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Abstract

Training large language models (LLMs) often requires extensive human supervision and struggles

with modeling long-range text semantic dependencies. To address these challenges, we introduce

our framework ELITE — Evolving Language models Iteratively Through self-critiquE — inspired

by human learning processes such as self-critique and experience-based refinement. ELITE allows

an LLM to autonomously generate, refine, and iteratively improve self-critiques ability by learning a

mapping from questions-and-answers to critique labels through supervised fine-tuning (SFT). This

approach drastically reduces the amount of human annotations from 2550 to 98 demonstrations by

using a small set of prompt examples for initial configuration. Experimental results demonstrate

that ELITE significantly outperforms an existing self-evolution baseline by 11% and SFT baselines

by 4.8% on in-domain tasks. It also shows a performance improvement of 13.8%, 11.2%, and 7.2%

on three out-of-domain data sets (SQuAD, BoolQ, and GSM8K), demonstrating generalization.

The ELITE training framework can thus enable more adaptive, intelligent LLM systems that can

improve themselves with relatively little human assistance.
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Preface

This thesis is an original work by Qianxi Li. The core idea of this paper — using Large Language

Models (LLMs) generated natural language critiques for fine-tuning LLMs — is introduced in my

paper “LaFFi: Leveraging Hybrid Natural Language Feedback for Fine-tuning Language Models”,

which was accepted in the Human-Centric Representation Learning Workshop at the 38th Annual

AAAI Conference on Artificial Intelligence.
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Chapter 1

Introduction

Transformer [1]-based large language models (LLMs), such as GPT-4 [2], LLaMA 2 [3], and Qwen

[4], have shown remarkable success in complex language understanding tasks across various fields,

including healthcare [5], finance [6], programming [7], and so on. These models excel due to their

ability to leverage vast amounts of training data and the powerful representational ability of the

Transformer architecture, which capture intricate patterns and relationships in language. At the

same time, these models undergo massive self-supervised pre-training to capture general grammars,

contexts, and semantics of human language, followed by supervised fine-tuning (SFT) to tackle more

complex tasks requiring deeper linguistic comprehension. However, as these training paradigms

near a performance plateau due to the exhaustive use of available data and increased challenges in

modeling long-range complex text semantic dependencies, innovative training methodologies have

become increasingly important for building more powerful LLMs.

The core problem we consider is: Can an LLM improve its reasoning ability with self-

generated critiques?

Reasoning ability is important for LLMs because it enables them to generate coherent, accurate,

and contextually appropriate responses, which is crucial for their effective application in complex

and high-stakes environments. Also, by understanding how LLM self-improve itself, we are able

to create more intelligent, adaptable, and reliable AI systems that can continuously improve their
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performance and reliability without constant human oversight.

Inspired by human self-critique processes where individuals evaluate and refine their actions

to optimize outcomes, we introduce ELITE (Evolving Language models Iteratively Through self-

critiquE) framework, as illustrated in Figure 3.1. In this context, we define self-critique as the

process by which the LLM assesses the appropriateness of its own responses to given questions,

providing explanations and improvements based on internal feedback mechanisms. Our frame-

work ELITE employs an iterative learning process where LLMs generate multiple self-critiques,

refine them, and reinforce the question-answer-critique mappings through supervised fine-tuning.

By optimizing prompt examples in each iteration to better represent the self-critique dataset, the

LLM progressively generates higher-quality self-critiques, improving task performance. The iter-

ative process should run a few times to make sure that the prompt examples are diverse enough

to represent the fine-tuning dataset, as shown in Figure 4.5. We demonstrate ELITE’s superi-

ority over an existing self-evolution baseline, LMSI [8], and over SFT baselines through its per-

formance on four natural language generation benchmarks, highlighting its excellent in-domain

evaluations and generalization capabilities. The implementation of ELITE is publicly available at

https://github.com/IRLL/LLM self improvement.

1.1 Novelty

Our novelties include:

• Iterative Self-Critique Generation: Unlike typical supervised fine-tuning methods that

rely on static, human-annotated datasets, our approach leverages Large Language Models

(LLMs) to iteratively generate self-critiques. These self-critiques serve as dynamic self-

supervised fine-tuning labels, enhancing the self-critique ability of the LLM during training.

This iterative process allows the model to continuously refine its understanding and improve

its performance autonomously. Compared to SOTA methods, it requires less human annota-

tions, and can be applied to various task types. The empirical performance of our framework
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also outperforms two baselines: a strong supervised fine-tuning approach and LMSI, a self-

improvement algorithm.

• Refinement and Selection in 2D Text Representation Space: Our framework refines

and selects self-critiques and representative prompt examples in a reduced 2D text repre-

sentation space. This process involves using PCA for dimensionality reduction and k-Means

for clustering, ensuring that the most representative examples are chosen for subsequent

iterations. This approach contrasts with SOTA methods, which often use static or manually-

selected examples without leveraging a textual representation space for dynamic example

optimization. By employing this technique, we reduce noise and enhance the quality of the

training data, leading to more efficient and effective fine-tuning.

1.2 Contributions

Our contributions include:

• Proposing a novel framework that enables LLMs to self-evolve by iteratively reinforcing self-

critique capabilities through supervised fine-tuning.

• Developing a novel dynamic prompt example selection approach and illustrating its effective-

ness through an ablation study.

• Experimentally evaluating ELITE’s performance across different model scales and diverse

Natural Language Processing (NLP) benchmarks.

The ELITE framework not only reduces the cost and resource requirements for improving

LLMs but also enables them to self-evolve. As a general framework, it can be integrated with

existing training methods and has the potential to be applied to foundation models across a wider

range of modalities. ELITE paves the way for more adaptive and intelligent systems that can

learn and optimize themselves through self-critique in ever-changing environments.
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1.3 Thesis Outline

In Chapter 1, we introduce the problem we consider in this thesis, the challenges we find in literature,

and the motivation. We also outline the contributions and novelties of this work.

In Chapter 2, we review the foundational concepts of Large Language Models (LLMs), including

self-evolution and parameter-efficient methods. We also identifies gaps in the existing literature that

the present work aims to address.

In Chapter 3, we introduce the ELITE framework. We detail the definitions and concepts

essential to this approach. The chapter explains the iterative learning process, the dynamic selection

of prompt examples, the generation of self-critiques using a majority voting approach, and the

parameter-efficient fine-tuning method we used for LLMs.

In Chapter 4, we describe the experimental setup, datasets we used, and baseline methods we

used for comparison. We present the core results of the ELITE framework, exploring the effects

of self-training iterations and majority voting response quantities. Additionally, we examine the

clustering and selection process of prompt examples through a qualitative analysis, concluding

with an ablation study that demonstrates the impact of initial prompt examples and the selection

process on the framework’s performance.

Finally, in Chapter 5, we summarize the key findings, discussing how the ELITE framework

enhances LLM performance through autonomous self-critique and refinement. We highlight the

framework’s potential impact. We also outline the limitations of the study, acknowledging the

constraints of the experimental setup and suggesting directions for further investigation.
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Chapter 2

Background

In this chapter, we first introduce the Transformer architecture and the encoder and decoder LLMs

developed from it. We then provide an overview of the self-evolution paradigm for LLMs and

discuss how critique information is used to enhance LLM quality within this framework. Next, we

cover various parameter-efficient methods employed to make model training and inference more

efficient. Finally, we conclude by summarizing the gaps in the LLM self-evolution literature.

2.1 The Transformer Architecture

The Transformer architecture [1], revolutionized the field of natural language processing (NLP) by

enabling more efficient and scalable models for a wide range of tasks. Unlike traditional recurrent

neural networks (RNNs) and long short-term memory networks (LSTMs) [9], the Transformer

model can process input data in parallel, can scale to long sequences, and less likely suffer from the

vanishing gradient problem, which makes the model training and inference more efficient and the

representational ability stronger. Below we introduce the attention mechanism, the key designs of

the Transformer architecture and its contributions to the field of Artificial Intelligence (AI).

5



2.1.1 The Attention Mechanism

The Transformer architecture is built upon the concept of self-attention, which allows the model

to weigh the importance of different words in a sequence relative to each other. This mechanism

enables the model to capture long-range dependencies more effectively than RNNs and LSTMs.

The core component of the Transformer is the attention mechanism, which can be represented

mathematically as:

Attention(Q,K, V ) = softmax

(

QK⊺

√
dk

)

V (2.1)

Q = WQE,K = WQE, V = WQE (2.2)

where Q (query), K (key), and V (value) are matrices mapped from the input embeddings matrix

E by three learnable projection matrices WQ, WK , and WV , and dk is the dimension of the key

vectors.

Below we explain the meanings of the four matrices mentioned above:

• Input embeddings (E): In the context of NLP, E has the shape (dinput, dembedding), with

dinput amount of tokens in the input sequence and each mapped into a vector with the length

dembedding. The mapping from the input sequence I to the input embeddings matrix E is

done by a learnable projection matrix Wembed. Similar to WQ, WK , and WV , these learnable

matrices are first initialized randomly and they gradually learn to perform their designed

functionality during training. E is designed to generate an embedding for each input tokens

with the same size so that the subsequent module can operate on these vectors, extract

complex relations and generate more complex representations.

• Query (Q): The Query matrix learns to represent the current input vector sequence for which

we want to find relevant information from the other vectors in the sequence during training.

Query acts as a search term when we do a dot product between Query and Key matrix, such

that, for each vector in Query and Key matrix, their dot product mathematically measures

6



how close these two vectors similar to each other. A higher dot product value means a higher

relevance level.

• Key (K): The Key matrix learns to better represent the current input vector sequence used

as the keys for comparison during training. It is used to compare against the Query to see

how much attention should be given to each input vector in the sequence.

• Value (V): The Value matrix also learns to represent the current input vector sequence during

training, similar to the Key matrix. However, while the Key is used for comparison, the Value

is used to store the actual information that will be combined (i.e., the weighted sum) based on

the attention scores derived from the Query and Key comparison. The intuition is that, after

the dot product between Query and Key matrices and weighted by the Softmax function, we

know how much different key vectors contribute to each query vectors. But to generate more

complex representations for each input vector, we need to aggregate information from the

value vectors that are relevant to the query vectors with different weights.

2.1.2 Key Designs of the Transformer

The Transformer consists of an encoder and a decoder, each composed of multiple layers of self-

attention and feed-forward neural networks. The encoder processes the input sequence to generate

contextualized representations, while the decoder uses these representations to produce the output

sequence. Each encoder layer comprises two main components: a multi-head attention mechanism

and a position-wise fully connected feed-forward network.

