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Abstract: This paper is concerned with the network-theoretic properties of so-called k-nearest
neighbor intelligent vehicular platoons, where each vehicle communicates with k vehicles, both
in front and behind. The network-theoretic properties analyzed in this paper play major
roles in quantifying the resilience and robustness of three generic distributed estimation and
control algorithms against communication failures and disturbances, namely resilient distributed
estimation, resilient distributed consensus, and robust network formation. Based on the results
for the connectivity measures of the k-nearest neighbor platoon, we show that extending the
traditional platooning topologies (which were only based on interacting with nearest neighbors)
to k-nearest neighbor platoons increases the resilience of distributed estimation and control
algorithms to both communication failures and disturbances.
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1. INTRODUCTION

Intelligent transportation systems are an important real-
world instance of a multi-disciplinary cyber-physical sys-
tem Lu et al. (2014). In addition to classical electrome-
chanical engineering, designing intelligent transportation
systems requires synergy with and between outside dis-
ciplines, including communications, control, and network
theory. In this direction, estimation and control theory are
pivotal parts in designing algorithms for the active safety
of automotive and intelligent transportation systems Pi-
rani et al. (2017a); Turri et al. (2017). From another
perspective, networks of connected vehicles are quite nat-
urally mathematically modeled using tools from networks
and graph theory, with associated notions such as degree,
connectivity and expansion. While these modeling tools
are in general distinct, the primary goal of this paper is to
investigate connections between the control-theoretic and
network-theoretic approaches to intelligent platoons.

The interplay between the network and system-theoretic
concepts in network control systems has attracted much
attention in recent years Fitch and Leonard (2013); Pirani
et al. (2017b). There is a vast literature on revisiting the
system-theoretic notions from the network’s perspective.
In this direction, some new notions have emerged such
as network coherence Bamieh et al. (2012); Pirani et al.
(2017b) which is interpreted as the H2 and H∞ norms
of a network dynamical system showing the ability of
the network in mitigating the effect of disturbances. The
advantage of this approach is in large-scale networks for
which working with systemic notions is a burdensome task
and tuning network properties is more implementable.

The above-mentioned reciprocity between the system and
network-theoretic concepts finds many applications in mo-

bile networks and in particular in networks of connected
vehicles. There is much research on designing distributed
estimation and control algorithms for traffic networks
to ensure the safety or optimality of the energy con-
sumption Liang et al. (2016); Turri et al. (2017). In all
of those settings, there exist system-theoretic conditions
which ensure the effectiveness of the proposed algorithms.
However, as the scale of the network increases and the
interactions become more sophisticated, e.g., from sim-
ple platooning to more complex topologies, testing those
system-theoretic conditions becomes harder and the need
to redefine those conditions in terms of network-theoretic
properties is seriously felt. To this end, our approach is to
reinterpret the performance of distributed estimation and
control algorithms in terms of graph-theoretic properties
of k-nearest neighbor platoons. We first quantify how
densely connected this network is, as there are many non-
equivalent metrics used in the literature to quantify the
network connectivity. Then we make a connection between
each connectivity measure with its corresponding system
performance metric. From this view, the contributions of
this paper are as follows. We first discuss some network
connectivity measures for a generalized form of vehicle
platoons (called k-nearest neighbor platoon) and show
that this particular network topology provides high levels
of connectivity for most of the connectivity measures.
Interestingly, most of these measures depend only on the
number of local interactions of each vehicle in the platoon.
Then, we apply the connectivity measures of k-nearest
neighbor platoon to provide network-theoretic conditions
for the performance of three well-known distributed esti-
mation and control algorithms and show the positive effect
of such network topology in enhancing the resilience of
those algorithms. The overall structure of the paper in a
glance is schematically shown in Fig. 1.
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Fig. 1. Network-theoretic approaches to the performance
of distributed estimation and control algorithms on
k-nearest neighbor platoons, P(n, k).

2. NOTATIONS AND DEFINITIONS

In this paper, an undirected network (graph) is denoted
by G = (V, E), where V = {v1, v2, . . . , vn} is the set of
nodes (or vertices) and E ⊂ V × V is the set of edges.
Neighbors of node vi ∈ V are given by the set Ni = {vj ∈
V | (vi, vj) ∈ E}. The degree of each node vi is denoted
by di = |Ni| and the minimum and maximum degrees in
graph G are shown by dmin and dmax, respectively. The
adjacency matrix of the graph is a symmetric and binary
n × n matrix A, where element Aij = 1 if (vi, vj) ∈ E
and zero otherwise. For a given set of nodes X ⊂ V , the
edge-boundary (or just boundary) of the set is defined as

∂X � {(vi, vj) ∈ E | vi ∈ X, vj ∈ V\X}. The isoperimetric
constant of G is defined as Chung (1997)

i(G) � min
S⊂V,|S|≤n

2

|∂S|
|S|

. (1)

where ∂S is the edge-boundary of a set of nodes S ⊂
V . The Laplacian matrix of the graph is L � D − A,
where D = diag(d1, d2, . . . , dn). The eigenvalues of the
Laplacian are real and nonnegative, and are denoted by
0 = λ1(L) ≤ λ2(L) ≤ . . . ≤ λn(L) and λ2(L) is called the
algebraic connectivity of the network Godsil and Royle
(2001). Given a connected graph G, an orientation of the
graph G is defined by assigning a direction (arbitrarily) to
each edge in E . For graph G with m edges, numbered as
e1, e2, ..., em, its node-edge incidence matrix B(G) ∈ Rn×m

is defined as Godsil and Royle (2001)

[B(G)]kl =



1 if node k is the head of edge l,
−1 if node k is the tail of edge l,
0 otherwise.

