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Abstract

The ficld of controller performance monitoring has received much attention in the
enginecring research literature.  However, the diagnosis of poor control performance
remains an open arca. Performance diagnosis requires identification of the cause(s) of
poor control performance. Poor controller tuning, oscillatory external disturbances, process
nonlinearities and valve nonlinearities are the primary causes of poor control performance.

Based on higher order statistical (HOS) theory, two new indices — the Non-Gaussianity
Index (NGI) and the Non-Lincarity Index (NLI) — have been developed to detect and
quantify signal non-Gaussianity and nonlinearity. These indices, together with specific
patterns in the mapping of process output (pv) and controller output (op), can be used to
diagnose the causes of poor control loop performance.

Stiction is the most common problem in spring-diaphragm type valves. A generalized
definition of valve stiction based on the investigation of real plant data is proposed in this
thesis. A simple two parameter data-driven model of valve stiction is developed. The model
i1s simple, yet powerful enough to properly simulate the complex valve stiction phenomena,
Both open and closed loop results have been presented and validated to show the capability
of the model.

Conventional invasive methods such as the valve travel test can detect stiction casily.
However, they are expensive, time consuming, and tedious to usc for examining thousands
of valves in a typical process industry. A noninvasive method that can simultancously

detect and quantify control valve stiction is presented. The method requires only routine
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operating process data. Over a dozen industrial case studies have demonstrated the wide
applicability and practicality of this method as a useful diagnostic aid in troubleshooting
poor control performance.

In chemical industrial practice, data are often compressed, for archival purposes, using
various techniques. Compression degrades data quality and induces nonlinearity in the
data. The issues of data quality degradation and nonlinearity induction due to compression
are investigated in this thesis. An automatic method for detection and quantification of the
compression present in the archived data has been presented. Compelling and quantitative

analyses have been presented to end the practice of process data compression.
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Introduction

Modern process industries are increasingly automated to achieve objectives such as
maintaining world class product quality, reducing operating and maintecnance costs,
enhancing operator safety, meeting environmental and occupational heaith regulations,
optimizing resource management, and increasing profitability from resources. One of the
manifestations of this increased automation is the increasing number of controllers and
control loops in process industries. A process plant may have from a few hundred control
loops to several thousands depending on the complexity of the plant. Clearly, monitoring

and assessing the performance of these control loops are crucial to process industrics.

1.1 Monitoring Control Loops

Satisfactory control performance is important to ensure high product quality and low
product cost in chemical plants. The controllers may initially be tuned properly for high
performance, but normal “wear and tear” and changing operating conditions may contribute
to the deterioration of the performance of such controllers. Common causes of sub-optimal
process operation include (1) changes in operating regimes of the plant, (2) changes in
operating conditions, (3) changes in plant production rates due to market conditions, (4)
partial modification of the plant, (5) wear and tear of mechanical equipment such as control

valves and sensors, (6) inadequate instrument maintenance and (7) lack of periodic tunings
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1.1 Monitoring Control Loops 2

of the controliers.

Poor loop performance can sometimes be easily detected by the operator, but often
the problem may propagate to other loops, thereby making it difficult to detect the root
causc. Regular performance monitoring of control loops can enable one to detect poorly-
performing loops and provide diagnostic aids to repair the problematic loops. Desborough
and Harris (1993), Harris (1989) and Stanfelj et al. (1993) discussed several methods for
controller performance assessment with minimum variance and settling time benchmarks
from routine operating data. Modern process industries are increasingly interested in loop

performance monitoring for the following reasons:

e Poor performance of controllers adversely affects key performance indicators (KPI)
of the plants. The economic benefits resulting from performance assessment are
difficult to quantify on a loop-by-loop basis because cach problem loop contributes
in a complicated way to the overall process performance.  Finding and fixing
problem loops throughout & plant can improve product quality. reduce product
property variability, lower operating costs and increase production rate (Paulonis and
Cox, 2003). Even a 1% improvement either in energy efficiency or reduced product
variability saves hundreds of millions of dollars for process industries (Desborough
and Miller, 2002).

e Improvement in the performance of the controllers allows engineers to casily cope
with the increasingly stringent environmental regulations imposed on chemical

plants.

e Advanced Process Control (APC) strategies such as Model Predictive Control (MPC)
arc increasingly used to meet rapidly-changing market conditions. In many cases. the
performance of these MPCs depends in turn on satisfactory performance of fower

level regulatory Proportional-Integral-Derivative (PID) controllers.

e Through regular performance monitoring and preventative maintenance of the
controllers and actuators (valves), in many cases it is possible to avoid unscheduled
shutdown of the plant. Every unscheduled shut-off or downtime of a plant takes a

costly toll on the maintenance budget of the plant.
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1.2 Impact of a Faulty Control Valve 3

1.2 Impact of a Faulty Control Valve

The control valve is typically the actuator for most of process control loops. It is the only
moving part in the loop. It serves as the ‘work-horse’ that implements the control decision.
If the control valve malfunctions, the performance of the loop 1s likely to deteriorate, no
matter how good the controller is. Commonly encountered control valve problems include
stiction, hysteresis, backlash, deadband and saturation. Because of these problems, the
valve output may be oscillatory which in turn may cause oscillations in many process
variables. Other reasons for an oscillatory control loop include poor controller tuning,
improper process design, poor control system configuration, and oscillatory disturbances
(Bialkowski, 1992; Ender, 1993; Miao and Seborg, 1999). Bialkowski (1992} reported
that about 30% of the loops are oscillatory due to control valve problems. Oscillatory
variables are one of the main causes of poor performance of control loops. A key challenge
is to find the root cause of distributed oscillations in chemical plants (Qin, 1998; Thornhill
et al., 2003a; Thornhill e al., 2003b). The presence of oscillations in a control loop
increases the variability of the process variables, thus causing inferior quality products,
larger rejection rates, increased energy consumption, decreased average throughput and
reduced profitability. Oscillations can cause a valve to wear out much carlier than the life
period for which it was originally designed. Oscillations increase operating costs roughly
in proportion to the deviation (Shinskey, 1990). Detection and diagnosis of the causes of
oscillations in process operation are important because a plant operating close to product
quality limit is more profitable than a plant that has to back away because of variations in
the product (Martin et al., 1991). The presence of a faulty valve in a control loop hinders
the achievement of good performance of the control loops. The cconomic impact of poor

erformance of control loops has been discussed in the previous section.
p p

1.3 Stiction — The Hidden Culprit

Stiction in control valves is onc of the long-standing and common problems in the
process industry.  Stiction hinders the proper movement of the valve, which in trn
degrades the performance of the control loop. Stiction is one of the main root causes
for initiating oscillation(s) in a control loop. The oscillation may propagate throughout
the plant. The scenario becomes even more complex if there is a recycle stream in the
plant. Indeed recycles are commonplace in most chemical industries.  The detection

and quantification of stiction is the main focus of this study. There are two categories
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of methods to detect stiction: invasive and non-invasive. The invasive method requires
stroking/travelling the valve over its full travel span when in-service or out of service.
Because it is neither feasible nor cost-effective to invasively test hundreds of valves at
a plant site, the non-invasive method is preferred to the invasive one. Horch’s cross-
correlation method (Horch, 1999; Horch et al., 2000; Horch, 2000) is one of the popular
non-invasive methods for detecting stiction reported to date. Horch’s method detects
stiction with the use of the cross-correlation function between pv and op. His method is
not applicable to processes containing an integrator (e.g., a level control loop), or for foops
carrying compressible media (e.g., steam or air). The Horch method is mainly useful for
flow control loops. However, even for flow control loops it sometime produces inconclusive
results (Desborough and Miller, 2002). Also, if there is a sinusoidal disturbance entering
the control loop, the method falsely detects stiction in the control valve (Choudhury et
al., 2002). More details will be provided in Chapter 5. Moreover, none of the existing
methods can quantify stiction. In this thesis a new method to detect and quantify stiction
has been developed. The method is based on higher order statistics and applicable to all

types of control loops.

1.4 Data Quality - Impact of Compression and

Quantization

Data quality lies at the heart of all data driven process analyses. It plays a central role in
determining the credibility of all data analyses. Data quality issues include determination or
quantification of randomness, measures of information content, stationarity, compression
factors, and quantization levels. In the analysis of chemical process data, compression and
quantization are frequently encountered problems.

In chemical industrial practice, data arc often compressed using various data
compression techniques such as box car, backward slope, swinging door and wavelet
compression algorithms before storing them in the historian (Kennedy, 1993, Aspentech,
2001; Watson, 1993; Hale and Sellars, 1981; Bristol, 1990). Historical data arc an
invaluable source of information. However, compression degrades data quality and induces
nonlinearity in the data (Watson et al., 1998). The issues of data quality degradation
and nonlinearity induction due (o compression should be properly dealt with prior to
processing the data for performance monitoring. Until recently, there were serious concerns

regarding compressed data analysis, but there has been no systematic study of the impact
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of compression on process data. An automatic method for detection and quantification of
compression present in archived data is an invaluable tool during the preprocessing stage
of any data analysis. A method of quantifying the degree of compression in archived or
historical data is developed in this thesis (Thornhill et al., 2004). Higher order statistical
techniques were also found to be useful in the analysis of compression induced nonlinearity
in data.

Quantization is a problem that arises during the analog to digital conversion of data
(Smith, 1998; Ifeachor and Jervis, 1993). Modern control systems involve computers and
digital equipments. Because computers cannot read an analog signal, all analog signals
must be converted into digital signals. For digitization, two steps are required: sampling
and quantization. Sampling is only the first phase of acquiring data into a computer.
Computational processing quantizes data, i.c., analog values arc converted into digital form.
The number of bits determines the precision of the digitized data. Old A/D converters have
lower numbers of bits, i.c., lower resolution. These may introduce a significant amount of
quantization errors. A Significant amount of quantization errors may produce oscillations
(Horch, 2000) in process variables. Sometime the quantization errors are too large to use

the data for any practical purposes.

1.5 Overview of the Thesis

This thesis is divided into seven chapters including this introductory chapter. Most of
the chapters are independent of cach other and can be read in any order according to the

reader’s preference. A summary of cach chapter follows:

e Chapter 1 discusses the importance of the monitoring of control loop performance,
the impact of a faulty valve (especially a sticky valve) on the performance of a control

loop, and the issues of data quality degradation due to compression and quantization.

e Higher order statistics plays a central role in this thesis in detecting the presence
of nonlinearities in control loops. A tutorial introduction to this subject matter is

presented in chapter 2.

e Chapter 3 describes the development and application of higher order statistics based
tools used for diagnosing poor loop performance. It also discusses several simulation

and industrial case studics.
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e Stiction, the most commonly encountered control valve problem, is defined,
discussed and modelled in chapter 4. A proper definition of stiction is proposed
in this chapter. New insights are gained from the describing function analysis of the

newly defined stiction model.

e When there are thousands of control loops in a process industry, it is almost
impossible to check cach valve manually. The challenge is to develop an automated
method that requires minimal human input to monttor the health of each control
valve. Chapter 5 discusses the methodology to automatically detect and quantify

stiction in control valves.

e Historical data are an invaluable source of information. In chemical industrial
practice, data are often compressed using various techniques before being stored or
archived in historians. Compression degrades data quality and induces nonlinearity
into the data. Chapter 6 focuses on the problems of data quality degradation and
nonlinearity induction due to compression. It describes an automatic method to
detect and quantify compression present in the archived data. A method for detection

and quantification of quantization in process data is also presented.

e Chapter 7 concludes the thesis with a summary of its main contributions. It also

provides directions for future work in this arca.
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Higher Order Statistics: Preliminaries

A tutorial introduction to Higher Order Statistics (HOS) and its relation to conventional
Second Order Statistics (SOS) are presented in this chapter. The first and second order
statistics, for example, mean, variance, autocorrelation, and power spectrum, are popular
signal processing tools and arc used extensively in data analysis.  Such sccond order
statistics are sufficient for describing lincar and Gaussian processes. In practice, there are
many situations where the process deviates from Gaussianity and lincarity — for example,
when it exhibits nonlincar behavior. These type of processes can conveniently be studied
using Higher Order Statistics (HOS).

2.1 Introduction

A signal is a variable that carries some kind of information that can be conveyed,
displayed or manipulated. Signals can be obtained from numerous sources - for example,

speech, sound, music, images, chemical processes, radar, seismic surveys, computer
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2.2 Time Domain Analysis 8

simulations, robots, etc. Useful information is often hidden in a signal. The objective
in a signal processing problem is to process a signal or a finitc number of data samples
to extract important information that may be “hidden” therein (Smith, 1998; Ifeachor
and Jervis, 1993). In most cases, data are available as variables sampled at regular
intervals of time. Digital signal processing continues to play an important role in the
industrial revolution of high technology. Digital signal processing — combined with the
ideas and methodologies from various branches of engineering (computer engineering,
chemical engineering, electrical and electronics engineering), statistics, numerical analysis
and computer science — has become a very useful tool for data analysis and is being used
in many industrial processes. The data are usually analyzed either in the time domain or in

the frequency domain.

2.2 Time Domain Analysis

Time domain or time serics data arc a good source of information. Many statistical
measures (e.g., moments, cumulants, auto-correlation, cross-correlation) have been
developed to measure the temporal signal characteristics of such data. Almost all types
of data are usually collected as samples at regular intervals of time. In statistical analysis,
itis often assumed that the time series or the signal is stationary. This assumption holds for

subsequent definitions and analyses.

2.2.1 Moments

A generating function of a random variable is an expected value of a certain transformation

of the variable. All generating functions have three important propertics:
I. The generating function completely determines the distribution.

2. The gencrating function of a sum of two independent variables is the product of the

independent generating functions.

3. The moments of the random variable distribution can be obtained from the derivatives

of the generating function.

As the term implies the moment generating function should be able to generate all

moments. For any random variable x, the moment generating function can be defined
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as the expectation of the transformation, ¢, where t € R, i.e.,
p

My(1) = E[e"]

2.1)

Moments can be obtained from the coefficients of the Taylor’s series expansion of the

moment generating function about the origin,
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From the right side of the Equation 2.2, the first derivative gives the first order moment:
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The second derivative gives the second order moment:
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Similarly, the third derivative gives the third order moment:
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and so on. Therefore, we can rewrite the moment generating function as
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2.2 Time Domain Analysis 10

The first order moment is the mean (¢ = E(x)) of the data series, x(k), which provides a
measure of the location or the center of gravity of the probability density function (pdf) for
an ergodic signal. The second order moment is the variance of the data series and gives
the spread of the pdf, while the third order moment provides a measure of the skewness

of the distribution and the fourth order moment provides a measure of the flatness of the

distribution. Alternatively, for any zero-mean data series, x(k), the 2. 3%, n'" order
moment of the data serics can be defined as:
my(1)) 2 Ep(k)x(k+1))]
my(1). 1) £ E[e(k)x(k+1)x(k + )]
(1. 70Ty g) 2 Ep(k)x(k+ 1)x(k 4 1) x(k + Tyy)] (2.7)

. e} . ~ .
The variance, o=, can be obtained from m;(0); skewness from m3(0,0); and so on.

2.2.2  Cumulants

Cumulants arc another set of statistical measures that can be used instead of moments
because of their excellent noise suppressing properties. The cumulant generating function
is defined as the logarithmic of the moment generating function. That is, for a random

variable x, the cumulant generating function is
Cu(1) = In(a1, (1)) (28)

Just as moments are derived from the Taylor's serics expansion of the moment gencrating
function, cumulants can be derived from the Taylor's series expansion of the cumulant

generating function:

IC(1) 19°G()

Gty = Cdt) o+ 3, [()(r~())-;-2! o 10(,_0):+
= C) ], o+ ()C(‘;f(’) L - %%‘:—(Q , ”!2 +
%Q)%Q, . e (29)
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The first order cumulant is given by:

dC(1)
cy =
g
_ ()ln[E[e‘-"Hi
a o
2 3
B aln[l +tm + 'ﬁmz + g—!m3 +-ee]
B dt
=0
I ot ot o]
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= m (2.10)
The second order cumulant is:
9°C\(1)
¢ = B
o
_ *m[E[e)
- S
B Ml +1my + s + %m; +-]
a o
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9 I 2t 3
= = 5 [+ =y + —=my+ -
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Similarly, the third order cumulant is:
o= d*C(1)
I |y
= m3 - 3mamy + Zm'? (2.12)
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The fourth order cumulant

I*C(1)
“T T

1=0
2 2
= myg—4mamy —3m; + 12moymy — 6m‘11 (2.13)

Note that all of the above cumulants are about the origin. For any other point (7), the

ond 3t pth order cumulant of any random data series, x(k), can be rewritten as:

a(t) & cumfx(k),x(k+11)]
c3(1, 1) & cumfx(k),x(k+11),x(k + )]

(T Ty Tamt) = cumfe(k),x(k+ 1) x(k+ 1), x(k+7-1)]  (2.14)

where cum represents cumulant. It is important to note that cumulants are closely related
to moments (e.g., ¢y = my — nzf) and can be calculated from the knowledge of moments.

The computation of cumulants of order n requires all moments up to order n.

2.2.3 The relationship between moments and cumulants

Given a set of n random variables, {x;, x, ... x,}, the general relationship between their

joint moments and joint cumulants of order n is given by:

N

cumlxy, xa, ., ) =Y, (==t (p=1) E{H,\‘,-} E{]x} -- E{H.\‘,-}, (2.15)

p=1 €5 ies i€sp
where the summation extends over all partitions (s, s2, ..., $p); p = 1, 2. ..., n,of the
sct of integers (1, 2, ..., n) (Rosenblatt and Van Ness, 1965). For example, for the third
order cumulant, the set of integers (1, 2, 3) can be partitioned into

p=1 si={1,2,3}
p=2, $ -—-{l

p=3, {1} s = {2} 5

i
—~—

(OS]
N

Thercfore, using Equation (2.15) we can write,

cumlxy, x2, x3] = E{xpoxna}—E{q}E{xxa} —E{n} E{xqxa)...
~E{u} E{xxa) +2E {0 ) E{alE{y) 2.16)
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If xo =x3 =x; =x, then
cumly, x, x] = E{x*} =3E{x}E{x*} +2{E{x}}*

= m3y—3mmy+ Zm‘? (2.17)

which is the same as the expression for ¢3 obtained earlier.
Note that the computation of joint cumulant of order r requires the knowledge of all

moments up to order r.

2.2.4 Propertics of moments and cumulants

. momlaix;, wxa. ..., apxy) = (@ar...ay) momlx;, xa, ..., x,), and
cumlayxy, awxa. ..., apxy] = (@aa ... ay) cumlyy, x2, ..., xp), where

(ay, aa, ..., a,) are constants, and mom represents moment.

Moments and cumulants arc symmetric functions in their arguments, e.g.,

o

mom(xy. X3, x3] = mom|xy, x3, x2] = mom[xz, xa. x}], and so on.

3. If the random variables (xy, x2, .... x,) can be divided into two or more
statistically independent groups, then their n' order cumulant is identically zero,

i.c., cumfx. xa, ..., x,] = 0, whereas, in general, mom[x), x2. ..., x,] # 0.

4. If the sets of random variables (x), x2, ..., x,) and (¥, y2, ..., y,) arc
independent, then cumlxy +yy, x2+y2, ...y Xy 4+ vy) = cumf(xy, x2, .o, x)] +
cum|yy, va. ..., v}, butin case of moments, mom[xy +yi. x2+v2, ..., X+ yy] #

mom((xy, xa, ..., xp)] +mom{yy, ya, ..., ¥l

5. If the set of random variables (xy. xa. ..., x,) is jointly Gaussian, then
all information about their distribution is contained in the moments of
order n < 2. Therefore, all moments of order greater than two have no
additional information.  This leads to the fact that all joint cumulants of
order greater than two arc identical to zero for Gaussian random vectors.

Hence, cumulants of order greater than two measure the non-Gaussian nature of

a tine series.

Propertics 4 and 5 demonstrate the ability of the cumulants to suppress noise in signal
p y PI g
processing when the noise is additive Gaussian.

Example 1. Consider the random variables, z; = v, + x;, fori = 1, 2, 3. If the

joint probability density function of (vy. y2. ¥3) is non-Gaussian and (xy. x2. x3) is jointly
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Gaussian and independent from (yq, y2, ¥3) and also E{y;} # 0, E{x;} # 0, then using

the fourth and fifth properties of cumulants, we get
cum((zy. z2, 23)] = cum{(y1, y2, ¥3)] (2.18)

since cum[(xy, x2, x3)] = 0. In contrast, this is not true for moments. Therefore,
cumulants of order greater than two can be convenicently used for analyzing signals that
contain additive white noise.

Example 2. Consider the random variable, vy = x + ¢, where y is a measured signal, x
is the true signal, and ¢ is the noise and is independent of x.

Moments: First order moment of v,

my = Ey] = E[x] + Ele] (2.19)
Second order moment of v,
my = E[?] = E[(x+¢)*] = E[?] + 2E[x] Ele] + E[e”] (2.20)

Third order moment of y,

my = E{y'}
= E{(x+e)"}
= E{MV4+3E{2VE e} +3E{E{*) + E{e')
= mom[x.x.x] + Imom[x,x] mom|e]

43 momx] mom|e,e] + momle.e, | (2.21)
Cumulants: First order cumulant of v,
cumly) = E{v} = E[x] + E[e] (2.22)
Second order cumulant of y,

cumly, v] = Ep] - {ED]}
= El(x+e)*] = {E[] +E[e]}?
= E3) 4 2ER] Ele] + E[e?] = {E[))? = 2E ] Ele] = {E]e]}?
= E[]+E[e] - {ENY - {E[])
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Third order cumulant of y,

cumly, y,¥] = E{y'} =3E{(}E(} +2[E{y}]}
E{(x+e¢)’} =3E{(x+e)} E{(x+¢)*} +2[E{(x +¢}}}
= E{*)-3E{}E{x} +2]E{x})?

+ E{e’} =3E{*}E{e} + 2[E{e})}

= cumlx,x,x] +cumle. e, e} (2.24)

Il

If the noisc is zero-mean and Gaussian distributed with the following properties:

the first momentofe:  E{e} =0

. ~r D )
the second momentof e: E{e”} = o

the third moment of e:  E{e?} =0 (2.25)
First order moment of y,
my = E[v] = E[y] (2.26)
Second order moment of vy,
my = Ey?] = Ex? + o2 (2.27)
Third order moment of v,
m3 = momfx.x.x] + 3 E[x] o7 (2.28)
First order cumulant of vy is
cumly] = E{y} = E[x] (2.29)

Second order cumulant of v,
cumly, ¥] = EN]={E]}?
= EpY)+0? ~{EN]})
(2.30)

Third order cumulant of v,

cumly, ¥, ¥ = cumlx.x.x] (2.31)

From the above it ts clear that cumulants of order greater than 2 are unaffected by the

Gaussian noise, but the same order moments are not.
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2.2.5 Moments and cumulants of stationary signals

Ifx(k), k = £1, £2, ..., is areal stationary random signal and its moments up to

th

order n exist, then the #'" order moment of x is defined as

My (71,72, Tu-1) 2 E[x(k)x(k+ T )x(k+12) - x(k+ 7:n—l)] (2.32)

where, 7, =0,£1,+2,....

th

Similarly, the n"" order cumulant of x is defined as

(T, T, T 1) 2 cumx(k),x(k + 1) x(k+ 1), x(k+ T, —1)] (2.33)

Combining Equations 2.33, 2.32, and 2.15, the following relationships of moment and
cumulant sequences of x(k) can be obtained:

1% Order cumulant;

ey =y = Ex(k)] (2.34)
2% Order cumulant:
c () =my(n) —md =my(—1) —m} = ea(—11) (2.35)

3" Order cumulant: Combining Equations 2.33, 2.32, and 2.16
c3(T1,12) = ma(1y, 1) — my ma (1) +mp (1) + mia (T2 — 1y )] +2m? (2.36)

Similarly, the other higher order cumulants can be obtained.

2.3 Spectral Analysis

Not all the information content of a signal can necessarily be obtained casily from time
domain analysis of the data. Transforming the signal from time to frequency domain can
expose the periodicitics of the signal, detect nonlinearities present in the signal and aid
in understanding the signal generating process. The Discrete Fourier Transform (DFT),
which plays a key role in modern digital signal processing, is the main tool for this type of
transformation.

th

For a real strictly stationary signal, {x(k)}, k =0,£1.42,... the #'" order cumulant

sequence is defined by

(T T2 Tymt ) = cumx(k), x(k+17). oy X(k+ Tyo)] (2.37)
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2.3 Spectral Analysis 17

Assuming that the cumulant sequence satisfies the condition
o ©o

oo Y (i) len(timy oy Ter)| < oo, fori= 1, 2, ..., n-1, the n'!

order
T)=—o0 Ty ==

cumulant spectrum ¢, (fj, f2, .-, fu—1) of {x(k)} is defined as the (n— 1) dimensional

Fourier Transform of the n' order cumulant sequence, i.e.,

o0 (=]

elfisfor )= o Y, T, T Tumt) exp{=jATI+ 2T+ A fumi Tt}
Tpm=—o0 Ty ==
(2.38)
where [fi] < m, fori=1,2,...,n—land |fi + fot...+fu| €7
The power spectrum, bispectrum and trispectrum are special cases of the n* order

cumulant spectrum.

2.3.1 Power spectrum,n = 2

The power spectrum is the frequency domain counterpart of the second order moment or
cumulant of a signal, and is usually obtained from a zero-mean time series. For such a time
series, say x(k), the second order moment and the second order cumulant are identical. The

power spectrum can be obtained using either of the following two methods:

1. Indirect Method: First, the power spectrum can be calculated from the DFT of the
second order moments or cumulants of the time scries. This is known as the indirect

method. This method involves the following two steps:
(a) Calculate the second order moment sequence using the following equation:
my(1) & Elx(k)x(k+1)] = c2(7) (2.39)

(b) If my is absolutely summable, i.e., the summation of the absolute values of n)
at all lags is a finite number, then the power spectrum is given by:
N-1 .
P(f) = DFT{my(0)] = Y, mp(t)e 2SI (2.40)
=
2. Direct Method: The power spectrum can also be calculated from the direct Fourier

transformation of the time series. This is known as the direct method. It also involves
two steps:

(a) Perform the DFT of the data series.

N-1 )
X() =Y, slk)e 2RI (2.41)
k0
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2.3 Spectral Analysis 18

(b) Next calculate the power spectrum as
P(f) = EX(NX (N =EXWNX DI =EIX(N)F] (2.42)
where the * denotes a complex conjugate.

The power spectrum can be thought of as a decomposition or spread of the signal energy
over the frequency channels obtained from the fength of the Fast Fourier Transform. From
the expressions uscd to estimate the power spectrum, it is clear that the power spectrum
is phase blind, i.e., the phase information is ignored. The information obtained from the
power spectrum or auto-correlation sequence, or more generally from/up to the second
order statistics are sufficient only for complete description of lincar processes. In order
to study the deviations from Gaussianity and the presence of nonlinearities in signal
generating processes, it is necessary to look beyond the second order statistics (SOS). This
brings us to the domain of Higher Order Statistics (HOS). All statistics of order greater
than 2 are called HOS.

2.3.2 Bispectrum, n = 3

The methodology used for estimating the second order spectrum or power spectrum can
easily be extended to obtaining frequency domain counterparts of higher order cumulants.
For example, the bispectrum is the frequency domain representation of the third order

cumulant, It is defined as
B(f1./2) £ DDFT[e3(1. 1)) = EX ()X ()X ([ + 1)) (2.43)

where DDFT stands for Double Discrete Fourier Transformation.

