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Abstract 

 

Recent advances in the mathematical theory of invasion dynamics have much to offer to 

biological control.  Here we synthesize several results concerning the spatiotemporal 

dynamics that occur when a biocontrol species spreads into a population of an invading 

pest species.  We outline conditions under which specialist and generalist predators can 

influence the density and rate of spatial spread of the pest, including the rather stringent 

conditions under which a specialist predator can successfully reverse a pest invasion. We 

next discuss the connections between long distance dispersal events and spread rate of an 

invading population, emphasizing the different consequences of fast spreading pest and 

predator populations.  Consideration of the effects of population stage-structure on 

invasion dynamics has also received recent theoretical attention, and we discuss how 

studies of population demography can inform the biological control of invading pest 

species.   Stochasticity and density-dependent dynamics are common features of many 

real invasions, influencing both the spatial character (e.g., patchiness) of pest invasions 

and the degree of success of biocontrol agents.  We conclude by outlining theoretical 

results delineating how different stochastic effects and complex dynamics generated by 

density-dependence can facilitate or impede biological pest control.     

 

Introduction 

 

Links between invasion biology and biological control of exotic pest species 

constitute an area of increasing interest among ecologists (e.g., Louda et al. 1997, Ehler 

1998, Ewel et al. 1999, Strong and Pemberton 2000).  Recently, Louda et al. (1997) 

demonstrated geographic expansion mediated by host shifts as one of several unintended 

consequences that followed from the establishment of an herbivorous beetle introduced 

for biological control of exotic thistles.  Moody and Mack (1988) and Hajek et al. (1996) 

discussed the importance of targeting control efforts on nascent foci at the leading edge 

of invading populations.  Parker (2000) discussed the difficulties impeding biological 

control of Cytisus scoparius, an invasive weed that lacks a particularly sensitive life 

stage.  Searching for management strategies that would improve the establishment, 

spatial spread, and suppressive effects of biological control agents, Shea and Possingham 

(2000) suggested rules of thumb to guide biocontrol releases. 

In an overview of the issue, Ehler (1998) lamented the lack of predictive 

guidelines that ecological theory has offered to practitioners of classical biological 

control and outlined several areas in which increased understanding of invasion processes 

are sorely needed.  Ehler also distinguished between the establishment and spatial spread 

of exotic pests and “planned introductions,” arguing that species falling in the latter class, 

which would encompass most releases of biological control agents, make better model 

systems in which to study the dynamics of the invasion process.   

We wholeheartedly agree with Ehler's (1998) call for increased study of the 

processes underlying biological invasions and better links to classical biological control.  

However, we also feel that an increasingly general theory of invasion dynamics has much 

to contribute toward our understanding of both planned introductions and invasions by 

exotic pests, and we aim here to make this understanding more available to non-
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theoreticians.  In doing so, we hope to strengthen the dialogue between theoretical and 

practical perspectives on biological control. 

Citing particular case studies of invasions by the Mediterranean fruit fly (Cerititis 

capitata) and the spotted alfalfa aphid (Therioaphis maculata) in California, Ehler (1998) 

identified several reasons why such exotic pests might make poor model systems from 

which to develop theories of invasion biology.  Among these were a mismatch in the 

distribution of adult and juvenile forms of a species, difficulty in detecting invaders at 

low densities, and human-mediated movement of invaders.  In contrast, we feel that some 

of these same areas are ones in which continued development and application of 

quantitative theories of invasion dynamics may prove especially useful to practitioners in 

biological control.  We outline and discuss several of these areas below. 