Multi-Head Attention

The multi-head attention mechanism allows the model to focus on different parts of the input

sequence simultaneously. This is achieved by having multiple different attention heads attend to

different dependencies in the input sequence. The formula for multi-head attention is given by:

7



MultiHead(Q,K, V ) = Concat(head1, head2, . . . , headh)W
O (2.3)

where each attention head is computed as:

headi = Attention(QW
Q
i ,KWK

i , V W V
i ) (2.4)

Here, WQ
i , WK

i , and W V
i are the learned projection matrices for the i-th head, and WO is the

output projection matrix.

Feed-Forward Networks

Each layer in the encoder and decoder includes a position-wise feed-forward network, which consists

of two linear transformations with a ReLU activation in between. The ReLU activation is defined

as:

ReLU(x) = max(0, x) (2.5)

The Feed-Forward Network in each Transformer block is defined as:

FFN(x) = ReLU(xW1 + b1)W2 + b2 (2.6)

where W1, W2, b1, and b2 are learned parameters.

Positional Encoding

Since the Transformer does not inherently capture the order of tokens in the sequence, it incorpo-

rates positional encodings to provide information about the position of each token. The positional

encodings are added to the input embeddings and are defined as:

8



PE(pos,2i) = sin
( pos

100002i/dmodel

)

(2.7)

PE(pos,2i+1) = cos
( pos

100002i/dmodel

)

(2.8)

where pos is the position, dmodel and i is the i-th dimension of the input embedding. It is defined

in such way with the following reasons:

• Unique value for each position and dimension. The exponential term defines the frequency of

the sin and cos function with respect to the dimension i and position pos, the result positional

value is unique for each i and pos.

• Proper range of values. The usage of sin and cos function is to constrain the range of positional

values so that, when the position vector adds to the input embedding, it does not destroy the

information contained in the input embedding.

Note that the constant 10,000 defined in the two formulas above is to ensure the uniqueness of

the positional encodings, as recommended in the original Transformer paper [1].

With multi-head attention, Transformer can complex complex representation between two vec-

tors. With feed-forward networks in each Transformer blocks, the complex representations can be

used for learning to handle more complex down-stream tasks. And since order matters in sequen-

tial data, the usage of positional encoding helps Transformer consider order information instead of

treating a sentence as a set of words with no order.

2.1.3 Contributions to Different Domains

The introduction of the Transformer architecture has had profound implications across various

areas of NLP and beyond. In NLP, Transformers have set new benchmarks in tasks such as

machine translation, text generation, and question answering. Models like BERT [10], GPT-3 [11],
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and T5 [12], which are all based on the Transformer architecture, have achieved state-of-the-art

performance on numerous benchmarks.

In addition to NLP, the Transformer architecture has been successfully applied to other do-

mains, including computer vision and reinforcement learning. Vision Transformers (ViTs) [13]

have demonstrated that Transformers can outperform convolutional neural networks (CNNs) [14]

on image classification tasks by treating image patches as sequences of tokens. In reinforcement

learning, Transformers have been used to model policies and value functions, leveraging their ability

to handle long-range dependencies and large state spaces [15, 16].

The Transformer architecture’s flexibility and scalability have made it a cornerstone of modern

AI research, driving innovation and enabling the development of more powerful and efficient models

across diverse applications.

2.2 Large Language Models

This section reviews the key stages in the evolution of LLM architectures.

2.2.1 Encoder Models: BERT, RoBERTa, CTRL, and ALBERT

The introduction of the Bidirectional Encoder Representations from Transformers (BERT) marked

a significant advancement in NLP. BERT is an encoder-based model that captures context from

both directions, making it highly effective for various NLP tasks. BERT is trained using two

primary objectives: Masked Language Modeling (MLM) and Next Sentence Prediction (NSP). The

MLM objective involves randomly masking some tokens in a sentence and training the model to

predict these masked tokens, formulated as:

LMLM = −
N
∑

i=1

logP (wi|w\i) (2.9)

where wi is the masked token, w\i represents the surrounding context and N is the number of
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tokens in the sentence.

The NSP objective requires the model to predict whether a given sentence B follows sentence

A in the original text:

LNSP = −
M
∑

j=1

[yj logP (yj |A,B) + (1− yj) log(1− P (yj |A,B))] (2.10)

where yj is a binary label indicating whether sentence B follows sentence A, M is the number of

sentence pairs in the training batch. P (yj |A,B) is the predicted probability that B is the next

sentence after A for the j-th sentence pair.

Beyond BERT, several other encoder models have significantly impacted the field of NLP. One

such model is RoBERTa (Robustly optimized BERT approach) [17], which builds upon BERT by

optimizing its pre-training procedure. RoBERTa modifies BERT’s training by removing the NSP

objective, increasing the batch size and training data, and extending the training time. These

changes result in a model that outperforms BERT on many NLP benchmarks without altering

the underlying architecture. Another prominent encoder model is ALBERT [18], which addresses

the issue of model size and training efficiency. ALBERT achieves this by sharing parameters

across layers and factorizing the embedding parameterization, significantly reducing the number of

parameters while maintaining performance. The loss function for ALBERT is similar to BERT’s

MLM objective, but with a focus on efficiency:

LALBERT
MLM = −

N
∑

i=1

logP (wi|w\i,Θ)

where Θ denotes the shared parameters across layers, wi is the masked token, w\i represents

the surrounding context and N is the number of tokens in the sentence. These encoder models

demonstrate the continuous evolution in optimizing training procedures and improving efficiency

without sacrificing performance.
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2.2.2 Decoder Models: GPT Series, Transformer-XL, LLaMA

The shift towards decoder-only models has been exemplified by the Generative Pre-trained Trans-

former (GPT) model series. The decoder-only models, by its name, does not contain an encoder

part to encode input tokens as representations. Instead, it uses the previous generated tokens

and the current token to predict as the input to generate the next token. A full sentence is then

generated by iteratively appending previous generated tokens to the input and predicting the next

token. The decoder-only model is designed for tasks where generation is based solely on the input

sequence. Also, there is one class of models named encoder-decoder models, which combines the

ideas of encoder and decoder models. It uses the encoder component to process input context into

representations, and uses the decoder component to generate tokens, based on both the previous

generation sequence and the input context representation generated by the encoder component.

The original GPT model introduced the idea of fine-tuning a pre-trained transformer on specific

tasks. GPT-2 [19] expanded on this concept by significantly increasing the model size and training

on a more diverse dataset, demonstrating impressive language generation capabilities.

GPT-3, with up to 175 billion parameters, pushed the boundaries of what LLMs could achieve.

It leverages the Transformer decoder architecture to generate coherent and contextually relevant

text based on a given prompt. The primary training objective for GPT models is auto-regressive

language modeling, where the model is trained to predict the next token in a sequence:

LAR = −
T
∑

t=1

logP (xt|x<t) (2.11)

where xt is the token at position t and x<t represents the preceding context.

Beyond the GPT series, Transformer-XL [20] introduced a novel segment-level recurrence mech-

anism and relative positional encoding, addressing the context fragmentation issue in standard

Transformers. This allows Transformer-XL to capture longer-term dependencies than its predeces-

sors. The recurrence mechanism is represented by:
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hnt = TransformerBlock(hn−1
t , [hn−1

τ+1 , ..., h
n−1
t ]) (2.12)

where hnt is the hidden state at time step t and layer n.

CTRL (Conditional Transformer Language model) [21] is another significant model that in-

corporates control codes to guide text generation according to specific attributes or styles. This

innovation allows users to steer the output more effectively, making it highly useful for various

applications, from creative writing to content generation.

Recent advancements include models like the LLaMA series of models. LLaMA 1 [22] introduces

a series of architectural modifications aimed at optimizing training and inference efficiency. It

incorporates layer pre-normalization before the attention and feed-forward layers, in contrast to the

post-normalization used in the vanilla Transformer. This change helps stabilize training for deep

networks. The feed-forward network is expanded with an additional intermediate normalization

layer, improving gradient flow and convergence.

Each of these decoder models showcases advancements in handling longer contexts, increasing

model capacity, and providing more control over text generation. They demonstrate how continuous

improvements in model architecture and training techniques contribute to the growing capabilities

of language models in various applications.

2.3 Self-evolution of the LLMs

In this section, we provide an overview of existing research on self-evolution techniques aimed at

enhancing LLMs, with a focus on training time improvement.

Tao et al. [23] surveys the current progresses of LLM and LLM-based agent self-evolution ap-

proaches, and proposed a unified framework to categorize different approaches. Some works focus

on LLM self-improvement during the training time. SELF-INSTRUCT [24] focuses on generating

diverse and complex instruction data using an evolutionary approach. Initially, a simple instruction
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is created and then evolved into more complex or new instructions through various operations, such

as adding constraints, deepening the reasoning steps, or complicating the input. This process is

repeated multiple times to generate a large and diverse dataset. The generated instructions are

then filtered to remove failed or invalid instructions, ensuring high quality and diversity in the final

dataset. WizardCoder [25] focuses on increasing the quality of the training dataset by evolving

simpler code instructions into more complex ones using specific modifications tailored for coding

tasks. These modifications include adding constraints, replacing common requirements with specific

ones, introducing more reasoning steps, and incorporating debugging and complexity constraints

to generate a diverse and challenging set of code instructions. WizardLM [26] generates complex

and diverse instruction data by using a language model to iteratively evolve initial instructions into

more intricate versions and create new, varied instructions. This process includes specific steps to

increase the complexity and reasoning required for each instruction and to generate entirely new

instructions that cover a broader range of topics and skills. MetaMath [27] focuses on improv-

ing mathematical problem-solving abilities in LLMs by creating a diverse and high-quality dataset

called MetaMathQA. This dataset is generated by rewriting existing mathematical questions us-

ing forward and backward reasoning, rephrasing, and augmenting answers, which is then used to

fine-tune models for enhanced mathematical reasoning skills. LMSI [8] focuses on enhancing the

performance of LLMs by using a method where the model generates its own training data through

multiple reasoning paths and selects the most consistent answers using majority voting. This self-

generated data is then used to fine-tune the model, significantly improving its reasoning abilities

without relying on ground truth labels. AlpaGasus [28] involves generating the dataset by using

augmentation techniques to create diverse training data. First, they apply answer augmentation

to create multiple correct answers for a single question. Then, they use question bootstrapping to

generate new questions from existing ones. Filtering and refining involve scoring each data pair and

selecting only those above a certain threshold to ensure high quality. Star [29] creates high-quality

training data by using LLMs to score and filter out low-quality samples. They generate the dataset

by prompting a powerful language model like ChatGPT to rate each instruction-input-response

triplet and only keep those with scores above a certain threshold. This threshold-based filter-
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ing method ensures that only the most accurate and helpful data points are used for fine-tuning.