Similary, the trispectrum (n = 4) is defined as
T(fi, 2. 3) ETDFT[es(t. 0. 13)] = EX(SOX ()X ()X (W + L+ /)] Q24

where TDFT stands for Triple Discrete Fourier Transformation. These higher order spectra
are known as polyspectra.  This thesis involves the extensive use of the bispectrum.
Therefore, for a thorough understanding of this term, the next section is devoted toward
its interpretation.

Equation 2.43 shows that the bispectrum is a complex quantity having both magnitude
and phase. It can be plotted against two independent frequency variables, f1 and fa. in

a three dimensional figure. Just as the discrete power spectrum has a point of symmetry
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2.3 Spectral Analysis 19

3
8 e LB

(0,0)

Figure 2.1: Principal domain of the bispectrum.

at the folding frequency, the discrete bispectrum also has 12 planes of symmetries in the
(/1,/2) planc. For details, readers are referred to (Rosenblatt and Van Ness, 1965; Nikias
and Raghuveer, 1987; Kim and Powers, 1979; Nikias and Petropulu, 1993). Examination
of the bispectrum in only one region gives sufficient information. The other regions of
the (f1,/2) plane are redundant. The shaded triangular region in Figure 2.1 shows the
non-redundant principal domain of the bispectrum. Throughout this work frequencies are
normalized such that f; = [, where f; is the sampling frequency. Therefore, the Nyquist
frequency is fy = 0.5. Each point in the plot represents the bispectral content of the signal
at the bifrequency, (f1,f2). In fact, the bispectrum at point (B(f1,/2).fi.f2) measures
the interaction between frequencics fi and f2. This interaction between frequencies can
be related to non-linearitics present in the signal generating systems (Fackrell, 1996), and

therein lies the core of its usefulness in the detection and diagnosis of non-lincaritics.

2.3.3 [Estimation of the bispectrum

In practice, the higher order spectra of a signal have to be estimated from a finite
set of measurements.  The underlying methods for polyspectra estimation are simply
extensions of the well-established power spectrum estimation methods. Essentially, there

are two broad non-parametric approaches: (1) the indirect method, based on estimating
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2.3 Spectral Analysis 20

the cumulant functions and then taking the Fourier Transform; and (2) the direct method,

based on a segment averaging approach. The details of these two approaches are discussed
below:

1. Indirect method: In this method the data series are segmented into K records and the
third order cumulants are estimated for each of the records. The average of the third
order cumulants are taken over the K segments. The bispectrum is then obtained by
taking the Fourier transformation of the average third order cumulants together with

the appropriate data window function. The steps are as follows:

(a) The data series x(k), k = 0,1,...,N — 1 is divided into K segments, i =
0.1,....,K — 1 each of length M. These segments can overlap, so K > N/M.
Let the " segment of x(k) be x;(k), k =0,1,...M — 1.

(b) The mean ; of the ith segment is calculated and subtracted from each sample

in the segment.

1 M-1

ti=— Q> xik) (245)
M=

(k) = xi(k) - (2.46)

(¢) Obtain an estimate of the third order cumulants for each data segment

3 i(m,n) Z l\+ m)x (1\+n) (2.47)

where,
st = max(0,—m, —n)
sy =min{M -1, M —1—=mM—1-n)

(d) Average c3i(m,n) over all segments

l K
3(m.n) 2(1, nm,n) (2.48)

1 -1
(¢) Obtain the bispectrum estimate
) L L ‘ .
B(fi.)="Y Y, c(mn)w(m.n) elilmfyinf2)) (2.49)
m=—-Ln=—1

where L. < M — | and w(m,n) is a two-dimensional window function. Window

functions should possess the same symmetry propertics as the third order
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cumulants. Detailed descriptions of some window functions are available in the
literature (Nikias and Petropulu, 1993; Nikias and Raghuveer, 1987; Mendel,
1991).

2. Direct method: The direct method of bispectrum estimation is an extension of the
Welch periodogram averaging technique for spectral estimation (Fackrell, 1996). The

method is depicted schematically in Figure 2.2 and consists of the following steps:

(a) The data series x(k), k = 0,1,...,N — 1 is divided into K segments, i =
0,1,...,K — | cach of length M. These segments can overlap, so that K > N /M.
Let the i scgment of x(k) be x;(k), k=0,1,....M — 1.

(b) The mean p; of the i segment is calculated and subtracted from each sample

in the segment.

M—-1
ti=— Y xi(k) (2.50)

M =
x;(k) = xi(k) = (2.51)

x(k)

Get a segment
of data of length M

\ &

Subtract the mean

Window

Perform DI°T

Raw B(fy.1,)

Average B(f.f,)
Figure 2.2: Information flow diagram for the direct method of bispectrun estimation.

- [ . . .

(¢) The zero mean-centered segment of the data .x; is then multiplied by a suitable
data window w(k), which provides some control over the spectral leakage. This
window function may be a boxcar, Hamming, Hanning or any other window

used in ordinary spectral estimation.

x; (k) = w(k)x;(k) 2.

N

2)
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(d) For each segment, compute the DFT, X;(f)

M=1
X(f) =Y x;(k)e 2t/ (2.53)
k-0
where [ is the discrete frequency. From this DFT the raw spectral estimates of
P;(f) and the bispectral estimates of B(f1, f2) can be found.

~

Pf) = Xi(N)X () (2.54)
Bi(fi. f2) = X £)X()X] (i + f2) (2.55)

(¢) Then the raw estimates from all K segments can be averaged to give the

following estimates

P(f) = T Z P/ (2.56)

i=0)

B(fi. fo) = ZB i) (2.57)

1 -0

2.3.4 Properties of estimators and asymptotic behaviour

The statistical properties of indirect and direct methods of higher order spectral estimation
have been studied extensively (Rosenblatt and Van Ness, 1965; Brillinger and Rosenblatt,
1967a; Brillinger and Rosenblatt, 1967h; Rao and Gabr, 1984; Nikias and Petropulu. 1993;
Riggs, 1999). Assume that P(f) and B(fy. f2) are the true power spectrum and bispectrum,
respectively, of a stationary zero-mean signal, x(k). Let B(f.f2) be the estimate of
B(f1. f>) using cither the indirect method or the direct method and a single realization of the
signal, x(k) of length N. It has been shown mathematically (Nikias and Mendel, 1993; Kim
and Powers, 1979) that for sufficiently farge record size, M, and total length, N, both the

direct and indirect methods provide approximately unbiased estimates, namely:

E{B(A-f2)} = B(N1. f2) (2.58)
with asymptotic variances
Y s by
var{R[B(AL L)} Zvar{3[B(A L = 5070 )2) (2.59)

where, ’
:\,T,}\;I)(./'I)P(./'Z)P(fl 4+ f2) (indirect)
o’ (fi-f2) = 2.60)
'tl(l)\ POP(2)P(1 + f2)  (direet)
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where K 1s the number of records, M is the number of samples per record, V is the total
encrgy of the window used for bispectrum estimation (for a rectangular window V is unity),
L is defined in step 5 of the indirect method. Because we did not use any frequency domain
smoothing, in our case Ny is same as M. From the above equations it is apparent that if a
rectangular window is used and if L = Ny, both methods provide approximately the same
estimates.
Brillinger and Rosenblatt (19674) showed that when M and N are large, the error
bicoherence is approximately complex Gaussian with zero mean and unity variance:
B(fi./2) - BU/i./)
a(fi.f)

where N, denotes a complex normal distribution, i.e., both real and imaginary parts are

~N.(0,1) (2.61)

normally distributed.  Another important conclusion that follows from the asymptotic
results developed by (Brillinger and Rosenblatt, 1967q«; Brillinger and Rosenblatt, 1967b) is
that these statistics can be treated as independent random vartables over the grid of principal
domain if the grid width is larger than or equal to the bispectrum bandwidth; i.c., 13’(fq,f,,)
and B(f,. f,) are independent for g # ror p#sif [fy 11— fyl = Do or |fr1 = fr] > Do,
where,
% (indirect)
A() = (2()2)

/\Lq, (direct)

2.3.5 Bicoherence or normalized bispectrum

As shown in Equation 2.60, the bispectral estimates are asymptotically unbiased and the
variance of the estimator depends on the second order spectral propertics (Hinich, 1982).
That s,

var(B(f1.£2)) = PUR)P(R)PU + 1) (2.63)
Since the estimate depends directly on signal energies in the bifrequency. the variance of
the estimate will be higher at a bifrequency where the energy is high and lower where the
cnergy is low. This causes a scrious problem in the estimation. This unsatisfactory property
can be resolved in several ways. One way is to prewhiten the signal prior to bispectral
analysis (Collis ¢t al., 1998). However, an easier solution is to normalize the bispectrum
to get a new measure whose variance is independent of the signal energy. Hinich (1982)
has suggested normalization of the bispectrum using the following expression called the
skewness function.

EB(A- LI

EP(OIEPUIEPS A )]

S & (2.64)
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where s2(f1,f2) is known as the skewness function. The major drawback of this
normalization is that the magnitudes of this function are not bounded. The only reason
for dividing the bispectrum with power spectrums is to remove the undesirable variance
properties of the estimator. This method of normalization has been extensively used by
Hinich (1982) for statistical tests of Gaussianity and linearity of a signal. The Higher Order
Spectral Analysis (HOSA) toolbox in MATLAB® (Swami er al., 1993) has also adopted
this normalization. This normalized bispectrum is defined as bicoherence in this toolbox.
However, it would be more appropriate to call it “skewness {unction”.

The bicoherence is better defined by the following equation :

B(fi. /)|
XX ENX -+ L)P

where ‘bic’ is the bicoherence function. Kim and Powers (1979) have shown that the

bic*(fi.f2) 2 - (2.65)

variance of the bicoherence estimator roughly satisfics the following expression:

"2 1
varlbic’(fi. o)) o (1= bic (fi.f2)] (2.66)

where M is defined as the number of segments used in the estimation. Note that it is a
consistent estimator in the sense that the variance approaches zero as M approaches infinity.
A useful feature of the bicoherence function is that it is bounded between 0 and . This

can be demonstrated using the Cauchy-Schwartz inequality which may be expressed as,

Elo,2)l* < EllaPE[2)) (2.67)

Choosing z; = X (f1)X (f2) and zo = X(fi + f2), it can be shown that

0 < bic* < 1 (2.68)
There are also other normalization methods (Fackrell, 1996) but are not widely used
because their properties have not been extensively studied.
Estimation of the Squared Bicoherence

To estimate the squarcd bicoherence from a finite set of measurements, the method of
bispectrum estimation can be followed directly. Because we have used the direct method

throughout this work, only the direct method of estimation of bicoherence is discussed here.

1. Using the first four steps of the direct method of bispectrum estimation, obtain the
estimates of B(f) = X:(/)X; (f) and Bi( 1. f2) for cach segment of the data.
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2. Equation 2.65 can be rewritten as

EX ()X (L)X (hi+ L) (2.69)
(IXUXIPENX(fi + £)P] '

Now, the expectation operator can be replaced with a summation operator over the

bi(f1, /) & 5

number of data segments in the following way:

I SH X)X ()X (N + H)1 570
Ly . . 2 LyM 2 (2.70)
M L,:_-.] |Xl(f1 )Xl(fZ)[ M L,::l [Xl(fl +f2)‘

The squared bicoherence can be estimated using the above equation.

b (fi, ) =

2.3.6 Properties of bispectrum and bicoherence

1. The theoretical bispectrum of a Gaussian signal is zero

The moment generating function for a Gaussian signal x(1) is given by (Stuart and
Ord, 1987):
!
M (1) = exput + 50'212] (2.71)

Therefore, the cumulant generating function for x is
]
Cult) = M (1) = e + 5 0% (2.72)
Now, Equation 2.9 can be rewritten as
[P |
Cilt) =it + S0+ i—'(,‘_ql‘ 4+ — eyl +... 2.73)
2! 3! r!

comparing Equations 2.72 and 2.73, we obtain

¢y = U
2
< =
o = 0, r>2 (2.74)

Thus we see that for any Gaussian signal the cumulants at the zero'h lag of order
greater than 2 (c.g., ¢3(0.0), ¢4(0.0,0), and higher) are identically zero. This
result can be easily generalized to other non-zero fags cumulants. As for any auto-
covariance sequence, ¢2(0) > ¢a(t), T # 0, the same is true for other cumulants of
higher order. For example, ¢2(0,0) > ¢y(1, 1), Tt = 12 # 0. Il ¢2(0,0) = 0, then
(71, 2). T = T2 # 0 must be equal to zero. The same is true for other higher order

cumulants.
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The bispectrum is the frequency domain counterpart of the third order cumulants.
Because third order cumulants for a Gaussian signal are identically zero, the
bispectrum will also be zero for a Gaussian signal.

2. The theoretical bicoherence of a Gaussian signal is identically zero.

This follows directly from the property 1. Because the bicoherence or the skewness
function is a scaled bispectrum, a zero bispectrum leads to a zero bicoherence or

skewness.

3. The theoretical bispectrum of a non-Gaussian signal is blind to the additive Gaussian
noise.
It was shown in Section 2.2.4 that the third order cumulants of a non-Gaussian signal
is independent of the additive Gaussian noise. This property follows directly from it.
4. The theoretical bicoherence of a signal is not blind to Gaussian noise.

Because the bicoherence or skewness function 1s scaled with the power of the
signal, which is not independent of noise, the bicoherence is affected by the additive

Gaussian noise.

5. If a signal is filtered by a linear filter, then the magnitude of the bicoherence is

unchanged.

Consider a signal, x(n), filtered with a linear causal time-invariant filter, i(k), to

obtain the signal, y(n). This can be represented by the following equation:
v(n) = 2 h{k)x(n—k) (2.75)
k-0
In the frequency domain, this can be rewritten as

Yif)y=H(NX ) (2.70)

Now, substituting this in the defining equation of bicoherence (Equation 2.653), we
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obtain

EY ()Y ()Y (i + H))F
HY f1 WYRPIENY (i + £2)1]
X(HL)X(L)H (fi + )X (fi + L)
LHH _fn) OHX(PIENHN + L)X (N + )]
HUDHDH (L +H)E
HWHR)P HA+ R

[EX )X LX N+ )P

EIX (X (2PENX (1 + )1

|[l[X fl) (f*)x' N+ )P

= EIXGOX () PIEIX G + A1 =77

(sance Hos nme amanant, i can be taken oot of expectation opersbr and a8l H's cancel ooty

bi(fi.fr) 2

Note that the above only holds when H(f) > 0. V f. Otherwise, 0/0 may occur in
the calculation of above quantity. This is equivalent to the requirement that the lincar

filter should not have any zeros on the unit circle [(Fackrell, 1996)].

This property enables us to use bicoherence to detect the lincarity of a signal

gencrating process.

6. The theoretical bicoherence of a harmonic signal that can be decomposed into a sum
of sinusoids shows peaks if the signal possesses the property of 'Quadratic Phase
Coupling (QPC)".

A signal is said to have QPC if the signal phases, for example, ¢. ¢, and ¢3 al
frequencies f1, fa, f3 = fi + f> respectively, have the relation ¢y 4 ¢r = ¢3. This is
an indicator of a nonlinear signal generating mechanism. A system which possesses
quadratic nonlincarity, for example a square function, can yield a QPC signal. This

has been ilustrated with two examples in Section 3.4.

2.4 Bispectrum or Bicoherence Estimation Issues

The main estimation parameters that need to be chosen for bispectral analysis are the
same parameters required for second order spectral analysis. Examples include the choice
ol window function, data length, data segment length, length of fourier transform, and
overlapping or non-overlapping windows (Fackrell, 1996). In this section, some of these

issucs will be addressed and discussed using the following illustrative example.
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Illustrative Example. This example consists of the following signal.
y(t) =sin(2afit +¢1) +sin(ufat +¢) +sin(2w f3t + ¢3) +sin(2m far + ¢g) +n(1) (2.78)

where the values of [, f2, f3, and fy arc 0.12, 0.18. 0.30 and 0.42 respectively; the values
of ¢1, ¢, @3, ¢z are §, 5, 7, lf— respectively; n(t) is a zero-mean white noise signal with
variance 0.2, and ¢ is time from | to 4096 s. The signal y(r) is a quadratic phase coupled
signal because its frequencics have the relations fi + f> = fyand fi + f3 = f4, and its phases
have the relations ¢ + ¢2 = @3 and ¢ + ¢3 = ¢5. Therefore, these two phase couplings at
bifrequencies (0.12, 0.18) and (0.12 . 0.30) should appear in the bicoherence plot as two

peaks at the same frequencies.

1
Max (0 13713,0 17969) = 0 99047

ohetence

o

1
{ Max bici0 117190 29688} = 0 9948
|

5

=)
e«
-

squared biccherence

squared b

o
o

? o0 n
(a) Bicoherence using Box Car (b) Bicoherence using Hanning
window window
. Max (0 11719.0 30469} = 0 99512
g
20 5
¥
3
g

=]

() Bicoherence using

Hamming window

Figure 2.3: Bicoherence plot for the QPC example.
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2.4.1 Choice of window function

In spectral analysis, the use of window function is very common. The main reason
behind using a window is to solve the problem of spectral leakage that occurs between
neighboring frequency channels of a peak. Spectral leakage is the term used to describe
the loss of power of a given frequency to other frequency bins in the DFT. Spectral
leakage can be visualized from the spread of the frequency components. Each frequency
component of a signal should contribute only to one single frequency of the Fourier
Transform called an FFT bin, but spectral leakage causes the energy to be spread to the
neighboring frequencies. The window function controls the spreading. The contribution
from any real frequency component to a given FFT bin is weighted by the amplitude
of the window function’s frequency spectrum centered at the FFT bin. Theories and
issues related to the use of various types of windows in bispectral estimation have been
addressed in (Fackrell, 1996; Nikias and Petropulu, 1993; Chandaran and Elgar, 1991).
The performances of three window functions have been compared in (Fackrell, 1996) and
it has been shown that the Hamming window was the most successful among them to best
resolve the peak. The Hanning window stands next to the Hamming window in terms of
peak resolution. The Box Car window function is the worst for resolving the peaks. Figure
2.3 shows the bicoherence plot for the time series of Equation 2.78. The figure shows that
the Box Car function is the worst among the three windows in resolving peaks. This is
because the kernel of the rectangular window has approximately two times wider sidelobes
than that of the Hamming or Hanning window (Smith, 1998; Ifeachor and Jervis, 1993). A
careful observation shows that the peaks in Figure 2.3(c) are better resolved than those in

Figure 2.3(b).

2.4.2 Choice of data length, segment length, and fourier transform

length

Itis well known that bispectral estimates generally have higher variance than power spectral
estimates for a given data length. The data length that is sufficient for a reliable power
spectrum estimation may not be sufficient for a good bispectral estimation. Elgar and Guza
(1988) reported empirical results for mean and variance of bicoherence estimates. Hinich
(1982) suggested that if no frequency smoothing is used the data should be segimented
in a way that the number of segments of data should be at least as large as the DFT

size, i.c, K > M. In practical bispectral analysis, the length of data required depends
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on signal to noise ratio. Fackrell (1996) presented a nice result for the dependency of
theoretical bicoherence of a quadratically coupled sinusoids on the signal to noise ratio and
DFT length. He stated the following: If the effects of leakage are ignored, then the peak
bicoherence b*(fy, f2) corresponds 10 the coupled components at frequencies f|, fa, and
J1+ f2 of a quadratically coupled sinusoids consisting of three equal-amplitude coupled
harmonics in variable levels of additive white Gaussian noise with a signal-to-noise ratio

of SNR is given by:

|
2/ r —
b (./I',f?_) - [+ I_}l’]()—SNI\’/l()_}__7_27]0—23'/\7\'/']0 (2.79)
M M-
where, SNR is defined as )
(o)
SNR £ 10 mg,(,g—‘2 (2.80)

H

Figure 2.4: The effect of signal to noise ratio and DIT length on bispectral estimation for a
quadratically coupled harmonic signal. Larger DFT length and higher SNR provide better

estimates.

Equation 2.79 indicates how the bicoherence peak changes with SNR and segment
length, M. If the SNR is very high, then the second and third terms in the denominator
will be very close to zero and the bicoherence will be close to unity. As the SNR decreases,
the bicoherence value also decrcases. This can be presented in a 3-d plot as shown in

Figure 2.4. The size of the peak of the squared bicoherence is dependent on M because, as
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the DFT size increases, a better frequency resolution is obtained. Therefore, it is desirable
to have the DFT size as large as possible. However, this requirement conflicts with the
requirement of having a large number of data segments, K, to obtain reliable estimates. It
also increases the computational load. The DFT length is usually chosen to be the same as
cach segment length. In order to increase the number of data segments for a better estimate,
a certain amount of overlapping of data segments (e.g., 50% or less) can be allowed for data

sets having short lengths.

2.5 Conclusions

This chapter has presented a tutorial introduction to Higher Order Statistics and its relation
to classical second order statistics (SOS). Because the squared bicoherence function has
played a central role in this thesis, a special emphasis has been given to the bispectrum and
bicoherence, their estimation, and statistical properties of the estimator . Various propertics

have been explained with the help of illustrative examples wherever applicable.
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Diagnosis of Poor Control Performance

The presence of nonlincarities in the control loop is onc of the main reasons for poor
performance of a linear controller designed based on linear control theory. The nonlincarity
may be due o the presence of nonlincarities such as stiction, deadzone, hysteresis in the
control valve and the nonlinear naturc of the process itself. A nonlinear system often
produces a non-Gaussian and nonlinear time scrics. The test of Gaussianity of a signal
or the test of presence of nonlincarity in a system is a uscful diagnostic aid towards
determining the poor performance of a control loop. In this chapter two new indices, the
Non-Gaussianity Index (NGI) and the Non-Linearity Index (NLI), based on HOS theory
have been developed to detect and quantify signal non-Gaussianity and nonlinearity. These
indices together with specific patterns in the process output (pv) vs. the controller output
(op) plot can be conveniently used to diagnose the causes of poor control loop performance.
The method has been successfully applicd to many industrial data sets. Two of such case
studies are presented here. In both casces, the results of the analysis were confirmed and

mitigated during routine maintenance by plant engineers.

A preliminary version of this chapter was published in the proceedings of the LS TEAC world congress, 2002 (Choudhury et
al, 2002). A larger version including the diagnosis of poor control performance has been published in Automatica, \ol. 40, issue 10,

2004 (Choudhury et al., 2004d).

32
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3.1 Introduction

Increasing automation in modern process industries are taking place to achieve various
objectives such as maintaining world class quality of the product, reducing operating and
maintenance cost, enhancing operators’ safety, meeting environmental and occupational
health regulations, optimizing resource management, and increasing profitability from
available resources. One manifestation of this increased automation is an increasing
number of controllers and control loops in process industries. A process control plant
may have anywhere from a few control loops to several thousands, depending on the
complexity of the plant from the perspective of control. The performance assessment and
monitoring of the performance of these controt loops are crucial to the achievement of
desired objectives. Performance demographics of 26,000 PID controllers collected over a
period of two years and across a large range of continuous process industrics have becn
discussed by (Desborough and Miller, 2002). The results from their paper are shown in

Figure 3.1.

Figure 3.1: Global multi-industry performance demographics.

Each control loop (flow, pressure, level, temperature, cte.) was classified into one of the
five categorics — excellent, acceptable, fair, poor and open loop— based on a combined
algorithm of minimum variance benchmark and oscillation metric. The classifications were
further refined through extensive validation and feedback from industry to reflect controller
performance relative to practical expectations for cach measurement type. Itis evident from

Figure 3.1 that only a third of the loops are performing well or in an acceptable fashion.
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The other two-thirds have significant opportunity for improvement. The key to improving

their performance is to diagnose the causes behind their poor performance.

3.2 Problem Formulation

Figurc 3.2 shows a typical control loop under feedback configuration. The objective of
this control loop may be cither set point tracking or disturbance rejection. In practice,
data for three measurements per control loop are available. The available data are set
point (§P), controlled variable (PV), and controller output (OP or sometimes also termed
OP). There (Desborough and Harris, 1993; Harris, 1989; Stanfelj et «l., 1993) discussed
various methods, for example, minimum variance benchmark and settling time benchmark,
to estimate controller performance or loop performance from routine operating data. Also,
this information is available from plant engineers or operators, who are dissatisfied with
poorly performing loops. The challenge here is to identify the root cause of a poorly

performing loop from routine operating data.

SP - Set Point, CO - Controller Output (also called OP)
MV - valve positioner signal, PV - Process Variable (controlled)

Figure 3.2: A typical control loop under feedback control.

Poor performance of a control loop is usually caused by poor controller tuning,
presence of disturbances, and/or loop non-lincaritics. Loop nonlincaritics causc poor
performance because controllers are usually designed based on lincar control theory

assuming cverything in the loop is locally lincar. The nonlinearity in a loop may arise
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due to the presence of valve nonlinearities such as stiction, deadzone, hysteresis in the
control valve and/or nonlinear nature of the process itself. Such a nonlinear system often

produces a non-Gaussian and nonlinear time series.

3.3 Test of Gaussianity and Linearity of a Signal

The test of the Gaussianity of a signal or for the presence of nonlincarity in a system can
serve as a useful diagnostic tool to analyze poor performance of a control loop. Over the last
few decades, many researches have used the notion of bispectrum to test Gaussianity and
lincarity of a time series (Hinich, 1982; Rao and Gabr, 1980; Collis ¢r al., 1998; Terdik
and Mdth, 1998; Yuan, 1999). Hinich (1982) and Yuan (1999) constructed statistical
hypothesis test using sample interquartile range of the skewness function (for the definition
of skewness function please refer to Section 2.3.5) for testing lincarity of a time series. Rao
and Gabr (1980) used bispectral density function (bispectrum) to construct a Hotelling T2
test for the same purpose. The problem of using bispectrum or skewness function for testing
linearity of time series is that the magnitude of this function is not bounded. It is difficult
to compare magnitudes of an unbounded function when applied to multiple time series or
signals. Terdik and Mdth (1998) also used bispectrum to test the null hypothesis that a
predictor of a time serics is lincar against the alternative that the predictor is quadratic.
This is a narrow and less powerful test because often times the type of nonlinearity of a
signal is unknown. Collis er al. (1998) used the bicoherence function whose magnitude
is bounded between 0 and 1 to check lincarity of a signal or time series. But they have
not constructed any statistical test. In this thesis, bicoherence has been used to construct a
chi-square test for examining lincarity of a time serics or signal. The hypothesis tests are
incorporated in two new indices — the non-Gaussianity index (NG/) and the nonlinearity
index (NLI). The magnitudes of new indices are always bounded between -1 to [ because
bicohcrence, whose magnitudes are also bounded between 0 and 1, are used to define them.
The definition and development of these indices using statistical test on a bounded function
(bicoherence) allow the users to apply them for comparing multiple time series or control
foops. The derivation and development of these indices are described below.

A discrete crgodic stationary time series, x(k), is called lincar if it can be represented by
M-

x(k) = Z h(n)e(k —n) (3.1
n0

where e(k) is a sequence of independent identically distributed random variables with
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Ele(k)] =0, o2 = E[¢*(k)], and p3 = E[e*(k)]. For this case, the following frequency

domain relationships can be obtained.

