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Abstract 
 

 

The main goal of this thesis is to contribute to the growing body of scientific work by exploring 

mechanisms of ecosystem productivity through the integration of remote sensing and 

micrometeorological data. This was done throughout by (i) identifying the environmental 

mechanisms affecting productivity in tropical dry forest during normal and drought conditions; (ii) 

assessing the use of proximal PRI sensors as a proxy of photosynthetic efficiency and use towards a 

complete remote sensing derived measure of ecosystem productivity; and (iii) evaluating the impact 

of temporal aggregation and phenology on LUE model parametrization and ecosystem productivity 

in two deciduous forests. 

Chapter 2 uses information on seasonal phenology and carbon fluxes derived from optical remote 

sensors and eddy covariance to identify key mechanisms of ecosystem productivity under normal 

and drought seasonal precipitation regimes. Precipitation was identified as the trigger for the 

initiation of the phenological cycle. Results also showed a substantial decrease in productivity, net 

ecosystem exchange, and respiration due to drought, but the Tropical Dry Forest remained a net 

carbon sink over the season. Relative importance analysis identified latent heat as the principal 

controlling factor of TDF productivity. However, during drought, soil moisture became the limiting 

variable of productivity. 

Chapter 3 evaluates continuous data collected from recently available autonomous PRI sensors as a 

proxy of light use efficiency (LUE) in an aspen (Populus tremuloides) forest. Quantum yield values 

were calculated from eddy covariance data and used to assess the ability for PRI measurements to 

track changes in canopy light use efficiency. Spectrometer measurements were also used to validate 

and calibrate the sensor’s PRI signal. Uncalibrated PRI data was unable to resolve diurnal patterns 

and resulted in an overestimation of LUE and productivity. An offline diurnal calibration procedure 
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was proposed to resolve diurnal and seasonal LUE trends. Calibrated PRI data was then used to 

derive productivity through a LUE model parameterized solely by remote sensing data. Modeled 

productivity significantly correlated with measured GPP values from an eddy covariance system. 

Chapter 4 explores the effect of temporal aggregation and phenology on LUE model variables and 

productivity in a tropical dry forest (TDF) and deciduous boreal forest (DBF). This was done as part 

of developing data management protocols for remote sensing data integration. Results showed the 

different impacts of aggregation in seasonal analysis than when data was divided by phenological 

cycle, for some variables (e.g. fAPAR). Results suggest that temporal aggregation can significantly 

impact LUE model accuracy and should be considered as we explore the proper protocols for optical 

and flux data integration. Relative importance results showed differences in dominant variables of 

productivity between seasonal and phenological analysis. Findings confirm that physiological and 

structural contributions of the LUE model change between vegetation, environmental condition and 

phenology.  
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CHAPTER 1 – Introduction 

 

1.1 Introduction 

Uncertainty in the quantification of terrestrial carbon sequestration has limited our 

understanding of carbon cycle dynamics and our ability to predict future photosynthetic activity and 

risk within climate models. However, with the onset of remote sensing, a number of semi-empirical 

upscaling methods have emerged with the goal of transforming local CO2 fluxes into ecosystem-scale 

productivity. Remote sensing provides the ability to gather a wide range of data from locations that 

were previously inaccessible and do so in a non-destructive way. To better understand ecosystem 

functions, systematic studies looking at temporal patterns within individual ecosystems need to be 

conducted. Characterizing ecosystem processes, which in turn are linked to its functioning, allow us 

to create regional models that characterize the challenges, limitations, and feasibility of global-scale 

models (Field et al., 1995). As such, we can think of ecosystem studies as being a key to correctly 

informing global models (Schimel, 1995; Braswell et al., 1997; Reich et al., 1999; Running et al., 

2004; Turner et al. 2005).  

Two vulnerable ecosystems with important influence on global climate are tropical dry forests 

(TDFs) and boreal forests. As such, the affect and significance of these two ecosystems in the context 

of global climate makes these important ecosystems to study. Their shared deciduous responses, 

caused by different limiting resources, make for interesting ecosystem comparisons. However, the 

study of these two ecosystems does represent significant challenges including their remote location 

and spatial extent, which perhaps has contributed to our limited understanding of these ecosystems. 

Our limited knowledge of variability and controls on fluxes in tropical ecosystems limits our 

ability to predict CO2 and H2O cycling and future climatic changes due to natural and anthropogenic 

disturbances predictions (Schimel et al., 2001). Over the last 20 years, there has been a greater effort 

from the scientific community to characterize the mechanisms that control carbon exchange within 

the various tropical ecosystems. However, even though tropical dry forests (TDFs) account for over 

40% of tropical forest worldwide, they have remained considerably understudied. The lack of 

available data has prevented the full characterization of carbon flux dynamics in this ecosystem. 

Furthermore, to date, there has been very limited information published on the effect of drought and 

resilience on ecosystem productivity within tropical dry forests. As climate change effects are 

predicted to lead to decrease water availability in many tropical dry forested areas (Enquist, 2002; 
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IPCC, 2013), it has become increasingly important to understand tropical dry forest’s vulnerability to 

drought. The quantification of net carbon balance in topical systems is critical for understanding 

ecosystem respiration and photosynthesis components, as well as to establish the response of topical 

systems in a changing global climate 

The boreal forest plays the most important regulatory influence on global climate by affecting 

the overall carbon, energy, and water balance (Walter 1979; Kasischke and Stocks 2000; Dale et al. 

2001; French, 2002; Balzter et al. 2005). Carbon sequestration and release, changes in energy budgets 

driven by albedo changes, and modification of moisture balance are examples of processes by which 

borel forests have been shown to affect global climate conditions (French, 2002; Pan et al. 2011). 

Furthermore, climate change is projected to have an amplified impact on northern latitudes, with 

reports suggest climatic warming in the Arctic exceeding 1.9 times the global average (Brock and 

Xepapadeas, 2017; Winton 2006). As large extents of the boreal forests occupy northern latitudes, 

they provide the opportunity to explore the impact of climate change and volatility in this ecosystems.  

Modern remote sensing techniques can provide continuous measurements that help 

characterize and identify rapid changes in vulnerable ecosystems. Additionally, integration of optical 

with eddy covariance flux measurements can provide further insight into ecosystem functioning than 

would be possible with either method independently (Gamon, 2015). Remote sensing driven Light 

Use Efficiency (LUE) models (Monteith, 1977) offer the ability to sample sites with high 

heterogeneity, complex topography, and other non-ideal sites for the eddy covariance technique. In 

turn, eddy covariance can provide direct physiological validation to remote sensing empirical 

observations. One of the challenges of integrating optical and flux data arises from the different time 

and space scales of optical and flux measurements.  To achieve meaningful integration of remote 

sensing with flux data, an in-depth assessment exploring the temporal aggregation requirements 

needed to build relationships that properly represent the physiological status of plant canopies is 

necessary. 

 Integrated National Aeronautics and Space Administration (NASA) field campaigns, First 

International Satellite Land Surface Climatology Project Field Experiment (FIFE) (Sellers et al., 

1992) and Boreal Ecosystem-Atmosphere Study (BOREAS) (Sellers et al., 1997), were the first large 

scale success studies of remote sensing and flux integration towards a greater understanding of 

ecosystem physiology and ecology. The integration of remote sensing and micrometeorological data 

can be done using the light-use efficiency model as the unifying concept. The LUE model, 

conventionally expressed in terms of Gross Primary Productivity (GPP), is expressed as follows: 
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GPP = APAR x                                                  (1) 

 

where ΣAPAR refers to the integration of Absorbed Photosynthetic Available Radiation over a time 

frame, and ε represents the LUE (Monteith, 1977; Asrar et al., 1984; Sellers 1985). Conceptually, the 

LUE model can be separated into a structural component, described by changes in APAR, and a 

physiological component portrayed through the LUE term. Much work has been done in displaying a 

direct link between optical remote sensing and the APAR term (Sellers, 1985; Sellers et al., 1987; 

Myneni and Williams, 1994). However, addressing the efficiency term of the LUE model from 

remote sensing has been more challenging. Advances in the spectral resolution of remote sensing 

tools have provided some new opportunities for estimating LUE. One possible method involves the 

Photochemical Reflectance Index (PRI), typically derived from narrow-band reflectance at 531 and 

570 nm (Gamon et al., 1990; 1992; 1993; Peñuelas et al., 1995; Filella et al., 1996). PRI interpretation 

becomes particularly problematic over large time scales (e.g. seasonal change) or spatial scales (e.g. 

regional or global satellite measurements), where many confounding factors including canopy 

structure, view and illumination angles can affect PRI (Barton & North, 2001). To understand the 

mechanism of PRI response, it is important to determine what the index is truly representing, taking 

into account the irradiance and the spatial and temporal dimension of PRI measurements within a 

specific ecosystem. The recent availability of continuous PRI sensors provides the opportunity to 

expand the current understanding of PRI responses to physiological changes in vegetation as well as 

provide additional tools for the integration of optical and flux data.  

In this context, the main goal of my Ph.D. dissertation is to contribute to the growing body of 

scientific work by exploring mechanisms of ecosystem productivity through the integration of remote 

sensing and micrometeorological data. The evaluation of ecosystem productivity has traditionally 

been done within the framework of a single scientific discipline. However, contemporary 

development in the field of remote sensing has proved a powerful tool allowing continuous and 

enhance monitoring of ecosystem status. Interdisciplinary studies, combining flux measurements with 

proximal remote sensing, represent novel approaches that help to systematically explore ecosystem 

processes. My research looks to continue in this path and explore some of the mechanisms of 

productivity in a tropical dry forest in Costa Rica and a deciduous boreal forest in Canada. 

 

In order to support my main goal, the specific objectives of this thesis are: 
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1) To identify the environmental mechanisms affecting productivity in a tropical dry forest 

before and after a severe drought period.  

2) To determine if new continuous sampling PRI sensors can be used as a proxy of light use 

efficiency and calculate ecosystem productivity of an aspen forest. 

3) To evaluate the impact of temporal aggregation and phenology on LUE model parametrization 

and ecosystem productivity.  

Each objective was explored by a chapter in this thesis and can be summarized as follows: 

Chapter 2 - Effect of Drought on Productivity in a Costa Rican Tropical Dry Forest (Castro, 

Sanchez-Azofeifa, and Sato; 2018) – Tropical dry forests (TDF) are substantially understudied and 

represent a small fraction of the total research on tropical ecosystems (Sanchez-Azofeifa et al. 2005). 

This has contributed to the current poor understanding of TDF productivity.  Precipitation regimes in 

tropical regions are projected to change by global climate models (Feng et al., 2013). However, 

limited research is available on the driving mechanisms of productivity at ecosystem scale or how 

productivity may respond to changing precipitation and water availability regime. In this study, I used 

information on seasonal phenology and carbon fluxes derived from optical remote sensors and eddy 

covariance collected over four growing seasons (2013-2016). Through the analysis of the integrated 

time series, I was able to identify key mechanisms of ecosystem productivity under normal seasonal 

precipitation regimes (2013 and 2016 seasons). The 2014 and 2015 growing seasons recieved a 30% 

and 63% reduction in precipitation, respectively, and were designated as drought seasons. These 

datasets were used to identify the effect of drought on optical phenology and carbon dynamics of a 

secondary TDF. Normal and drought conditions were compared and contrasted through eddy 

covariance accumulation curves and relative importance analysis.  Optical and flux collections and 

analysis of TDF are uncommon, and these datasets represent unique and valuable additions to the 

scientific literature, specifically in tropical environments. Results of this study can be used to 

understand secondary TDF productivity and help parametrize and validate productivity models.  

Chapter 3 - Testing of Automated Photochemical Reflectance Index Sensors as Proxy 

Measurements of Light Use Efficiency in an Aspen Forest (Castro and Sanchez-Azofeifa; 2018) – 

Advances in the spectral resolution of remote sensing instrumentation has provided new opportunities 

for estimating LUE through optical tools like the Photochemical Reflectance Index (PRI) (Gamon et 

al., 1990; 1992; 1993; Peñuelas et al., 1995; Filella et al., 1996). However, as this index is derived 

from narrow spectral bands (531 and 570 nm), its response can be affected by several individual and 
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combined confounding variables, making PRI interpretation difficult over large temporal and spatial 

scales (Sims & Gamon, 2002; Stylinski et al., 2002; Filella et al., 2009; Garrity et al., 2011; Gamon & 

Berry, 2012). Until recently, the lack of readily available continuous measurements made it difficult 

to assess PRI as a proxy of LUE over time and space. In this study, we evaluated the reliability of 

data collected from recently available autonomous PRI sensors as a proxy of light use efficiency 

(LUE) in an aspen (Populus tremuloides) forest stand. Midday and diurnal calibration procedures 

were used to determine how to most accurately resolve diurnal and seasonal PRI patterns. Quantum 

yield was derived from eddy covariance measurements, through the use of light response curves, and 

used to validate the response of PRI measurements. Modelled productivity from light use efficiency 

models using PRI and quantum yield were derived and compared to eddy covariance Gross Primary 

Productivity (GPP). Protocols described in this study can be used as a framework for calibrating and 

validating spectral indices from automated sensors. Also, results contribute towards a better 

understanding of PRI as a proxy of LUE and a deeper understanding of diurnal and seasonal changes 

of vegetation physiology that can be explored through continuous measurements. A deeper 

understanding of the proper use of PRI as a proxy of LUE is necessary for integration with flux 

measurements and vegetation productivity modelling.  

Chapter 4 - Effect of temporal aggregation and phenology on LUE model variables and 

productivity in two deciduous forests – The integration of remote sensing and flux measurements 

represents an important development in multidisciplinary science and can provide significant insight 

into ecosystem functioning (Gamon, 2015). Remote sensing provides the ability to continuously 

monitor any ecosystem at a variety of spatial and temporal scales, while eddy-covariance data 

provides the physiological validation to empirical remote sensing observations. As such, the 

combined optical and flux data can provide a deeper exploration of the underlying controls on 

ecosystem-atmosphere interactions than would be possible independently from one another (Gamon, 

2015). As part of developing data management protocols for remote sensing data integration, the 

effect of temporal integration of data must be explored. In this study, a multisite and multi-season 

temporal aggregation analysis on each LUE model variable (PAR, fAPAR, APAR, and LUE) was 

done. Study sites included Tropical Dry Forest (TDF) (2013 and 2014 growing seasons) and a 

Deciduous Broadleaf Forest (DBF) (2015 and 2016 growing seasons). Aggregation analysis was also 

done within each phenological stage (green-up, maturity, and senescence) and effects were compared 

to growing seasonal patterns. Relative importance analysis for seasonal and phenology divided data 

helped explore the changing contributions by LUE model components on productivity. The study 
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findings have significant relevance towards the parametrization of LUE models, as well as tests 

Garbulsky et al. (2007) theory suggesting that the contribution to the LUE model can change between 

vegetation and environmental conditions. 
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CHAPTER 2 – Effect of Drought on Productivity in a Costa Rican Tropical Dry Forest 

 

 

Abstract 

Climate models predict that precipitation patterns in tropical dry forests (TDFs) will change, with an 

overall reduction in rainfall amount and intensification of dry intervals, leading to greater 

susceptibility to drought. In this paper, we explore the effect of drought on phenology and carbon 

dynamics of a secondary TDF located in the Santa Rosa National Park (SRNP), Costa Rica. Through 

the use of optical sensors and an eddy covariance flux tower, seasonal phenology and carbon fluxes 

were monitored over a four-year period (2013-2016). Over this time frame, annual precipitation 

varied considerably. Total precipitation amounts for the 2013-2016 seasons equaled 1591.8 mm 

(+14.4mm SD), 1112.9 mm (+9.9mm SD), 600.8 mm (+7.6mm SD), and 1762.2 mm (+13.9mm SD), 

respectively. The 2014 and 2015 (ENSO) seasonal precipitation amounts represent a 30% and 63% 

reduction in precipitation, respectively, and were designated as drought seasons. Phenology was 

affected by precipitation patterns and availability. The onset of green-up was closely associated with 

pre-seasonal rains. Drought events lead to seasonal NDVI minimums and changes in phenologic 

cycle length. Carbon fluxes, assimilation, and photosynthetic light use efficiency were negatively 

affected by drought. Seasonal minimums in photosynthetic rates and light use efficiency were 

observed during drought events, and gross primary productivity was reduced by 13% and 42% during 

drought seasons 2014 and 2015, respectively. However, all four growth seasons were net carbon 

sinks. Results from this study contribute towards a deeper understanding of the impact of drought on 

TDF phenology and carbon dynamics. 

 

2.1 Introduction: 

 

Tropical dry forests (TDFs) hold a strong economic and cultural connection to human 

development in the Neotropics (Maass et al., 2005). TDFs not only provide a source of agricultural 

and urban land but also an important source of goods and ecosystem services for the communities that 

live around them (Balvanera et al., 2011; Castillo et al., 2005; Fajardo et al., 2005;). Such is the close 

connection of TDFs to human activity that they are considered the most heavily utilized and disturbed 

ecosystem in the world (Janzen, 1998; Sanchez-Azofeifa et al., 2005). Tropical forests have been 

estimated to account for a third of global metabolic activity (Malhi, 2012), and TDF may account for 
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roughly 42% of all tropical ecosystems (Quesada et al. 2009; Murphy and Lugo, 1986). However, 

TDFs are surprisingly understudied and currently represents only a fraction of research on tropical 

ecosystem (Sanchez-Azofeifa et al. 2005). The former has contributed to the fact that we still have a 

poor understanding of TDF response to climatic factors, including moisture dynamics, which are 

needed to understand ecosystem responses to climate change.  

The eddy covariance technique has become the backbone for regional and continental carbon 

balance modeling efforts (Papale & Valentini, 2002; Reichstein et al., 2003) as well as validation and 

calibration of ecosystem models (Baldocchi, 1997; Hanan et al., 2002; Hanson et al., 2004; Reichstein 

et al., 2002, 2003). However, as global modeling has progressed, there remains an 

underrepresentation of tropical ecosystems. Fluxnet-Multi-Tree Ensemble (MTE) upscaling efforts in 

detecting global variability in terrestrial carbon and water cycles indicated a high index of 

extrapolation in tropical areas (Jung et al., 2009). A more recent Fluxnet (2015) 

summary report on global fluxes, reported insufficient flux measurements in the tropical ecosystems 

(Kumar et al., 2016), leading to an underestimate of gross primary productivity (GPP) in these 

regions.  

Global climate models project precipitation regimes in tropical regions to change (Feng et al., 

2013) with increasing in seasonality and variability as main outcomes. Rainfall patterns are predicted 

to move towards more extreme events and lead to an overall reduction in the amount and an extension 

of the dry intervals (Chadwick et al., 2015; Malhi et al., 2008; Zelazowski et al. 2011). Changes in 

precipitation regimes are of particular importance to tropical dry forests as water dynamics determine 

the alternating seasonality between wet and dry seasons. As such, the issue of how TDFs will respond 

to the predicted drier conditions has become important to consider. A recent synthesis by Allen et al. 

(2017) reviewed multiple data sources including seedling, dendrochronology and modeling data to 

suggest changes in structure and functionality, including a reduction in carbon storage, as drought 

frequency increases and precipitation becomes more variable.  

In this context, the objective of this study is to contribute to the discussion of how TDFs will 

respond to changes in rainfall regimes, specifically in the context of phenology and ecosystem carbon 

exchange. Through the use of eddy covariance measurements, optical phenology, and meteorological 

data collected through four growing seasons (2013-2016), including a drought (2014) and an ENSO 

severe drought season (2015), we explored the following questions: 1) How are phenology and 

carbon exchange in a TDF impacted by drought? 2) What drives seasonal variations of GPP and 

respiration under ‘normal’ and drought conditions? This analysis will contribute towards a deeper 
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understanding of the mechanisms controlling ecosystem productivity and explores TDFs sensitivity 

and resilience to drought in the face of changing climate. 

 

2.2 Methods: 

2.2.1 Site description 

The study was conducted within the Santa Rosa National Park Environmental Monitoring 

Super Site (SRNP-EMSS), Guanacaste, Costa Rica. The SRNP-EMSS is located in the northwest of 

Costa Rica, near the border with Nicaragua and is part of a broader conservation area called Area de 

Conservacion Guanacaste (ACG) (Fig. 2.1). The park area consists of a series of plateaus ranging 

from 300 masl to sea level and covered by a mosaic of pasture and tropical dry forest in various 

stages of regeneration (Janzen, 2000; Sen & Sanchez-Azofeifa, 2017). The study plot is located at 

10°44.206’ N, 85°37.034 W with an altitude of 290 masl, and is characterized as an intermediate 

successional stage tropical dry forest with average tree height of 13m (Li et al. 2017) (Fig. 2.1). Its 

topography is slightly sloping (<2%) in the north direction, and the predominant wind direction is 

from the north-west. The mean annual air temperature for the area is 25oC and mean annual 

precipitation over the past 26 years is 1575mm, with 85-97 % of precipitation falling between May 

and November. The natural phenologic cycle initiates during the onset of rains (May) and extends, 

through a prolonged senescence, into late February of the following calendar year. 