GRATH [30] involves generating pairs of truthful and untruthful answers to questions using the

model itself, then fine-tuning the model by optimizing for the preference of truthful answers over

untruthful ones, iteratively improving its accuracy. They filter out low-confidence data by ensuring

that only answers formatted correctly and aligned with the few-shot demonstrations are used in

the training process.

2.4 Learning from critique in self-evolution

In this section, we investigate learning from critique paradigm researchers used in self-evolution

techniques for LLMs.

In LLMs self-evolution, different kinds of critique are used to evolve an LLM towards different

desired goals, the critique can come from either the LLM itself or the environment. Some works

uses LLMs as critics to generate numerical critique scores. DLMA [31] focuses on aligning with

human expectations without relying on human-annotated preference data. The methodology in-

volves generating preference data using contrastive prompt pairs, evaluating the responses with a

probability-based self-rewarding score, and then aligning the LLM using direct preference optimiza-

tion (DPO) based on these scores. LSX [32] focuses on enhancing AI model performance by having

the model explain its decisions to itself. The methodology involves a learner model and an internal

critic model; the learner makes predictions and generates explanations, while the critic evaluates

the explanations and provides feedback to improve the learner. This iterative process, tested on

image classification tasks, aims to improve model generalization, mitigate confounding factors, and

produce more relevant and faithful explanations. Self-Alignment [33] focuses on improving the

factual accuracy of LLMs by using self-evaluation to align generated responses with factual in-

formation. The methodology involves generating multiple responses to a prompt, evaluating their

factual accuracy using self-evaluation, and then fine-tuning the model using preference data derived

from these evaluations. Factuality scores are generated based on how well the responses align with

internal knowledge, and the model is trained to prioritize responses with higher scores, ensuring
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the scores are accurate for DPO [34] training by validating them against known facts.

Another line of works use a type of more informative critique: textual critique. CAI [35] uses a

list of principles as the only human oversight and uses LLM to generate self-critiques and revision,

then use SFT to fine-tune on the revisions. Self-Refine [36] focuses on improving outputs of LLMs

through a process of iterative self-feedback and refinement. The methodology involves generating

an initial output using the LLM, having the same LLM provide critique on this output, and then

refining the output based on the critique, repeating this cycle until the desired quality is achieved.

The method does not require any additional training or supervised data, leveraging the model’s

inherent capabilities to generate and refine its own critique iteratively. TextGrad [37] proposes a

framework that back-propagates textual feedback provided by LLMs to optimize individual com-

ponents of compound AI systems. This framework transforms AI systems into computation graphs

where variables receive natural language critiques from LLMs, guiding the optimization process.

Critiques and feedback are used as “textual gradients,” offering detailed and interpretable natural

language suggestions that describe how each variable should be adjusted to improve the system’s

performance. Reflexion [38] uses a framework that enhances the learning of language agents through

verbal self-reflection rather than traditional fine-tuning. In this approach, the agent receives feed-

back in the form of verbal summaries generated from its own performance, which are stored in an

episodic memory buffer. These reflective summaries provide detailed, actionable insights that guide

the agent’s decision making in subsequent trials, improving its performance over time by learning

from its previous mistakes. LaFFi [39] involves a four-step process: generating answers using a pre-

trained LLM, annotating these answers with natural language feedback from both AI and human

annotators, using supervised learning to predict the feedback for fine-tuning, and applying LoRA

for parameter-efficient fine-tuning. This approach integrates natural language feedback directly

into the fine-tuning process to improve the model’s performance. The natural language feedback

includes detailed evaluations of the correctness and appropriateness of the model’s responses, which

help the model learn better mappings between input contexts, the questions, its answers, and the

anticipated feedback.

ELITE takes an approach that uses the LLM itself to generate and refine self-critique labels.
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The critique labels will be used in SFT as we want the LLM to predict what critique it should

receive for certain answers.

2.5 Parameter Efficient Methods for LLMs

LLMs have achieved significant success across various NLP tasks due to their impressive capacity

and ability to generalize from vast amounts of data. However, these models come with substantial

computational and storage requirements, posing challenges for efficient deployment, especially in

resource-constrained environments. This section explores parameter-efficient methods aimed at

addressing these challenges, focusing on quantization techniques and the Low-Rank Adaptation

(LoRA) series methods. We use quantization techniques to convert our model weights to 4-bit so

that less GPU memory and computation is required to run our framework. We use LoRA methods

to further reduce GPU memory and computation usage and fine-tune our model more precisely by

updating certain components in an LLM.

2.5.1 Quantization Methods

Quantization is a technique that reduces the precision of the weights and activations of neural

networks, thereby decreasing the memory footprint and computational cost. It can be broadly

categorized into post-training quantization and quantization-aware training. In this work we use

post-training quantization to speed up the inference process and use quantization-aware training

to reduce the memory usage during training.

Post-training quantization converts a pre-trained model’s weights to lower precision, typically

from 32-bit floating point (FP32) to 16-bit (FP16), 8-bit (INT8), or even lower. This process can

reduce model size and inference latency with minimal impact on model accuracy [40]. Quantization-

aware training, on the other hand, incorporates quantization into the training process itself, allowing

the model to adjust to the lower precision and maintain higher accuracy [41].

Recent advances in quantization methods have led to the development of techniques such as
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dynamic quantization, which adjusts the quantization parameters on-the-fly based on the input

data distribution, and mixed-precision quantization [42], which applies different precision levels to

different parts of the model. These techniques ensure a better trade-off between model performance

and efficiency.

2.5.2 Low-Rank Adaptation Methods

Low-Rank Adaptation (LoRA) [43] is a method used to adapt large pre-trained language models to

specific tasks efficiently by reducing the number of parameters that need to be fine-tuned. LoRA

achieves this by injecting trainable low-rank matrices into each layer of the model. In this work, we

use LoRA as part of our framework to help the training data update certain modules of the LLM.

An overview of LoRA is shown in Figure 2.1. Given a pre-trained weight matrix W0 ∈ R
d×k,

LoRA decomposes the update to this weight matrix into two smaller matrices A ∈ R
d×r and

B ∈ R
r×k, where r ≪ min(d, k). The adapted weight matrix W can be expressed as:

W = W0 +∆W (2.13)

where ∆W = AB. The matrices A and B are initialized such that A is a random Gaussian matrix

and B is a zero matrix. During training, only A and B are updated, while W0 remains fixed. The

forward pass through the adapted layer becomes:

y = W0x+∆Wx = W0x+ABx (2.14)

where x ∈ R
k is the input to the layer. By constraining ∆W to be low-rank, LoRA reduces the

number of trainable parameters, making the adaptation process more efficient.

Many researchers extend LoRA to make it more robust. LoRA Dropout [44] applies random noises

to the trainable low-rank matrices and it increases the sparsity to prevent overfitting during fine-

tuning. Laplace-LoRA [45] uses a post-hoc Laplace approximation approach [46] to the LoRA
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parameters to prevent fine-tuned LLMs from over-confidence. LoRA+ [47] uses different learning

rate for different LoRAmatrices A andB. Some works use multiple LoRAmodules in the framework

to improve model performance. LoRAHub [48] uses a gradient-free method Shiwa [49] to aggregates

various LoRA modules trained on different tasks. MOELoRA [50] uses a Mixture-of-Experts (MOE)

approach to apply LoRA in a multi-task learning setting, which outputs multiple LoRA modules.

It uses a task-specific gate function to assign weights to different expert modules and the final

parameters in used will be a weighted sum of all the expert weights.

2.6 Gaps in Literature

Despite significant advancements in LLMs and their self-evolution techniques, several gaps persist

in the existing literature. These gaps hinder the scalability and effectiveness of these models in

practical applications. Three critical aspects where the current literature falls short are:

• The reliance on extensive human annotation

• The lack of generality

• The lack of scalability

2.6.1 Reliance on Extensive Human Annotation

Many fine-tuning frameworks still heavily depend on human annotation to provide feedback and

corrections, which limits their scalability. For instance, LaFFi relies on extensive human annotations

to provide accurate critiques, making the process time-consuming and labor-intensive. In contrast,

ELITE significantly reduces the need for human intervention by requiring only a small set of

human-annotated prompt examples to provide the necessary examples for an LLM to follow.
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2.6.2 Lack of Generality

Existing frameworks often struggle with generality, as they are tailored to specific tasks or domains.

For example, SELF-REFINE focuses on improving code readability and mathematical reasoning,

but may not generalize well to other tasks without significant modifications. Promptbreeder, while

effective in evolving prompts for specific reasoning tasks, requires domain-specific problem descrip-

tions and mutation prompts, limiting its applicability across diverse domains. Reflexion focuses

on self-reflecting code-generation agents, which are highly specialized. LMSI employs training set

questions and refined LLM self-generated responses as labels to iteratively fine-tune the model; this

approach is specifically designed for problems with exact numerical answers. ELITE is designed to

be task-agnostic, leveraging a flexible critique generation process that can adapt to various contexts

and tasks, thereby enhancing its generality.

2.6.3 Lack of Scalability

SELF-INSTRUCT uses an amount of manually annotated seed tasks to make an LLM generate

variations of the training questions from the initial seed tasks. However, to compose data with

more complex tasks, more manual annotated tasks must be collected. In contrast, ELITE requires

a small set of human annotations to bootstrap the training process, and this requirement does not

change even if the LLM requires more data in the dataset for fine-tuning. Also, it uses parameter-

efficient methods that allow us to adapt and improve using fewer computational resources as model

and dataset sizes grow.

In summary, ELITE offers a robust and scalable framework that minimizes the need for human

annotation, it is a general LLM training method, and has the ability to scale if more data is

necessary for training. In the next chapter, we cover the details of the ELITE framework.
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Chapter 3

The ELITE Framework

In this chapter, we will first provide a detailed explanation of the definitions and concepts essential

to our framework. We particularly focus on the self-critique process. Following that, we will delve

into the details of the ELITE framework, explaining its iterative learning process. We will then

describe the methodology for selecting prompt examples dynamically. Next, we will discuss the

critique generation process, which employs a majority voting approach to select critiques. Finally,

we will cover the parameter-efficient fine-tuning method used in our framework to optimize memory

and computational resources.

3.1 Definitions

In SFT, a labeled dataset is typically used for fine-tuning. The input consists of a question for

the LLM to answer, and the output is the ground truth answer preferred by humans. In a more

specialized form of supervised fine-tuning known as instruction fine-tuning, the context of the task

is added to the input for the LLM to follow [51]. During fine-tuning, the LLM optimizes itself

using cross entropy loss on the provided SFT dataset, eventually learning an effective mapping

from (context, question) tuples to answers.