The power spectrum: P(f)=c2|H(f) = IX(H)X*(N)] (3.2)
and the bispectrum: — B(fi, ) = wHWHDH (i + ) (33)
M=
where H(f z h(n)e™"™ Equation 2.65 can be rewritten as
n--0
2 ey s ]13(/‘1,15)12
bic=(fi, ) =
VDAY = ERGX CTKURIX (] ETXGh 0% Ur + )]
|B flffZ)]-

= EPUOIPUEIPG + 7] o

For a linear time series, substituting the expressions from Equation 3.2 and 3.3, it can be

shown that

/Jx

(

Equation 3.5 shows that for any linear signal, x, the squared bicoherence will be

bic*(fi,2) = (3.5)

independent of the bifrequencies, i.c., a constant in the bifrequency plane. If the squared
bicoherence is zero, the signal x is Gaussian because the skewness or 3 is also zero in such
a case. Strictly speaking, such a signal should be called non-skewed with a symmetric
distribution instead of a Gaussian one. However, in this thesis and also in most of the
HOS literature (Nikias and Petropulu, 1993; Hinich, 1982; Rao and Gabr, 1980; Kim
and Powers, 1979; Collis et al., 1998; Fackrell, 1996) the two terms — nonskewed and
Gaussian — have been used interchangeably. To check whether the squared bicoherence
is constant, two tests arc required. One 1s to determine whether the squared bicoherence
is zero, which would show that the signal is Gaussian and thereby the signal generating
process is lincar. The other is to test for a non-zero constant squared bicoherence which
would show that the signal is non-Gaussian but the signal gencrating process is linear.
The bicoherence is a complex quantity with real and imaginary parts. The magnitude of

the squared bicoherence can be obtained as
.2 N < \D .2
bic® = R(bic)~ + S (bic)” (3.6)

where R and S are real and imaginary parts, respectively. It is well well established in
the HOS literature that bicoherence is a complex normal variable, i.c., both the estimates
of real and imaginary parts of the bicoherence are normally distributed (Hinich, 1982) and

asymptotically independent, i.c., the estimate at a particular bifrequency is independent
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of the estimates of its neighboring bifrequencies (Fackrell, 1996). Therefore, the squared
bicoherence at each frequency is a non-central chi-squared (y*(m)) distributed variable
with 2 degrees of freedom and mean, m. Note that bic? is bounded between 0 and 1 and
therefore the E{bic?} and var{bic?} are also bounded between 0 and 1. Hinich (1982)
showed that the signal of interest is Gaussian if the skewness function is asymptotically
centrally x? distributed with 2 degrees of freedom. This information was used by
(Fackrell, 1996) to test bicoherence at each frequency in the principal domain. The
disadvantage of this test is that while applying to each of the bifrequencies in the principal
domain of squared bicoherence plot, the probability of false detection accumulates owing
to a large number of bifrequencies in the principal domain. Thus it overestimates the
number of bifrequencies in which the bicoherence magnitude is significant. A modified test
with better statistical properties but no frequency resolution is formulated by averaging the
squared bicoherence over the triangle of the principal domain. The test can be summarized
as follows:

e Null Hypothesis, H,: The signal is Gaussian
e Alternate Hypothesis, H,: The signal is not Gaussian.

Under the null hypothesis, the test for the average squared bicoherence can be based on
the following cquation:
PQRKLbi? > )=« (3.7)

2

where ¢g s the critical value calculated from the central x* distribution table for a

L

I bic? and L is the number

significance level of o at 2L degrees of freedom since bic = Y
of bifrequencics inside the principal domain of the bispectrum, K is the number of data
segments uscd in the bicoherence estimation.

If the number of bifrequencies in the principal domain is large (more than 100) the
normal approximation of the ¥? distribution can be used. The approximation is given by

Abramowitz and Stegun (1972):

LA
& = sles+v2dof - 1) (3.8)

2

where & and ¢, are the critical values of x* and standard normal distribution at a
significance level of a, respectively and dof is the degrees of freedom. Now, substituting

Equation 3.8 into 3.7 with 2L degrees of freedom, it can be shown that

— | .
P(bic? > TR VAL - 1) = « (3.9)
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This equation can be rewritten as

P(bic? = bic2eyi; > 0) = & (3.10)
or, P(NGI>0)=« (3.11)

where bic?ci = pr(cs + VAL ~1]* and NGI £ bic? — bic®cryy NGI stands for the Non-
Gaussianity Index and it is bounded between -1 to 1. Therefore, at a confidence level of a,

the following rule-based decision can be obtained:

e if NGI <0, the signal is GAUSSIAN

o if NGI > 0, the signal is NON-GAUSSIAN

Thus, a signal is Gaussian (non-skewed) at a confidence level of & if the NGI is less than
or equal to zero. This index has been defined to facilitate the automation of the decision.

If the signal is found to be Gaussian, the signal gencrating process is assumed to be
linear. In the case of non-Gaussian signals the signal generating process should be tested
for its linearity. As shown in Equation 3.5, if the signal is non-Gaussian and lincar, the
magnitude of the squared bicoherence should be a non-zero constant at all bifrequencies
in the principal domain. The constancy of the squared bicoherence (skewness) was tested
using an F test by Rao and Gabr (1980). Hinich (1982) reported that this test is highly
vulnerable to outliers. He suggested a method based on the Sample Interquartile Range
(SIQR) of the x2 distribution of the squared skewness function (Hinich, 1982). However,
this test depends on the sample size of the time series. Also, the SIQR is not an ideal
measure for constant bicoherence because it is readily seen that the SIQR of the squared
bicoherence can be zero, though all squared bicoherence values are not equal (Yuan, 1999).
A simple way to confirm the constancy of squared bicoherence is to have a look at the 3-D
squared bicoherence plot and observe the flatness of the plot. However, this can be tedious
and cumbersome for a large number of loops. Alternatively, if the squared bicoherence is
of a constant magnitude at all bifrequencics in the principal domain, the variance of the
estimated bicoherence should be zero. To check the flatness of the plot or the constancy
of the squared bicoherence, the maximum squared bicoherence can be compared with the
average squared bicoherence plus two or three times the standard deviation of the estimated
squared bicoherence. At a 95% confidence level, if the maximum squared bicoherence,
biﬂc'z,,,u‘r, 15 less than (l)iAc'2 + 26[”.:‘3), then the magnitudes of squared bicoherence are
assumed to be a constant or the surface is flat. The automatic detection of this can be

performed using the following Nonlinearity Index (NLI), which is defined as:

NLI £ bic20, ~ (bic2 +20, - ) (3.12)
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where 0, -, is the standard deviation of the estimated squared bicoherence and bic? is the
average of the estimated squared bicoherence. Ideally, the NLI should be 0 for a linear
process. This is so because, if the squared bicoherence is a constant at all frequencies, then
the variance will be zero and both the maximum and the mean will be same. Therefore, it

can be concluded that:
e if NLI <0, the signal generating process is LINEAR
e if NLI > 0, the signal generating process is NONLINEAR

Since the squared bicoherence is bounded between 0 and 1, the Nonlinearity Index (NLI)

1s also bounded between -1 and 1.

Poorly performing
control loop data

l

r Calculate NGI ]

NGI > 0.001

3 I Non-Gaussian l
Gaussian, Linear

[ Calculate NLI I

o NLI > 0.01 yer

Possible causes:

1. linear external oscillation B . . .
L ¢ e Non-Gaussian, Lincar Nonlincar
2. tightly tuned controller

3. and so on

Diagnose the type of nonlincarity:
e, look at pv-ap plots or typical signatures
of actuator or process nonlinearities

Figure 3.3: Rule based decision flow diagram.

Practical Implementation: In practice, it is difficult to obtain an exact zero value of
NGI for Gaussian signals. Therefore, we select a threshold value, €, of NGI such that
NGI < € implies a Gaussian signal. To the best knowledge and experience of the author, for
o =0.05, an NGI value of less than € = 0.001 can be assumed to be zero. Consequently, if
NGI <0.001, the signal can be assumed to be Gaussian at a 95% confidence level. For NLI,
a value less than 0.01 1s assumed to be zero and consequently, the process is considered to

be linear at a 95% confidence level. The larger the value of NLI, the higher the extent of
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nonlinearity. The detailed diagnosis procedure can be summarized in a rule-based decision

flow diagram shown in Figure 3.3.

3.4 [Illustrative Examples

3.4.1 Bicoherence of a linear and nonlinear signal

Two signals, Yinear a0 Yyontinear, Were generated using the following equations.

x(k) = 3H(g7")d, (k)
Ninear = \(l\) +d (k) (3.13)
Ynonlinear = \(l\) +0. l\(/\)z +dy (/\) (3.14)

where d; (k) and > (k) are zero mean white noises with variance 1 and 0.001 respectively.,
and H(g™") is a narrow pass Butterworth filter with a frequency range 0.095 0 0.105 in a
0 1o 0.5 normalized frequency scale, such that f; = 1 is the sampling frequency.

The purpose of this example is to demonstrate the power of the bicoherence in the
detection of nonlincarity. By merely looking at the time trend of the signals (the left
panel of Figurc 3.4), it is not possible to differentiate between them. Also, the power
spectrums (the middle panel of Figure 3.4) or the second order moments look alike and
are unable to detect the noniincarity present in the second signal. The right panel of
Figure 3.4 shows the three dimensional bicoherence plots. For vyieqr, the test result is
NGI = -0.0028. Clearly, the NGI indicates that the signal is Gaussian. Therefore, the
nonlinearity test result is not required here. In contrast, for v, iinears the NGI equals
0.002, thereby detecting the non-Gaussianity of the signal. The nonlinearity test gives
NLI = 0.37, which clearly indicates the presence of nonlinearity in this signal. From the
bicoherence plot, the peak positton in the principal domain is approximately at the (0.1,0.1)
bifrequency. This means that the nonlincarity in the signal is due to the interaction of
these two frequencies. Examination of the signal generating system reveals that the band-
pass filtered signal has the frequency range [0.095 to 0.105]. This signal was squared to
introduce nonlincarity. Thus, the nonlinearity is due to the multiplication of two signals,
cach having a frequency of approximately 0.1, In the bicoherence plot the bifrequency of
the identified peak is (0.1,0.1). Therefore, the HOS based method correctly identifies the

frequencics of nonlinear interactions.
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Figure 3.4: Results for Yiear (10p) and ¥ yopiinear (bottom).

3.4.2 Bicoherence of a nonlinear sinusoid signal with noise

An input signal was constructed by adding two sinusoids, each having a different frequency
and phase. That is,

x(k) = sinQ2rfik+ ¢)) +sin(2r frk + )
(k) = x(k)+d(k)
yk) = (1\) n,\( )? +d(k) (3.15)

where, f1 =0.12, f, =0.30, ¢; = /3, ¢ = n/8, n; is a multiplication factor employed
to represent the contribution of the nonlincar component of the signal, and d(k) is a
white noise sequence with variance 0.04. Again, frequencies are normalized such that
the sampling frequency is 1.

The quadratic term in Equation 3.15 will introduce phase coupling in the output signal,
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Table 3.1: QPC relations for the output signal, y

frequency relations phase relations peak locations
1 fi+fi=2h o1+ @1 =24 (1)
2 Ht =20 $2+ ¢ =20 (f2,.12)
3 fith=h+h O +¢: =01+ (fi:/2)
41 h+(h-N)=1 ¢+ (d2— 1) = (fi.fa=11)
S1-f)+Uh+R)=2Lor+d+(—¢)=¢1+¢ | (L-Si,/i+]2)
6| (=S)+2fi=Ni+f2 | 200+ (2—1) =1+ (2= f1.211)

y. It can be better understood by rewriting Equation 3.15 in the following form:

y(k) = sinQRQrfik+p)+sin(271 2k + ¢2) +0.25[1 — cos(2(27 ik + 1))
—cos(2(2mfak + ¢2)) + cos(2m(fo — f1)k+ ¢ — @)
—cos(2m(f1 + L)k + @1 + d2)| +d (k) (3.16)

The nonlinearities can be gencrated by the interactions of any two of the signals with
frequencics fy, f2, 2f1, 2f2, f2— fi, and f1 + f>. Due to the presence of the quadratic
nonlinearity function, there can be six frequency couplings. These are presented in Table
31

I. Case I: Mild Nonlinearity (1; = 0.05)

The left panel of Figure 3.5 shows the time series while the middle panel depicts
the power spectrum of the signal x and y, respectively. Neither of these plots help
in distinguishing the two signals. However, the use of higher order statistics can
successfully detect the nonlinearities present in y. The right panel of Figure 3.5
shows the three-dimensional squared bicoherence plots of x and v, respectively. For
the signal x, NGI = 0.0008, which clearly indicates that the signal is Gaussian and
lincar.

In contrast, in the case ofr y the test results are NGI = 0.016 and NLI = 0.233,
Thus the nonlincarity present in y is correctly detected.  This example also
shows the sensitivity of the proposed indices to the presence of nonlinearity in
the signal. The presence of as little as 5% of the nonlincar square term in the

signal v has been detected.  For this case, the squared bicoherence plot shows
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peaks at (0.12,0.12), (0.12,0.18), (0.30,0.30), and (0.12,0.30) bifrequencies. These
bifrequencies correspond to (f1.f1),(f1./2 = fi), (f2,f2) and (fi, f2) respectively.
Note that because only 5% of the nonlinear term was added, the other two peaks are

not visible in the bicoherence plot owing to their small sizes.
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Figure 3.5: HOS analvsis results for the linear and nonlinear sinusoid signals, case 1 -
A . 8

mild nonlinearity.

2. Case 2: Strong nonlinearity (1; = 0.25)

For this case, the signal y was produced using the same Equation 3.15 but with a
larger multiplying factor for the nonlinear quadratic term in order to observe all the
peaks in the bicoherence plot resulting from the theoretical analysis in Table 3.1. The
magnitude of n; was chosen as 0.25. A different value of 1 can also be picked.

Figure 3.6(a) shows the time trend of y, while the power spectrum of v is shown in
Figure 3.6(b). This time power spectrum shows extra peaks of small magnitude at
frequencies 0.18. 0.24, and 0.42. The use of higher order statistics can successfully

detect the nonlincarities present in v, The magnitudes of NGI and NLI are 0.02
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and 0.67, respectively, clearly detecting the nonlinearity of the signal. Figure
3.6(c) depicts the three-dimensional squared bicoherence plots for y. In order to
visualize the location of the bicoherence peaks, a contour plot for the bicoherence
magnitude is presented in Figure 3.6(d). This plot clearly shows the location
of all six peaks at (0.12,0.12), (0.30,0.30), (0.12,0.30), (0.12,0.18), (0.42,0.18),
and (0.18,0.24) bifrequencies. These bifrequencies correspond to (f1.f1), (f2./2).
(fiof2) (i fr = Ji) (fi+ foufo = fi), and (2~ f1.2£3) respectively. Note that
since 25% of the nonlinear term was added, all the peaks were visible for this
case. Therefore, the bicoherence plot correctly identifies the frequency interactions

resulting from the presence of nonlinearity in the signal.
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Figure 3.6: HOS analvsis results for case 2 - strong nonlinearity.
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3.5 Investigation of Control Loop Nonlinearities

In a control loop, nonlinearities may appear in scveral locations:
1. The process itself may be nonlinear in nature.
2. The control valve may have a nonlinear characteristic.

3. The valve may be affected by some nonlinear faults, ¢.g., stiction, deadband and

hysteresis.
4. A nonlinear disturbance may enter the loop.

In order to detect and diagnose any problem related to loop nonlincarities all of the
above should be investigated carefully. In this section, cach of these nonlinear sources is

examined separately.

3.5.1 Process nonlinearity

It is often assumed that the process operates in a locally linear fashion. This section
investigates this assumption using results obtained from the application of higher order
statistical tests. Analysis of process nonlinearity using HOS will be illustrated using an
example obtained from Agrawal and Lakshminarayanan (2003). Consider the control of
water level in a spherical tank by manipulating the inlet volumetric flow rate, F; (see Figure
3.7). The dynamics of the system can be modelled as:

(R—h)* dh

Rl = ———"]— = F(t~d) - F, 3.
mR7| T Fi(t =d) = I, (1) (3.17)

where 17,(1) is the outlet flow rate at time ¢, I is the height of the water level from the bottom
of the tank, R is the radius of the spherical tank, and d is the time delay between F; and F,.

The outlet flow rate, F,, can be expressed as
Fo(t) = /2g(h—h,) (3.18)

where g 1s the gravitational constant and /1, is the height of the outlet pipe from the base of
the vessel. For both open loop and closed loop simulations of the system, we use R = 0.5

m, /1, = 0.01 m, and the nominal operating point is sclected to be, Ay = 0.30 m.
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)

Figure 3.7: Level control of a spherical tank.
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Figure 3.8: Results of the analysis of open loop data for the spherical tank system.

Open Loop Simulation of the Process

The input to the process was a sinusoid with frequency 0.02 Hz and amplitude 0.25. 4096
data points were used for nonlinear analysis. The nonlinearity test results in NGI = 0.0024
and NLI = 0.633. This clearly demonstrates that the process is nonlinear. The time trend of
pv and the squared bicoherence plot are shown in Figure 3.8. Since the excitation was very
large (2+0.25/1 = 50% of the tank height) the nonlincarity of the process could not be
ignored. The nonlinearity of any process strongly depends on the size of the excitation or
input signal. For example, if the same spherical tank process is excited by a sinusoid with
an amplitude of 0.05, the process docs not show any nonlincarity in the bicoherence test.

The values of NGI and NLI arc -0.001 and 0.05. The corresponding squared bicoherence
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squared bicoherence

Figure 3.9: Squared bicolerence for small excitation of spherical tank level.

plot is shown in Figure 3.9. Therefore, a system with small excitation can be assumed to

be locally lincar.

Closed Loop Simulation of the Process
The PI controller settings used for this simulation are given by:

-1
C(:"'):0'3-0'I§ (3.19)
|-zt

The input to the process was a sinusoid with frequency 0.02 Hz and amplitude 0.25. Four
thousands and Ninety Six (4096) data points from the controller error signal were used for
nonlincar analysis. The nonlincarity test results in NGI = 0.0011 and NLI = 0.30. This
clearly detects that the process is nonlinear. The time trend of sp — pv and the squared
bicoherence plot are shown in Figure 3.10. Large peaks are observed in the bicoherence
plot. If the magnitude of the input excitation signal or set point is changed to 0.05, the
nonlincarity test applied to the error signal gives NGI = —0.01, indicating a lincar process.
The flatness of the bicoherence plot shown in Figure 3.11 shows that the process can indeed

be considered locally linear.
Remark: The assumption of linearity of a process is case-dependent. Most control loops
in chemical process industries operating under regulatory feedback control for rejecting
disturbances usually have small excitations. Therefore, they can be assumed to be locally

linear.
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Figure 3.10: Results of the analysis of closed loop data for the spherical tank svstem.
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Figure 3.11: Squared bicoherence for small excitation of the spherical tank level under

feedback control. The flatness of the plot shows the linearity of the process.

3.5.2 Nonlinear valve characteristic

The valve is the final control element in a control loop. The flow through a valve is often

described by the following relationship:

AP,
— (3.20)
5.8.

Q= KC\'(-")\

where () is the volumetric flow rate through the valve, K is the constant that depends on the
units used in the equation, C, is the valve co-efficient which depends on the inherent valve
characteristics and the stem position (x), AP, is the pressure drop across the valve, and s.g.

is the specific gravity of the fluid. There are three common valve characteristics:
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e Linear characteristics: Co(x) =
e Equal percentage valve: Co(x) = kb

¢ Quick opening or square root valve:  Cy(x) = /x

where, K is constant and 50 is a value frequently used for it.
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Figure 3.12: Inherent characteristics for linear, equal percentage and square-root valve.

These valve characteristics are illustrated in Figure 3.12. Note that for quick-opening
valves, the sensitivity of the flow to the fraction opening or stem position is high at a low
flow rate and low at a high flow rate. The opposite is true for equal percentage valves.
These relationships have been defined for constant pressure drop across the valve carrying

an incompressible fluid. Thus, these relationships are valid only under such conditions.

Linear valves

As the name suggests, a linear valve has lincar characteristics.  There is no inherent
nonlincarity in this type of valve. The other two types of valves will be examined for

their nonlinear characteristics in the following section.

‘qual percentage valves

These are called equal percentage valves because an equal incremental increase in valve

travel or stem position causes a constant percentage increase of flow from the carlier flow.
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For example, if a value of k = 50 is used, for every 10% increase in stem position or valve
travel x, there will be an increase of 47.88% of the flow from the previous flow. The effect
of nonlinearity in the characteristic equation of this type of valve has been investigated

using the following simulation example.

noise

Stiction | mv pv

PI |o
P Process

Controller model

Figure 3.13: Block diagram of a simple SISO process with stiction nonlinearity in the valve.

A simple single-input, single-output (SISO) system in a feedback control configuration
(Figure 3.13) was used to generate simulated data. The first order process with time delay

is given by the following transfer function:

73145 -z771)

3.21
1 —0.877" G.21)

Gz™h) =

The process is regulated by a Pl controller. A random white noise with a variance of 0.5
was added to the process. The simulation was performed for a steady state of 12 mA or the
valve position at 50%. The valve had to travel in the range of 25% around the steady statc
in order to reject the disturbances to the loop. The PI controller parameters for this case
were K. =0.15and I = K. /1, =0.15 second™". The nonlinear ‘stiction model’ block was
removed from the simulation block diagram and a function describing the equal percentage
valve characteristic was placed in that position. The simulation was performed for 6000
sampling intervals. To remove the effect of transients, the first several hundred data points
were discarded, and then the fast 4096 points of the crror signal to the controller (sp-pv)
were analyzed to detect the nonlinearity present in the system. Transients have a serious
contamination effect on the estimated bicoherence. For details, refer to (Fackrell, 1996).
The proposed nonlinearity test shows that NGI = —0.001 1. This shows that the error signal
is Gaussian and linear indicating linearity of the loop. The left plot of Figure 3.14 shows
the squared bicoherence plot for the control error of this loop.

When the noise variance was increased to 1.5, the valve had to travel 40% of its full
range. The nonlinearity test shows that NGI=0.003 and NL/=0.07. This indicates the loop
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Fieure 3.14: Bicoherence plot for an equal percentage valve. Left - Valve travels less than
pLol, 8

25% of its full span. Right- Valve travels more than 25% of its full span.

is nonlinear. The corresponding bicoherence plot is shown in the right plot of Figure 3.14.

Square-root valve

The quick opening or square root valve provides large changes in flow for small changes
in valve travel or stem position. Therefore, it has a high valve gain unsuitable for use in
regulatory control. Its usc is limited to on-off service. To investigate the nonlinear behavior
of this valve, a simulation study was performed using the procedure described in the case
of the equal percentage valve, but with the use of a square root valve instead of an equal
percentage one. The valve was forced to travel in the range of 17.8% around the steady state
(50%) to climinate the effect of disturbances. As before to remove the effect of transients,
the first several hundred data points were discarded. The last 4096 points of the error signal
to the controller (sp-pv) were analyzed to detect the nonlinearity present in the system. The
proposed nonlincarity test shows that NGI = —-0.0010. This indicates that the error signal

is Gaussian and linear indicating the lincarity of the loop.

Remarks on nonlinear valve characteristic

As demonstrated, if the valve travels within a small range of the whole travel span (0-
100%), say within 20%, then the valve characteristics can be assumed linear and does not
add any nonlincarity to the loop. This observation can also be realized by investigating the

valve characteristic curves in Figure 3.12. For any Av = 20%, the characteristic curves can
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be assumed to be lincar. These characteristic curves are called ‘inherent characteristics’
of the valve. They are only valid for constant pressure drop across the valve and for an
incompressible fluid flow. However, in real life the pressure drop across the valve does not
remain constant. Morcover, the valve is connected to other process equipment. Therefore,
the characteristic curves of the valve should be re-evaluated after installing the valve in a
rcal process. These characteristics are termed ‘installed characteristics’.

In reality, the flow through the valve also depends on the pressure drop across the
valve. Manufacturers test valves in a rig, where the pressure drop is kept constant.
Thus the performance they observe is the ‘inherent characteristics’ of the valve. In
a real plant, pressure drop varies as the flow changes.  Therefore, the characteristic
relationship scen between valve travel and flow will not be the same as that seen in
the test rig. This “installed characteristic’ is what really matters to a process engineer.
That is why during the selection and design of a valve, considerable effort is made to
ensure that the ‘installed characteristics” of the valve is as lincar as possible (Fisher-
Rosemount, 1999; Fitzgerald, 1995; Baumann, 1994; Riggs, 1999). As described in
(Fisher-Rosemount, 1999), it is a good operating practice to keep valve swings below 5%
so that the loop gain docs not change much and stability of the loop s cnsured. Based
on the author’s experience in industrial data analysis, it has been found that the controller
output in most cases swings below 10%. Therefore, the control valve characteristics can be

assumed to be locally linear in most cases of real world data analysis.

3.5.3 Nonlinear faults in valve

Control valves are mechanical devices subject to wear and tear with time. That is why
they require regular maintenance. With time, they may develop various problems such as a
large deadband, excessive static friction or stiction, saturation, backlash and seat corrosion.
All these problems reduce performance of the control loop. Detection and diagnosis of
such problems are the main objective of this thesis. The problem of valve stiction has been

studied in detail herein.

Valve Saturation

All equipment has physical limits. A valve can not open more than 100% or can not close
more than 0%. If the controller output demands a valve be open more than 100% or close
more than 0%, the valve saturates. The input-output behaviour of saturation is shown

in Figure 3.15. If there is persistent saturation in a control valve, control performance
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Figure 3.15: Input-output characteristics of valve saturation.

deteriorates and oscillations originate in the process variable. Therefore, techniques for

diagnosing poor performance must be capable of detecting valve saturation.

3.5.4 Nonlinear disturbances

The disturbance entering a control loop may be lincar or nonlinear. If the disturbance
is measurable, the nonlinearity test developed in Section 3.3 can be applied to assess its
nonlinearity. If the disturbance is unmeasurable, it is difficult to infer anything about the
lincarity of the loop. For the sake of simplification, the unmeasured disturbances entering
the control loops are assumed to be linear in this study. More discussions on it are provided

in chapter 5.

3.6 Simulation Example to Diagnose the Causes of Poor

Performance

Poor performance of a control loop can be caused by various factors. Examples include (1)
poorly tuned controllers, (2) the presence of oscillatory disturbances and (3) nonlinearities.

The purpose of this simulation is to demonstrate the application of HOS based techniques
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in diagnosing causes of poor performance. If the method does not detect nonlinearity,
then the focus of the diagnosis should be on controller tuning or on the possible presence
of an external linear oscillatory disturbance. If the method detects nonlinearity, then the
nonlinearity must be isolated or localized. Is it in the valve or in the process? This study
assumes that the process is locally linear.

The system described in the Section 3.5.2 has also been used for this simulation study.
The process is regulated by a PI controller. An integrated white noise generated by
integrating random noise with a variance of 0.05 was added to the process. The simulation
was performed for 6000 sampling intervals. To remove the effect of transients, the first
several hundred data points were discarded. The last 4096 points of the error signal to the

controller (sp-pv) were analyzed to detect the nonlinearity present in the system.

3.6.1 Well tuned controller

The PI controller parameters for this case were K. = 0.15 and / = K. /7, =0.15/1 = 0.15
second™". The nonlinear ‘stiction model” block was removed from the simulation block
diagram. The top row of Figure 3.16 shows the results for this case. The proposed test
shows that NGI = —0.0008. This indicates that the crror signal is Gaussian and linear. The

corresponding bicoherence plot is flat.

3.6.2 Tightly tuned controller

For this case, the controller parameters were set at K. =0.15and I = K. /7; = (0.15/0.4) =
0.375 second™'. The sccond row of Figure 3.16 shows the results. The presence of
relatively large integral action produces large oscillations in the process variables. An NG/
value of -0.0007 indicates the Gaussianity and linearity of the system. It suggests that the
poor performance is not due to nonlinearities. Also, since there are no external oscillatory

disturbances, the probable cause is the presence of a tightly tuned controller.
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Figure 3.16: Results of the simulation example. Bicoherence correctly detects the first three

cases as linear and the last case as nonlinear. The py-op plot for the stiction case shows

elliptic patterns.