The graph Laplacian satisfies L = B(G)B(G)T Godsil and
Royle (2001).

For positive integers n, k ≥ 1 such that n > k, a k-Nearest
Neighbor platoon containing n vehicles, which we denote
as P(n, k), is a specific class of networks which captures the
physical properties of wireless sensor networks in vehicular
platoons. It is a network comprised of n nodes (or vehicles),
where each node can communicate with its k nearest
neighbors from its back and k nearest neighbors from its
front, for some k ∈ N. This definition is compatible with
wireless sensor networks, due to the limited sensing and
communication range for each vehicle and the distance
between the consecutive vehicles Pirani et al. (2017a). An
example of such network topology for n = 5 and k = 2 is
shown in Fig. 3.

3. NETWORK-THEORETIC PROPERTIES

In this section, we examine four network connectivity
measures which, as we will see, each play a fundamental
role in understanding the system-theoretic performance
of different algorithms on k-nearest neighbor platoons.
These properties, as mentioned in the previous sections,
are network connectivity, network robustness, and network

expansion and algebraic connectivity. Fig. 2 (b) provides a
visual sense of the strength of each of these connectivity
measures in general graphs Shahrivar et al. (2013). Fig 2
(c) shows the values of each connectivity measure in k-
nearest neighbor platoons which are discussed in detail in
the subsequent subsections. The main insight is that, while
these connectivity notions are distinct in general networks,
they collapse to one equivalent notion of connectivity for
k-nearest neighbor platoons.

3.1 Vertex and Edge Connectivity

First, we have the following definitions of graph vertex and
edge connectivities.
Definition 1. (Cuts in Graphs): A vertex-cut in a graph
G = {V, E} is a subset S ⊂ V of vertices such that
removing the vertices in S (and any resulting dangling
edges) from the graph causes the remaining graph to be
disconnected. A (j, i)-cut in a graph is a subset Sij ⊂ V
such that if the nodes Sij are removed, the resulting graph
contains no path from vertex vj to vertex vi. Let κij denote
the size of the smallest (j, i)-cut between any two vertices
vj and vi. The graph G is said to have vertex connectivity
κ(G) = κ (or κ-vertex-connected) if κij = κ for all i, j ∈ V.
The edge connectivity e(G) of a graph G is the minimum
number of edges whose deletion disconnects the graph.

For the vertex and edge connectivity and graph’s minimum
degree the following inequalities hold

κ(G) ≤ e(G) ≤ dmin. (2)
The following lemma discusses the connectivity of k-

nearest neighbor platoons.
Lemma 1. A k-nearest neighbor platoon P(n, k) is a k-
vertex and a k-edge connected graph, i.e., κ(G) = e(G) =
k.

Proof. The proof is via contradiction. Suppose P(n, k)
is a 
-connected graph, with 
 < k. Thus, there exists
a minimum vertex cut Sij between two vertices vi and
vj where |Sij | = 
. Without loss of generality, label the
vertices from vi to vj as vi, vi+1, ..., vj . Since 
 < k,
there is a vertex v̄ among vi+1, ..., vi+k (which are directly
connected to vi) which does not belong to Sij . By replacing
vi with v̄ in the above discussion, we will find a path
from vi to vj which does not include vertices in Sij

and this contradicts the claim that Sij is a vertex cut.
Hence P(n, k) is a k-vertex connected graph. For the
edge connectivity, observe that for graphs P(n, k) we have
dmin = k. The result then follows immediately from (2). �

3.2 Network Robustness

The notion of network robustness is another network
connectivity measure, which finds application in the study
of distributed consensus algorithms LeBlanc et al. (2013).

Definition 2. (r-Reachable/Robust Graphs): Let r ∈
N. A subset S ⊂ V of nodes in the graph G = (V, E) is said
to be r-reachable if there exists a node vj ∈ S such that
|Nj \ S| ≥ r. A graph G = (V, E) is said to be r-robust if
for every pair of nonempty, disjoint subsets of V, at least
one of them is r-reachable.

Generally speaking, r-robustness is a stronger notion than
r-connectivity LeBlanc et al. (2013), as shown in the
following example.
Example 1. The graph shown in Fig. 2 (a) is comprised
of two complete graphs on n nodes (S1 and S2) and each
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Fig. 1. Network-theoretic approaches to the performance
of distributed estimation and control algorithms on
k-nearest neighbor platoons, P(n, k).

