2, ê3). The normal to the orbital plane is defined by êI3 and is offset from

ê3 by an angle I = 5.145◦. êI3 precesses about ê3 in a retrograde direction at frequency

Ωp = 2π/18.6 yr−1. F is the mean angle from the orbit’s ascending node. Ω is the

longitude of the ascending node with respect to ê1. The blue (orange) shaded region

indicates portions of the orbit when the Moon is above (below) the ecliptic plane, the

latter being represented by the grey shade. b) The Cassini frame (êc1, ê
c
2, ê

c
3) is rotating

at frequency −Ωp about ê3 = êc3 with respect to the inertial frame, with êc2 aligned with

the line of the descending node. The symmetry axis of the mantle êp3 is offset from ê3

by θp = 1.543◦. Both êI3 and êp3 remain in the Cassini plane, the plane defined by êc1
and êc3 delimited by the orange shaded region. a) and b) do not correspond to the same

snapshot in time.

Moon in space. These are neglected in our study, as we focus on the long timescale

equilibrium described by the Cassini state. In other words, in the description of the

Cassini state that follows, even when not specifically stated, we always consider quantities

that are averaged over one orbit.

The Moon is in a Cassini state, which describes the fact that the symmetry axis

(defined by a unit vector êp3), though inclined by θp = 1.543◦ with respect to ê3, remains

co-planar with both ê3 and êI3. The plane containing all three vectors is rotating with

frequency −Ωp about ê3 with respect to the inertial frame. This description is only valid

when the orientation of êp3 is averaged over one orbit, which is assumed in our discussion.

To describe the Cassini state, it is convenient to introduce a second reference frame

which we refer to as the Cassini frame. The Cassini frame is specified by unit vectors

(êc1, ê
c
2, ê

c
3), with êc3 aligned with the ecliptic normal (êc3 = ê3), and is rotating with

frequency −Ωp about ê3 with respect to the inertial frame (Fig. A.1b). The orientation
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of the Cassini frame is chosen such that direction êc2 remains aligned with the line of the

descending node of the orbit on the ecliptic plane. It is convenient to place the origin of

the Cassini frame at the centre of the Moon. Setting an alignment êc1 = ê2 at time t = 0,

the relationship between the Cassini and inertial reference frames is expressed by

êc1 = sin(−Ωpt)ê1 + cos(−Ωpt)ê2 , (A.1a)

êc2 = − cos(−Ωpt)ê1 + sin(−Ωpt)ê2 , (A.1b)

êc3 = ê3 . (A.1c)

As viewed in the Cassini frame, both the direction of the orbit normal êI3 and the

symmetry axis êp3 remain at fixed positions. It is convenient to refer to the plane defined

by êc1 and êc3 as the “Cassini plane” (Fig. A.1b). Because the Moon possesses a fluid

and (most likely) a solid core, formally êp3 represents the symmetry axis of the mantle

only. The orientation of the symmetry axis of the inner core, denoted by ês3 also lies on

the Cassini plane, and also remains at a fixed position in the Cassini frame (see Fig. 2.1a

of the main text).

We define the rotation vector of the Moon’s mantle by Ω. The vector Ω also lies

on the Cassini plane, though it is not aligned exactly with the symmetry axis êp3 but is

offset by a small angle θm (see Fig. 2.1b of the main text). To preserve a synchronous

rotation, Ω as seen in the Cassini frame is given by

Ω =
[
− Ωp + Ωc cos(θp)

]
êc3 + Ωc sin(θp) ê

c
1 , (A.2)

and, upon using Eqs. (A.1), by

Ω =
[
− Ωp + Ωc cos(θp)

]
ê3 + Ωc sin(θp)

[
sin(−Ωpt)ê1 + cos(−Ωpt)ê2

]
. (A.3)

when seen in the inertial frame.

The model of the rotational dynamics of the Moon that we develop in the main text is

defined with respect to a reference frame attached to the rotating mantle. We must then

express how this reference frame is connected to the inertial and Cassini frames defined

above. Let us define the mantle frame by unit vectors (êp1, ê
p
2, ê

p
3). We have already

defined êp3 to be aligned with the maximum (polar) moment of inertia of the mantle. êp1
and êp2 are aligned, respectively, with the minimum and intermediate moments of inertia

(both in equatorial directions). As seen in the Cassini frame, although êp3 remains at
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a fixed orientation, êp1 and êp2 are time-dependent because the Moon is rotating about

itself. This is depicted in Figs. 2.1a,b of the main text.

