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Abstract

As internal tides propagate in the ocean, they carry and dissipate energy over hundreds and

even thousands of kilometers. We perform fully nonlinear simulations to examine the evo-

lution of horizontally propagating, vertical mode-1 internal tides in non-uniformly stratified

fluids, as it depends on wave amplitude, ocean depth, Coriolis forces, and the spanwise ex-

tent of the waves. The background stratification is set up according to ocean measurements

southwest of Hawaii and in the South China Sea. Two-dimensional (2D) simulations on the

β-plane are based on the internal tides originating near the Hawaiian Ridge and propagating

southwest towards the equator. The results are compared to the ocean measurements from

the EXperiment on Internal Tidal Scattering (EXITS). Another series of 2D simulations on

the f -plane is set up based on the internal tides propagating westward in the South China

Sea and are compared to the observations. The simulations in both research domains align

qualitatively and somewhat quantitatively with the observations. A three-dimensional (3D)

model simulating spanwise-localized waves is utilized to characterize the evolution of internal

tides in the streamwise and spanwise direction. The spanwise evolution of the 3D waves is

examined in terms of the lateral spreading, radius of curvature, and sea surface signature.

The evolution of sea surface signature is compared favourably to a satellite image in the

South China Sea. The 3D model can thus be used to reversely deduce the initial conditions

of internal tides.

ii



Acknowledgement

First of all, I want to express my deepest gratitude to my supervisor, Bruce Sutherland, for

his patient guidance throughout the project. I would not have gotten far without his support.

He kindly guided and encouraged me when I was stuck in progress. His insightful and helpful

feedback helped me to grow both professionally and personally. I am sincerely thankful for

the opportunity to learn and work under his mentorship. I also want to thank Paul Myers and

Morris Flynn for being my supervisory committee members and giving helpful suggestions at

the committee meeting.

I want to thank my fiancée, Xiner Wu, for the invaluable emotional support she provided

during this process. Her love, patience, understanding, and unwavering belief in my abilities

have been a constant source of strength, helping me to overcome the various challenges I faced.

I also want to thank my parents for supporting and encouraging me throughout my Master’s

study. Particularly as I transitioned from another country, the support and encouragement

from my loved ones have been invaluable to me.

To my dear lab mate, Alain Gervais, thank you for helping me out when I had trouble in

my coding. Alain, you’re such an expert in super-computing. I would like to thank Adam Fu,

Tahya Weiss-Gibbons, Pouneh Hoshyar, Mohnish Kapil, and Rowan Brown. Thank you guys

for the company in our numerical lab and I appreciate the fun times we spent together. I also

want to thank Akash Kav, Diego Martinez, and Dennis Thai for their helpful questions and

feedback at the group meetings. I am also deeply grateful to my close friends, Guofeng Lin,

Vivek Kumar, Yeshe Hoffmann, and Yibo Tang. Your companionship, laughter, and support

have truly enriched my life during this journey.

iii



Contents

1 Introduction 1

1.1 Internal tides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Internal gravity waves in the ocean . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Barotropic and baroclinic tides . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Observations of internal tides . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Hawaii Ocean Mixing Experiment . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 EXperiment on Internal Tidal Scattering . . . . . . . . . . . . . . . . . 4

1.2.3 South China Sea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Energy dissipation by low mode internal tide . . . . . . . . . . . . . . . . . . . 8

1.4 This work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Theory 10

2.1 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Primitive equations of the ocean . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Boussinesq approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 f -plane and β-plane approximation . . . . . . . . . . . . . . . . . . . . . 14

2.1.4 2D approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Observed stratification southwest of Hawaii . . . . . . . . . . . . . . . . 16

2.2.2 Observed stratification in the South China Sea . . . . . . . . . . . . . . 18

2.3 Superharmonic cascade theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Weakly nonlinear theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

iv



2.3.2 Long wave approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 Theory predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Numerical Methods 27

3.1 2D horizontally periodic waves on f-plane . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Equations and numerical dissipation . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Discretization and resolution . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.3 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.4 Time step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 2D forced waves on the β-plane . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Numerical forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Sponge layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Analysis methods for 2D simulations . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 3D model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.2 Discretization and resolutions . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.3 Exponential filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.4 Initialization and time-stepping . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.5 Analysis methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 2D Simulation Results 43

4.1 2D Horizontally periodic waves versus 2D forced waves . . . . . . . . . . . . . . 43

4.2 Effect of β-plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 EXITS observation versus simulation . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Observation versus simulation in the South China Sea . . . . . . . . . . . . . . 50

4.5 Solitary wave analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 3D Simulation Results 56

5.1 3D versus 2D horizontally periodic waves . . . . . . . . . . . . . . . . . . . . . 56

5.2 Solitary wave analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Spanwise evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

v



5.3.1 Lateral spreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.2 Radius of curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.3 Surface signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Discussion and Conclusions 69

vi



List of Tables

2.1 Values for the parameters that give the best-fit piecewise exponential profile

for N2 in the Hawaiian Ocean . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Values for the parameters that give the best-fit piecewise exponential profile

for N2 in the South China Sea. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Expressions for the polarization relations. The actual fields are obtained by

multiplying by 1
2α

ωd
k e

i(kx−ωt) and adding the complex conjugate. Primes on

ψ̂n denote first-order derivative with respect to z. . . . . . . . . . . . . . . . . 24

4.1 Parameter regime of the South China Sea. Here, H and N0 were chosen from

the observations (see Section 2.2.2), A0 was estimated from the amplitude of

solitary waves in the South China Sea, ω and k were the typical values for

the internal tides in the South China Sea, and f0 was calculated based on the

latitude θ0 ≃ 21◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vii



List of Figures

1.1 Location of the Nearfield and Farfield observation sites (stars) near the Hawai-

ian Ridge. Black arrows indicate the energy flux associated with the baroclinic

tide (Rainville and Pinkel, 2006). Red arrows indicate the new along-wave and

spanwise coordinate system for the β-plane approximation used in this thesis. . 4

1.2 Location of ocean measurements from EXITS marked by a red pin (Image from

Google Earth). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Depth-integrated energy flux from the M2 baroclinic tide . . . . . . . . . . . . 6

1.4 MODIS image showing three nonlinear internal wave trains (labelled by A, B,

and C) crossing the deep basin west of Luzon Strait. Ocean measurements

were collected at the P1 and P2 locations indicated by red stars. Inset: Cor-

responding inverted echo-sounder time series for these waves at P2 from which

path-averaged wave speeds are determined. 122◦E is the estimated generation

site of internal tides in the model of 2D-forced waves. (Image reproduced with

permission from Farmer et al. (2009)) . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 (a) Potential density obtained from the density and salinity profiles measured

during UTC Nov 26th - 28th 2010, at the location of latitude 17.61◦N and

longitude 168.51◦W (location shown in Figure 1.2). (b) Comparison of the

squared buoyancy frequency (observed N2 profile) calculated directly from the

potential density shown in (a) and the piecewise N2 profile used in the numer-

ical simulations with upper and lower parts shown separately. (Unpublished

data provided by Shaun Johnston, Scripps Institution of Oceanography) . . . . 17

viii



2.2 Temperature (left panel) and salinity (right panel) profiles from CTD measure-

ments (Farmer et al., 2009) are shown in grey and the mean profiles are in

black. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 (a) Comparison of the observed potential density profile to our approximation

(observation 1 from Farmer et al. (2009) and observation 2 from Johnston et al.

(2013)). (b) A piecewise exponential function of squared buoyancy frequency

obtained based on our approximation to the actual potential density profile. . . 20

2.4 Dispersion relations for the mode-1 wave in the stratification of southwest

Hawaii approximated by the piece-wise exponential function described in Sec-

tion 2.2.1, with (a) f = 0.00206N0 (based on the latitude of Farfield site) and

(b) f = 0 (equator). And (c) The comparison of ϵ with these two Coriolis

parameters, superimposed by ϵ for the wave in the South China Sea with

the piecewise-exponential stratification described in Section 2.2.2 and f =

0.0033N0 based on the latitude of the west propagating waves in the South

China Sea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Domain setup with an example of velocity field in a simulation with temporally

forced waves at x = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 (a) Forcing amplitude over time given by (3.12) with the parameters A0 =

0.001H, t0 = 500N−1
0 , δt = 125N−1

0 , AM = 0.5, ωM = 0.0003N0, and t1 =

1000N−1
0 . (b) Viscosity modulation α(x) in the left sponge layer given by

(3.13) with the parameters α0 = 6, xright = −20H, x1 = −31H, and δx = 2.5H. 34

3.3 Vertical displacement ξ over time, measured at the P2 location (x = 287.5km

and zm = −700m) in the domain, from a 2D simulation of forced waves with

the parameters: A0 = 40m, k ≃ 4.8 × 10−5m−1, ω ≃ 1.44 × 10−4s−1 and

f0 ≃ 5.2×10−5s−1. The background stratification N2 is given by the piecewise

exponential (2.26) with the parameters listed in Table 2.2. . . . . . . . . . . . . 35

ix



3.4 Time series of u velocity, measured at the P1 location in the domain, from a 2D

simulation of forced waves with the parameters: A0 = 40m, k ≃ 4.8×10−5m−1,

ω ≃ 1.44× 10−4s−1 and f0 ≃ 5.2× 10−5s−1. The background stratification N2

is given by the piecewise exponential (2.26) with the parameters listed in Table

2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Initial stage of the streamwise velocity field u(x, y, z, 0): (a) top view, on the

xz-plane at y = 0, and side view, on the xy-plane at z = 0, from the simulation

with the parameters: ocean depth H = 2500m, the initial vertical displacement

amplitude A0 = 75m, the horizontal wavenumber k0 ≃ 4.8 × 10−5m−1, the

spanwise width σy = 50km, the wave frequency ω ≃ 1.47 × 10−4s−1. The

background stratification N2 is given by the piecewise exponential (2.26) with

the parameters listed in Table 2.2. . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 (a) side-view snapshot of the streamwise velocity, u, at y = 0. (b) top-view

snapshot of the u field at z = 0 with the width edge, ymax ≃ 450km, plotted

in black-dashed line. (c) top-view snapshot of the ∂u/∂x field at z = 0 with

the contour (∂u/∂x = 0) plotted in green. These are from the same simulation

shown in Figure 3.5 but at a later time, t = 3000N−1
0 (corresponding to ≃ 53

hours with N0 = 0.0157s−1), with the parameters: ocean depth H = 2500m,

the initial vertical displacement amplitude A0 = 75m, the horizontal wavenum-

ber k0 ≃ 4.8 × 10−5m−1, the spanwise width σy = 50km, the wave frequency

ω ≃ 1.47×10−4s−1. The background stratification N2 is given by the piecewise

exponential (2.26) with the parameters listed in Table 2.2. . . . . . . . . . . . . 42

4.1 2D horizontally periodic waves: u velocity fields and vertical displacement ξ

at z = −703m at t = 0 (a & b) and t ≃ 41 hours (c & d), u time series at

x = 0 (e), and vertical displacement ξ at x = 0 over time (f) plotted in blue,

superimposed with ξ from a 2D-forced wave simulation plotted in red. The

initialization or the numerical forcing used the parameter regime of the South

China Sea as listed in Table 4.1 and the background stratification N2 is given

by the piecewise exponential (2.26) with the parameters listed in Table 2.2. . . 44

x



4.2 Comparison of the vertical displacement fields, ξ, of the internal tides originated

from the Hawaiian Ridge evolving on the β-plane and on the f -plane with

different Coriolis parameters. The constant Coriolis parameter f0 ≃ 4.6 ×

10−5s−1 set based on the Farfield location, ocean depth H = 5000m, forcing

amplitude A0 ≃ 15m, and the background stratification was set up using the

piecewise exponential (2.26) fitted to the observation dataset from EXTIS, as

plotted in Figure 2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Comparison of the vertical displacement fields, ξ, from the EXITS observation

and the simulations on the β-plane with the following parameters: ocean depth

H = 5000m, forcing amplitude A0 ≃ 15m, and the background stratification

based on the piecewise exponential (2.26) fitted to the observation dataset from

EXTIS, as plotted in Figure 2.1. The observation was performed at 17.61◦N

and 168.51◦W starting from UTC 22:13 Nov 26th (unpublished data provided

by Shaun Johnston, Scripps Institution of Oceanography). The thick black

lines in (a) and (b) indicate ξ at z = −300m, which were compared in (c) with

observation data plotted in red and simulation results plotted in blue. . . . . . 49

4.4 Comparison of the time series of the u velocity from the surface to z = −500m

between the observation (a) and simulation (b). The observation was taken

near the P1 location in the South China Sea at 20.71◦N and 120.45◦E during

UTC June 14th to July 1st 2011. Simulation results are measured at the

location in the model domain corresponding to the P1 location. Ocean depth

in the simulation is set to H = 3000m according to the measured ocean depth

at the P1 location. Other parameters are set based on the parameter regime

of the South China Sea as listed in Table 4.1 and the background stratification

N2 is given by the piecewise exponential (2.26) with the parameters listed in

Table 2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xi



4.5 Vertical displacement ξ over time measured at the P2 location and z = −703m

as it depends on the scaled amplitude of the numerical forcing A0: (a) 10m,

(b) 20m, (c) 30m, (d) 40m, (e) 50m, and (f) 60m. Other parameters are kept

constant based on the parameter regime of the South China Sea listed in Table

4.1 and the background stratification N2 is given by the piecewise exponential

(2.26) with the parameters listed in Table 2.2. In all cases, the time series

starts at 40 hours, being the time for waves to travel from the forcing location

to P2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Vertical displacement ξ over time measured at the P2 location and z = −703m

as it depends on the simulated ocean depth H: (a) H = 1500m and k ≃

5.73 × 10−5m-1, (b) H = 2000m and k ≃ 5.30 × 10−5m-1, (c) H = 2500m

and and k ≃ 4.96 × 10−5m-1, (d) H = 3000m and k ≃ 4.90 × 10−5m-1, and

(e) H = 3500m and k ≃ 4.86 × 10−5m-1. Other parameters are kept constant

based on the parameter regime of the South China Sea listed in Table 4.1 and

the background stratification N2 is given by the piecewise exponential (2.26)

with the parameters listed in Table 2.2. In all cases, the time series starts at

40 hours, being the time for waves to travel from the forcing location to P2. . . 53

4.7 Dependence of number of waves (a, d) in a solitary wave train and the mag-

nitude of maximum (c, f) and minimum (b, e) vertical displacement on the

numerical forcing amplitude and ocean depth from 2D simulations. Ocean

depth H = 2500m in (a), (b), and (c). Forcing amplitude A0 = 40m in (d),

(e), and (f). Other parameters are set constant based on the parameter regime

of the South China Sea as listed in Table 4.1 and the background stratification

N2 is given by the piecewise exponential (2.26) with the parameters listed in

Table 2.2. Error bars are shown in red. . . . . . . . . . . . . . . . . . . . . . . . 54

xii



5.1 3D horizontally periodic waves with a spanwise width of σy = 50km: u velocity

field and vertical displacement at t = 0 (a & b) and t = 41 hours (c & d), u

time series at x = 0 (e), and vertical displacement ξ at x = 0 over time (f)

plotted in blue, superimposed with ξ from another 3D waves with σy = 150km

plotted in green and a 2D horizontally periodic wave plotted in red. ξ was

taken from z = −703m. The initialization used the parameter regime of the

South China Sea as listed in Table 4.1 and the background stratification N2 is

given by the piecewise exponential (2.26) with the parameters listed in Table 2.2. 57

5.2 Vertical displacement ξ over time measured at the estimated P2 location as

it depends on the initial maximum vertical displacement A0: (a) 37.5m, (b)

50m, (c) 62.5m, (d) 75m, (e) 87.5m, and (f) 100m. Other parameters are kept

constant based on the parameter regime of the South China Sea listed in Table

4.1 and the background stratification N2 is given by the piecewise exponential

(2.26) with the parameters listed in Table 2.2. In all cases, the time series

starts at 40 hours, being the time for waves to travel from the forcing location

to the estimated P2 location for the 3D horizontally periodic waves. . . . . . . 59