3.6.3 Presence of an external oscillatory disturbance

A sinusoid with amplitude 2 and frequency 0.01 was added to the process output in Figure

3.13 in order to feed an external oscillatory disturbance to the process. The results for this

case arc shown in the third row of Figure 3.16. Horch's correlation method (Horch, 1999)

of diagnosing the oscillation or more specifically valve stiction gives an odd correlation
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function between op and pv for this case, thereby falsely detecting the presence of stiction
in the control loop (more discussion will be provided in Section 5.6.2). The proposed test
gives an NGI value of -0.0003. It clearly shows that the reason for the oscillation is not due

to presence of nonlinearity in the system. The bicoherence plot is also flat.

3.6.4 Presence of stiction

A valve stiction model developed as part of this work (sce Chapter-4, plus Choudhury and
Shah (2001) and Choudhury et al. (2004a)) was used to perform this simulation. The model
consists of two parameters: (1) deadband plus stickband, S and (2) slip jump, J. Figure 4.11
in Chapter 4 summarizes the model algorithm.

To perform the simulation for this particular case, § = 3 and J = | were used. Note
that in order to initiate limit cycles or oscillations in a simple first order time delay process
in the presence of valve stiction, a set point change at the beginning of the simulation is
required. Thereafter, the process is allowed to operate under regulatory control. The last
row of Figure 3.16 shows the time trend of the control crror signal, the bicoherence plot
and the pv-op plot. The presence of stiction produces oscillations in the process. The
values of NGI and NLI are 0.05 and 0.048 (the thresholds for NGI and NLI are 0.001
and 0.01 respectively), clearly detecting the presence of nonlinearity in the process signal.
After detecting the nonlinearity, the process variable versus controller output plot, i.c., pv-
op plot can be used to diagnose the type of nonlincarity. Usually, the presence of distinct
elliptical loops with sharp-turn around points is an indication of the presence of stiction in
the valve. Note that for other cases there are no such distinct cycles in py-op plot (sce the
right panel of the Figure 3.16). If the valve position (mv) is available, the mv-op plot can

be conveniently and more accurately used to identify the type of nonlinearity in the valve.

3.7 Industrial Case Studies

The proposed method has been successfully applied to the detection and isolation of
actuator or valve faults for many industrial control loops. There are many types of valve
faults such as stiction, saturation, oversized valve, and corroded valve seat. One diagnosis

example for cach type of valve faults will be discussed here.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.7 Industrial Case Studies 57

3.7.1 Stiction in a furnace dryer temperature control valve

This subsection describes a temperature control loop on a furnace feed dryer system at the
Tech-Cominco mine in Trail, British Columbia, Canada. The temperature of the dryer
combustion chamber is controlled by manipulating the flow rate of natural gas to the
combustion chamber. The minimum variance performance index of this loop was very
poor.
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Figure 3.17: Analysis of time series data from an industrial temperature control loop.

Figure 3.17(a) depicts time trends of the controlled variable, the controller output and
the set point. It shows clear oscillations in both the controlled variable and the controller
output. Figure 3.17(b) shows the bicoherence plot. The NGI and NLI obtained for this
loop were 0.006 and 0.197 respectively, clearly indicating the presence of nonlinearity in
the loop. The presence of distinct cycles in the characteristic py-op plot (Figure 3.17(¢))
together with the pattern obtained in Figure 3.17(d) characterize the presence of backlash
and stiction in the control valve. Thus, this analysis was able to confirm the cause of poor

loop performance due to the presence of valve stiction.
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3.7.2  Valve Saturation

Figure 3.18 illustrates an example of an industrial control loop where the valve suffers
from saturation. The time trends of the pv, op, and sp are depicted in Figure 3.18(a)
showing oscillations. The bicoherence test gives NGI = 0.07 and NLI = 0.29, clearly
indicating a nonlinear loop. The corresponding bicoherence plot also shows many large
peaks indicating significant nonlincarity. To diagnose the type of nonlinearity, specific
patterns in pv-op plot are found to be uscful. The pv-op mappings for this Joop is shown
in Figure 3.18(c). A vertical straight linc with some random cycles in the pv-op plot is a
signature of valve saturation. If the valve saturates in both ends (that is for both full close
and full open conditions), there will be two vertical straight lines in the pv-op plot. The
explanation of this pattern lies in the use of anti-wind up in the integral action of the PI(D)
controller. Because of anti-wind up action, the controller output is kept constant while the

process output may change.
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Figurce 3.18: Results of the analvsis of an industrial loop with valve saturation.
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3.7.3 Valve problems in some flow control loops

This analysis is for two flow control loops at Celanese Canada Ltd., a chemical complex
located in Edmonton, Canada. Data were collected with a sampling interval of 1 min over
two periods of time: April 10 to 17, 2001 and July 1 to IS5, 2001, the latter following

an annual maintenance shutdown of the plant. Results for both these loops are discussed

below.
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Figure 3.19: Analysis of flow loop 1 data before (April - left) and after the (July - right)

plant maintenance shutdown period.

Oversized valve

This is a recycle flow control loop. Detailed diagnostic plots are shown in Figure 3.19.
Time series of the data collected in April and July are shown in Figures 3.19(a) and
3.19(b). The op trend in Figure 3.19(a) shows that the valve movement was very slow
and insignificant compared to the change in the crror signal, (fnv-sp). The values of NG
and NLI arc 0.01 and 0.10 respectively. An NGI value of 0.01 shows that the signal is Non-
Gaussian, The NLI value of 0.10 indicates the presence of nonlinearity in the error signal.
The op time trend in Figure 3.19(a) shows that a small change in op caused a big change

in pv value (note the range of y-axis for op, 49.4 to 50). Thercfore, it was suggested that
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the nonlinearity in this loop was most likely due to an oversized valve. This 6-inch valve
was replaced by a 3-inch valve during the annual maintenance shutdown of the plant (in
May, 2001). In order to confirm the result of the analysis, additional data were collected in
July. The results of the ‘post-maintenance’ data analysis are shown in the right half of the
Figure 3.19. For the new data set, NGI = 0.0005 (less than 0.001). These values indicate

Gaussian lincar system characteristics.
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Figure 3.20: Analysis of flow loop 2 data before (April - top) and after (July - bottom) the

plant maintenance shutdown period.

Corroded valve seat

This is also a flow control loop at the outlet of a pump located at the bottom of a
distillation column. Analysis of the April, 2001 data for this loop revealed that the foop had
nonlincarity problems with NGI = 0.032 and NLI = 0.13. The diagnostic plots are shown
in the top panel of Figure 3.20. The test results correctly detected the presence of significant
nonlincarity. The pv-op characteristic plot indicated a type of nonlincar characteristic in
the process or the valve that had not been observed before. During the annual maintenance,
plant instrument personnel noticed that the valve seat and the plug were severely corroded.

Conscquently, the valve was replaced. The results of the ‘post-maintenance” analysis are
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shown in the lower panel of the Figure 3.20. Now NGI = 0.04 and NLI = 0.06, indicating
yet again the presence of a nonlinearity but in a substantially reduced form. The pv-op plot
still shows unfamiliar patterns for unknown sources of nonlinearities. However, the overall
controller performance of this loop has improved significantly to the point where additional

analysis was deemed unnecessary.

3.8 Conclusions

Based on HOS theory, two new indices — the Non-Gaussianity Index (NGI) and the Non-
Lincarity Index (NLI) — have been developed to detect and quantify signal non-Gaussianity
and nonlinearity. These indices together with specific patterns in the process output (pv) vs.
the controller output (op) plot can be conveniently used to diagnose causes of poor control
loop performance. The method has been successfully applied to many industrial data sets.
Several representative examples of such studies have been presented here. In all cases, the

results of the analysis were confirmed by plant engineers.
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Modelling Control Valve Stiction

The presence of nonlinearities, e.g., stiction, deadband and backlash in a control valve
limits the control loop performance. Stiction is the most common problem in spring-
diaphragm type valves, which are widely used in the process industry. Though there have
been many attempts to understand and model the stiction phenomenon, there is a lack of
a proper model which can be understood and related directly to the practical situation as
observed in real valves in process industry. This study focuses on the understanding, from
rcal-world data, of the mechanism that causes stiction. It proposes a new data-driven model
of stiction, which can be directly related to real valves. It also validates the simulation
results generated using the proposed model with that from a physical model of the valve.
Finally, valuable insights into stiction have been obtained from the describing function

analysis of the newly proposed stiction model.

I.»\ Sull paper on this chapter has been accepied for publication in Control Engineering Practice. 2004 {Choudhury et al., 2004b)
and also a brief paper was presented at ADCHEM 2003 (Choudhury et al.. 2004a), All sections of this chapter were created entirely by

the thests author apart from the materials presented in sections 4.4 and 4.6, which are the results of a joint work with Nina Thornhill.
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4.1 Introduction

A typical chemical plant has hundreds or even thousands of control loops. Control
performance is important to ensure high product quality and low cost of the product
in such plants. The economic benefits resulting from performance assessment are
difficult to quantify on a loop-by-loop basis because each problem loop contributes in a
complicated way to the overall process performance. Finding and fixing problem loops
throughout a plant reduces off-grade production, decreases product property variability,
lowers operating costs and improves production rate (Paulonis and Cox, 2003). Even a
1% improvement either in energy efficiency or improved controller maintenance direction
saves hundreds of millions of dollars for process industries (Desborough and Miller, 2002).
Oscillatory variables are one of the main causes of poor performance of control loops.
A key challenge is to find the root cause of distributed oscillations in chemical plants
(Qin, 1998; Thornhill er al., 2003a; Thornhill er al., 2003h). The presence of oscillations
in a control foop increases the variability of the process variables thereby resulting in
inferior products, larger rejection rates, incrcased energy consumption, reduced average
throughput and profitability. Oscillations can cause a valve to wear out much earlicr
than expected. Oscillations increasce operating costs roughly in proportion to the deviation
(Shinskey, 1990). Detection and diagnosis of the causes of oscillations in process operation
arc important. Clearly, a plant operating within product quality limits is more profitable
than one that has to back away because of variations in the product (Martin et al., 1991).
Oscillatory feedback control loops commonly occur due to poor controller tuning, control
valve stiction, poor process and control system design, and oscillatory disturbances
(Bialkowski, 1992; Ender, 1993; Miao and Scborg, 1999). Bialkowski (1992) reported
that about 30% of the loops are oscillatory due to control valve problems.

The only moving part in a control loop is the control valve. If the control valve contains
nonlincaritics, e.g., stiction, backlash, and dcadband, the valve output may be oscillatory
which in turn can cause oscillations in the process output. Among the many types of
nonlincaritics in control valves, stiction is the most common and one of the long-standing
problems in the process industry. It hinders the achievement of good performance of
control valves as well as control loops. Many studies (Horch, 2000; McMillan, 1995; Sharif
and Grosvenor, 1998; Horch and Isaksson, 1998; Horch er al., 2000; Aubrun et al., 1995;
Wallén, 1997; Taha et al., 1996; Gerry and Ruel, 2001; Ruel, 2000; Armstrong-Hélouvry et
al., 1994) have been conducted out to define and detect static friction or stiction. However,

a unique definition and description of the mechanism of stiction does not exist.  The
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present work addresses this issuc as well as the modelling of valve friction or stiction.
The parameters of a physical model, e.g., mass of the moving parts of the valve, spring
constants, and forces, are not explicitly known. These parameters need to be tuned properly
to produce the desired response of a valve. The effect of changes in these parameters are
also unknown. Working with such a physical model is therefore often time-consuming
and cumbersome for simulation purposes. Also, in industrial practice, stiction and other
related problems are identified in terms of the percentage of the valve travel or span of the
valve input signal. The relationship between the magnitudes of the parameters of a physical
model and deadband, backlash or stiction (expressed as a % of the span of the input signal)
is not simple. The purpose of this study is to develop an empirical, data-driven model of
stiction that is useful for simulation and diagnosis of oscillation in chemical processes. The

main contributions of this chapter are:

e An attempt to clarify the confusion prevalent in the control literature and in
the control community regarding the misunderstanding of stiction and the terms

associated with it.

e A ncw formal definition of stiction has been proposed using parameters similar to
those used in the American National Standard Institution’s (ANSI) formal definition
of backlash, hysteresis, and deadband. The key feature of these definitions is that
they focus on the input-output behaviour of such elements. The proposed definition

is also cast in terms of the input-output behaviour.

e A new two-parameter data-driven model of stiction has been developed and validated
with a mechanistic model of stiction and also with data obtained from industrial
control valves suffering from stiction.  The data-driven model is capable of
handling stochastic inputs and can be be used to perform simulation of stiction
in MATLAB®s Simulink environment in the studics of stiction relevant control
loop problems. For example, stiction model can be used to create a root cause for

originating oscillation in a plant-wide oscillation study.

o A describing function analysis of the newly proposed stiction model reveals valuable
insights on stiction behaviour.  For example, pure deadband or backlash cannot
produce limit cycles in the presence of @ Pl controller unless there is an integrator

in the plant under a closed loop feedback configuration.

This chapter has been organized as follows. First, a thorough discussion of the terms

related to valve nonlinearity are presented, followed by the proposal of a new formal
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definition of stiction. Some practical examples of valve stiction are provided to gain
insights into stiction from real-world data. The results of a mechanistic model of stiction
are used to validate the corresponding subscquent results of the data-driven stiction model.

Finally, a describing function analysis of the newly proposed stiction model is presented.

4,2 What is Stiction?

Terms such as deadband, backlash and hysteresis are often misused and wrongly used in
describing valve problems. For example, a deadband in a valve is commonly referred to
as backlash or hysteresis. Therefore, before proceeding (o the definition of stiction, these
terms must be defined for a better understanding of the stiction mechanism and a more

formal definition of stiction.

4.2.1 Definition of terms relating to valve nonlinearity

This scction reviews the American National Standard Institution’s (ANSI) formal definition
of terms related to stiction. The aim is to differentiate clearly between the key concepts that
underlie the ensuing discussion of friction in control valves. These definitions can also be
found in (EnTech, 1998; Fisher-Rosemount, 1999), which also refer to ANSI. ANSI (ISA-

S51.1-1979, Process instrumentation Terminology) defines the above terms as follows:

o Backlash: “In process instrumentation, it is a relative movement between interacting

mechanical parts, resulting from looseness, when the motion is reversed”.

o Hysteresis: “Hysteresis is that property of the element evidenced by the dependence
of the value of the owtput, for a given excursion of the input, upon the history of prior

excursions and the direction of the current traverse.”

= "It is usually determined by subtracting the value of deadband from the
maximum measured separation between upscale going and downscale going
indications of the measured variable (during a full range traverse, unless
otherwise specified) after transients have decayved.” Figure 4.1(a) and (c)

illustrates the concept.

= “Some reversal of output may be expected for any small reversal of input. This

distinguishes hysteresis from deadband.”
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e Dcad band: “In process instrumentation, it is the range through which an input signal

may be varied, upon reversal of direction, without initiating an observable change in
outpu! signal.”

~ “There are separate and distinct input-output relationships for increasing and
decreasing signals (See Figure 4.1(b))."
— “Deadband produces phase lag between input and output.”
-~ “Deadband is usually expressed in percent of span.”
Deadband and hysteresis may be present simultancously. In such an event, the
characteristics in the lower left panel of Figure 4.1 would be observed.

A 4
. hysteresis

deadband

output
output

v

[
>

input input
(a) hysteresis (b) deadband
4 ihyslcrcsis + deadband A

& |-f-»'b 4/~ deadband &
= =]
@) ] @) : d ;
dcadzone
input input
(c) hysteresis + deadband (d) deadzonc

Figure 4.1: Input-Output behaviour of hysteresis, deadband, and deadzone (redrawn from

ANSI/ISA-§51.1-1979).

o Dcad Zone: "It is a predetermined range of input through which the output remains
unchanged, irrespective of the direction of change of the input signal.” (There is
another definition of deadzone for multi-position controller. It is a zone of input for

which no value of output exists. It is usually intentional and adjustable)
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— “There is but one input-output relationship (See Figure 4.1(d)).”

— “Dead zone produces no phase lag between input and output.”

The above definitions show that the term “backlash” applies specifically to the slack
or looseness of the mechanical part when the motion changes direction. Therefore, in
control valves it may add deadband effects only if there is some slack in rack-and-pinion
type actuators (Fisher-Rosemount, 1999) or loose connections in a rotary valve shaft. ANSI
(ISA-S51.1-1979) definitions and Figure 4.1 show that hysteresis and deadband are distinct
effects. Deadband is quantified in terms of input signal span (i.c., on the x-axis), while

hysteresis refers to a separation in the measured (output) response (i.c., on the y-axis).

4.2.2 Discussion of the term “Stiction”

Various pcople and organizations have defined stiction in various ways. Several definitions

are reproduced below:

e According to the Instrument Society of America (ISA) (ISA Subcommittee SP75.05,
1979), “stiction is the resistance to the start of motion, usually measured as the
difference between the driving values required to overcome static friction upscale
and downscale”. The definition was first proposed in 1963 in American National
Standard C85.1-1963,“Terminology for Automatic Control” and has not been
updated. This definition was adopted in ISA 1979 Handbook (ISA Subcommittee
SP75.05, 1979) and has remained the same in the revised 1993 edition.

o According o Entech (1998), “stiction is a tendency to stick-slip due to high static
friction. The phenomenon causes a limited resolution of the resulting control valve
motion. ISA terminology has not settled on a suitable term yet. Stick-slip is the
tendency of a control valve to stick while at rest, and to suddenly slip after force has

been applied™.

o According to (Horch, 2000), “The control valve is stuck in a certain position due to
high static friction. The (integrating) controller then increases the set point to the
valve until the static friction can be overcome. Then the valve breaks off and moves
to a new position (slip phase) where it sticks again. The new position is usually on
the other side of the desired set point such that the process starts in the opposite

direction again™. This is the extreme case of stiction. On the contrary, once the valve

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2 What is Stiction? 68

overcomes stiction, it might travel smoothly for some time and then stick again when

the velocity of the valve is close to zero.

e In a recent paper, Ruel (2000) reported “stiction as a combination of the words
stick and friction, created to emphasize the difference between static and dynamic
Sriction.  Stiction exists when the static (starting) friction exceeds the dynamic
(moving) friction inside the valve. Stiction describes the valve's stem (or shaft)
sticking when small changes are attempted. Friction of a moving object is less than
when it is stationary. Stiction can keep the stem from moving for small control input
changes, and then the stem moves when there is enough force to free it. The result of
stiction is that the force required to get the stem to move is more than is required to

2o to the desired stem position. In presence of stiction, the movement is jumpy™.

This definition rescmbles stiction as measured online in process industries — putting
the control loop in manual and then increasing the valve input in small increments

until there is a noticeable change in the process variable.

e In (Olsson, 1996), stiction is defined as “short for static friction as opposed to
dynamic friction. It describes the friction force at rest. Static friction counteracts

external forces below a certain level and thus keeps an object from moving”.

The above discussion reveals the lack of a formal and general definition of stiction and
the mechanism(s) that causes it.  All of the above definitions agree that stiction ts the
static friction that keeps an object from moving and when the external force overcomes
the static friction the object starts moving. However, these definitions disagree in the way
stiction is measured and how it can be modelled. Also, there is no clear description of what
happens at the moment when the valve just overcomes the static friction. Several modelling

approaches described this phenomenon using a Stribeck effect model (Olsson, 1996).

4.2.3 A proposal for a definition of stiction

The motivation for a new definition of stiction is to capture the descriptions cited earlier
within a definition that explains the behaviour of a valve with stiction in terms of its input-
output behaviour, as is done in the ANSI definitions for backlash, hysteresis, and deadband.
The new definition of stiction as proposed by the author is based on careful investigation
of real process data. It is observed that the phase plot of the input-output behaviour of
a valve “suffering from stiction™ can be described as shown in Figure 4.2, 1t consists of

four components: deadband, stickband, slip-jump and the moving phase. When the valve
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comes to rest or changes direction at point A in Figure 4.2, the valve sticks. After the
controller output overcomes the deadband (AB) and the stickband (BC) of the valve, the
valve jumps to a new position (point D) and continues to move. Due to very low or zero
velocity, the valve may stick again between points D and E in Figure 4.2 while travelling
tn the same direction (EnTech, 1998). In such a case, the magnitude of deadband is zero
and only stickband is present. This can be overcome only if the controller output signal is

larger than the stickband. The latter is uncommon in industrial practice.

4 stickband + deadband

valve output
(manipulated variable, mv)

.‘........‘.......,........u‘.N
deadband

>
S

\ stickband

valve input
(controller output, op)

Figure 4.2: Typical input-output behaviour of a sticky valve.
o . . .

The deadband and stickband represent the behaviour of the valve when it is not
moving, even though the input to the valve keeps changing.  Slip-jump represents the
abrupt release of potential energy stored in the actuator chambers due to high static
friction in the form of kinetic energy as the valve starts to move. The magnitude of
the slip-jump is critical in determining the limit cyclic behaviour introduced by stiction
(McMillan, 1995; Piipponen, 1996). Once the valve slips, it continues to move until it
sticks again (point E in Figure 4.2). In this moving phase, dynamic friction may be much
lower than the static friction. As depicted in Figure 4.2, this section has proposed a rigorous
description of the effects of friction in a control valve. Therefore, we propose the following
new definition of stiction:

“Stiction is a property of an element whose smooth movement in response to a varving

input is preceded by a stickband and an abrupt jump termed the slip-jump. Slip-jump iy
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expressed as a percentage of the output span. Its origin in a mechanical system is static
friction, which exceeds the friction during smooth movement”.

This definition has been exploited in the next and subsequent sections for the evaluation
of practical examples and for modelling of a control valve suffering from stiction in a

feedback control configuration.

4.3 Practical Examples of Valve Stiction

The objective of this section is to explore effects of stiction through the investigation of
data from industrial control loops. The observed effects reinforce the need for a rigorous
definition of stiction. This section analyzes four data sets. The first set is from a power
plant, the second and third are from a petroleum refinery and the fourth is from a furnace.
To prescrve the confidentiality of the plants, all data are scaled and reported as mean-
centered with unit variance. The notations followed by industry are used here in order to
enhance the readability of this work. For example, pv s used to denote the process variable
or controlled variable. Similarly, op is used to denote the controller output, mv to denote

valve output or valve position, and sp to denote set point.

e Loop | is alevel control loop that controls the level of condensate in the outlet of a
turbine by manipulating the flow rate of the liquid condensate. In total, 8640 samples
for cach tag were collected at a sampling rate of 5 seconds. Figure 4.3 shows a
portion of the time domain data. The left panel shows time trends for level (pv), the
controller output (op) which is also the valve demand, and valve position (mv) which
can be taken to be the same as the condensate flow rate. The plots in the right panel
show the characteristics py-op and mv-op plots. The bottom plot clearly indicates
both the stickband plus deadband and the slip-jump effects. The slip-jump is large
and visible from the bottom plot especially, when the valve is moving in a downward
direction. It is marked as ‘A’ in the figure. It is cvident from this figure that the valve
output (mv) can never reach the valve demand (op). This kind of stiction is termed
as ‘undershoot case’ of valve stiction in this study. The pv-op plot does not show the
jump behaviour clearly. The slip-jump is very difficult to observe in the py —op plot
because the process dynamics (i.c., the transfer function between mv and pv) destroy
the pattern. This loop shows one possible type of stiction phenomenon clearly. The
stiction model developed later in the paper based on the control signal (op) is able to

imitate this kind of behaviour,
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Figure 4.3: Flow control cascaded to level control in an industrial setting, the line with

circles is pv and mv, the thin line is op.

e Loop 2 is a liquid flow slave loop of a cascade control loop. The data was collected
at a sampling rate of 10 s and the data length for cach tag was 1000 samples. The left
plot of Figure 4.4 shows the time trend of pv and op. A closer examination of this
figure reveals that the pv (flow rate) is constant for a given period of time, though
the op changes over that period. This is the period during which the valve was stuck.
Once the valve overcomes deadband plus stickband, the pv changes very quickly
(denoted as ‘A’ in the figure) and moves Lo a new position where the valve sticks
again. It is also evident that sometimes the pv overshoots the op, and sometimes it
undershoots. The pv-op plot has two distinct parts — the lower part and the upper part
extended to the right. The lower part corresponds to the overshoot case of stiction, i.c,
it represents an extremely sticky valve. The upper part corresponds to the undershoot
case of stiction. These two cases have been separately modelled in the data driven
stiction model. This example constitutes a mixture of undershoot and overshoot cases
of stiction. The terminologies regarding different cases of stiction will be clarified in

Section 4.5.
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Figure 4.4: Data from a flow loop in a refinery, time trend of pv and op (left) - the line with

circles is pv and the thin line is op, and the pv-op plot (right).
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Figure 4.5: Data from a flow loop in a refinery, time trend of pv and op (top left) - the line
with circles is pv and the thin line is op, the pv-op plot(top right), time trend of py and sp

(bottom left), line with circles is pv and thin line is sp, and the pv-sp plot(bottom right).
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e Loop 3 is a slave flow loop cascaded with a master level control loop. A sampling
rate of 6 s was used for the collection of data and a total of 1000 samples for cach
tag were collected. The top panel of Figure 4.5 shows the presence of stiction with a
clear indication of stickband plus deadband and the slip-jump phase. The slip-jump
appears as the control valve just overcomes stiction (denoted as point ‘A” in Figure
4.5). This slip-jump is not very clear in the py-op plot of the closed loop data (top
right plot) because both pv and op jump together due to the probable presence of
a proportional only controller. However, it shows the presence of deadband plus
stickband clearly. Sometimes it is best to look at the pv-sp plot when it is a cascaded
loop and the slave loop is operating under proportional control only. The bottom
panel of Figure 4.5 shows the time trend and phase plotof sp and pv, where the slip-
jump behaviour is clearly visible. This example represents a case of pure stick-slip

or stiction with no offset.

af iob
Bepen,
a 1 .%%’ :
S sl : '
= aof + :& L
': ) - * P
- . oyl
a. STy g W
. R e 3
2( : 5 syt
2 1 0o 12
op
3 P R S
a : : ; : .
S W ! S TS ST
) B 1} A N A
s B | e e ZITIR Y
@ = 0 . Soond
‘E 3 k‘;v--—— r--u--:—.”.d’
= N |
g N
- 2l ,?:,',".‘,"*.""t:"J :
2 1 0 1 2
sampling instants controller output, op

Figure 4.6: Industrial dryer temperature control loop data, lines with circles are pv and

[lowrate, the thin line is op (the bottom left panel).

e Loop 4 is a temperature control loop on a furnace feed dryer system at the Tech-
Cominco mine in Trail, British Columbia, Canada. The temperature of the dryer
combustion chamber is controlled by manipulating the flow rate of natural gas to the
combustion chamber. A total 1440 samples for cach tag were collected at a sampling

ratc of I min. The top plot of the left pancl of the Figure 4.6 shows time trends of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.4 A Physical Model of Valve Friction 74

temperature (pv) and controller output (op). It shows clear oscillations both in the
controlled variable (pv) and the controller output. The presence of distinct loops is
observed in the characteristic pv-op plot (see Figure 4.6 top right). For this loop,
there was a flow indicator close to this valve and this indicator data were available.
In the bottom figure this flow rate is plotted versus op. The flow rate data appear to
be quantized but the presence of stiction in this control valve was confirmed by the
plantengineer. The two bottom plots clearly show the stickband and the slip-jump of
the valve. Note that the moving phase of the valve is almost absent in this example.

After the valve overcomes stiction, it jumps to the new position and sticks again.