 

2.2.2 General Instrumentation 

 The study site has been monitored with an eddy covariance system and meteorological station 

installed on a 35m 0.70m x 2.0 m-section triangular steel tower located within the forest stand. The 

eddy covariance (EC) method (Aubinet et al., 1999; Baldocchi et al., 1988, Moncrieff et al., 1997) 

provided measurements of net ecosystem CO2 exchange (NEE) (mg m-2 s-1), latent heat flux (LE) 

(W m-2), and sensible heat (H) (W m-2) fluxes continuously from 2013 – 2016. Further detail on the 

eddy covariance instrumentation and data processing can be found in the supplementary methods 

section. 

Proximal remote sensing sensors mounted on south-facing arms extending from the steel 

tower allow the tracking of forest stand phenology progression. A broadband NDVI was derived from 

the two-band spot radiometers following a revised method of the Huemmrich et al. (1999) method. 

NDVI seasonal changes were used to calculate the phenological cycle and its stages, green-up, 

maturity, and senescence. Dates for the start of the season, end of season, as well as transitions 
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between stages were determined by analyzing the rate of change throughout the time series, using 

second derivative functions. Additionally, a meteorological station provided ancillary climate 

variables including temperature (T), vapor pressure deficit (VPD), relative humidity (RH) 

measurements and volumetric soil water content (VWC). More detailed information on sensor 

deployment can be found in the supplementary methods section. 

 

2.2.3 Eddy Covariance Partitioning 

Measurements of NEE was partitioned into its two components: Gross Primary Productivity 

(GPP) (mg m-2 s-1) and total ecosystem respiration (Reco) (mg m-2 s-1). Reco was estimated using 

night-time fluxes based on the approach suggested by Reichstein et al. (2005). Additionally, a light-

response curve model, independent of temperature by relying solely on characterizing carbon 

assimilation as a function of light, was used as an independent method for estimating Reco and GPP. 

A series of hyperbolic functions were used to assess the response of photosynthesis to incident 

radiation, following the methods outlined by Hutyra et al. (2007) used in tropical forests (equations 

and detailed explanation found in supplementary material section). 

 

2.2.4 Analysis of Relative Importance 

A stepwise multiple regression model was used to identify the environmental drivers most 

affecting the temporal variability in GPP. The identified regression and predictors are expressed by 

the following formula: 

 

GLM = GPP ~ PAR + VWC + VPD + LE           (1) 

 

where gross primary productivity (GPP) is a product of photosynthetically active radiation (PAR), 

volumetric soil water content (VWC), vapor pressure deficit (VPD), relative humidity (RH), 

temperature (T), and latent heat flux (LE). 

A relative importance analysis based on the multiple regression framework of these combined 

variables provided the strength of each predictor in relation to seasonal GPP (2013-2016). Four 

different relative importance techniques were used including the LMG (Chevan and Sutherland, 1991; 

Lindeman et al., 1980), First, Genizi (Genizi, 1993), and CAR (Zuber and Strimmer, 2010) models. 

All models were bootstrapped using 1000 replicates producing 95% confidence intervals. The LMG 

model has been described as the most robust method as it takes into account the direct and adjusted 
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effects of each regressor allowing more effective R2 decomposition. Further details on the stepwise 

multiple regression and relative importance model can be found within the supplementary material 

section. 

 

2.3. Results 

2.3.1 Comparison of Meteorological Conditions 

 Total seasonal precipitation during the four monitored growing seasons was 1591.8mm 

(+14.4mm SD), 1112.9 mm (+9.9mm SD), 600.8 mm (+7.6mm SD), and 1762.2 mm (+13.9mm SD) 

during 2013, 2014, 2015, and 2016, respectively. Precipitation accumulation for the 2013 and 2016 

years was comparable to published seasonal totals (Gillespie, Grijalva & Farris 2000), and therefore, 

these seasons were treated as receiving ‘normal’ precipitation amounts. In contrast, accumulation 

amounts during the 2014 drought and 2015 ENSO drought represented 30%, and 62% declines, 

respectively, from 2013 ‘normal’ levels (Fig. 2.2). Interseasonal variability in precipitation patterns 

was also observed; results can be found in the supplementary results section. Precipitation amounts 

were also totaled for each phenological stage (Table 2.1): green-up, maturity, and senescence. 

Rainfall during green-up accounted for 24%, 8.4%, 23%, and 12% of total for 2013, 2014, 2015, and 

2016, respectively. The bulk of the added rainfall occurred during maturity, and senescence only 

accounted for <1% of total. Before the start of each of the 2013, 2014, 2015, and 2016 seasons, 

precipitation events were observed totaling 20.5mm, 18.2 mm, 74.0mm, and 72.6mm, respectively 

(Fig. 2.3). 

Main temporal changes in PAR, T, RH, and VPD were driven by seasonality (Fig. 2.4). PAR, 

T and VPD maximums occur during the dry season and minimums during the wet season, when cloud 

cover and precipitation are common, and RH values reach maximums. Temporal patterns of VWC 

were connected to precipitation frequencies. VWC spiked with precipitation events and plateaued 

during dry periods. Interannual variability associated with drought was observed in all meteorological 

parameters (Table 2.2). Average seasonal values of PAR (1082.64 µmol m-2 s-1), T (28.05 oC), VPD 

(11.79 hPa), and VWC (15.12 %) were highest during the 2015 severe drought season, compared to 

2013, 2014, and 2016 season values. The 2013 season had the lowest VPD and RH quantities and 

spanned the greatest range (Table 2.2). During each season, minimum values of VPD approached 

zero during peak precipitation periods (common in September and October months). 
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2.3.2 Changes in Phenology 

Seasonal phenology was monitored by tracking changes in canopy NDVI and phonologic 

stages, green-up, maturity, and senescence, were identified (Fig. 2.5). Phenologic stages represented 

consistent time periods. Greenup, Maturity, and Senescence accounted for approximately 7% (+3%), 

65% (+4%), and 27% (+4%) of the total phenologic cycle, respectively. The duration of phenologic 

stages varied from year to year. Drought seasons 2014 and 2015 were 34 days longer and 22 days 

shorter, respectively, than the 2013 season; while the 2016 season was 51 days longer (Table 2.3). 

Comparison of seasonal NDVI showed maximum values during 2013 (0.85) and consistently 

decreased during 2014 (0.82) and 2015 (0.80) drought years, before stabilizing during 2016 (0.80).  

The start of season date also varied interannually, with green-up initiating shortly after the 

start of seasonal rains (Fig. 2.5). Following green-up, a rapid transition from green-up to maturity was 

observed, lasting between 18-36 days. Proportionally, the majority of the growing season was spent 

within maturity and comparison between the four years showed this period as having the most 

variability between these seasons. Using the 2013 season as a standard for comparison, the 2014 and 

2016 phenologic cycles were longer (332 and 358 total days, respectively), while the 2015 phenologic 

cycle was shorter (150 total days) (Table 2.4).  

Seasons with longer maturity periods coincided with late-season rain events (Fig. 2.2). Intra-

seasonal NDVI variability was also greatest during maturity due to droughts occurring during this 

stage. Large decreases in NDVI, amounting to approximately 0.1, were observed during July and 

August months in drought years 2014 and 2015, indicating marked losses of canopy greenness. 

Drought months were characterized by low variability in daily NDVI values, showing consistency in 

depressed quantities. During the second half of the 2013 maturity, instrument error affected data 

quality and is likely the cause for the sudden observed decrease in NDVI and high spike in 

measurement variability. 

 

2.3.3 Ecosystem Carbon Fluxes 

Common patterns emerged from the evaluation of carbon fluxes of ‘normal’ precipitation 

years (2013 and 2016). GPP increased consistently from green-up to maturity, plateaued during peak 

precipitation months (September and October). This is followed by steady GPP declines into 

senescence and the dry season (Fig. 2.6b). Drought years 2014 and 2015 deviated from this pattern by 

displaying GPP reductions during drought months (July and August). Following the return of rainfall 

events, GPP increased to pre-drought levels. Total accumulated GPP was greatest during the 2016 
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season, amounting to 1453.53 g C m-2 season-1, a 29% increase from 2013 (1125.30 g C m-2 season-1) 

(Fig. 2.7b). GPP levels were significantly reduced during drought years, totaling 949.97 g C m-2 

season-1 in 2014 and 636.41 g CO2 m
-2 season-1 in 2015, a 16% and 43% decrease, respectively (Fig. 

2.7b). Accumulated NEE quantities for both ‘normal’ precipitation and drought seasons showed net 

carbon sequestration to the amounts of -659.20 g C m-2 season-1, -577.97 g C m-2 season-1, -361.69 g 

C m-2 season-1, and -581.84 g C m-2 season-1, for 2013-2016 seasons respectively (Fig. 2.7a).  

High levels of respiration were observed at the onset of the 2013, 2014, and 2015 seasons 

(0.41 + 0.02, 0.22 + 0.03, and 0.31 + 0.13 mg m-2 s-1, respectively) (Fig. 2.8b). Following the initial 

burst of respiration in 2013, levels decreased steadily until dormancy. During 2016, respiration 

initiated at a low 0.08 + 0.04 mg m-2 s-1, then increased and plateaued at elevated levels (0.33 + 0.02 

mg m-2 s-1) for much of the reminder of the season. Drought months (July and August) of 2014 and 

2015 seasons showed sharp declines in respiration rates. 2015 drought levels (0.050 + 0.01 mg m-2 s-

1) were comparable to dry season rates (0.052 + 0.02 mg m-2 s-1). Following droughts, respiration 

rates recovered, followed by steady decreases into dry season (Fig. 2.6a).  

 

2.3.4 Controls on Carbon Fluxes 

Relative importance analysis showed strong agreement in importance ranking of predictors 

using the LMG, Genizi, and CAR models, across all growth seasons. In 2013, the set of 

environmental drivers within the multiple linear regression accounted for 80.1% of GPP variance. LE 

and VPD combined for over 69% of the LMG, Genizi, and CAR models’ R2, with LE having the 

highest relative importance (37-39%) (Fig. 2.9a). The “First” method showed slightly different 

results, showing VPD as the variable of highest importance followed by LE. Differences in results 

should be interpreted in the context of the model. The “First” metric is derived by adding correlations 

by a regressor individual, ignoring adjustments based on the combined weight of other regressors 

within the model, thus producing less robust sets of results. Notwithstanding, atmospheric evaporative 

power (represented by LE and VPD) still remains the main driving mechanism affecting GPP. 

Analysis of the 2016 data showed similar patterns to the 2013 season, with LE and VPD, as the main 

driving variables accounting for over 76% of the models correlation to GPP. Latent heat flux 

displayed the largest relative importance metric of 43-58% (Fig. 2.9d). The combined set of 

predictors accounted a total of 72.65% of GPP variability. Drought seasons 2014 and 2015 displayed 

an increase in predictive power by VWC compared to the 2013 and 2016 seasons, especially during 

the 2015 severe drought year (Fig 2.9b, c). Closer analysis of the relative importance of parameters 
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solely during the drought months (Fig. 2.10) in 2014 and 2015 seasons show VWC as the main 

predictor metric. During the 2014 season, VWC had a relative importance contribution of 56-76% to 

the models’ predictive power. The second ranked predictor was LE with 20-36%. Combined variables 

accounted for 93.42% of GPP variability. In the 2015 ENSO year, we also see VWC as the main 

predictor, accounting for 60-83% model predictive power. Latent heat flux represented the second 

highest relative importance and represented 11-28% of models R2. All combined variables accounted 

94.29% of GPP variability observed during the 2015 drought months.  

 

2.4. Discussion 

2.4.1 Water Relations and Phenology 

Preseason precipitation appears to play a significant role in the initiation of the phenologic 

cycle of this secondary tropical dry forest. However, since tree water status was not monitored for this 

study, we cannot conclusively identify the ecophysiological mechanism by which trees respond to the 

onset of water availability. Nevertheless, results (shown in supplementary section) from relative 

importance analysis comparing various environmental drivers (PAR, VWC, VPD, and LE) to NDVI 

changes during green-up can be used to indicate some of the processes at hand. Throughout all 

seasons, volumetric soil water was consistently ranked with the most important variable during green-

up. The correlation between the onset of precipitation events and VWC (Fig. A1.1, Table A1.1 of 

supplementary results), as well the importance of VWC during the start of the season would 

complement observations by Borchert (1994) where irrigation experiments led to stem recharge and 

leaf flush within one week of application. Reich and Borchert (1984) also reported rapid girth growth 

but only in response to heavy rains, suggesting a presence of a minimum rehydration threshold for 

bud break; the threshold varying with the degree of previous dehydration of soil and trees. This 

threshold variability would in part explain the different pre-season precipitation amounts observed 

during the 4-year study. During the 2013 and 2014 seasons, 18-21mm of rainfall was observed before 

bud break. However, pre-season amounts increased to +70 mm for both the 2015 and 2016 seasons. 

During the 2015 dry season, a series of small rainfall events of less than 9mm were observed before a 

heavy rainfall event of 49mm, which appeared to trigger the start of the growing season. It is unclear 

if a higher threshold was required to achieve complete stem recharge or if the smaller precipitation 

events were not sufficient to reach total rehydration. In contrast, the 2016 season did see a pre-season 

heavy precipitation event of 26mm that did not trigger bud break. This seeming higher threshold may 

suggest a strongly water-stressed ecosystem as consequence of the 2015 severe drought conditions. 
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Similar reported results (Daubenmire, 1972; Liebermann, 1982; Reich and Borchert, 1982) indicate 

rainfalls of 20-40mm caused bud break in moderately but not strongly water-stressed trees, and 

rainfall greater than 50-60mm trigger most trees. Our results are in line with the concept that pre-

season precipitation serves as a primer for bud-break and the threshold required to trigger stem 

recharge varies as a result of prior dehydration of soil and trees (Eamus and Prior, 2001).  

    Analysis of the NDVI time series showed the effect of drought on phenology. During the 

2014 and 2015 drought months’ seasonal minimums were observed during periods where maximums 

are the norm. Drought decreases in NDVI are likely associated with decreases in nitrogen and 

chlorophyll contents. Personal correspondence with members of the Area de Conservacion 

Guanacaste (ACG) confirmed, through visual inspection, the yellowing of canopy leaves during the 

extended drought periods. And, although a qualitative observation, this would confirm changes in leaf 

greenness observed during drought. The initiation of senescence showed by the decline in NDVI, 

coincided with low precipitation and high evaporative demand (Fig. A1.3 of supplementary results). 

Leaf fall would then be associated with depleting water levels stored in trees as observed in previous 

studies (Borchert, 1994; Reich and Borchert, 1984). Substantial rainfall events were observed during 

the latter part of the 2016 growing seasons. These events lead to high soil water moisture levels and 

likely delayed leaf drop (Whigham et al. 1990). 

 

2.4.2 Seasonal Carbon Balance Patterns 

The impact of drought on carbon fluxes was substantial. Decreases in precipitation during the 

2014 and 2015 drought months were accompanied reductions in GPP, NEE, and Reco. Low drought 

productivity suggests that precipitation accumulated before intra-seasonal drought events did not 

provide sufficient moisture (soil or atmospheric) to maintain peak productivity levels over the drought 

periods. Late dry-season periods following drought years acted as mean carbon sources. These 

episodes may demarcate the limits of drought-adapted vegetation, perhaps due to depletion of 

moisture reserves in plant tissue and soil layers. However, it’s important to note that this ecosystem 

still acted as a mean carbon sink, even when confronted with severe drought (Fig. 2.7a). Our study 

suggests that this secondary tropical dry forest was sensitive to precipitation anomalies, particularly 

during El Niño severe drought events.  

The first precipitation events that marked the end of the dry season were followed by a sudden 

emission of carbon dioxide through the four-year period (Fig. 2.8b), indicating that the onset of 

respiration is dependent on water dynamics. The wetting of dry soils and the subsequent pulse of CO2 
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release and nitrogen mineralization is known as the ‘Birch Effect’ (Birch, 1958), which was observed 

interannually at the ecosystem level through eddy covariance methods in this study. The magnitude of 

the precipitation-induced carbon pulse is dependent on the amount of stored carbon in the forest soils 

as well as the severity of the dry season (Jarvis, 2007). The observed pulse sizes could indicate a 

potential reduction in carbon pool size over drought years (2014-2015) relative to a ‘normal' year 

(2013), possibly due to reduced litterfall for decomposition through the previous drought-afflicted 

growing season (Fig. 2.6a). The ‘Birch Effect’ has been recently observed in another tropical dry 

forest site in Guanacaste, however on a smaller spatial scale using simulated precipitation and 

chamber-based measurements (Waring, 2016). 

The results of our study fit well into the body of research on how drought affects the carbon 

fluxes of other tropical ecosystems. Hutyra et al. (2007) performed a similar four-year study in 

tropical rainforest (Tapajos National Forest, Para, Brazil), examining the controls of CO2 exchange 

and the possible effects of water limitation. Tapajos National Forest is classified as primary rain 

forest, with distinct seasonal meteorology including an approximate five-month dry season (July to 

September). However, dry season in the Tapajos rainforest still receives an order of magnitude more 

seasonal precipitation than our study site (~300-400 mm vs. ~20-30 mm). 

The seasonal patterns and magnitudes of carbon fluxes from tropical dry and rainforest 

overlap and diverge in some aspects. The severity TDF dry season is reflected in our site by the 

progressive decline of respiration and GPP throughout the dry season (Fig. 2.6). NEE remained 

negative during the dry season for non-drought years and acted as a carbon sink, possibly due to the 

presence of evergreen trees with deep root systems. However, NEE tapers off with progress into the 

end of the dry season, switching to a carbon source at the end of the season. In contrast, rainforests 

have been shown to sustain high levels of productivity during its dry season with highest uptake 

values occurring during its driest period, coinciding with peak levels of PAR (Goulden et al., 2004; 

Huete et al., 2006). Light has been shown to be a consistent control of rainforest fluxes, resulting in 

increases in carbon sequestration during seasonal drought (Bonal et al., 2016).  This is a notable 

difference from tropical dry forest productivity, which is largely controlled by seasonally dictated 

water availability.  Our studied TDF was also found to have higher peak rates of GPP (> 13 µmol m-

2s-1) than the Tapajos rain forest (~ 8 µmol m-2s-1) during its wet season (Hutyra et al. 2007).  

Respiration rates of rainforest have been found to decrease during the dry season, attributed to 

the drying of surface litter. Thus, the aridity of the dry season in rainforest may be sufficient to 

suppress respiration, but insufficient to inhibit productivity. The net effect is a negative NEE through 
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the dry season, implying that it is a carbon sink during this phenologic period (Hutyra et al., 2007). 

During the wet season, both rain and dry forest (for non-drought years) follow a similar hill-shaped 

pattern of productivity where GPP increases at the onset of the rains, peaks in mid-season, then 

declines for the rest of the season. This pattern and magnitudes of respiration agree with a study of 

similar timescale on a tropical dry forest site in northwest Mexico, where pulses of CO2 were 

observed at the onset of the growing seasons (Verduzco et al., 2015). Tropical savanna, while much 

less dense in woody plants, has shown similar responses of ecosystem respiration to drought (Kutsch 

et al., 2008). 

 

2.4.3 Controls on Gross Primary Production 

The relative importance analysis was used to discern primary factors affecting carbon fluxes 

in TDF. A previous study by Becknell et al. (2012) showed precipitation to account for 55% of the 

variation in biomass among mature TDF sites. Other analyses into the interrelations of environmental 

conditions showed water balance depended on soil moisture availability, atmospheric evaporative 

demand, and the transpiration capacity of the tree (Reich and Borchert, 1982). The interplay of 

environmental parameters makes controls difficult to identify individually. The 2013 and 2016 

seasons showed parallel drivers (LE and VPD) accounting for the majority of GPP variability. This 

indicates atmospheric evaporation demand as the principal controlling factor of productivity and 

water balance status during these seasons. Conversely, focus on the drought events of 2014 and 2015 

show a shift in importance towards soil water moisture. Latent heat flux, representing the evaporative 

demand, still had noticeable contributions during drought periods. Assuming active regulation by 

vegetation to minimize water loss through evaporation during water scarcity (Borchert, 1994; Reich 

and Borchert, 1988; Reich, 1995; Sobrado, 1997), the presence of LE as a governing factor during 

drought may represent the minimum evaporative regulation demand. The high relative importance of 

VWC across both drought periods could point towards a common regulation mechanism and strategy 

in response to drought.  