2. NOTATIONS AND DEFINITIONS

In this paper, an undirected network (graph) is denoted
by G = (V, E), where V = {v1, v2, . . . , vn} is the set of
nodes (or vertices) and E ⊂ V × V is the set of edges.
Neighbors of node vi ∈ V are given by the set Ni = {vj ∈
V | (vi, vj) ∈ E}. The degree of each node vi is denoted
by di = |Ni| and the minimum and maximum degrees in
graph G are shown by dmin and dmax, respectively. The
adjacency matrix of the graph is a symmetric and binary
n × n matrix A, where element Aij = 1 if (vi, vj) ∈ E
and zero otherwise. For a given set of nodes X ⊂ V , the
edge-boundary (or just boundary) of the set is defined as

∂X � {(vi, vj) ∈ E | vi ∈ X, vj ∈ V\X}. The isoperimetric
constant of G is defined as Chung (1997)

i(G) � min
S⊂V,|S|≤n

2

|∂S|
|S|

. (1)

where ∂S is the edge-boundary of a set of nodes S ⊂
V . The Laplacian matrix of the graph is L � D − A,
where D = diag(d1, d2, . . . , dn). The eigenvalues of the
Laplacian are real and nonnegative, and are denoted by
0 = λ1(L) ≤ λ2(L) ≤ . . . ≤ λn(L) and λ2(L) is called the
algebraic connectivity of the network Godsil and Royle
(2001). Given a connected graph G, an orientation of the
graph G is defined by assigning a direction (arbitrarily) to
each edge in E . For graph G with m edges, numbered as
e1, e2, ..., em, its node-edge incidence matrix B(G) ∈ Rn×m

is defined as Godsil and Royle (2001)

[B(G)]kl =



1 if node k is the head of edge l,
−1 if node k is the tail of edge l,
0 otherwise.

The graph Laplacian satisfies L = B(G)B(G)T Godsil and
Royle (2001).

For positive integers n, k ≥ 1 such that n > k, a k-Nearest
Neighbor platoon containing n vehicles, which we denote
as P(n, k), is a specific class of networks which captures the
physical properties of wireless sensor networks in vehicular
platoons. It is a network comprised of n nodes (or vehicles),
where each node can communicate with its k nearest
neighbors from its back and k nearest neighbors from its
front, for some k ∈ N. This definition is compatible with
wireless sensor networks, due to the limited sensing and
communication range for each vehicle and the distance
between the consecutive vehicles Pirani et al. (2017a). An
example of such network topology for n = 5 and k = 2 is
shown in Fig. 3.

3. NETWORK-THEORETIC PROPERTIES

In this section, we examine four network connectivity
measures which, as we will see, each play a fundamental
role in understanding the system-theoretic performance
of different algorithms on k-nearest neighbor platoons.
These properties, as mentioned in the previous sections,
are network connectivity, network robustness, and network

expansion and algebraic connectivity. Fig. 2 (b) provides a
visual sense of the strength of each of these connectivity
measures in general graphs Shahrivar et al. (2013). Fig 2
(c) shows the values of each connectivity measure in k-
nearest neighbor platoons which are discussed in detail in
the subsequent subsections. The main insight is that, while
these connectivity notions are distinct in general networks,
they collapse to one equivalent notion of connectivity for
k-nearest neighbor platoons.

3.1 Vertex and Edge Connectivity

First, we have the following definitions of graph vertex and
edge connectivities.
Definition 1. (Cuts in Graphs): A vertex-cut in a graph
G = {V, E} is a subset S ⊂ V of vertices such that
removing the vertices in S (and any resulting dangling
edges) from the graph causes the remaining graph to be
disconnected. A (j, i)-cut in a graph is a subset Sij ⊂ V
such that if the nodes Sij are removed, the resulting graph
contains no path from vertex vj to vertex vi. Let κij denote
the size of the smallest (j, i)-cut between any two vertices
vj and vi. The graph G is said to have vertex connectivity
κ(G) = κ (or κ-vertex-connected) if κij = κ for all i, j ∈ V.
The edge connectivity e(G) of a graph G is the minimum
number of edges whose deletion disconnects the graph.

For the vertex and edge connectivity and graph’s minimum
degree the following inequalities hold

κ(G) ≤ e(G) ≤ dmin. (2)
The following lemma discusses the connectivity of k-

nearest neighbor platoons.
Lemma 1. A k-nearest neighbor platoon P(n, k) is a k-
vertex and a k-edge connected graph, i.e., κ(G) = e(G) =
k.

Proof. The proof is via contradiction. Suppose P(n, k)
is a 
-connected graph, with 
 < k. Thus, there exists
a minimum vertex cut Sij between two vertices vi and
vj where |Sij | = 
. Without loss of generality, label the
vertices from vi to vj as vi, vi+1, ..., vj . Since 
 < k,
there is a vertex v̄ among vi+1, ..., vi+k (which are directly
connected to vi) which does not belong to Sij . By replacing
vi with v̄ in the above discussion, we will find a path
from vi to vj which does not include vertices in Sij

and this contradicts the claim that Sij is a vertex cut.
Hence P(n, k) is a k-vertex connected graph. For the
edge connectivity, observe that for graphs P(n, k) we have
dmin = k. The result then follows immediately from (2). �

3.2 Network Robustness

The notion of network robustness is another network
connectivity measure, which finds application in the study
of distributed consensus algorithms LeBlanc et al. (2013).