4.4 A Physical Model of Valve Friction

4.4.1 Model formulation

The purpose of this scction is to understand the physics of valve friction and reproduce the
behaviour seen in real plant data. A cross-sectional diagram of a typical pneumatic control
valve is shown in Figure 4.7. For such a pneumatic sliding stem valve, the force balance
equation based on Newton’s second law can be written as:

12x
(clﬂ =Y Forces = Fy+ Fy+ Iy + Fy + 1 (4.1)

where M is the mass of the moving parts, x is the relative stem position, /7, == Aw is the force
applied by pneumatic actuator where A is the arca of the diaphragm and w« is the actuator
air pressure or the valve input signal, I = —kx is the spring force where & is the spring
constant, I, = —A,AP is the force duce to fluid pressure drop where A, is the plug unbalance
arca and AP is the fluid pressure drop across the valve, F; is the extra force required to force
the valve to be into the seat and Iy is the friction force (Fitzgerald, 1995; Kayihan and Doyle
1, 2000; Whalen, 1983). Following Kayihan and Doyel 11, 5 and F, will be assumed to
be zero becausce of their negligible contribution in the model.

The friction model is from (Karnopp, 1985; Olsson, 1996) and was also used by Horch
and Isaksson (1998). It includes static and moving friction. The expression for the moving
friction is in the first line of Equation 4.2 and comprises a velocity independent term F.

known as Coulomb friction and a viscous friction term v/4. that depends lincarly upon the
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Figure 4.7: A cross-sectional diagram of a pneumatic control valve.

velocity. Both act in opposition to the velocity, as shown by the negative signs.
—F.sgn(v)—vEF if v#0
Fr=¢ —(Fg+F) if v=0and|F,+F|<F 4.2)
~Fysgn(Fp+F,) it v=0and |[Fy+ I > Fy

The second line in Equation 4.2 is the case when the valve is stuck. F is the maximum
static friction. The velocity of the stuck valve is zero and not changing, therefore the
acceleration is zero also. Thus, the right-hand side of Newton’s law is zero, such that
Fr = —(F; 4+ F;). The third line of the model represents the situation at the instant of |
breakaway. At that instant the sum of forces is (F, + I7) — Fysgn(F, + F;), which is not
zero if [F, 4 F,] > F; . Therefore, the acceleration becomes non-zero and the valve starts to
move.

A disadvantage of a physical model of a control valve is that it requires several
parameters (M, F;, I, I..) to be known. The mass M and typical friction forces (Fy, I, F)
depend upon the design of the valve. Kayihan and Doyle HI (2000) used manufacturer’s
values suggested by Fitzgerald (1995) and similar values have been chosen here apart
from a slightly increased value of Fy and a smaller value for I in order to make the

demonstration of the slip-jump more obvious (see Table 4.1). Figure 4.8 shows the friction
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Figure 4.8: Friction characteristic plot.
force characteristic in which the magnitude of the moving friction is smaller than that of
the static friction. The friction force opposes velocity (see Equation 4.2) thus the force is

negative when the velocity is positive.

Table 4.1: Nominal values used for physical valve simulation

Parameters Kayihan and Doyle 111, 2000 | Nominal case
M 31b(1.36 kg) .36 kg

Fy 384 1hf (1708 N) 1750 N

I 3201hf (1423 N) 1250 N

r 3.5 Ibf..s'.in“l 612 N.san™ 1y | 612 N.san™!
spring constant . k 300 thf.in~" (52500 N.m™1) | 52500 N~
diaphragm area, A 100 in? (0.0645 m?) 0.0645 m?
calibration factor, k/A | - 807692 Pa.m™'
air pressure 10 psi (68950 Pa) 68950 Pu

The calibration factor of Table 4.1 is introduced because the required stem position .x;
is the input to the simulation. In the absence of stiction effects the valve moving parts
come to rest when the force due to air pressure on the diaphragm is balanced by the spring
force. Thus Au = kx and the calibration factor relating air pressure  to x, is k/A. The

consequences of miscalibration are discussed below.
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4.4.2 Valve simulation

The purpose of simulation of the valve was to determine the influence of the three friction
terms in the model. The nonlinearity in the model is able to induce limit cycle oscillations
in a feedback control loop. The aim is to understand the contribution of each friction term

to the character and shape of the limit cycles.

Open Loop response:

Figure 4.9 shows the valve position when the valve model is driven by a sinusoidal variation
in op in the absence of the controller. The left-hand column shows the time trends while
the right hand panels are plots of valve demand (op) versus valve position (mv). Several
cases are simulated using the parameters shown in Table 4.2. The “lincar™ values are those
suggested by Kayihan and Doyle 111 for the best case of a smart valve with Teflon packing

requiring air pressure of about 0.1 psi (689 Pa) to start it moving.

Table 4.2: Friction values used in simulation of physical valve model

Parameters | lincar | pure stiction stiction stiction
deadband | (undershoot) | (undershoot) | (no offset)

(open loop) | (closed loop)

I5(N) 45 1250 2250 1000 1750
F.(N) 45 1250 1250 400 0
F(Nsm™'y [ 612|612 612 612 612

In the first row of Figure 4.9, the Coulomb friction [ and static friction Fy are small and
lincar viscous friction dominates. The input and output are almost in phase in the first row
of Figure 4.9 because the sinusoidal input is of low frequency compared to the bandwidth
of the valve model and is on the part of the frequency response function where input and
output are in phase.

Valve deadband is duc to the presence of Coulomb friction /., a constant friction which
acts in the opposite direction to the velocity. In the deadband simulation case the static
friction is the same as the Coulomb friction, /-y = F.. The deadband arises because, on
changing direction, the valve remains stationary until the net applied force is large enough

to overcome /.. The deadband becomes larger if F. is larger.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.4 A Physical Model of Valve Friction 78

mv (thick line) and op (thin ling)

1
1
|
'

linear

)
'
'
'

4.
'
'

pure deadband

/ 1 stiction (undershoot)

stiction (no offset)

stiction (overshoot)

0 50 100 150 200
time/s

Figure 4.9: Open loop response of mechanistic model. The amplitude of the sinusoidal

input is 10 em in each case.

A valve with high initial static friction such that Fy > I exhibits a jumping behaviour
that is different from a deadband, although both behaviors may be present simultancously.
When the valve starts to move, the friction force decreases abruptly from F to F,.. There is
therefore a discontinuity in the model on the right hand side of Newton’s second law and
a large increase in acceleration of the valve moving parts. The initial velocity is therefore
higher than in the Iy = I case, leading to the jump behaviour observed in the third row of
Figure 4.9. 1f the Coulomb friction F. is absent, then the deadband is absent and the slip-
jump allows the mv to catch up with the op (fourth row). If the valve is miscalibrated, then
swings in the valve position (mv) are larger than swings in the demanded position (op). In

that case the gradient of the op-my plot is greater than unity during the moving phase. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.4 A Physical Model of Valve Friction 79

bottom row of Figure 4.9 shows the case when the calibration factor is too large by 25%.

A slip-jump was also used in this simulation.

Closed loop dynamics:

For assessment of closed loop behaviour, the valve output drives a first order plus dead time

process G(s) and receives its op reference input from a PI controller C(s), where:

3¢ 10s 10s + 1
s) = s)=0.2 4.3
G = 10,77 Cls) =0 < 105 ) *.5)
mv (thick fine) and op (thin line) mvvs. op
-~ -[——;‘\\lt—yﬁm -J T+~ stiction (undershoot)
[N T T S ST T .

“rr—r-| stiction(undershoot)

~—_. | Plgaindoubled

stiction (no offset)

stiction (overshoot)

b~ ~ - -

0 100 200 300
time/s

Figure 4.10: Closed loop response of mechanistic model.

Figure 4.10 shows the limit cycles induced in this control loop by the valve together with
the plots of valve position (mv) versus valve demand (op). The limit cycles were present
cven though the set point to the loop was zero. That is, they were internally generated and

sustained by the loop in the absence of any external setpoint excitation.
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There was no limit cycle in the linear case dominated by viscous friction or in the case
with deadband only when Iy = F.. It is known that deadband alone cannot induce a limit
cycle unless the process G(s) has integrating dynamics, as will be discussed further in
Section 4.5.3.

The presence of stiction (F; > F) induces a limit cycle with a characteristic triangular
shape in the controller output. Cycling occurs because an offset exists between the sel
point and the output of the control loop while the valve is stuck which is integrated by
the PI controller to form a ramp. By the time the valve finally moves in response to the
controller op signal the actuator force has grown quite large and the valve moves quickly to
a new position where it then sticks again. Thus, a self limiting cycle is set up in the control
loop.

If stiction and deadband arc both present, then the period of the limit cycle oscillation
can become very long. The combination Iy = [750N and F. = 1250 N gave a period
of 300s while the combination Fy = 1000N and F. = 400N had a period of about 140s
(top row, Figure 4.10). In both cases, the period is much longer than the time constant of
the controlled process or its cross-over frequency. The period of oscillation can also be
influenced by altering the controller gain. If the gain is increased the lincar ramps of the
controller output signal arc steeper, the actuator force moves through the deadband more
quickly and the period of the limit cycle becomes shorter (second row, Figure 4.10). The
technique of changing the controller gain is used by industrial control engineers to test the
hypothesis of a limit cycle induced by valve non-lincarity while the plant is still running in
closed loop.

In the pure stick-slip or stiction with no offset case shown in the third row of Figure 4.10
the Coulomb friction is negligible and the oscillation period is shorter because there is no

decadband. The bottom row in Figure 4.10 shows that miscalibration causes an overshoot in

closed loop.

4.5 Data Driven Model of Valve Stiction

The proposed data-driven model has parameters that can be related directly to plant data and
it produces the same behaviour as the physical model. The model needs only an input signal
and the specification of deadband plus stickband and slip-jump. It overcomes the main
disadvantages of physical modelling of a control valve, namely it requires the knowledge
of the mass of the moving parts of the actuator, spring constant, and the friction forces.

The effect of the change of these parameters can not easily be determined analytically
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because the relationship between the values of the parameters and the observation of the
decadband/stickband as a percentage of valve travel is not straightforward. In a data-driven
model, the parameters arc easy to choose and the effects of these parameter changes are

simple to realize.

4.5.1 Model formulation

The valve sticks only when it is at rest or changing its direction. When the valve changes its
direction it comes to rest momentarily. Once the valve overcomes stiction, it starts moving
and may keep moving for sometime, depending on how much stiction is present in the
valve. In this moving phase, it suffers only dynamic friction which may be smaller than
static friction. It continues to do so until its velocity is again very close to zero or it changes
its direction.

In the process industry, stiction is generally measured as a % of (he valve travel or the
span of the control signal (Gerry and Ruel, 2001). For example, a 2 % stiction means
that when the valve gets stuck, it will start moving only after the cumulative change of its
control signal is greater than or equal to 2%. 1If the range of the control signal is 4 to 20
mA, then a 2% stiction means that a change of the control signal less than 0.32 mA in
magnitude will not be able to move the valve.

In the modelling approach described herein, the control signal has been translated to the
percentage of valve travel with the help of a lincar look-up table. If the control signal is
noisy, then a filter, e.g. exponentially weighted moving average filter (EWMA), can be used
to filter the noise. The model consists of two parameters — namely the size of deadband
plus stickband S (specified in the input axis) and slip-jump J (specified on the output axis).
Note that the term *S” contains both the deadband and stickband. Figure 4.11 summarizes

the model algorithm, which can be described as:
o First, the controller output (mA) is converted to valve travel % using a look-up table.

o [f the transformed controller output signal (%) is less then O or more than 100, the

valve is saturated (i.c., fully close or fully open).

o If the signal is within the 0 to 100% range, the algorithm calculates the slope of the

controller output signal.

e Next, the change of the direction of the slope of the input signal is taken into

consideration. If the ‘sign” of the slope changes or remains zero for two consecutive
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instants, the valve is assumed to be stuck and does not move. The ‘sign’ function of
the slope gives the following:

- If the slope of input signal is positive, the sign(slope) returns ‘+1°.

— If the slope of input signal is negative, the sign(slope) returns *-1".

- If the slope of input signal is zero, the sign(slope) returns ‘0.

op(k)
Look up table
(Converts mA to valve %)

x(k)
ws=xss |
y(k)=0
S yes
— ‘\K—“l‘;ﬂ x(k)<100 - 3
I v _new=[x(k)-x(k-11J/At ]

dgn (v_new)ssign(v_old

Ix(k)-xsspS

xss=x(k-1) remain stuck
vik)=y(k-1

y(k)=x(k) - sign(v_new)*(S-J)12

Valve sticks
Valve slips and moves

Yy

) 4

NG

y(k)

Valve cliracteristics
(e.g., linear, square root, etc.)
{Converts valve % to mA)

Gy

Figure 4.11: Signal and logic flow chart of the data-driven stiction model.
Therefore, when sign(slope) changes from “+17 to *-1" or vice versa, this means that

the direction of the input signal has been changed and the valve is in the beginning of

its stick position (points A and E in Figure 4.2). The algorithm deteets stick position
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of the valve at this point. Now, the valve may stick again while travelling in the same
direction (opening Or closing direction) only if the input signal to the valve does
not change or remains copstant for two consecutive instants, which is uncommon in
practice. For this situation, the sign(slope) Changes to ‘0" from “+1” or *-1" and vice
versa. The algorithm again detects the stick position of the valve in the moving phase
and this stuck condition s denoted with the indicator variable / = 1. The value of
the input signal when the yalve gets stuck is denoted as xss. This value of xss is kept
constant and does nOl change until the valve gets stuck again. The cumulative change
of input signal to the mode] is calculaied from the deviation of the input signal from

ASS.

e For the case where the input signal changes dircction (i.c., the sign(slope) changes
from ‘+17 to *-1” or Vice versa), if the cumulative change of the input signal is more
than the amount of the deadband plus stickband (), then the valve slips and starts

moving.

e For the case when the input signal does not change direction (i.c., the sign(slope)
changes from ‘+1° Or *-]* (o zero, or vice versa), if the cumulative change of the
input signal is more thap (he amoung of the stickband (/), then the valve slips and
starts moving. Note thay this takes care of the case when valve sticks again while

traveling in the same direction (EnTech, 1998; Kano et al., 2004).
e The output is calculated ysing the equation:
out put = input — sign(slope)  (S—J)/2 4.4)

and depends on the type of stiction present in the valve. 1t can be described as

follows:

— Deadband: If J =, (hen it represents pure deadband case without any slip-
jump.

— Stiction (undershoot); If J < S, then the valve output can never reach the valve
input. There i$ always some offset. This represents the undershoot case of
stiction,

— Stiction (no offser); If J =S, the algorithm produces pure stick-slip behaviour.
There is no offset beyween the input and output. Once the valve overcomes
stiction, valve outpug (racks the valve input exactly. This is the well-known

“stick-slip case”.
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- Stiction (overshoot): If J > §, the valve output overshoots the valve input due

to excessive stiction. This is termed as overshoot case of stiction.

Recall that J is an output (y-axis) quantity. Also, the magnitude of the slope between

input and output is 1.

The parameter J signifies the slip-jump start of the control valve immediately after it

overcomes the deadband plus stickband. It accounts for the offset between the valve

input and output signals.
Finally, the output is converted back to an mA signal using a look-up table based on
characteristics of the valve such as linear, equal percentage or square root, and the

new valve position 1s reported.

4.5.2 Open loop response of the model under a sinusoidal input

Figure 4.12 shows the open loop behaviour of the new data-driven stiction model in the

presence of various types of stiction. Plots in the [eft panel show the time trend of the vaive

input op (thin solid line) and the output my (thick solid line). The right panel shows the

input-output behaviour of the valve on a X-Y plot.

The first row shows the case of a lincar valve without stiction.

The second row corresponds to pure deadband without any slip jump, i.c., J = 0.

Note that for this case, the magnitude of stickband is zero and deadband itself equals
‘S,
The third row shows the undershoot case of a sticky valve where J < §. This case is

illustrated in the first and second examples of industrial control loops. In this case,

the valve output can never reach the valve input. There is always some offset.

The fourth row represents pure stick-slip behaviour. There is no offset between the
input and output. Once the valve overcomes stiction, valve output tracks the valve
input accurately.

[n the fifth row, the valve output overshoots the desired set position or the valve input

due to excessive stiction. This is termed “overshoot case of stiction”™.
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Figure 4.12: Open loop simuldation results of the data-driven stiction model.

In reality, a composite of these stiction phenomena may be observed. Although this
model is not dircctly based on the dynamics of the valve, the strength of the model is that it
is very simple to usc for the purposc of simulation and can quantify stiction as a percentage
of valve travel or span of input signal. Also, the parameters used in this model are easy
to understand, realize and relate to real stiction behaviour. Though this is an empirical
model and not based on physics, it is observed that this model can correctly reproduce the
behaviour of the physics-based stiction model. This can be observed by comparing Figure
4.13¢a) with 4.10. The data for these figures are obtained from the simulation of the same

process and controller, but with different stiction models. The notable features are:

e Fora first order plus time delay model, both stiction models show no limit cycle for
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the case of pure deadband. Both models show that for limit cycles a certain amount
of slip-jump is required.

o If the process contains an integrator in closed loop, both models show limit cycle

even in the presence of pure deadband.
e The two models produce identical results for other cases of stiction.

The open loop simulation results for both models look very similar in Figures 4.12 and
4.9. Note that a one-to-one comparison of these figures cannot be made because there is
no direct one-to-one relation among the parameters of the empirical data-driven model and

that of the physics-based model.

4.5.3 Closed loop behaviour of the model

Closed loop behaviour of the stiction model has been studied for two different cases.
namely a concentration loop and a level loop. The concentration loop has slow dynamics
with a large dead time. The level loop has only an integrator. The transfer functions,
controllers and parameters used in simulation are shown in Table 4.3. Note that the
magnitudes of § and J are specified as a percentage (%) of valve input span and output
span respectively. The results for each of the loops are discussed in a separate section

below.,

Table 4.3: Process models, controllers, and data-driven stiction model parameters.

stiction
Loop Type Process  Controller  deadband  undershoot  no offset  overshoot
S J S J S J S J
. Al e 1 10s +1
concentralion  y5— ().2(—TZ)T)M 5 0 52 5 5 5 7
Level : 04(2H) 3 0 3 35 33 345

Concentration loop

The transfer function model for this loop was obtained from (Horch and Isaksson, 1998).
This transfer function with a Pl controller in a feedback closed loop configuration was used

for the simulation.
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Steady state results of the simulation for different stiction cases are presented in Figures
4.13(a) and 4.13(b). In both figures, thin lines are the controller output. The triangular
shape of the time trend of controller output is one of the characteristics of stiction
(Horch, 2000). Note that Figure 4.13(a) resembles Figure 4.10 that was generated using
the same process and controller in conjunction with the physics-based valve model. In all
cases, the presence of stiction causes limit cycling of the process output. In the absence of
stiction, there are no limit cycles, which is shown in the first row of Figure 4.13(a). The
presence of pure deadband also does not produce a limit cycle. 1t only adds dead time (o the
process. This conforms to the findings of (Piipponen, 1996, McMillan, 1995), who stated
that the presence of pure deadband only adds dead time to the process and the presence of
deadband together with an integrator produces a limit cycle (discussed further in Section
4.6.4). Figure 4.13(a) shows the controller output (op) and valve position (mv). Mapping
of mv vs. op clearly shows the stiction phenomena in the valve. It is common practice
to use a mapping of pv vs. op for valve diagnosis (see Figure 4.13(b)). However, in this
case such a mapping only shows elliptical loops with sharp turn-around points. The reason
for the latter is that the pv-op map captures not only the nonlinear valve characteristic but
also the dynamics of the process, G(s), which in this case is a first order lag plus deadtime.
Therefore, if the valve position data are available, one should plot valve position (mv)
against the controller output (op). Except in cases of liquid flow loops where the flow
through the valve (pv) can be taken o be proportional to valve opening (mv), the pv-op

maps should be used with caution.

A level control loop

The closed loop simulation of the stiction model using only an integrator as the process
was performed to investigate the behaviour of a typical level foop in the presence of valve
stiction. Results are shown in Figure 4.14(h). The second row of the figure shows that
the deadband can produce oscillations. Again, it is observed that if there is an integrator
in the process dynamics, then even a pure deadband can produce limit cycles. Otherwise,
the cycle decays (o zero. The my-op mappings depict various cases of valve stiction. The
pv-op plots show elliptical loops with sharp wrn-around. Therefore, as was noted in an
carlicr example, the pv-op map is not a very reliable diagnostic tool for valve faults in a
level loop. A diagnostic technique, developed by Choudhury er al. (2004d) based on higher
order statistical analysis of data, is able to detect and diagnose the presence of stiction in

control loops.
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Figure 4.13: Closed loop simulation results of a concentration loop in presence of the

data-driven stiction model.
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(h) Left: Time trends of pyand op, Right: pv-op mappings

Figure 4.14: Closed loop simulation results of a level loop in presence of the data-driven
stiction model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.6 Describing Function Allaiysis 90

4.6 Describing Function Analysis

4.6.1 Introduction

A non-linear actuator with a stiction characteristic may cause limit cycling in a control loop.
Further insights into the behaviour of such systems may be achieved through a describing
function analysis (Cook, 1986). The non-lincarity is modelled by a non-linear gain N. The
assumptions inherent in the approximation are that (1) there are periodic signals present
in the system and (2) the controlled system is low pass and responds principally to the
fundamental Fourier component. The conditions for oscillation in a negative feedback loop

arise when the loop gain is —1:

|
G,,(i(l)) = '—m (4.5)

where G, (i) is the open loop frequency response that includes the controlled system and
the proportional plus integral controller, and N (X,,,) is the describing function that depends
on the magnitude of the controller output X,,,. When the condition G, (i@) = —1 /N(X,,,)
is met, the system will oscillate spontancously with a limit cycle. The variation of the
quantity — | /N(X,,,) with signal amplitude means that signals initially present in the loop
as noise can grow until they are large cnough to satisfy the equality and hence provide a
self-starting oscillation. The solution to the complex equation G, (iw) = —1 /N(X,,,), if one
exists, may be found graphically by superposing plots of G, (iw) and -I/N on the same
sct of axcs.

The aim of describing function analysis is to gain insight into the simulation results and

industrial observations presented in this chapter.

4.6.2 An expression for the describing function
The describing function of a non-linearity is:

Y

N =
Af

(4.0)

where X is a harmonic input to the non-lincarity of angular frequency @, and Yy is the
fundamental Fourier component angular [requency @, of the output from the non-lincarity.
Thus, a Fourier analysis is needed on the output signals shown as bold lines in Figure 4.12,
The quantity N depends upon the magnitude of the input X,,,. N is complex for stiction

non-lincarity because the output waveform has a phase lag compared to the input. The
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describing function is derived in the Appendix 4.A, where it is shown that:

|

N=—-——(A-iB 4.7
IrX,,,( iB) 4.7)
where

Xl” . 7( \
A = Tst(p—2X,,,C0$¢—X,,,<5+¢> 12(S—J)cosd, 4.8)

X Xy ) .
B =-— 3—-71'—’+——7'—'c052¢ +2X,,sing —2(S—J)sin¢ (4.9)

X” —Ag
o = sin”! (—I ) (4.10)
m

4.6.3 Asymptotes of the describing function

Figure 4A.1(a) indicates that there is no output from the non-linearity if X, < S/2.
Therefore, the two extreme cases are when X, = § / 2and X, > S.

When X, > §, then the effects of the deadband and slip-jump are negligible, and the
nonlinearity in Figure 4A.1(b) becomes a straight line at 45°. The output is in phase with
the input and N = . Thus -1 /N(X,,,) = —1 when X,,, > S.

In the limit when X, — S/2 then the output is as shown in Figure 4.15. The left hand
plot shows the output for a slip-jump with no deadband (S = J, d = 0) while the right hand
plot shows a magnified plot of a dead-band with no slip-jump (S =d, J = 0). In both
cases, the output lags the input by one quarter of a cycle. The output is a square wave of
magnitude X, in the § = J, d =0 case and the describing function is N = %(,«m/z_ For
the dead-band with no slip-jump (S = d. J = 0) case, the output magnitude becomes very
small. The describing function is N = ge™"™2 where & — 0 as X,, — S/2. Appendix 4.A
provides detailed calculations of these results and also shows, for the general case, that the

describing function limit when X, = S/2 is:

o il 4.11)

4.6.4 Insights gained from the describing function

Figure 4.10 shows graphical solutions to the limit cycle equation G,(i@) = =1 /N(X,) for
the composition control loop (left panel) and level control loop (right panel) presented
carlier. The describing function is parameterized by X, and the open loop frequency

response function of the controller and controlled system is parameterized by @. Both
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Figure 4.15: Input (thin line) and output (heavy line) time trends for the limiting case as
X = 8/2. Left panel: Slip-jump only with S = J. Right panel: Deadband only with J = 0.
The output in the right plot has been magnified for visualization; its amplitude becomes

zero as X,, approaches S/2.

systems are closed loop stable and thus intersect the negative real axis between 0 and —1.
The plots explain the behaviour observed in simulation,

It is clear from the left plot of Figure 4.16 that there will be a limit cycle for the
composition control loop if a slip-jump is present. The slip-jump forces the —l/N curve
onto the negative imaginary axis in the X, = S/?. limit. Thus, the frequency response curve
of the FOPTD composition loop and its proportional plus integral controller is guaranteed
to intersect with the describing function because the integral action means open loop
phase is always below —7r/2 (i.c., it is in the third quadrant of the complex plane at low
frequency).

Figure 4.16 also shows the —1 /N curve for the deadband limit cycle. In the X, = S/2
limit, the curve hecomes large, negative and imaginary. The composition loop does not
have a limit cycle if the non-lincarity is a pure deadband, because the frequency response
curve does not intersect the —I/N curve. The lack of a limit cycle in this case has been
noted by other authors (Piipponen, 1996; McMillan, 1995).

The level loop with proportional plus integral control has a frequency response for which

the phase becomes —m at low frequency. The right hand panel of Figure 4.16 shows that it
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Figure 4.16: Graphical solutions for limit cycle oscillations.  Left panel: Composition
control loop. Right panel: level control loop. Dotted lines are the —1/N curves and the

solid line is the frequency response function.

will intersect the —1 /N curves for the slip-jump cases and also for the pure deadband case.
Therefore, a valve with a deadband and no slip-jump can cause a limit cycle oscillation for
an integrating process with a P+1 controller. The frequency of oscillation is higher and the
period of oscillation shorter when the slip-jump is present because the —1 /N curves with
the slip-jump intersect the frequency response curve at higher frequencies than the —1 /N

curve for the deadband.

4.7 Conclusion

A generalized definition of valve stiction based on the investigation of real plant data has
been proposed. The physics-based model of stiction is difficult to use because of the
requircment of knowledge of mass and forces. Therefore, a simple yet powerful data-
driven empirical stiction model has been developed. Both closed and open loop results
have been presented and validated to show the capability of the model. It is recommended
that when using a X-Y plot to analyze valve problems, if myv data are available, one should

use my-op plot instead of pv-op.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.A  Appendix — Derivation of Describing Function 94

4.A Appendix — Derivation of Describing Function

4.A.1 Expression for the output of the non-linearity

The input-output behaviour of stiction nonlinearity is shown in Figure 4A.1. The output
from stiction nonlinearity (i.c., the solid line in the Figure 4A.1(4) is not analytic. It is
useful to consider a sine wave input (dotted line in Figure 4A.1(a)) with angular frequency

of 1rad-sec™! and period 27, The output (the solid line in Figure 1(2)) is then:

I‘( msin(r) ST/) 0<1<3

k(X — S2) ss1<n-
y() =< k(X ,,,smt —51) n_(pg,g%fr

I‘( Xm“f ) %’Tgt\br—(p

k (X,,,Sll] ‘“2“/') -9 <t <2

where X, is the amplitude of the input sinc wave, S is the deadband plus stickband, J is
the slip-jump, ¢ = sin™! (%) and k is the slope of the input-output characteristic in the

moving phase (k is assumed to be 1 for a valve).