Whole season analysis of 2014 and 2015 drought years showed similar results to non-drought 

years, where the interplay of a suite of environmental variables informed GPP patterns. The main 

difference in parameter importance was an increasing importance of soil moisture during drought. 

The shifting in variable importance about ecosystem productivity (from soil water moisture during 

droughts to evaporative demands during non-drought periods) demonstrates the ability of this TDF to 

adjust to limited water resources. These observations align with functional convergence theory 
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(Bloom et al., 1985; Field, 1991; Mooney and Glumon, 1979, 1982) which states that investment on 

CO2 fixation will vary with resource availability, resulting in productivity being curtailed when faced 

with limiting resource availability that prevents utilization of additional capacity. 

 

2.5 Conclusions 

This study assessed the effect of drought on phenology and carbon dynamics. Our results 

show significant changes in phenology closely linked to seasonal water availability patterns. Water 

limitations had important effects on start of season, drought recovery, and senescence. Water status 

should not be interpreted as a cause to phenology, but rather an alteration to the timing of the 

progression between phenologic cycles. Forest carbon dynamics were also affected by water scarcity 

and drought severity. Reductions in seasonal productivity were observed during both drought years. 

The 2014 season showed post-drought recovery levels comparable to non-drought states that point to 

a notable drought resilience capacity. However, the severity of the 2015 drought did not allow in-

season recovery. Instead, the recovery was observed during the 2016 season, where we observed 

higher productivity and an extended phenologic cycle. Alterations to phenology and forest 

productivity appear to be important drought coping strategies for tropical dry forests.  The magnitude 

of the fluxes and the duration of phases can be readily applied toward refinement of larger scale flux 

estimates as well as vegetation model parametrization and validation. 
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2.7 Figures: 

 

 

Figure 2.1: Location of Santa Rosa National Park and Environmental Monitoring Super Site. Red 

triangle shows the location of the flux tower within a secondary tropical dry forest (TDF). Tower 

contains eddy covariance system, meteorological sensors, and proximal remote sensing sensors.  
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Figure 2.2: Monthly precipitation for 2013, 2014, 2015, and 2016 growing seasons. 

 

 

Figure 2.3: Pre-season precipitation patterns and NDVI changes for the (a) 2013 season, (b) 2014 

season, (c) 2015 season, and (d) 2016 season. NDVI and precipitation patterns are shown for periods 

leading up to the start of season (gray line) and into green-up.  
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Figure 2.4: Time series of mean daytime a) VPD, b) VWC, c) RH, d) T, and e) PAR, with daily 

cumulative precipitation. 
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Figure 2.5: Time series the a) phenology cycle derived from mean daily NDVI values and b) seasonal 

precipitation (mm) throughout the four-year period. Precipitation data were collected manually and 

corroborated with electronic tipping bucket precipitation measurements. 
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Figure 2.6: Monthly time series of average (a) Reco (mg m-2 s-1), (b) GPP (mg m-2 s-1), and (c) NEE 

(mg m-2 s-1). Shaded patterns indicate wet or dry season. Precipitation histogram (mm) is shown in 

blue.  
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Figure 2.7: Time series of (a) seasonal cumulative net ecosystem CO2 exchange (NEE g C m-2), (b) 

seasonal cumulative gross primary productivity (GPP g C m-2), and (c) cumulative precipitation 

(mm), for 2013, 2014, 2015, and 2016 seasons. 
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Figure 2.8: Monthly mean seasonal (2013-2016) comparison of (a) gross primary productivity (GPP 

mg m-2 s-1), and (b) ecosystem respiration (Reco mg m-2 s-1).  
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Figure 2.9: Relative importance analysis of environmental parameters PAR, VWC, VPD, and LE 

about GPP for (a) 2013, (b) 2014, (c) 2015, and (d) 2016 growing seasons. Four relative importance 

models were used including LMG, First, Genizi, and CAR. GLM accounted for 80.01%, 89.91%, 

84.34%, and 72.65% of 2013, 2014, 2015, and 2016 GPP variability, respectively. 
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Figure 2.10: Relative importance analysis of GLM GPP = PAR + VWC + VPD + LE for drought 

event in (a) 2014 and (b) 2015. Four relative importance models were used including LMG, First, 

Genizi, and CAR. GLM accounted for 93.42% and 94.29% of 2014 and 2015 GPP variability, 

respectively.  

 

 

Table 2.1: Precipitation totals (mm) grouped by phenologic stage.  

  2013 2014 2015 2016 

Green-up 531.1 101.7 159.5 221.4 

Maturity 1219.8 993.0 433.0 1504.3 

Senescence 0.0 1.6 8.3 1.0 

Seasonal Total 1570.9 1096.0 600.8 1726.6 

Pre-Season 

Total 20.5 18.2 74.0 72.6 

 

 

Table 2.2: Summary of seasonal maximums, minimums, mean, and standard deviation values of 

meteorological parameters PAR, VWC, VPD, RH, and T.  

  2013 2014 

  Max. Min. Mean. SD Max. Min. Mean. SD 

PAR (µmol m-

2 s-1) 1387.43 283.67 996.83 239.94 1613.01 367.42 1060.75 266.22 

VWC (%) 42.87 10.33 25.76 9.23 40.42 7.4 19.65 7.1 

VPD (hPa) 28.22 0.65 8.58 4.44 22.17 0.42 11.22 4.55 

RH (%) 97.84 38.08 76.84 11.14 98.57 48.69 70.82 10.73 

Temp (oC) 30.59 22.99 26.65 1.17 29.86 23.3 27.42 1.31 
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  2015 2016 

  Max. Min. Mean. SD Max. Min. Mean. SD 

PAR (µmol m-

2 s-1) 1390.75 445.69 1082.64 192.94 1276.25 158.75 877.88 235.24 

VWC (%) 31.65 7.1 15.12 5.48 35.45 13.54 20.76 4.17 

VPD (hPa) 21.57 3.23 11.79 3.55 23.64 0.58 9.87 4.79 

RH (%) 90.7 49.18 70.14 8.19 98.05 40.48 73.58 11.58 

Temp (oC) 30.42 25.35 28.05 1.04 30.93 24.02 26.91 1.36 

 

Table 2.3: Dates and changes (∆) in green-up, maturity, senescence, and total season length in days 

using 2013 for length comparisons. 

  2013 2014 2015 2016 

∆ 

(2013-

2014) 

∆ (2013-

2015) 

∆ 

(2013-

2016) 

Start of Green-

up 

20-

May 09-May 

09-

Jun 

01-

May 11 -20 19 

Start of 

Maturity 10-Jun 28-May 

27-

Jun 

06-

Jun 13 -17 4 

Start of 

Senescence 27-Dec 02-Jan 

24-

Nov 

20-

Jan -6 33 -24 

End of Season 
03-Mar 06-Apr 

09-

Feb 

23-

Apr -34 22 -51 

Table 2.4: Length of each phenology stage (days) for each growth season within the four-year study 

period (2013-2016). 

  2013 2014 2015 2016 

Green-up 21 19 18 36 

Maturity 200 219 150 228 

Senescence 66 94 77 94 

Total Season 287 332 245 358 
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CHAPTER 3 – Testing of Automated Photochemical Reflectance Index Sensors as Proxy 

Measurements of Light Use Efficiency in an Aspen Forest 

Abstract 

Commercially available autonomous photochemical reflectance index (PRI) sensors are a new 

development in the remote sensing field that offer novel opportunities for a deeper exploration of 

vegetation physiology dynamics. In this study, we evaluated the reliability of autonomous PRI 

sensors (SRS-PRI) developed by METER Group Inc. as proxies of light use efficiency (LUE) in an 

aspen (Populus tremuloides) forest stand. Before comparisons between PRI and LUE measurements 

were made, the optical SRS-PRI sensor pairs required calibrations to resolve diurnal and seasonal 

patterns properly. An offline diurnal calibration procedure was shown to account for variable sky 

conditions and diurnal illumination changes affecting sensor response. Eddy covariance 

measurements provided seasonal gross primary productivity (GPP) measures as well as apparent 

canopy quantum yield dynamics (α). LUE was derived from the ratio of GPP to absorbed 

photosynthetically active radiation (APAR). Corrected PRI values were derived after diurnal and 

midday cross-calibration of the sensor’s 532 nm and 570 nm fore-optics, and closely related to both 

LUE (R2 = 0.62, p < 0.05) and α (R2 = 0.72, p < 0.05). A LUE model derived from corrected PRI 

values showed good correlation to measured GPP (R2 = 0.77, p < 0.05), with an accuracy 

comparable to results obtained from an α driven LUE model (R2 = 0.79, p < 0.05). The automated 

PRI sensors proved to be suitable proxies of light use efficiency. The onset of continuous PRI 

sensors signifies new opportunities for explicitly examining the cause of changing PRI, LUE, and 

productivity over time and space. As such, this technology represents great value for the flux, remote 

sensing and modeling community. 

Keywords: remote sensing; PRI; LUE model; eddy covariance 

3.1. Introduction 

The light use efficiency (LUE) model [1,2] has provided an avenue for quantifying the terrestrial 

carbon cycle using remote sensing data [3,4]. The LUE model can be conceptualized as being driven 

by structural and pigment pool changes in vegetation and, secondly, by the physiological status 

described by the vegetation’s photosynthetic process [5]. The structural component is quantified by 

the amount of photosynthetically active radiation absorbed by the canopy (APAR); while the 
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physiological component is described as the efficiency by which the absorbed light, or light use 

efficiency (LUE), is used to fix carbon during a specific period. Much work has been done in 

displaying a relationship between optical remote sensing and the APAR term, although it is not 

without error and complexity [6–11]. However, as LUE variability can be driven by multiple 

individual and combined factors, the connection between efficiency and remote sensing signals have 

been harder to characterize, leading to considerable uncertainty in many ecosystems [12–14]. Some of 

the physiological effects on light use efficiency include changing climatic conditions, temperature, 

water availability, phenology, vegetation functional type, and vegetation species [15–22]. These 

complex interactions confound the parametrization of in LUE in global productivity models, and, as 

such, efforts continue towards the better accounting of efficiency changes that would, in turn, lead to 

more accurate CO2 flux estimations. 

Developments in proximal and spaceborne remote sensing have led to advances in estimating 

vegetation LUE at the leaf level, stand level, and whole ecosystem resolutions [14,23–25]. One of the 

main proposed tools to do so is through the use of the photochemical reflectance index (PRI). First 

developed in leaf level studies, this vegetation index has been shown to be a proxy of xanthophyll 

pigment activity and closely linked to photosystem II (PSII) photochemical efficiency [23,26,27]. 

During periods of light saturation and excess energy PSII centers remain in a reduced state, leaving 

them susceptible to photoinhibitory damage [28]. Non-photochemical quenching (NPQ) performed 

through the chemical transformation of carotenoid pigments that compose the xanthophyll cycle 

prevent damage to photosynthetic centers. More specifically, NPQ of excess light is done through the 

de-epoxidation of violaxanthin to the photoprotective pigment zeaxanthin, with antheraxanthin acting 

as a transitional pigment [28–30]. De-epoxidation provides a sink for excess energy and a method of 

light regulation that can be measured optically via the PRI [27,31,32]. PRI tracks short-term decreases 

in reflectance at 531nm that occur in response to increased zeaxanthin concentrations and shrinking 

chloroplast (associated with increased thylakoid pH) resulting from xanthophyll de-epoxidation 

[23,27]. The index uses reflectance at 570 nm (insensitive to NPQ) as a reference band.  

Testing of PRI over seasonal timescales for foliar, canopy and ecosystem level scales has shown 

PRI to be a good indicator of physiological efficiency across different vegetation types and scales, 

however, with numerous temporal and spatial challenges [24]. Radiative transfer modeling studies 

have identified a number of confounding factors including leaf area distribution, soil type, and view 

and illumination angles affect the interpretation of PRI [33,34]. Additionally, in situ studies have 

shown a strong effect of chlorophyll/carotenoid ratios on seasonal PRI [24]. These changes in 
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pigment pool sizes can account for a significant proportion of seasonal PRI (constitutive) changes, 

compared to those driven by xanthophyll cycle activity (facultative changes), and lead to 

misrepresentations of the PRI-photosynthetic relationship [19,35–38]. As such, seasonal studies are 

needed to characterize the effects of vegetation structure changes and identify the facultative and 

constitutive components in PRI [39]. However, few long-term studies with the necessary dense time-

series measurements over varying ecosystems exist, and some of these rely on satellite-based data 

with low temporal resolutions that do not allow the separation of facultative and constitutive effects. 

Perhaps for this reason, some comparisons of satellite-based PRI and LUE across ecosystems have 

resulted in contrasting PRI-LUE relationships for different ecosystems [40,41].  

The lack of accessible and cost-effective data, available at meaningful temporal or spatial scales, 

has limited the testing of PRI functionality at ecosystem levels. For example, a 16-day MODIS 

composite lacks the temporal resolution to resolve short-term xanthophyll cycle changes. This has 

contributed to slow integration and comparison to micrometeorological data and ecosystem 

monitoring networks [42]. However, the recent availability of inexpensive PRI specific narrowband 

radiometers [43–45] has opened the possibility of attaining continuous PRI measurements at low cost. 

The high temporal resolution of automated optical sensor systems would allow improved accounting 

of physical and physiological variables affecting diurnal and seasonal PRI measurements and help 

interpret LUE changes over a phenological cycle. Additionally, continuous PRI measurements allow 

for their integration with eddy covariance flux measurements, which in turn provides additional 

ecophysiological validation for PRI as an LUE proxy at ecosystem scales. 

For this study, we utilized newly commercially developed automated PRI spectral reflectance 

(SRS-PRI) radiometers and eddy covariance data to explore the LUE dynamics in a deciduous boreal 

forest. As such, the objectives of this paper are to (1) determine if automated SRS-PRI values can be 

used as a proxy of canopy light use efficiency and apparent canopy quantum yield over an aspen 

forest and (2) to explore how continuous PRI measurements can be leveraged to better inform 

ecosystem scale LUE models. 

3.2. Materials and Methods 

3.2.1. Study Area  

The study was conducted at the Peace River Environmental Monitoring Super Site (PR-EMSS) 

within the Ecosystem Management Emulating Natural Disturbance (EMEND) site, located 
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approximately 90 km northwest of Peace River, AB, Canada (Figure 3.1). This region is part of the 

Lower Foothills Natural Subregion [46]. The study plot, located at 56°44′38.10′′ N, 118°20′38.08′′ W, 

with an altitude of 867 m ASL, is characterized as an old growth stand of trembling aspen (Populus 

tremuloides). There are two vertical vegetation layers; the understory reaching a height of 3 m, while 

the overstory canopy growing to 12–15 m. Its topography is slightly sloping (<2%) in the west 

direction. The predominant wind direction is from the west. Mean annual air temperature is 0.6 °C 

and mean annual precipitation is 436.2 mm, with approximately 29% falling as snow [47]. Soils are 

primarily Orthic and Dark Gray Luvisols and have a depth of 1 m on average [48]. The study site has 

been monitored since 2013 with an eddy covariance system and meteorological station installed on a 

30 m tower located at the eastern edge of the forest stand. Proximal remote sensing sensors, 

comprising of PRI and broadband spot radiometers mounted on the tower allowed the tracking of 

forest stand phenology, as well as monitoring the incoming and canopy reflected light. A wireless 

sensor network (WSN) continually measured the transmitted photosynthetic photon flux density 

(PPFD) within the canopy, providing continuous measurements of fraction of absorbed 

photosynthetically active radiation (fAPAR). 

 

3.2.2. Reflectance Measurements and Vegetation Indices 

3.2.2.1. Spectral Reflectance Sensors (SRS) 

Spectral data was collected through the use of commercial automated SRS-PRI sensors with an 

Em50 datalogger (METER Group. Inc., Pullman, WA, USA). PRI sensors contain photodiodes with 

interference filters at selected peak wavelengths 532 ± 2 and 570 ± 2 nm with 10 nm full width half 

maximum (FWHM) bandwidths. Photodiode and filter construction was based on prototypes 

reviewed by Garity et al. [43]. Downward looking PRI pairs contain field stops, restricting the field of 

view (FOV) at 36°. Upward looking pairs contain Teflon cosine diffusers allowing near 180° FOV. 

They provide continuous irradiance measurements used to normalize radiance spectral responses 

measured through the downward looking sensor pair. Upwelling and downwelling PRI sensors were 

placed on a 25 m tower and positioned 10° off-nadir at an approximate distance of 10–12 m from the 

top of the canopy, representing a footprint of approximately 50 m2 towards the eddy covariance area 

of influence.  
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Each sensor produced a radiance and irradiance output, for each waveband (532 nm and 570 nm) 

at 1-minute intervals throughout the 2015 season. Data points were filtered to remove precipitation 

events which caused significant signal noise attributed to water droplets accumulating on the flat 

Teflon cosine diffusers of the hemispherical sensor pair. Uncorrected reflectance at each waveband 

was expressed as the ratio of measured radiance (r) to irradiance (i) (Equation (1) and (2)) and used to 

calculate uncorrected PRI (Equation (3)): 

𝜌532 =  
𝑟532

𝑖532
 (1) 

𝜌570 =  
𝑟570

𝑖570
 (2) 

PRI =  
𝜌532 −  𝜌570

𝜌532 +  𝜌570
 (3) 

where 𝜌 represents reflectance at a specific wavelength. Calculated PRI values were averaged over 30 

min to match eddy covariance binned measurements. PRI values were expressed as scaled PRI (sPRI) 

using the formula [49,50]: 

sPRI =
(1 + PRI)

2
 (4) 

which transformed PRI values into a 0–1 range commonly used in remote sensing vegetation indices. 

Before and after field deployment, the sensors underwent a series of cross-calibration and sensor 

response validation experiments. Details of these experiments are outlined in Sections 2.2.2 and 2.2.3 

below. 

3.2.2.2. SRS-PRI Sensor Cross-Calibration  

A cross-calibration procedure is required to account for differences in sensor response and fore-

optics [51]. The cross-calibration process allows for the normalization of irradiance and radiance 

outputs under varying light conditions. Gamon et al. [44] outlined a procedure for both midday and 

diurnal cross-calibration, noting that diurnal calibrations best represent xanthophyll cycle epoxidation 

states. Due to the remoteness of our study site and the manual nature of cross-calibration, both the 

midday and diurnal cross-calibration procedures were done prior and subsequently to field 

deployment, following the general principles outlined by Gamon et al. [44]. 

SRS-PRI sensors were placed at the height of 30 cm over a 99% reflective white standard panel 

(Spectralon, Labsphere Inc., North Sutton, NH, USA), ensuring that the downward-looking sensor’s 
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FOV covered the standard. The upward-looking sensor simultaneously monitored the sky’s irradiance 

conditions. The sensor pair measured continuously over a 23-day period. A pyranometer (SP-110, 

Apogee Instruments Inc., Logan, UT, USA) logged on a wireless sensor node (ENV-LINK-MINI, 

LORD Microstrain® Sensing Systems, Williston, VT, USA) was used to monitor incident radiation, 

sampled at 1-minute intervals. This radiation data was used to characterize the various illumination 

conditions over the experimental period, which varied from overcast to clear and sunny conditions. A 

solar radiation calculator (SolRad), developed by the Washington State Department of Ecology, 

provided modeled global radiation on a horizontal surface using the Ryan-Stolzenbach model [52]. 

Percent illumination was derived by comparing modeled to measured radiation data throughout the 

experiment. The 23-day experimental period allowed us to capture a nearly complete spectrum of 

illumination conditions (15–100%) over a full set of diurnal solar elevations (0°–56°). Solar 

elevations, defined as the angle between the horizon and the sun, were determined using NOAA’s 

solar position calculator (https://www.esrl.noaa.gov/gmd/grad/solcalc/).  

Cross-calibration responses as a function of illumination were calculated for every 3° solar 

elevations bin throughout the diurnal range. Three-degree bins were chosen as they represented 

approximately 30 min time intervals during the morning and evening periods where solar elevation 

changed most rapidly. A set of cross-calibration functions were derived for each sensor waveband. 

Percent illumination and solar elevations were calculated for onsite data collected during the 2015 

season. Cross-calibration ratios derived from the set of empirical calibration functions were used to 

calculate corrected reflectance (𝜌𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) as follows: 

 

𝜌𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  
𝜌𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

′𝐶𝑟𝑜𝑠𝑠 − 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜′
 

 

=  
rtarget/isky

rstandard/isky
 

(5) 

 

where rtarget represents radiance from the canopy, rstandard represents radiance from the white standard, 

and isky represents irradiance from sky conditions. Midday cross-correlation functions were also 

derived for each sensor waveband and used to calculate midday corrected reflectance following 

Equation (5). Diurnal and midday corrected reflectance were used to calculated (diurnal and midday) 
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corrected PRI following Equation (3). Corrected PRI values were averaged over 30 min to match 

eddy covariance data. 