Definition 2. (r-Reachable/Robust Graphs): Let r ∈
N. A subset S ⊂ V of nodes in the graph G = (V, E) is said
to be r-reachable if there exists a node vj ∈ S such that
|Nj \ S| ≥ r. A graph G = (V, E) is said to be r-robust if
for every pair of nonempty, disjoint subsets of V, at least
one of them is r-reachable.

Generally speaking, r-robustness is a stronger notion than
r-connectivity LeBlanc et al. (2013), as shown in the
following example.
Example 1. The graph shown in Fig. 2 (a) is comprised
of two complete graphs on n nodes (S1 and S2) and each
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𝐺𝐺 is a graph on 𝑛𝑛 nodes

𝑑𝑑min 𝐺𝐺 = 𝑘𝑘

𝐺𝐺 is 𝑘𝑘 − connected

𝐺𝐺 is 𝑘𝑘 − robust

𝑖𝑖 𝐺𝐺 > 𝑘𝑘 − 1
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𝐺𝐺 is 𝑘𝑘 − connected

𝐺𝐺 is 𝑘𝑘 − robust

𝑖𝑖 𝐺𝐺 =
𝑘𝑘(𝑘𝑘 + 1)

2
𝑛𝑛
2

𝑑𝑑min 𝐺𝐺 = 𝑘𝑘

(b) (c)

•

•

•

•

𝑺𝑺𝟏𝟏𝑺𝑺𝟐𝟐

(a)

Fig. 2. (a) A graph with a large connectivity and small
robustness, (b) Venn diagram of network connectivity
measures for general graphs, (c) Connectivity mea-
sures for k-nearest neighbor platoons.

𝒗𝒗𝟏𝟏 𝒗𝒗𝟐𝟐 𝒗𝒗𝟑𝟑
𝒗𝒗𝟒𝟒 𝒗𝒗𝟓𝟓

AB

Fig. 3. Node Selection for calculating robustness (set A)
and isoperimetric constant (set B) in P(5, 2).

node in S1 has exactly one neighbor in S2 and vice-versa.
The minimum degree and the vertex connectivity are both
n; however, the network is only 1-robust.

As discussed in Example 1 and schematically shown in
the Venn diagram in Fig. 2 (b), the network minimum
degree, network connectivity and network robustness have
different strength in general graphs. However, our next
result shows that these notions coincide for k-nearest
neighbour platoons.

Based on the above definition of network robustness, we
have the following lemma for the robustness of k-nearest
neighbor platoons.

Lemma 2. A k-nearest neighbor platoon P(n, k) with k ≤
�n
2 � is a k-robust network.

Proof. The sketch of the proof is that, from Definition 2,
by choosing every two disjoint sets of vertices in P(n, k),
we see that the minimum number r for which a subset is
r-reachable is r = k and one of its corresponding subset is
the ending node in the platoon, as shown in subset A in
Fig. 3. Here k should satisfy k ≤ �n

2 � as it is proven that
no graph is �n

2 �+ 1 robust LeBlanc et al. (2013).�

3.3 Algebraic Connectivity and Network Expansion

One can further extend inequalities (2) to include the
algebraic connectivity and obtain Godsil and Royle (2001)

λ2(L) ≤ κ(G) ≤ e(G) ≤ dmin(G).
Based on the above inequalities, we conclude that the
algebraic connectivity of P(n, k) is less than k. However,
by using the notion of network expansion, some tighter
bounds on the algebraic connectivity can be obtained.

Definition 3. (Expander Graph). Expander graphs are
graph sequences for which each graph in the sequence has
an expansion property, meaning that there exists γ > 0
(independent of n) such that each subset S of nodes with
size |S| ≤ n

2 has at least γ|S| edges to the rest of the
network. In particular, we say that the graph G is a γ-
expander network if i(G) = γ for some γ > 0, where i(G)
is the isoperimetric constant defined in Section 2.

The algebraic connectivity of the graph is related to the
network expansion (or the isoperimetric constant) by the
following bounds Chung (1997)

i(G)2

2dmax
≤ λ2(L) ≤ 2i(G). (3)

Using these bounds, we present the following proposition.

Proposition 1. Given a k-nearest neighbor platoon P(n, k)
its algebraic connectivity is bounded by

max

{
2k − n+ 2,

k(k + 1)2

16n̄2

}
≤ λ2(L) ≤

k(k + 1)

n̄
, (4)

where n̄ = �n
2 �.

Proof. First we use bounds given in (3). For this, we
should calculate the isoperimetric constant in P(n, k) by

finding a set in P(n, k) which minimizes |∂S|
|S| with |S| ≤ n

2 .

A set which contains �n
2 � nodes, minimizes this function

(Fig. 3, set B). Hence, the isoperimetric constant will be

i(G) = 1+2+...+k
�n

2 � = k(k+1)
2�n

2 � . Substituting this value into

(3) and considering the fact that dmax ≤ 2k provides the

upper bound and the lower bound k(k+1)2

16n̄2 . The second
lower bound comes from bound 2dmin − n + 2 ≤ λ2(L)
proposed in Fiedler (1973) and considering the fact that
dmin = k. �

The maximum over two lower bounds in (4) is due to the
fact that for certain values of k one of the lower bounds is
tighter than the other. For instance, for k ≤ n−2

2 the left
lower bound is zero or negative and the right lower bound
is tighter. However, for k = n − 1 the left lower bound is
tighter.