5.3 Vertical displacement ξ over time measured at the P2 location as it depends on

the simulated ocean depth H: (a) H = 2000m and k ≃ 5.30×10−5m-1, (b) H =

2500m and and k ≃ 4.96 × 10−5m-1, (c) H = 3000m and k ≃ 4.90 × 10−5m-1,

and (d) H = 3500m and k ≃ 4.86 × 10−5m-1. Other parameters are kept

constant based on the parameter regime of the South China Sea listed in Table

4.1 and the background stratification N2 is given by the piecewise exponential

(2.26) with the parameters listed in Table 2.2. In all cases, the time series

starts at 40 hours, being the time for waves to travel from the forcing location

to the estimated P2 location for the 3D horizontally periodic waves. . . . . . . 60

xiii



5.4 Vertical displacement ξ over time measured at the estimated P2 location as it

depends on the initial spanwise width σy: (a) 50km, (b) 75km, (c) 100km, and

(d) 125km. Other parameters are kept constant based on the parameter regime

of the South China Sea listed in Table 4.1 and the background stratification

N2 is given by the piecewise exponential (2.26) with the parameters listed in

Table 2.2. In all cases, the time series starts at 40 hours, being the time for

waves to travel from the forcing location to the estimated P2 location for the

3D horizontally periodic waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5 Dependence of the magnitude of maximum and minimum vertical displacement

on the initial wave amplitude (a & b), ocean depth (c & d), and spanwise width

(e & f) from 3D simulations. Initial wave amplitude A0 = 75m in (c), (d), (e),

and (f). Ocean depth H = 2500m in (a), (b), (e), and (f). Spanwise width

σy = 50km in (a), (b), (c), and (d). Other parameters are set constant based

on the parameter regime of the South China Sea as listed in Table 4.1 and the

background stratification N2 is given by the piecewise exponential (2.26) with

the parameters listed in Table 2.2. Error bars are shown in red. . . . . . . . . . 62

5.6 Edge of the waves, ymax, over time: (a) varying the initial spanwise width

σy with the initial vertical displacement A0 fixed and (b) varying A0 with σy

fixed. ymax is defined as where the peak surface u velocity at y is 1%. Other

parameters are kept constant based on the parameter regime of the South

China Sea listed in Table 4.1 and the background stratification N2 is given by

the piecewise exponential (2.26) with the parameters listed in Table 2.2. . . . . 64

5.7 Dependence of the spreading rate, calculated by linear fitting ymax over time

from the five simulations shown in Figure 5.6(a), superimposed with the best-fit

exponential function in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xiv



5.8 Radius of curvature, Rc, over time: (a) varying the initial vertical displace-

ment A0 with the spanwise width σy = 50km fixed and (b) varying σy with

A0 = 62.5m fixed. Other parameters are kept constant based on the parameter

regime of the South China Sea listed in Table 4.1 and the background strat-

ification N2 is given by the piecewise exponential (2.26) with the parameters

listed in Table 2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.9 Dependence of the curving rate, calculated by linear fitting Rc over time from

the two series of simulations shown in Figure 5.8 . . . . . . . . . . . . . . . . . 66

5.10 Width of surface signature, ys, over time with the initial vertical displacement

A0 and the spanwise width σy in different cases. The threshold for ys is set

as ∂u/∂x > 2.4 × 10−4s−1. Other parameters are kept constant based on the

parameter regime of the South China Sea listed in Table 4.1 and the back-

ground stratification N2 is given by the piecewise exponential (2.26) with the

parameters listed in Table 2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xv



Chapter 1

Introduction

1.1 Internal tides

1.1.1 Internal gravity waves in the ocean

Oceans, in general, are stably and continuously stratified fluids with mean profile of density

increasing with depth primarily due to a decrease in temperature and an increase in salinity

with depth (e.g. Vallis, 2017). Such fluids support internal waves, which are driven by buoy-

ancy forces, as illustrated by the motion of a fluid parcel. A fluid parcel is an infinitesimal

volume of fluid. In a stably stratified fluid, a fluid parcel experiences a restoring buoyancy

force when displaced from its vertical position into surrounding fluid with different density.

Upon returning to its level of neutral buoyancy, due to its momentum it overshoots its equi-

librium position once again experiencing a restoring buoyancy force. Thus the fluid parcel

oscillates in time. Collectively, this oscillation is manifest as an internal (gravity) wave that

moves within a fluid. Internal gravity waves generally propagate both horizontally and verti-

cally through the fluid, which allows momentum and energy transport in both directions over

large spatial extents (Sutherland, 2010). Internal waves cause significant vertical displace-

ments of density surfaces by tens and even hundreds of meters in the ocean interior in some

locations such as near the Hawaiian ridge (e.g. Klymak et al., 2008; MacKinnon et al., 2017)

and in the South China Sea (e.g. Farmer et al., 2009; Huang et al., 2016). These displacements

have substantial influence on the ocean’s density structure, circulations, sediment transport,
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nutrient supply and so on (e.g. Garrett and Kunze, 2007). The breaking of internal waves is

also a main mechanism for diapycnal mixing in the open ocean (Laurent and Garrett, 2002).

Furthermore, internal waves serve as a mechanical mixing source in the deep ocean, which is

necessary in the large-scale ocean circulation such as the meridional overturning circulation

(Munk and Wunsch, 1998). Therefore, internal waves are a key component of the ocean’s

dynamics.

1.1.2 Barotropic and baroclinic tides

Internal waves can be generated by any perturbation that displaces fluid parcels from their

equilibrium positions in the ocean, including forcing by winds from the surface and flows

interacting with bottom topography (MacKinnon et al., 2017; Morozov, 2018). The latter

flows can come from tidal forcing. Barotropic tides (also known as surface tides) are large-

scale surface waves commonly associated with the periodic rise and fall of sea levels due to

the gravitational forces of the Moon and the Sun. They propagate as horizontally long waves

in the ocean with wavelengths typically ranging from hundreds to thousands of kilometres. It

is estimated that 3.5 TW of the 3.7 TW of global tidal energy is dissipated in the ocean with

1 TW of the tidal power being converted into internal (baroclinic) tides (Munk and Wunsch,

1998; Wunsch and Ferrari, 2004; Garrett and Kunze, 2007). Internal tides are internal waves in

the ocean generated by surface tides moving the stratified ocean water over sloping topography

(e.g. Sutherland, 2010). After being generated at the topography, they can be decomposed

into the vertical basis modes, with the lowest mode 1 and possibly higher modes. Low modes

have a relatively large vertical length scale and are observed to propagate far away from

the topography (e.g. Ray and Mitchum, 1997). On the other hand, higher modes, having a

relatively small vertical length scale, exhibit slower propagation and tend to dissipate locally

(e.g. Klymak et al., 2012). The steepness of the submarine topography has a major influence

on the generation of internal tides by controlling the amount of energy transferred from

surface tides to internal tides (Garrett and Kunze, 2007). Low modes dominate when internal

tides are generated over moderate topography (Echeverri et al., 2009). If the topography is

sufficiently steep, vertically propagating beams associated with higher modes are launched

near the topography (e.g. Pétrélis et al., 2006). These beams can cause dramatic vertical
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displacements, leading to strong local turbulent mixing (e.g. Rudnick et al., 2003; Vic et al.,

2019). Furthermore, these beams are observed to transform into low-mode internal tides

(dominated by mode 1) after interacting with the near-surface stratification (Martin et al.,

2006). Though partially dissipated by local mixing, most of the energy fed into internal tides is

transported away from the topography by the low-mode waves, mostly by mode-1 waves (e.g.

Echeverri et al., 2009). It was estimated that near the Hawaiian ridge 74% of the internal

tide energy is radiated away from the generation site as low-mode waves (Klymak et al.,

2006; Carter et al., 2008). These low-mode waves can propagate horizontally over thousands

of kilometers away from their generation site (e.g. Simmons et al., 2004). Therefore, tidal

conversion makes a crucial contribution on the formation of internal waves in the ocean.

1.2 Observations of internal tides

1.2.1 Hawaii Ocean Mixing Experiment

Through a campaign known as the Hawaii Ocean Mixing Experiment (HOME), barotropic

(surface) tides were observed to convert to baroclinic (internal) tidal beams near the Kaena

Ridge of Hawaii and then emanate as low-mode internal tides further from the generation

site (e.g. Rudnick et al., 2003). The Kaena Ridge is a relatively isolated and steep submarine

hill. The currents generated by the semidiurnal barotropic tides are nearly orthogonal to the

topographic feature of the ridge. These set the stage for intense conversion from barotropic

tides to baroclinic tides. As a part of HOME, measurements were taken at the “Nearfield”

(21.68◦N, 158.63◦W) and “Farfield” (18.39◦N, 160.70◦W) sites, located at the southwest edge

of the Kaena Ridge and approximately 450km southwest of the Kaena Ridge, respectively

(Rainville and Pinkel, 2006). Their locations are marked by stars in Figure 1.1, with the

black arrows indicating the energy flux associated with the baroclinic tide. At the Nearfield

site, observations revealed vertically propagating beams, which caused substantial vertical

displacement of density surfaces, leading to intense ocean mixing. At the Farfield site, ver-

tically low-mode, horizontally propagating internal tides were observed. Particularly at the

semidiurnal frequency of the lunar (M2) tide, the energy flux displayed strong signals of these

low-mode internal tides, with vertical mode-1 waves predominating. These waves further
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Figure 1.1: Location of the Nearfield and Farfield observation sites (stars) near the Hawaiian Ridge. Black
arrows indicate the energy flux associated with the baroclinic tide (Rainville and Pinkel, 2006). Red arrows
indicate the new along-wave and spanwise coordinate system for the β-plane approximation used in this
thesis.

propagated south-westward towards the equator, which inspires one of the interests of this

study on the behaviour of internal tides travelling towards the equator, where Coriolis forces

become negligible.

1.2.2 EXperiment on Internal Tidal Scattering

The EXperiment on Internal Tidal Scattering (EXITS) examined how mode-1 internal tides

originating at the Hawaiian Ridge scatter into higher-mode waves at the Line Islands Ridge,

situated about 1000km southwest of Hawaii (location shown in Figure 1.2). The unpublished

dataset gathered from these observations was provided by Shaun Johnston, Scripps Institution

of Oceanography.

The moorings were deployed at multiple locations near the Line Island Ridge from UTC

November 26th to December 19th, 2010. The locations are denoted by crosses in Figure 1.3.

The arrows in Figure 1.3 indicate the depth-integrated energy flux from theM2 baroclinic tide,

with total energy flux and energy fluxes from different modes shown separately. Vertical mode-
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Figure 1.2: Location of ocean measurements from EXITS marked by a red pin (Image from Google Earth).

1 waves originating from the Hawaiian Ridge were observed on the north (upstream) side of

the ridge. However, after they encountered the Line Island Ridge, the mode-1 waves appeared

to be weaker and the mode-2 waves became the dominant signal in the observations. This

was hypothesized to be due to the scattering effects occurring at the ridge (Shaun Johnston,

personal communication), a phenomenon not considered in this thesis.

1.2.3 South China Sea

The South China Sea is another marine basin where internal tides exhibit substantial activity

(e.g. Alford et al., 2015). The most powerful internal tides ever recorded were observed in the

South China Sea (Guo and Chen, 2014). It is estimated that a total of 24GW of energy from

the barotropic tides is converted into baroclinic (internal) tides at the submarine ridges in

the Luzon Strait. About 40% of this energy is dissipated locally by turbulent mixing (Alford

et al., 2015). The higher local dissipation rate in the South China Sea, compared to that in

Hawaii, may be attributed to modelling errors (Alford et al., 2015), more complex bottom

topography in the Luzon Strait (Garrett and Kunze, 2007; Buijsman et al., 2010), and the

westward propagating branch of the Kuroshio (Buijsman et al., 2010). The remaining energy

radiates away, mostly carried by internal tides which propagate westward across the South

China Sea towards the continental shelf of China. These waves are observed to be dominated

by a mode-1 signal having a combination of semi-diurnal and diurnal frequencies (Farmer
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Figure 1.3: Depth-integrated energy flux from the M2 baroclinic tide: the total flux and decomposed flux
into vertical modes 1, 2, and 3. Survey stations (magenta crosses), mooring locations (red crosses), and
Topex/Poseidon track 125 (grey line) are shown. Coloured contours indicate flux magnitude. (From EXITS
report provided by Shaun Johnston, Scripps Institution of Oceanography)
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Figure 1.4: MODIS image showing three nonlinear internal wave trains (labelled by A, B, and C) crossing
the deep basin west of Luzon Strait. Ocean measurements were collected at the P1 and P2 locations
indicated by red stars. Inset: Corresponding inverted echo-sounder time series for these waves at P2 from
which path-averaged wave speeds are determined. 122◦E is the estimated generation site of internal tides
in the model of 2D-forced waves. (Image reproduced with permission from Farmer et al. (2009))

et al., 2009; Johnston et al., 2013). If the semi-diurnal forcing is stronger, the internal tides

tend to steepen during their propagation to form solitary waves which are visible by the sea

surface signature in satellite images. Figure 1.4 shows the propagation of internal solitary

waves as revealed by their surface signature seen by satellite. Given the challenging operating

conditions in the Luzon Strait, as noted by Alford et al. (2015), in-situ observation data from

the generation site has been notably scarce. Hence, the initial wave amplitude and the precise

location of the generation site remain barely known. We assume that the generation site is

along 122◦E in our numerical models (detailed in Chapter 3).
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1.3 Energy dissipation by low mode internal tide

Low-mode internal tides usually have large horizontal spatial extent on the order of a hundred

kilometres. They carry energy as they propagate horizontally through the ocean. The energy

associated with internal tides eventually converts to smaller scale, ultimately resulting in

turbulent mixing (MacKinnon et al., 2017). However, it is still an open question how the

energy of internal tides converts from large to small scales where turbulent mixing acts to

dissipate energy, thus closing this branch of the energy budget in the ocean.

As recently reviewed by Varma et al. (2022) and MacKinnon et al. (2017), some mecha-

nisms for the energy transformation to small scale have been proposed, such as interaction

with topography and wave-wave interactions known as triad resonant instability (TRI) (e.g.

Sonmor and Klaassen, 1997; Dauxois et al., 2018). Triadic resonance is a mechanism in which

energy in the “parent” internal tide is transferred into subharmonic waves whose frequencies

and wavenumbers sum to equal those of the parent. The theory for TRI has been widely

investigated in uniformly stratified fluids, but this is not the case for the non-uniformly strati-

fied ocean. This may explain why observations of TRI are inconclusive, as in the northeastern

South China Sea (e.g. Xie et al., 2011) and to the northeast of the Hawaiian Ridge (e.g Alford

et al., 2007).

Recent studies have established another mechanism by which energy can transfer to small

scale. Internal waves in non-uniform stratification can self-interact to excite superharmonic

waves with double the horizontal wavenumber (half the wavelength) (Sutherland, 2016; Baker

and Sutherland, 2020). Under certain conditions, the excited superharmonics may successively

excite higher order superharmonics with triple the horizontal wavenumber, and so on. This is

referred to as the superharmonic cascade (SHC) (Sutherland and Dhaliwal, 2022). The excited

superharmonics can also interact with the primary wave to alter its amplitude. Through this

process, energy in the low-mode internal tide is converted into smaller and smaller scales.

This theory will be explained in detail in Section 2.3. Although the superharmonic excitation

is difficult to reveal in the ocean measurements, the superposition of the superharmonic waves

results in solitary wave trains which are possible to observe by in-situ observations and satellite

images.
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1.4 This work

Previously, the theory and simulations of SHC were restricted to two dimensional periodic

internal tides on the f -plane, for which the influence of Coriolis forces was treated as constant

(Sutherland, 2016; Baker and Sutherland, 2020; Sutherland and Dhaliwal, 2022). However,

the theory predicts that SHC behaves differently depending on the magnitude of the Coriolis

force. Solitary wave trains resulting from the superposition of the superharmonic waves

develop more rapidly with small Coriolis forces. This thesis is focused upon extending the

simulations of the SHC theory to more realistic circumstances by examining their evolution

on the f -plane and β-plane as they propagate from a localized forcing region. We also study

three-dimensional (3D) effects associated with the internal tides having finite spanwise extent.