3.2.2.3. Sensor Response Validation 

A dual-channel field spectrometer (Unispec-DC, PP-Systems, Amesbury, MA, USA) was used to 

validate the spectral response of the SRS-PRI sensors independently. Additionally, diurnal 

spectrometer measurements were collected in concert with cross-calibration data to confirm the effect 

and accuracy of mid-day vs. diurnal cross-calibration efforts. The Unispec-DC is a high precision 

spectrometer able to provide simultaneous measurements of radiance and irradiance, has a spectral 

range of 310–1100 nm, and a 3.3 nm FWHM. The upwelling/radiance was collected using a 2 m fiber 

optic cable (600 µm HCS LOH, SMA-Custom Ferrule-100 mm, Uni-684, PP Systems) with a 9 mm 

FOV restrictor providing a modified FOV of 18°. For the downwelling/irradiance, a similar 2 m fiber 

optic cable was used (600 µm HCS LOH, SMA-Custom Ferrule-25 mm, Uni-686, PP Systems) with 

the addition of a cosine head (UNI435, PP Systems) allowing near 180° FOV.  

Validation experiments consisted of the sampling the diurnal response of a ~1 m tall Populus 

tremuloides seedling stand, simultaneously, with the field spectrometer and SRS sensors, throughout 

a 5-day period. The spectrometer’s radiance fore-optic and SRS-PRI field-of-view pair were placed at 

matching height (0.37 m) above the canopy, producing a target footprint of about 1.0 m2. The SRS-

PRI sensors log every minute continuously throughout the diurnal cycle; while the spectrometer 

measurements were collected every minute for 10 min on the hour throughout the diurnal cycle.  

Spectrometer reflectance data was corrected using a 99% reflective white standard panel 

(Spectralon, Labsphere Inc.). Corrected reflectance was expressed as: 

𝜌𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  
rtarget

isky
 ×

isky

rstandard
  (6) 

 

where ρcorrected represents corrected reflectance. The first term (rtarget/isky) represents the raw 

reflectance, expressed as a ratio of the upwelling radiance to the downwelling irradiance over the 

target. The second term (isky/rstandard) represents the cross-calibration value, calculated as a ratio of the 

downwelling irradiance to the radiance of the standard panel [44]. Corrected reflectance at 531 nm 

and 570 nm was used to derive a scaled photochemical reflectance index (sPRI). Corrected sPRI 

measurements from SRS-PRI sensors were compared to the spectrometer derived sPRI to validate the 

accuracy of these automated sensors. 
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3.2.3. Broad Band Optical Sensors and Wireless Sensor Network (WSN) 

A wireless sensor network (WSN), composing of 36 nodes, was used to measure the fraction of 

absorbed photosynthetically active radiation (fAPAR). The WSN sensor nodes were arranged in a 

hexagonal pattern, spaced every 20 m over a one-hectare plot located within the flux footprint. The 

spatial extent of the WSN footprint accounted for approximately 55% of measured flux 

measurements. Additional details on the WSN deployment and technical capabilities can be found in 

Rankine et al. [53]. Individual nodes were outfitted with an upward and downward facing quantum 

sensors (SQ-110, Apogee Instruments Inc.), providing transmitted PPFD and soil reflected PPFD 

measurements, respectively. Additional nodes were placed on the flux tower, positioned above the 

canopy. Upward and downward looking quantum sensor pairs provided measurements of incident and 

reflected PPFD, respectively. The sampling interval of WSN nodes was 15 min. fAPAR was 

calculated using the equation:  

𝑓APAR = 1 − 𝑡 – r + (t × rs) (7) 

where t is the fraction of transmitted radiation, r is the reflected radiation from the canopy, and rs is 

the soil reflectance component. 

A broadband normalized difference vegetation index (NDVI) was derived from upward and 

downward looking quantum and pyranometer pairs installed on the flux tower, positioned above the 

canopy. Spot radiometers had a sampling interval of 10 min. Broadband NDVI was calculated using 

the equation:  

NDVI = (ρPYR – ρPPFD)/(ρPYR + ρPPFD) (8) 

where ρPYR is the solar radiation reflectance calculated from the upwelling:downwelling radiation 

from pyranometer pairs; and ρPPFD is the total reflectance of PPFD derived from upwelling: 

downwelling PPFD sensor pairs. Broadband NDVI values have been shown as adequate proxies of 

narrowband NDVI measurements [54]. Seasonal NDVI values were used to identify phenologic 

stages. A second derivative function was used to identify the transitions from maturity to leaf 

senescence (21 August 2015). 
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3.2.4. Light Use Efficiency Calculations 

LUE was derived following traditional remote sensing methodology through the rearrangement 

of the LUE model as follows: 

LUE =
GPP

(𝑓APAR ×  PPFD)
 =  

GPP

APAR
 (9) 

where GPP is the gross primary productivity, derived from eddy covariance measurements, and the 

absorbed photosynthetically active radiation (APAR) is the product of fAPAR and PPFD. LUE values 

were derived at both diurnal and seasonal time scales. LUE values were expressed as 30 min. binned 

averages.  

 

3.2.5. Micrometeorology Measurements 

3.2.5.1. Micrometeorology Instrumentation and Processing 

The eddy covariance (EC) method [55–57] was used to measure net ecosystem CO2 exchange 

(NEE) (µmol m−2 s−1), (latent heat (LE) (W m−2), and sensible heat (H) (W m−2) fluxes during the 

2016 growth cycle. This consisted of a fast response (20 Hz) closed-path infrared gas analyzer 

(IRGA) (model EC155, Campbell Scientific Inc., Logan, UT, USA) and a three-dimensional sonic 

anemometer (model CSAT-3A, Campbell Scientific Inc.). The system was installed on a scaffold 

tower at 25 m above the forest floor. The sonic anemometer and IRGA share integrated electronics 

and communications to reduce logging lag, as part of the CPEC200 EC system (Campbell Scientific). 

Both sensors have a sampling frequency of 20 Hz, logged with a CR3000 datalogger (Campbell 

Scientific, Logan). A complete weather station (model HOBO U-30-NRC Weather Station, Onset 

Computer Corp., Bourne, MA, USA) provide ancillary meteorological variables including 

temperature (Tair), relative humidity (RH), vapor pressure deficit (VPD), precipitation, soil 

temperature, soil volumetric water content (VWC), soil heat fluxes, and net radiation. Remote 

communication to all micrometeorological instrumentation was provided through an Iridium satellite 

connection (Upward Innovations Inc., East Falmouth, MA, USA). 

High-frequency eddy covariance data was processed using EddyPro® software (LI-COR Inc., 

Lincoln, NE, USA) and IBM streams® (IBM, Armonk, NY, USA). Vertical CO2 flux (NEE) (µmol 

m−2 s−1) was expressed as the product of mean air density and the covariance between instantaneous 

vertical wind velocity and concentration fluctuations. 
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NEE =  −𝜌𝑎𝑤′𝑠′̅̅ ̅̅ ̅̅  (10) 

where ρa is the dry air density (mol m−3), w is the instantaneous vertical wind speed (m s−1), and s is 

the molar mixing ratio (mol mol−1 dry air). The negative sign follows meteorological notation, where 

negative NEE values represented net CO2 uptake into an ecosystem, and positive values represent net 

CO2 release into the atmosphere. 

Eddy covariance data corrections included time lag correction [58], despiking data outliers [59], 

double coordinate rotation [60], high-pass and low-pass filtering [56,61], and Webb-Pearman-

Leuning (WPL) correction [62]. Fluxes were calculated at 30-minute block averages. Flux-footprint 

analysis’ were performed following the Kljun et al. [63] parametrization. Precipitation events were 

not explicitly removed from the dataset. However, diagnostic/error flags associate with IRGA and 

SAT instrument failure, including during heavy rainfall, were used as a filter. A requirement of 80% 

data coverage was applied for each 30-minute averaging interval. 

 

3.3.5.2. Flux Partitioning 

Eddy covariance NEE measurements were partitioned into gross ecosystem productivity (GPP) 

(µmol m−2 s−1) and respiration (Reco) (µmol m−2 s−1). Reco was calculated using the Reichstein et al. 

[64] partitioning algorithm. Periods of poor mixing, identified by low frictional velocity (u* < 0.21 m 

s−1) and representing possible unreliable NEE measurements, were removed. A light-response curve 

model [65–68] was used as an independent method for GPP derivation and calculations of apparent 

quantum yield. This method uses rectangular hyperbolic functions to express the response of 

photosynthesis to radiation, using the general expression: 

NEE =  − (
𝐴𝑚𝑎𝑥  ∙  α ∙  PPFD 

𝐴𝑚𝑎𝑥 +  α ∙ PPFD
) +  𝑅10𝑄10

(Tair −10)/10
 (11) 

where Amax is the maximum carbon assimilation, or GPP, (µmol m−2 s−1) at maximum photosynthetic 

photon flux density (PPFD) (µmol m−2 s−1); ⍺ is the apparent quantum yield calculated from the 

initial slope of the light-response curve (mol CO2 mol−1 PPFD); R10 is the ecosystem respiration rate 

at 10 °C (µmol m−2 s−1); Q10 is the respiration temperature response coefficient during temperature 

changes of 10 °C; and Tair is the air temperature (°C). Amax, ⍺, R10 and Q10 variables are resulting 

outputs of the non-linear least square, Gauss-Newton, regressions applied (using the statistical 

package Systat10, Systat Software, Inc., San Jose, CA, USA, 2000), of the input diurnal 
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meteorological (PPFD and Tair) and NEE flux data. Before light-response curves were derived, NEE 

data was binned over two days to derive representative diurnal patterns.  

 

3.3. Results 

3.3.1. Sensor Calibrations and Validation 

For each of the SRS-PRI sensor pairs (532 nm and 570 nm), cross-calibration ratios showed a 

strong linear relationship to illumination but varied in response to solar elevation. At low elevations, 

functions had steeper slopes and, therefore, showed higher sensitivity to illumination changes (Figure 

3.2a). Illumination sensitivity decreased as solar elevation increased and functions were near 

horizontal at solar elevations of >52°, which represented peak solar noon elevations at our site. For 

both the 532 nm and 570 nm pairs, the difference in signal (radiance – irradiance) between the 

hemispherical and field stop fore-optics over the white balance (Figure 3.2b) decreased with diffused 

light observed cloudy conditions. This effect leads to calibration functions with negative slopes where 

cross-calibration ratios were higher during low illumination than high illumination. Boxplot 

distributions of cross-calibration functions (Figure 3.3) show an overall decrease in variability as sun 

elevation increased towards higher solar elevations. This was expected as low sun angles cause higher 

specular reflectance. However, generally, cross-calibration ratios were within range of theoretical 

radiance/irradiance ratio value of 0.318 [69]. 

The diurnal corrections were applied by first matching the empirical cross-calibrations functions 

with the solar elevations of each SRS-PRI data points. Then, the derived percent illumination of each 

point was used to automatically determine the cross-calibration multipliers and derive new corrected 

reflectance SRS-PRI values. Scaled photochemical reflectance index (sPRI) values were derived from 

corrected SRS-PRI. A similar process was applied for the midday correction procedure; however, 

instead of accounting for continuous changes in solar elevation, only daily solar noon elevations were 

used to select the appropriate empirical cross-calibration response. Solar noon elevations at our site 

varied from 24.28° to 56.36° (fall and summer, respectively). Both diurnal and midday cross-

calibration procedures (Figure 3.4a) had a significant effect on the sPRI diurnal pattern. Each of the 

corrections caused a downward shift in midday sPRI values as well as a sharper recovery during the 

start and end of the day. These patterns more closely represented the spectrometer derived sPRI 

diurnal pattern than that formed by the uncorrected SRS-sPRI values. In particular, the dynamic 
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pattern of the diurnal cross-calibration best represented the reference spectrometer shape. Regression 

analysis (Figure 3.4b) of diurnal corrected SRS-sPRI values and spectrometer sPRI showed a strong 

linear correlation (R2 = 0.78, p < 0.05). Midday corrected and uncorrected values were also 

significantly correlated to spectrometer sPRI (R2 = 0.72, p < 0.05 and R2 = 0.62, respectively). 

 

3.3.2. Meteorological and Carbon Flux Data 

Seasonal time series of net ecosystem exchange (NEE), gross primary productivity (GPP), and 

respiration (Reco) were compared to meteorological variables and allowed the identification of 

climatic drivers directing intra-seasonal variability in carbon fluxes. Key connections between carbon 

fluxes and meteorological variables provided indications of the underlying mechanisms affecting 

vegetation efficiency over the season and during individual phenologic stages (maturity and leaf 

senescence). A more detailed analysis of carbon fluxes and meteorological data can be found in 

appendix A. PPFD appeared to be a strong driver of productivity during maturity. Comparison of 

diurnal patterns of GPP and PPFD (Figure 3.5) showed significant correlations during the months of 

June (R2 = 0.91, p < 0.05), July (R2 = 0.90, p < 0.05), August (R2 = 0.85, p < 0.05), and September (R2 

= 0.80, p < 0.05). Productivity during the leaf senescence months, April and October, showed no 

association to PPFD conditions.  

A combination of meteorological factors affecting apparent quantum yield (⍺) made it hard to 

determine the proportion of effect of each variable and how these may change over the growing 

season. However, some key components were identified and further discussed in the appendix A. 

Seasonal comparison of GPP and ⍺ (Figure 3.6a) were poorly correlated (R2 = 0.33) over the whole 

season. However, during leaf senescence, (Figure 3.6b) as GPP starts to decline, GPP and ⍺ showed 

similar temporal changes and were significantly correlated (R2 = 0.73, p < 0.05). 

 

3.3.3. Comparison of Light Use Efficiency Parameters and Canopy Structure Parameters 

SRS-sPRI values were compared to LUE and ⍺ to determine its suitability as a proxy of light use 

efficiency. Comparison of SRS-sPRI and LUE time series (Figure 3.7a) showed similar seasonal 

patterns and were significantly correlated (R2 = 0.62, p < 0.05). PRI was also able to resolve periods 

of high LUE changes.  
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However, smaller fluctuations observed throughout the LUE time series were not as clearly 

resolved by the SRS sensors. Further separation of the LUE–SRS-sPRI relationship by phenologic 

stages (Figure 3.8a) showed higher correlation during maturity (R2 = 0.54) than during leaf 

senescence (R2 = 0.43). Also, higher variability in SRS-sPRI values was observed during maturity 

(𝜎 = 0.15) than during leaf senescence (𝜎 = 0.069). Correlation analysis of SRS-sPRI and ⍺ (Figure 

3.7b) showed a strong significant correlation (R2 = 0.72, p < 0.05). Temporal dynamics of ⍺ were also 

able to be better tracked by SRS-sPRI, especially during maturity (Figure 8b) (R2 = 0.67). During leaf 

senescence (Figure 3.8b), SRS-sPRI started to increasingly depart from ⍺ values leading to a weaker 

relationship (R2 = 0.51). Comparison of LUE and ⍺ (Figure 3.7c) resulted in highly correlated arrays 

(R2 = 0.88, p < 0.05). The ⍺ time series followed the dynamic changes in LUE but with less short term 

variations, likely due to the 2-day temporal binning methodology used to calculate the ⍺ term. 

Parametrization of light use efficiency must be done on the basis of green vegetation [5]. As 

collected fAPAR values represented the total light conditions of the forest stand, an NDVI-fAPAR 

relationship (Figure 3.9) was established to ensure that fAPAR was, in fact, a good proxy of 

vegetation greenness changes. Daily NDVI and fAPAR values strongly correlated (R2 = 0.96, p < 

0.05), but the relationship was non-linear. NDVI was seen to saturate as values reached above 

approximately 0.65 (fAPAR ≈ 0.75). The effect of canopy structure and pigment pool changes on the 

PRI signal was evaluated by comparing SRS-sPRI values with measured fAPAR. Analysis of the 

seasonal relationship (Figure 3.10a) showed fAPAR and SRS-sPRI as being poorly correlated (R2 = 

0.14, p > 0.05). The seasonal time series was further divided into maturity and leaf senescence, and 

correlations were derived (Figure 3.10a). During maturity, we observed a poor relationship between 

fAPAR and SRS-sPRI values, suggesting a minimal effect of canopy structure on PRI signals. 

However, during leaf senescence, a linear relationship (R2 = 0.52, p < 0.05) formed between fAPAR 

and SRS-sPRI values. To confirm the effect of canopy structure on efficiency during maturity and 

leaf senescence, the same comparisons were performed using LUE values, and lead to comparable 

results (Figure 3.10b). 

 

3.3.4. Light Use Efficiency Models 

SRS-sPRI and ⍺ values were used to derive light use efficiency models and compared to GPP to 

assess each model’s accuracy. APAR values were also compared to GPP (Figure 3.11a) to determine 

its contributing proportion to the overall model. APAR closely tracked temporal changes in GPP 
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throughout maturity, however, during leaf fall GPP and APAR show differing paths. The LUE model 

constructed from ⍺ values (Figure 3.11b) was significantly correlated to GPP (R2 = 0.79, p < 0.05). 

The model’s closest association to GPP occurred during leaf senescence, as GPP started to decline. 

The light use efficiency model driven by the SRS-sPRI dataset (Figure 3.11c) had very similar results 

to that of the ⍺ based model and showed significant correlations to GPP (R2 = 0.77, p < 0.05). Again, 

the GPP and models’ paths were most closely associated during senescence, as leaf fall initiated.  

 

3.4. Discussion 

As suggested in other studies [70–73], our results show that a cross-calibration must be 

performed to properly calibrate automatic optical sensors. Uncalibrated SRS-PRI values did not have 

good agreement with spectrometer PRI values. Unlike results from Gamon et al. [44], both diurnal 

and midday calibrations noticeably improved the ability to resolve diurnal PRI patterns. Although we 

do not know the reason for this difference in calibration outcomes, one possibility may be that our 

aspen stand could represent more a heterogeneous structure and illumination conditions. Wind 

conditions that are common at our calibration site could help randomize the leaf orientation so that 

both the spectrometer and SRS sensors measure similar sunlit and shaded leaf proportions. Our 

contrasting results advocate for the importance of characterizing site-specific light fields that can vary 

in complexity between different canopy structures and may affect the ability to resolve diurnal 

dynamics accurately. A lack of ability to accurately resolve diurnal PRI patterns becomes problematic 

when diurnal patterns of the xanthophyll cycle and light use efficiency is wanted [39,44,78].  

Although cross-calibrations provided more accurate PRI values, errors remain. In general, the 

main discrepancy between the SRS-PRI sensors and spectrometer measurements occurred as we 

moved away from midday. This suggests that the factory SRS sensors sensitivity cannot resolve the 

full range of reflectance changes. Uncalibrated SRS sensors result in an overestimation of PRI and 

LUE and modeled GPP values if used within a LUE model. To prevent erroneous PRI values that can 

lead to the mischaracterization of light use efficiency, we recommend regular calibrations and 

corrections of SRS sensors [71,73]. Diurnal cross-calibration procedures confirmed that an offline 

calibration is possible and can be used to correct the effects of illumination and solar elevation on 

radiance and irradiance measurements. However, it is important to note that our procedure did not 

account for changes in solar azimuth that lead to changes in directional reflectance [74,75]. Solar 
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azimuth changes will have a meaningful impact in high latitude ecosystems as angles will vary 

significantly from start to peak growing season. Real-time calibrations would account from changes 

in solar azimuth. However, given the constant manual intervention needed during real-time cross-

calibrations, we believe our procedure to be a good compromise. The offline diurnal calibration was 

able to resolve diurnal PRI pattern (and xanthophyll cycle changes) more accurately than midday 

calibrations. The diurnal cross-calibrations results corroborate previous findings showing the effect of 

sun-canopy-sensor geometry on PRI values [33,43,76,77].  

The strong correlation between SRS-sPRI and LUE (R2 = 0.62) show that automated SRS-PRI 

sensors can be used as a proxy for light use efficiency. It is important to note the observed 

relationship between SRS-sPRI and LUE was stronger than the mean of 27 broadleaf forests reported 

correlations (R2 = 0.59) reviewed by Zhang et al. [24]. Comparison between SRS-sPRI and apparent 

canopy quantum yield showed an even stronger correlation with an R2 = 0.72 that represents the 

upper third quartile boundary of the broadleaf forest PRI-LUE correlation meta-analysis. Although 

quantum yield is not equivalent to light use efficiency, the strong correlation between ⍺ and LUE (R2 

= 0.88) show that ⍺ can be used as an adequate proxy of LUE when PPFD is the primary driving 

variable of productivity. As such, the strong correlation of between SRS-sPRI and ⍺ provide even 

more evidence that PRI values from the SRS sensors can serve as a proxy for efficiency. 