Xim| [
k(Xm-42j - RIXm-42}
XM -d?)-
{Xm-s)
0 i
~{Xm-s)
-R{Xm-d 2 |
-k(Xm-d2 R(Xm-d?)
=Xm| v
0 R’ x 2 o -Xm  —(Xm-s) -d2 0 d? (Xm-s})  Xm
R-aresin({ X -s)Xm) 2n-aresingXm- sy xXmi
(a) input-output time trends for stiction (b) input-output phase plot for stiction

Figure 4A.1: Describing function analysis for stiction nonlinearity.
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4.A.2 Evaluation of the fundamental Fourier component

The fundamental component of the complex Fourier series is:
b 4

I —~it
ra R (t)e "dt
-0

where, after substitution of sin (1) = % (¢ —¢~%):

7 " rx S—J e §_J
/.\'(1)0'_“(1[ = /1\<—§'lﬂ (c'"—c"”)——k 5 >c”"u’t -+ / /\'<X,,,—A > )(f_"dt
1:=:() -0 t .xf2
3nf2 . . 4 . . 2n-9 . .
+ /\»(Q‘r_y((.“_(»""')-+~§—;l)¢"”(1t + [ k(—X,,,+%l/)("”dt
(-0 - 1 3nf2
r
; Xm i -t S-J —it
4 / A(E—I— ((’ - )~— 5 e "dt (4A.1)
1=:2n—¢
Stating it compactly:
n

y(t) e Mdt =Ty + T+ Ty 4Ty + 15

where 7 = j A( ’”( e - ng)("“"(/t, and so on.

EVd]Udll()ll lum -by-term gives:

k S=J  Xu
Ty = ~(Xu—S+J)+ :A< 4”)

2
T = -k (X,,, -~ 3—_7:—]—> (1 —sin@) — ik (X,,, - E-—;-l> cos ¢
Ty = k(% (14cos2¢) — 52 (1 +sing)) +ik (2 sin2¢ — 22 (2 +¢) + 552 cos )
Ty = —k<X,,,—E—7—l>(I~sm¢) 1A<X,,, i J) cos

2 2
Ts = —k(% (1 —cos20) + S5 sing) — ik (342 + 4 - Bsin29 - S cosg ) @A)
Collecting terms gives the wanted fundamental Fourier component of the output:
2n i
S [yt e tde 5 (BAA)
1o

where A= (kXnsin2¢ — kX, cosd —kXy (5 +9) + 2k (S = J)cos ¢)

and = -41\—1 + k= \’” Co82¢ + 2kX,,sing — 2k (S = J)sin¢g
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The fundamental component of the complex Fourier series of the input sine wave is Xy, / 21

Therefore, the describing function is:

B+iA  2i 1
N = X—=—-——(A-iB
2 X X ( )

4.A.3 Evaluation of limiting cases

There is no output from the non-linearity when X, < S/ 2. The limiting cases considered
are therefore X, = §/2 and X,, >> §.

When X,, > S, ¢ = sin™! (L;,;TS) = % A = —knX,,, B=0and thus N = k. This result
is to be expected because the influence of the stickband and jump are negligible when the
input has a large amplitude and the output approximates a sine wave of magnitude kX,
The slope of the moving phase for a valve with a deadband is k£ = | when the input and
output to the non-linearity arc expressed as a percentage of full range. Therefore for a valve
with stiction, N = |, when X, > §.

When X, = S/2 the result depends upon the magnitude of the slip-jump, J. For the case
with no deadband (S =J), ¢ = =5, A =0, B= ~4kX,, and N = —ik} = k2e=", For
avalve withk =1, N = %e".”/zl This result describes the situation where the output is
a square wave of amplitude X, lagging the input sinc wave by one quarter of a cycle, as
shown in Figure 4.15.

For intermediate cases, where both deadband and slip-jump are present such that
|S—J| > 0, then the X, = S'/2 limit gives ¢ = -5, A=0,B=-2k/ andN = ~ik;2)—(j;; =
k%e‘”‘/z. For instance, if J = §/2 and k = 1, then the X,, = $/2 limit gives N = 2¢77/2
and the output is a squarc wave of amplitude X,,,/.?. lagging the input sine wave by one
quarter of a cycle.

When the non-lincarity has a deadband only and no slip-jump (J = 0), the describing

function has a limit given by N = ge™™/2 where & — 0 as X,, — S/2.
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Automatic Detection and Quantification of
Control Valve Stiction

Stiction is a common problem in spring-diaphragm type valves, which arc widely used
in the process industry.  Although there have been many attempts to understand and
detect stiction in control valves, existing methods cannot detect and quantify stiction
simultancously. Conventional invasive methods such as the valve travel test can casily
detect stiction, but are expensive and tedious to apply to hundreds of valves. Thus, there is a
clear need in the process industry for a non-invasive method that can not only detect but also
quantify stiction so that the valves needed repair or maintenance can be identified, isolated
and repaired. This chapter describes a method for detecting and quantifying stiction that
may be present in control valves using routine operating data obtained from the process.
No additional excitation or experimentation of the plant is required. More than a dozen
industrial case studics have demonstrated the wide applicability and practicality of this

method as a useful diagnostic aid in control-loop performance monitoring.

'A brief version of this chapter was published i the proceedings of the DYCOPS 2004 conference (Choudhury etal., 2004¢). A
regular paper based on this chapter has been submitted 1o Control Engineering Practice, September 2004. A Patent Application has

been filed for the technigues deseribed in this chapter.
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5.1 Introduction 98

5.1 Introduction

A typical chemical plant has hundreds of control loops. Control performance is important
to ensure tight product quality and fow cost of the product in such plants. The presence of
oscillation in a control loop increases the variability of the process variables thus causing
inferior quality products, larger rejection rates, increased energy consumption, reduced
average throughput and reduced profitability. The only moving part in a control loop is
the control valve. Control valves frequently suffer from problems such as stiction, leaks,
tight packing, and hysteresis. Bialkowski (1992) reported that about 30% of the loops are
oscillatory due to control valve problems. In a recent study Desborough and Miller (2001)
reported that control valve problems account for about one third of the 32% of controllers
classified as “poor” or “fair’” in an industrial survey (Desborough et al., 2000). If the control
valve contains nonlinearitics, ¢.g., stiction, backlash, and deadband, the valve output may
be oscillatory, which in turn can cause oscillations in the process output. Among the many
types of nonlinearities in control valves, stiction is the most common and one of the long-
standing problems in the process industry. It hinders proper movement of the valve stem
and consequently affects control loop performance. Stiction can be detected casily using
invasive methods such as the valve travel or bump test. However, to apply such invasive
methods across an entire plant site is neither feasible nor cost-effective because they are
manpower, cost and time intensive in nature.

Although many invasive tests/methods have been suggested (Aubrun er al., 1995:
McMillan, 1995; Taha et al., 1996; Wallén, 1997: Sharif and Grosvenor, 1998 Ruel, 2000:
Gerry and Ruel, 2001) for analysis and performance of control valves, few non-invasive
studies or methods ((Horch, 1999; Rengaswamy et al., 2001; Stenman et al., 2003) have
appeared in literature. Horch'’s method is successful mainly in detecting valve stiction in
flow control loops. It cannot be applied to loops involving an integrator or those carrying
compressible fluids.  The method described by Rengaswamy et al. (2001) depends
on the qualitative shape of the time trends of the data, which are often distorted by the
presence of noise and disturbance. Also, in the real world, the shape of the time trends
of the data is heavily affected by the process and controller dynamics. Stenman et al.
(2003) described a model based segmentation method to detect stiction in control valves.
This method requires a model of the process and numerous tuning parameters. Obtaining
the closed loop model of the process from routine operating data is usually non-trivial.
Morcover, all these methods can detect stiction but cannot quantify it. As pointed out by

Desborough and Miller (2002), ‘a passive or non-invasive method that can reliably and
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automatically classify valve performance in closed loop is desperately needed in process
industry’. Clearly, a non-invasive method capable of detecting and quantifying stiction will
be useful in the process industry to identify the valves that need maintenance or repair.

An effective non-intrusive data-based monitoring method could reduce the cost of
control loop performance maintcnance by screening and short-listing those loops and/or
valves that need maintenance. This chapter describes a data-based, model-free non-invasive
method that can automatically detect and quantify stiction present in control valves. The

main contributions of this chapter are:

e A model-frce method for detecting and quantifying stiction in control valves from
routine operating data is developed. The method does not require the performance of

any additional valve travel test or commonly known bump test of the control loop.

e The novel feature of the method is that it can detect and quantify stiction using
controlled variable (pv), controller output (op) and set point (sp) data. 1t does not
require valve positioner (mv) data. If mv data are available it is very easy to detect
and quantify stiction from the mapping of mv and op. However, this is not the case
when only pv, op, and sp data are available because the mapping of py and op is

often confounded by the loop dynamics and disturbances.
o Finally, the algorithm has been fully automated.

e The method is useful in short-listing the valves suffering from stiction from the
hundreds or thousands of control valves used in chemical plants or elsewhere. Thus,
it contributes to the reduction of plant maintenance costs and increases the overall

profitability of the plant.

5.2 Detection of Stiction in Control Valves

In a control loop, a nonlincarity may be present either in the process itself or in the control
valve. For our current analysis, we are assuming that the process nonlinearity is negligible
in the stecady state operating region during which the data has been collected. This is a
reasonable assumption because the method works with routine operating data of a control
loop under regulatory control. In general, when processes are fairly well regulated at
standard operating conditions, the plant can be assumed to behave linearly since a lincar

controller is capable of satisfactory regulation of the plant.
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Control valve nonlinearities include mainly stiction, backlash, deadband and deadzone.
Stiction is the most common problem and is the main focus of this study. There are
two types of methods for detecting stiction: invasive and non-invasive. Invasive methods
require putting the loop in ‘manual’ and then stroking/travelling the valve over its full travel
span. This is now termed the ‘valve travel test’ in Instrument Society of America (ISA)
standards (ISA-75.13-1996; ANSI/ISA-75.05.01-2000). Using this type of test, stiction
can be quantified as the amount of change required in the control signal to move the valve
from the position where it was stuck. Because it is neither feasible nor cost-effective to
test hundreds of valves at a plant site, the non-invasive methods are preferred to invasive
methods. Horch’s cross-correlation method is popular among the non-invasive methods
reported so far for detecting stiction. Horch’s method (Horch, 1999; Horch, 2000; Horch
et al., 2000) detects stiction with the use of the cross-correlation function between pv
and op. Their method is not applicable to processes containing an integrator, €.g., a
level control loop, or for loops carrying compressible media, e.g., stcam or air. Their
method is useful mainly for flow control loops. Even for flow control loops, it sometimes
produces inconclusive results (Desborough and Miller, 2002). Also, if there is a sinusoidal
disturbance entering the control loop, the method falsely detects stiction in the control valve
(Choudhury et al., 2002). Moreover, nonc of the existing methods can quantify stiction.
Therefore, a new method based on higher order statistics has been developed which can
detect as well as quantify stiction and is applicable to all types of control foops. The
method first examines the presence of nonlinearity in a control loop. 1f a nonlinearity is
detected, then the process variable (pv), set point (sp) and controller output (op) signals
arc used to diagnose the possible causes of nonlincarity. The following section describes

the method in detail.

5.2.1 Detection of loop nonlinearity

A control loop containing valve nonlincaritics often produces non-Gaussian (e.g., a signal
with asymmetric distribution) and nonlinear time series, namely process output (pv) and
controller output (op) data. Higher order statistics bascd nonlincarity assessment can be
used as a diagnostic tool for troubleshooting of hardware faults that may be present in
the control loop (Choudhury er al., 2002; Choudhury et al., 2004d). As described in
(Choudhury et al., 2004d), the test of Gaussianity and nonlinearity of the control error
signal (sp-pv) is a uscful diagnostic aid for determining the poor performance of a control

loop. The test described in Choudhury e al. (2003¢) uses the sensitivity of the normalized
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bispectrum or bicoherence to detect the presence of nonlinear interactions in the signal. A
distinctive characteristic of a nonlinear time serics is the presence of phase coupling such
that the phase of one frequency component is determined by the phases of others. Phase
coupling leads to higher order spectral features that can be detected in the bicoherence of
a signal. The nonlinearity test applied here uses bicoherence to assess the nonlinearity.

Bicoherence is defined as:

,B(flafZ),z (Sl)
IX(MX(L)PIE(X (i + )] B

where B(f1, f2) is the bispectrum at frequencies (7, f2) and is given by

bic*(fi.f2) 2 =

o
[
-t

B(fi.2) £ EX()X(L)X' (fi + f)). (

X(fy) is the discrete Fourier transform of the time series x(k) at the frequency fi, X* (1) is
the complex conjugate and £ is the expectation operator. A key feature of the bispectrum
is that it has a non-zero value if there is significant phase coupling in the signal .x between
frequency components at f and fa. The bicoherence gives the same information but is
normalized as a value between 0 and 1.

Choudhury et al. (2004d) defined two indices — the Non-Gaussianity Index (NGI) and
the Non-Linearity Index (VLI) — as

NGI 2 bic? = bicZ i (5.3)
NLI 2 | bicty ~ (bic? +20,:,) (54)

where bic? is the average squared bicoherence, ln'}'?,,,a.l is the maximum squared
bicoherence, o, : is the standard deviation of the squared bicoherence and E('—?r,.,‘, is
the statistical threshold/critical value obtained from the central chi-square distribution of
squared bicoherence. As outlined in (Choudhury ef al., 2004d), if both NGI and NLI are
greater than zero, then the signal is described as non-Gaussian and nonlinear. The details
of the procedure are shown in Figure 5.1. The test can be applied to any time series to
check its non-Gaussianity and non-lincarity. For a control loop, this test is applied on the
crror signal (sp-pv) to the controller because the error signal is more stationary than pv or
op signal. If the error signal is found to be non-Gaussian and nonlinear, it is inferred that
the loop in question exhibits significant non-lincarity.

The nonlinearity can be attributed to the control valve under the following assumptions:

o The process is locally linear.
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Poory performing control loop

data (SP, PV, OP)
Y
Calculate NGT
(use sp-pv)
no A yes
NGI>0?
Y \ J
Gaussian, Linear Non-Gaussian
\ 4
Calculate NLI
A
Possible causes: " "
1. extemal oscillatory | Non-Gaussian, Y
disturbances Linear
2. tightly tuned controller Nonlinear

Figure 5.1: Decision flow diagram of the methodology for the detection and diagnosis of

loop nonlinearity.

o No nonlincar disturbance enters the loop.

e The installed characteristic of the control valve is reasonably linear in the current

operating region.

If the disturbance is measurable, then the test can be applied to check the linearity of the
disturbance. One may also argue that the valve itself may have a nonlincar characteristic,
c.g., a squarc-root or equal percentage characteristic, which is definitely not a fault. To
clarify this situation, a simulation study was performed and the results are already presented
in Chapter 3 for equal percentage and square-root valve characteristics in a simple feedback
system. It was found that if the movement of the valve stem or the change in input signal
to valve is within 15% of the full span (0 to 100%) of the valve travel, then a control loop
cxhibits lincar behavior under steady state regulatory control. It can also be realized by
careful investigation of the valve characteristic curves.

Therefore, the higher order statistics based NGI and NLI indices can casily be calculated
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for each loop in an entire plant site and the loops that exhibit nonlinear behavior can
be isolated for further diagnosis. After a loop is identified as nonlinear, the causes of
nonlinearity should be diagnosed. With the assumptions listed above, it can be concluded
that the valve is most likely responsible for the loop nonlinearity. The next problem is to
diagnose whether this valve nonlinearity is due to stiction or some other factor. The pv-op

plotis useful for solving this problem.

5.2.2  Use of pv-op plot

The pv-op plot has long been used for the detection of valve problems, especially stiction.
However, experience shows that this type of method is successful only for a handful
number of flow control loops. The use of a pv-op plot for detecting valve problems
was not successful because it only takes into account the qualitative trend information of
the time series, which can be destroyed due to the presence of process dynamics, noise
dynamics, disturbances and tightly tuned controllers. In our method, this plot will be used
as a second step to diagnose the valve nonlincarity problem, not for the detection of the
valve problems. The latter is carried out by using higher statistical based NGI and NLI
indices. If nonlincarity is detected, then the pv-op plot is used to diagnose the cause of this
nonlinearity. Because of the contamination of real-world data with noise and disturbances,
a py-op plot is often unclear and ambiguous, and it is difficult to find any clear information

from it. This necessitates the use of a filter to clean the data.

Data Filtering

Since the nonlinearity detection is a frequency domain method, frequency domain based
filtering has been chosen here. Upon detection of nonlinearity, the frequencies responsible
for significant nonlincar interactions can be determined from the significant peaks in the
squared bicoherence plot. Then, a frequency domain Wiener filter is used to obtain those
parts of the signal that contribute significantly to signal nonlinearity. Both pv and op are
filtered using a frequency domain Wiener filter. The frequency-domain Wiener filter sets
the power in unwanted frequency channels to zero. The filter used here is an approximate
realization of a Wiener filter (Press ef al., 1986), because a true Wiener filter also requires
an estimate of the noise power within the wanted frequency channels, which would then be
subtracted from those channels. The detailed design algorithm is given in Thornhill ¢r al.
(2003), which explains how to deal with aliased frequencies above the Nyquist frequency

and constraints on the filter width. The frequency ranges for the filters are selected by
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inspecting the peaks in the bicoherence plot. It is preferable to use a large number of
data points (e.g., 4096 samples) for the nonlinearity detection algorithm. Filtering is also
performed on those data sets. However, the use of such a large number of data points in the
pvs-opy plot often produces a signature that is difficult to match with any known pattern of
valve problems. Therefore, a segment of the data consisting of only several hundred data
points should be chosen for the construction of the pvs-op plot. Note pvyand op are the

filtered pv and op.

Choosing an appropriate segment of the data

The question that naturally arises is how to select a segment of the data for a useful pvs-opy
plot. This problem can be resolved by choosing the segment that has regular oscillations
because valve problems manifest themselves as limit cycles in the data. Thornhill er al.
(2003) described a method for the assessment of the period and the regularity of oscillation
of a time series. They used the zero-crossings of the auto-covariance function of the time
series to estimate the period of oscillation. An oscillation is considered to be regular if the
standard deviation of the period of oscillation (o7, ) is less than one third of the mean value
of the period of oscillation (T—,,). The statistic used is:
e/

= 5.5
Tor (5.5)

A value of r greater than 1 indicates a regular oscillation with a well-defined period. In
this work, the filtered controller output signal (opy) is divided into several segments of
user-defined length that can be selected based on the period of oscillation. The segment of
opy corresponding to the highest value of r is used for the pvs-op; plot, where pvy is the
corresponding counterpart of op . The data segment corresponding to the highest value of
r is chosen because valve nonlinearitics, ¢.g., stiction and deadband, are measured as the
maximum width of the cycles in the direction of valve input signal in a valve characteristic
plot. If the valve positioner data is available (as would be the case for ‘smart valves’), a
plot of valve output signal (mv) vs. valve input signal (op) can readily be used to quantify
stiction. However, in practical cases, valve output or positioner data is seldom available.
Therefore, one needs to estimate stiction from the available data of controlled output (pv),
controller output (op) and the set point (sp) variables. In this work, stiction is estimated
to be the maximum width of the cycles of the pv-op plot at the direction of opy. The
quantificd stiction is termed “apparent stiction™ because the actual amount of stiction to be

obtained from the mv-op plot may differ from the estimated quantity owing to the effect of
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loop dynamics on the controlled variable, pv, in particular, the effect of the controller to

compensate or fight stiction.

5.3 Quantifying Stiction

The detection and diagnosis algorithm can identify stiction in a large number of control
valves. Some valves may have an acceptable level of stiction, while others may have
severe stiction that may demand immediate maintenance. Therefore, it is important to
be ablc to quantify stiction so that a list of sticky valves can be prepared in order of their
maintenance priority. It is well known that the presence of stiction in control valve in a
control loop produces limit cycles in the controlled variable (pv) and the controller output
(op) (Hagglund, 1995; Horch, 1999; Ruel, 2000; Rengaswamy er al., 2001). For such
a case, if pv is plotted against op, cyclic patterns are found in the resulting pv-op plot.
A large number of such plots can be found in (Choudhury er al., 2004a; Choudhury et
al., 2004b), where stiction models were used in a closed loop SISO system to produce data
for these plots. An ellipse can be fitted to such a pvs-ops plot. The pvs-op, plot together
with either of the following two methods can be used to quantify stiction in unit of the op

signal. Note that there is no need to scale the data.

5.3.1 Clustering technique

Clustering is a method for dividing scattered groups of data into several groups. Because
the pv-op plot for a control foop with a sticky valve exhibits elliptic patterns, the data
corresponding to a narrow strip along the mean of pv and parallel to the op axis can be
collected (see Figure 5.2(c)) and then used for quantifying stiction with the help of c-
means or fuzzy c-means clustering techniques. A detailed description of these methods is
represented in Appendix - 5.A. The amount of stiction can be estimated from the absolute
value of the difference between the x co-ordinates of the centers of the two clusters. If
the final centers of the clusters are (opy, pvy) and (op2. pv2), then the amount of stiction is

determined using the following expression:

Apparent Stiction = |opy —opa] (5.6)
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5.3.2 Using a fitted ellipse

An ellipse in the least square sense can be fitted in the pvs-op, plot and then used to
quantify stiction. For details about the theory of ellipse fitting, refer to Appendix - 5.B.

Because apparent stiction is defined as the maximum width of the ellipse in the op
direction, the distance between two points lying at the intersections of the ellipse and a line
parallel to the op axis and passing through the center of the ellipse will be the amount of
stiction present in the loop. For any point P(x.12) in the X — Y co-ordinate system (sce
Figure 5.2(1)), Equation 5B.16 can be solved using Equations 5B.18 and SB.19. This gives
the X co-ordinate of points A and P in Figure 5.2(f):

mn

r=n=x (5.7
!  (m? sin28 +n? cos20)

where (f1,12) is the center of the fitted ellipse, m and n are the length of the major and minor
axes of the fitted ellipse respectively, and 8 is the angle of rotation of the ellipse. Therefore,
the amount of stiction (length of AP in Figure 5.2(f)) can be obtained using the following
expression

2mn

Apparent Stiction = AP = Ax = = (5.8)
V (m? sin20 4+ n? cos20)

5.4 An Illustrative Example

The objective of this section is to explain the sequence of steps in the proposed method with
a detailed presentation of an industrial example. This example represents a level control
loop in a power plant, which controls the level in a condenser located at the outlet of a
turbine by manipulating the flow rate of the liquid condensate from the condenser. In total,
8640 samples for cach tag were collected at a sampling rate of 5 seconds. Figure 5.2(a)
shows the time trends for level (pv), set point (sp) and the controller output (op). The loop
shows oscillatory behavior. For the bicoherence calculation, 4096 data points were used.
Figure 5.2(b) shows the squared bicoherence plot corresponding to the controller error
signal (sp-pv). The values of NGI and NLI were found to be 0.04 and 0.61 respectively,
indicating the presence of significant loop nonlincarity. From the bicoherence plot 5.2(b),
it can be seen that frequencies in the range 0.001 to 0.1 are the most significant frequencies
of the signal responsible for nonlinear interactions. Therefore, the pv and op signals were
filtered using a Wiener filter with frequency boundarics at 0.001 and 0.1. Using the method

of Thornhill e al. (2003) described cartier, it was found that the controller output signal
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Figure 5.2: Data analysis results for an industrial level control loop. The biocherence

plot shows large peaks indicating nonlinearities in the loop. The subplots (¢), (d) and (¢)

demonstrate c-means and fuzzy c-means method of quantifving stiction. The ellipse fitting
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was showing regular oscillations with an average period of 19.78 sampling instants and the
maximum r value 10.5 for a segment length of 200 data points. The maximum r value
corresponds to the 2801 to 3000 samples.

The pvs-opy plot is found to be useful for isolating nonlinearity. Thus, the filtered
pvy and op, corresponding 1o this segment is plotied in Figure 5.2(c), which shows
excellent elliptical patterns, indicating valve stiction. Figure 5.2(d) demonstrates the c-
means clustering technique used in quantification of the stiction. The points denoted by
empty and filled diamonds are the initial and final centers of the clusters respectively.
This method quantifies the amount of stiction in this loop as 11.3%. In contrast, Figure
5.2(c) illustrates the use of fuzzy c-means clustering in the quantification of stiction. The
trajectorics followed by the centers of the clusters during the iteration stages are shown by
lines with diamonds directed with arrows. The final centers are again in solid diamonds.
The amount of stiction estimated by this method is 11.25%. Figure 5.2(1) shows the
algebraic ellipse fitting technique, and the amount of stiction estimated using this method
is 11.40%. All three methods produced identical results, with practically tolerable limits of

deviation from each other.
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Figure 5.3: Valve Position (mv) versus Controller Qutput (op) plot. This plot confirms that

the amount of stiction was correctly estimated in Figure 3.2.
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Validation of the Results of the Illustrative Example: After the results of the analysis
were sent to plant engineers, they confirmed that this loop was suffering from stiction. For
this loop, the valve positioner data were made available. Figure 5.3 shows the actual valve
position (mv) vs. controller output (op) plot. This plot clearly shows that the valve was
sticking during the change of its direction. From this plot, the amount of stiction can be
estimated as 11.25%, which is in agreement with the results obtained from the proposed

methods.

5.5 Automatic Detection and Quantification of Stiction

[n order to apply the proposed method to a large number of industrial control loops, it must

be automated. The following is the description of the automation steps.

1. Calculate NGI and NLI for the control error signal (sp-pv). If both indices are greater
than 0, then go to the following step. Otherwise, STOP. Nonlinearity is not a problem.
The poor performance may be caused by tight tuning, detuned controller or external

oscillatory disturbances (refer to Figure 5.1).

2. After nonlincarity is detected, obtain the frequency (f1, f2) corresponding to the
maximum bicoherence peak in step 1. Note that all frequencies arc normalized such

that the sampling frequency is 1. Suppose fi=min(/; , f2) and fr=max(f; ., f2).

3. The boundaries of a Winer filter can be obtained from [y = max(0.001 , f,-0.05),
wy; = min(0.5, f>+0.05)]. Note that 0.05 is subtracted or added from the frequencies
in order to ensure that the exact location of the significant peak does not fall on the

filter boundarics.
4. Filter pv and op data to obtain pvyand opy.
5. Obtaining the segment of the data with regular oscillations

(a) Choose a segment length L, say L = 1000.

(b) Divide the opy data into segments of length L. Here opy is chosen instead of

pvy because often the op signal is less noisy than the py signal.
(¢) Calculate r and T), for cach segment of opy data.

(d) Obtain ryqy = max (r).
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Figure 5.4: Decision flow diagram of the methodology for the detection and quantification

of valve stiction,
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(e) Obtain T), which is equal to the T}, of the segment of op with 4.
(f) It L> 5 Ty, then choose L =5 T); and go o step (b).

(g) Now, opyy is the segment of the opy data that corresponds (o the ryq, and pyy,

is the portion of the pvy data that corresponds to op ;.
6. Usc the pv sy and op g, datato get pvy vs. opg plot.

7. Fit a conic to the selected pvyy and oppy data. I both eigenvalues of the A (see
Appendix -5.B) matrix are greater than zero, then the pvy vs. opy plot is an ellipse.

Otherwise, print a message, “Not an cllipse — Other valve problems, not stiction”.

8. Quantify stiction using Formula 5.8 or 5.6, depending on the method chosen for

stiction quantification.

The above mentioned automatic detection and quantification of stiction algorithm has been
summarized in Figures 5.1 and 5.4. Figure 5.1 shows the automatic detection of loop

nonlinearity. After the nonlinearity is detected, Figure 5.4 can be used to quantify stiction.