The formation of solitary wave trains is examined as it depends on wave amplitude, ocean

depth, Coriolis forces, and the spanwise extent of the waves. We adopt the South China Sea

and the ocean southwest of Hawaii as the research domains in our numerical models. The

models use the background stratification based on the ocean measurements in the respective

domains. Simulation results are compared to in-situ observations and satellite images.

The equations of motion and theory for internal tides are described in Chapter 2. The

numerical models and analysis methods used in this thesis are introduced in Chapter 3. The

2D and 3D simulation results from those models are presented in Chapter 4 and 5, respectively.

Lastly, discussion and conclusions are given in Chapter 6.
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Chapter 2

Theory

This chapter lays the groundwork for the theory used in this study. Section 2.1 introduces

the equations of motion and the approximations applied in this study. In Section 2.2, the

background stratification profiles for the two ocean domains, South China Sea and Hawaiian

Ocean, are constructed based on the observed stratification, to be used in the numerical

simulations. Section 2.3 reviews the superharmonic cascade theory (SHC) and its predictions

compared to shallow water theory.

2.1 Equations of Motion

This section begins with the fundamental equations of motion (Section 2.1.1), followed by a

review of the Boussinesq approximation (Section 2.1.2) and the f -plane and β-plane approx-

imations (Section 2.1.3). Based on the study’s focus, these equations are further simplified

into 2D representations, presented in Section 2.1.4.

2.1.1 Primitive equations of the ocean

The primitive equations of the ocean are a set of nonlinear partial differential equations,

derived from the Navier-Stokes equations assuming background hydrostatic balance and ac-

counting for the effects of rotation, stratification, and external forces. The equations are

derived from the continuity equation, conservation of momentum and conservation of internal

energy.
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The continuity equation represents the conservation of mass, stating that the rate of

change of mass per unit volume of a fluid parcel is equal to the rate at which mass is flowing

into or out of that fluid parcel. Mathematically this can be written as

∂ϱ

∂t
+∇ · (ϱu) = 0 . (2.1)

where ϱ is the water density, u ≡ (u, v,w) is the velocity of the fluid, and ∇ ≡ ( ∂
∂x ,

∂
∂y ,

∂
∂z )

is the gradient operator here written in Cartesian co-ordinates. With the definition of the

material derivative, D( )/Dt = ∂( )/∂t+ u · ∇( ), the continuity equation can be written as

Dϱ

Dt
= −ϱ∇ · u . (2.2)

For the ocean, we assume the fluid to be incompressible, so that Dϱ/Dt = 0 if the advection

and diffusion of heat and salinity are ignored as well. Thus, from (2.2) we have

∇ · u = 0 . (2.3)

The conservation of momentum states that the rate of change of momentum per unit

volume of a fluid parcel is equal to the sum of the forces acting on it. Here, only the forces

relevant for the dynamics in the ocean will be considered, the most significant being buoy-

ancy, pressure gradient, and Coriolis forces, though forces due to viscous stress will also be

considered. The equation for the conservation of momentum can thus be written as:

ϱ
Du

Dt
= −∇P + gϱ− (2Ω)× (ϱu) + µ∇2u , (2.4)

where P is pressure, g = −gẑ where g is the gravitational constant and ẑ is the vertical

direction, Ω is the angular velocity of the Earth’s rotation, ∇2 = ∇ · ∇ is the Laplacian

operator, and µ is the molecular viscosity. The first term on the right hand side represents

the pressure gradient force, the second term is the gravitational force, the third term is the

Coriolis force caused by the Earth’s rotation, which plays an important role for the fluid

motions that have a long time-scale compared to the Earth’s rotational period. The viscous
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damping force is added to the last term on the right hand side. Though it is generally

negligible for large-scale motions in the ocean such as internal waves, numerical simulations

often include them to damp numerical noise.

In (2.4), it is typical to separate the (total) density and pressure into background and

fluctuation parts: ϱ = ρ̄(z)+ ρ(z, t) and P = p̄(z)+ p(z, t), where ρ̄ and p̄ respectively denote

background density and pressure in a hydrostatic fluid, and ρ and p denote fluctuation density

and pressure. In a stationary fluid, the conservation of momentum equation (2.4) implies that

the pressure and density are constant at each horizontal level and vary vertically according to

dp̄

dz
= −gρ̄ . (2.5)

which is the statement of background hydrostatic balance. Since the ocean is a stratified fluid

with density increasing with depth, we can define the buoyancy frequency (also known as

Brunt–Väisälä frequency) as

N(z) =

√︄
− g

ρ0

dρ̄

dz
, (2.6)

where ρ0 is the characteristic density of the fluid. If the density increases linearly with depth,

N is constant and the fluid is said to be uniformly stratified. The real ocean is non-uniformly

stratified which we will show is necessary for the internal tide to excite superharmonics.

The internal energy equation generally describes the advection and diffusion of heat and

salinity in the ocean. Using the linearized equation of state for sea water to cast this equation

in terms of (total) density gives

Dϱ

Dt
= κ∇2ϱ , (2.7)

in which κ is the diffusivity. Writing density in terms of background and fluctuation parts

gives a term, d2ρ̄/dz2, from the Laplacian operator on the right hand side of (2.7), which

is negligible in comparison to the Laplacian acting on fluctuation density. Thus, by defining

buoyancy, b ≡ −gρ/ρ0, we can write the equation of internal energy conservation as

Db

Dt
= −N2w + κ∇2b . (2.8)
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In the momentum equations, the last diffusive term in (2.8) is negligible in the ocean but is

included in simulations for numerical stability.

In the above we have worked with density. But at great depths in the ocean, one should

use the potential density, which accounts for the influence of pressure, given by

ϱpot = ϱ+ ϱ0
z

Hρ
, (2.9)

in which ϱ0 is the reference density (at surface) and Hρ = 229km is the density scale height.

In what follows, we continue to use the term “density”, but it is understood that we are

referencing to the potential density.

2.1.2 Boussinesq approximation

The Boussinesq approximation can be invoked if the density varies only slightly over the depth

of a stratified fluid. This is a good approximation for the ocean whose density typically varies

by only a few percent from top to bottom. The Boussinesq approximation states that the

density can be treated as a constant characteristic density, ρ0, in all terms of the primitive

equations except for the buoyancy term. This simplifies the equations of motion for the fluid

while still capturing the important effects of the buoyancy force. By invoking the Boussinesq

approximation and using (2.5), the momentum conservation equation (2.4) can be written

explicitly in 3D Cartesian co-ordinates as

Du

Dt
− fv = − 1

ρ0

∂p

∂x
+ ν∇2u, (2.10)

Dv

Dt
+ fu = − 1

ρ0

∂p

∂y
+ ν∇2v, (2.11)

Dw

Dt
= − 1

ρ0

∂p

∂z
+ b+ ν∇2w, (2.12)

where ν ≡ µ/ρ0 is the kinematic viscosity, and f is the Coriolis parameter appearing as a

consequence of approximating the Coriolis force in (2.4) onto a spherical shell, as will be

discussed in the following subsection.
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2.1.3 f-plane and β-plane approximation

The Coriolis parameter f in the momentum equations (2.10) and (2.11) is generally given by

f = 2Ωe sin θ (2.13)

in which Ωe is the angular velocity of Earth’s rotation and θ is the latitude. While f varies

with latitude, we can treat it as a constant if we are considering motion that does not deviate

too far north or south about a fixed latitude, θ0. Then we use the f -plane approximation

where f ≈ f0 ≡ 2Ωe sin θ0 is treated as a constant in the momentum equations.

For motion that extends more widely about a fixed latitude, we use the β-plane approxi-

mation. In terms of a Cartesian coordinate with x going from west to east and y going from

south to north, a linear approximation of f in (2.13) using the Taylor expansion about θ = θ0

gives:

f ≈ 2Ωe sin θ0 + 2Ωe(cos θ0)(θ − θ0) (2.14)

≈ 2Ωe sin θ0 + 2Ωe(cos θ0)(y/Re) (2.15)

where y is the (north-south) distance that the fluid deviates from the fixed latitude θ0 and

Re is the Earth’s radius. Defining β ≡ 2Ωe cos θ0/Re, we can write

f ≈ f0 + βy , (2.16)

which is the Coriolis parameter in the β-plane approximation.

To adapt the β-plane approximation for our numerical simulations of the internal tide

that propagates south-west of Hawaii, we define a new coordinate system, as illustrated in

Figure 1.1. The along-wave propagation direction and the spanwise direction define a right-

handed coordinate system with the x-axis oriented clockwise 30◦ from the south and the

y-axis oriented clockwise 30◦ from the east. Hence, the x-direction (and u for the motion)

refers to the along-wave direction and the y-direction (and v) refers to the spanwise direction.
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Consequently, the β-plane approximation in (2.16) becomes

f ≈ f0 − βxx, (2.17)

where x = 0 at the latitude of θ0 = 18.39◦ is the location of the Farfield site located south-west

of Hawaii, f0 = 2Ωe sin θ0 ≃ 4.60 × 10−5s−1, β = 2Ωe cos θ0/Re ≃ 2.17 × 10−11(m s)−1, and

thus βx = β cos 30◦ ≃ 1.88× 10−11(m s)−1 is the β parameter in the new coordinate system.

The minus sign in front of βx in (2.17) indicates that f decreases as x increases equatorward.

2.1.4 2D approximation

To simplify the problem further, as appropriate for some aspects of this study, we consider

the motion of inviscid, non-diffusive, incompressible Boussinesq fluid on the β-plane in a

horizontally periodic channel bounded above and below by free-slip boundary conditions.

The motion is assumed to be two dimensional, with fields varying in the x and z directions.

Motions may occur in the y direction as well as in x and z, but the fields have no y dependence.

The 2D momentum equations are

Du

Dt
− fv = − 1

ρ0

∂p

∂x
, (2.18)

Dv

Dt
+ fu = 0 , (2.19)

Dw

Dt
= − 1

ρ0

∂p

∂z
+ b , (2.20)

where D
Dt =

∂
∂t + u ∂

∂x + w ∂
∂z is the material derivative and v is the spanwise velocity.

From internal energy conservation (2.8), by neglecting diffusion, we have

Db

Dt
= −N2w . (2.21)

The spanwise (y-component of) vorticity is defined as ζ ≡ ∂zu−∂xw where the subscripts

z and x denote the corresponding partial derivatives. Taking the curl of the momentum
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equations in the x- and z- directions gives the time evolution of spanwise vorticity:

Dζ

Dt
= − ∂b

∂x
+ f

∂v

∂z
. (2.22)

For a 2D incompressible fluid, we may define the streamfunction, ψ, such that the x- and

z-velocities are

u = −∂ψ
∂z

, w =
∂ψ

∂x
. (2.23)

From these, and the definition of ζ, it follows that

ζ = −∂
2ψ

∂x2
− ∂2ψ

∂z2
. (2.24)

By manipulating (2.3), (2.18), and (2.21), the equations can be written as a linear operator

(denoted as L) acting on the streamfunction ψ, which is forced by nonlinear terms (Baker

and Sutherland, 2020):

Lψ = ∇ · F , (2.25)

where L ≡ ∂tt∇2+N2∂xx+f
2∂zz and F ≡ ∂t(uζ)−∂x(ub)+f∂z(uv), in which the subscripts,

t, x and z, denote the corresponding partial derivatives, u = (u,w), and ∇ = (∂x, ∂z). This

equation forms the starting point for the theory of superharmonic excitation by internal tides,

as discussed in Section 2.3.

2.2 Stratification

In this section, the observed stratification profiles in the Hawaiian Ocean (Section 2.2.1) and

the South China Sea (Section 2.2.2) are examined, and the analytic profiles are approximated

for use in numerical simulations. We use observations of potential density profiles at two

locations in the ocean to derive semi-empirical formulae for N(z) to be used in this study.

2.2.1 Observed stratification southwest of Hawaii

Internal tides generated by the submarine ridges near Hawaii were well-observed at the gen-

eration site and far to the southwest. At the Farfield site (see Figure 1.1), dominant mode-1
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Figure 2.1: (a) Potential density obtained from the density and salinity profiles measured during UTC Nov
26th - 28th 2010, at the location of latitude 17.61◦N and longitude 168.51◦W (location shown in Figure
1.2). (b) Comparison of the squared buoyancy frequency (observed N2 profile) calculated directly from the
potential density shown in (a) and the piecewise N2 profile used in the numerical simulations with upper
and lower parts shown separately. (Unpublished data provided by Shaun Johnston, Scripps Institution of
Oceanography)

internal tides were observed to propagate southwest towards the equator (Rainville and Pinkel,

2006). This inspires one of the interests of this study on the behaviour of internal tides trav-

elling from a latitude where |f | > 0 towards the equator where f = 0.

The observed mean potential density profiles and corresponding squared buoyancy fre-

quency are taken from the ”EXperiment on Internal Tide Scattering” (EXITS) performed

about 1000km southwest of Hawaii (unpublished data provided by Shaun Johnston, Scripps

Institution of Oceanography). From one of the locations (17.61◦N, 168.51◦W) on the north

(Hawaii-facing side) of the Line Ridge, we constructed the background stratification profile

for the numerical simulations in the ocean near Hawaii. The observation location is shown

in Figure 1.2 and the profiles are plotted in Figure 2.1. The dataset contains the potential

density profile (Figure 2.1a) obtained from the measured pressure, temperature and salinity

profiles. From this we calculate the squared buoyancy frequency N2 according to (2.6) in

which ρ̄ is the potential density. This is plotted in Figure 2.1b. The jagged appearance of the
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Parameters Values

z0 −120 m

z∗ −650 m

N0 0.0206 s−1

N∗ 0.0038 s−1

σ1 182 m

σ2 685 m

Table 2.1: Values for the parameters that give the best-fit piecewise exponential profile for N2 in the
Hawaiian Ocean

N2 profile is the result of taking derivatives of coarse, discrete data. To obtain a smoother N2

profile to be used in our simulations, we assume that N2 can be represented by a piecewise

exponential function:

N2(z) =

⎧⎪⎪⎨⎪⎪⎩
N2

0 e
(z−z0)/σ1 z∗ ≤ z ≤ 0,

N2
∗ e

(z−z∗)/σ2 −H ≤ z < z∗,

(2.26)

where N2(z0) = N2
0 and N2(z∗) = N2

0 e
(z∗−z0)/σ1 = N2

∗ , such that the two exponential func-

tions meet at z = z∗. Here z0 ≈ −100m represents the depth of the surface-mixed layer and

we set z∗ = −650m. We find σ1 and σ2 that best fit the observations. The comparison of the

observed N2 and our piecewise exponential N2 profiles with the parameters given in Table

2.1 is plotted in Figure 2.1b. We do not consider a surface-mixed layer for stratification in

this study as it was demonstrated in Sutherland and Dhaliwal (2022) that the existence of a

surface-mixed layer has little effect on the vertical structure of low-mode internal waves and

the superharmonics they generate.

2.2.2 Observed stratification in the South China Sea

It is well-documented that solitary waves form during the evolution of westward propagating

internal tides generated at Heng Chun Ridge and Lan Yu Ridge in the South China Sea (e.g.

Farmer et al., 2009; Li et al., 2009). This inspires our interest in investigating the formation

of solitary wave trains westward of this location.

The observation data are taken from two ocean measurements from Farmer et al. (2009)
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Figure 2.2: Temperature (left panel) and salinity (right panel) profiles from CTD measurements (Farmer
et al., 2009) are shown in grey and the mean profiles are in black.

and Johnston et al. (2013). The first dataset measured the full-depth stratification from 5

deployments around 21◦N and 119◦E during 2005 and 2007, which is used as primary data

to approximate the analytic profile of stratification in the numerical simulations. The second

dataset only measured the stratification around the top 300 meters of the ocean at 20.71◦N

and 120.45◦E during UTC June 14th to July 1st 2011 (data provided by Johnston et al.,

2013). This is used to validate the structure of our empirically fit stratification profile near

the surface.

From the mean profiles of potential temperature and salinity in Figure 2.2, Farmer et al.