As seen in the Cassini frame, the time it takes for êp1 and êp2 to complete one full

rotation must coincide with the time it takes for these vectors to return to the same

alignment with respect to Earth. In other words, the rate of rotation of êp1 and êp2 about

êp3 is equal to the orbital frequency Ωc.

Setting an alignment êp2 = êc2 at time t = 0, the time-dependent orientation of the

mantle axes as seen in the Cassini frame is expressed by

êp1 = cos(θp) cos(Ωct)ê
c
1 + sin(Ωct)ê

c
2 − sin(θp) cos(Ωct)ê

c
3 , (A.4a)

êp2 = − cos(θp) sin(Ωct)ê
c
1 + cos(Ωct)ê

c
2 + sin(θp) sin(Ωct)ê

c
3 , (A.4b)

êp3 = cos(θp)ê
c
3 + sin(θp)ê

c
1 . (A.4c)

Using Eqs. (A.1), the time-dependent orientation of the mantle axes as seen in the

inertial frame is expressed by

êp1 =
[

cos(θp) cos(Ωct) sin(−Ωpt) − sin(Ωct) cos(−Ωpt)
]
ê1

+
[

cos(θp) cos(Ωct) cos(−Ωpt) + sin(Ωct) sin(−Ωpt)
]
ê2

− sin(θp) cos(Ωct)ê3 , (A.5a)

êp2 =
[
− cos(θp) sin(Ωct) sin(−Ωpt) − cos(Ωct) cos(−Ωpt)

]
ê1

+
[
− cos(θp) sin(Ωct) cos(−Ωpt) + cos(Ωct) sin(−Ωpt)

]
ê2

+ sin(θp) sin(Ωct)ê3 , (A.5b)

êp3 = sin(θp)
[

sin(−Ωpt)ê1 + cos(−Ωpt)ê2

]
+ cos(θp)ê3 . (A.5c)

The reverse relationships, the time-dependent direction of the inertial frame as seen in

the mantle frame, is expressed by
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ê1 =
[

cos(θp) cos(Ωct) sin(−Ωpt) − sin(Ωct) cos(−Ωpt)
]
êp1

+
[
− cos(θp) sin(Ωct) sin(−Ωpt) − cos(Ωct) cos(−Ωpt)

]
êp2

+ sin(θp) sin(−Ωpt)ê
p
3 , (A.6a)

ê2 =
[

cos(θp) cos(Ωct) cos(−Ωpt) + sin(Ωct) sin(−Ωpt)
]
êp1

+
[
− cos(θp) sin(Ωct) cos(−Ωpt) + cos(Ωct) sin(−Ωpt)

]
êp2

+ sin(θp) cos(−Ωpt)ê
p
3 , (A.6b)

ê3 = sin(θp)
[
− cos(Ωct)ê

p
1 + sin(Ωct)ê

p
2

]
+ cos(θp)ê

p
3 . (A.6c)

The relationships of Eqs. (A.5-A.6) allow one to express any vectorial quantity defined

in the inertial frame in its equivalent form as seen in the mantle frame, or vice-versa.

In particular, the rotation vector of the mantle Ω is defined in the inertial frame by

Eq. (A.3). Using Eqs. (A.6), we can express how Ω changes as a function of time, as

seen in the frame attached to the mantle. Using standard trigonometric identities, it is

straightforward (although somewhat tedious) to show that

Ω =
[
Ωc − Ωp cos(θp)

]
êp3 + Ωp sin(θp)

[
cos(Ωct)ê

p
1 − sin(Ωct)ê

p
2

]
. (A.7)

Although we have used a different notation, this latter expression is equivalent to Eq. (1)

of Eckhardt [1981] when an exact Cassini state is maintained. For an observer fixed to

the mantle frame, the orientation of the rotation vector Ω is offset from the figure axis

êp3 and precesses about the latter in a retrograde direction at frequency Ωc. Let us define

Ωo as the amplitude of the rotation vector given by

Ωo = |Ω| =
[
Ω2
c + Ω2

p − 2ΩcΩp cos(θp)
]1/2

. (A.8)

Since Ωc � Ωp, to a good approximation, we can write

Ωo ≈ Ωc − Ωp cos(θp). (A.9)