 

Contact Zones Between Invasion Theory and Biocontrol 

 

Rates of spatial spread 

Efforts to quantify and understand what influences rates of spatial spread constitute a key 

research area for invasion theory (e.g., Skellam 1951, Okubo 1980, Andow et al. 1990, 

Kot et al. 1996, Neubert and Caswell 2000).  In contrast, efforts to identify suitable 

biological control agents have historically placed priority on stable, effective suppression 

of the pest, with relatively less attention given to factors that influence successful spatial 

spread of control agents (Huffaker 1976, Murdoch et al. 1985, Kareiva 1990, Grevstad 

and Herzig 1997). In addition, several authors (e.g., Simberloff and Stiling 1996a,b, 

Strong and Pemberton 2000) discuss how the dispersal ability of potential biocontrol 

agents constitutes a little-appreciated source of risk associated with their intentional 

release into new habitats.  We outline here why spread rates matter in the context of 

biological control, emphasizing that they depend on both the growth rates and dispersal 

abilities of the pest and control agent.   

A simple model for spatial spread is the reaction-diffusion equation 
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where u(x,t) is population density of the pest species at location x and time t, f(u) is the 

per capita growth rate, and Du is the pest's diffusion coefficient.  If the maximum per 

capita growth rate occurs at the lowest possible pest density (e.g., in the absence of Allee 

effects), the asymptotic rate of spatial advance of the spreading population is  

 02 fDc uu  .                                                     (2) 

(Kolmogorov et al. 1937, Aronson and Weinberger 1975). The mathematical form of this 

wave speed indicates that, for this class of models, the asymptotic rate of spread of the 

invading population is a constant and that the distance covered increases linearly with 

time.  The result can be extended to two spatial dimensions by showing that the square-

root of area occupied by an invading species also increases linearly with time (Skellam 

1951).  

 Likewise, it is also possible to calculate the wave speed for a biological control 

agent (or other natural enemy, hereafter "predator") moving into the pest population when 

the pests are fixed at their normalized carrying capacity, u =1.  We use v(x,t) to denote the 
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predator species.  Assuming that the pest is fixed at its carrying capacity, the predator 

dynamics are given by 
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where h(u,v) denotes the per capita growth rate of the predator.  It is assumed that the 

maximum per capita growth rate for predators occurs at the lowest possible predator 

density where density-dependent population regulation is at a minimum.  As in Eq. 2 we 

have  

 0,12 hDc vv                                                         (4) 

for the invasion speed of the predator, yielding a form quite similar to the spread rate of 

the pest itself (Eq. 2).   

When the pest dynamics are included, Eq. 3 becomes 
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For the pest density close to its carrying capacity, linearization of Eq. 5 at the leading 

edge of predator invasion (v  0) yields 
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The solution to this linear equation yields a population of predators also spreading at a 

speed that is asymptotically given by Eq 4.  Thus the wave speed of the predator 

spreading into the pest at carrying capacity is estimated to be as in Eq. 4.  Numerical 

simulations agree with this linearized estimate of the speed (Fig. 1 A-F). 

It is informative to compare cu and cv when considering the efficacy of a 

biological control introduction.  If cu > cv then the pest will “outrun” the predator.  In 

contrast, if cv > cu  then the predator will eventually “catch up” to the pest, even if the pest 

has a head start.  Lines describing spatial extent of the pest and predator invasions as 

functions of time clarify the consequences of these alternative outcomes (Fig. 2).   

Given a predatory species that is fast enough to catch up with a pest, determining 

when the predator would be expected to catch up to the pest should be of considerable 

practical interest.  For example, the catch-up time (tS, identified by the intersection of the 

pest and predator lines in Figure 2A) delineates a triangle in plots of spatial extent vs. 

time.  The catch-up time is then 
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The size of the catch-up triangle (measured in units of distance  time) is a 

measure of the spatiotemporal scope of maximal pest densities.  The total scope of pest 

damage would include this triangle, plus another polygon that sums damage after the 

arrival of biocontrol agents when pests are reduced to some lower density, uS.  

Mathematically, a general representation of total pest load is 
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In the special case where the enemy and pest have constant speeds as in Fig. 2A, Eq. 8 

simplifies to 
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where tI and tS are the time of predator introduction and catchup, respectively, and uS < 1 

is the pest density after predator impact.   