(2009) derived the potential density from which the buoyancy frequency profile was con-

structed. In the case of the South China Sea, we construct the analytic profile of N2 also

based on the piecewise-exponential function defined in (2.26), which gives a much better

match to the observation than a single exponential function. Since we only have the data of

potential density and the data are so noisy that they do not give a smooth derivative (dρ̄/dz)

for the calculation of N2, the plan to fit N2 to observations is to integrate the two exponential
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Figure 2.3: (a) Comparison of the observed potential density profile to our approximation (observation 1
from Farmer et al. (2009) and observation 2 from Johnston et al. (2013)). (b) A piecewise exponential
function of squared buoyancy frequency obtained based on our approximation to the actual potential density
profile.

functions defined in (2.26) to find the corresponding analytic profile of potential density:

ρ̄(z) =

⎧⎪⎪⎨⎪⎪⎩
−ρ0N2

0σ1

g [e−z0/σ1(ez/σ1 − ez∗/σ1)] + ρ∗ z∗ ≤ z ≤ 0,

−ρ0N2
0σ2

g {e−(z∗/σ2)−((z0+z∗)/σ1)[ez/σ2 − e−H/σ2 ]}+ ρb −H ≤ z < z∗,

(2.27)

where ρ0 is the characteristic potential density, ρ̄(z∗) = ρ∗, and ρ̄(−H) = ρb. Then we

use this analytic potential density profile to match the observed potential density by finding

the best-fit σ1 and σ2. Putting these values in (2.26), we obtain the analytic N2 profile for

the simulations. The parameters that give the best-fit result are listed in Table 2.2. The

comparison of our analytic approximation to the observed potential density profile and the

corresponding buoyancy frequency profile is shown in Figure 2.3.

20



Parameters Values

ρ∗ 1026.14 kg m−3

ρb 1027.66 kg m−3

z0 −30.5 m

z∗ −362 m

N0 0.0157 s−1

N∗ 0.0065 s−1

σ1 186 m

σ2 351 m

Table 2.2: Values for the parameters that give the best-fit piecewise exponential profile for N2 in the South
China Sea.

2.3 Superharmonic cascade theory

This subsection introduces the theory for the superharmonic excitation of internal modes by

the internal tide and the superharmonic cascade that follows. The theory employs weakly

nonlinear theory and the long wave approximation. The predictions related to this study are

then summarized.

2.3.1 Weakly nonlinear theory

We describe the initial structure of a small-amplitude internal tide (which we refer to as

the “parent wave”) with a streamfunction. With a prescribed horizontal wavenumber, k, and

maximum vertical displacement amplitude, A0, the streamfunction giving the initial structure

of the parent wave is

ψ(1)(x, z, t) =
1

2

ωd

k
αa1(T )ψ̂1(z)e

i(kx−ωt) + c.c., (2.28)

where c.c. is the complex conjugate, ω is the frequency of the parent wave, d is the character-

istic depth of the near-surface stratification (e.g. d = σ1), α ≡ A0/d is the non-dimensional

initial amplitude of the parent wave, a1(T ) represents the slow time, T , of the evolution of

the amplitude, to be determined later, and ψ̂1(z) gives the vertical structure, normalized to

have a maximum 1. Explicitly, ψ̂1(z) is determined by solving the eigenvalue problem by
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substituting (2.28) into Lψ(1)=0 in (2.25):

ψ̂
′′
1 + k2

N2 − ω2

ω2 − f2
ψ̂1 = 0, ψ̂1(−H) = ψ̂1(0) = 0, (2.29)

where ψ̂
′′
1 denotes the second-order derivative of ψ̂1. For given k, the eigenvalue corresponding

to the eigenfunction solution, ψ̂1(z), is the frequency ω. Eq.(2.29) is solved numerically by

a Galerkin method (Sutherland, 2016). We only consider mode-1 internal waves and their

superharmonics for which ψ̂(z) > 0 for −H < z < 0.

As studied theoretically by Baker and Sutherland (2020), the parent wave self-interacts

during its propagation: the nonlinear terms on the right hand side of (2.25) result in the

excitation of a superharmonic vertical mode-1 wave with a horizontal wavenumber 2k. The

parent wave and its 2k-superharmonic can then interact and create higher superharmonics

with integer multiples (3k, 4k, etc.) of the wavenumber of the parent wave as well as modifying

the parent wave itself. The amplitude modulation of the parent wave is given by the nondi-

mensional function a1(T ) in (2.28) where T = ϵt is a slow timescale with ϵ ≪ 1, describing

the slow time variation of the parent wave due to interactions with the 2k-superharmonic.

The nondimensional slow time evolution parameter ϵ is defined as the difference between

the square of the forcing frequency 2ω of the 2k-superharmonic and the square of the natural

frequency ω2 of a vertical mode-1 internal tide with wavenumber 2k (Baker and Sutherland,

2020):

ϵ ≡ (2ω)2 − ω2
2

(2ω)2
. (2.30)

The frequencies 2ω and ω2 are not necessarily equal: their mismatch depends on k and the

Coriolis parameter (Sutherland and Dhaliwal, 2022), as is shown in Figure 2.4. Therefore, ϵ

measures the degree of the off-resonance between the forcing of the 2k-superharmonic by the

parent wave and the natural frequency of this superharmonic. As |f | goes to zero (for the

waves approaching the equator), ϵ goes to zero, indicating that the superharmonic forcing is

in near perfect resonance.

The 2k and higher superharmonics likewise can be represented by the streamfunction

ψ(n)(x, z, t) =
1

2

ωd

k
αan(T )ψ̂n(z)e

in(kx−ωt) + c.c., n = 1, 2, 3 ... , (2.31)
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Figure 2.4: Dispersion relations for the mode-1 wave in the stratification of southwest Hawaii approximated
by the piece-wise exponential function described in Section 2.2.1, with (a) f = 0.00206N0 (based on
the latitude of Farfield site) and (b) f = 0 (equator). And (c) The comparison of ϵ with these two
Coriolis parameters, superimposed by ϵ for the wave in the South China Sea with the piecewise-exponential
stratification described in Section 2.2.2 and f = 0.0033N0 based on the latitude of the west propagating
waves in the South China Sea.

in which n = 1 for the parent wave and n = 2, 3, ... for the superharmonics. Likewise, the

vertical structure ψ̂n(z) is given by the solution to the eigenvalue problem:

ψ̂
′′
n + (nk)2

N2 − ω2
n

ω2
n − f2

ψ̂n = 0, ψ̂n(−H) = ψ̂n(0) = 0, n = 1, 2, 3 ... , (2.32)

where ωn is the natural frequency of a vertical mode-1 wave with wavenumber nk and we

define ω ≡ ω1. Therefore, the streamfunction that characterizes the waves including the

parent wave and its superharmonics in the domain is given by the superposition as

ψ(x, z, t) ≈
∞∑︂
n=1

ψ(n)(x, z, t), n = 1, 2, 3 ... . (2.33)

Given the streamfunction for the parent wave and its superharmonics, expressions for other

fields can be found from the polarization relations, as listed in Table 2.3.

2.3.2 Long wave approximation

As internal tides generally have long wavelengths compared to ocean depth, for sufficiently

small n, we can approximate ψ̂n ≃ ψ̄ independent of n. The vertical structure function
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Field Polarization relation

ψ anψ̂n

u −anψ̂
′
n

v i f
nωanψ̂

′
n

w inkanψ̂n

b N2 k
ωanψ̂n

ζ k2

ω2
N2−f2

ω2
n−f2 ω

2
nanψ̂n

Table 2.3: Expressions for the polarization relations. The actual fields are obtained by multiplying by
1
2α

ωd
k e i(kx−ωt) and adding the complex conjugate. Primes on ψ̂n denote first-order derivative with respect

to z .

satisfies a different dispersion depending upon the value of f (Sutherland and Yassin, 2022):

ψ̄
′′
=

⎧⎪⎪⎨⎪⎪⎩
−(1/c2)N2ψ̄ f = 0,

−κ2(N2/f2 − 1)ψ̄ |f | > 0,

(2.34)

where ψ̄
′′
represents the second derivative of ψ̄ with respect to z, and c and κ are the eigen-

values. The corresponding dispersion relation is

ω2 ≃

⎧⎪⎪⎨⎪⎪⎩
c2(nk)2 f = 0,

f2
[︁
1 + (nk)2/κ2

]︁
|f | > 0,

(2.35)

For background stratification given by the piecewise exponential in (2.26) with the parameters

listed in Table 2.2, the eigenvalues are c ≃ 0.0691HN0 when f = 0 and κ ≃ 0.0474H−1 when

f = 0.0033N0 for the parent wave with a wavenumber k ≃ 0.125H−1

The nonlinear forcing resulting from the interaction of a pair of waves with wavenumbers

mk and lk drives a wave with wavenumber nk, such that n = l +m (Sutherland and Dhali-

wal, 2022). According to (2.25), we can find the equation for the forcing of waves having

wavenumber nk written as

Lψ(n) = ∇ · [∂t(umζl)− ∂x(umbl) + f∂z(umvl)], n = m+ l, (2.36)

By manipulating (2.36), Sutherland and Dhaliwal (2022) came up with a hierarchy of

24



equations written explicitly in terms of the amplitude functions an:

dan
dT

− i(n− 1)ωBnan = −iα
ω

ϵ

∑︂
m+l=n,m≥l

Emlamal, n = 1, 2, 3, . . . , (2.37)

in which n ≥ 1, both m and l are non-zero integers in the sum, and a−l = a⋆l , the complex

conjugate of al. B1 = 0 and Bn = 2
n(n−1)

(nω)2−ω2
n

(2ω)2−ω2
2
, n = 1, 2, 3, . . . are defined here for conve-

nience. The coupled coefficients Eml are real and positive constants. The general expressions

are given by Sutherland and Dhaliwal (2022) and are simplified here by the assumption of

long waves (2.35):

Eml ≃

⎧⎪⎪⎨⎪⎪⎩
n
2d

[︂∫︁ 0
−H N2ψ̄

2
dz

]︂−1 [︂∫︁ 0
−H

dN2

dz ψ̄
3
dz

]︂
, f = 0,

n
2d

1
1+k2/κ2

[︂∫︁ 0
−H N2ψ̄

2
dz

]︂−1 {︂(︂
k2

κ2 + n2ml+m2+l2

2n2ml

)︂ [︂∫︁ 0
−H

dN2

dz ψ̄
3
dz

]︂}︂
, |f | > 0.

(2.38)

If m = l which makes n = 2m, for f = 0 case, we have half the value of Eml for the same

value of n. As demonstrated in (2.38), the dominant contribution to Eml in the long wave

limit comes from integrals involving dN2/dz, which explains why the background must be

non-uniformly stratified to excite superharmonics.

The most significant changes of the parameters in (2.37) occur for ϵ, which decreases

rapidly as f/N0 goes to zero, resulting in different behaviour for superharmonic excitation

depending on latitude (Sutherland and Dhaliwal, 2022). This effect can be explored by the

β-plane approximation which allows f to decrease to zero as waves approach the equator,

which is one goal of this thesis.

2.3.3 Theory predictions

Sutherland and Dhaliwal (2022) showed that successively higher superharmonics become ex-

cited if α/ϵ is large, where α is the nondimensional amplitude given in (2.28). When α/ϵ≪ 1,

the influence of the superharmonic on the parent wave is negligible, and thus the slow time

evolution of the parent’s amplitude a1(T ) ≃ 1 is approximately constant. Although the 2k-

superharmonic will possibly still be excited, it will just grow and decay periodically with

frequency ϵω and an amplitude proportional to α/ϵ≪ 1. The frequency ϵω is called the “beat

25



frequency”. When α/ϵ ≳ 1, the 2k-superharmonic can grow to a relatively large amplitude

such that higher superharmonics can be excited, thereby resulting in superharmonic cascade.

Though realistic internal tides in the oceans have small amplitude α, the ratio α/ϵ can still be

larger than 1 due to ϵ being small. This is particularly true near the equator where ϵ is very

small for f ≃ 0 (see Figure 2.4). With small ϵ, the beat frequency ϵω is small and hence the

2k-superharmonic can remain larger for a longer time during each “beat”, over which time

higher superharmonics can grow to significant amplitude. By numerically solving (2.37) and

(2.38), it was shown that the superposition of superharmonics in time forms a (single) solitary

wave if α/ϵ ≃ O(1), and forms a solitary wave train if α/ϵ ≫ 1 (Sutherland and Dhaliwal,

2022).

The property of horizontally long internal tides forming solitary waves has been previously

explored through extensions of shallow-water theory (Helfrich and Melville, 2006), namely the

Ostrovsky (hereafter the KdV-f) equation (Ostrovsky, 1978). Based on the the Korteweg–de

Vries (KdV) equation, the KdV-f equation includes the effect of background rotation. It is a

nonlinear partial differential equation for the vertical displacement of the waves. Different from

the superharmonic cascade theory that focuses on energy transferring into successively smaller

scales by exciting higher harmonics, the KdV-f equation emphasizes the balance between

nonlinear steepening and dispersion of long waves. Sutherland and Dhaliwal (2022) performed

numerical comparisons between the KdV-f and the superharmonic cascade theories, showing

that the superharmonic cascade model has good quantitative agreement with this widely-

accepted model for shallow-water waves. That study was performed in two dimensions on

the f -plane with an initial parent wave that was horizontally periodic. Here we extend their

numerical work by examining the evolution of internal waves on the β-plane that are externally

forced at a fixed spatial location with either a constant or temporally modulated amplitude.

We further extend their work by examining three dimensional spanwise-localized internal tides

that may disperse laterally.
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Chapter 3

Numerical Methods

The theory for superharmonic excitation by internal tides given in Chapter 2 assumed the

waves were small amplitude and horizontally periodic on the f -plane. To extend these pre-

dictions to realistic internal tides, we perform fully nonlinear numerical simulations. Three

distinct numerical models are used, which model 2D horizontally periodic waves on the f -

plane (Section 3.1), 2D forced waves on the β-plane (Section 3.2), and 3D streamwise-periodic

spanwise-localized waves on the f -plane (Section 3.4), respectively. The 2D model in Section

3.1 is the original model that has previously been used to simulate the superharmonics excited

by nonlinear interactions within internal waves (Sutherland, 2016). This model was adapted

to have numerical forcing that generated vertical mode-1 waves at a fixed horizontal location

and was extended to include wave evolution on the β-plane to examine the evolution of the

waves as they approach the equator. The 3D model (Section 3.4) more realistically shows the

lateral spreading of internal tides that emanate from the source as a spanwise-confined beam.

Below, after introducing each model, we describe the methods used to analyze the results

from the 2D and 3D simulations.

3.1 2D horizontally periodic waves on f-plane

3.1.1 Equations and numerical dissipation

We did not directly solve the x- and z-momentum equations (2.18) and (2.20) to get u and

w because we would additionally need to solve a diagnostic equation for pressure. Instead,
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making use of incompressibility for a 2D flow, the code computed the evolution of the spanwise

vorticity ζ, which could be inverted to find streamfunction by (2.24). The velocity fields, u

and w, were then derived using (2.23).

The time evolution of spanwise vorticity ζ, spanwise velocity v, and buoyancy b on the

x-z plane are given explicitly by

∂ζ

∂t
= −u∂ζ

∂x
− w

∂ζ

∂z
− ∂b

∂x
+ f

∂v

∂z
+ νDζ, (3.1)

∂v

∂t
= −u∂v

∂x
− w

∂v

∂z
− fu+ νDv, (3.2)

∂b

∂t
= −u ∂b

∂x
− w

∂b

∂z
−N2w + κDb. (3.3)

These are extensions, respectively, of (2.22), (2.19), and (2.21) to include viscous and diffusive

terms. However, the diffusion operator D is a Laplacian operator acting only upon horizontal

Fourier components (see below) with horizontal wavenumber greater than a cut-off wavenum-

ber, nck, where k is the prescribed horizontal wavenumber of the parent internal tide. We

typically used a cut-off of nc = 128. The Reynolds number, Re = H2N0/ν, was set to 105

and the Prandtl number, Pr = ν/κ, was set to 1, where ν is the kinematic viscosity and κ is

the diffusivity. Although these numbers are much smaller than realistic values in the oceans,

they were added to the equations for the purpose of numerical stability, serving to damp

numerical noise. Since diffusivity was not applied to disturbances with wavenumbers smaller

than nck, the parent wave and excited superharmonics that reached significant amplitudes

were effectively inviscid and non-diffusive.