4. DISTRIBUTED ESTIMATION AND CONTROL
ALGORITHMS

In this section, three estimation and control policies for
vehicle platoons will be studied, and we will show how
the connectivity measures introduced in Section 3 can
be directly applied to quantify the performance of these
algorithms.

4.1 Distributed Estimation, Robust to Communication
Faults

Distributed estimation (or calculation) is a procedure by
which vehicles in a network may estimate unavailable
quantities based on incomplete localized measurements
and cooperation with nearby vehicles. Distributed estima-
tion can potentially have diverse applications in vehicle
networks, such as fault detection or prediction, as schemat-
ically shown in the upper box in Fig. 4.

The state of vehicle vj , which can be its kinematic state,
e.g., velocity, or some spatial parameter, e.g., road condi-
tion, is denoted simply by the scalar xj [0]. The objective
is to enable vehicle vi in the network (which is not in the
communication range of vehicle vj) to calculate this value.
To yield this, vehicle vi performs a linear iterative policy
using the following time invariant updating rule

xi[k + 1] = wiixi[k] +
∑
j∈Ni

wijxj [k] , (5)

where wii, wij > 0 are predefined weights. In addition to
dynamics (5), at each time step, vehicle vi has access to its
own value (state) and the values of its neighbors. Hence,
the vector of measurements for vi is defined as

yi[k] = Cix[k], (6)
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Fig. 4. Cyber-physical representation of the distributed
estimation algorithm.

where Ci is a (di+1)×n matrix with a single 1 in each row
that denotes the positions of the state-vector x[k] available
to vehicle vi (i.e., these positions correspond to vehicles
that are neighbors of vi, along with vehicle vi itself).

Remark 1. (Cyber-Physical Representation): Fig. 4
provides a cyber-physical interpretation of the distributed
estimation algorithm. According to this figure, algorithm
(5) is developed in the cyber layer, which receives the
physical states of vehicles from the physical layer as initial
conditions for its algorithm (red dashed lines), perform
the distributed estimation to obtain the initial states of
all vehicles in the network, and finally returns those initial
states back to the physical layer (orange dashed lines). It
should be noted that state xi[k] in (5) evolves in the cyber
layer and it does not represent the evolution of vehicle’s
physical state based on the communication; the dynamics
(5) is only used for implementing a distributed calculation
algorithm. Here, it is only x[0] = [x1[0], x2[0], ..., xn[0]]

T

that reflects the physical states of the vehicles.

For such distributed estimation algorithms, we consider
the possibility that there may exist some vehicles which
fail to disseminate their information in a correct way,
and some robust distributed estimation algorithms have
been proposed to overcome such communication failures
Sundaram and Hadjicostis (2011). More formally, suppose
that some vehicles do not precisely follow (5) to update
their value. In particular, at time step k, suppose vehicle
vi’s update rule deviates from the predefined policy (5)
and (likely, unintentionally) adds an arbitrary value φi[k]
to its updating policy. 1 In this case, the updating rule (5)
will become

xi[k + 1] = wiixi[k] +
∑
j∈Ni

wijxj [k] + φi[k], (7)

and if there are f > 0 of these faulty vehicles, (7) in vector
form becomes

x[k + 1] = Wx[k] + [e1 e2 ... ef ]︸ ︷︷ ︸
A

φ[k], (8)

where x = (x1, . . . , xn)
T, W ∈ Rn×n is the matrix of com-

munication weights wij , φ[k] = [φ1[k], φ2[k], ..., φf [k]]
T

and ei denotes the ith unit vector of Rn. The set of faulty
vehicles in (8) is unknown and consequently the matrix A
is unknown. However, each vehicle knows an upper bound
for the number of faulty vehicles.

The following theorem provides a condition which ensures
that each vehicle is able to determine the (initial) states of
all other vehicles in the network, despite of the action of
some faulty vehicles. The details of the estimator design

1 In the literature such agents are called adversarial or malicious.
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Fig. 5. Distributed estimation error for a vehicle in 1, 2
and 3 nearest-neighbour platoons of 10 vehicles.

(which is in the form of an unknown input observer) is
not discussed in this paper and we refer the reader to
Sundaram and Hadjicostis (2011).

Theorem 1. (Sundaram and Hadjicostis (2011)). Let G be
a fixed graph and let f denote the maximum number of
faulty vehicles that are to be tolerated in the network.
Then, regardless of the actions of the faulty vehicles, vi
can uniquely determine all of the initial values of linear
iterative strategy (8) for almost 2 any choice of weights in
the matrix W if G is at least (2f + 1)-vertex connected.

Theorem 2 together with Lemma 1 yield the following
theorem which shows the ability of P(n, k) in performing
distributed estimation algorithms.