Although sPRI was well correlated to light use efficiency parameters, their association appeared 

to vary within different developmental stages. The close correlation between sPRI, LUE (R2 = 0.54) 

and ⍺ (R2 = 0.67) during maturity show ability to track the facultative changes of xanthophyll cycle 

pigment pools. This was further supported by the weak correlation between fAPAR and sPRI (R2 = 

0.14), indicating the low effect of vegetation structure that drives constitutive pigment pool changes 

[38]. During leaf senescence sPRI was less strongly correlated to efficiency parameters (light use 

efficiency R2 = 0.43, quantum yield R2 = 0.51) and correlated with fAPAR (R2 = 0.52), suggesting 

that the PRI signal is influenced by canopy changes. In deciduous vegetation, senescence marks a 

period of substantial changes in canopy structure composition as leaves start to senesce and fall. 

During this marked period of structural variation, senescence PRI would most likely represent a 

mixture of facultative and constitutive changes, with constitutive changes confounding the 

physiological signal from leaves. This aligns with studies [79,80] suggesting that dominant effects of 

canopy structure can confound physiological leaf traits detection. Future parametrization of LUE 

models will need to take into account PRI’s contrasting effect on photosynthetic activity during 

different time periods [21]. The high temporal resolution of the automatic SRS-PRI sensors and their 
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ability to serve as a proxy of LUE at different temporal scales could be useful towards the better 

parametrization of LUE models.  

A close analysis of PRI and light use efficiency parameters provided some underlying 

mechanism affecting efficiency at our site. The close relationship of ⍺ and GPP during senescence 

indicate that efficiency changes are influenced by canopy structure, this being the primary driving 

mechanism of GPP changes. Coinciding efficiency peaks present in sPRI, LUE and ⍺ time series 

were associated with high water availability (soil and atmospheric), lower temperatures and low 

PPFD. In the context of PRI, we can infer that periods of low PPFD would account for the little need 

for non-photochemical quenching as canopy would not be exposed to saturating light conditions. 

Diffused light conditions have been shown to result in higher canopy light use efficiency [81–83] and 

could explain the increases in LUE rates. This effect of diffused light on light use efficiency rates has 

been difficult to account for in remote sensing modeling as most of the driving data come from non-

continuous satellite-based imagery. Continuous PRI measurements have the potential to solve this, as 

illumination can be used to classify continuous datasets into illumination groups and used to 

empirically describe the effects of different light conditions on LUE through time. 

Many described canopy scale variables have been described that can confound PRI signals 

including canopy structure, view and illumination angles, soil types, shadow fractions, phenology and 

pigment pools [19,21,38,84,85]. One approach to mitigate some of these effects is through the 

normalization of PRI (calculating daily ∆PRI) [86]. This has been shown to reduce the effects of 

canopy structure, vegetation cover, and soil background. Although not applied in this study, PRI 

normalization is a topic of future work as it may improve PRI-LUE relationships from continuous 

sensors. Some of the variables previously mentioned also impact our sPRI dataset. We can also 

assume that our continuous measurements will have a wide range of impacts as the higher temporal 

resolution will naturally capture more of these interactions. Although quantifying the individual effect 

of each impacting variable is difficult, we believe that continuous datasets provide the ability to 

explicitly examine the cause of changing PRI over time and space. This has been a criticism of 

studies using non-continuous PRI measurements such as those from satellite platforms, where their 

low temporal resolution cannot resolve short-term reflectance changes and instead changes primarily 

represent changing pigment pools [38,39]. 

Both the sPRI and ⍺ LUE models were able to track the overall progression of GPP. Still, some 

of the short-term dynamic changes observed in GPP during maturity were better captured by APAR 

the sPRI and ⍺ derived LUE models. We can attribute this to the strong association between incident 
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light and productivity during peak GPP months. During peak GPP months, canopy structure remains 

mostly unchanged; thus APAR variability is driven by PPFD dynamics. During leaf senescence, 

PPFD was no longer associated with GPP and lead to the differences seen between APAR and GPP 

trends. Overall, the ⍺ driven LUE model showed to be the most accurate. The sPRI LUE model 

followed closely and was able to track seasonal changes in productivity. Evaluation of APAR, sPRI 

and LUE model results indicate that construction of LUE models needs to consider the changing 

contribution of the individual model variables through time and within different ecosystems. This 

follows Garbulsky et al. [14] concept suggesting that canopy efficiency can change between 

vegetation and environmental conditions. Exploration of this concept has been hard to test due to lack 

of continuous datasets that would allow mechanistic and comparative analysis within and across 

biomes. Continuous SRS-sPRI offer new opportunities to explore diurnal and seasonal changes in 

vegetation physiology. 

 

3.5. Conclusions 

An offline diurnal calibration was able to characterize the optical sensor’s response and allowed 

us to resolve diurnal and seasonal PRI patterns. Corrected PRI values from SRS sensor proved to be 

appropriate proxies of light use efficiency. Our results contribute to the growing research indicating 

that continuous PRI sensors can be used to track diurnal and seasonal changes in efficiency. Still, it is 

important to define facultative and constitutive proportions within the PRI observations and how this 

may change over different ecosystems and growth stages. Studies on the explicit effect of 

environmental conditions on PRI signals will also prove to be important since the higher resolution of 

continuous measurements will need to be accurately characterized. In general, we see continuous PRI 

sensors as having numerous benefits for explicitly examining the cause of changing PRI, LUE, and 

productivity over time and space. For this reason, we see this technology of great value for the flux, 

remote sensing and modeling community. 
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3.7. Figures 

 

 

Figure 3.1. Location of the Peace River Environmental Monitoring Super Site (red star). Red 

triangle shows the location of the flux tower at the edge of an old growth deciduous boreal 

forest. The tower contains eddy covariance system, meteorological sensors, and proximal 

remote sensing sensors. A Wireless Sensor Network (WSN) composing of 36 nodes is located 

east of the eddy covariance tower, within the flux footprint. 
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Figure 3.2. (a) Example of midday and diurnal cross-calibration functions for the 532 nm 

SRS-PRI fore-optic. Cross-calibration ratios are shown as a function of sun elevation (binned 

every 3°). Illumination of 100% represents clear and sunny sky conditions. (b) Example of the 

observed signal difference (radiance – irradiance), in machine units, as a function of 

illumination percentage for the 41°–43° solar elevation bin. Radiance and irradiance 

measurements were collected from the 532 nm SRS-PRI sensor pair. 
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Figure 3.3. Boxplot distribution of diurnal cross-calibration ratios for the 532 nm SRS-PRI 

fore-optic. Each boxplot represents a 3° solar elevation bin. Red points represent outliers and 

were observed more often in low solar elevation bins. 

 

 

Figure 3.4. (a) Comparison of uncorrected and corrected (diurnal and midday) PRI diurnal 

patterns. (b) Comparison of spectrometer PRI measurements with uncorrected and corrected 
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SRS-PRI measurements. The diurnal cross-calibration procedure shows the strongest and 

closest correlation to spectrometer readings and 1:1 (gray) line. 

 

Figure 3.5. Mean diurnal monthly pattern of gross primary productivity (GPP) (black dotted 

line) and photosynthetic photon flux density (red line) for the growing season (April–October). 
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Figure 3.6. (a) Time series and (b) regression analysis of gross primary productivity (GPP) 

and apparent canopy quantum yield (alpha). Correlation between GPP and alpha was analyzed 

for the whole season (black), maturity (green), and leaf senescence (brown). 

 

 

 

 

 



74 

 

 

 

 

Figure 3.7. Time series (left panels) and regression plots (right panels) of (a) light use 

efficiency (LUE) and scaled photochemical reflectance index from SRS sensors (SRS-sPRI), 

(b) apparent quantum yield (alpha) and SRS-sPRI, and (c) LUE and ⍺. Dotted lines in 

regressions plots (right panels) show linear regressions fitted to the data. 
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Figure 3.8. Seasonal (black), maturity (green), and leaf senescence (brown) correlations of 

scaled photochemical reflectance index from SRS sensors (SRS-sPRI) and (a) light use 

efficiency (LUE), and (b) apparent quantum yield (alpha). Dotted lines show linear fits. 

 

Figure 3.9. NDVI-fAPAR relationships derived from daily values. NDVI was calculated from 

broadband spot radiometer sensors. fAPAR was derived from the wireless sensor network 

(WSN) composing of 36 nodes measuring canopy transmitted light. Dotted line represents 

polynomial regression fitted to the data: y = -1.9596 𝜒2 + 2.954x – 0.3484, R2 = 0.96. 



76 

 

 

 

Figure 3.10. Relationship between fraction of absorbed photosynthetically active radiation 

(fAPAR) and (a) scaled photochemical reflectance index from SRS sensors (SRS-sPRI), and 

(b) light use efficiency (LUE). Comparisons are shown for the combined season (black) as 

well separated into maturity (green) and leaf senescence (brown) phenologic stages. 
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Figure 3.11. Time series (top panels) and regressions (bottom panels) of (a) absorbed 

photosynthetically active radiation (APAR) and gross primary productivity (GPP), (b) light 

use efficiency (LUE) model driven by apparent quantum yield (⍺) and GPP, and (c) light use 

efficiency (LUE) model driven by scaled photochemical reflectance index from SRS sensors 

(sPRI) and GPP 
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CHAPTER 4 – Effect of temporal aggregation and phenology on LUE model variables and 

productivity in two deciduous forests. 

 

Abstract 

The integration of optical and flux data requires temporal aggregation. In this study, we explore the 

effect of temporal aggregation of these two different data types by assessing the impact of various 

aggregation periods in the context of ecosystem productivity and its ecological relevance. Optical 

remote sensing and eddy covariance flux data collected over four years from a Tropical Dry Forest 

(TDF) and a Deciduous Boreal Forest (DBF) were used in the analysis. Light use efficiency model 

variables (PAR, fAPARgreen, APARgreen, and LUE) were derived, temporally aggregated over the 

diurnal period at 1hr increasing intervals and compared to gross primary productivity, derived from 

flux measurements. Temporal aggregation analysis was performed at the seasonal scale as well as 

divided by phenological stage (green-up, maturity, and senescence). Seasonal aggregation analysis 

showed little effect on fAPARgreen derived from TDF and DBF. Aggregation of PAR, APARgreen and 

LUEgreen variables from TDF and DBF showed significant changes in correlation to GPP. 

Aggregation analysis as a function of optical phenology produced contrasting results to seasonal 

aggregations. This was especially the case for TDF fAPAR during green-up, where aggregation 

produced significant changes in correlation to GPP (Δr2 ≈ 0.34-0.39, p < 0.05). A relative importance 

analysis provided a quantitative measure of contribution by each LUE model variable towards 

ecosystem productivity. Relative importance analysis was done at both the seasonal level as well as 

with data divided by individual phenophases (green-up, maturity, and senescence). Previous 

knowledge of seasonal and phenological ecosystem functions was combined with relative importance 

metrics to put ecological context in our results. Findings validate the hypothesis that physiological 

and structural contributions to the LUE model change between vegetation and provides new evidence 

of an effect of environmental condition and phenology on LUE model parametrization. 

 

4.1 Introduction 

 The systematic integration of optical remote sensing with eddy covariance datasets has provided 

the opportunity to explore in detail the mechanistic drivers of productivity operating at finer temporal 

and spatial scales (Gamon, 2015). The evaluation of the individual and combined processes allows for 

a deeper understanding of the variables driving seasonal carbon cycle dynamics and productivity 

modelling (Falge et al., 2002; Law et al., 2002). The integration of remote sensing and 
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micrometeorological data can be done using the light-use efficiency (LUE) model as the unifying 

concept. First proposed by Monteith (1972, 1977), the LUE model states that total yield, or 

productivity, can be quantified by the amount of Photosynthetically Active Radiation (PAR) absorbed 

by a given canopy, and the efficiency by which that radiation is transformed to fixed carbon over 

time. The model can be mathematically expressed as:  

 

Total Yield =  0∫
t APARdt      (1) 

  

where APAR (µmol m-2 s-1) is the Absorbed Photosynthetically Active Radiation (µmol m-2 s-1) by a 

given vegetation structure, and  represents the physiological parameter of LUE. Conceptually, the 

LUE model can be separated into two components: one structural and another physiological (Gamon, 

2015). APAR describes the structural component by quantifying the amount of vegetation present. 

LUE quantifies the physiological response of plants to changing environmental conditions (Monteith 

1972, 1977). As such, the LUE model can be directly parameterized by remote sensing data and is 

conventionally expressed in terms of Gross Primary Productivity (GPP). Although it can be expressed 

using different formulations and parametrizations, the model is generally expressed as: 

 

    GPP = (fAPAR ×  PAR) × LUE    (2) 

      = (APAR) × LUE 

 

where fAPAR is the fraction of Absorbed Photosynthetically Active Radiation (fAPAR), and the 

PAR and  terms are as stated previously. The primary connection between remote sensing and the 

LUE model is based on combining PAR and fAPAR measurements to determine the APAR term, 

providing a measure of potential photosynthetic activity by green vegetation (Sellers, 1985; Sellers et 

al., 1987; Hall et al. 1992; Gamon et al. 1995; Myneni and Williams, 1994; Gitelson and Gamon, 

2015). LUE models using remote sensing have been used to estimate global productivity at various 

temporal and spatial dimensions including ecosystem and global scales (Potter et al., 1993; Prince and 

Goward, 1995; Landsberg and Waring, 1997; Cramer et al., 1999; Law et al., 2000; Coops et al., 

2005). Traditionally, models have been parameterized at global scales and by vegetation type. 

However, current trends are moving away from vegetation specific parametrization and more towards 

biophysical conditions of a given ecosystem (Potter et al., 1993a; Yuan et al., 2007, 2010, 2014).  

As research priorities continue to move towards exploring individual ecosystems and 
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functions, the integration of remote sensing and flux measurements represents an important 

development in multidisciplinary science; an approach that can provide significant insight into 

ecosystem functioning (Gamon, 2015). Remote sensing driven LUE models offer the ability to sample 

sites with high heterogeneity, complex topography, and other non-ideal sites for the eddy covariance 

technique (Running et al., 2004; Hilker et al., 2008). In turn, eddy covariance can provide direct 

physiological validation to remote sensing empirical observations. Integrated National Aeronautics 

and Space Administration (NASA) field campaigns, First International Satellite Land Surface 

Climatology Project Field Experiment (FIFE) (Sellers et al., 1992) and Boreal Ecosystem-

Atmosphere Study (BOREAS) (Sellers et al., 1997), were the first large scale studies of remote 

sensing and flux integration towards a fuller understanding of ecosystem physiology and ecology. 

The integration of remotes sensing and flux data has been shown to provide greater insight into the 

underlying controls on ecosystem-atmospheric interactions than would be possible with either method 

applied independently (Gamon, 2015).  

One of the challenges of integrating optical and flux data arises from the difference in their 

temporal scales. To realize a successful integration of remote sensing data and flux data, an in-depth 

assessment exploring temporal aggregation effects and its ecological relevance is necessary. To date, 

analysis of the effect of temporal aggregation on the LUE model is limited within the scientific body. 

Published studies have largely focused on the effect of aggregation on individual LUE variables. For 

the fAPAR variable, conventional wisdom has traditional assumed a that daily integrated 

measurements correlate to satellite-derived instantaneous measurements (Baret et al., 2011; Camacho 

et al.,2013; Martinez et al., 2013). However recent studies comparing ground fAPAR measurements 

to satellite derived products in boreal forest (Majasalmi et al., 2017; Putzenlechner et al., 2019) and 

Tropical Dry Forest (TDF) (Putzenlechner et al., 2019) suggest significant differences between 

instantaneous and diurnal aggregated fAPAR measurements. Likewise, studies comparing diurnal and 

midday LUE values, calculated over in a variety of ecosystems, showed them to be poorly correlated 

(Sims et al., 2005; Chen et al., 2009). The discrepancy between instantaneous and daily values for 

both the fAPAR and LUE variables put into question the reliability of point measurements (e.g. 

satellite collections) and highlights the need for a systematic analysis of the effect of temporal 

aggregation on the LUE model.  

Functional responses of different vegetation in response to environmental limitations (Ustin 

and Gamon, 2010) has also been suggested as an additional complexity in the parametrization of the 

LUE model (Garbulsky et al., 2011; Gamon, 2015). In this context, Garbulsky et al. (2011) proposed 
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that the contributions of the structural and physiological components of the LUE model towards 

carbon fluxes should vary across ecosystems. Dominant component contribution would also relate to 

the hypothesis of vegetation optical types (Ustin and Gamon, 2010), where vegetation traits, canopy 

structure, and phenology affect the mechanisms of ecosystem productivity. Testing of Gabrulsky’s et 

al. (2011) hypothesis has proven difficult due to the need for replicated (flux and optical) 

instrumentation and experimental design that is not common (Gamon, 2015).  

To address the knowledge gaps mentioned above the objectives of this study are to (1) 

determine the effect of temporal aggregation on LUE model variables over the season and through the 

phenological stages (green-up, maturity, and senescence), and (2) identify the LUE model 

components that drive ecosystem productivity and how they change seasonally and through 

phenology. The analysis was done on datasets collected over 2 years from two different forest types, 

deciduous boreal forest (DBF) and tropical dry forest (TDF), instrumented with matching optical and 

flux sensors. 

 

4.2 Materials and Methods 

4.2.1 Study Sites 

Data collected from two deciduous forest sites were used for this study (Table 4.1); the first 

site is a Canadian mixed boreal forest, and the second site is a Tropical Dry Forest (TDF) in Costa 

Rica. The Deciduous Boreal Forest (DBF) dataset spans the 2015 and 2016 growing seasons of an 

old-growth trembling aspen (Populus tremuloides) stand, collected at the Peace River Environmental 

Monitoring SuperSite (PR-EMSS) (Castro and Sanchez-Azofeifa, 2018). The PR-EMSS is located 

approximately 90km northwest of Peace River, Alberta, Canada (Figure 1a) (56° 44.635' N, 118° 

20.635' W) and forms part of the Lower Foothills ecological unit, based on the provincial 

classification system (Alberta Environmental Protection, 1994; Natural Regions Committee, 2006). 

Key instrumentation components and deployment at the PR-EMSS include a 30m tower containing an 

eddy covariance and full meteorological station, providing detailed micrometeorological and 

biometric data of an old-growth P. tremuloides stand (Castro and Sanchez-Azofeifa, 2018). Proximal 

remote sensing sensors mounted above the canopy allow for the tracking of forest optical phenology 

and light (incoming and reflected) conditions used to derive greenness vegetation indices. An 

understory wireless sensor network (WSN) provided continuous transmitted Photosynthetically 

Active Radiation (PAR) quantities and was used to calculate the continuous fraction of Absorbed 

PAR (fAPAR) (Putzenlechner et al., 2019; 2020). The WSN was located within the flux footprint. 
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Further detail on site characteristics and instrumentation deployment at the PR-EMSS is discussed by 

Castro and Sanchez-Azofeifa (2018) and Putzenlechner et al. (2019; 2020). 

TheTDF dataset was likewise composed of micrometeorological and proximal remote sensing 

data collected in an intermediate successional stage forest (10°44.206’ N, 85°37.034 W) within the 

Santa Rosa National Park Environmental Monitoring SuperSite (SRNP-EMSS) during the 2013 to 

2016 growing seasons (Castro et al. 2018). The SRNP-EMSS is located in the northwest province of 

Guanacaste, Costa Rica, and is part of the Area de Conservacion Guanacaste (ACG) conservation 

area. Similar to the PR-EMSS, the SRNP-EMSS site derived micrometeorological and biometric data 

from an eddy covariance system, and a fully instrumented meteorological station mounted on a 35m 

tower located within the forest stand. Phenological and canopy greenness changes were tracked 

through broadband spot radiometers mounted on a south-facing arm extending from another 35m 

tower located within the flux footprint. Also, within the flux footprint, a WSN measured canopy 

transmitted light dynamics that, combined with above canopy downwelling light conditions, allowed 

direct fAPAR calculations. Further detail on site characteristics and instrumentation deployment at 

the SRNP-EMSS can be found in Castro et al. (2018) and Putzenlechner et al. (2019; 2020). 

 

4.2.2. Eddy Covariance Instrumentation Processing and partitioning 

 Identical eddy covariance (EC) systems were used to measure forest Net Ecosystem Exchange 

(NEE) (µmol m-2s-1) at both the DBF and TDF sites. Fluxes were measured through an integrated EC 

system as part of the CPEC200 system (Campbell Scientific, Logan, UT, USA). The system was 

composed of a close-path infrared gas analyzer (IRGA) (model EC155, Campbell Scientific Inc., 

Logan, UT, USA) and a three-dimensional sonic anemometer (model CSAT-3A, Campbell Scientific 

Inc., Logan, UT, USA), logged at a sampling frequency of 20 Hz through a CR3000 datalogger 

(Campbell Scientific, Logan, UT, USA). 