ELITE adopts a similar SFT approach to improving LLM performance. However, instead of
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relying on a dataset with (context, question) tuples and their corresponding answers as labels,

we use an iterative process to generate and refine a fine-tuning dataset. This dataset consists of

(context, question, answer prediction) tuples as inputs, with the self-critiques generated by the

LLM itself serving as the labels. Our goal is to let the LLM learn a mapping from the task context,

question and the response output by the LLM to a natural language critique, such that the LLM

learns what critique it may receive if it outputs certain responses. This idea is first proposed

in LaFFi [39], which the authors use both human and LLM to collect such a critique prediction

dataset with external critiques as the supervised fine-tuning labels. Humans can generate accurate

critiques but the annotation process is time consuming. Although LLMs can generate critiques in

a short time, the quality of the generation is noisy without further refinement. Thus, in LaFFi,

the LLM fine-tuned on the LLM generated dataset performs worse than the model fine-tuned using

human-annotated dataset. In contrast, our method allows the LLM to progressively enhance its

performance using self-generated critiques with a majority voting mechanism to refine the critique

quality, and we gradually refine the quality of our critique dataset by refining the prompt examples

we used in each iteration.

Table 3.1 lists the key abbreviations we use. We define a question q ∈ question dataset Dq, an

answer prediction a ∈ answer prediction dataset Da generated by an LLM M , self-critique gener-

ation prompt pcritique, current prompt examples used to generate answer and critiques ecurr. We

define the self-critique process in the context of LLM training as follows. For a given question q,

an answer a given by an LLM M , and a critique generation prompt pcritique, a self-critique is the

process of letting M evaluate the appropriateness of a to q, analyze the reason for this appropri-

ateness, and provide a more appropriate answer if applicable. For each (q, a, ecurr, pcritique) tuple,

we first sample a set of critique candidates Dc raw from M(q, a, ecurr, pcritique) using Temperature

Sampling with the default temperature 1.0, after critique refinement we get one critique c, which

then stored in a critique dataset Dc.
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Table 3.1: This table includes the key abbreviations we used in the ELITE framework.

Full Form Notation

Answer Generation Prompt pa
Answer Prediction a

Answer Prediction Dataset Da

Critique c

Critique Candidate c raw

Critique Candidate Dataset Dc raw

Critique Dataset Dc

Critique Generation Prompt pcritique
Current Prompt Examples ecurr
Desired Iterations I

Initial Prompt Examples einit
Large Language Model M

Prompt Example Amount k

Question q

Question Dataset Dq

Text Encoder E

3.2 Framework Details

In this section, we first provide an overview of our proposed framework ELITE. Then, in the

remainder of the chapter,, we detail all the key steps and aspects of our framework.

3.2.1 Framework Overview

Figure 3.1 provides an overview of ELITE. The first iteration begins with a dataset of instructions

and questions.

In Step 1, combined with initial human-labeled prompt examples, we use an LLM to generate

answer predictions.

In Step 2, the LLM is tasked with critiquing these answers to assess their appropriateness for the

corresponding questions, along with providing reasons. Self-Refine [36] chooses to use self-critiques

during inference to refine output, but we choose to use them during training so that no additional

overhead during inference. We apply majority voting to filter out noisy responses, retaining only

high-quality critiques.
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In Step 3, to ensure each iteration uses the most representative examples, we cluster the critique

data rows in a reduced 2D representation space. We then select rows whose representation vectors

are closest to the cluster centers to serve as representative examples for the subsequent iteration.

In Step 4, we fine-tune the same LLM using the self-annotated critique dataset, with inputs

being the task instruction, question, and predicted answer, and the output being the annotated

critique. The LLM is trained with the objective of accurately predicting the critique it should

receive for the given inputs.

Our framework repeats Step 1 to Step 4 several times. Below, we discuss the key aspects of our

framework.

3.2.2 Predicted Answer Generation

In this subsection, we explain our design for the Step 1 of our framework, as shown in Figure 3.2

and in Line 14 of Algorithm 1. To start the process, our framework first requires: (1) An initial,

human-annotated prompt example dataset, and (2) A question dataset that includes tasks with

diverse formats. The size of these two datasets will be covered in Section A.2. We use the initial

human-annotated prompt example dataset as exemplars for the LLM so that it knows what kind

of responses are desired. We use the question dataset as part of the supervised learning input for

the fine-tuning process in Step 4. Since our objective is to obtain a self-critique dataset at each

iteration, to ensure that the self-critiques are generated based on the current understanding of our

LLM, we use the LLM to generate an answer prediction for all the questions inside the question

dataset. In this case, we ensure that all the generated answers come from the LLM’s current

knowledge. Later, when we use the self-critique data generated on these answers and train the

LLM with these data, the LLM learns better whether these answers are appropriate, which affects

the LLM’s subsequent inference quality. The prompt we use for answer prediction is in Table A.2.
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our clustering process in the form of an algorithm. This method ensures that the selected response

is representative of the responses in the semantic space understood by the text encoder model and

PCA. The prompt we use for self-critique generation is in Table A.3.

Algorithm 1 The algorithm of ELITE.

1: Input: Question dataset Dq, answer prediction dataset Da, model M , text encoder E,
prompts {pinference, pcritique}, current prompt examples ecurr,
human annotated examples eh, prompt example amount k

2: function get cluster centers(2d representation list, center amount)
3: # Encode a list of strings into vector representations using the text encoder.
4: vec encoded← E(2d representation list)
5: # Reduce the dimension of the vector representations to 2D using PCA.
6: dimension reduced← PCA(vec encoded)
7: # Remove the outliers from the 2D vectors.
8: clean dimension reduced← Outlier Removal(dimension reduced)
9: # Use k-Means algorithm to find certain amount of cluster centers.

10: return KMeans(clean dimension reduced, center amount)

11: ecurr ← eh
12: for each iteration i ∈ {0, 1, . . . I} do
13: # Step 1: Answer prediction.
14: Da ←M(Dq, pinference, ecurr)
15: # Step 2: Critique generation with majority voting.
16: Dc raw ←M(Dq, Da, pcritique, ecurr)
17: Dc ← get cluster centers(Dc raw, 1)
18: # Step 3: Obtain new prompt examples.
19: 2d representation list← str(Dc, pcritique)
20: # Get k cluster centers, set as new examples.
21: ecurr ← get cluster centers(2d representation list, k)
22: # Step 4: Fine-tuning.
23: SFT(M,pcritique, Dc)

3.2.4 Prompt Example Selection

In this subsection, we explain our design for Step 3 of our framework, as shown in Figure 3.4 and in

line 19 of Algorithm 1. To ensure that an LLM generates responses that meet human expectations,

it is crucial to include a few representative examples in the prompt, especially when the inference

responses for a dataset should exhibit varied output behaviors. Manually selecting several prompt

examples that adequately represent the dataset can be challenging. In our approach, rather than

using a static set of prompt examples, we dynamically change the examples in every iteration. This
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Chapter 4

Empirical Evaluation

In this section, we first outline our evaluation objectives and the dataset we used, the baseline we

used for comparison, and the general experimental setup. We then discuss the experimental results.

4.1 Evaluation Objectives

Our evaluation objectives are:

1. Evaluating the generalizability of the proposed framework across various NLP tasks in com-

parison to existing fine-tuning and self-improvement methods.

2. Investigating the impact of self-training iterations on model performance.

3. Analyzing the influence of the number of responses in the majority voting mechanism.

4. Assessing the effectiveness of clustering algorithms applied to textual representations.

5. Evaluating the effectiveness of the prompt example selection mechanism.

6. Determining the impact of initial prompt examples on the overall system performance.

Sections 4.6.1–4.6.6 each evaluate one of these objectives, first explaining our evaluation purpose,

32



and then detailing our experiment design to examine a certain aspect of our framework. This

chapter ends by summarizing the results and drawing useful insights.

4.2 Dataset

We employed a subset of the multi-task language instruction dataset, Natural Instructions v1.0

[55], as our primary training dataset since it encompasses a diverse array of tasks such as question

answering, classification, and entity extraction. It can also enhance the generalization capability

of our LLM across a broad spectrum of unseen tasks. The dataset subset includes 2450 data

rows spanning 49 different sub-tasks, with each row containing only instructions and questions,

without any required ground truth answers. For initial prompt examples, we used 2 human-labeled

task examples for 49 subtasks from the Natural Instructions dataset, which in total sum up to 98

examples.

Natural Instructions The Natural Instructions v1.0 dataset, developed by Allen AI, is a

comprehensive collection designed to facilitate research and development in NLP. This dataset

comprises a diverse set of 61 different sub-tasks and corresponding instructions, aimed at improving

the generalization capabilities of large language models. In 61 different tasks, 49 of them compose

the training set and 12 compose the evaluation set. Each sub-task in the dataset is accompanied

by detailed instructions that describe the objective, input-output format, and examples, enabling

models to understand and execute a wide range of language-based tasks. More details about the

dataset can be found in Section A.2.

BoolQ The BoolQ (Boolean Questions) dataset [56] is a substantial resource in the realm of

natural language understanding, consisting of 16,000 question-answer pairs. Created to facilitate

research in reading comprehension and question-answering, BoolQ focuses on yes/no questions

derived from real-world queries. Each entry in the dataset comprises a question, a corresponding

passage from which the answer can be inferred, and a boolean answer.

SQuAD The SQuAD (Stanford Question Answering Dataset) [57, 58] is a large-scale dataset
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designed to enhance machine reading comprehension and question-answering capabilities. It in-

cludes over 100,000 question-answer pairs derived from a wide range of Wikipedia articles. What

sets SQuAD 2.0 apart is the inclusion of over 50,000 unanswerable questions, making it a more

challenging and realistic benchmark for evaluating the robustness of models. Each entry in the

dataset consists of a question, a passage from which the answer should be extracted, and the an-

swer itself if it exists. This format ensures that models not only learn to provide precise answers

when possible but also to recognize when a question cannot be answered based on the given text.

GSM8K The GSM8K (Grade School Math 8K) dataset [59] is a curated collection of 8,000

grade-school-level math word problems, designed to advance the field of mathematical reasoning

in NLP models. Each problem in the dataset includes a detailed question requiring arithmetic,

algebra, or basic logic to solve, along with a step-by-step solution. The format ensures that models

can learn not just to find the correct answer, but to follow logical steps to reach that answer,

mimicking the way a student would approach a math problem. This dataset is particularly useful

for training models to handle complex, multi-step reasoning tasks, which is a significant leap from

straightforward question-answering datasets.