3.1.2 Discretization and resolution

The fields and parameters in the code were all non-dimensional. All the length-related units

were scaled by the ocean depth H and all time-related units were set by the characteristic

buoyancy frequency N0. The code initialized the waves in a rectangular domain with horizon-

tally periodic boundary conditions and free-slip conditions at the top and bottom boundaries.

The domain was discretized on an evenly spaced grid in the z-direction and in terms of

their horizontal Fourier components in the x-direction (spectral representation). In horizon-

tal Fourier space, partial derivatives with respect to x were replaced by algebraic expressions,
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e.g.:

∂

∂x
→ ikn, (3.4)

where kn denotes the n-th horizontal wavenumber in the domain, i.e. kn = nK0, where

K0 = 2π/L and L is the length of the domain. The horizontal Fourier decomposition was

rapidly converted into real space using fast Fourier transforms. In the vertical, for partial

derivatives with respect to z, we used a centered, second-order finite-difference scheme.

The resolution typically consisted of 257 vertical levels and 1024 horizontal Fourier com-

ponents, corresponding to 257×2049 grid points in real space. Various resolutions were tested

and it was found that doubling the resolution from 257×2049 in both directions did not

quantitatively influence the results.

3.1.3 Initialization

The background stratification was set by the piecewise exponentials described in Section

2.2.1 and 2.2.2. The model initialized a horizontally periodic parent wave with a prescribed

horizontal wavenumber k and vertical displacement amplitude A0 in the domain at t=0. The

streamfunction characterizing the parent wave at t = 0 was given by

ψ(x, z, 0) =
1

2

ω

k
A0ψ̂(z)e

ikx + c.c. =
ω

k
A0ψ̂(z) cos(kx). (3.5)

Using the polarization relations (Table 2.3), the other initial basic state fields, u, w, v, b, and

ζ, were prescribed.

3.1.4 Time step

For time-stepping, based on the numerical stability conditions, an Euler forward scheme was

used for diffusive terms and a leapfrog scheme was employed to advance in time the non-

diffusive terms:

ζ(x, z, t+∆t) = ζ(x, z, t−∆t) + 2∆tζ̇, (3.6)
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where ζ̇ is the time derivative of ζ given by right-hand side of (3.1) without the diffusive

term and ∆t is the time step. Likewise, this scheme was used for the b and v fields. One

loop of the leapfrog scheme involved ne = 20 small time steps of ∆t = 0.05N−1
0 . So time was

advanced by 1×N−1
0 after each loop. To avoid splitting errors, the last time step in each loop

was obtained by averaging the fields from the leapfrog steps at ne∆t and the field found from

taking an Euler backstep by ∆t from the field at step (ne + 1)∆t:

ζ(x, z, t21) = ζ(x, z, t19) + 2∆tζ̇, (3.7)

ζ(x, z, t20) =
[ζ(x, z, t18) + 2∆tζ̇] + [ζ(x, z, t21)−∆tζ̇]

2
, (3.8)

in which the subscript of t denotes the sequence of time step in a leapfrog loop.

3.2 2D forced waves on the β-plane

The excitation of superharmonics and the formation of solitary wave trains are influenced by

the Coriolis force (Sutherland and Dhaliwal, 2022) with longer wave trains developing if the

Coriolis parameter is smaller (e.g. waves near the equator). To examine the smooth transition

of the wave evolution as the Coriolis parameter becomes smaller, the original 2D model was

extended to include rotation on the β-plane where the Coriolis force varies continuously with

latitude. The β-plane approximation used in the model is given by (2.17). This allows us

to improve our understanding of the evolution of internal tides, particularly for those that

propagate toward the equator. This model is also used to examine the spatial evolution of

waves as they propagate away from their generation site. The results can thus be compared

with observations of the internal tide evolving to form a solitary wave, for example, in the

South China Sea.

3.2.1 Numerical forcing

To examine the spatial evolution of waves as they propagate away from their generation site,

we added numerical forcing to generate the waves in an initially stationary background. The

waves were excited over the model ocean depth at a fixed horizontal location which we denoted
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Figure 3.1: Domain setup with an example of velocity field in a simulation with temporally forced waves
at x = 0.

by x = 0 (see Figure 3.1). The amplitude of forcing smoothly increased in time from zero

to either a constant or modulated value in time. The modulation was intended to model the

effect of the amplitude modulation of the semi-diurnal tide between spring and neap tides.

With the implementation of numerical forcing in a horizontally periodic domain, we must

have two sponge layers at both sides of the domain to dissipate the signals of the waves before

they reached the left and right sides of the domain (see Figure 3.1). The details of these

adaptations will be discussed in what follows. Any other aspects of the model not mentioned

in this section are the same as described in Section 3.1.

The numerical forcing terms in the three main equations for vorticity (ζ), spanwise velocity

v, and buoyancy b respectively are Fζ , Fv, and Fb which are added to the right-hand side of

the three evolution equations, (3.1), (3.2), and (3.3). These are derived from the polarization

relations (Table 2.3), and are given explicitly below

Fζ = Af (t)kω
2N

2 − f2

ω2 − f2
ψ̂ sin(ωt)∆(x), (3.9)

Fv = −Af (t)f
ω

k
ψ ′̂ cos(ωt)∆(x), (3.10)

Fb = Af (t)N
2ωψ̂ sin(ωt)∆(x). (3.11)

Here ω is the forcing frequency, which we take to correspond to that of the semi-diurnal lunar

tide (M 2). ∆(x) represents the horizontal span of the forcing, which typically we apply only

to the grid point where x = 0. The time-varying forcing amplitude of vertical displacement
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is given generally by

Af (t) = {1
2
AF0[tanh(

t− t0
δt

) + 1]}{1 +AM cos[ωM (t− t1)]}, (3.12)

An example of the time-varying forcing amplitude Af is plotted in Figure 3.2(a). In all 2D

forced-waves simulations, t0 and δt are set to 500N−1
0 and 125N−1

0 , respectively. We vary

the vertical displacement amplitude, AF0, and its relative periodic modulation, AM , with the

modulation frequency ωM . The hyperbolic tangent function stabilizes the code by allowing the

forcing amplitude to increase smoothly from near zero to the establishment of steadily forced

waves over a time t1 = 2t0 = 1000N−1
0 , corresponding to ≃ 13.5 hours for N0 = 0.0206s−1.

The modulation is thus shifted in time by t1 to begin at its maximum once the forcing reaches

steady state. The mean forcing amplitude is AF0, whereas the resulting forced waves have

observed amplitude A0, which is measured at a quarter wavelength to the right of the forcing

location. This is typically double AF0. The discrepancy between A0 and AF0 is a result of

the application of the forcing to a vertical slice at a single horizontal location. This signal is

subsequently damped immediately after the forcing is applied. When presenting the results,

we will refer to A0 as the maximum forcing amplitude, since it reflects the actual amplitude

of the waves generated by the forcing.

We estimated the relative modulation amplitude and frequency in (3.12) based on the

Farfield observations south-west of Hawaii (Rainville and Pinkel, 2006) and the observations

in the South China Sea (Johnston et al., 2013): AM ≃ 0.5 or 0 for having modulation effective

or not, and ωM ≃ 0.000235N0 for N0 = 0.0206s−1, corresponding to ≃ 15 days, which is the

modulation period of the semi-diurnal tide. We also varied the relative vertical displacement

amplitude A0 from 0.002H to 0.012H in the experiments of the South China Sea to examine

the dependence of solitary wave trains on the amplitude of the forcing. For H = 2500m, this

corresponds to internal tides initially having vertical displacement amplitudes between 5m

and 30m.
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3.2.2 Sponge layers

Since the signals of the waves excited by the numerical forcing can propagate in both left and

right directions, it is necessary to have sponge layers on both sides of the domain. In the

sponge layers, the diffusion operator D in (3.1), (3.2) and (3.3) acts on all horizontal Fourier

components: D = να(x)∇2, where α(x) is the relative increase in viscosity toward the left

and right of the domain. The relative viscosity was increased smoothly to have progressively

higher value from within the domain at the edge of each sponge layer to the sides of the

domain. For example, in the left sponge layer, α(x) is given explicitly by

α(x) =
1

2
α0[tanh(−

x− x1
δx

) + 1] x < xright. (3.13)

This is plotted in Figure 3.2(b). In (3.13), xright = −20H, x1 = −31H, δx = 2.5H, and

α0 = 6 gives the maximum increase of the viscosity in the sponge layer. These values allows

the sponge layer to cancel the wave signals effectively without destabilizing the numerical

model.

3.3 Analysis methods for 2D simulations

To characterize the structure of solitary wave trains that form during the propagation of

internal tides, we measured the maximum vertical displacement of isopycnals at a fixed point

in the domain. The vertical displacement, ξ, is given by ξ = −b/N2, in which b is buoyancy.

Specifically, the measurement was taken at a depth zm where the vertical structure of the

streamfunction, and hence vertical displacement, was greatest (ψ̂ = 1). In the simulations

of the South China Sea, this occurred where zm = −700m. The horizontal location of the

measurement was set according to ocean observations so that simulations could be compared

to observations. For example, in simulations representative of the South China Sea, the

measurement was taken at x = 162.5km and x = 287.5km. These correspond to the P1 and

P2 observation locations (see Figure 1.4) in Farmer et al. (2009), where the ocean depth is

about 2500m. An example of the vertical displacement over time at P2 is shown in Figure

3.3. From this we determined the number of waves (denoted by red diamonds) in a solitary
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Figure 3.2: (a) Forcing amplitude over time given by (3.12) with the parameters A0 = 0.001H, t0 =
500N−1

0 , δt = 125N−1
0 , AM = 0.5, ωM = 0.0003N0, and t1 = 1000N−1

0 . (b) Viscosity modulation α(x)
in the left sponge layer given by (3.13) with the parameters α0 = 6, xright = −20H, x1 = −31H, and
δx = 2.5H.
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Figure 3.3: Vertical displacement ξ over time, measured at the P2 location (x = 287.5km and zm =
−700m) in the domain, from a 2D simulation of forced waves with the parameters: A0 = 40m, k ≃
4.8 × 10−5m−1, ω ≃ 1.44 × 10−4s−1 and f0 ≃ 5.2 × 10−5s−1. The background stratification N2 is given
by the piecewise exponential (2.26) with the parameters listed in Table 2.2.

wave train as well as the minimum and maximum vertical displacements (denoted by ξmin

and ξmax).

The simulations are also used to compare the velocity associated with solitary waves. Time

series of the along-wave velocity (u), as shown for example in Figure 3.4, can be compared

with ocean observations. In the South China Sea, for example, we use the observation data

close to the P1 location (see Figure 1.4) provided by Johnston et al. (2013), who measured

the velocities in time over the top 500m of the ocean (see Section 4.4). Likewise, we use the

observations from EXITS by Shaun Johnston, Scripps Institution of Oceanography.

Inspired by observations of south-westward internal tides emanating from Hawaii, we

compared the simulations of internal tides on the f -plane with different fixed values of f ,

with simulations on the β-plane for which f varies continuously in space. The simulations on

the β-plane predicted the distance from the source at which solitary waves began to form and

evolved into a solitary wave train.
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Figure 3.4: Time series of u velocity, measured at the P1 location in the domain, from a 2D simulation
of forced waves with the parameters: A0 = 40m, k ≃ 4.8 × 10−5m−1, ω ≃ 1.44 × 10−4s−1 and f0 ≃
5.2 × 10−5s−1. The background stratification N2 is given by the piecewise exponential (2.26) with the
parameters listed in Table 2.2.

3.4 3D model

The 3D model more realistically simulated the evolution of internal tides by considering the

influence of waves having a finite spanwise extent leading to lateral spreading even as the waves

possibly steepen to form solitary waves. Because these simulations required more memory to

resolve the spanwise structure, and consequently took longer to run, we restricted this study

to streamwise periodic waves on the f -plane, for which the horizontal extent of the domain

could be smaller.

3.4.1 Equations

The fully nonlinear 3D simulations were achieved by numerically solving the time evolution

of velocities in the x and y direction, denoted as u and v, respectively, along with the vertical

displacement ξ of the isopycnals, given in terms of perturbation density, ρ, by ξ = −ρ/(dρ̄/dz).

The equations for horizontal momentum and internal energy, neglecting viscosity and diffu-
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sion, are

∂u

∂t
= −∂u

2

∂x
− ∂vu

∂y
− ∂wu

∂z
+ f0v −

1

ρ0

∂p

∂x
, (3.14)

∂v

∂t
= −∂uv

∂x
− ∂v2

∂y
− ∂wv

∂z
− f0u− 1

ρ0

∂p

∂y
, (3.15)

∂ξ

∂t
= −∂uξ

∂x
− ∂vξ

∂y
− ∂wξ

∂z
+ w. (3.16)

These simulations were performed on the f -plane, so f0 is constant. The dynamic pressure,

p, and vertical velocity, w, were found by the diagnostic equations:

1

ρ0
∇2p =−

[︄
∂2

(︁
u2

)︁
∂x2

+
∂2

(︁
v2
)︁

∂y2
+
∂2

(︁
w2

)︁
∂z2

]︄
− 2

[︃
∂2(uv)

∂x∂y
+
∂2(uw)

∂x∂z
+
∂2(vw)

∂y∂z

]︃
+ f

∂v

∂x
− f

∂u

∂y
−N2 ∂ξ

∂z
,

(3.17)

and

∂w

∂z
= −∂u

∂x
− ∂v

∂y
. (3.18)

Equation (3.17) is given by the divergence of the momentum equations, (2.10), (2.11), and

(2.12). Equation (3.18) is from the incompressibility of the fluid, given by (2.3).

Equations (3.14) – (3.16) do not include Laplacian diffusion, usually used for numerical

stability. Since numerical noise in the 3D model grew faster compared to the 2D models,

we instead applied an exponential filter to (3.14), (3.15), and (3.16) at every time step as

described in Section 3.4.3.

3.4.2 Discretization and resolutions

The 3D model used the same non-dimensionalization scheme as the 2D models: the length-

related units were scaled by the ocean depth H and all time-related units were set by the

characteristic buoyancy frequency N0. The 3D model used a rectangular domain with hori-

zontally periodic boundary conditions and free-slip upper and lower boundary conditions. A

spectral representation was used for the horizontal fields, being decomposed into their Fourier

components in the x and y directions. The vertical fields were decomposed into Fourier cosine
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series for u and v and Fourier sine series for ξ. Explicitly, for sine vertical structure,

ξ̂(z) =

n=nz∑︂
n=1

ξn sin(mnz), mn = n(π/H) and n = 0, 1, 2, · · · , (3.19)

in which nz is the number of vertical modes.

The spatial domain was of size Lx ×Ly ×Lz. The streamwise dimension was set by Lx =

2πnx/kx, where nx and kx were the number of wavelengths and the horizontal wavenumber

in the streamwise direction, respectively. The vertical dimension was set as Lz = H. The

spanwise dimension was specified directly as Ly = 500H or 1000H depending on the spanwise

width of the waves. Typically, 512 and 256 grid points were used in the streamwise and

vertical dimensions, respectively. Depending on the spanwise width of the waves, 256 or 512

grid points were used in the spanwise direction.

3.4.3 Exponential filter

In this approach, the Fourier components with wavenumber higher than a specific cut-off

wavenumber, ncutk, were damped exponentially with increasing wavenumber (Subich et al.,

2013). Taking Fourier components in the x direction as an example, a Fourier field fn was

filtered by fn → χfn for n ≥ ncut in which

χ(n) =

⎧⎪⎪⎨⎪⎪⎩
1, n < ncut,

exp
[︂
−e1

(︂
n−ncut

nmx−ncut

)︂e2]︂
, n ⩾ ncut.

(3.20)

Here e1 is the filter strength, e2 is the filter order, and nmx = 256 is the total number of

Fourier components in the x direction. We used the default values provided in Subich et al.