Theorem 2. For a k-nearest neighbor platoon P(n, k),
regardless of the actions of up to �k−1

2 � faulty vehicles,
each vehicle can uniquely determine all of the initial values
in the network via linear iterative strategy (8) for almost
any choice of weights in the matrix W.

Fig. 5 illustrates via an example how Theorem 2 pro-
vides network-theoretic sufficient condition for distributed
estimation on P(n, k). In this example, there exists a
single faulty vehicle in a network of 10 vehicles. Based
on Theorem 2, it is sufficient to have P(10, 3) to overcome
the action of the faulty vehicle; the corresponding trace
in Fig 5 shows that the Euclidean norm of the error of
the estimated initial states of the vehicles in the network
observed by a single vehicle goes to zero. More formally,
if the true initial values are denoted by vector x[0] and
the estimation (calculation) of these initial values by each
vehicle at time step k is x̂[k], then Fig. 5 shows the
Euclidean norm of the error vector e[k] = x̂[k] − x[0].
However, the faulty vehicle in this example is not optimally
malicious, so the distributed estimation algorithm works
here for P(10, 2).

4.2 Distributed Consensus, Robust to Communication
Faults

In the distributed consensus scenario, the network of con-
nected vehicles tries to reach to a consensus value, e.g.,
velocity or road condition, despite the existence of some
faults, biases, or signal drops in inter-vehicle communi-
cations. In order to overcome the actions of faulty vehi-
cles, the following iteration policy, called Weighted-Mean-
Subsequence-Reduced (W-MSR) Zhang et al. (2015), is
proposed to overcome their actions.

Definition 4. (W-MSR Algorithm): For some non-
negative integer f , at each time-step, each node knows
the number of faulty vehicles (or at least an upper bound

2 The almost in Theorem 2 is due to the fact that the set of
parameters for which the system is not observable has Lebesgue
measure zero Reinschke (1987).
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where Ci is a (di+1)×n matrix with a single 1 in each row
that denotes the positions of the state-vector x[k] available
to vehicle vi (i.e., these positions correspond to vehicles
that are neighbors of vi, along with vehicle vi itself).

Remark 1. (Cyber-Physical Representation): Fig. 4
provides a cyber-physical interpretation of the distributed
estimation algorithm. According to this figure, algorithm
(5) is developed in the cyber layer, which receives the
physical states of vehicles from the physical layer as initial
conditions for its algorithm (red dashed lines), perform
the distributed estimation to obtain the initial states of
all vehicles in the network, and finally returns those initial
states back to the physical layer (orange dashed lines). It
should be noted that state xi[k] in (5) evolves in the cyber
layer and it does not represent the evolution of vehicle’s
physical state based on the communication; the dynamics
(5) is only used for implementing a distributed calculation
algorithm. Here, it is only x[0] = [x1[0], x2[0], ..., xn[0]]

T

that reflects the physical states of the vehicles.

For such distributed estimation algorithms, we consider
the possibility that there may exist some vehicles which
fail to disseminate their information in a correct way,
and some robust distributed estimation algorithms have
been proposed to overcome such communication failures
Sundaram and Hadjicostis (2011). More formally, suppose
that some vehicles do not precisely follow (5) to update
their value. In particular, at time step k, suppose vehicle
vi’s update rule deviates from the predefined policy (5)
and (likely, unintentionally) adds an arbitrary value φi[k]
to its updating policy. 1 In this case, the updating rule (5)
will become

xi[k + 1] = wiixi[k] +
∑
j∈Ni

wijxj [k] + φi[k], (7)

and if there are f > 0 of these faulty vehicles, (7) in vector
form becomes

x[k + 1] = Wx[k] + [e1 e2 ... ef ]︸ ︷︷ ︸
A

φ[k], (8)

where x = (x1, . . . , xn)
T, W ∈ Rn×n is the matrix of com-

munication weights wij , φ[k] = [φ1[k], φ2[k], ..., φf [k]]
T

and ei denotes the ith unit vector of Rn. The set of faulty
vehicles in (8) is unknown and consequently the matrix A
is unknown. However, each vehicle knows an upper bound
for the number of faulty vehicles.

The following theorem provides a condition which ensures
that each vehicle is able to determine the (initial) states of
all other vehicles in the network, despite of the action of
some faulty vehicles. The details of the estimator design

1 In the literature such agents are called adversarial or malicious.
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Fig. 5. Distributed estimation error for a vehicle in 1, 2
and 3 nearest-neighbour platoons of 10 vehicles.

(which is in the form of an unknown input observer) is
not discussed in this paper and we refer the reader to
Sundaram and Hadjicostis (2011).

Theorem 1. (Sundaram and Hadjicostis (2011)). Let G be
a fixed graph and let f denote the maximum number of
faulty vehicles that are to be tolerated in the network.
Then, regardless of the actions of the faulty vehicles, vi
can uniquely determine all of the initial values of linear
iterative strategy (8) for almost 2 any choice of weights in
the matrix W if G is at least (2f + 1)-vertex connected.

Theorem 2 together with Lemma 1 yield the following
theorem which shows the ability of P(n, k) in performing
distributed estimation algorithms.