In any practical setting, quantifying the relative speeds of pests and predators and 

understanding the catch-up times they predict would also help identify those cases in 

which invaders spreading fast enough or with enough head start could reach spatial limits 

imposed by environmental constraints long before any biological control agent could 

overtake them.  However even in such discouraging cases, fast spread of biological 

control agents would be a desirable trait because it would reduce the time invaded 

habitats are exposed to the exotic pests.  

Releases of a biocontrol agent at multiple sites, often undertaken with the goal of 

increasing the likelihood of a successful introduction (see below), are also important from 

the perspective of spread rates.  In the scenarios discussed above, having multiple 

successful release sites for the biocontrol agent could lead to a pronounced increase in the 

total rate of invasion.  This is because, initially at least, the biocontrol release sites would 

behave like individual invasions, with each release reducing pest densities within its own 

local, but expanding, area.  Consequently, the effect of multiple release sites could be 

quite strong initially when the total area invaded would be a scalar multiple of the 

expansion area of a single release.  However, this benefit would eventually wear off as 

invasion foci of the control agent coalesced.  In this sense, multiple releases of biocontrol 

agents help compensate for the problems associated with long lag times between the 

beginning of the pest's invasion and the initial release of biocontrol agents.  Achieving 

short lag times has historically been difficult (Ehler 1998, Ewel et al. 1999) because 

invasions are often hard to identify in their early stages and because of the inherent 

laboriousness of isolating and evaluating the specificity of appropriate control agents. 

 

What Happens After Catchup? 

 Clearly the biocontrol agent will have some impact on the pest species when they 

interact, although historical evidence suggests that, on average, biocontrol agents are 

unlikely to completely eradicate target pests (Murdoch et al. 1985, Murdoch and Briggs 

1996, Ewel et al. 1999).  The detailed dynamics of spatially explicit predator-prey 

systems are notoriously complex and include limit cycles, cyclical traveling waves and 

spatiotemporal chaos (Hassell et al. 1991, Neubert et al. 2000, Sherratt 2001).  However, 

the question of impact becomes simpler when couched in the context of spatial spread: 

Once the biocontrol agent has caught up with the pest species, can it slow or reverse the 

spread of the pest species?  In the context of Fig.2, the question is: what will be the slope 

of the shared predator-pest line after the predator and pest lines intersect?  Will it be 

equal to the earlier pest slope, (indicating an unchanging spread rate for pest), less than 
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the earlier pest slope (indicating a reduction in pest spread rate), or even negative 

(indicating a reversal of pest spread)?  Owen and Lewis (2001) investigated these 

questions in a general context for predator-prey systems.   

 Under the assumption that the system has a stable coexistence equilibrium (i.e., 

does not cycle endlessly when predator and prey are both present), Owen and Lewis 

(2001) used models to show that whether the population spreads at undiminished speed, 

slows, or reverses depends crucially upon properties of the pest population dynamics that 

can be tested in the absence of predation.  If the predator is a specialist (consumes no or 

few other species) then populations with a “weak” Allee effect (reduced per capita 

growth rate at low densities) can have their spread rate slowed by predation and those 

with a “strong” Allee effect (negative per capita growth rate at low densities) can have 

their spread reversed by predation (Fig. 1G,H).  By way of contrast, those with no Allee 

effect can neither be slowed nor reversed, even in the presence of strong predation (Fig. 

1A,B).  Thus, with a specialist predator, it is the dynamics of the pest, more than the 

biocontrol agent that determine the level to which spread can be reduced once the 

biocontrol agent catches up to the pest.  Despite the stringency of this condition for 

reversal of the pest invasion, we note that, in practice, it may be possible to induce an 

Allee effect in the pest species through the use of sterile insect releases (Lewis and van 

den Driessche 1993) and related techniques.  Thus, combining methods of biological 

control within a strategy of integrated pest management may prove especially useful 

when attempting to eradicate a pest from a landscape. 