4.3 Baselines

To demonstrate the effectiveness of our framework, we compared the performance of our framework

ELITE against a no fine-tuning baseline and two different fine-tuning approaches using LLaMA 2

models at the 7B and 13B scales:

• Models without fine-tuning (w/o FT) No fine-tuning baseline represents the performance

of the LLM when it operates solely on its pre-trained capabilities without any task-specific

adjustments.

• Supervised Fine-tuning (SFT) SFT represents the conventional method of fine-tuning

LLMs and serves as a baseline for the most widely used approach in the field. Comparing

ELITE to SFT allows us to demonstrate the added value of our iterative self-critique mecha-
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The evaluation is done with three prompt examples provided to the LLM so that it can follow

the instructions better.

Prompt formats used for evaluation are detailed in the Appendix (A.3).

4.5 Training Settings

Our experiments were conducted using the open-source, auto-regressive Transformer-based model,

LLaMA 2 [3], available in 7 billion and 13 billion parameter configurations. The hyperparameter

configurations are detailed in Table A.1. We used BERT [10] as our text encoder model. To

optimize GPU memory usage and accelerate training, we implemented 4-bit quantization to reduce

parameter precision. All experiments require at most 2 NVIDIA V100 16GB GPUs on Compute

Canada. As LLM training and evaluation are both time and computation consuming process and

the majority in LLM literature do not use multiple seeds, we choose to run each configuration only

one time in the following experiments.

4.6 Result

In this section, we present the core results of ELITE in comparison to other benchmarks. We

conduct experiments to explore the impact of self-training iterations, the quantity of majority voting

responses. Additionally, we qualitatively examine the prompt example clustering and selection

process by visualizing the prompt examples in an encoded 2D representation space. Finally, we

perform an ablation study to demonstrate how the quality of initial prompt examples and the use

of prompt example selection affect our framework’s performance.

4.6.1 Comparison of the Baselines

In this subsection, we aim to assess the generalization capability of the proposed frame-

work across different NLP tasks and compare it to the no fine-tuning baseline, the
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Table 4.1: Results on 4 different benchmarks. Fine-tuning methods: (1) No fine-tuning models
(w/o FT), also it represents ELITE running for 0 iterations; (2) Standard supervised fine-tuning
(SFT); (3) Language model after self-improvement (LMSI); and (4) ELITE: our framework, 5
iterations. The numbers in parentheses refer to the performance relative to w/o FT.

Datasets

Natural Instructions BoolQ SQuAD 2.0 GSM8K

Scales Methods ROUGE % F1 F1 Accuracy

7B

(1) w/o FT 51.4 67.1 40.9 21.4
(2) SFT 65.5 (+14.1) 73.4 (+6.3) 45.0 (+4.1) 20.6 (-0.8)
(3) LMSI 59.3 (+7.9) 75.2 (+8.1) 47.4 (+6.5) 26.8 (+5.4)
(4) ELITE 70.3 (+18.9) 78.3 (+11.2) 54.7 (+13.8) 28.6 (+7.2)

13B

(1) w/o FT 46.4 76.6 54.1 23.0
(2) SFT 67.1 (+20.7) 80.3 (+3.7) 57.5 (+3.4) 24.8 (+1.8)
(3) LMSI 55.7 (+9.3) 78.6 (+2.0) 56.4 (+2.3) 23.8 (+0.8)
(4) ELITE 74.8 (+28.4) 81.7 (+5.1) 64.1 (+10.0) 25.7 (+2.7)

existing supervised fine-tuning baseline and the self-improvement method LMSI. A

method is said to have good generalization ability if it can perform well on the evaluation tasks on

which the formats are different from the tasks it was trained on. To improve an LLM, we want the

model not only to perform well on seen tasks, but also to handle unseen (but similar) tasks. Thus,

to investigate the generalization ability of ELITE, we compare it with the baselines mentioned in

Subsection 4.3 and we evaluate different methods using the tasks mentioned in Subsection 4.4. To

make sure the framework is robust to model scales, we ran experiments on both 7 billion and 13

billion parameter models.

Table 4.1 shows that ELITE consistently outperforms all other approaches across various model

scales and on four distinct benchmarks. To generate this table, roughly 410 GPU hours is used for

training and 330 GPU hours is used for inferecing. Resource-intensive configuration such as training

ELITE with 13B model typically uses 120 GPU hours to finish one run on 2 V100 16GB GPUs.

In the in-domain task evaluation using the Natural Instructions dataset, we use the ROUGE-1 [60]

score in percentage to measure performance since it is a widely used text similarity measurement

metrics in NLP, it is also computationally inexpensive to calculate. Measured by ROUGE, ELITE

largely surpassed both standard SFT and LMSI. For the out-of-domain benchmarks, ELITE also
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demonstrated superior generalization ability, showing performance gains across different task types.

ELITE exhibited the most improvement on the SQuAD 2.0 dataset, followed by BoolQ and

GSM8K, compared to SFT and LMSI. This is likely due to the similarity in sub-task formats

between our training dataset and SQuAD 2.0. Although BoolQ requires Boolean rather than free-

form text answers, and GSM8K involves complex mathematical reasoning that is quite distinct

from our training set, ELITE still managed to enhance performance. Notably, with the help of

the self-critique generation mechanism, accuracy on the GSM8K benchmark improved from 21.4%

to 28.6% for the 7B model. For LMSI, the performance often lags behind SFT. This is likely

because LMSI is designed for tasks with absolute ground truth answers, such as math problems

where the final answer is a specific number, allowing LMSI to easily select the majority as the final

label. However, for tasks in Natural Instructions, the similarity between answers is more nuanced,

making it harder for LMSI to capture, which results in lower improvements on these tasks.

Experiment insight: These results underscore that our approach, requiring no man-

ually annotated supervised labels and minimal human effort in providing prompt ex-

amples, not only excels in in-domain tasks but also exhibits robust generalization

capabilities.

4.6.2 The Effect of Self-Training Iterations

In this subsection, our evaluation objective is to examine the effect of self-training iterations.

Each iteration of our framework introduces a new set of predicted answers, critiques, and prompt

examples, continually changing the fine-tuning inputs and outputs. Since we do not have a stopping

criterion for ELITE to follow, it is important to analyze how the number of self-training iterations

impacts the fine-tuning performance so that we know when should we stop improving empirically.

We conduct our experiment on the evaluation set of Natural Instructions dataset to obtain our

framework’s performance on in-domain tasks, which the evaluation task instructions have similar

formats as the training task instructions. And we also evaluate our framework on the evaluation

set of the GSM8K dataset, which the task instructions are very different from the training task
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instructions. We measure the performance on Natural Instructions in ROUGE-1 score and on

GSM8K by F1 score, we choose to report the average of these two scores as an overall performance

for the current iteration. We report the number of iterations range from 0 to 10 as this range is wide

enough to show the trend. Also, we examine both 5 and 10 majority voting responses to ensure the

pattern we observe as the number of iterations change holds for different response numbers. We

use LLaMA 2 - 7B model for the experiments. Figure 4.2 shows the result.

At iteration number 0, the score corresponds to the 7B w/o FT result in Table 4.1. At iteration

number 5, the 10-Majority-Voting score corresponds to the 7B ELITE result in Table 4.1. We

observed that performance improves with each iteration up to the fifth iteration, after which it

peaks and then begins to decline, eventually falling below the performance level of iteration 0,

where no fine-tuning was applied. The same pattern appears in both 5-Majority-Voting and 10-

Majority-Voting cases.

Experiment insight: This result suggests that an appropriate amount of iterations

can enhance our model performance on different tasks while more iterations after may

cause undesired behaviors, even negatively affect evaluation performance.

We will present a qualitative study to examine the undesired behavior from the prompt per-

spective in Subsection 4.6.5.

4.6.3 The Effect of Majority Voting Response Quantity

In this subsection, our evaluation objective is to examine the effect of the majority voting

response quantity. Sampling a large number of responses from an LLM is both computationally

intensive and the inference time grows quickly as more responses are sampled from the LLM, as

shown in the red curve in Figure 4.3, necessitating a balance between cost and performance. In this

experiment, we use the average performance on both Natural Instruction and GSM8K datasets

as the overall score. We use the number of responses equal to 1, 2, 3, 5, 10, 15, 20 and 30 for

experiments. To measure the inference cost, we report the average inference time per instance for

two datasets.
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Figure 4.3 shows the impact of varying the number of majority voting responses during critique

generation. We find that performance improves steadily with an increase in response quantity up

to 10, beyond which performance plateaus.

Experiment insight: The result above indicates that increasing the number of re-

sponses beyond 10 does not yield further benefits and only adds to computational

overhead, suggesting an near-optimal response count for effective performance with-

out excessive resource use.

4.6.4 Efficacy of Clustering Algorithms on Textual Representations

In this subsection, our evaluation objective is to examine the efficacy of clustering algorithms

on textual representations. Dimension reduction is extensively used in the machine learning

community to enhance the accuracy of classification in high-dimensional data [61]. In ELITE, our

goal is to select cluster centers within a 2D textual representation space using a clustering algorithm,

as shown in step 3 in Algorithm 1. To achieve this, it is crucial to examine the clustering performance

as the number of clusters increases since the clustering performance affect how representative our

prompt examples are.

In this experiment, we choose to qualitatively examine the clustering quality by visualizing the

clustering result on different tasks from the Natural Instructions dataset. We try cluster quantities

of 2, 3, and 4 to examine the robustness of the clustering design. Our clustering algorithm is robust

against different tasks and cluster quantities if it can clearly separate vectors into specified amount

of clusters and this holds for various tasks. We present the result of subtask 411 and 612 from

the Natural Instructions dataset. Detailed information on these two subtasks can be found in the

Appendix (A.2.1).

Figure 4.4 qualitatively illustrates the vector distributions with an increasing number of cluster

examples. From 2 to 4 clusters and for the subtask 41 and 61, all six plots exhibit effective clustering,

showcasing distinct boundaries between clusters.

1subtask041 qasc answer generation
2subtask061 answer generation ropes
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Experiment insight: These results indicate that the current dimension reduction

algorithm successfully generates useful low-dimensional representations from high-

dimensional prompt examples, and the clustering algorithm efficiently classifies these

low-dimensional vectors, and extracts representative examples from clusters, which

ensures that our prompt examples are representative.

In Section 4.6.5, we will qualitatively assess the similarity of examples within and between

clusters.

4.6.5 Dominance of Poor Critiques Over Time

In this section, our objective is to examine the effectiveness of prompt example selection

mechanism qualitatively. In Section 4.6.4 we qualitatively examined that our clustering algo-

rithm can separate 2D textual representation vectors generated by BERT and dimension reduction

algorithm, into specific amount of clusters so that we can choose one example from each cluster

as our representative example for that cluster. A natural question to ask is: Does the prompt

example selection mechanism find representative and appropriate prompt examples? By answering

this question, we can also address the potential reason for the undesired performance decline as we

run ELITE more iterations in Section 4.6.2.