(2013): ncut = 0.6nmx, e1 = 20, and e2 = 2. Using this filter and the provided values for the

coefficients, numerical noise was damped effectively without affecting the wavenumbers with

non-negligible amplitude.
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3.4.4 Initialization and time-stepping

As an extension to the 2D model in Section 3.1, a parent wave with a prescribed horizontal

wave number k and vertical displacement amplitude A0 was initialized in the domain at

t = 0. The background stratification profile was identical to the 2D model, constructed by

our piecewise exponential described in Section 2.2.1 and 2.2.2. The parent wave was a plane

wave in the x direction with amplitude decaying as a Gaussian in the y direction centered at

y = 0. In particular, the vertical displacement, ξ, characterizing the parent wave at t = 0 was

given by

ξ(x, y, z, 0) =
1

2
A0e

− 1
2
( y
σy

)2
ψ̂(z)eikx + c.c., (3.21)

where ψ̂ is the vertical structure of the streamfunction given by the solution of the eigenvalue

problem (2.32), and σy is the standard deviation of the Gaussian. With the polarization

relations listed in Table 2.3, we also have the u and v fields at t = 0 given by

u(x, y, z, 0) = A0e
− 1

2
( y
σy

)2 ω

k
ψ̂
′
(z)eikx + c.c. (3.22)

v(x, y, z, 0) = iA0e
− 1

2
( y
σy

)2 f0
k
ψ̂
′
(z)eikx + c.c., (3.23)

in which ψ̂
′
is the first-order derivative of ψ̂ with respect to z.

Figure 3.5 shows cross-sections of the initial streamwise velocity field (u) which has four

streamwise waves in the x direction of wavelength λx = 50H and spanwise width is 2σy = 40H.

The wavelength and width were estimated from satellite observations of solitary waves in the

South China Sea for which λx ≃ 125km and 2σy ≃ 100km.

The time scheme for the 3D model employed the same leapfrog method as used in the 2D

model for the non-diffusive terms (see Section 3.1.4).

3.4.5 Analysis methods

In the 3D simulations, our primary focus was on the effects of spanwise-finite internal tides

on their evolution. For example, Figure 3.6 shows vertical and horizontal cross-sections taken

from the simulation shown in Figure 3.5 at time t = 3000N−1
0 corresponding to about 53

hours with N0 = 0.0157s−1. This shows the formation of solitary waves even while the waves
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Figure 3.5: Initial stage of the streamwise velocity field u(x , y , z , 0): (a) top view, on the xz-plane at y = 0,
and side view, on the xy -plane at z = 0, from the simulation with the parameters: ocean depth H = 2500m,
the initial vertical displacement amplitude A0 = 75m, the horizontal wavenumber k0 ≃ 4.8× 10−5m−1, the
spanwise width σy = 50km, the wave frequency ω ≃ 1.47× 10−4s−1. The background stratification N2 is
given by the piecewise exponential (2.26) with the parameters listed in Table 2.2.

spread laterally.

We began by conducting a qualitative comparison between the 2D and 3D simulations

of horizontally periodic waves through the examination of the surface velocity and vertical

cross-sections of horizontal velocity at y = 0. Next, we performed quantitative comparisons

by examining the time series of maximum vertical displacement and streamwise velocity at

y = 0. Also, we used the same method as the 2D simulations to analyze the solitary wave

trains in the 3D simulations at y = 0 to make comparisons between the two. In the 2D-forced

simulations of waves in the South China Sea, measurements were taken to correspond to the

P1 and P2 locations (see Figure 3.1). Since the 3D model simulates the initialized parent wave

in a horizontally periodic domain, the P1 and P2 locations were approximately associated with

an evolution time, set by the time to propagate at the horizontal group velocity, cgx, from the

forcing location to the P1 and P2 locations. For example, with the predicted group velocity

in the x direction, cgx ≃ 2.55ms−1, the waves would take ≃ 17.7 hours (1000N−1
0 ) to reach P1

and ≃ 41 hours (2320N−1
0 ) to reach P2 from the estimated generation site (122◦E in Figure

1.4).

To examine the spanwise spreading of the waves, we determined the location in time of

the wave edge, ymax(t), defined as where the peak surface u velocity at y is 1% of the peak u

velocity at y = 0 and at time t. This is indicated by the black-dashed line in Figure 3.6 which

plots the surface u velocity after the waves have evolved for about 53 hours (3000N−1
0 ). Apart

from the wave edge, the spanwise spreading of the waves also showed a surface signature which

is visible in satellite images (e.g. see Figure 1.4). These bright-banded surface signatures are

caused by horizontally convergent flow associated with horizontal surface current gradients
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(e.g. ∂u/∂x), making the water surface rougher. The minimum range of the surface current

gradients to be visible by satellites is 10−4–10−3s−1 (Alpers, 1985). We chose the critical

threshold, (∂u/∂x)c = 2 × 10−4s−1, and measured the width of the surface signature where

∂u/∂x > (∂u/∂x)c. This value of (∂u/∂x)c was chosen from the typical range so that we

were able to show the growth and decay of the width of the surface signature, which could be

compared with satellite observations.

As the waves propagated in the x direction, their shape in the y direction bent to form an

arc, which we found to be well-approximated about y = 0 by a parabola. We characterized

this deformation by fitting at each time a parabola of the form x = ay2 + x0 to the contours

where ∂u/∂x = 0. These contours indicated the peaks of solitary waves between the positive

and negative flows, for example, the green curve in Figure 3.6 (c). The radius of curvature,

Rc, was then calculated by Rc = 1/(2a). Thus a measure of the evolution of the radius of

curvature in time is given by Rc(t). These analysis were applied to a range of simulations

with parameters appropriate for the South China Sea. The results are presented in Chapter

5.

41



−100.936 0 100.936

x/H

−1

−0.5

0

z/
H

(a) Side view of u at t = 3000N−1
0

−0.02

0

0.02

u
/(

H
N

0
)

−100.936 0 100.936

x/H

−250

0

250

y
/H

(b) Top view of u at t = 3000N−1
0

−0.02

0

0.02

u
/(

H
N

0
)

𝒚𝐦𝐚𝐱

−100.936 0 100.936

x/H

−250

0

250

y
/H

(c) Top view of ∂u/∂x at t = 3000N−1
0

−0.02

0

0.02

u
/(

H
N

0
)

Figure 3.6: (a) side-view snapshot of the streamwise velocity, u, at y = 0. (b) top-view snapshot of the u
field at z = 0 with the width edge, ymax ≃ 450km, plotted in black-dashed line. (c) top-view snapshot of the
∂u/∂x field at z = 0 with the contour (∂u/∂x = 0) plotted in green. These are from the same simulation
shown in Figure 3.5 but at a later time, t = 3000N−1

0 (corresponding to ≃ 53 hours with N0 = 0.0157s−1),
with the parameters: ocean depth H = 2500m, the initial vertical displacement amplitude A0 = 75m,
the horizontal wavenumber k0 ≃ 4.8 × 10−5m−1, the spanwise width σy = 50km, the wave frequency
ω ≃ 1.47 × 10−4s−1. The background stratification N2 is given by the piecewise exponential (2.26) with
the parameters listed in Table 2.2.
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Chapter 4

2D Simulation Results

In this chapter, simulations results from the 2D models are presented. Although the simu-

lations were performed with nondimensional parameters based on depth scale, H, and time

scale, N−1
0 , the results here are given in dimensional units relevant to observations in the South

China Sea (Farmer et al., 2009; Johnston et al., 2013) and southwest of Hawaii (through the

unpublished EXITS data provided by Shaun Johnston, 2010). To validate the new 2D model

that simulated the 2D forced waves, its results are compared to the original 2D model of

horizontally periodic waves in Section 4.1. After the model validation, in Section 4.2, the

model of 2D forced waves is utilized to examine the evolution of internal tides on the f -plane

and β-plane, based on the parameter regime from the EXperiment on Internal Tide Scatter-

ing (EXITS) observation. The simulation on the β-plane is then compared to the EXITS

observation in Section 4.3. Given that the internal tides in the South China Sea primarily

propagate westward along a fixed latitude, in Section 4.4, we compare the simulation on the

f -plane with the observations from the P1 location. Lastly, we present the analysis of the

solitary wave trains formed during the evolution of internal tides in the South China Sea in

Section 4.5.

4.1 2D Horizontally periodic waves versus 2D forced waves

In this section, we show the results from the original 2D-periodic-wave model described in

Section 3.1 and compare the results from the 2D-forced-wave model described in Section 3.2.
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Figure 4.1: 2D horizontally periodic waves: u velocity fields and vertical displacement ξ at z = −703m at
t = 0 (a & b) and t ≃ 41 hours (c & d), u time series at x = 0 (e), and vertical displacement ξ at x = 0
over time (f) plotted in blue, superimposed with ξ from a 2D-forced wave simulation plotted in red. The
initialization or the numerical forcing used the parameter regime of the South China Sea as listed in Table
4.1 and the background stratification N2 is given by the piecewise exponential (2.26) with the parameters
listed in Table 2.2.

Parameters Symbols Values

Ocean depth H 2500 m

Maximum buoyancy frequency N0 N0 = 0.0157 s-1

Initial vertical displacement amplitude A0 40 m

Frequency of internal tides ω 0.000144 s-1

Wavenumber of internal tides k 0.000048 m-1

Coriolis parameter f0 0.00005181 s-1

Table 4.1: Parameter regime of the South China Sea. Here, H and N0 were chosen from the observations
(see Section 2.2.2), A0 was estimated from the amplitude of solitary waves in the South China Sea, ω and
k were the typical values for the internal tides in the South China Sea, and f0 was calculated based on the
latitude θ0 ≃ 21◦.
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Using the model of horizontally periodic waves described in Section 3.1, the u velocity

field at t = 0 for one wavelength of the 2D horizontally periodic wave (see Figure 4.1(a)) was

initialized using the parameter regime of the South China Sea as listed in Table 4.1. The

background stratification N2 was constructed by the piecewise exponential (2.26) with the

parameters listed in Table 2.2. The corresponding vertical displacement shown in 4.1(b) is

plotted at z = −703m which is the depth of maximum streamfunction and inflection of u.

Figure 4.1 (c) and (d) show the stage at a later time, t = 41 hours, which is the time predicted

for the waves to reach the P2 location in the South China Sea (see Figure 1.4). At this time,

a solitary wave train formed, resulting from the superposition of the superharmonics.

Figure 4.1 (e) and (f) illustrate the time series of the u field and ξ over one semi-diurnal

period between 38 and 50 hours after the start of the simulation. For comparison, we also

performed a simulation of a forced wave with the same parameters on the f -plane, as described

in Section 3.2. The forced wave is predicted to reach the P2 location after propagating for

≃ 41 hours, so we examine ξ of the horizontally periodic wave after this 41-hour evolution.

The vertical displacement ξ of the forced wave is plotted in red in Figure 4.1(f) for comparison

with the horizontally periodic case in blue. It was measured at the P2 location and at the

same depth. The start of the time series of the forced waves was taken to be t0 = 57 hours to

account for the time over which the forcing increased to its prescribed maximum (see Section

3.2.1). Compared to the horizontally periodic waves, the forced waves exhibited an equal

number of peaks and a comparable magnitude of ξ within the solitary wave train. However,

the distance between the trailing downward peaks in the solitary wave train is smaller for the

forced wave than for the initially-periodic wave. Overall, we find the 2D model for forced

waves qualitatively and somewhat quantitatively reproduces the results obtained from the

original 2D-periodic-wave model.

4.2 Effect of β-plane

As anticipated by theory, the evolution of internal tides behaves differently on the β-plane

than on the f -plane. In particular, we expect solitary wave trains to develop more rapidly

and to grow to larger amplitude with more waves in the wave train as the Coriolis parameter
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Figure 4.2: Comparison of the vertical displacement fields, ξ, of the internal tides originated from the
Hawaiian Ridge evolving on the β-plane and on the f -plane with different Coriolis parameters. The constant
Coriolis parameter f0 ≃ 4.6× 10−5s−1 set based on the Farfield location, ocean depth H = 5000m, forcing
amplitude A0 ≃ 15m, and the background stratification was set up using the piecewise exponential (2.26)
fitted to the observation dataset from EXTIS, as plotted in Figure 2.1.
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f becomes smaller (Sutherland and Dhaliwal, 2022). Because this study is motivated by

the observed internal tide that propagated southwest Hawaii toward the equator, we use the

stratification from the EXITS observation measured about 1000km southwest Hawaii (Shaun

Johnston, 2010).

The simulated vertical mode-1 internal tides originated near the Hawaiian Ridge and

propagated southwest towards the equator. In the β-plane simulations, f is given by (2.17)

with f0 ≃ 4.60 × 10−5s−1 and βx ≃ 1.88 × 10−11(m s)−1. The constant Coriolis parameter,

f0, was set based on the location of the Farfield site (see Figure 1.1) where the waves were

observed to propagate horizontally with a dominant vertical mode-1 structure. For the f -plane

simulations, we treated f as constant and ran three cases with f = f0, f0/2, and 0.

Figure 4.2 compares the evolution of waves on the β-plane with different cases on the

f -plane mentioned above. The results are presented by the vertical displacement fields from

the simulations of the 2D-forced waves (as described in Section 3.2). Only the domain of

interest is shown here. Figure 4.2(a) shows the results of the simulation on the β-plane where

the Coriolis parameter decreases continuously towards the equator. Solitary waves began to

show up after the waves propagated half way along the domain and formed a solitary wave

train with large vertical displacements of ≃ 51m near the equator. In a simulation with

a relatively large constant Coriolis parameter (f = f0) on the f -plane (Figure 4.2(b)), the

signals of solitary waves were weak and no solitary wave train formed. If f = f0/2 (Figure

4.2(c)), solitary wave trains began to form half way along the domain and peaks within the

wave train grew stronger, eventually resulting a maximum vertical displacement of ≃ 30m in

the ocean. For f = 0, illustrated in Figure 4.2(d), solitary wave trains showed up quickly after

the waves propagated away from the generation location and successive peaks became distinct

with the vertical displacement around 30m. Though the maximum vertical displacement with

f = 0 is similar to that with f = f0/2, there are more peaks in a solitary wave train with

f = 0 as the waves are approaching the equator, indicating more significant signals of solitary

waves.

The results demonstrate that in a more realistic simulation with the β-plane employed,

solitary wave trains could form as the internal tides originated from the Hawaiian Ridge ap-

proaching the equator. However, neither observations nor satellite images have seen evidence
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for the internal tide transforming into solitary waves. One possible reason is that when prop-

agating over elevated submarine topography (e.g. the Line Ridge, located closely southwest

of the EXITS site), the mode-1 waves are scattered into dominant mode-2 waves which are

less likely to form solitary waves, as noted in the unpublished report from EXITS by Shaun

Johnston (2010).

4.3 EXITS observation versus simulation

As described in Section 1.2.2, EXITS performed ocean measurements near the Line Ridge,

about 1000km southwest of Hawaii (unpublished data provided by Shaun Johnston, Scripps

Institution of Oceanography). From the measured potential density field, we computed the

corresponding vertical displacement of isopycnals, which are plotted in Figure 4.3(a). We

chose the location at 17.61◦N and 168.51◦W which was located before the tides interacted

with the leading flank of the Line Ridge (see Figure 1.2). The time window of the observations

started at UTC 22:13, Nov 26th 2010. From this time, we traced back when the tides were

generated at the Hawaiian Ridge and determined the tidal phase at that time. Predicting

the M2-generated internal tides propagated at a constant group velocity cg ≃ 3.1ms−1, they

would arrive at the EXITS observation site after propagating for about 43 hours from the

Farfield. At this time, the internal tides at the Hawaiian Ridge were generated by the spring

tide, according to National Oceanic and Atmospheric Administration (NOAA). At the Farfield

site, the corresponding vertical mode-1 waves during the spring tide had a half peak-to-peak

vertical displacement of isopycnals ≃ 25m. The numerical forcing was thus utilized to force

the mode-1 waves with this amplitude at the modelled Farfield site (x = 0 in the domain). The

simulation results measured at the location corresponding to the EXITS observation site are

shown in Figure 4.3(b). The vertical displacement from the observation and simulation at the

depth z = −300 are compared in Figure 4.3(c). The simulated internal tides formed relatively

weak solitary waves with a downward vertical displacement, |ξmin|, about 40m, as shown in

the blue line in Figure 4.3(c). There was a downward peak revealed by the observation with

|ξmin| ≃ 40m at about 7.5 hours as shown in red in Figure 4.3(c), which was almost the same

compared to the simulation. However, the structure of solitary waves was not clearly seen in
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Figure 4.3: Comparison of the vertical displacement fields, ξ, from the EXITS observation and the simula-
tions on the β-plane with the following parameters: ocean depth H = 5000m, forcing amplitude A0 ≃ 15m,
and the background stratification based on the piecewise exponential (2.26) fitted to the observation dataset
from EXTIS, as plotted in Figure 2.1. The observation was performed at 17.61◦N and 168.51◦W starting
from UTC 22:13 Nov 26th (unpublished data provided by Shaun Johnston, Scripps Institution of Oceanog-
raphy). The thick black lines in (a) and (b) indicate ξ at z = −300m, which were compared in (c) with
observation data plotted in red and simulation results plotted in blue.
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Figure 4.4: Comparison of the time series of the u velocity from the surface to z = −500m between the
observation (a) and simulation (b). The observation was taken near the P1 location in the South China
Sea at 20.71◦N and 120.45◦E during UTC June 14th to July 1st 2011. Simulation results are measured at
the location in the model domain corresponding to the P1 location. Ocean depth in the simulation is set
to H = 3000m according to the measured ocean depth at the P1 location. Other parameters are set based
on the parameter regime of the South China Sea as listed in Table 4.1 and the background stratification
N2 is given by the piecewise exponential (2.26) with the parameters listed in Table 2.2.

the observation, with only a downward peak observed at around 7.5 hours. Among several

factors, this discrepancy may be attributed to observational limitations, such as insufficient

time resolution and the lateral spreading of the realistic waves that were not captured by the

2D model (though see Chapter 5).