 In the case of a predator with a generalized diet, spread of the pest population can 

be slowed (Fig. 1C,D) or the pest population can be eradicated (Fig. 1 E,F), regardless of 

the pest dynamics, providing the predator can persist at a sufficiently high density in the 

absence of the pest.   This highlights one advantage of using a generalized biocontrol 

agent when attempting to spatially confine the spread of a pest species.  The intuitive idea 

is that by exploiting other prey species a generalist biocontrol agent can persist in front of 

the spreading pest population, driving down local growth rates of the pest at the leading 

edge of the invasion process.  On the other hand, a specialist biocontrol agent cannot 

persist at high densities at the leading edge of the spreading pest population (where pest 

densities are low) and thus cannot slow or reverse the pest spread unless the pest species 

is already susceptible to reduced growth rates at low density.  Of course additional 

practical difficulties are sometimes involved with using generalist predators for 

biocontrol of invasive pests.  Among these are that native generalist predators may not 

have much affinity for an introduced pest, and managers may be hesitant to introduce 

generalists because of the potential for collateral impacts (e.g., Howarth 1983, 1991, 

Louda et al. 1997). 

 

Long distance dispersal and human-aided spread of pests 

Recent developments in the theory of ecological invasions have outlined some 

shortcomings of models like Eqs. 1 and 5 that assume diffusive movement (Kot et al. 

1996).  In particular, contrasts between diffusion models and alternative models of spatial 

spread involving integrodifference equations highlight how important long distance 

dispersal events can be to the overall rate of spread of an invading population. Such 

events, even when rare relative to the fraction of seeds or offspring dispersing locally, can 

effectively determine rates of spatial spread across a landscape.  Indeed, given long-
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distance dispersal that is sufficiently common and sufficiently extreme relative to the 

dispersal distances of most propagules, the wave speed of an invading population ceases 

to be constant (as in Eqs. 2 and 4) and instead accelerates over time.   

The potential importance of invasions driven by long distance dispersal has 

gained recent notoriety in discussions of post-glacial recolonization of temperate forest 

landscapes (Clark et al. 1998).  However, long distance dispersal is likely of even greater 

consequence in agricultural landscapes or situations in which human-aided transport is 

possible.  For example, Mack (1981) demonstrated that railroad networks were critical to 

the spread of cheat grass in the western United States.  Ehler (1998) makes similar 

arguments concerning the spread of spotted alfalfa aphids paralleling major tucking 

routes in California.  Likewise, repeated, intentional introduction of mosquitofish 

(usually Gambusia affinis) for control of pest insects has led to their present distribution 

essentially worldwide, across large and disconnected landscapes through which they 

could not have dispersed independently (Courtenay & Meffe 1989).  

 Such dispersal may limit the utility of pest species as models systems in which to 

study some biological aspects of "natural" invasions (Ehler 1998).  Nevertheless, long-

distance dispersal abilities, including human-aided dispersal, can be crucial determinants 

of invasion dynamics, and understanding their potential consequences is critical to 

successful management.  In the context of biological control, the effects of long-distance 

dispersal on spread rates and catch up times become paramount.  Clearly, a pest whose 

invasion speed accelerates with time will be much harder to catch up to than one 

exhibiting a linear rate of expansion (Fig. 2).   For example, any attempt to reduce 

damage from and halt the spread of such species across a habitat would likely require a 

control agent that itself is capable of rapid spread via long distance dispersal and/or able 

to be released at large numbers of sites dispersed throughout the invaded area.   Either of 

these requirements could greatly restrict the choice of control agents.  Likewise, long 

distance dispersal abilities of pests could also be problematic in that they would likely 

facilitate reinvasion of "controlled" areas.  Medfly infestations in California and the 

metapopulation-like dynamics of Opuntia-Cactoblastis in Australia are cases in which 

(natural or human-aided) long distance recolonization likely plays a critical role (Stiling 

1997). 

 

Possible disadvantages of fast spreading biocontrol agents 

As discussed above, increased consideration of spatial spread rates could prove 

beneficial to the practice of biological control. However, an enhanced emphasis on spread 

rates might also have unintended negative consequences. For example, it is not 

unreasonable to expect that good dispersers might be deficient in other traits, perhaps 

making them overall poor choices as control agents. In particular, increases in spatial 

spread rate might incur a tradeoff with ability to locally suppress pest populations.  Thus 

control agents able to spread throughout a large region of pest infestation might have only 

a meager impact locally, whereas species able to enforce substantial pest losses locally 

might be unable to provide regional control. 