Theorem 2. For a k-nearest neighbor platoon P(n, k),
regardless of the actions of up to �k−1

2 � faulty vehicles,
each vehicle can uniquely determine all of the initial values
in the network via linear iterative strategy (8) for almost
any choice of weights in the matrix W.

Fig. 5 illustrates via an example how Theorem 2 pro-
vides network-theoretic sufficient condition for distributed
estimation on P(n, k). In this example, there exists a
single faulty vehicle in a network of 10 vehicles. Based
on Theorem 2, it is sufficient to have P(10, 3) to overcome
the action of the faulty vehicle; the corresponding trace
in Fig 5 shows that the Euclidean norm of the error of
the estimated initial states of the vehicles in the network
observed by a single vehicle goes to zero. More formally,
if the true initial values are denoted by vector x[0] and
the estimation (calculation) of these initial values by each
vehicle at time step k is x̂[k], then Fig. 5 shows the
Euclidean norm of the error vector e[k] = x̂[k] − x[0].
However, the faulty vehicle in this example is not optimally
malicious, so the distributed estimation algorithm works
here for P(10, 2).

4.2 Distributed Consensus, Robust to Communication
Faults

In the distributed consensus scenario, the network of con-
nected vehicles tries to reach to a consensus value, e.g.,
velocity or road condition, despite the existence of some
faults, biases, or signal drops in inter-vehicle communi-
cations. In order to overcome the actions of faulty vehi-
cles, the following iteration policy, called Weighted-Mean-
Subsequence-Reduced (W-MSR) Zhang et al. (2015), is
proposed to overcome their actions.

Definition 4. (W-MSR Algorithm): For some non-
negative integer f , at each time-step, each node knows
the number of faulty vehicles (or at least an upper bound

2 The almost in Theorem 2 is due to the fact that the set of
parameters for which the system is not observable has Lebesgue
measure zero Reinschke (1987).
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𝑘𝑘 = 3 

𝑘𝑘 = 2 

Fig. 6. Distributed consensus in the presence of a single
faulty vehicle (red dashed line) for P(10, 2) (bottom)
and P(10, 3) (top).

of that) and disregards the largest and smallest f values in
its neighborhood (2f in total) and updates its state to be
a weighted average of the remaining values. More formally,
this yields

xj [k + 1] = wjjxj [k] +
∑

p∈Nj [k]

wjpxp[k]. (9)

where Nj [k] is the set of vehicles which are the neighbors
of vehicle j and are not ignored.

In particular, if there exist f faulty vehicles, the dynamics
is similar to (5), except the following two additional restric-
tions on matrix W: (i) wjp > 0, ∀p ∈ Nj [k]∪ {vj}, vj ∈ V,
and (ii)

∑
p∈Nj [k]∪{vj} wjp = 1, ∀vj ∈ V . Similar to the

case of distributed estimation mentioned in subsection A,
the underlying network has to satisfy a certain level of
connectivity to ensure that consensus can be achieved
despite the actions of malicious or faulty vehicles. How-
ever, compared to the distributed estimation, distributed
consensus requires r-robustness which a stronger notion of
network connectivity as discussed in the previous section.
The following theorem provides a sufficient condition for
the iteration (9) to reach to a consensus despite of the
actions of faulty vehicles in the network.

Theorem 3. (LeBlanc et al. (2013)). Suppose there exist
at most f faulty vehicles in the network. Then the re-
silient asymptotic consensus is reached under the W-MSR
iteration if the network is (2f + 1)-robust.

Lemma 2 and Theorem 3 present the following theorem to
show the ability of P(n, k) to perform robust distributed
consensus.

Theorem 4. Suppose there are at most �k−1
2 � faulty ve-

hicles in a k-nearest neighbor platoon. Then resilient
asymptotic consensus on P(n, k) is reached under W-MSR
dynamics, despite the action of faulty vehicles.

Fig. 6 confirms the connectivity condition proposed by
Theorem 4 for distributed consensus in the presence of
faulty vehicles. Here, there exists a single faulty vehicle in
the network (whose state is shown with red dashed line)
and it is shown that P(10, 3) is robust enough to overcome
the action of the faulty vehicle.

4.3 Network Formation in the Presence of Communication
Disturbances

The vehicle network formation is the third problem an-
alyzed in this paper. Let pi and ui denote the position
and longitudinal velocity of vehicle vi. The objective is
for each vehicle to maintain specific distances from its

neighbors. The desired vehicle formation will be formed
by a specific constant distance ∆ij between vehicles vi
and vj , which should satisfy ∆ij = ∆ik + ∆kj for every
triple {vi, vj , vk} ⊂ V . Considering the fact that each
vehicle vi has access to its own position, the positions of its
neighbors, and the desired inter-vehicular distances ∆ij ,
the control law for vehicle vi is Hao et al. (2010)

p̈i(t) =
∑
j∈Ni

kp (pj(t)− pi(t) + ∆ij)

+ku (uj(t)− ui(t)) + wi(t), (10)

where kp, ku > 0 are control gains and wi(t) models
communication disturbances. Dynamics (10) in matrix
form become

ẋ(t) =

[
0n In

−kpL −kuL

]

︸ ︷︷ ︸
A

x(t) +

[
0n×1

kp∆

]