Defining θm as the angle of offset between Ω and êp3, we can write Eq. (A.7) as

Ω = Ωo cos(θm)êp3 + Ωo sin(θm)êp⊥(t) , (A.10)

where the vector êp⊥(t) is given by
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êp⊥(t) =
[

cos(ωΩot)ê
p
1 + sin(ωΩot)ê

p
2

]
. (A.11)

and where the frequency ω, expressed in units of cycles per Lunar day, is defined as

ω = −Ωc

Ωo
= −1− cos(θp)

Ωp

Ωo
. (A.12)

The unit vector êp⊥(t) expresses the rotation at frequency ωΩo of the orientation of

Ω about êp3 as seen by an observer in the mantle frame. As ω is negative, the rotation is

retrograde. Since Ω is in the Cassini plane, êp⊥(t) describes more generally the retrograde

rotation about êp3 of the longitude of the Cassini plane as seen by an observer in the

mantle frame, and is depicted in Figs. 2.1c,d of the main text. Furthermore, it is easy to

show that

êp3 × êp⊥(t) =
[
− sin(ωΩot)ê

p
1 + cos(ωΩot)ê

p
2

]
, (A.13a)

d

dt
êp⊥(t) = ωΩo

[
− sin(ωΩot)ê

p
1 + cos(ωΩot)ê

p
2

]
, (A.13b)

where the time derivative is taken in the mantle frame, and therefore we can write

d

dt
êp⊥(t) = ωΩo

(
êp3 × êp⊥(t)

)
. (A.13c)

Note that the direction of the vector êp3 × êp⊥(t) is perpendicular to the Cassini plane,

towards êc2 (see Fig. 2.1 of the main text).

The rotation vectors of the fluid core (Ωf ) and inner core (Ωs) can be defined similarly.

They also remain at fixed orientations when viewed in the Cassini frame (see Fig. 2.1b

of the main text) and are also precessing at frequency ωΩo = −Ωc when seen by an

observer in the mantle frame. The development used above for the mantle can be used

identically for the inner core, with the orientation of the inner core’s symmetry axis

(with respect to the ecliptic normal) given by θp + θn and the orientation of its rotation

vector (with respect to the mantle frame) given by θm + θs. The fluid core does not need

to remain in synchronous rotation, but we can represent its rotation rate in a similar

manner. Although it does not have a symmetry axis per say, we can use θm + θf to

represent the orientation of both its rotation vector and symmetry axis with respect to

the mantle frame to develop an expression for its rotation vector. The rotation vectors of

the fluid core and inner core are then
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Ωf = Ωf
o cos(θm + θf )êp3 + Ωf

o sin(θm + θf )êp⊥(t) , (A.14a)

Ωs = Ωs
o cos(θm + θs)ê

p
3 + Ωs

o sin(θm + θs)ê
p
⊥(t) , (A.14b)

with

Ωf
o ≈ Ωc − Ωp cos(θp + θm + θf ) , (A.14c)

Ωs
o ≈ Ωc − Ωp cos(θp + θn) . (A.14d)

Note that the amplitude of rotation of the mantle, fluid core and inner core are not

equal to one another. However, their amplitude differ by no more than the Poincaré

number given by the ratio Ωp/Ωc = 4.022 × 10−3, and except for very large values of

θn, their difference is typically much smaller than that. Thus, to a good approximation,

we can set Ωf
o ≈ Ωs

o ≈ Ωo, in the definition of our rotation vectors, which simplifies the

mathematical development of our model.



Appendix B

The Cassini state in the inertial frame

As seen in the inertial frame (ê1, ê2, ê3) defined in Appendix A, the angular momentum

equation describing the rotational dynamics of a single-body Moon is expressed by

d

dt
H = Γ (B.1)

where H is the angular momentum of the whole Moon and Γ is the gravitational torque

from Earth. Assuming a negligible misalignment between the rotation vector and the

maximum (polar) principal moment of inertia C, we can write H = CΩ, where Ω is the

rotation vector of the single-body Moon, given by Eq. (A.3). Taking the time derivative

of H yields

d

dt
H = −CΩcΩp sin(θp)

[
cos(−Ωpt)ê1 − sin(−Ωpt)ê2

]
. (B.2)