A literature survey seeking data on the spatial spread rates of pest species and 

biocontrol agents released against them identified eight cases for which data on local 

suppression of pests were also available (Table 1).  These data revealed ratios of pest 

spread rate to predator spread rate spanning four orders of magnitude (Fig. 3).  This range 



Fagan et al.         8 

includes only two cases in which predator spread rates were vastly slower than those of 

their target pest species (loosestrife beetle attacking purple loosestrife and Typhlodromus 

manihoti attacking cassava green mite).  The highest levels of local suppression were 

associated with cases in which a predator's spread rate exceeded that of its targeted pest, 

and we found weak evidence for a suppression-dispersal advantage tradeoff.  However, 

this dataset probably harbors a strong reporting bias in that few published records would 

likely be available concerning biological control agents that either fail to disperse widely 

or fail to suppress the pest.    

Another issue is that an emphasis on identifying fast spreading control agents 

might inadvertently lead to the selection of candidate agents whose diets are 

insufficiently narrow to be effective (and ecologically safe) upon release.  For example, 

species with generalized diets might more easily deal with spatial and temporal vagaries 

in resource availability.  Though such diets could greatly facilitate spread of control 

agents through a region even when their target pest populations were at low density or 

patchily distributed, insufficient specialization of control agents can lead to negative 

impacts on nontarget species (e.g., Louda et al. 1997).  Simberloff and Stiling (1996a,b) 

suggested cost-benefit analyses prior to introductions of biological control agents as a 

mechanism to force consideration of possible nontarget effects.  More recently, Strong 

and Pemberton (2000) suggested avenues for improvement of governmental oversight of 

biological control efforts with the joint goals of reducing ecological risk and increasing 

public confidence in biological control efforts. 

 

Invasion models for structured populations 

The importance of population structure for demography is well known (e.g. 

Caswell 2001).  Individuals differ in their vital rates and responses to the environment, 

and many of those differences are determined by age, size, or developmental stage.  In 

studies of invasion, we must also recognize that individuals differ in their dispersal 

characteristics, and that these dispersal differences are also largely determined by age, 

size, or stage.  Recently, promising methods have been developed to deal with population 

stage structure in mathematical models of invasion (Van den Bosch et al. 1990, 

Diekmann et al. 1998, Neubert and Caswell 2000).  Ignoring population stage structure 

typically produces an overestimate of invasion speed. But a more accurate prediction of 

invasion speed is not the most compelling reason for including stage structure in invasion 

models.  Rather, by including stage structure, invasion speed—and, by our arguments 

above, levels of pest suppression—can be connected to processes occurring within the 

life cycle of the individual.  The sensitivity of invasion speed to changes in these 

processes can then be calculated (Neubert and Caswell 2000), and thereby reveal which 

stages of a pest species are most important to attack when attempting to slow their spread.  

 

Detectability of Invasions  

Another critical issue relevant to both biological control and invasion biology in 

general concerns the difficulties of identifying incipient invasions and characterizing the 

spatial progress of a spreading population.  These difficulties are inherent to efforts to 

detect a species present at low densities.  Though invasion theory would be of limited use 

in the development of better detection protocols, it can provide some useful guidance 

concerning the nature of spreading populations.  For example, a major result in this area 
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of invasion theory is that it is not necessary to detect the furthest dispersed individuals to 

gauge the spatial extent of an invading population.  Instead, data on changes in the spatial 

distribution of populations exceeding a set “detection threshold” are themselves 

informative.  In the case of a population spreading via diffusive dispersal, the wave speed 

for a specific detection threshold will be the same as the wave speeds for detection 

thresholds corresponding to higher and lower densities.  Consequently, the spatial extent 

determined for a fixed detection threshold will be a constant fraction of the spatial extent 

of a lower detection threshold throughout the course of the invasion.  In contrast, for 

populations whose invasion speeds accelerate over time, the spatial extent for a given 

detection threshold will not only underestimate the spatial extent for lower detection 

thresholds, but the accuracy of this estimate will degrade as time goes on.  Importantly, 

regardless of the specific dispersal characteristics of an invading population, the higher 

the detection threshold for that species, the greater the area in advance of the zone of 

detection that is already colonized by the invader.   