EC data from both the DBF and TDF sites were processed using the post-acquisition software 

EdiRe (http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe) and EddyPro Software (LI-COR 

Inc., Lincoln, NE, USA). Flux processing steps included time lag correction (Moore,1986), low and 

high-frequency losses due to attenuation in close path systems (Moncrieff et al., 1997), data de-

spiking (Vickers and Marhart, 1997), double coordinate rotation (Finnigan et al., 2003), and Webb-

Pearman-Leuning correction (Webb et al., 1980). Fluxes were calculated as 30-minute block 

averages. Diagnostic flags associated with the IRGA and sonic anemometer instruments were used to 

filter the flux datasets further and allowed the identification and removal of errors caused by 
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precipitation events. Filtered NEE datasets from the DBF and TDF sites were partitioned into gross 

primary productivity (GPP) and respiration (Reco) components through the use of light-response 

curves models outlined by Flanagan et al. (2005) and Hutyra et al. (2007), respectively. Hyperbolic 

functions derived from the light-response curves were used to calculate apparent quantum yield (α) 

values. Additional details on the DBF and TDF flux datasets can be found in Castro and Sanchez-

Azofeifa (2018) and Castro et al. (2018), respectively. 

 

4.2.3 Canopy Structure and Phenology 

 Upward and downward-looking quantum and pyranometer pairs installed above the canopy 

were used to calculate a broadband normalized difference vegetation index (NDVI). These spot 

radiometers provided continuous measurements at a logging interval of 10 minutes. Broadband NDVI 

was calculated as: 

 

𝑁𝐷𝑉𝐼 =
(𝜌𝑃𝑌𝑅− 𝜌𝑃𝐴𝑅)

(𝜌𝑃𝑌𝑅+ 𝜌𝑃𝐴𝑅)
       (3) 

 

where  ρPYR is the solar radiation reflectance calculated as the ratio of upwelling:downwelling 

radiation from pyranometer pair; and ρPAR is the Photosynthetically Active Radiation (PAR) 

reflectance calculated as the ratio of upwelling:downwelling PAR sensor pair. Broadband NDVI 

indices have been shown to be accurate proxies of narrowband NDVI (Huemmrich et al., 1999). 

Seasonal NDVI changes were used to identify stages of green-up, maturity, senescence, and 

dormancy at the PR-EMSS and SR-EMSS study sites. Transitions between phenological stages were 

identified through the use of second derivative statistics.  

 

4.2.4 Wireless Sensor Network (WSN) and fraction of absorbed PAR measurements 

 Both of the TDF and DBF WSNs consisted of self-powered nodes (model ENV-Link-Mini-

LXRS, LORD MicroStrain, Cary, NC, USA) equipped with upward and downward quantum PAR 

sensors (model SQ-110, Apogee, Logan, UT, USA) with 180o field of view. Nodes within the WSN 

were placed within the flux footprints of each site and were synchronized to log simultaneously every 

10 minutes, providing instantaneous measurements of transmitted PAR and soil reflected PAR 

throughout the seasons. To ensure the representative sampling of light variability and overcome 

possible bias effect of sampling location, both WSNs consisted of more than 10 nodes (Widlowski, 
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2010; Putzenlechner et al. 2019). The PR-EMSS WSN was comprised by 36 nodes, while the SRNP-

EMSS WSN consisted of 14 nodes. To maximize sensing area coverage and sensor connectivity, both 

networks were arranged in a hexagonal pattern (Mortazavi et al., 2014; Younis and Akkaya, 2008). 

Nodes were spaced every 20m to minimize the effect of spatial autocorrelation based on sensing 

footprint (Montgomery and Chazdon, 2001).  

Radiation dynamics measured through the WSNs were used in combination with above canopy 

radiation measurements to calculate the fraction of absorbed photosynthetically active radiation 

(fAPAR) for each node at each collection site. A 4-flux fAPAR was calculated using the equation: 

  

𝑓𝐴𝑃𝐴𝑅 = 1 − 𝑡 − 𝑟 + (𝑡 × 𝑟𝑠)    (4) 

 

where t is the fraction of transmitted radiation, r is the reflected radiation from the canopy, and rs is 

the soil reflectance component. To better match the spatial area of the sites’ flux footprints, individual 

node fAPAR values were spatially averaged over the whole network. Noting that not all transmitted 

light is used for photosynthesis, the photosynthetic component of vegetation, fAPARgreen, was 

calculated as (Hall et al., 1992):  

 

𝑓𝐴𝑃𝐴𝑅𝑔𝑟𝑒𝑒𝑛 =  𝑓𝐴𝑃𝐴𝑅𝑡𝑜𝑡𝑎𝑙 × (
𝑁𝐷𝑉𝐼𝑔𝑟𝑒𝑒𝑛

𝑁𝐷𝑉𝐼𝑡𝑜𝑡𝑎𝑙
⁄ )  (5) 

 

where green NDVI is the photosynthetically functional component of the total NDVI. Equation (5) 

was derived as a variant of the common method (Hall et al., 1992) for calculating the photosynthetic 

(fAPARgreen) fraction of transmitted light that uses the ratio of LAIgreen:LAItotal. This NDVI based 

method was chosen to maintain the high temporal resolution of derived fAPARgreen that would 

otherwise require high levels of interpolation by relying on monthly LAI collections.  

 

4.2.5 Absorbed PAR, Light Use Efficiency (LUE) variables, and temporal aggregation 

 The Absorbed Photosynthetically Active Radiation (APAR) was calculated as the product of 

downwelling PAR and fAPAR. APAR was expressed as APARtotal and APARgreen at the PR-EMSS 

and the SRNP-EMSS, respectively.  

The light use efficiency variable provides a quantitative measure of the efficiency by which absorbed 

radiation is used to fix carbon by vegetation, and is calculated as (Monteith, 1972; Monteith and 
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Moss, 1977): 

 

𝐿𝑈𝐸𝑔𝑟𝑒𝑒𝑛 =
𝐺𝑃𝑃

(𝑓𝐴𝑃𝐴𝑅𝑔𝑟𝑒𝑒𝑛 ×𝑃𝐴𝑅)
=

𝐺𝑃𝑃

𝐴𝑃𝐴𝑅𝑔𝑟𝑒𝑒𝑛
   (6) 

 

GPP was derived from the eddy covariance datasets. LUE values were expressed as LUEgreen. The 

effect of temporal aggregation on LUE model variables was explored to determine how to best 

construct the model. The LUE model was expressed as:  

 

          

      𝐺𝑃𝑃 = (𝑓𝐴𝑃𝐴𝑅 × 𝑃𝐴𝑅) × 𝐿𝑈𝐸    (7) 

                          [I]           [II]       [IV] 

 

Roman numerals noted in equation (7) denote the sequence by which the different LUE model terms 

were aggregated. Each of the continuous LUE model variables (fAPAR, PAR, APAR, and LUE) 

were temporally aggregated with increasing periods starting with instantaneous midday readings and 

increasing sequentially by one hour, centred at midday, over the diurnal cycle. For clarity, a 

conceptual figure (Figure 4. S1) has been provided in the supplementary material section that better 

illustrates the temporal aggregation process.  

 

4.2.6 Analysis of LUE model variable contributions to productivity 

 To explore the relationship between LUE model variables on a seasonal basis, a Principal 

Component Analysis (PAC) was applied to centred and scaled 8hr aggregated GPP, fAPARgreen, 

PAR, and LUEgreen datasets from the SRNP-EMSS and PR-EMSS. The APARgreen variable was not 

included in the analysis to avoid the analogous contribution of canopy structure changes already 

represented by the fAPARgreen term. A relative importance (RI) analysis based on the LUE model 

(equation 7) was preformed to explore the quantitative contribution of each LUE model variable to 

productivity (GPP). RI analysis was preformed at the seasonal scale as well as within individual 

phenological stages: green-up, maturity, and senescence. The Lindeman, Merenda and Gold (LMG) 

relative importance model (Chevan and Sutherland, 1991) was used as it accounts for the direct and 

combined effects of each regressor allowing a more effective r2 decomposition (Gromping, 2006). 

 

III 
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4.3 Results 

4.3.1 Effect of Temporal Aggregation on Seasonal LUE Model Variables 

Data aggregation had varying impacts on the different LUE model variables, and these were 

quantified for each variable through the comparison of coefficients of determination (r2 values) for 

each aggregation period. Evaluation of the impact of fAPARgreen aggregation for the 2013 growth 

season (Figure 4.1a) shows a relatively small increase in correlation (Δr2 = 0.03) as aggregation was 

increased from 30 minutes to two hours. This increase was followed by a slight continuous decrease 

as aggregation was increased to 12hrs (full diurnal cycle). The change in r2 between the maximum (r2 

= 0.66 at 2hr aggregation) and minimum (r2 = 0.57 at 12hr aggregation) was statistically significant (p 

< 0.05). r2 values for the 2014 fAPARgreen aggregation were greater than those from the 2013 season 

(Figure 4.1b), likely associated with the added change in fAPARgreeen observed during the 2014 

drought. Aggregation of the 2014 fAPARgreen dataset showed an initial increase until 6hrs, followed 

by a gentle decline as periods increased. Variability in r2 values (r2 range of 0.73-0.75, Δr2 = 0.02) 

throughout the aggregation analysis was smaller than in 2013, and r2 changes were not statistically 

significant (p > 0.05). Similar patterns were observed for the 2015 and 2016 DBF datasets (Figure 

4.1c, d), with no statistical difference associated with aggregation (p > 0.05). The lowe fAPARgreen-

GPP correlation values at the PR-EMSS observed in 2016 are likely associated with the snow event 

observed during mid-senescence that accelerated leaf drop.  

The testing of PAR aggregation showed a consistent generalized pattern across both biomes 

and seasons (Figure 4.2). Aggregation lead to continuous gradual increases in r2, starting from 

minimum values that corresponded to instantaneous measurements (30 minutes), reaching maximum 

correlations at 8-10hrs, and followed by a slight decrease towards the total diurnal cycle. Due to the 

high variability of diurnal PAR values, this pattern was expected. Changes in r2 due to aggregation 

totaled 0.092, 0.14, 0.12, and 1.1 for the 2013 (TDF), 2014 (TDF), 2015 (DBF), and 2016 (DBF) 

datasets, respectively, and these changes were statistically significant (p < 0.05).  

The patterns for aggregation of APARgreen (Figure 4.3) emerged as a combination of the 

patterns observed from the analysis of PAR and fAPARgreen variables. As in the PAR analysis, 

aggregation lead to significant (p < 0.05) changes in r2 values in all datasets and optimal aggregation 

periods were 8hrs (2013), 10hrs (2014), and 7hrs (2015 and 2016). Temporal aggregation was 

observed to have the greatest impact on the LUEgreen variable (Figure 4.4). Both years at the SRNP-

EMSS datasets showed significant initial increase in r2 values during the first four hours of 
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aggregation (2013 Δr2 = 0.31, 2014 Δr2 = 0.20). This upsurge was followed by a slow but continuous 

increase, reaching maximum values at 8hrs (r2 = 0.70 and r2 = 0.61 for 2013 and 2014, respectively). 

Changes in LUE due to aggregation observed between instantaneous measurements and 8hr binned 

datasets were statistically significant (p < 0.05). LUEgreen derived from the 2015 and 2016 DBF 

datasets was similarly affected by temporal aggregation. Major gains in r2 metrics were observed 

during the first 5hrs (2015) and 4hrs (2016) of aggregation. Correlations for the 2015 and 2016 DBF 

seasons reached a maximum 9hrs (r2 = 0.61) and 10hrs (r2 = 0.53), respectively.  

 

 

4.3.2 Effect of Temporal Aggregation and Phenology on LUE Model Variables 

Aggregation analysis was also performed by dividing each season into phenological stages, 

specifically: green-up, maturity, and senescence. The purpose of incorporating phenology was to add 

incorporate the underlying factors that impact productivity within each growth stage (Castro et al., 

2018; Castro and Sanchez-Azofeifa, 2018). Results from the aggregation analysis by phenology are 

summarized in Tables 4.2-4.5. Aggregation of TDF fAPARgreen during green-up had a significant 

impact on correlations to GPP. Temporal aggregation resulted in changes in r2 of 0.39 and 0.34 for 

the 2013 and 2014 seasons, respectively. These results stand in contrast to the insensitivity to 

aggregation observed in seasonal TDF fAPARgreen. Similar to seasonal analysis results, aggregation of 

2013 maturity and senescence fAPARgreen also exhibited limited changes in r2 values. fAPARgreen 

aggregation during the 2014 maturity showed significant changes (p<0.05), likely driven by changes 

in canopy structure observed during the 2014 drought (Castro et al., 2018). Results from the 

phenological assessment of fAPARgreen aggregation for the 2015 and 2016 DBF seasons proved to be 

insensitive to temporal aggregation, and trajectories were similar to those resulting from the seasonal 

analysis. Phenological aggregation of PAR showed similar results to those observed during seasonal 

analysis as well. High variability in PAR in TDF 2014 maturity and DBF green-up (2015 and 2016) 

lead to very poor correlations with GPP and, as such, the effect of aggregation is hard to interpret. 

The effect of aggregation on APARgreen varied with phenology. At the TDF sites, aggregation 

during green-up and maturity resulted in significant changes (p<0.05) in r2 values when comparing 

minimum and optimal aggregation periods. However, during senescence, APARgreen for the 2013 and 

2014 seasons was insensitive to aggregation. APARgreen at the DBF sites also proved to be insensitive 

to aggregation during green-up, and during senescence of the 2014 season. APARgreen still remained 

correlated to productivity throughout all the phenological stages. LUEgreen remained sensitive to 
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aggregation (p<0.05) through all growth stages for all datasets. The largest impacts of aggregation on 

LUE were observed during senescence, where changes in r2 values totalled 0.62, 0.27, 0.62, and 0.12 

for 2013, 2014, 2015, and 2016 seasons, respectively. 

 

4.3.3 LUE Model Variables contributions to productivity 

Results from PCA analysis for the two primary contributing components are displayed in Figure 4. 5. 

PCA biplots show a similar correlation of variables within each study site. PC1 and PC2 represent 

87.7%, 87.0%, 89.4%, and 93.1% of total variance for the 2013, 2014, 2015 and 2016 growing 

seasons, respectively. In TDF, the near orthogonal angle between GPP and PAR and opposing 

directions show a negative and poor correlation between these variables. In DBF, LUEgreen and PAR 

variables appear to be poorly correlated; however, all variables seem to be correlated with GPP. Data 

pairs from TDF and DBF datasets show a sequential ordering according to the day of year (or day 

since start of season in TDF as seasons cover different calendar years), and indicate strong seasonality 

differentiating different stages of phenology. 

Relative importance analysis of TDF growth seasons 2013 (Figure 4.6) and 2014 (Figure 4.7) 

showed a combination variable contributions accounting for 90% and 83% of GPP variance, 

respectively. In 2013, LUEgreen appeared to be the most dominant variable, accounting for 45.6% of 

variance. RI analysis by phenology produced distinct results from those resulting from the seasonal 

analysis. During green-up ((Figure 4.6b and 7b), fAPARgreen was the main driving variable of 

productivity (51.5%) followed by PAR (36.0%). fAPARgreen and PAR relative contributions were 

significantly correlated. During maturity (Figure 4.6c), PAR accounted for over half (54.7%) of the 

variability in GPP, while LUEgreen also had a considerable contribution to productivity with 39.3% of 

variability. 2013 senescence (Figure 4.6d) saw fAPARgreen and LUEgreen combining to account for 

approximately 87% of the total predictive ability of the combined variables (96.13%). RI analysis of 

the 2014 season resulted in different patterns to those observed in 2013. Over the season (Figure 

4.7a), fAPARgreen was the main driver of productivity with a 54.6% contribution. LUEgreen remained 

an important driving variable throughout the season. During the 2014 maturity (Figure 4.7b), 

fAPARgreen became a much more dominant variable and saw PAR influence diminish to negligible 

levels. Analysis of 2014 senescence relative importance variables and contributions (Figure 4.7d) 

were akin to those from 2013. 

RI analysis of the DBF growth seasons 2015 and 2016 (Figure 4.8 & 4.9) showed similar 

patterns in variable importance and contributions at both the seasonal and phenological level. The 
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most notable difference was in the reduced importance of fAPARgreen over the course of the 2016 

season (variability contribution of 29.7% vs 43.8%) (Figure 4.8b). A slight increase of approx. 5% in 

2016 LUEgreen was also observed, but this change was within the 95% confidence interval of 2015 

LUEgreen importance metrics. During the 2015 and 2016 green-up, both LUEgreen and fAPARgreen 

combined to account for 90% and 81.2% of productivity variability, respectively (Figure 4.8b & 

4.9b). In contrast, PAR was the dominant variable during maturity accounting for 74.7% of 2015 and 

59.7% of 2016 productivity (Figure 4.8c & 4.9c). LUEgreen also appeared to play a role (39% RI 

value) during 2016 maturity, pointing to possible periods of canopy stress during this time. RI 

analysis of DBF senescence followed very similar predictor results as during green-up (Figure 4.8d & 

4.9d).  

 

4.4 Discussion 

 

4.4.1 Effect of temporal aggregation: seasonal scale. 

Temporal aggregation analysis demonstrated the effect that temporal aggregation can have on 

the LUE model. This is significant when observed against estimations of productivity derived from 

remote sensing observations (Figures 4.1-4.4). This was most evident in the seasonal aggregation of 

LUEgreen of both TDF and DBF study sites, where results indicated a significant change in correlation 

(r2) values during the first 4 to 5 hours of aggregation. Instantaneous changes associated with non-

photochemical quenching (NPQ) processes drive short term variability as fast (facultative) 

xanthophyll pigment changes respond to saturating light conditions (Deming-Adams and Adams, 

1992; Gamon and Berry, 2012). Although these fast NPQ changes are essential in characterizing the 

physiological state of vegetation, high variability can occlude diurnal trends. Comparison of diurnal 

and midday LUEgreen aggregation correlations show them to be significantly different (p<0.05), and 

results coincide with other studies showing a lack of correlation between midday and daily LUE 

values (Sims et al., 2005; Chen et al., 2009). These findings are relevant to the ongoing discussion on 

LUE calculations from satellite data (Drolet et al., 2005; Grace et al., 2007; Coops et al., 2010; 

Huemmrich et al., 2019) and how representative midday satellite LUE estimates are of daily LUE 

values.  

The effect of aggregation on PAR resulted in a progressive rise of r2 values. The observed 

increase in correlation to GPP with aggregation can be attributed to the averaging out of high diurnal 

variability in PAR measurements, especially at the TDF site where frequent rain and cloud cover lead 
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to dynamic illumination conditions (Yang and Slingo, 2001). The effect of aggregation on APAR is 

inherently influenced by downwelling radiation variability (Gu et al., 2002; Chen et al., 2009). This is 

important to consider in sites with variable sky illumination, such as in our TDF and DBF. Other 

studies have qualified radiation as diffused and direct light and used to derived APAR and fAPAR 

products and note that diffused light can increase bias in PAR products (Leuchner et al., 2011; 

Widlowski, 2010; Putzenlechner et al., 2019). However, studies on photosynthetic efficiency have 

shown LUE enhancement under diffused light (Gu et al., 2002; Choudhurry, 2001; Alton, 2008); and, 

as such, imply that filtering out diffused light conditions during LUE model parametrization would 

remove relevant photosynthetic events from productivity calculations.  Therefore, special 

consideration should be taken to include measurements under all sky conditions that accounts for the 

complete impact of sky illumination on LUE model variables, as has been done in this study. 

 

4.4.2 Effect of temporal aggregation: phenology scale. 

Seasonal aggregation analysis resulted in consistent results regardless of forest type. However, 

aggregation by phenology produced some contrasting results to that of the seasonal analysis, as well 

as differences between the study sites. For example, aggregation of PAR during 2014 maturity 

showed no significant gains in r2 with aggregation increases. Clear skies associated with drought 

conditions in 2014 reduced variability in illumination conditions that is typical through the rainy 

season in TDF (Yang and Slingo, 2001; Castro et al., 2018a). The lack of variability would reduce the 

averaging power of aggregation and likely accounts for the insensitivity of 2014 maturity PAR to 

temporal aggregation. Aggregation of fAPARgreen by phenology also produced contrasting results to 

those observed in seasonal analysis, as observed during the 2013 and 2014 green-up. High variability 

in fAPAR during the start of the season is expected as the TDF goes from leafless to maximum leaf 

flush within 19-21 days, representing large changes in canopy structure (Castro et al., 2018). 