To visualize the behavior of the prompt examples in different clusters as iteration number

increases, we first visualize the clustering result at iteration 0, 2, 4, and 8. We are particularly

interested in iterations 4 and 8, since from Section 4.6.2, the overall score starts to drop after

iteration 5. For iterations 4 and 8, we find the prompt examples corresponding to the cluster centers

and an example in the same cluster, and we display the actual prompt examples. Specifically, we

use questions from subtask41 in the training dataset for visualization.

Figure 4.5 provides a qualitative analysis of the prompt selection process across different itera-

tions for the subtask 41 in the training dataset. The series of figures from iterations 0, 2, 4, and 8

display the unsupervised clustering of 2D representations of the prompt examples, post-dimension

reduction by BERT. Initially, at iteration 0, the clusters display no distinct pattern. By itera-
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Amount = 2

Example 
Amount = 3

Example 
Amount = 4

Sub-task 41 Sub-task 61

Figure 4.4: This figure shows that our framework can find the most representative prompt examples
from the low dimensional space regardless of the amount of examples we use.
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tion 2, after refining the prompts and training the LLM to make critique generations, two clearly

distinguishable clusters emerge. By iteration 4, the data points within each cluster become more

compact, facilitating clearer cluster distinction. However, examining specific prompt examples re-

veals that by iteration 6, ambiguities in critiques (such as those from cluster 1’s center example)

start to adversely affect performance. By iteration 8, despite clear cluster distinction, poor cri-

tiques, similar to those in example (6), dominate cluster 1 and continue to degrade performance as

illustrated in Figure 4.2.

4.6.6 Ablation Studies

Table 4.2: The numbers in parentheses refer to the relative performance drop relative to ELITE.
This table shows that both initial examples and our prompt example selection mechanism enhance
the framework performance.

Framework Variants
Datasets

Natural Instructions GSM8K

ELITE 70.3 28.6
ELITE w corrupted initial examples 53.9 (-16.4) 19.3 (-9.3)
ELITE w/o initial prompt examples 55.3 (-15.0) 20.1 (-8.5)
ELITE w/o prompt example selection 62.7 (-7.6) 24.3 (-4.3)

In this subsection, we assess the impact of initial examples and the effectiveness of the

prompt example selection mechanism quantitatively. We conduct our ablation study across

two benchmarks: Natural Instructions and GSM8K. Below, we outline the variants of our framework

included in this comparison:

• ELITE with Corrupted Initial Examples: In the first iteration, this variant uses the

answer and critique intended for the next example as the response for the current question

and context.

• ELITE without Initial Prompt Examples: This variant does not use any prompt exam-

ples in the first iteration, beginning their use only from the second iteration onward. This is

equivalent to setting eh = None in Algorithm 1.
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Iteration 8

4

5

6

Iteration 0 Iteration 2

Context: When hurricanes move over continents, their strength
decreases. 
Question: When will a hurricane lose its strength?
Predicted Answer: When a hurricane moves over a continent.
Predicted Critique: You are correct. The strength of a hurricane will
decrease as it moves over a continent.

4

Context: A planet has cycles caused by rotation.
Question: What causes time cycles on a planet?
Predicted Answer: The answer is rotation.
Predicted Critique: Correct! The rotation of a planet is the cause of the
time cycles on that planet.

5

Context: When an earthquake causes the ground to shake, this shaking
can damage buildings.
Question: How do earthquakes cause damage to buildings?
Predicted Answer: An earthquake causes the ground to shift and settle,
leading to structural damage to buildings.
Predicted Critique: Thank you for your feedback! Please indicate the
correctness of the given prediction.

6

Context: A planet rotating tells humans when to sleep.
Question: What tells humans when to sleep?
Predicted Answer: The planet.
Predicted Critique: Your answer is correct! The planet's rotation
indeed tells humans when to sleep. Good job!

1

Context: Low iron can cause immunodeficiency.
Question: What can low iron cause?
Predicted Answer: Immunodeficiency
Predicted Critique: Correct! Your answer is contained in the fact
provided. Well done!

2

Context: Day and night on a planet, in cycles, is caused by the momentum
of the planet's orbit.
Question: A planet experiences day and night cycles, due to the planet's
what?
Predicted Answer: orbit momentum.
Predicted Critique: The answer is correct! The day and night cycles on a
planet are indeed caused by the momentum of the planet's orbit. Great job!

3

Iteration 4

2

1 3

Figure 4.5: As the iteration increases the format of the prompt examples gradually align with the
representative examples, but with too many iterations the examples may follow the format of wrong
examples.
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• ELITE without Prompt Example Selection: This variant employs the same initial pre-

labeled prompt examples in every iteration, without any selection or refinement process. This

is equivalent to removing step 3 in Algorithm 1.

Experiment insight: The results, as shown in Table 4.2, from comparing these three

variants against our original framework reveal key observations:

• The Importance of Initial Prompt Examples for Subsequent Generations: The

absence or corruption of initial prompt examples significantly degrades the performance of

our framework, highlighting their critical role in setting the stage for effective fine-tuning.

• Enhancement through Prompt Example Selection: Implementing a prompt example

selection process enhances the overall quality of critique generation. This improvement fa-

cilitates better learning of the mappings between question, answer prediction, and critique

generation during fine-tuning.

These findings underscore the importance of carefully curated initial examples and dynamic

example selection to optimize the performance of LLMs in complex task environments. These

findings also suggest that we should collect initial prompt examples carefully and accurately, and

refine the prompt dynamically to make sure the prompt examples are still representative to the

training data.

4.7 Conclusion

This chapter presented a comprehensive empirical evaluation of the ELITE framework. Our re-

sults demonstrated its performance advantage over traditional fine-tuning methods and strong

self-improvement baseline across multiple benchmarks. Our key findings include:

• It is important to carefully choose the appropriate initial prompt examples as

they define the behaviors and formats for the LLM to follow. Use a dynamic way

to choose the prompt examples every iteration improves generation quality.
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• The number of self-training iterations affects performance. The performance

increases as the iterations increase until the iteration 5 is done, the performance

starts to decrease after the iteration 5 due to the domination of bad prompt

examples during example selection.

• The number of majority voting responses affects framework performance. As

more responses being sampled for responses refinement, the performance in-

creases and eventually converges to a certain level.

• The k-Means clustering algorithm is able to cluster BERT-encoded 2D textual

vectors well. This holds for two, three, and four clusters.

These insights provide a strong foundation for our future research and improvements. In the next

chapter, we discuss the conclusion of this work, its limitations, and potential future directions.

48



Chapter 5

Conclusion, Limitations, and Future

Work

In this work, we demonstrate that LLMs can improve performance by leveraging their capabilities to

self-critique. This process is largely autonomous, involving a combination of self-critique sampling,

critique refinement, and selection of prompt examples, with human intervention limited to providing

a small set of 98 initial prompt examples, which only takes a human 2 hours to label these data.

Our experiments, conducted using LLaMA 2 models with 7B and 13B parameters across four

different text generation benchmarks, reveal that our approach significantly outperforms established

methods of supervised fine-tuning and strong self-evolution baselines in both in-domain and out-

of-domain tasks. Our framework provides a general technique for LLMs to self-evolve through

self-critique, it can be combined with other existing training paradigms and has the potential to be

applied to foundation models with various modalities. Our work suggests a future where models

are increasingly capable of refining their own understanding and adapting to new challenges with

minimal external input.
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5.1 Limitations

The limitations of our work include:

• Our experiments were restricted to LLMs with a maximum of 13 billion parameters. Conse-

quently, we could not observe the potential emerging abilities of larger LLMs. Additionally,

due to hardware constraints, we implemented 4-bit quantization to reduce GPU memory

consumption, which likely degraded performance.

• For in-domain evaluations, we opted for the ROUGE score due to its computational efficiency.

We did not employ more comprehensive evaluation metrics such as those used in the GPT-4

evaluations, which might offer a more accurate assessment of model performance.

• As a matter of time, we did not explore the impact of alternative dimension reduction,

clustering, and outlier detection algorithms. All of these aspects can change the performance

of our framework.

• The generation quality of the answer prediction and self-critique can be further improved

with external critiques, such as the critiques from a strong pre-trained LLM. In this work,

due to resource constraints, we only use a simple response refinement idea — majority voting

— to refine our responses, and since our tasks are not limited to the answers with absolute

correctness, majority voting may not always select an appropriate answer.

5.2 Future Work

For the current framework design, future work will focus on several different objectives:

• Deploying more advanced LLM training libraries and tools to further speed up

training and inference. Right now, we do not use popular LLM inference library such as

DeepSpeed [62] to optimize our GPU memory usage. Because we use NVIDIA 16GB V100

GPUs, it is difficult to make our framework using a 7B model run on single 16GB GPU
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and create multiple instances of our framework to run on multiple GPUs. In the future, we

will investigate the usage of weight and activation offload in DeepSpeed further so that our

framework can be run on a single 16GB GPU.

• Explore the impact of different dimension reduction, clustering, and outlier de-

tection algorithms and different textual encoder models. For dimension reduction

algorithms, we will explore t-Distributed Stochastic Neighbor Embedding (t-SNE) [63] for

its ability to capture non-linear relationships well and Auto-Encoder [64] models for its ca-

pabilities to handle large datasets and building complex representations. For unsupervised

clustering algorithms, we will explore Hierarchical Clustering which does not require us to

specify the number of clusters, and Density-Based Spatial Clustering of Applications with

Noise (DBSCAN) [65], for its robustness to noise and outliers, and the ability to capture

arbitrarily shaped clusters. For outlier detection algorithms, we will explore Local Outlier

Factor (LOF) [66], for its consideration of the neighbourhood density. For textual encoder

models, we will explore Robustly optimized BERT approach (RoBERTa) [17] since it improves

its pre-training strategies to provide better contextual embeddings. We will also explore Dis-

tilBERT [67], a lighter version of BERT with similar performance and faster inference speed.

For optimizing our framework design, future work will focus on several different objectives:

• Designing our framework to iterate and optimize with human defined objectives.

For our current framework design, as the iterative process goes, we can only stop the process

based on its empirical evaluation performance. A better way to design it is to let the humans

set some pre-define optimization target before the process starts. The targets can be safety,

fairness, reasoning ability and so on, a simple way to set the stopping criterion is to evaluate

the model performance on a small set of evaluation data to test these targets. The training

process stops when the evaluation performance falls below a certain pre-defined threshold.