5.6 Simulation Results

5.6.1 Diagnosis of stiction

This section demonstrates the applicability of the proposed method for the detection and
quantification of valve stiction through a known simulated case of stiction. A simple single-
input, single-output (SISO) system in a feedback control configuration (Figure 5.5) was
used for generating simulated data. The first order process with time delay is given by the

following transfer function:

s (145-27")
[-0.8;""

Gz )= (5.9)

The process is operating under regulatory control with a PI controfler. A random walk
disturbance generated by integrating random noise was added to the process. The signal to
noise ratio defined by the ratio of the variance of the controlled output (pv) to the variance
of the random noise was 6. The simulation was performed for 6000 sampling intervals.
To remove the cffect of transients, the first several hundred data points were discarded and
the last 4096 points of the error signal to the controller (sp-pv) were analyzed to detect

nonlinearity present in the system.
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Disturbance

PV

Controller Valve Process

Figure 5.5: Block diagram of a simple SISO process with stiction nonlinearity in the valve.

A stiction model developed by Choudhury er al. (2004a, 2004b) was used to introduce
the stiction behavior of the control valve in the closed loop process. A 3% stiction (‘S’)
with 1% slip-jump (‘J°) were used in simulation. Note that in order to initiate limit cycles
or oscillations in a simple first order time delay process in the presence of valve stiction,
a set point change at the beginning of the simulation is required. The process is then left
to operate under regulatory control. Figure 5.6(a) shows the time trends of pv, op, and
sp. The presence of stiction produces oscillations in the process. The values of NG/ and
NLI arc 0.01 and 0.00, clearly detecting the presence of nonlinearity in the process signal.
The bicoherence plot (Figure 5.6(b)) shows that the frequency range of interest from a
nonlincarity point of view is [0.001 0.28] (using the steps of automation section). After
performing Wicner filtering, the segments of the pvy and opy data corresponding to the
scgment of op that has the highest oscillation index were chosen to obtain the pvr-op
plot. C-mcans clustering, fuzzy c-mecans clustering and fitted ellipse technique were used
to quantify stiction. The amount of stiction obtained from these techniques were estimated
to be 2.98%, 2.98% and 3.2% respectively, which is in agreement with the amount of
stiction used in simulation. Thus, all these methods are capable of correctly quantifying
the amount of stiction present in a control loop. However, for the sake of brevity, only
c-means clustering and fitted ellipse technique will be used in subsequent sections. The

reader can choose any of these methods to quantify apparent stiction.
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Figure 5.6: Results of detection and quantification of stiction in a simulated data set.
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5.6.2 Diagnosis of a sinusoidal disturbance

Oftentimes an unmeasured oscillatory disturbance (for example, a sinec wave) can initiate
cycles in the controlled and manipulated variables. This can be misdiagnosed as a valve
problem. This example illustrates the effect of addition of a sinusoidal disturbance with
amplitude 2 and frequency 0.01 Hz to the process. Note some measurement noise were

also introduced (refer to Figure 5.5).
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Figure 5.7: Stiction detection results for a simulated data set when an external sinusoidal
oscillatory disturbance plus noise are entering the loop. The cross-correlation method
detects stiction, even though there was no stiction (plot (b)). The bicoherence based method

correctly shows that there is no nonlinearity this loop (subplot(c)).
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The stiction model was absent in this simulation study. Thus, the diagnosis results should
not detect stiction or any other nonlinearity. The time trend of the controlled variable
(pv) in Figure 5.7(a) shows the oscillatory behavior of the process output. Horch’s cross-
correlation test (Horch, 1999) shows an odd correlation function, indicating possible valve
stiction (see Figure 5.7(b)). However, the higher order statistical test developed provides a
measure for NGI = 0, indicating a linear loop. The bicoherence plot for the error signal
to the controller is shown in Figure 5.7(c). The flatness of the bicoherence plot confirms

the lincarity of the loop.

5.6.3 Diagnosis of root cause of a propagated disturbance

This case demonstrates root cause diagnosis of propagation of oscillation(s) {rom one loop
to another. This simulation case has been formulated by feeding output of a concentration
loop as a disturbance to a level control loop. The approximate transfer function and
controllers for both loops are given below.

For concentration Loop:

G(s) = 3¢ C(s)=0.2(1 + ~'—) (5.10)
10s+ 1 10s
For level Loop:
e |
G(s) = v C(s) =0.1(1 +ﬁ) (5.11)

The simulation block diagram for this study is shown in Figure 5.8. The data driven stiction
model was used in the composition loop with § =3 and J = 2 and the valve in the level
control loop was free from stiction. In reality, it may describe a scenario where the outlet
of a mixing chamber in a composition loop is used to feed another processing unit (e.g., a
stock tank) and the level of the unit is controlled by a Pl controller.

Results of the analysis of these two loops are shown in Figure 5.9. As shown in figure,
both loops are oscillating. The NGI and NLI values for the composition loop are 0.004 and
0.57 respectively, and for the level loop, they are NGI = 0.002 and NLI = 0.49. The
amount of apparent stiction detected in the composition foop is 0.70% whereas in the
level loop it 18 1%. The method falsely detects stiction in the level loop. The method
developed here assumes that the disturbance(s) entering the loop isarelincar. For the level
loop, this assumption has been violated. For application in industry, where oscillations
propagate plant-wide, it is reccommended that the stiction diagnosis method should be used

in conjunction with information from the process flow sheet. For example, for this case
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Figure 5.8: Simulation Block diagram for stiction induced oscillation propagation study.

these two loops are connected and stiction is detected in both loops. Since there is no
recycle, it is most likely that the source of nonlincarity due to stiction is located in the
upstrcam loop, i.e., in the composition loop. The NGI and NLI indices are also higher for
the composition loop, confirming this as the root cause of the nonlinearity. Other stiction
detection algorithms (Horch, 1999; Rengaswamy ¢t al., 2001; Stenman e7 al., 2003) would
also produce false positive results for this kind of propagated disturbance (s) because they

also do not consider the interaction among the loops.
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Figure 5.9: Analysis results for root cause diagnosis of a propagated disturbance. Result
Jor the composition loops with a sticky valve (left). Results for the level loop affected by the

disturbance from the composition loop (right).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.7 Industrial Case Studies 118

5.7 Industrial Case Studies

The objective of this section is to evaluate the proposed method on a number of selected
control loop obtained from different types of process industries. For each loop, set
point (sp), controlled output (pv) and controller output (op) data were available. Unless
otherwise stated, a data length of 4096 was used for the squared bicoherence calculation
for each case. The time trends of these variables, the squared bicoherence plot, the c-means
clustering plot, and the fitted ellipse plot for each loop arc presented. The numerical results
for all loops are provided in Table 5.1. These data were analyzed without prior knowledge

of the control valve problems, and the results of the analysis were confirmed later by the

plant personnel.

Table 5.1: Numerical Results for the Industrial Loops Analyses

Loop Loop NGI | NLI | y T, r | Apparent Stiction %
No. Type c-means | ellipse

1 Level 0.10 { 0.40 | 0.001 | 0.08 | 50 | 22 4.2 4.3

2 Level 002 — — | — ] 9 | 35 — —

3 Flow 0.01 [ 0.550.001 |0.08 | 45 | 84 0.35 0.33

4 Temp 0.003 | 0.19 | 0.004 | 0.28 | 125 | 6.5 1.00 1.14

5 Pressure 0.02 [ 0.17 | 001 [0.25 | 122122 ] 11.00 11

6 | Composition | 0.02 | 0.38 | 0.01 0.15|283|11.6 1 1

7 Flow 0.006 | 0.38 { 0.004 | 0.14 | 59 | 4.6 — —_

5.7.1 Loop 1: A level loop

This is a level control loop in the same power plant described in the illustrative example.
It also controls the level of condensers located at the outlet of a turbine by manipulating
the flow rate of the liquid condensate. Figure 5.10(a) shows the time trend of the sp,
pv, and op data. Figure 5.10(b) shows the squared bicoherence plot. The values of NGI
and NLI were 0.1 and 0.40. These clearly indicate that nonlinearity is a problem for this
loop. From the position of the maximum peak at the bicoherence plot, the frequency range
for the Wiener filter was obtained following the steps described in the automation section

(Section 5.5). The frequency band for the filter is [0.001  0.08] (1000 samples/cycle to
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12.5 samples/cycle). The average period of oscillation(s) was 50 samples for the controller
output signal. The segment of the data corresponding to the maximum oscillation index
(the magnitude of r was 22 for this case) was selected to quantify stiction. Both c-means
clustering and fitted ellipse techniques estimate the amount of apparent stiction as 4%. The
c-means clustering plot is shown in Figure 5.10(c), while Figure 5.10(d) shows the fitted

ellipse technique for quantifying stiction.
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Figure 5.10: Stiction detection and quantification results for an industrial level control loop
data. Significantly large peaks in the bicoherence plot detects nonlinearity in the loop. The
presence of ellipse confirms stiction. The width of the ellipse or c-means clustering method

quantifies stiction.
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5.7.2 Loop 2: A linear level control loop

This loop is another level control loop in the same power plant described in the illustrative
example. It also controls the level of a condenser located at the outlet of a different turbine
by manipulating the flow rate of the liquid condensate. Figure 5.11(a) shows the time trend
of the sp, pv, and op data. Figure 5.11(h) shows the squared bicoherence plot for the
control error signal. The magnitude of NGI was -0.02, clearly indicating nonlinearity is
not a problem for this loop. Figure 5.1 1(c) shows the valve positioner (mv) vs. controller

output (op) plot. From this figure, it is obvious that the valve shows a linear response.
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Figure 5.11: Results of the analvsis of another industrial level control loop data. The
flatness of the bicoherence plot shows the linearity of this level control valve, which was

confirmed in the valve position versus valve input plot (subplot (c¢)).
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5.7.3 Loop 3: A flow control loop

This is a flow control loop obtained from a refinery. The results of the analysis of this loop
are shown in Figure 5.12 and also in the third row of the Table 5.1. The presence of a small
amount of stiction (0.35% for loop 3) was causing a large amplitude oscillation (see the

magnitude of pv axis in Figure 5.12(a)) in this loop.
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Figure 5.12: Results of the analysis of a refinery flow control loop data. Significant peaks
in the bicoherence plot show the nonlinearities in the loop. The presence of ellipse in py-op

plot confirms stiction.
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5.7.4 Loop 4: A temperature control loop

This is a temperature control loop on a furnace feed dryer system at the Tech-Cominco mine
plant in Trail, British Columbia, Canada. The temperature of the dryer combustion chamber
is controlled by manipulating the flow rate of natural gas to the combustion chamber. The
top left plot of Figure 5.13 shows time trends of temperature (pv), set point (sp) and
controller output (op). It shows clear oscillations both in the controlled variable (pv) and
the controller output. The other results are presented in the sixth row of the Table 5.1 and

in Figure 5.13. The amount of stiction found in this loop was approximately 1%.
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Figure 5.13: Results of stiction detection and quantification in an industrial furnace dryer
temperature control loop. Approximately 1.1% stiction was detected in the natural gas flow

control valve.
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5.7.5 Loop 5: A pressure control loop

This is a pressure control loop in a refinery plant. This data set had only 1500 data points
collected at 20 second sampling intervals. The time trends in Figure 5.14 show oscillations
with 12.2 samples in both pv and op variables. The detailed results of the analysis are
presented in Figure 5.14 and in the 5" row of Table 5.1. The apparent stiction present in

the valve was approximately 11%.
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Figure 5.14: Results of the analysis of a refinery pressure control loop data. Approximately

11% stiction was present in the control valve.
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5.7.6 Loop 6: A composition control loop

This describes a concentration control loop. The data set contains 1100 points collected at
1 second sampling intervals. The time trends in Figure 5.15(a) show oscillations with 28.3
samples in both pv and op variables. The detailed results of the analysis are presented in
Figure 5.15 and also in the 6" row of Table 5.1. The apparent stiction present in the valve

of this concentration control loop was approximately 1%.
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Figure 5.15: Results of the analysis of an industrial composition control loop data.

Approximately 1% stiction was present in the control valve.
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5.7.7 Loop 7: A cascaded flow control loop

This loop represents a flow control loop cascaded with a level control loop of a drum in an
ethylene plant. At a sampling rate of 1 sample/min, 7200 data points were collected. Time
trends for the pv and op variables for the flow control loop are shown in Figure 5.16(a).
The detailed results of the analysis are presented in Figure 5.16 and also in the 7'* row of
Table 5.1. The bicoherence plot shows presence of nonlinearity in this loop. The absence
of an clliptical pattern in the pv-op plot (Figure 5.16(c)) indicates that this nonlinearity is
not due to valve stiction. The probable source of this nonlinearity is likely to be nonlinear

disturbances entering this loop or valve problems other than stiction or nonlinearities in the

process itself.
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Figure 5.16: Results of the analvsis of an industrial cascaded flow loop data.  The
bicoherence plot shows the nonlinearity present in this loop. The absence of an ellipse

in the pv-op plot (subplot (¢)) indicates that this nonlinearity is not due to valve stiction.
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5.8 Online Compensation for Stiction

After a sticky valve is identified the best solution is to repair it, which may require taking the
valve out-of-service. In most cases, it is not possible to take the sticky valve out-of-service
for its immediate maintenance because of the absence of a bypass line. A method that can
help continuing operation of the plant until next planned shutdown with minimum effects
of stiction can be useful for the process industry. There are several online methods to deal
with stiction (Bergstrom and Dumont, 2003; Armstrong-Hélouvry er al., 1994; Hatipogiu
and Ozguner, 1998; Kayihan and Doyle 111, 2000; Hagglund, 2002; Tao et al., 2002).
For online compensation of stiction Gerry and Ruel (2001) suggested the use of a Pl
controller where the integral action has variable strength. Hagglund (2002) suggested
a method of adding short pulses called ‘knockers’ to the control signal to compensate
stiction in pneumatic valves. As claimed by Hagglund (2002), this ‘knocker’ friction
compensation method has been patented and implemented in industrial controllers. In
(Bergstrom and Dumont, 2003), a special adaptive controller in combination with a PID
controller has been suggested for online stiction compensation. It requires a special
function for switching between the adaptive controller and the PID controller. They did
not apply this to industrial settings. Other methods to compensate stiction in control valves
can be found in (Armstrong-Hélouvry er al., 1994; Hatipoglu and Ozguner, 1998; Kayihan
and Doyle 111, 2000; Tao er al., 2002; Amin et al., 1997).

5.9 Conclusions

A non-invasive method for detecting and quantifying stiction in control valves has been
presented in this chapter. The method first detects nonlinearity in a control loop by the use
of the sensitivity of the normalized bispectrum or bicoherence to the nonlincar interactions
that may be present in the control error signal. If nonlinearity is detected, then pv and
op signals are filtered using frequency domain Wiener filter to obtain filtered pvpand op
signals. If an ellipse can be fitted satisfactorily onto the pv-opy plot, this is a signature
of valve stiction. Then C-means clustering, fuzzy c-means clustering or fitted ellipse
techniques can be used to automatically quantify the amount of stiction. The method has

been extensively evaluated on simulated as well as industrial data sets.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.A Appendix Clustering Techniques 127

5.A Appendix Clustering Techniques

5.A.1 C-means clustering

In this method, data are partitioned into C number of initial clusters. Then proceeding
through all data points, each point is assigned to the nearest cluster (in terms of Euclidean
distance). The centroids for the cluster receiving the new item and for the cluster losing the
item is re-calculated. This procedure is repeated until no more reassignments take place.
For details, refer to (Johnson and Wichern, 1998). This method requires the initialization
of the centers of the clusters. In our case, there are only two clusters, and the centers can be
specified as [min(ops), mean(pvy)] and [max(opr), mean(pvy)] calculated from the data

obtained along the stripe in the py-opy plot (see Figure 5.2(¢)).

5.A.2 Fuzzy C-means clustering

The fuzzy c-means clustering method as described in (Dulyakarn and Rangsanseri, 2001;

Bezdek, 1981) works based on the minimization of the following objective function.

Jn(U.V) = ZZu”'“x —Vill', 1<m<e (5A.1)
=i

where U is a fuzzy c-partition of the data set, V is a set of K prototypes, m is any real
number greater than or equal to 1, w;; is the degree of membership of X in the cluster i, X;

" observation of the d-dimensional measured data, V; is the d-dimension center of

is the j
the cluster, and || * || is any norm expressing the similarity between a measured data and
the center. Through an iterative optimization of Equation SA.1, fuzzy partition is carried
out with the update of membership of «;; and the cluster centers V; using the following

cquations.

Uijj = ——————5— (5A.2)

Vi = f— (5A.3)

z . ll”

where, d;j is the Euclidean distance between the observation X(j) and the center of the

cluster V;. The criteria to end the iteration is nmx(|uu - z?ij]) < &, where € is a number
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close to zero (e.g., 107%) and {i;j is the membership number at the previous iteration step.

In this study, the number of clusters is two and 10~ was used as the magnitude of €.

S5.B Appendix Fitting an ellipse

Assume that given data points are op and pv, where

op = lop(1),0p(2),---.op(N))! (5B.1)
pv = [p(1),pv(2),---. pr(N)]" (5B.2)
(5B.3)

Starting with the general equation of conics, the equation of ellipse is developed. The

cquation for any conic in the ordinary X — Y co-ordinate is given by the following equation
a1X1° + dpax X + aaxa” + bixi4buxatce=0 (5B.4)

Of,
PO =0 (5B.5)

where @ = [x2 xpx2 x22 xp x 1], ©@=[a; a;y a3 by by c]", x1 corresponds to data
from the op signal and x; corresponds to data from the pv signal. Now, for a given data
set, the above equation can be solved as constrained least squares problem: ||PO]] = min
subject to ||O]] = 1.

Often real-world data scts require a linearly shifted and rotated conic. Therefore, there
is a need to fit a rotated and shifted conic in a transformed co-ordinate X ~ Y (see Figure

5.2(1). Equation 5B.4 can be rewritlen as:
X' Ax+bIx+c=0 (5B.6)

withx = [vj.x02)", A = [0y @12/2; ap2/2 aa].b=[by by]". Note that A is symmetric and
positive definite. Let us use the following equation for the transformation of the equation

in the new co-ordinate system X — ¥,
x=Qx+t (5B.7)

where Q is the matrix for rotational transformation and t is the vector in the original X — Y
co-ordinate for a lincar shift of the conic. Using Equation 5B.7, the equation of the conic

in the transformed co-ordinate can be written as:

QTAQR 4+ 2" A +bDQx AL+t =0 (5B.8)
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This can be rewritten in the following simplified form

XA +b'%4¢=0 (5B.9)
where

A = Q'AQ (5B.10)

b = ("A+b")Q (5B.11)

¢ = At+b t+¢ (5B.12)

Now, Q can be chosen in a way so that A= diag(Ay.A2). One approach is to choose Q
as the eigen-vector matrix obtained from the eigenvalue decomposition of the matrix A. If
the conic is an ellipse with its center at the origin of the new co-ordinate X — Y, then in
Equation 5B.Y,

b=0 (5B.13)

Therefore, Equation 5B.9 can be simplified as

M+ An+e=0 (5B.14)
or,
Sk .
—=t—==1 (5B.15)
T VE
or,
2 -9
0 K-
=1 (5B.16)
n- Hn-
where,
—c _:F
m= [ —-—, n=,/— SB.17
7 V7 GBI

The lengths of the axes of the ellipse will be invariant to the transformation. Therefore,
in the original co-ordinate X — Y, the lengths of the axes of the ellipse are 2m and 2n,
respectively. The center of the ellipse is at t, which can be calculated from t = —0.5A"'h
(obtained using Equation 5B.13). The angle of rotation of the cllipse (6, measured anti-
clockwise from the positive X axis) can be calculated using any of the eigenvectors. Since

the cigenvectors are of unit length, Equation 5B.7 can be written as

Xy =27 cosO — X5 sinf +1, (5B.18)
Xy = X7 sinf 4 X3 cos0 413 (5B.19)
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Impact of Data Compression and
Quantization on Data-Driven Process
Analyses

Modern chemical plants are extensively instrumented and automated. One manifestation
of increasing automation and accessibility is casy availability of process information on the
desktop. Information access is typically available as a result of extensive data logging and
process archiving. Historical data are an invaluable source of information. In chemical
industrial practice, data are often compressed using various techniques, ¢.g., box car,
backward slope, swinging door, PLOT, wavelet, etc. before storing them in a historian.
Compression degrades data quality and induces nonlinearity. This chapter focuses on the
problems of data quality degradation and nonlinearity induction due to compression, and
automatic detection and quantification of the compression present in the archived data.
Finally, the problem of quantization in the process data is discussed and an automatic

procedure to detect and quantify quantization is presented.

I,«\ Sull paper based on this chapter has been published as Thornhill, N, E, Choudlury, M. A A S and Shah, S 1., "The Impact of
Compression of Data-Driven Process Analvsis”, Journal of Process Cantrol, 14, June 2004, pp. 389-398. Thiy chapter is a significantly

expanded version of the published paper with more examples, discussions on the compression algorithms and quantization problems.
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6.1 Introduction

The motivations for data compression include reduction of the costs of storage of historical
data and reduction of cost of transmission of process data through a telecommunications
link. For instance, in pharmaceutical manufacturing the regulatory authorities demand long
term storage of manufacturing records, in which case the cost of storage media would be a
consideration. In off-shore oil production, the cost is in the satellite linkage to an on-shore
headquarter. The trend towards remote monitoring of their instalfed systems by technotogy
vendors also requires data transmission through a telecommunications link.

However, data compression has hidden costs if the data become unsuitable for their
intended purposes. The operation of restoring the original signal from the archived data is
called reconstruction. Once the data have been compressed they lose information and the
reconstructed trends are deficient in various ways compared to the originals. End uses of

the reconstructed data may be very different. They include:

e Calculation of daily statistics such as daily means, daily standard deviations;

Averaging for data reconciliation and mass balancing:

Archiving data trends for subsequent high fidelity reconstruction:

Data smoothing by removal of high frequency noise:

Feature extraction and recovery of events.

For example, data transmitted from an off-shore production platform are used to determine
daily totals of oil flow into the pipeline for taxation purposes, while remote monitoring of
a model predictive controller at a refinery may need high fidelity data for identification of
a dynamic process model.

The objectives of this study are to provide new insights into the impact of data
compression on data-driven plant performance analysis and to recommend how much
compression can be tolerated. The findings that compression causes problems may scem
obvious in retrospect, but there appears to have been no systematic study reported in the
literature to date. An automated means of detecting the severity of compression is also
presented.  Application of the algorithm during the data pre-processing phase of a plant
audit means less time is wasted in evaluation of unsuitable data. It also avoids the loss of
credibility of the methods and their practitioners that might arise if the wrong conclusions

were to be drawn from bad data.
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6.2 Motivating example 1

6.2 Motivating example

Figure 6.1 shows a data set from a historian typical of those from which engincers and
consultants wish to extract useful information (courtesy of Celanese Canada Inc.). The
straight line segments characteristic of industrial data compression can be seen in many of
the time trends. It will be shown in Section 6.6 that compression factors of up to 94 were
in use. The original uncompressed data were lost forever when they were compressed and
archived, and it is now impossible to determine what features were lost. Later sections
will show that most of these data trends are too compressed and that data-driven process
analysis would, if attempted, give a misleading indication of the results that the original

data would have provided.
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Figure 6.1: An industrial data set with compression in some tags.  Time trends are
mean centered and normalized. CF as shown on the right column is an estimate of the

compression factor (as defined in Section 0.9.2).
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6.3 Methods

Compression using piecewisc linear trending is widely used in industrial data historians.
For instance, AspenTech described an adaptive method based upon the box-car/backward
slope method (Aspentech, 2001), while OSI state that their PI data historian uses a swinging

door compression algorithm (OSI Software Inc., 2002).

6.3.1 Overview of data compression

There is extensive litcrature on methods of compressing images, speech and text (Watson,
1993).  Compression techniques for ECG (clectrocardiogram) signals are also at an
advanced stage (Crowe et al., 1992; Karczewicz and Gabbouj, 1997). The motives in ECG
are like those for process data compression in regard to transmission of the ECG signals
by telephone. Some developments in data compression have arisen from that field, for
example wavelet compression has moved from ECG to process applications.

Compression techniques can be divided into two main functional groups: direct methods

and transform methods.

6.3.2 Direct methods

The direct methods (also known as piecewise linear trending methods) are used in industrial
practice because these can be applied in real-time to spot data. Mah et «l. (1995) and
Watson ¢t al. (1998) have provided comparative reviews of various compression methods.
Mah et al. (1995) compared piccewise linear trending methods and introduced a new
method (PLOT). Watson et al. (1998) studied piecewise lincar trending as well as wavelet
and Fouricr compression. They also introduced a method using vector quantization for
process applications and discussed its bencefits.

A direct method makes the archiving decision in real time, concurrently with the capture
of data from the process. Various types of algorithms are used for data compression in
process industrics. Examples include box car (BC), backward slope (BS). combined box
car and backward slope (BCBS), and Swinging door (sdoor). These algorithms (Hale
and Sellars, 1981; Bristol, 1990) usc heuristic rules to decide whether to archive a spot
value. Those rules are tuned to achieve the capture of exceptions and lincar trends. They
reconstruct a data trend as a series of lincar segments connecting the archived spot values

of the data. A brief description of these algorithms are given below.
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Box Car (BC) Algorithm

In this algorithm, the current data point is compared to the past recorded data point. If the
two values differ by more than or equal to the recording limit or the compression deviation
set for this variable, the point immediate prior to the current data point is archived. The
details of the algorithm are shown in Figure 6.2. This method is helpful only for steady
processes. If there is a ramp type change (c.g., the level of a tank as it is being filled, or the
process shifts frequently from one operating point to another), then this method does not

provide a high level of data compression.

54 X recorded point
#  point triggered recording

53| @ last recorded point
unrecorded point

52

51

50

‘Recording
limit

49 o /
48 I

Reconstructed data
will be on this line

Box Car algorithm

Figure 6.2: Box car algorithm for data compression (from Hale and Sellar (1981)).

Backward Slope (BS) Algorithm

As the name suggests, the recording limit or the compression deviation boundary lines run
parallel to the projected slope calculated from the last two recorded data points. 1 the
current data point falls outside the deviation limit boundartes, the prior point is recorded.
Figure 6.3 demonstrates the method clearly. In case of a very noisy variable, the backward
slope algorithm neither produces good results nor gives a higher data compression, because
the slope is not a meaningful measure in such a case. Therefore, both methods were

combined to give the combined Box Car and backward slope (BCBS) method.
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54:
‘ X recorded point
53;*, *  point triggered recording
: ®  last recorded point
52; R unrecorded point
51- T —
recording
50 i limit
49 [ hd
48 backward slope "
reconstructed data
47 will be on this line
0 5 10 15 20 25

Backward Slope

Figure 6.3: Backward slope compression algorithm (from Hale and Sellar (1981)).

recorded point

! % point triggered recording
531 ®  latest recorded point
unrecorded point

recording
limit

49 7T RRLLES SN h ) ¢ «— This point
""""""""" fails box car

48 bachward slope

reconstructed daty

Boundary for BS This point fails both

will be o this line
47‘ wiethod, so the previous
16 ) ) - point will he recorded.
0 5 10 15 20 25

Combined BCBS

Figure 6.4: Combined Box car and backward slope data compression algorithm (from Hale

and Sellar (1981)).
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Combined Box Car and Backward Slope (BCBS) Method

In this method, the previous two methods are applied simultaneously. When the present
data point fails to meet the criteria of both Box Car and Backward Slope method, the point

prior to the present value is stored. See Figure 6.4 for the detailed algorithm.

54r X recorded point
#  point triggered recording top slope
53+ ® latest recorded point
O unrecorded point ’(,;" d
P L .
52 el 0 -
0 0 .bottom slope
511 '
1
middle slope
501 —y
compression 1 c o reconstructed data
deviation | e will be on this line
49¢ —
48 i L 1 J
0 5 10 15 20

Figure 6.5: Swinging door algorithm for data compression.