 

The Roles of Stochasticity and Complex Dynamics 

Stochasticity (both demographic and environmental) should be expected to play a 

major role in invasion dynamics, both in their initiation and over the long term (Hastings 

1996, Lewis 1997).  For example, demographic stochasticity in association with long 

distance dispersal typically produces “patchy” spread (Lewis and Pacala 2000).  Pest 

species whose invasions exhibit significant patchiness may have pronounced advantages 

over control agents released against them in that localized populations may escape 

detection or colonization by control agents.  Mismatches between dispersal capabilities of 

pests and control agents could exacerbate this problem.  Thus the patchiness of pest-

enemy interactions (which may be valuable in the context of long-term pest control and 

suppression [Murdoch et al. 1985, Murdoch and Briggs 1996]) may greatly complicate 

biological control of an invading pest. Persistence of a pest species via patchy spatial 

distribution also underlies the profound difficulties involved in completely eliminating an 

invader once it has established (Ewel et al. 1999).  Continued persistence of the prickly 

pear-Cactoblastis interaction in Australia is a prime example (Stiling 1997).  

Stochasticity can also play an important role at the very beginning of invasions 

for both pest and predator species.  For example, the number of release sites used and the 

number of individuals released at those sites can influence the likelihood of persistence of 

biocontrol agents on a regional basis (Beirne 1975).  These same factors can also 

influence the degree of suppression achieved through biocontrol programs (Shea and 

Possingham 2000).   

While the mathematical theory of biological invasions is still dominated by 

deterministic models, work on stochastic models is an area of active research.  Neubert et 

al. (2000) have developed methods for calculating expected invasion speeds in 

temporally stochastic environments, Lewis and Pacala (2000) have developed methods 

for models that incorporate demographic stochasticity (including individual variability in 

dispersal), and Shigesada and Kawasaki (1997) have studied the effects of spatially 

variable environments. 

In addition to stochasticity, the complex dynamics generated by density-

dependence can affect the invasion process.  For example, Allee effects can control the 

early stages of an invasion by setting minimum population sizes (or areas) that must be 
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exceeded before spread is possible (Lewis and Kareiva 1993, Veit and Lewis 1996, Kot 

et al. 1996, Lewis 1997, Wang and Kot 2001).  As in Figure 1G,H, Allee effects can also 

determine the subsequent control by the predators.  Moller (1996) discusses the 

advantages that social insects may have in meeting such minimum population size 

criteria. Allee effects can arise in surprising ways, particularly in predator populations.  In 

many predator-prey models, nonlinear dynamics can generate insidious Allee effects in 

the predator population through the formation of multiple attractors (Neubert and Kot 

1992).  When coupled with complex dynamics in the prey population, small changes in 

parameter values can unexpectedly induce Allee effects in the predator’s dynamics 

(Neubert et al. 2000).  Complex dynamics (e.g., spatiotemporal periodicity or chaos) in 

the wake of an advancing predator invasion (Kot 1992, Sherratt 2001) will produce 

variable levels of pest suppression before control is ultimately achieved. 

 

Conclusions 

Kareiva (1996) argued that ecology has not contributed much to the practice of 

biological control, with most of the insights instead flowing from biological control to 

ecology.  Theoretical studies of ecological invasions can make contributions to biological 

control by identifying topics that may have practical importance and suggesting ways in 

which to study those issues.  Couched in the context of invasion dynamics, we have 

touched on some of these potential linkages between ecological theory and biological 

control here, emphasizing spatially distributed predator-prey interactions, long-distance 

dispersal, stochasticity, and complex dynamics generated by density dependence. 