Focusing, as we do throughout our study, on the long time scale equilibrium, the

gravitational torque by Earth averaged over one orbit is in the same direction as the

time-derivative of H and is given by

Γ = −n2(Φp
βĀβ + Φp

γĀγ)
[

cos(−Ωpt)ê1 − sin(−Ωpt)ê2

]
, (B.3)

where we have used Eqs. (2.16b) and (2.20) of the main text, without the inner core

contribution. Setting Eqs. (B.2) and (B.3) equal to one another, we find

C
ΩpΩc

n2
sin(θp) = Φp

βĀβ + Φp
γĀγ . (B.4)

Since n = Ωc − Ωp and Ωp � Ωc, we can approximate Ωc/n ≈ 1, and we retrieve (in our

notation) the condition on θp given in Eq. (19) of Peale [1969] that defines the Cassini

state of a single body Moon
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C
Ωp

n
sin(θp) = Φp

βĀβ + Φp
γĀγ . (B.5)

By following a similar procedure, we can construct an expression for the Cassini state

of the solid inner core of the Moon. As seen in the inertial frame, the angular momentum

of the inner core (Hs) obeys

d

dt
Hs = Γs (B.6)

where Γs is the total torque on the inner core. Once more assuming a negligible

misalignment between the rotation vector Ωs and the maximum (polar) principal moment

of inertia Cs, we can write Hs = CsΩs. The rotation vector of the inner core is given by

an expression analogous to Eq. (A.3) but also includes the tilt of the inner core figure θn

with respect to the mantle,

Ωs =
[
−Ωp+ Ωc cos(θp+ θn)

]
ê3 + Ωc sin(θp+ θn)

[
sin(−Ωpt)ê1 + cos(−Ωpt)ê2

]
. (B.7)

Taking the time derivative of Hs yields

d

dt
Hs = −CsΩcΩp sin(θp + θn)

[
cos(−Ωpt)ê1 − sin(−Ωpt)ê2

]
. (B.8)

Using Eqs. (2.17b) and (2.20), and the approximation Ωo ≈ n, the torque on the inner

core is

Γs = −n2Ās

(
Φn
ββsα3 + Φn

γγsα3 + esα3αg sin(θn) cos(θn)

− esα1 sin(θn + θp) cos(θn + θp)
)
·
[

cos(−Ωpt)ê1 − sin(−Ωpt)ê2

]
,

(B.9)

where we have assumed θm + θf = −θp, the latter corresponding to a fluid core rotation

vector aligned with the ecliptic normal. Setting Eq. (B.8) equal to Eq. (B.9) yields

Cs
Ās

ΩpΩc

n2
sin(θp + θn) =

Φn
ββsα3 + Φn

γγsα3 + esα3αg sin(θn) cos(θn)− esα1 sin(θn + θp) cos(θn + θp) .

(B.10)

The first two terms on the right-hand side of Eq. (B.10) capture the gravitational

torque from Earth averaged over one orbit; they involve products of sines and cosines
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of (I + θp + θn) (see Eq. 2.20). The third and fourth terms capture, respectively, the

gravitational torque that the rest of the Moon exert on the inner core and the pressure

torque from the misaligned rotation vectors of the fluid and solid cores at the ICB. For a

given I and θp, Eq. (B.10) gives the condition that the tilt angle θn must obey in order

for the inner core to precess about the ecliptic normal at the same rate as the Lunar

orbit. In other words, it represents the balance that determines the Cassini state of the

inner core of the Moon.

In the present-day Moon, the internal torque from the mantle and fluid core on the

inner core dominates the gravitational torque from Earth. Setting Φn
β = Φn

γ = 0 in Eq.

(B.10) and, since θn is typically much larger than θp = 1.543◦ (see Fig. 2.3), we can use

the following approximation

sin(θn + θp) cos(θn + θp) ≈ sin(θn) cos(θn) , (B.11)

which allows to simplify Eq. (B.10) to

Cs
Ās

Ωp

n
sin(θp + θn) = −ωficn sin(θn) cos(θn) , (B.12)

where ωficn is the frequency of the FICN given by Eq. (2.24) and where we have removed

a factor Ωc/n ≈ 1 on the left-hand side. Since the dynamical ellipticity of the inner core

is small, Cs ≈ Ās, the tilt angle θn in the Cassini state of the inner core depends on the

interior structure only insofar as it affects the FICN frequency; different interior density

models of the Moon that have the same FICN frequency will have the same tilt angle θn.
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