Contributing to the green-up variability in fAPAR is the underlying effect of variability in PAR as 

incoming radiation is a variable within the fAPAR formulation. As such, illumination variability due 

to common precipitation events during green-up would add to fAPAR variability and the effect of 

temporal aggregation. The changes in aggregation effects observed from the phenological analysis 

suggests the importance of considering possible functional response of vegetation during each 

phenological stage, and the need to consider changes in environmental limitations due to ecosystem 

disturbances such as droughts. The separate responses to aggregation observed throughout the 

phenological analysis compared to seasonal analysis patterns show the need to understand how 
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underlying mechanisms of productivity affect productivity and change through the phenological 

cycle. PCA analysis also points to the variability of influence associated with seasonality in LUE 

model parametrization. PCA vectors appeared to be weighted towards data points associated with 

maturity. For ecosystems where maturity represents a large portion of the growth cycle, as is the case 

in our TDF and DBF sites, seasonal correlations and responses to aggregation can be biased towards 

the underlying forces driving productivity during this phenological stage.  

 

4.4.3 LUE model variable contributions to productivity  

Resulting relative importance patterns from the different phenological stages can be explained 

in the context of the ecological processes at play during green-up, maturity, and senescence. TDF 

green-up is characterized by large canopy structure changes, as the canopy transitions from leafless to 

fully vegetative in a short period of time (approx. 20 days) (Castro et al., 2018). During this time, 

limiting variables to productivity, associated with water availability (Becknell et al., 2012; Reich and 

Borchet, 1982; Castro et al., 2018), do not constrain productivity due to regular precipitation events. 

As such, RI results from TDF green-up are as expected and identify fAPARgreen as the main driver of 

productivity. Transition into maturity sees canopy structure reach maximum levels and remain 

plateaued until senescence (Castro et al., 2018). Under normal conditions, we would expect to see RI 

of maturity fAPARgreen having little influence on productivity, as seen in 2013. However, a drought 

event during 2014 maturity lead to changes in canopy greenness and explains the uncharacteristic 

high relative importance of fAPARgreen during this period. TDF senescence is characterized by 

limited water resources that result in leaf drop (Borchert 1994, Reich and Borchert 1984). The 

combination of importance from fAPARgreen and LUEgreen observed in 2013 and 2014 senescence is 

explained by these canopy changes and vegetation stress caused by limiting water availability.  

During the early growing season DBF phenology is largely controlled by temperature, where 

cool temperatures limit productivity (Chen et al., 2000). The combination of limited photosynthetic 

capacity, associated with low temperatures (Landsberg, 1986), and significant changes in canopy 

structure help explain results from the RI analysis that indicated LUEgreen and fAPARgreen as the main 

drivers of productivity during green-up. During phenology maturity, PAR was observed as the main 

driver of productivity for both 2015 and 2016 growing seasons. These results support by previous 

observations showing strong correlation of average diurnal patterns of PAR and GPP from the PR-

EMSS site during summer months (Castro and Sanchez-Azofeifa, 2018). During late summer, DBF 

photosynthesis rates have been shown to decrease due to reduced illumination from contracting 
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diurnal periods and decreasing temperatures (Coursolle et al., 2006). As leaves reach a critical carbon 

balance and productivity becomes negative (respiration becomes a net cost), leaf-fall is triggered (Doi 

and Takahashi, 2008). The decreases in photosynthetic rates and onset leaf drop during senescence 

would be represented within the LUE model by changes in LUE and fAPAR, respectively. This 

would explain the high relative importance values of fAPARgreen and LUEgreen observed during the 

2015 and 2016 senescence. 

The replicated instrumentation at the PR-EMSS and SRNP-EMSS made these sites ideal for 

the testing of Garbulsky’s et al. (2007) hypothesis. Our findings validated the hypothesis that the 

contributions of the physiological and  structural component of the LUE model can change between 

vegetation and environmental conditions. Furthermore, our results extend this concept by suggesting 

that LUE model components can also change throughout vegetation phenology as environmental 

conditions (e.g. disturbances) impact an ecosystem’s functional response. The difference in patterns 

between seasonal and phenological analysis suggests that the parametrization of the LUE model could 

better represent ecosystem functions if the model was parameterized by phenological stages. 

  

4.5 Conclusion 

As we consider the impact of data aggregation on the LUE model accuracy, it is also 

important to consider the impact of phenology and the ecosystem functional responses that 

characterize the dominant contributions affecting productivity. LUE model productivity calculated for 

phenology stages where canopy changes are prominent will be significantly affected by aggregation 

of variables associated with canopy structure (e.g. NDVI, fAPAR, APAR). Conversely, aggregation of 

LUE becomes of greater importance in biomes and phenological stages driven by ecophysiological 

changes, as seen in the TDF maturity and DBF senescence. Results from this study call for the 

incorporation of aggregation methodologies and consideration of phenological changes in 

productivity mechanisms in LUE modeling parametrization. Furthermore, this study illustrates how 

the integration of flux and remote sensing data can help to achieve a better understanding of 

underlying processes that can result in more accurate ecosystem productivity calculations.  
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4.7 Figures:  

 

Figure 4.1- Coefficient of determination as a function of aggregation period (hours) for fAPARgreen during the 

a) 2013 TDF, b) 2014 TDF, c) 2015 DBF, and d) 2016 DBF seasons.  

 

 

Figure 4.2- Coefficient of determination as a function of aggregation period (hours) for PAR during the a) 2013 

TDF, b) 2014 TDF, c) 2015 DBF, and d) 2016 DBF seasons.  
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Figure 4.3 - Coefficient of determination as a function of aggregation period (hours) for APARgreen during the 

a) 2013 TDF, b) 2014 TDF, c) 2015 DBF, and d) 2016 DBF seasons.  

 

 

 

Figure 4.4 - Coefficient of determination as a function of aggregation period (hours) for LUEgreen during the a) 

2013 TDF, b) 2014 TDF, c) 2015 DBF, and d) 2016 DBF seasons. 
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Figure 4.5 - PCA biplot displaying the two first components (Dim 1 and Dim 2) and explained variance (%) 

derived from PAC analysis of gross primary productivity (GPP), fraction of available photosynthetically 

active radiation (fAPAR), photosynthetically active radiation (PAR), and light use efficiency (LUE). Vectors 

show the contribution of single variables to the principal component. Color bar shows the day of the year (for 

DBF) or day of season (for TDF) for season a) 2013, b) 2014, c) 2015, and d) 2016.  

c. 

d. 
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Figure 4.6 - Relative importance analysis of 2013 LUE model variables PAR, fAPAR, and LUE about GPP 

for (a) combined season, (b) green-up, (c) maturity, and (d) senescence. An LMG relative importance models 

was used. Combined variables accounted for 90.03%, 90.77%, 87.21%, and 96.13% of seasonal, green-up, 

maturity, and senescence GPP variability, respectively. 

 

 

 

 

Figure 4.7 - Relative importance analysis of 2014 LUE model variables PAR, fAPAR, and LUE about GPP 

for (a) combined season, (b) green-up, (c) maturity, and (d) senescence. An LMG relative importance models 

was used. Combined variables accounted for 83.59%, 95.88%, 77.95%, and 97.12% of seasonal, green-up, 

maturity, and senescence GPP variability, respectively. 
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Figure 4.8 - Relative importance analysis of 2015 LUE model variables PAR, fAPAR, and LUE about GPP 

for (a) combined season, (b) green-up, (c) maturity, and (d) senescence. An LMG relative importance models 

was used. Combined variables accounted for 87.33%, 97.06%, 89.68%, and 88.62% of seasonal, green-up, 

maturity, and senescence GPP variability, respectively. 

 

 

  

 

Figure 4.9 - Relative importance analysis of 2016 LUE model variables PAR, fAPAR, and LUE about GPP 

for (a) combined season, (b) green-up, (c) maturity, and (d) senescence. An LMG relative importance models 

was used. Combined variables accounted for 86.80%, 86.34%, 88.25%, and 87.34% of seasonal, green-up, 

maturity, and senescence GPP variability, respectively. 

a. b. 
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Table 4.1 - Instrumentation and characteristics of TDF and DBF study sites. 

 

Table 4.2 – Aggregation results divided by phenological cycle for the 2013 TDF season. 

  SRNP-EMSS 2013 

  Max r2 Min r2 Delta r2 p-value 

  Greenup 0.50 (@8hrs) 0.11 (@30 min) 0.39 <0.05 

fAPAR Maturity 0.16 (@10hrs) 0.11 (@30 min) 0.05 >0.05 

  Senescence 0.87 (@8hrs) 0.84 (@10 hrs) 0.03 >0.05 

  Greenup 0.27 (@6hrs) 0.098 (@30 min) 0.17 <0.05 

PAR Maturity 0.22 (@10hrs) 0.064 (@30 min) 0.16 <0.05 

  Senescence 0.64 (@8hrs) 0.46 (@30 min) 0.18 <0.05 

  Greenup 0.37 (@8hrs) 0.08 (@30 min) 0.29 <0.05 

APAR Maturity 0.41 (@11hrs) 0.20 (@30 min) 0.21 <0.05 

  Senescence 0.79 (@8hrs) 0.79 (@30 min) 0.0 >0.05 

  Greenup 0.17 (@8hrs) 0.02 (@30 min) 0.15 <0.05 

LUE Maturity 0.13 (@12hrs) 0.02 (@30 min) 0.11 <0.05 

  Senescence 0.86 (@11hrs) 0.24 (@30 min) 0.62 <0.05 
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Table 4.3 – Aggregation results divided by phenological cycle for the 2014 TDF season. 

  SRNP-EMSS 2014 

  Max r2 Min r2 Delta r2 p-value 

  Greenup 0.88 (@11hrs) 0.54 (@30min) 0.34 <0.05 

fAPAR Maturity 0.65 (@8hrs) 0.49 (@30min) 0.16 <0.05 

  Senescence 0.78 (@6hrs) 0.71 (@30min) 0.06 >0.05 

  Greenup 0.14 (@9hrs) 0.061 (@30min) 0.08 <0.05 

PAR Maturity 0.0083 (@6hrs) 0.0013 (@30min) 0.01 >0.05 

  Senescence 0.50 (@10hrs) 0.35 (@30min) 0.15 <0.05 

  Greenup 0.86 (@8hrs) 0.68 (@30min) 0.18 <0.05 

APAR Maturity 0.31 (@8hrs) 0.23 (@30min) 0.08 <0.05 

  Senescence 0.68 (@11hrs) 0.61 (@30min) 0.07 >0.05 

  Greenup 0.19 (@7hrs) 0.10 (@30min) 0.09 <0.05 

LUE Maturity 0.55 (@10hrs) 0.26 (@30min) 0.29 <0.05 

  Senescence 0.74 (@8hrs) 0.47 (@30min) 0.27 <0.05 

 

Table 4.4 – Aggregation results divided by phenological cycle for the 2015 DBF season. 

  PR-EMSS 2015 

  Max r2 Min r2 Delta r2 p-value 

  Greenup 0.86 (@7hrs) 0.79 (@1hr) 0.07 >0.05 

fAPAR Maturity 0.14 (@12hrs) 0.05 (@30min) 0.09 >0.05 

  Senescence 0.78 (@8hrs) 0.72 (@30min) 0.06 >0.05 

  Greenup 0.19 (@8hrs) 0.13 (@1hr) 0.06 >0.05 

PAR Maturity 0.54 (@11 hrs) 0.19 (@30min) 0.35 <0.05 

  Senescence 0.13 (@8hrs) 0.03 (@1hr) 0.10 <0.05 

  Greenup 0.61 (@7hrs) 0.42 (@1hr) 0.19 >0.05 

APAR Maturity 0.53 (@10hrs) 0.18 (@30min) 0.35 <0.05 

  Senescence 0.78 (@8hrs) 0.53 (@30min) 0.25 <0.05 

  Greenup 0.80 (@11hrs) 0.39 (@30min) 0.41 <0.05 

LUE Maturity 0.18 (@12hrs) 0.004 (@30min) 0.18 <0.05 

  Senescence 0.80 (@12hrs) 0.18 (@30min) 0.62 <0.05 

 

 

 

 

 

 

 



109 

 

Table 4.5 – Aggregation results divided by phenological cycle for the 2015 DBF season. 

  PR-EMSS 2016 

  Max r2 Min r2 Delta r2 p-value 

  Greenup 0.73 (@30min) 0.67 (@11hr) 0.06 >0.05 

fAPAR Maturity 0.18 (@8hrs) 0.13 (@30min) 0.05 >0.05 

  Senescence 0.62 (@30min) 0.56 (@11hrs) 0.06 >0.05 

  Greenup 0.12 (@12hrs) 0.09 (@1hr) 0.03 >0.05 

PAR Maturity 0.48 (@11hrs) 0.10 (@30min) 0.38 <0.05 

  Senescence 0.20 (@8hrs) 0.10 (@30min) 0.10 <0.05 

  Greenup 0.55 (@6hrs) 0.48 (@30min) 0.07 >0.05 

APAR Maturity 0.41 (@12hrs) 0.13 (@30min) 0.28 <0.05 

  Senescence 0.30 (@8hrs) 0.23 (@30min) 0.07 >0.05 

  Greenup 0.64 (@8hrs) 0.41 (@30min) 0.23 <0.05 

LUE Maturity 0.21 (@10hrs) 0.04 (@30min) 0.17 <0.05 

  Senescence 0.74 (@10hrs) 0.62 (@30min) 0.12 <0.05 
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CHAPTER 5 – Conclusions 

 

The eddy covariance technique has greatly expanded our ability to monitor and understand 

mass and energy exchange between terrestrial ecosystems and the atmosphere (Baldocchi et al., 1988; 

2001). The partitioning net carbon fluxes into gross primary productivity (GPP), defined as the 

carbon fixed during photosynthesis over a period of time, and respiration provides considerable 

insight into ecosystem functioning (Baldocchi, 2003). Despite wide acceptance of eddy covariance as 

a powerful tool for characterizing terrestrial ecosystems, theoretical assumptions limit flux 

applications to study sites under steady-state atmospheric conditions, with homogenous vegetation in 

flat terrain (Baldocchi et al., 1988; Aubinet et al., 2000). Eddy covariance application in non-ideal 

conditions requires accounting for complex effects such as atmospheric storage, wind divergence and 

advection, which can lead to significant errors in the ecosystem carbon budget (Baldocchi et al., 

2000; Foken & Wichura, 1995; Massman & Lee; 2002).  

The onset of remote sensing provided new possibilities for measuring ecosystem productivity 

at a variety of temporal and spatial scales. Furthermore, remote sensing offers the ability to measure 

locations with complex topography or previously inaccessible with other sampling techniques like 

eddy covariance. Early remote sensing studies on ecosystems were focused on mapping and 

monitoring with little focus on exploring ecosystem functions and physiological responses (Gamon, 

2015). The development of net primary productivity (NPP) products from a variety of optical 

platforms (e.g. MODIS) provide the ability to examine vegetation dynamics and productivity from 

remote sensing data (Running et al., 2004). Comparisons of biome-scale productivity measurements 

from optical and flux measurements validate remote sensing data’s ability to characterize broad-scale 

patterns in ecosystem-atmospheric carbon exchange (Goward et al., 1985, Frankenberg, et al. 2011). 

However, a comparison of fine-scale productivity driving mechanisms still requires extensive 

research. 

As current trends move away from vegetation specific parametrization and more towards 

biophysical conditions of the ecosystem (Potter et al., 1993; Yuan et al., 2007, 2010, 2014), the 

comparison, validation, and integration of optical and flux data is essential. An interdisciplinary 

approach has shown the benefit of optical and flux data integration, resulting in additional ability to 

explore the driving mechanisms driving ecosystem photosynthesis and productivity (Sellers et al. 

1992; 1997). This thesis explored various ways in which optical and flux data can be used to better 

understand, calculate and characterize ecosystem processes and productivity. 
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5.1 Synthesis and Significant Contributions  

The overarching objective of this thesis was to explore mechanisms of ecosystem productivity 

through the integration of remote sensing and micrometeorological data. This was done throughout by 

(i) identifying the environmental mechanisms affecting productivity in tropical dry forest during 

normal and drought conditions; (ii) assessing the use of proximal PRI sensors as a proxy of 

photosynthetic efficiency and use towards a complete remote sensing derived measure of ecosystem 

productivity; and (iii) evaluating the impact of temporal aggregation and phenology on LUE model 

parametrization and ecosystem productivity in two deciduous forests. 

In chapter 2 of this thesis, flux and optical data were used to identify key mechanisms of 

ecosystem productivity of tropical dry forest under normal and drought conditions. The study 

extended over four seasons (2013-2016), during which precipitation during the 2014 and 2015 season 

decreased by 30% and 63%, respectively, compared to regular precipitation regimes (2013, 2016 

seasons). One of the key results includes the identification of preseason precipitation as the trigger for 

the initiation of the phenological cycle. Small precipitation events did not trigger green-up, suggesting 

the presence of a minimum threshold for budbreak to occur. These findings complement irrigation 

results showing stem recharge and leaf flush a week after hydration of vegetation (Borchert, 1994). 

Another study observed rapid girth growth but only after heavy rains (Reich and Borchert, 1984), 

suggesting the presence of minimum hydration threshold. Identifying the importance that 

precipitation regimes have on TDFs phenology and, in turn, productivity is of significance, especially 

as climate modelling studies projected precipitation to decrease over tropical dry forest (Magrin et al., 

2014).  

Analysis of seasonal fluxes showed a substantial decrease in productivity, net ecosystem 

exchange, and respiration due to drought, but the TDF remained a net carbon sink over the season. 

Our findings suggest that TDFs are sensitive to precipitation anomalies as occur during ENSO events. 

The onset of first precipitations was observed to correlate with sudden emissions of carbon. The 

wetting of dry soils and the subsequent pulse of CO2 release and nitrogen mineralization is known as 

the ‘Birch effect’ (Birch 1958). This effect has been observed in TDF (Waring and Powers 2016) but 

not at the ecosystem scale of our observations.  Relative importance analysis identified latent heat as 

the principal controlling factor of TDF productivity. However, during drought, soil moisture became 

the limiting variable. The shift between evaporative demand and soil moisture demand shows TDF 
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adaptation to limited water resources.  

This study provided a systematic analysis of drivers and limitations on productivity in tropical dry 

forest at ecosystem scale that is not common in scientific literature. As such, results from this study 

represent valuable material that has furthered our understanding of secondary TDF productivity and 

can be used to help parametrize and validate productivity models. 

Chapter 3 of this thesis explored the use of automated PRI sensors to resolve diurnal and 

seasonal LUE changes over an aspen forest. One of the key findings of this study was the effect of 

calibration on the PRI signal. Uncalibrated PRI showed an overestimation in values and would also 

lead to GPP overestimation in LUE modelling exercises. A novel diurnal calibration procedure was 

also proposed and observed to account for variable illumination and solar elevation changes and 

resulted in the ability to resolve PRI diurnal patterns. Our results stand in contrast to Gamon et al. 

(2015), where they were unable to resolve diurnal PRI patters over an aspen stand. This difference 

advocate for the importance of site-specific light fields that can vary in complexity between different 

canopy structures and may affect the ability to resolve diurnal dynamics accurately.  

Corrected PRI values were closely related to both LUE (R2 = 0.62, p < 0.05) and quantum 

yield, derived from eddy covariance light curves, (R2 = 0.72, p < 0.05) over the course of the season. 

These findings show that PRI can be used as a proxy of light use efficiency at both the diurnal and 

seasonal scale. As more commercial automated narrow-band sensors become available to the 

scientific community, it is important that calibration procedures are developed, and that sensor 

response is characterized and validated. Protocols described in this study can be used as a framework 

for calibrating and validating spectral indices from automated sensors. Additionally, my findings 

contribute towards a better understanding of PRI as a proxy of LUE and a deeper understanding of 

diurnal and seasonal changes of vegetation physiology that can be explored through continuous 

measurements. 

Chapter 4 methods outline a procedure for exploring the effect of temporal aggregation on 

LUE model variables and, ultimately, productivity. These methods could be used as a framework for 

testing other factors that may affect LUE model parameters. We found that phenology caused diverse 

effects from seasonal results, especially for TDF fAPAR during green-up. Seasonal fAPAR 

aggregation analysis proved to be insensitive to aggregation. In contrast, green-up fAPAR was 

significantly affected by temporal aggregation (Δr2 ≈ 0.35). Aggregation results suggest that temporal 

aggregation can significantly impact LUE model accuracy and should be considered as we explore 

the proper protocols for optical and flux data integration.  
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Seasonal relative importance results were also different than those observed from the 

phenological analysis. For both the TDF and DBF, relative importance patterns from the different 

phenological stages were able to be explained in the context of the ecological processes at play during 

green-up, maturity, and senescence. Our findings support the theory proposed by Garbulsky et al. 

(2007) that suggests that the physiological component, and by extension the structural component, 

contributions of the LUE model can change between vegetation and environmental conditions. 

Furthermore, we can extend this concept by suggesting that LUE model components can change 

throughout phenology as environmental conditions and disturbances impact productivity. 