︸ ︷︷ ︸
B

+

[
0n

I

]

︸ ︷︷ ︸
F

w(t), (11)

where x = [P Ṗ]T = [p1, p2, ..., pn, ṗ1, ṗ2, ..., ṗn]
T, ∆ =

[∆1,∆2, ...,∆n]
T in which ∆i =

∑
j∈Ni

∆ij . Here w(t) is
the vector of disturbances. We want to quantify the effect
of the communication disturbances on the inter-vehicular
distances. For this, we need to define an appropriate
performance measurement. One such choice is y = BTP,
where B ∈ Rn×|E| is the incidence matrix associated
with the network and P = [p1, p2, ..., pn]

T is the vector
of positions. In this case we have an output associated
with each connection, i.e., yij = pi − pj which is the
distance between vi and vj at each time. With such
performance output, we can quantify the sensitivity of
inter-vehicular distances to communication disturbances.
This sensitivity can be captured by an appropriate system
norm from the disturbance signal to the desired output
measurement. Here the system H∞ norm is used which
represents the worst case amplification of the disturbances
over all frequencies and is widely used in the robustness
analysis of vehicle platoons Herman et al. (2015). Such
effect is discussed more formally in the following theorem.

Theorem 5. The system H∞ norm of (11) from the exter-
nal disturbances w(t) to y = BTP is

||G||∞ =




2

kuλ2

√
4kp − k2uλ2

, if
λ2k

2
u

2kp
≤ 1,

1

kpλ
1
2
2

otherwise.
(12)

Proof. First we show that the system H∞ norms of (11)
from disturbance signals w(t) to performance outputs

y = BTP and y = L
1
2P are the same. For the output

measurement y = BTP we have G∗G = FT(s∗I −
A)−TBBT(sI−A)−1F = FT(s∗I−A)−TL(sI−A)−1F and
as system H∞ norm is a function of the spectrum of G∗G,
identical results will be obtained as if one used y = L

1
2P

instead of y = BTP. Hence, it is sufficient to find the
system H∞ norm of (11) from disturbances to y = L

1
2P.

Let Λ = V TLV be the eigendecomposition of L, where
V may be taken to be orthogonal. Consider the invertible
change of states x̃ = (V Tx, V Tẋ). Then a straightforward
computation shows that

˙̃x =
[

0 In
−kpΛ −kuΛ

]
x̃+

[
0
V T

]
w

y =
[
L

1
2V 0

]
x̃ .

(13)
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The model (13) has the same transfer function as (11),
and hence the same system norm. Now consider an in-
put/output transformation on (13), where ȳ = V Ty and
w̄ = V Tw , knowing the fact that such input/output
transformation preserves the systemH∞ norm Pirani et al.
(2017c). Hence, the transformed system

˙̃x =
[

0 In
−kpΛ −kuΛ

]
x̃+




0
V TV︸ ︷︷ ︸
=In


 w̄

ȳ =
[
V TL

1
2V 0

]
︸ ︷︷ ︸

=
[
Λ

1
2 0

]
x̃ .

(14)

has the same system norm as (13). The system (14) is
comprised of n decoupled subsystems, each of the form

˙̃xi =
[

0 1
−kpλi −kuλi

]
x̃i +

[
0
1

]
w̄i

ȳi =
[
λ

1
2
i 0

]
x̃i .

(15)

with transfer functions

G̃i(s) =
λ

1
2
i

s2 + kuλis+ kpλi
, i ∈ {1, . . . , n} .

which gives G̃1(s) = 0. For i ∈ {2, . . . , n}, we have

|G̃i(jω)|2 = G̃i(−jω)G̃i(jω) =
λi

(kpλi − ω2)2 + k2uλ
2
iω

2

︸ ︷︷ ︸
f(ω)

.

Maximizing |G̃i(jω)|2 with respect to ω is equivalent to

minimizing f(ω). By setting df(ω)
dω = 0 we get ω̄1 = 0 and

ω̄2 = (kpλi − 1
2k

2
uλ

2
i )

1
2 as critical points. Here ω̄2 is the

global minimizer of f(ω), unless
k2
uλi

2kp
> 1. Substituting

these critical values back into the formula for |G̃i(jω)|2,
we find for i ∈ {2, . . . , n} that

||G̃i||∞ =




2

kuλi

√
4kp − k2uλi

, if
λik

2
u

2kp
≤ 1,

1

kpλ
1
2
i

otherwise.
(16)

Since 0 < λ2 ≤ λ3 ≤ · · · ≤ λn and ||G̃i||∞ is a
monotonically decreasing function of λi, the result follows.
�

Based on the above theorem, the algebraic connectivity of
the network, λ2, plays a major role in the H∞ performance
of the system. Figure 7 shows the considerable effect of in-
creasing the connectivity index k on the H∞ performance
of dynamics (11) with parameters kp = 5 and ku = 10.
According to this figure, for the case of 1-nearest neighbor
platoon with size n = 20, the H∞ norm is about 2, while
it drops below 1 for k = 2 and below 0.5 for k = 4. This
shows the effect of increasing the connectivity index k on
the system H∞ performance, as predicted by bounds on
the elgebraic connectivity in (4).
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