Continued progress toward a generalized theory of invasion dynamics will help 

equilibrate information flow between the disciplines of ecology and biological control.  
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Table 1.  Pest-biological control agent pairs yielding suppression data and spatial spread rates.   

Case Pest Species Control Agent Locality     Primary References 

1 Purple Loosestrife  Lythrum salicaria Loosestrife Beetle Galerucella spp. USA McAvoy et al. 1997, Smith et 

al. 1999, Katovich et al. 1999 

2 European Rabbits   Oryctolagus cuniculus Myxomatosis Myxoma virus Australia Marshall and Douglas 1961 

3 European Rabbits   Oryctolagus cuniculus Rabbit Hemorrhagic 

Disease Virus 

Calicivirus Australia Kovaliski 1998, Mutze et al. 

1998. 

4 Casava Green Mite  Mononychellus tanajoa Predatory Mite Typhlodromus manihoti Central Africa Yaninek 1988,  

5 Casava Green Mite  Mononychellus tanajoa Predatory Mite Typhlodromus aripo Central Africa Yaninek 1988, Bellotti et al. 

1999 

6 Casava Mealybug   Phenacoccus manihoti Wasp Epidinocarsis lopezi Central Africa Herren et al. 1987, Yaninek 

1988,  

7 Prickly Pear Cactus  Opuntia spp. Moth Cactoblastis cactorum Australia Stiling 1997 

8 Scale Insect     Palaeococcus 

fuscipennis 

Ladybird Beetles Novius cruentatus +     

     Cryptochetum jorgepastori 

Israel Mendel et al. 1998 
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Figure Legends  

 

Figure 1. Numerical solutions of partial differential equation representations of biological 

control agents spreading into populations of invading pest species.  Panels (A,B): logistic 

growth in the pest with specialist predator: the predator catches up to the pest, which 

continues expanding at a reduced density.  Panels (C,D): logistic growth in the pest but a 

weakly generalized predator: after catching up, the predator slows the pest’s rate of 

advance.  Panels (E,F): logistic growth in the pest with a more strongly generalized 

predator: after catching up, the predator eliminates the pest but continues its own 

advance.  Panels (G,H): strong Allee effect in the pest with a specialist predator: the 

predator catches up to the pest and then causes its population to contract spatially.  We 

used the equation  
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 76.0 uvg .  In A, C, and E, =0.01 whereas in G, =0.5.  In all cases, Dv=1, the 

domain size was 100 and predators were introduced at t = 150. 

 

Figure 2. Heuristic plots showing spatial extent of invasions of a pest and its predator 

(biocontrol agent) as functions of time for dynamics governed by diffusive spread.  In A), 

the predator's spread rate exceeds the pest and the predator invasion eventually catches 

up, despite the pest's head start.  The area denoted u = 1 indicates the spatiotemporal 

scope of maximal pest density.  In B), the predator's spread rate is less than the pest's and 

the predator will not catch up to the pest before the pest reaches the limits of available 

habitat.   

 

Figure 3. Heuristic plots showing spatial extent of invasions of a pest and its predator 

(biocontrol agent) as functions of time for dynamics influenced by long distance 

dispersal, such that rates of spatial spread accelerate with time instead of being constant 

as they were in the diffusion case.  In A), the predator is more likely to disperse very long 

distances (its dispersal kernel is a Cauchy distribution) and so can catch up to the pest 

despite the pest's head start and despite the fact that the pest's own rate of spread is 

accelerating.  In B) the predator and pest have the same kernel (the generalized error 

distribution) governing the distribution of dispersers but the pest has a slight reproductive 

advantage and so can escape the pest.   

 

Figure 4. Relationship between pest suppression and spatial spread for 8 pest-control 

agent pairs identified from the literature.  Data are point estimates (dots) or ranges (error 

bars).  Data for some pests or control agents were presented as area occupied over time.  

These were transformed to spread rates by calculating rates of increase in the square root 

of area occupied (Skellam 1951). 