 

5.2 Challenges and Future Directions 

 Based on the work and findings covered throughout my thesis, I have identified some 

remaining knowledge gaps and questions to be filled by future research. These include the following: 

• Can automated PRI sensors and resulting continuous measurements resolve diurnal and 

seasonal LUE changes in deciduous-evergreen mixed forest and other complex ecosystems? 

• What other variables affect the variability in LUE model parameters and optical and flux data 

integration? 

• How to develop standardized procedures for optical and flux integration? 

• How do we better parametrize LUE models to account for changes in LUE model 

contributions at the ecosystem level, seasonal level, and phenological level? 

As we continue to explore the integration of optical and flux datasets, these questions will need to be 

resolved.  

Of interest to me is the ongoing challenge of measuring photosynthetic efficiency through 

remote sensing. I believe that productivity modelling could greatly benefit from better 

parametrization of the LUE term. Commercial PRI instruments represent a significant advance toward 

developing continuous PRI datasets that allow more detail exploration of LUE. Yet, challenges 

remain in the interpretation of data, especially in complex ecosystems such as deciduous-evergreen 

mixed forests. A study by Gamon et al. (2015) using continuous PRI sensors over evergreen 

vegetation showed the ability to resolve diurnal LUE patterns. Still, the complexity of distinguishing 

the individual and combined response from different vegetation with significantly different 

photosynthetic responses and phenology would make the mixed forests a challenging ecosystem to 

explore.  
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Other remaining questions and areas of interest surround the issue of optical and flux data 

integration. As we explored the effect of temporal aggregation and phenology on the LUE model, 

there remain other variables that may affect how datasets should be processed, analyzed and 

integrated. For example, studies on fAPAR variability and bias (Leuchner et al., 2011; Widlowski, 

2010; Putzenlechner et al., 2019) have explored some of the impacts of illumination, solar 

positioning, and wind. Testing of these factors in the context of the LUE model would be valuable 

toward better integration of optical and flux datasets as well as modelling of productivity.  

On the parametrization of the LUE model, our results show that the physiological and 

structural component contributions to the LUE model can change between vegetation and 

environmental conditions, as Garbulsky et al. (2007) suggested. Our findings also extended this 

theory by adding the complexity of observed changes through the different phenological cycles and 

suggesting that modelling accuracy could benefit from this finer scale parametrization. However, 

questions remain on how to go about this process and if contribution metrics (such as relative 

importance metrics) should be used to scale the structural and physiological components of the LUE 

model according to their contributions. 
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Appendix A1 

 

A1.1 Meteorology and Phenology Instrumentation 

Broadband optical measurements from two-band radiometers provided fully automated continuous 

measurements of both the target reflectance and the sky conditions. The phenology tower allowed 

near-continuous measurements since first installed in February 2013. Measurements included light 

conditions, through upward looking photosynthetic active radiation (PAR) and pyranometer (PYR) 

spot radiometers (Apogee Instruments Inc., Logan, Utah, USA), and canopy reflectance, through 

paired upward and downward-looking PAR and PYR sensors (Apogee Instruments Inc., Logan, Utah, 

USA). Ancillary meteorological data included temperature (T) and relative humidity (RH) 

measurements (Apogee Instruments Inc., Logan, Utah, USA) from which vapor pressure deficit was 

calculated. Three pairs of volumetric soil water content (VWC) sensors (EC5, Decagon Devices Inc., 

Pullman, Washington, USA) were installed within the flux footprint and logged continuously at 30-

minute intervals. Continuous optical measurements were logged at an interval of 10 minutes 

throughout the 2013, 2014, 2015, and 2016 growing seasons. Data was logged onto a MicroStrain 

ENV-Link Mini Data Logger Node (Onset Computer Corporation, Bourne, Massachusetts, USA, 

Massachusetts). 

A broadband NDVI was derived from the two-band spot radiometers following a revised 

method of the Huemmrich et al. (1999) method. The index was constructed as follows: 

 

NDVI = (ρPYR – ρPAR)/ (ρPYR + ρPAR)                                                       (1) 

 

where ρPYR is the solar radiation reflectance calculated from the ratio of upwelling to downwelling 

radiation using the pyranometers; and ρPAR is the total reflectance of photosynthetically active 

radiation (PAR) calculated from the ratio of upwelling to downwelling PPFD. 

 

A1.1.2 Eddy Covariance Instrumentation: 

Flux equipment was installed on horizontal boom oriented NE, the prevailing wind direction, 

at a height of 35m above the forest floor. Additional meteorological equipment integrated into the 

flux tower including a 4-component net radiometer (model NR01, Hukseflux Thermal Sensors B.V., 

Delft, Netherland) and complete weather station (model HOBO U-30-NRC Weather station, Onset 

Computer Corp., Bourne, MA, USA) with Iridium satellite communications (Upward Innovations 
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Inc., East Falmouth, MA, USA).  

High-frequency eddy covariance data was processed using the post-acquisition software 

EdiRe (http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe). Flux of CO2 was expressed as the 

product of mean air density and the covariance between instantaneous vertical wind velocity and 

concentration fluctuations. 

    Fc = - ρa 𝑤’ 𝑠’̅̅ ̅̅ ̅̅                                                                 (2) 

 

where Fc represents the vertical CO2 (µmol m-2 s-1), ρa is the dry air density (mol m-3), w is the 

instantaneous vertical wind speed (m s-1), and s is the molar mixing ratio (mol mol-1 dry air). 

Overbars over the wind speed and mixing ratio terms indicate time averaging, while primes indicate 

fluctuations about the mean (over a 30-minute time aggregate), following Reynolds decomposition. 

The negative notation in the expression was added since a meteorological notation was adopted for 

representation of NEE, where negative NEE values represented net CO2 uptake into an ecosystem 

and a positive values represent net CO2 release into the atmosphere. 

Time lag correction was applied to the 10Hz eddy covariance data to compensate for IRGA 

and SAT instrument separation (Moore, 1986). High-frequency losses due to attenuation associated 

with the close path system were corrected following the method described Moncrieff et al. (1997). 

Spikes were detected as three or less outliers falling outside a plausibility range for each variable, 

defined in standard deviation units as outlined by Vickers and Mahrt (1997). A double rotation 

coordinate correction (Finnigan et al., 2003), allowed the proper alignment of the mean vertical wind 

direction to a position exactly perpendicular to the mean wind streamlines. To correct for the effect of 

changes in temperature and water vapor on air density (and CO2 mixing ratio) (Webb et al. 1980), the 

Webb-Pearman-Leuning correction was applied. After all corrections were applied, fluxes (CO2, 

H2O, momentum and energy) were calculated as 30-minute block averages. Cospectral and ogive 

analyses of CO2, H2O, and heat flux measurements allowed the verification of appropriate instrument 

sampling frequency and averaging intervals to capture all flux eddies (Kaimal et al., 1972; Lee at al. 

2004). For this site, 30-minute averaging intervals at 10 Hz indicated adequate capture of low-

frequency fluxes. Precipitation events were not explicitly removed from the dataset. However, 

diagnostic/error flags associate with IRGA and SAT instrument failure, including during heavy 

rainfall, were used as a filter. A requirement of 80% data coverage was applied for each 30-minute 

averaging interval. 

Additional processing products included calculations of H and LE. H is computed as the 
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covariance between instantaneous vertical wind and temperature, expressed in energy units (W m-2). 

LE is the product of the latent heat of vaporization and the water vapor flux, expressed in energy units 

(W m-2). LE represents the plant evapotranspiration process, where negative values indicate 

condensation and positive values indicate evaporation plus transpiration. 

Wind regime changes associated with seasonal changes made it necessary to characterize the footprint 

during wet and dry season independently. Flux-footprint analysis’ were performed following the 

Kljun et al. (2004) parametrization (A simple parameterization for flux footprint predictions, online 

footprint, available at http://footprint.kljun.net/, 2004). The model products provided an estimate of 

the horizontal distance associated with the maximum contribution of measured fluxes (Xmax) and 

distances within which 90% of fluxes originate (X90%). During the wet season, Xmax was 357 m, 

and X90% was 704 m. Footprint direction was to the northeast (Fig. 2). High wind speeds are 

common during the dry season leading to increases in Xmax and X90% ranges. 453 m and 872 m, 

respectively. Also, wind direction variability changed as more components were seen from the west 

direction. Due to the large plateau where the tower is located, fetch limitations were not of concern. 

 

A1.1.3 Eddy Covariance Partitioning: 

Measurements of NEE was partitioned into its two components as, 

 

NEE = -GPP + Reco           (3)    

 

where GPP is the gross primary production (µmol m-2 s-1) and Reco is the total ecosystem respiration 

(µmol m-2 s-1). Reco was estimated using night-time fluxes based approach, using the Reichstein et al. 

(2005) partitioning algorithm. This model is based on the exponential regression response between 

temperature and respiration (Lloyd and Taylor, 1994) expressed by the equation, 

                                                  𝑅𝑒𝑐𝑜 (𝑇) =  𝑅𝑟𝑒𝑓 𝑒
𝐸𝑜(

1

𝑇𝑟𝑒𝑓−𝑇𝑜
− 

1

𝑇−𝑇𝑜
)
                       (4) 

 

where Rref is the respiration at reference temperature 15oC, the Tref is the reference temperature at 

15oC, Eo is the activation-energy parameter, T is the observed air or soil temperature, and To is kept 

constant at -46.02oC. For nighttime results to be properly extrapolated to daytime fluxes, nighttime 

periods need to represent well mixed periods. Observed relationship between NEE and fictional 

velocity (u*, m s-1) allowed us to determine the u* threshold (< 0.21 m s-1) where NEE measurements 
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were likely to be unreliable as a result of calm conditions. Tropical ecosystems have been suggested 

as being susceptible to decupling between traditional temperature-respiration relationships as 

temperature shows little seasonal variability (Hutyra et al., 2007, 2008). A light-response curve 

model, independent of respiration by relying solely on characterizing carbon assimilation as a 

function of light, was used as an independent method to estimating Reco and GPP. This method uses 

typically a hyperbolic function that resembles the response of photosynthesis to radiation. There 

are a variety of light response curve models available, but The specific function used for this 

study (eq. 5) was utilized by Hutyra et al. (2007) for eddy covariance data in a tropical forest 

and expressed as, 

 

𝑁𝐸𝐸(𝑃𝐴𝑅) =  
𝑎 × 𝑃𝐴𝑅

𝑏+𝑃𝐴𝑅
+ 𝑐 = 𝐺𝑃𝑃 + 𝑅𝑒𝑐𝑜                                             (5)  

 

In eq. 5, net ecosystem exchange is a function of photosynthetically active radiation 

(PAR) with three parameters a, b, and c. T he first term represents the GPP (eq. 6) estimates 

over intervals after first fitting eq. 5 to flux data, while the second term, the constant c, represents 

ecosystem respiration for that interval and emerges from eq.  5 as PAR → 0. 

𝐺𝑃𝑃 (𝑃𝐴𝑅) =  
𝑎 × 𝑃𝐴𝑅

𝑏+𝑃𝐴𝑅
                                                  (6) 

 

A1.1.4 Regression and Relative Importance Modeling: 

Relative importance modeling was used using the ‘relaimpo’ library (Gromping, 2006) within R 

statistical software. As described by Gromping (2006), relative importance metrics provide a 

quantification of a regressor’s contribution to multiple regression models (i.e. amount of explained 

variance of a regression model). A number of relative importance models have been proposed in 

literature, each calculating importance metrics by different methods. We used four different models 

including the Linderman, Merenda, and Gold (LGM) model, First model, Genezi model, and CAR 

model, to increase the reliability of results. Details on each model can be found in the ‘relaimpo’ 

documentation, as well as in source material (Genezi, 1993; Johnson and Lebreton, 2004; Linderman 

et al., 1980; Zuber and Strimmer, 2010). 

 

A1.2 Supplementary Results 

A1.2.1 Interseasonal Precipitation Variability 
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Variability in rainfall patterns can be seen in the percent monthly accumulation contribution to 

total quantities (Fig. 2). During the “normal” 2013 and 2016 seasons, precipitation events occurred 

continuously throughout the wet season. Monthly rainfall contributions remained stable during May-

August and peaked during September-October. By contrast, the 2014 and 2015 droughts initiated 

their seasons (May and June, respectively) with precipitation events that were then quickly followed 

with low rainfall periods. The 2014 drought was most severe during July, which saw only 21.8mm 

(+2.8mm SD) of rain and accounted for 1.9 % of the total seasonal precipitation (Fig. 3). The 2015 

season saw a severe drought extending from July to September. August 2015 was particularly dry, 

with only 6.2mm (+0.5mm SD) of rainfall. Still, in both drought seasons, precipitation peaked during 

September and October. 

 

A1.2.2 Relative Importance Analysis on Phenology 
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Figure A1.1 Relative importance analysis of GLM NDVI = PAR + VWC + VPD + LE during green-

up of the (a) 2013, (b) 2014, (c) 2015, and (d) 2016 seasons. Four relative importance models were 

used including LMG, First, Genizi, and CAR. GLM accounted for 16.12%, 22.92%, 66.96%, and 

36.81% of 2013, 2014, 2015 and 2016 GPP variability, respectively. 

 

 

 

 

Figure A1.2 Relative importance analysis of GLM NDVI = PAR + VWC + VPD + LE during 

senescence of the (a) 2013, (b) 2014, (c) 2015, and (d) 2016 seasons. Four relative importance models 

were used including LMG, First, Genizi, and CAR. GLM accounted for 16.12%, 22.92%, 66.96%, 

and 36.81% of 2013, 2014, 2015 and 2016 GPP variability, respectively. 
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Figure A1.3: Relative importance analysis of GLM NDVI = PAR + VWC + VPD + LE during 

senescence of the (a) 2013, (b) 2014, (c) 2015, and (d) 2016 seasons. Four relative importance models 

were used including LMG, First, Genizi, and CAR. GLM accounted for 89.93%, 95.64%, 96.00%, 

and 90.15% of 2013, 2014, 2015 and 2016 GPP variability, respectively. 
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Table A1.1 Relative importance metrics for 2013, 2014, 2015 and 2016 green-up. Model accounts for 

92.31%, 98%, 99.21%, 94.74%, respectively. 

  2013 2014 

  lmg first genizi car lmg first genizi car 

PAR 0.098 0.044 0.101 0.096 0.056 0.089 0.059 0.034 

VWC 0.491 0.472 0.558 0.595 0.619 0.532 0.628 0.743 

VPD 0.274 0.318 0.227 0.296 0.016 0.020 0.015 0.005 

LE 0.137 0.166 0.114 0.013 0.309 0.360 0.297 0.218 

         

  2015 2016 

  lmg first genizi car lmg first genizi car 

PAR 0.032 0.050 0.037 0.023 0.162 0.206 0.134 0.103 

VWC 0.501 0.414 0.523 0.624 0.522 0.462 0.557 0.615 

VPD 0.309 0.332 0.285 0.268 0.065 0.085 0.050 0.017 

LE 0.158 0.204 0.156 0.084 0.252 0.246 0.258 0.265 

 

Table A1.2 Relative importance metrics for 2013, 2014, 2015 and 2016 maturity. Model accounts for 

16.12%, 22.92%, 66.96%, 36.81%, respectively. 

  2013 2014 

  lmg first genizi car lmg first genizi car 

PAR 0.325 0.375 0.328 0.340 0.011 0.002 0.017 0.000 

VWC 0.348 0.271 0.332 0.410 0.145 0.227 0.107 0.072 

VPD 0.086 0.000 0.106 0.001 0.058 0.055 0.056 0.053 

LE 0.242 0.354 0.234 0.248 0.785 0.715 0.820 0.875 

         

  2015 2016 

  lmg first genizi car lmg first genizi car 

PAR 0.012 0.011 0.012 0.011 0.075 0.007 0.118 0.003 

VWC 0.452 0.408 0.429 0.519 0.045 0.091 0.062 0.026 

VPD 0.196 0.238 0.200 0.132 0.297 0.235 0.277 0.339 

LE 0.340 0.343 0.359 0.338 0.582 0.667 0.543 0.632 
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Table A1.3 Relative importance metrics for 2013, 2014, 2015 and 2016 senescence. Model accounts 

for 88.93%, 95.64%, 96%, 90.15%, respectively. 

  2013 2014 

  lmg first genizi car lmg first genizi car 

PAR 0.249 0.280 0.242 0.220 0.115 0.153 0.122 0.076 

VWC 0.110 0.113 0.117 0.109 0.314 0.303 0.316 0.324 

VPD 0.110 0.337 0.382 0.408 0.161 0.203 0.163 0.113 

LE 0.110 0.269 0.259 0.263 0.410 0.341 0.400 0.487 

         

  2015 2016 

  lmg first genizi car lmg first genizi car 

PAR 0.104 0.129 0.114 0.080 0.202 0.222 0.213 0.200 

VWC 0.338 0.323 0.333 0.344 0.137 0.193 0.138 0.116 

VPD 0.185 0.210 0.196 0.157 0.105 0.168 0.101 0.057 

LE 0.373 0.337 0.358 0.419 0.556 0.417 0.548 0.628 
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Appendix A2 

The seasonal time series of NEE, GPP, Reco, and key meteorological variables are shown in Figure 

A2.1. Seasonal patterns of NEE (Figure A2.1a) are similar to those usually observed in northern 

deciduous forests, resulting from the known phenologic cycle. During spring and fall dormancy, NEE 

values are in the positive range, suggesting a higher proportion of respiration than photosynthesis that 

leads to a net carbon source. As leaf flush occurred, the opposite happens with productivity outpacing 

respiration, leading to increasingly negative NEE and net carbon sequestration. NEE and GPP 

progressively increased throughout the season (Figure A2.1a), reaching peak productivity during July 

(1.4 ± 0.02 mg m−2 s−1 and 1.8 ± 0.03 mg m−2 s−1, respectively). Peak respiration (0.80 ± 0.03 mg m−2 

s−1) also occurred during July but slightly offset from peak productivity. NEE, GPP, and Reco showed a 

gradual decline into leaf senescence. The length of the growing season was approximately 170 days (± 

7 days), spanning from 15 April to 1, October 2015. 

 

 



156 

 

Figure A2.1. Gross primary productivity (GPP) and seasonal meteorological parameters for 

the 2015 growing season at the Peace River Environmental Monitoring Super Site. From top 

to bottom: (a) daily average net ecosystem exchange and ecosystem respiration, (b) 

photosynthetic photon flux density (PPFD), (c) temperature, (d) relative humidity (RH), and 

(e) vapor pressure deficit (VPD). 

 

Seasonal trends in temperature (Figure A2.1c) show a continuous increase from the beginning of 

the season to late June, after which temperature progressively decreases until the end of the season 

(October). Overall, relative humidity (Figure A2.1d) increases until mid-June and then remains stable 

during the remainder of the growing season. VPD seasonal changes (Figure A2.1e) showed an initial 

increase during the start of the season, followed by a sharp decrease during mid-June and then 

remaining low and stable from July until end of the season. Beyond these general seasonal changes, 

short-term changes in climatic status directed intra-seasonal variability in productivity. Throughout the 

season productivity was linked to air temperature (Figure A2.1c), particularly during spring and fall 

warming/cooling events, where warming was associated with increased GPP and cooling with seasonal 

decreases. The largest drops in GPP and Reco values occurred during periods were temperature reached 

approached <5 °C. VPD (Figure A2.1e) was principally influenced by temperature and shared similar 

patterns and associations to GPP. PPFD appeared to be the principal driver of productivity throughout 

large parts of the season (Figures A2.1b and 5). 

A combination of factors appears to affect apparent quantum yield (⍺) over the course of the 

growing season. Periods of low quantum yield occurred during high temperatures (Figure A2.2a), 

which we would expect from a heat-stressed ecosystem. The opposite relationship is observed when 

comparing RH and ⍺ (Figure A2.2b). In general, high ⍺ values coincide with periods of high relative 

humidity, which represent low evaporative demand. Peak ⍺ values correspond closely with soil water 

moisture (Figure A2.2b). An exception to this connection was observed during 31 August when a soil 

moisture peak is observed but ⍺ seems to decrease slightly. This decrease in ⍺ is associated with low 

PPFD (61.49 µmol m−2 s−1) and Tair (3.7 °C), indicating that these variables are limiting during this 

period. 
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Figure A2.2. Time series of apparent quantum yield and (a) temperature, (b) relative humidity 

(RH), and (c) soil volumetric water moisture (VWC). Apparent quantum yield values were 

derived from eddy covariance measurements. 
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Appendix A3 

 

Figure A3.1 Conceptual diagram of temporal aggregation workflows for each of the LUE 

model variables: (a) PAR, (b) fAPAR, (c) APAR, and (d) LUE. Aggregation was done 

sequentially increasing the period by 1 hour, centered on midday, until the maximum diurnal 

hours were reached. This procedure was applied for datasets from both TDF and DBF sites. 