• Controlling the LLM self-generated critique quality. We can leverage external strong

pre-trained LLMs such as GPT-3.5 or LLaMA-3 [68] to help refine the quality of our model’s

generation result, in which case we can get a self-critique dataset that is much closer to the
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human level. In each iteration when the LLM is fine-tuned using high-quality dataset, the

evaluation performance will be higher.
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Appendix A

In this chapter, we first clarify the hyperparameters we used in the experiments. Then, we give de-

tailed information about our question dataset and prompt examples, and provide concrete examples

for them.

A.1 Hyperparameters Clarifications

In this section we explain the hyperparameters we used for our experiments and present the values

for reproducibility.

In Table A.1, we present our hyperparameters. The bold values are selected hyperparameters

and the rest are the other hyperparameter values being swept over. We use the values in bold for

all the experiments unless specified in the text.

• # of prompt examples = 2 means for each sub-task out of 49 sub-tasks in the training set,

the prompt used to generate answer prediction and self-critique uses a prompt that includes

two prompt examples.

• # of self improve iterations = 5 means the Steps 1-4 in the Algorithm 1 run 5 times.

• # of majority voting responses = 10 means the Step 2 in Algorithm 1 samples 10 self-

critiques first, then refine to only one critique with clustering algorithm.

• IsolationForest contamination controls the strength of outlier removal in the prompt
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Table A.1: An overview of the hyperparameters. The bold values are selected hyperparameters
and the rest are the other hyperparameter values being tested.

Category Hyperparameter Value

Framework
# of prompt examples 1, 2, 3
# of self improve iterations 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
# of majority voting responses 1, 2, 3, 5, 10, 15, 20, 30

Clustering
PCA # of components 1, 2, 3
Encoder batch size 4, 8, 16, 32
Isolation Forest contamination 0.05, 0.1, 0.2, 0.3, 0.4

Fine-tuning

LoRA target modules
q proj, k proj, v proj,
o proj, gate proj,
up proj, down proj

Per iteration fine-tuning epochs 1, 2, 3, 5
Learning rate 5× 10−5

Weight decay 1× 10−3

Fine-tuning batch size 1, 2, 4

example selection process. A higher values leads to more values being classified as the outliers

and be removed.

• LoRA target modules refers to the linear modules we train during fine-tuning. We used

the same settings as recommended in the LoRA paper [43].

• Per iteration fine-tuning epochs refers to the amount of full passes through the training

dataset at Step 4 in algorithm 1. We choose by observing training loss.

• Learning rate refers to fine-tuning learning rate, we used the same value used in LMSI [8].

• Fine-tuning batch size refers to the batch size we use during fine-tuning, due to the

hardware constraint we only able to run our framework with a maximum batch size of 2.

A.2 Dataset Details

To bootstrap our training process, two datasets are essential: (1) A question dataset contain-

ing a variety of common NLP tasks, and (2) A prompt example dataset that includes not only

task instructions and questions but also answers and self-critiques labeled by humans. Before the
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fine-tuning step described in Algorithm 1, a self-critique dataset is generated based on these two

datasets. Detailed information about these datasets, along with concrete examples, is provided in

the following sections.

A.2.1 Question Dataset

The base dataset used to construct our question dataset is Natural Instructions v1.0 [55]. This

dataset contains 61 different sub-tasks, with 49 of them designated for training. We select the

first 50 instances from each sub-task to compose our question dataset, resulting in a total of 2450

instances. Below, we provide three examples from the question dataset. Each example includes

a Task ID, which refers to the sub-task the instance belongs to, the Context, which includes the

task instructions, and the Input, which refers to the question or additional context specific to the

instance.
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Task ID: Subtask 01: question generation (quoref)

Context: In this task, you’re given passages that contain mentions of names of people,

places, or things. Some of these mentions refer to the same person, place, or

thing. Your job is to write questions that evaluate one’s understanding of such

references. Good questions are expected to link pronouns (she, her, him, his,

their, etc.) or other mentions to people, places, or things to which they may

refer.

Input: Passage: Nearing London, Oliver encounters Jack Dawkins, a pickpocket more

commonly known by the nickname the “Artful Dodger”, and his sidekick, a boy

of a humorous nature named Charley Bates, but Oliver’s innocent and trusting

nature fails to see any dishonesty in their actions. The Dodger provides Oliver

with a free meal and tells him of a gentleman in London who will “give him

lodgings for nothing, and never ask for change”. Grateful for the unexpected

assistance, Oliver follows the Dodger to the “old gentleman’s” residence. In

this way Oliver unwittingly falls in with an infamous Jewish criminal known

as Fagin, the gentleman of whom the Artful Dodger spoke. Ensnared, Oliver

lives with Fagin and his gang of juvenile pickpockets in their lair at Saffron

Hill for some time, unaware of their criminal occupations. He believes they

make wallets and handkerchiefs.
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Task ID: Subtask 60: question generation4 (ropes)

Context: You are given a background paragraph that describes one or more causal or

qualitative relationships such as a relationship in economics or a scientific law

and a story that makes use of the concepts or the relationship described in the

provided paragraph. You need to come up with a question about the story

that requires understanding of the relationship described in the background

paragraph.

Input: Background Paragraph: A rise in price of a good or service almost always

decreases the quantity demanded of that good or service. Conversely, a fall

in price will increase the quantity demanded. When the price of a gallon of

gasoline increases, for example, people look for ways to reduce their consump-

tion by combining several errands, commuting by carpool or mass transit, or

taking weekend or vacation trips closer to home. Economists call this inverse

relationship between price and quantity demanded the law of demand. The

law of demand assumes that all other variables that affect demand (which we

explain in the next module) are held constant.

Story: The AAA auto club does a weekly report on the prices of gas and

diesel in various cities. Historically, the prices have been fairly stagnant, but

this week their report garnered widespread attention as the prices of gas and

diesel plunged from last week in Seattle by $0.40 each. However, just across

the border in Vancouver, the cost of gas went up dramatically by $0.50.
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Task ID: Subtask 56: classify correct answer (multirc)

Context: In this task, your goal is to judge a correct answer to a given a question based

on an associated paragraph and decide if it is a good correct answer or not.

A good correct answer is the one that correctly and completely answers the

question. A bad correct answer addresses the question only partially or incor-

rectly. If you think the given correct answer is good, indicate it by responding

“Yes”. Otherwise respond “No”.

Input: Paragraph- Sent 1: Obama was born on August 4, 1961, at Kapiolani Ma-

ternity Gynecological Hospital in Honolulu, Hawaii. Sent 2: He is the only

President to have been born in Hawaii. Sent 3: He was born to a white

mother and a black father. Sent 4: His mother, Ann Dunham (1942-1995),

was born in Wichita, Kansas, of mostly English descent, with some German,

Irish, Scottish, Swiss, and Welsh ancestry. Question: How old was Obama’s

mother when he was born? Correct Answer: almost twenty.
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Subtask 41 Information

In Section 4.6.4 and 4.6.5 we used the subtask 41 (subtask041 qasc answer generation) to quali-

tatively show the clustering results. Here we introduce the basic information about this subtask.

Detailed information about this task can also be found at https://instructions.apps.allenai.org/.

The subtask 41 involves writing a correct answer to a given question based on an associated

fact. The answer must be contained within the fact, which has been rearranged to form the

question. The answer can be a word, phrase, or sentence, but it must strictly use words from

the associated fact without introducing any new words. The emphasis is on accurately using the

provided information to answer the question without any creativity or additional words. Below we

provide three examples.

Task ID: Subtask 41: answer generation (qasc)

Context: Write a correct answer to the given question based on its associated fact. Make

sure that your answer is contained in the associated fact.

Input: Fact: pesticides can harm animals. Question: What can harm animals?

Example

Output:

Pesticides.

Task ID: Subtask 41: answer generation (qasc)

Context: Write a correct answer to the given question based on its associated fact. Make

sure that your answer is contained in the associated fact.

Input: Fact: rain can help form soil. Question: Rain can help form?

Example

Output:

Soil.
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Task ID: Subtask 41: answer generation (qasc)

Context: Write a correct answer to the given question based on its associated fact. Make

sure that your answer is contained in the associated fact.

Input: Fact: rain helps plants to survive. Question: rain helps plants to?

Example

Output:

Survive.

Subtask 61 Information

In Section 4.6.4 we used the subtask 61 (subtask061 answer generation ropes) to qualitatively show

the clustering results. Here we introduce the basic information about this subtask. Detailed

information about this task can also be found at https://instructions.apps.allenai.org/

Subtask 61 involves generating answers for questions related to causal or qualitative relationships

described in a given paragraph. The task requires understanding a background paragraph that

explains a relationship, such as an economic principle or scientific law, and a story that uses this

concept. The goal is to answer a question about the story by correctly applying the relationship

described in the background paragraph. The answer must be a span taken directly from the story

or the question, without introducing any new words. It is important to accurately comprehend the

relationships mentioned to provide correct answers. Below we provide three examples.
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Task ID: Subtask061 answer generation ropes

Context: Answering questions regarding relations in the given paragraph.

Input: Background Paragraph: A rise in price of a good or service almost always

decreases the quantity demanded of that good or service. Conversely, a fall

in price will increase the quantity demanded. When the price of a gallon of

gasoline increases, for example, people look for ways to reduce their consump-

tion by combining several errands, commuting by carpool or mass transit, or

taking weekend or vacation trips closer to home. Economists call this inverse

relationship between price and quantity demanded the law of demand. The

law of demand assumes that all other variables that affect demand (which we

explain in the next module) are held constant. Story: The AAA auto club

does a weekly report on the prices of gas and diesel in various cities. Histor-

ically, the prices have be fairly stagnant, but this week their report garnered

widespread attention as the prices of gas and diesel plunged from last week

in Seattle by $0.40 each. However, just across the border in Vancouver, the

cost of gas went up dramatically by $0.50. Question: Which city will have an

increase in demand for gas?

Example

Output:

Seattle.
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Task ID: Subtask061 answer generation ropes

Context: Answering questions regarding relations in the given paragraph.

Input: Background Paragraph: A rise in price of a good or service almost always

decreases the quantity demanded of that good or service. Conversely, a fall

in price will increase the quantity demanded. When the price of a gallon of

gasoline increases, for example, people look for ways to reduce their consump-

tion by combining several errands, commuting by carpool or mass transit, or

taking weekend or vacation trips closer to home. Economists call this inverse

relationship between price and quantity demanded the law of demand. The

law of demand assumes that all other variables that affect demand (which we

explain in the next module) are held constant. Story: The AAA auto club

does a weekly report on the prices of gas and diesel in various cities. Histor-

ically, the prices have be fairly stagnant, but this week their report garnered

widespread attention as the prices of gas and diesel plunged from last week

in Seattle by $0.40 each. However, just across the border in Vancouver, the

cost of gas went up dramatically by $0.50. Question: Which city will have a

decrease in demand for gas?