4.4 Observation versus simulation in the South China Sea

The in-situ measurements of velocity and stratification near the P1 location in the South China

Sea (see Figure 1.4) were conducted by Johnston et al. (2013). From these, we extracted the

observed u velocity time series from the surface to a depth of z = −500m, which is plotted in

Figure 4.4(a). This is compared to the simulation shown in Figure 4.4(b) from the model of the

2D-forced waves described in Section 3.2. The simulation used the ocean depth, H = 3000m,
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according to the measured ocean depth at the P1 location. Since the internal tides in the

South China Sea propagate mainly westward along a fixed latitude, the f -plane approximation

was adopted here. The amplitude modulation in the numerical forcing described in Section

3.2.1 was included to simulate a more realistic internal tide between spring and neap cycles.

The tidal phase in both the observations and simulations was adjusted to start at the spring

tide.

With a mixed signal of semi-diurnal tide and diurnal tide, the observed waves have a

smaller frequency than the simulated semi-diurnal tide. The observation still shows a strong

signal of solitary waves forming, resulting in the narrow and large peaks in the u time series,

particularly during the phase of largest-amplitude internal tides (0 ≲ t ≲ 125 hours). The

simulation also shows a similar pattern of solitary waves with comparable magnitude. How-

ever, because the simulated waves are purely semi-diurnal, the solitary waves have narrower

peaks. As the amplitude decreases and the tides enter neap phase, the signal of solitary waves

diminishes in both the observation and simulation. After around 300 hours (≃ 13 days),

the simulation shows a significant growing signal of solitary waves as the wave amplitude in-

creases. However, in the observation solitary waves have only weakly redeveloped at this time,

as indicated by a narrowing duration of positive u being apparent at about 325 hours. The

discrepancy between simulation and observation primarily arises from the longer modulation

period in the observation due to the mixed signals of semi-diurnal and diurnal tides; in the

simulation the modulation period was precisely set at 14 days, and only semi-diurnal tides

were simulated.

4.5 Solitary wave analysis

It is well-documented that solitary wave trains form in the South China Sea during the

westward propagation of internal tides generated at the Lan Yu Ridge and Heng Chun Ridge.

Consequently, this region has been extensively examined by observational oceanographers.

Therefore, we chose the South China Sea as the domain for our simulations to investigate

the formation of solitary wave trains. Our models require a constant ocean depth H, but H

changes in reality. In the South China Sea, H decreases from 3000m at the generation site
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Figure 4.5: Vertical displacement ξ over time measured at the P2 location and z = −703m as it depends
on the scaled amplitude of the numerical forcing A0: (a) 10m, (b) 20m, (c) 30m, (d) 40m, (e) 50m, and
(f) 60m. Other parameters are kept constant based on the parameter regime of the South China Sea listed
in Table 4.1 and the background stratification N2 is given by the piecewise exponential (2.26) with the
parameters listed in Table 2.2. In all cases, the time series starts at 40 hours, being the time for waves to
travel from the forcing location to P2.

of the internal tides to 1500m over a westward distance ≃ 440km. Thus we vary H as well

as forcing amplitude in different simulations to explore their influence on the excitation of

solitary waves. In these experiments, we used the same background stratification N2, given

by the piecewise exponential (2.26) with the parameters listed in Table 2.2. The simulations

were conducted using the 2D-forced-wave model described in Section 3.2. Waves were forced

at x = 0, and their structure was examined at x = 287.5km corresponding to the observation

site P2 (see Figure 1.4).

Figure 4.5 shows the vertical displacement, ξ, over time, measured at the P2 location and

at depth z = −703m, from simulations with different amplitudes of the numerical forcing. At

time t = 0, the forcing began to generate waves which propagated rightward in the domain

reaching the P2 location after approximately 41 hours as predicted by the time to travel to

P2 at the horizontal group velocity. Starting with small forcing amplitudes, solitary waves

did not form in (a) and barely formed in (b) because the forcing amplitudes were so small

that the nonlinear effects were very weak. In the simulation for which the forcing amplitude

was increased to A0 = 30m (Figure 4.5(c)), solitary wave trains began to form, having two or

three peaks in a wave train, and the magnitudes of displacement for these peaks grew to over

100m. This result is comparable to the observed number of peaks in a solitary wave train and
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Figure 4.6: Vertical displacement ξ over time measured at the P2 location and z = −703m as it depends
on the simulated ocean depth H: (a) H = 1500m and k ≃ 5.73 × 10−5m-1, (b) H = 2000m and
k ≃ 5.30×10−5m-1, (c) H = 2500m and and k ≃ 4.96×10−5m-1, (d) H = 3000m and k ≃ 4.90×10−5m-1,
and (e) H = 3500m and k ≃ 4.86× 10−5m-1. Other parameters are kept constant based on the parameter
regime of the South China Sea listed in Table 4.1 and the background stratification N2 is given by the
piecewise exponential (2.26) with the parameters listed in Table 2.2. In all cases, the time series starts at
40 hours, being the time for waves to travel from the forcing location to P2.

the maximum wave amplitude of 155m in the South China Sea at the P2 location as shown in

Figure 1.4 (Farmer et al., 2009). In simulations with larger forcing amplitude, more peaks in

the solitary wave train formed and the magnitude of vertical displacement grew dramatically,

as shown in (d)-(f).

Figure 4.6 shows the vertical displacement ξ at the same location from a series of simu-

lations in which the model ocean depth H had values between 1500m and 3500m. In these

simulations, the variation in depth reflects the real-world range of ocean depths in the South

China Sea where H decreases from over 3000m at the internal tides’ generation site to 1500m

approximately 444km westward. The observation locations, P1 and P2 (see Figure 1.4), were

situated in waters with depths of 3000m and 2000m, respectively. Other parameters are kept

constant in these five simulations. However, the internal tide frequency, ω, given by (2.29)

depended on the given wavenumber k, which is scaled by H in the model. To ensure that

we always force the semi-diurnal tides at the fixed frequency, ω ≃ 0.000145s−1, we adjusted

the wavenumber k to keep the same wave frequency in the five simulations with different

values of H. Consequently, the corresponding wavelength varied from 110km to 130km in

these simulations. This change in the wavelength of internal tides is reasonable as they are
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Figure 4.7: Dependence of number of waves (a, d) in a solitary wave train and the magnitude of maximum
(c, f) and minimum (b, e) vertical displacement on the numerical forcing amplitude and ocean depth from
2D simulations. Ocean depth H = 2500m in (a), (b), and (c). Forcing amplitude A0 = 40m in (d), (e),
and (f). Other parameters are set constant based on the parameter regime of the South China Sea as listed
in Table 4.1 and the background stratification N2 is given by the piecewise exponential (2.26) with the
parameters listed in Table 2.2. Error bars are shown in red.

observed to have a wavelength ≃ 100km in the South China Sea (Farmer et al., 2009). The

results are shown in Figure 4.6.

In shallower water, the signals of solitary wave trains were extremely strong, with over

six peaks in a wave train and downward displacements larger than 150m, as shown in Figure

4.6(a). In the simulations with a deeper ocean, the signals of solitary wave trains became

weaker, exhibiting fewer peaks in the wave train and slightly smaller downward displacement.

From the results in Figure 4.5 and 4.6, the dependence of number of waves (peaks) in

a solitary wave train and the magnitude of maximum (ξmax) and minimum (|ξmin|) vertical

displacement on the forcing amplitude and ocean depth is summarized in Figure 4.7. From

(a) to (c), both the number of peaks in a wave train and the amplitude of the peaks, especially

|ξmin|, increase significantly with forcing amplitude, demonstrating that the strength of soli-
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tary wave trains depends significantly on the forcing amplitude of the parent wave. This result

is expected since a parent wave with larger amplitudes will cause stronger nonlinear effects

resulting in stronger solitary waves forming during the evolution. Interestingly, (d) reveals

that the number of peaks decreases nearly asymptotically to three peaks with increasing ocean

depth. However, from (e) and (f), both the maximum and minimum vertical displacements

appear to be relatively insensitive to the variations in ocean depth in the 2D simulations.

As illustrated by the error bars in Figure 4.7 (c) and (f), the deviation of maximum vertical

displacement increases with increasing A0 and H, due to larger fluctuations of ξmax.
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Chapter 5

3D Simulation Results

In this chapter, simulation results from the 3D model described in Section 3.4 are presented.

Although the simulations were performed with nondimensional parameters based on depth

scale, H, and time scale, N−1
0 , the results here are given in dimensional units relevant to

observations in the South China Sea. To begin with, results from the 3D model are compared

to those from the 2D model simulating the horizontally periodic waves described in Section

3.1. In Section 5.2, the solitary waves from the 3D simulations are analyzed and compared

with those from the 2D simulations. Lastly, the characteristics of the spanwise evolution is

discussed in Section 5.3.

5.1 3D versus 2D horizontally periodic waves

In this section, we compare the simulations of the horizontally periodic waves from the 2D

model described in Section 3.1 and the 3D model described in Section 3.4.

The background stratification N2 is constructed by the piecewise exponential (2.26) with

the parameters listed in Table 2.2. We use the parameter regime of the South China Sea as

listed in Table 4.1. The initial states of the u velocity field and vertical displacement ξ at

z = −703m for one wavelength of the 3D horizontally periodic wave are shown in Figure 5.1

(a) and (b). The depth z = −703m is associated with the peak of the streamfunction and the

inflection point of the u velocity. Compared to the 2D waves shown in Figure 4.1 (a) and (b),

the initial vertical profile of u at y = 0 for the 3D wave is identical to that for the 2D waves
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Figure 5.1: 3D horizontally periodic waves with a spanwise width of σy = 50km: u velocity field and
vertical displacement at t = 0 (a & b) and t = 41 hours (c & d), u time series at x = 0 (e), and
vertical displacement ξ at x = 0 over time (f) plotted in blue, superimposed with ξ from another 3D waves
with σy = 150km plotted in green and a 2D horizontally periodic wave plotted in red. ξ was taken from
z = −703m. The initialization used the parameter regime of the South China Sea as listed in Table 4.1 and
the background stratification N2 is given by the piecewise exponential (2.26) with the parameters listed in
Table 2.2.
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in the streamwise direction as expected. However, in the 3D simulation, the lateral width of

the waves is finite with σy = 50km.

After evolving for 41 hours, which is the time predicted for the waves to reach the P2

location in the South China Sea (see Figure 1.4), the steepening of the wave trough associated

with the initiation of solitary waves is evident by the u velocity field and vertical displacement

in Figure 5.1 (c) and (d).

Figure 5.1 (e) and (f) illustrate the time series of the u field and ξ measured at the P2

location over one semi-diurnal period between 38 and 50 hours from the start of the simulation.

For comparison, ξ measured at the same location and depth from another 3D wave with

σy = 150km and a 2D wave simulated using the same parameters is plotted in green and red

in Figure 5.1 (f), respectively. The comparison clearly demonstrates a much weaker signal of

solitary waves in the 3D wave, due to the lateral dispersion caused by the spanwise spreading

of the 3D wave. For the 3D wave with a larger spanwise width of σy = 150km, the dispersion

by the spanwise spreading is slower, indicated by a stronger signal of solitary waves forming.

The influence of lateral spreading in the spanwise direction on the formation of solitary wave

trains will be examined in the next section.

5.2 Solitary wave analysis

Built on the analysis of solitary waves in the 2D simulations presented in Section 4.5, we

quantitatively compare the 3D results with 2D results in terms of the solitary waves in this

section. We used the same parameter regime of the South China Sea as the 2D simulations

for the 3D ones presented in this section. Also, the background stratification N2 in the

3D simulations was identical to that used in the 2D simulations, described by the piecewise

exponential (2.26) with the parameters in the South China Sea listed in Table 2.2.

To investigate the dependence of solitary waves on the amplitude of the parent wave,

we varied the initial vertical displacement amplitude, A0, in the 3D model for a series of

simulations. Again, we measured the vertical displacement, ξ, at z = −703m and the P2

location in the South China Sea (see Figure 1.4). The P2 location was estimated based on

the travel time of the waves (see Section 3.4.5). The spanwise width of the waves was fixed at
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Figure 5.2: Vertical displacement ξ over time measured at the estimated P2 location as it depends on the
initial maximum vertical displacement A0: (a) 37.5m, (b) 50m, (c) 62.5m, (d) 75m, (e) 87.5m, and (f)
100m. Other parameters are kept constant based on the parameter regime of the South China Sea listed
in Table 4.1 and the background stratification N2 is given by the piecewise exponential (2.26) with the
parameters listed in Table 2.2. In all cases, the time series starts at 40 hours, being the time for waves to
travel from the forcing location to the estimated P2 location for the 3D horizontally periodic waves.

σy = 50km and the ocean depth was H = 2500m. Other parameters were held constant and

identical to those for the 2D-wave simulations shown in Figure 4.5. The simulation results

are shown in Figure 5.2.

Due to lateral dispersion, as the waves propagate their centreline amplitude at y = 0

decays. This explains why the solitary waves are not so pronounced in the simulations of

the relatively small-amplitude waves, as shown in Figure 5.2 (a) and (b). A strong signal of

localized and deep solitary waves is evident when the initial vertical displacement amplitude,

A0, is 62.5m, as shown in Figure 5.2(c). The amplitude of these solitary waves is comparable

to the 2D results in Figure 4.5 (c) in which A0 is only 30m. As we further increase the initial

amplitude, the vertical displacement of the solitary waves, especially the maximum downward

displacement, |ξmin|, grows significantly. This trend is expected and similar to the 2D results.

If A0 is 100m (Figure 5.2 (f)), nonlinear effects become so significant that the displacement

becomes incoherent after 80 hours, with the code becoming numerically unstable to small-scale

disturbances shortly thereafter.

To investigate the dependence of solitary waves on the ocean depth, we varied H from

2000m to 3500m in the 3D model keeping A0 = 75m and σy = 50km fixed. The simulation

withH = 1500m is not included here because the waves broke immediately when we began the
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Figure 5.3: Vertical displacement ξ over time measured at the P2 location as it depends on the simulated
ocean depth H: (a) H = 2000m and k ≃ 5.30×10−5m-1, (b) H = 2500m and and k ≃ 4.96×10−5m-1, (c)
H = 3000m and k ≃ 4.90× 10−5m-1, and (d) H = 3500m and k ≃ 4.86× 10−5m-1. Other parameters are
kept constant based on the parameter regime of the South China Sea listed in Table 4.1 and the background
stratification N2 is given by the piecewise exponential (2.26) with the parameters listed in Table 2.2. In all
cases, the time series starts at 40 hours, being the time for waves to travel from the forcing location to the
estimated P2 location for the 3D horizontally periodic waves.
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Figure 5.4: Vertical displacement ξ over time measured at the estimated P2 location as it depends on
the initial spanwise width σy : (a) 50km, (b) 75km, (c) 100km, and (d) 125km. Other parameters are kept
constant based on the parameter regime of the South China Sea listed in Table 4.1 and the background
stratification N2 is given by the piecewise exponential (2.26) with the parameters listed in Table 2.2. In all
cases, the time series starts at 40 hours, being the time for waves to travel from the forcing location to the
estimated P2 location for the 3D horizontally periodic waves.

measurements, due to a large relative initial amplitude A0/H = 0.050 which intensified the

nonlinear effects. As in the 2D models, the frequency of the waves, ω, depends on the given

wavenumber k according to the eigenvalue problem in (2.29), with k scaled by H. Thus, we

adjusted k in these simulations to make ω constant corresponding to the frequency of the semi-

diurnal tide (see Section 4.5). Other parameters were kept constant. The vertical displacement

at the depth z = −703m and for time after 40 hours are shown in Figure 5.3. Qualitatively,

the crests of the solitary wave trains corresponding to ξmax do not significantly alter with

variations in ocean depth, while the maximum downward displacement |ξmin| increases with

increasing ocean depth. Additionally, as H increases, the crest of the solitary wave trains

exhibits less small-scale oscillations, for example, at the time t = 70± 3 hours.