Example

Output:

Vancouver.
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Task ID: Subtask061 answer generation ropes

Context: Answering questions regarding relations in the given paragraph.

Input: Background Paragraph: Alpine lakes are classified as lakes or reservoirs at

high altitudes, usually starting around 5,000 feet (1524 metres) in elevation

above sea level or above the tree line. Alpine lakes are usually clearer than

lakes at lower elevations due to the colder water which decreases the speed

and amount of algae and moss growth in the water. Often these lakes are

surrounded by varieties of pine trees, aspens, and other high altitude trees.

Story: Michael is planning a retreat for the team members at his company and

also a weekend trip with his family. After discussion with his coworkers, he

decided that they were going to plan a trip to the outdoors. Lake Schmitz is

high up in elevation and Lake Smith is much lower in elevation. His coworkers

like to go to places with a lot of trees to relax in the shade and his family

likes to go swimming in clear lakes. Question: Will lake Smith be more or less

clear?

Example

Output:

Less.

68



A.2.2 Prompt Examples

The prompt examples used in our study are sourced from Natural Instructions v1.0 [55]. The

original authors employed crowdsourcing to collect a set of positive and negative examples, each

with corresponding answers and explanations. For our purposes, we default to using the first two

positive examples from each sub-task in the original dataset, resulting in a total of 98 prompt

examples. Below, we provide three examples of these prompt examples. “Answer prediction” refers

to what humans consider the correct answer for the given context and input. “Self-critique” refers

to the explanation and reasoning about whether the answer is appropriate and how to derive it

from the provided information. The self-critique dataset generated in Step 2 of our Algorithm 1

follows the same format.

Task ID: Subtask 04: answer generation event duration (mctaco)

Context: In this task we ask you to write answer to a question that involves “event du-

ration”, based on a given sentence. Here, event duration is defined as the un-

derstanding of how long events typically last. For example, “brushing teeth”,

usually takes few minutes.

Input: Sentence: Jack played basketball after school, after which he was very tired.

Question: How long did Jack play basketball?

Answer

Predic-

tion:

1 hour.

Self

Critique:

The answer is complete, relevant and accurate. Typically we play basketball

for a couple of hours. So any answer in that range is reasonable.
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Task ID: Subtask 10: answer generation event ordering (mctaco)

Context: In this task we ask you to write answer to a question that involves ordering of

event, i.e., the understanding of how events are usually ordered. For example,

“earning money” usually appears before “spending money”.

Input: Sentence: Jack played basketball after school, after which he was very tired.

Question: What did Jack do after the game?

Answer

Predic-

tion:

He rested.

Self

Critique:

When people “get tired”, they usually “rest”.

Task ID: Subtask 29: full object (winogrande)

Context: In this task, based on the given context word, you are asked to create a pair

of sentences each containing a blank ( ) and their corresponding answer. The

sentence pair should look similar, and should be about two related but different

objects; for example “trophy” and “suitcase”. Additionally, the two sentences

must be different in terms of trigger words (e.g., “small” and “big”) which

express contrasting properties about the two objects.

Input: Context word: fit.

Answer

Predic-

tion:

Sentence 1: The trophy doesn’t fit into the brown suitcase because is too

large. Answer1: trophy. Sentence 2: The trophy doesn’t fit into the brown

suitcase because is too small. Answer2: suitcase.

Self

Critique:

Here, the two objects are “trophy” and “suitcase”. The trigger words are

“large” and “small”. Everything else (apart from the trigger words) are the

same in the two sentences. The two sentences have different answers, which

are the two objects (“trophy” and “suitcase”).
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A.3 Prompt Details

In this section, we first show the prompt format we used for answer prediction, self-critique gener-

ation and fine-tuning. We then show the prompt format we used during model evaluation, for the

benchmark datasets BoolQ, GSM8K and SQuAD 2.0.

A.3.1 Answer Prediction Prompt

The prompt we used for answer generation is Table A.2. It starts with an instruction, then follows

up by the prompt examples, the number of examples is pre-defined before training and the content of

the prompt examples are dynamically selected in each iteration. In each example, it should includes

a passage, a question and an answer. The “[example prompt]” and “[question]” are replaced by the

real prompt examples and questions during training. The LLM is expected to finish the completion

based on the prompt content. For the evaluation task on Natural Instruction, we used the same

format as we do in Table A.2.

Table A.2: The prompt we use for answer generation.

Please refer to the instruction and task information and give your answers. You
need to follow the examples we provided.
Instruction:
Provided the input sentence, you’re expected to write a question that involves event “frequency”,
which refers to how often an event is likely to be repeated. For example, “taking showers” typi-
cally occurs 5̃ times a week, “going to Saturday market” usually happens every few weeks/months,
etc. The written questions are not required to have a single correct answer.
Prompt Examples:
[example prompt]

Task:
Question:
[question]
Answer:
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A.3.2 Self-Critique Generation

The prompt we used for self-critique generation is Table A.3. It starts with an instruction, then

follows up by the prompt examples, the number of examples is pre-defined before training and

the content of the prompt examples are dynamically selected in each iteration. In each example,

it includes a passage, a question, a predicted answer and a critique. The “[example prompt]”,

“[question]” and “[answer]” fields are replaced by the real prompt examples and questions during

training. The LLM is expected to finish the completion based on the prompt content.

Table A.3: The prompt we use for self-critique generation.

Please refer to the instruction and task information, provide your critique for
whether the predicted answer is proper, the reasons and what the correct answer
is. You need to follow the examples we provided.
Instruction:
Provided the input sentence, you’re expected to write a question that involves event “frequency”,
which refers to how often an event is likely to be repeated. For example, “taking showers” typi-
cally occurs 5 times a week, “going to Saturday market” usually happens every few weeks/months,
etc. The written questions are not required to have a single correct answer.
Examples:
[example prompt]

Task:
Question:
[question]
Predicted Answer:
[answer]
Critique:
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A.3.3 Fine-tuning Prompt

The prompt we used for fine-tuning is Table A.4. It starts with an instruction. The “[question]”

and “[answer]” fields are replaced by the questions during training. The LLM is expected to finish

the completion based on the prompt content.

Table A.4: The prompt we use for fine-tuning.

Please refer to the instruction and task information, provide your critique for
whether the predicted answer is proper, the reasons and what the correct answer
is.
Instruction:
Provided the input sentence, you’re expected to write a question that involves event “frequency”,
which refers to how often an event is likely to be repeated. For example, “taking showers” typi-
cally occurs 5 times a week, “going to Saturday market” usually happens every few weeks/months,
etc. The written questions are not required to have a single correct answer.

Task:
Question:
[question]
Predicted Answer:
[answer]
Critique:
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A.3.4 BoolQ Evaluation

The prompt we used for BoolQ evaluation is Table A.5. It starts with an instruction, then follows

up by two examples. In each example, it includes a passage, a question and a Boolean answer. The

“[passage]” and “[question]” are replaced by the real passage and question during evaluation. The

LLM is expected to give a Boolean answer.

Table A.5: The prompt we use for BoolQ evaluation. We use 2 prompt examples.

Write a response that appropriately completes answer the question, follow the ex-
amples. Your answer should be “True” or “False”.
Passage:
The Vampire Diaries, an American supernatural drama, was renewed for an eighth season by
The CW on March 11, 2016. On July 23, 2016, the CW announced that the upcoming season
would be the series’ last and would consist of 16 episodes. The season premiered on October 21,
2016 and concluded on March 10, 2017.
Question:
Will there be a season 8 of vampire diaries?
Answer:
True

Passage:
This is the list of U.S. states that have participated in the Little League World Series. As of
the 2018 LLWS, eight states had never reached the LLWS: Alaska, Colorado, Kansas, North
Dakota, Utah, Vermont, Wisconsin, and Wyoming; additionally, the District of Columbia has
never reached the LLWS.
Question:
Has wisconsin ever been in the little league world series?
Answer:
False

Passage:
[passage]
Question:
[question]
Answer:
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A.3.5 GSM8K Evaluation

The prompt we used for GSM8K evaluation is Table A.6. It starts with an instruction about the

task, then follows up by four examples. In each example, it includes a question and a Boolean

answer. The “[question]” is replaced by the real question during evaluation. The LLM is expected

to give numeric answer and the reasoning path to get the answer.

Table A.6: The prompt we use for GSM8K evaluation. We use 4 prompt examples.

Write a response that appropriately completes answer the math question, follow
the examples. You must end your response with “The answer is []”.
Q:
If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking
lot?
A:
There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The answer is 5.

Q:
Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left
in total?
A:
Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 = 74. After
eating 35, they had 74 - 35 = 39. The answer is 39.

Q:
Michael had 58 golf balls. On Tuesday, he lost 23 golf balls. On Wednesday, he lost 2 more.
How many golf balls did he have at the end of Wednesday?
A:
Michael started with 58 golf balls. After losing 23 on Tuesday, he had 58 - 23 = 35. After losing
2 more, he had 35 - 2 = 33 golf balls. The answer is 33.

Q:
Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
A:
Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars. So she has 23 - 15
dollars left. 23 - 15 is 8. The answer is 8.

Q:
[question]
A:
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A.3.6 SQuAD Evaluation

The prompt we used for SQuAD 2.0 evaluation is Table A.7. It starts with an instruction, then

follows up by two examples. In each example, it includes a context, a question and an answer. The

“[context]” and “[question]” are replaced by the real context and question during evaluation. The

LLM is expected to give an answer based on the information in the context to answer the question.

Table A.7: The prompt we use for SQuAD 2.0 evaluation. We use 2 prompt examples.

Write a response that appropriately completes answer the question, follow the ex-
amples. You should answer ’no answer found’ if you cannot find the answer from
the context.
Context:
A problem is regarded as inherently difficult if its solution requires significant resources, whatever
the algorithm used. The theory formalizes this intuition, by introducing mathematical models of
computation to study these problems and quantifying the amount of resources needed to solve
them, such as time and storage.
Question:
What method is used to intuitively assess or quantify the amount of resources required to solve
a computational problem?
Answer:
mathematical models of computation

Context:
Under the terms of the Scotland Act 1978, an elected assembly would be set up in Edinburgh
provided that the majority of the Scottish electorate voted for it in a referendum to be held on 1
March 1979 that represented at least 40% of the total electorate. The 1979 Scottish devolution
referendum to establish a devolved Scottish Assembly failed.
Question:
President Wilson committed his government to what in 1974?
Answer:
no answer found

Context:
[context]
Question:
[question]
Answer:
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