To investigate the dependence of solitary waves on the initial spanwise width, we varied

σy in the 3D model, keeping A0 = 62.5m and H = 2500m fixed. The results for σy = 125km

(Figure 5.4 (d)) are only shown from t = 40–86 hours because the waves broke hereafter.

As demonstrated in Figure 5.4, when increasing σy, we can see larger magnitude of vertical
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Figure 5.5: Dependence of the magnitude of maximum and minimum vertical displacement on the initial
wave amplitude (a & b), ocean depth (c & d), and spanwise width (e & f) from 3D simulations. Initial wave
amplitude A0 = 75m in (c), (d), (e), and (f). Ocean depth H = 2500m in (a), (b), (e), and (f). Spanwise
width σy = 50km in (a), (b), (c), and (d). Other parameters are set constant based on the parameter
regime of the South China Sea as listed in Table 4.1 and the background stratification N2 is given by the
piecewise exponential (2.26) with the parameters listed in Table 2.2. Error bars are shown in red.

displacement from the downward peaks and more small-scale oscillations (e.g. see t = 70± 3

hours) along the wave crest. If σy = 125km, the downward peaks have a vertical displacement

≃ −200m which is comparable to the 2D simulation with similar initial wave amplitude (see

Figure 5.2 (f)). Also, during the early stages of the simulations (t = 50–60 hours), there are

multiple distinct downward peaks without small-scale oscillations in a solitary wave train.

This is similar to the structure of the 2D solitary waves except having fewer peaks. These

simulations indicate more substantial amplification of solitary waves for the internal tides

with larger spanwise extent, which is due to less dispersion by the spreading in the spanwise

direction (to be discussed in Section 5.3).

Summarized from the results shown in Figure 5.2 and 5.3, the dependence of the minimum

and maximum vertical displacement on the initial wave amplitude A0, ocean depth H, and

initial spanwise width σy is illustrated in Figure 5.5. This shows a similar dependence of the

vertical displacement on A0 and H to the 2D simulations. The magnitude of the minimum,

|ξmin|, and maximum, ξmax, vertical displacement has a near-linear growing trend with the

increasing A0 in both the 2D and 3D simulations (Figure 5.5 (a) and (b) V.S. Figure 4.7 (b)

and (c)). However, the growing trend is weaker in the 3D simulations due to the dispersion

caused by the lateral spreading. In the simulations with increasing H, |ξmin| moderately
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increases in the 3D simulations (see Figure 5.5 (c)). This is different from the 2D simulations

where |ξmin| slightly decreases with increasing H. ξmax varies little with increasing H in

the 3D simulations (see Figure 5.5 (d)), which is consistent with the 2D simulations. In the

simulations with increasing σy, as shown in Figure 5.5 (e) and (f), both |ξmin| and ξmax increase

substantially. Interestingly, indicated by the error bars, the general fluctuations decrease in

|ξmin| but increase in ξmax as we increase σy.

The most noticeable difference between the 2D and 3D simulations in terms of the solitary

wave trains is their structure. Compared to the 2D simulations, there are fewer peaks with

less dramatic downward displacement in a solitary wave train in the 3D simulations. From the

simulations shown in Figure 5.2(d)–(f) and Figure 5.3(a)–(d), a crest of a solitary wave train is

typically followed by only two peaks. The first peak is weak, and the second one is very strong

which always exhibits the greatest |ξmin| among other oscillations in a solitary wave train. As

for the crests, they display more small-scale fluctuations compared to the 2D simulations, and

the fluctuations are stronger if the initial wave amplitude is larger or the ocean is shallower,

as evidenced by more ripples appearing along the crests in the wave trains (e.g. see the wave

crests at around t = 70 hours in Figure 5.2 and Figure 5.3). This is due to more significant

nonlinear effects during the evolution of the waves with a larger relative wave amplitude

A0/H. The 2D solitary waves behave differently with this nonlinear effect by forming more

distinct and dramatic downward peaks within a solitary wave train. Although the amplitude

of the waves decays during their propagation in the 3D simulations due to the dispersion

caused by lateral spreading, the amplitude of the crests remain unaffected, exhibiting a nearly

constant upward vertical displacement in the solitary wave trains. However, the downward

displacement exhibits the most decay. Another major difference from the 2D results is that

solitary wave trains from the 3D model are more sensitive to the ocean depth in terms of

|ξmin| which increases with larger H in the 3D results (see Figure 5.5 (c)). This is opposite

to the 2D solitary wave trains for which |ξmin| decreases only slightly with increasing ocean

depth H, exhibiting a weak sensitivity to the ocean depth (see Figure 4.7 (e)).
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Figure 5.6: Edge of the waves, ymax, over time: (a) varying the initial spanwise width σy with the initial
vertical displacement A0 fixed and (b) varying A0 with σy fixed. ymax is defined as where the peak surface
u velocity at y is 1%. Other parameters are kept constant based on the parameter regime of the South
China Sea listed in Table 4.1 and the background stratification N2 is given by the piecewise exponential
(2.26) with the parameters listed in Table 2.2.
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Figure 5.7: Dependence of the spreading rate, calculated by linear fitting ymax over time from the five
simulations shown in Figure 5.6(a), superimposed with the best-fit exponential function in red.

5.3 Spanwise evolution

In this section, we focus on the spanwise evolution of waves characterized by their lateral

spreading (Section 5.3.1), radius of curvature (Section 5.3.2), and the width of surface sig-

nature (Section 5.3.3). If not specified, the parameters used in the 3D simulations are based

on the parameter regime of the South China Sea listed in Table 4.1. The background strat-

ification N2 is set by the piecewise exponential (2.26) with the parameters listed in Table

2.2.
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5.3.1 Lateral spreading

Figure 5.6 demonstrates the lateral spreading over time depending on the initial vertical

displacement A0 and the spanwise width σy by measuring the wave edge ymax which is defined

as where the peak surface u velocity at y is 1%. As illustrated in Figure 5.6 (a), the waves

with a smaller spanwise width σy disperse more rapidly in the spanwise direction than those

with a larger σy. On the other hand, with σy kept constant, the spreading rate does not vary

with different initial wave amplitude A0, as shown in Figure 5.6 (b). In all cases, ymax is able

to grow to over 350km after evolving for 45 hours in an idealized ocean. Comparing this to

the streamwise propagation, these internal tides with the predicted group velocity, cg ≃ 2.55m

s−1, can propagate about 410km in the streamwise direction over 45 hours. This suggests that

the range of the lateral dispersion of the internal tides is comparable with their streamwise

propagation.

The increasing trend of ymax over time is approximately linear, allowing the calculation

of the lateral spreading rate. By linear fitting ymax over time from the five simulations with

different initial spanwise width in Figure 5.6 (a), we determine the lateral spreading rate

from the slopes of these lines. These are plotted in Figure 5.7. The spreading rate shows an

exponential decay with increasing initial spanwise width.

5.3.2 Radius of curvature

The radius of curvature, Rc, is a spanwise characteristic of the internal tides, resulting from

the lateral bending of the surface u velocity to form an arc shape as seen from the top view on

the xy-plane at the z = 0 (see Figure 3.6b and Section 3.4.5). From two series of simulations,

we examined the dependence of Rc on the initial vertical displacement amplitude, A0, and

the spanwise width, σy. The results are shown in Figure 5.8, illustrating the change in Rc

over time by varying one parameter while keeping the other one fixed. Other parameters were

held constant. In Figure 5.8 (a), Rc starts at infinity and gradually decreases as the arc shape

forms. However, after around 12 hours (one semi-diurnal period), Rc begins to increase due

to the lateral spreading becoming more significant than the effect of bending. In Figure 5.8

(b), the waves with larger σy tend to bend (so that their Rc decreases) and take the spreading
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speed longer to overtake.

We computed the slope of the nearly linear trend of Rc over time after 12 hours, which

is defined as the curving rate. The results are plotted in Figure 5.9. Figure 5.9 (a) confirms

that Rc does not depend on A0. Figure 5.9 (b) shows that the curving rate does not vary

much for σy < 100km cases. When σy = 100km, the curving rate ≃ 0 means that the effects

of lateral spreading and curving are in balance after 12 hours, resulting in a steady arc shape

on the xy-plane.

5.3.3 Surface signature

The evolution of the width, ys, of the sea surface signature of internal solitary waves is

determined by the surface current gradient, ∂u/∂x, being larger than a threshold value (2.4×

10−4s−1), as described in Section 3.4.5. The results are plotted in Figure 5.10, from four

simulations with different initial vertical displacement amplitude, A0, and spanwise width,
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σy. Although the time resolution for the computation in the simulations was set sufficiently

high, the output data was saved not frequently enough from the simulations for post processing

in this case. So, we smoothed the data to remove the discrete jumps in ys.

As illustrated by Figure 5.10, the surface signature shows up after the waves have evolved

for a certain time, caused by the steepening of the waves and the formation of solitary waves

which intensify the surface current gradient. Apart from the results plotted here, we also

examined the surface signature of the waves with the initial vertical displacement A0 = 87.5m

and the initial spanwise width σy = 25km where no surface signature was indicated by the

surface current gradient. This implies that internal tides with a smaller spanwise width spread

so fast that they cannot generate sufficiently large surface current convergence resulting in a

visible surface signature. The waves with A0 = 75m and σy = 50km (plotted in blue in Figure

5.10) exhibit a decay for ys starting at t = 40 hours due to the lateral spreading reducing

the surface current convergence. This growth and decay of the surface signature is realistic

for the ocean because ys from this simulation is close to the observed surface signature in

the South China Sea. Its half-width is observed to be about 50km (see the satellite image in

Figure 1.4).

The ys values in the other three cases with large A0 or σy, shown in Figure 5.10, do not

decay within 50 hours as the waves maintain a sufficiently large wave amplitude that their

surface current convergence remains above the threshold. However, their surface signature

would decay if the simulation was run for sufficiently long time.
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Chapter 6

Discussion and Conclusions

This study performed fully nonlinear simulations to examine the evolution of the low-mode

internal tide as it depends on wave amplitude, ocean depth, Coriolis forces, and the span-

wise extent of the waves. We began with constructing analytic non-uniform stratification

profiles for use in numerical simulations by fitting a piecewise exponential function to the

observed profiles near Hawaii and in the South China Sea. We then extended the 2D model

of horizontally periodic waves by adding spatially localized numerical forcing of waves with

amplitude modulation and rotation on the β-plane. In the simulations on the f -plane, this

new 2D model of forced waves qualitatively and somewhat quantitatively agreed with the

original 2D model of initially-periodic waves. Since the theory predicts that solitary waves

develop more rapidly and grow to larger amplitude with a smaller Coriolis parameter, this

new 2D-forced model with the β-plane configuration was useful to simulate the internal tides

whose evolution extends widely from a fixed latitude. In particular, it was used to simulate

internal tides which originated at the Hawaiian Ridge and propagated southwest of Hawaii

towards the equator over which the Coriolis parameter decreased to zero. Using a 3D model

of spanwise-localized horizontally-periodic waves, we characterized their evolution accounting

for lateral spreading.

The comparison between the 2D simulation of forced waves and the EXITS observation,

located about 1000km southwest of Hawaii, illustrated a fair agreement between them in

terms of the vertical displacement of the isopycnals. The simulation results showed that soli-

tary waves were able to form after travelling approximately around half the way towards the
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equator. However, such formation has not been observed in situ or by satellites so far. One

possible reason is that when propagating over elevated submarine topography (e.g. the Line

Ridge, located closely southwest of the EXITS site), the mode-1 waves were scattered into

dominant mode-2 waves which were less likely to form solitary waves, as noted in the unpub-

lished report from EXITS by Shaun Johnston (2010). However, it could be that the waves

had insufficiently small amplitude to create an observable sea-surface signature in satellite

images, and the EXITS in-situ observations were too close to Hawaii for solitary waves to

form.

For the South China Sea, the in-situ observation data only aligned qualitatively with the

2D simulation results. The patterns and magnitudes of the solitary waves in the observation

were similar to those in the simulation. The discrepancy between them was primarily caused

by different frequencies of the internal tides, and could also be due to the lateral spreading

of the realistic waves that are not included in the 2D model. Nonetheless, these comparisons

revealed the limitations of in-situ ocean measurements such as insufficient time resolution

to capture the rapid signal of solitary waves and the potential interference from irrelevant

signals.

The analysis of the solitary waves in the simulations concluded that larger amplitude

internal tides result in stronger solitary waves. This was demonstrated by the increased

maximum upward, ξmax, and particularly downward, |ξmin|, vertical displacements in both

the 2D and 3D models. For a typical wave amplitude of 60m in the South China Sea, |ξmin|

was able to grow to ≃ 180m in the 2D model and ≃ 100m in the 3D model. These strong

solitary waves were also manifest by their structure, albeit differently in the 2D and 3D

models. With larger wave amplitude, the 2D model exhibited more downward peaks in the

vertical displacement within a solitary wave train while the 3D model displayed more small-

scale oscillations along the wave crest. For the dependence on the total depth of the ocean, H,

the number of downward peaks formed by the 2D waves decreased nearly asymptotically with

increasing H, while the 3D waves exhibited less small-scale oscillations. The dependence of

|ξmin| on H was different between the 2D and 3D waves. The solitary waves in the 2D model

were not sensitive to H: |ξmin| decreased only slightly with increasing H. On the contrary,

in the 3D model, |ξmin| was more sensitive to H, increasing with larger H. Nevertheless, the
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maximum vertical displacement, ξmax, given by the crests of solitary waves remained almost

constant in both 2D and 3D simulations. Additionally, the 3D waves demonstrated more

significant growth of solitary waves for larger initial spanwise width due to reduced dispersion

from the lateral spreading.

For the spanwise evolution characterized by the 3D model, we showed that the lateral

spreading has a linear correlation with time. The spreading of the 3D waves was faster

with smaller initial spanwise width, σy, while it remained the same for different values of

initial wave amplitudes, A0. The spreading rate (km per hour) decreased exponentially with

increasing σy. A similar pattern was found in the radius of curvature, Rc, which characterized

the lateral bending of internal tides from the top view. The lateral bending depends on σy and

the waves with larger σy tend to keep bending for a longer time. To conclude, the spanwise

evolution was mainly determined by the initial spanwise width (σy) rather than the initial

wave amplitude (A0).

Internal solitary waves can be visible in a satellite image by their signature of roughness

on the sea surface. Our simulations from the 3D model showed a realistic evolution of this

surface signature. The simulation with the initial conditions of A0 = 75m and σy = 50km

reproduces the westward propagating internal tides in the South China Sea with the good

agreement with the satellite image. The initial conditions of these internal tides are barely

known due to the challenging operating conditions in the Luzon Strait (Alford et al., 2015).

Our 3D model allows us to estimate their initial conditions.

This study has provided approaches to more realistically simulate the evolution of internal

tides by extending the 2D model to have forced waves and β-plane effect. However, our 3D

model still works with the horizontally periodic waves on the f -plane. Moving forward, the

numerical forcing and the β-plane can be added to the 3D model, which will increase the

model’s accuracy and comprehensiveness. To add the numerical forcing, one should first have

two sponge layers at both ends on the xz-plane of the domain. The forcing can then be put

on a slice of the yz-plane. Finally, the β-plane can be added in the x-direction.
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