Swinging Door Compression Algorithm

.
‘1

The details of this method are shown in Figure 6.5. In Figure 6.5, point ‘a’ is obtained
from the last recorded point, ‘c’, plus the compression deviation, while point ‘b’ appears
from the deduction of compression deviation from point ‘c’. Points "a’ and ‘b are called
pivot points. As new spol values arrive, fines are drawn from the pivot points to form a
triangular envelope that includes all the spot values since *¢'. The sides of the triangle are
the “doors™. For instance, in Figure 0.5 all points up to point *d’ can be enveloped in a
triangle. However, the next point, ‘e’ cannot be included in a triangle because, as shown by
the dotted line, the upper and lower doors have opened wider than parallel. This significs
that a new trend started at point *d". Point ‘d” is archived and the procedure is repeated
from this point.

Issues related to direct methods: The compression factor is not specified explicitly in

any of the dircct methods of compression. Instead, the parameter to be set is the deviation
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threshold or recording limit deviation in engineering units. Therefore, in conducting the
compression tests described in this study, it was necessary to first conduct calibration trials
to find the deviation thresholds corresponding to cach compression factor for each data set.
In the direct methods, the trends are reconstructed from the archived spot values by lincar
interpolation between archived points at the original sampling instants. The compression
factor (CF) is defined as the ratio between the storage requirement of the original data set
and that of the archived data. If the original data set had 1000 observations and 1000 time
lags, a direct method with CF = 10 would yicld 100 observations, 100 time tags and 99

fincar segments.

6.3.3 Transform methods

A transform method performs an integral transformation of the original data set and the
compression is performed in the transformed domain. Wavelet compression falls into this
category (Donoho ef al., 1998). Such methods are not real-time. They require historical
data since the transform is computed from an ensemble of data. Many researchers have
explored wavelet compression. Nesic e al. (1997) demonstrated its superior performance
in process data from paper making machines. Other have explored various wavelet
functions selected on a case-by-case basis. Bakshi and Stephanopoulos (1996) and Misra
etal. (2001) applied time-varying wavelet packets to achieve on-line feature extraction and
noise removal from non-stationary signals. Misra et al. (2000) described the use of adaptive
compression thresholds to control the reconstruction error. Vedam er al. (1998) used a
multiscale representation with coarse and fine resolution linear B-splines which comprises
two piece-wise linear segments. The multiscale formulation provides spline compression

localization features similar to wavelet compression.

6.3.4 Selected compression method — swinging door compression

The aim of this paper is to examine the impact of data compression on activities such
as minimum variance control loop benchmarking, fault detection, data reconciliation and
development of inferential sensors. It concerns industrial process data and therefore focuses
on picce-wise lincar trending. The swinging door method was sclected for detailed study
as representative of industrial practice. Similar results were also observed with the BCBS
and PLOT methods.
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6.4 Measures of Data Quality

6.4.1 Statistical properties

Archived process data may be used for steady-state assessments such as plant production
rates. Other uses include data reconciliation and mass balancing, for instance for the
detection of leaks. Therefore, if compressed archived data are to be used for these purposes,
the mean value of the reconstructed data should be the same as the mean of the original.
The measure used was the percentage difference between the mean values (PDM) scaled
by the standard deviation of the original data. The scaling allows the relative significance

of any change in mean value to be assessed:

mean (v) — mean (V)
Oy

PDM =100 (6.1)

where y is the uncompressed original signal, ¥ is the reconstructed signal, and o, is the
standard deviation of y.

Process variability has an impact on profit (Martin et «l., 1991; Shunta, 1995) and plant
audits usually begin with a determination of the standard deviations or the variances of
the time trends. Thercfore, it is also necessary to determine the impact of compression
on the observed variance. The measures used are the ratios between the variance of the
reconstructed data (0'\77) and the variance of the original data (0'3) (RVC), and between 0'3

and the variance of the reconstruction error 0':* where ¢; = v; — ¥ (RVE). The measures are:
2 k]
RVC =o0;/o; (6.2)

and
RVE =0} /0; (6.3)

If the two mecasures add up to 1, then the reconstruction error is the orthogonal
complement of the compressed signal (i.e. the scquence y; — ¥ 1s uncorrelated with the

sequence V). The significance of this observation is considered in Section 6.6.2.

6.4.2 Non-linearity measure

Non-lincarity asscssment is starting to be used as a diagnostic tool for troubleshooting
of hardware faults that may be present in the controf loops (Choudhury er al., 20044,

Choudhury et al., 2002) and to make decisions about the type of model needed ininferential
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sensing (Barnard er al., 2001). Therefore, it is necessary to determine how the use of
reconstructed data would influence non-linearity assessment.

A distinctive characteristic of a non-linear time series is the presence of phase coupling
such that the phase of one frequency component is determined by the phases of others.
Phase coupling leads to higher order spectral features, which can be detected in the
bicoherence of a signal. The non-linearity test applied here used the bicoherence measure

to assess non-linearity. The squared bicoherence is:

BUi /)P
KGOXRIPIEIX(h + 7)) (64)

where B(f}, f3) is the bispectrum at frequencies (f7.f2) and is given by

bic*(fi-2) 2

B(f1./2) 2 EX(MX (L)X (1 + f)). (6.5)

X (f1) is the discrete Fourier transform of the time series x(k) at the frequency fi, X" (f1) is
the complex conjugate and £ is the expectation operator. A key feature of the bispectrum
is that it has a non-zero value if there is significant phase coupling in the signal x between
frequency components at fi and f>. The bicoherence gives the same information, but is
normalized as a value between O and 1.

Choudhury et al. (2004d) defined two indices - the Non-Gaussianity Index (NG/) and
the Non-Linearity Index (NLI) - as

~

NGI 2 bic? = bic? (6.6)
NLI 2 | bicdy — (bic? +20,:,) | (6.7)

where bic? is the average squared bicoherence and hiﬂcz,,,u_‘- is the maximum squared
bicoherence, 0,7 is the standard deviation of the squared bicoherence and 17170_3(.,,-, 18
the statistical threshold/critical value obtained from the central chi-squared distribution of
squared bicoherence. As outlined in (Choudhury et al., 2004d), if both NGI and NLI are

greater than zero, the signal is described as non-Gaussian and nonlincar.

6.4.3 Performance index (Harris) measures

The widely-used Harris index (Desborough and Harris, 1993) is a minimum variance
benchmark of control loop performance.  Significant industrial implementations of this
index have been reported (Fedenczuk et al., 1999; Paulonis and Cox, 2003; Desborough

and Miller, 2002). 1t is known that the use of data compression influences the Harris
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index (Thornhill et al., 1999). Consequently, an issue for practitioners is to know whether
compressed archived data can be used for the purposes of a minimum variance benchmark
calculation.

The Harris indices for the three data sets were calculated using the method described by
Desborough and Harris (1993) with an estimated time delay of 5 samples. The index is
determined from the residuals between the measured controller error denoted by y and a
b-step ahead prediction, ¥.

r(i) = y(i) = §(7) (6.8)
The model for ¥ employed 30 autoregressive terms (i.c., m = 30) as discussed in (Thornhill
et al., 1999) and in this case the prediction horizon was b = 5 since the time delay was

estimated to be 5 sample intervals.
Yi+b)=ay+ayy(i)+ay(i—1) 4 .. +apy(i—m+1) (6.9)

The minimum variance benchmark is:

2
Oy

1~ (6.10)

mse(y7)
where 62 is the variance of the residuals r, and n:sc(_v?‘) is the mean square value of the
controller error. An index of O represents minimum variance control, while an index of 1
represents poor control (in which y & § and r is negligible). In the later case, the controller
is failing to deal with predictable components such as steady offsets or a predictable
oscillatory disturbance.

The reconstructed data are more predictable and thus have a worse (larger) Harris
index than the original because compression removes noise and produces piccewise linear
segments, that have high local predictability. Thus, there is a danger that unnecessary
maintenance effort may be spent on repair of control loops wrongly identificd as performing

poorly.

6.5 Process Data for Compression Comparison

0.5.1 Industrial example 1

Three contrasting time series variables were chosen for the evaluation of the impact of
compression, courtesy of BP. They arc uncompressed liquid flow trends from continuous

processes operating at steady state. Each data set comprised nearly three hours of 10s
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samples representing deviations of flow in a process strcam from the mean value. Figure
6.6 shows portions of the time trends while the dotted lines in Figure 6.7 show their power
spectra (Welch, 1967).

Data set 1 shows a persistent oscillation characterized by an average of about 22 samples
per cycle. Figure 6.7 shows that the spectrum of this signal has a broad peak at a frequency
of 0.045 times the sampling frequency (i.c., 22 samples per cycle). The challenge for
high fidelity compression and reconstruction is to retain the spectral peak in the frequency
domain and the oscillatory features in the time domain.

Data set 2 has a tendency to stay at a constant value for a given time and then to move
rapidly to a new level. These data are from a control loop which has a limit cycle caused
by a sticking valve. The signal is predictable for long periods, and its spectrum shows very
low frequency features because the period of oscillation is long while a series of harmonics
highlights the non-sinusoidal nature of the waveform. The low frequency features and
harmonics should be preserved during compression and reconstruction.

Data set 3 has little predictability, and has spectral features at all frequencies. This signal
is dominated by random noise, and is from a well tuned loop operating close to minimum

variance.

o © 50 100 150 200 250 300

_20 . \ \ , .
0 50 100 150 200 250 300
! ’ N data set 3 )

Q

0 50 100 150 200 250 300
sampling intervals

Figure 0.6: Time trends of original data (open circles for data set 1, squares for data set 2,

and diamonds for data set 3) and reconstructed data with compression fuctor 10 (lines).
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Figure 6.7: Power spectrum of the original data and reconstructed data with compression

factor 10, original spectra (dotted line) and spectra of reconstructed signals (solid line).

6.5.2 Industrial example 2

The purpose of choosing this example is to study the effect of compression in fast and slow
control loop data. Also, the results of this example will validate some of the results of
Example 1. In this data set, data from three different types of control loops were chosen,
courtesy of ARAMCO. They arc uncompressed flow, temperature and pressure trends from
continuous processes operating at steady state. Each data tag comprised nearly four hours
of 15s samples representing deviations of flow in a process stream from the mean value.
Figure 6.8 shows portions of the time trends, while the dotted lines in Figure 6.9 show their
power spectra.

Flow loop data show a good control loop operating close to the minimum variance
benchmark, and have little predictability. It has spectral features at all frequencices.

Temperature loop data have some irregular oscillations. The oscillations are not always
present.

Pressure loop data have low frequency predictable features.
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Figure 6.8: Time trends of original data (open circles for flow loop data, squares for
temperature loop data, and diamonds for pressure loop data) and reconstructed data with

compression factor 10 (lines).
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Figure 6.9: Power spectrum of the original data and reconstructed data with compression

factor 10, original spectra (dotted line) and spectra of reconstructed signals (solid line).
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6.6 Results and Discussions for Industrial Example 1

6.6.1 Visual observations

The pancls in Figure 6.6 show close-up portions of the original data (as points) and
reconstructions (solid line) with compression factor of 10 for data sets 1 to 3. Each

complete data set had 1024 samples. Features to note include:

o Swinging door compression did not follow all the oscillations in data set 1 because
with CF = 10, the average duration of cach linear segment was longer than half of

the oscillation period;

e High fidelity compression was possible with data set 2, but with data set 3 much of

the randomness was lost from the reconstructed trends.

Figure 6.7 shows reconstruction in the frequency domain. The power spectra of the original
signal are denoted by dotted lines and the spectra of the reconstructed signals with CF = 10

are shown as solid lines. When the two are not the same, a reconstruction Crror ¢xists.

e The spectral feature in data set 1 at 0.045 samples per cycle was not fully captured

by the reconstructed data set;

e Datascts | and 3 had crrors at low frequency and a non-zero spectral error at f = 0.
Therefore, the signal reconstructed after compression had a different mean value than

the original;

e The low frequency harmonics of data set 2 were reproduced well, but the high

frequencies of data set 3 were not captured.

The observations from the spectra reinforce and illuminate the observations from the time
domain plots. The frequency domain plots also provide insight into why data set 2 is more
compressible than data set 3. Data set 2 has very few spectral features, and they are at
low frequency (i.c. of long duration). In contrast, data set 3 has features over the entire
frequency range. Data set 2 is therefore a much simpler signal with fewer different types

of behavior to capture.
6.6.2 Statistical properties

Figure 6.10 shows the behavior of the mean value and variance measures as a function of

compression factor. Noteworthy observations include:
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e The mean of the signal reconstructed from the archive differs from the mean of the

original.

o The variances of the reconstructed data are smaller than the variance of the original

signal;
o Variance measures at a given compression factor do not sum to 1.

It is concluded that data compression provides misleading information about basic
statistical propertics of data. Compression alters both the mean and the variance. The
changes in means are only a small percentage of the standard deviation. However, the
purpose of data reconciliation is often to find small shifts in the mean value that may
be indicative of problems such as leaks. The shift in mean due to data compression
may therefore be wrongly interpreted as evidence of a leak. Decisions of the type used
in statistical process control (Wetherill and Brown, 1991) may also be erroncous if the
warning and alarm limits have been based upon a statistical distribution determined from

compressed archived data.

RVE

0 2 4 6 8 10 12 14
compression factor

Figure 6.10: Statistical measures as a function of CF for data set 1 (circles), data set 2

(squares) and data set 3 (diamonds).

The sum of the measures of error variance (RVE) and compressed signal variance (RVC)
was not 1. Thus, a correlation between the portion of the signal deleted during compression

and the compressed signal itself exists. The implication for data-driven methods such as
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inferential sensing is that some informative features have been thrown away or that some

unwanted features have been retained.

6.6.3 Nonlinearity assessment

The first and second panels of Figure 6.11 show results from non-linearity assessment of
the three data sets. Two of the three data sets (Data 1 and Data 3) were linear in their
uncompressed state (CF=1) but became non-linear after compression and reconstruction
when the compression factor exceeded 3. It demonstrates that compression induces
non-lincarity in the signal. Compression is a non-lincar operation and the principle of

superposition does not apply, i..e:
g(xi(1)) + g (xa(r)) # g (i (1) +x2(1)) (6.11)

and
glaxxi(r) #ax gl () (6.12)

where x| (f) and x5(r) are time domain signals, g (x(1))is a compressed time trend and a is
a scalar factor. In the case of swinging door compression, if the signal were twice as large
then the compressed signal would not merely be twice as farge at the retained spot values.
It would also have more picce-wise lincar segments because more spot values would hit the
condition for archiving.

The use of compressed archived data to assess non-linearity, for instance in an audit of
control valves, may be misleading. Time may be wasted in inspection and testing of valves

that are in fact operating normally.

6.6.4 Performance (Harris) index

The third row of Figure 6.11 shows the Harris index results, where O represents good
performance close to minimum variance and | represents poor performance. The index
increases with compression for all the data scts.

In the case of data sets | and 3, it is concluded that compression increases the
predictability of the signal and thus affects the Harris index. Data set 2 was inherently
predictable (see Section 6.5.1). The Harris index for data set 2 therefore indicated poor
performance even in the uncompressed case, and did not change as much on compression

as for the other two data sets.
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Figure 6.11: Non-Gaussianity Index, Nonlinearity index, and Harris index as a function of

compression factor for data set | (circles), data set 2 (squares) and data set 3 (diamonds).

6.7 Results and Discussions for Industrial Example 2

6.7.1 Visual observations

The pancls in Figure 6.8 show close-up portions of the original data (as points) and
reconstructions (solid line) with compression factor of 10 for data sets 1, 2, and 3. Each

data set had 1024 samples. Features to note are:
e Inthe reconstructed flow loop data set much of the randomness of the signal was lost.

e Oscillatory portion of the temperature trend was reconstructed well but the other

portion was not.

e High fidelity compression was possible with pressure loop data because it contains

mainly low frequency components.

Figure 6.9 shows reconstruction in the frequency domain. The power spectra of the original
signal are shown as dotted lines, while the spectra of the reconstructed signals with CF = 10
are shown as solid lines. When the two are not identical, a reconstruction crror ¢xists.

e There arc errors in the low and high frequency spectral features in the reconstructed

flow loop data.
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¢ Flow and temperature loop data have reconstruction errors at low frequency and
a non-zero spectral error at f = 0. Therefore, the signal reconstructed after
compression had a mean value that differed from the original (see the first panel
of Figure 60.12).

e The pressure loop data was reproduced well.

6.7.2 Statistical properties

Figure 6.12 shows the behavior of the mean value and variance measures as a function of
compression factor. The results observed in Example 1 also apply here. Figures 6.10 and

6.12 show similar results.

e The mean of the signal reconstructed from the archives differs from the mean of the

original. However, the deviation is negligible up to a compression factor (CF) of 3.

e The variances of the reconstructed data are smaller than the variance of the original

signal;

o The variance measures at a given compression factor do not sumto 1.
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Figure 6.12: Statistical measures as a function of CF for Flow loop (circles), temperature

loop (squares) and pressure loop data (diamonds).
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6.7.3 Nonlinearity assessment

The first and second rows of Figure 6.13 depict results from non-linearity assessment of the
three data sets. Compression induces non-Gaussianity and non-linearity in signals when
compressed by a factor of more than 3 because uncompressed flow and pressure signals
were originally Gaussian and linear. Non-Gaussianity indices increases monotonically
for all three data sets, while the nonlinearity indices do not show any specific pattern -

indicating the alteration of nonlinear structure of the signal with compression.

6.7.4 Performance (Harris) index

The third row of Figure 0.13 depicts the Harris index results. Again, the index increases
with compression for all data sets.

In the case of flow and pressure loop data, it is concluded that compression increases the
predictability of signals and thus affects the Harris index. The temperature loop shows poor
performance even in the uncompressed case, and did not change as much on compression

as for the other two data sets.
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Figure 6.13: Non-Gaussianity Index, Nonlinearity Index, and Harris index as a function
of compression factor for flow loop data (circles), temperature loop data (squares) and

pressure loop data (diamonds).
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6.8 Summary of Data Quality Measures

The following comments refate the results and discussion of the previous two sections 1o

real-world industrial applications.
o Data compression changes the statistical propertics of data.

e Averaging, data reconciliation and mass balancing applications should calculate
the required quantities directly from the original data because data archived with
swinging door compression have a different mean value after reconstruction. This
could have serious implications, for example if the reconstructed data represent oil

flow from an off-shore facility being monitored for taxation purposes.

o High fidelity reconstruction requires that the statistical properties of the reconstructed
signal be similar to those of the original.  Minimum variance and non-linearity
assessment are two procedures that require high fidelity data.  Swinging door

compression alters these measures significantly.

¢ Data smoothing, feature extraction and reconstruction of cvents require that the
cvents and features of interest be retained during compression. The nonorthogonality
of picce-wise lincar trending means that the condition is not met because the
reconstruction error is correlated with the reconstructed signal.  An example of
a negative consequence is that the magnitude of a transient event may not be

reconstructed accurately.

The performance measures for data set 3 in industrial example 1 and for flow loop in
example 2 (which are random signals) were influenced by compression even at small
compression factors. For instance, the RVE and RVC measures changed significantly. No
random valuc is any more significant than any other, but the compression algorithm makes
some points more significant by choosing to archive them and therefore the reconstructed
signal does not have the same randomness. However, the performance measures for data
sets 1 and 2 in example 1 and all loops in example 2 did not change as much for small
compression factors up to about 3. For Example 1, in the third row of Figure 6.11, the
results for a CF of 3 were very similar to those for the uncompressed case when CF was
I, while the second and first rows of Figure 6.11 show that non-lincarity was not induced
fora CFof 3 or less. For example 2, Figures 6.12 and 6.13 show that the properties did not
change much until the compression factor exceeded 3. Therefore, the following heuristic

rule 1s proposed to ensure that at least some compressed archived data can be exploited:
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Data having CF < 3 may be used with caution for data-driven process analyses.

It is noted, however, that certain types of process trends may allow higher compression
factors because their intended use is to record constant values such as set points, targets

and high and low limits.

6.9 Automated Detection of Compression

6.9.1 Motivation

The previous discussion showed that compression induces changes to many of the
quantitics commonly used in data-driven process analyses. However, engineers are not
always in a position to examine data closely enough to detect compression because plotting
and examining time trends arce time-consuming. They may also not be aware of the default
compression parameters set on their historians. Consequently, data-preprocessing activity
usually focuses on finding and replacing bad data such as missing values and outliers. 1f
archived data are to be used for an automated analysis, it is first necessary to test for the
presence of compression.

If the number of spot valucs in the compressed archive and the original sampling rate are
known, then the compression factor may be determined by computing the ratio between the
expected number of observations and the number of archived observations. However, such
information is not always available, and it may be necessary to estimate the compression
factor from the reconstructed data only. An automated method for detection of piece-wise
lincar compression is now presented, and several guidelines are given for its application to

industrial data.

6.9.2 Compression detection procedure

Because the reconstructed data set is piecewise linear, its second derivative is zero
everywhere apart from at the places where the linear segments join. Therefore, the presence
of the characteristic linear segments can be detected by counting zero-valued second
differences A(A¥) calculated from:

o B =S == Fa) /b $i =28+ Fis

A(A,\'), = = 2

h h
where ¥ is the reconstructed signal and /1 is the sampling interval. The index i ranges from

(6.13)

2 to N-1, where N is the number of samples. Suppose the original data set had N values,
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and after compression there are m archived spot values and m — 1 lincar segments. If the
reconstructed data are differenced twice, there will be n = N —m second differences whose

values are zero. Therefore, the compression factor can be determined from:

N N
YT m T N-n ( )

where m = N —n. For example, with 10 data points compressed to 4 archived values and 3

lincar segments, there are 10 —4 = 6 second differences whose values are zero. Therefore,
the CF is 2.5.

The method can be extended to other piecewise reconstruction methods using
polynomials. For instance, if cubic spline compression were in use (Vedam ef al., 1998),
the fourth derivatives would be zero everywhere except for at the knot points where the
splines join. In that case, the compression factor would be determined from the number of
fourth differences having zero values.

Figure 6.14 shows results for data sets 1, 2 and 3 in example | while Figure 6.15
compares the estimated compression factor with actual compression factor for example
2. Results for both examiples show that the compression factor derived from counting the

zero second differences was a good estimate of the true compression factor.

14 T

estimated compressionn factor

d( i 1 i A1 1 1
0 2 4 6 8 10 12 14
actual compressionn factor

Figure 6.14: Results from the compression estimation algorithm for data sets 1 to 3, data

set I (circles), data set 2 (squares) and data set 3 (diamonds).
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Figure 6.15: Results from the compression estimation algorithm, flow loop (circles),

temperature loop (squares) and pressure loop (diamonds).

6.9.3 Implementation considerations

Enhancements to the basic algorithm are needed for industrial implementation for the

following reasons:

e The sampling interval of the reconstructed signal may be larger than the original;
e.g., the compression algorithm may have used [0s samples but the reconstruction
may use 1 min samples.

o The effects of finite precision arithmetic — some computed second differences may
not be exactly zero.

Suggestions for handling these cases are given here and illustrated with the industrial data

of Figure 6.1.

Dealing with a larger reconstruction sampling interval

It is recommended that the compressed data be reconstructed using the same sampling
interval as the original because reconstruction with a longer sampling interval leads to an

underestimation of the compression factor. For example, if five 10s samples out of 120
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were archived then the true compression factor is 24 (m = 5, N = 120). When the data are
reconstructed using 1 minute samples, the number of piecewise linear scgments does not
change, but there are only 20 samples in the reconstructed data so the compression factor
appears to be 4.

An effect of reconstruction with a longer sampling interval is that the true end points
of the piccewise linear segments may fall between samples. Thus, x; would be the end
of one linear segment and x;;; would be the start of the next, with the true end point
somewhere in between. The effect on the second differences is that there are two non-zero
second differences where the linear segments join, instead of one that would be expected.
The presence of these pairs of non-zero second differences can be used as a warning of a
sampling interval issue. If such pairs are detected, then the calculation of the compression
factor has to acknowledge that each pair represents only one true archived point and the
expression for the compression factor is modified to:

. N
Cloyy = —

m / 2
Such pairs were detected in the industrial data of Figure 6.1. Therefore, the modified
expression was used in the compression factor calculation. The estimated compression
factors are shown in the right column of Figure 6.1. For instance, tag 20 has a compression
factor of 41.7. 1t had 1428 zero second differences, 72 non-zero sccond derivatives in 36
pairs and 36 linear segments.

I the characteristic pairs are noticed, then a warning must be given that the compression

factors have been underestimated. Figure 6.1 showed such a warning.

Finite precision arithmetic

As discussed carlier due to the effects of finite precision arithmetic, some computed second
differences may not be precisely zero. This problem can be dealt with either of the

following two methods.
I. The numerical values of the second differences were converted to integers. The ceil
function in the following expressions rounds up to the next integer:

I) = ('('” (I()g”) I.\‘l)
y=2x/10"
c=vx 10N

x1s the original entry in the data base having N significant figures, P — 1 of which
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same digits as x, but has a zero to the left of the decimal point (e.g. 0.1478144165)
and z is an integer with the same digits (e.g. 1478144165). The second difference

calculations were applicd to the integers z.

Certain computed second differences may not be precisely zero because of arithmetic
rounding errors. With the integer transformation above, the errors would expected to
be +1. However, errors of up to 500 were observed. That is to say, the precision
of the arithmetic used by the data historian in the reconstruction was less than 10
significant figures, although the results were reported to 10 significant figures. The
following sequence illustrates the pattern of second differences observed in z for a

portion of a straight line trend in tag 7 of the industrial data of Figure 6.1.

—476, 477, 0, —477, 477, 0, — 1, —476, 477,
0,0, —477, 477, 1,477, —1, —476,477, 0

Any second difference in z whose absolute value was below 500 was counted for

calculation of the compression factor.

If the data historian complies with a published numerical Standard (e.g., IEEE
854-1987), then the threshold for second differences may be determined from
the Standard. Otherwise the threshold must be determined by observation of the
arithmetic precision achieved and the number of significant figures in use, as was
done in this study. There is no fundamental significance to the numerical value of
+477 in the example presented above. The observed rounding errors appear to arise
from an interplay between the original data values, the arithmetic precision and the

details of the data base.

2. The second procedure will be explained with the help of an example. Consider
the flow loop of industrial example 2. The second derivative of the reconstructed
compressed flow trend with a compression factor of 10 resembles the plot shown in
the left panel of Figure 6.16. The distribution of the second derivative (right pancl of
Figure 0.16) shows that all the zero second derivatives fall in the central bin, whose
center is at zero. Therefore, the size of the central bin provides a good estimate of
the number of zero second derivatives. The challenge in this approach is to choose
the correct number of bins for the histogram. In order to solve this problem, an
investigation on how the central bin size varies with the number of bins (Figure 6.17)
reveals that the size of the central bin does not change much beyond a certain number
of bins. This was observed for many other compressed data. Thus, the number of

bins can be chosen to be greater than the number after the elbow joint in Figure
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6.17. For an automatic compression detection algorithm, the number of bins for the
histogram calculation can be fixed anywhere between 300 and 400 for a data set
whose length is larger than 1000 samples. This was observed by the author for most

cases of industrial data analyses.
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Figure 6.16: Left panel shows the second derivative of the flow trend, Right panel shows

the distribution of the second derivative.
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Figure 6.17: The variation of central bin size with number of bins.
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6.10 Final Recommendations Concerning Compression

6.10.1 Discussion on the motivating example

It has been demonstrated carlier that data with CF > 3 are not suitable for data-driven
analyses. Compression factors of up to 93.8 were present in the industrial data set of Figure
0.1 and only five tags had compression factors of three or under. It was concluded that this
archived data set would not be suitable for data-driven analyses. Moreover, the algorithm
issued a warning that the compression factors were underestimated. For improved estimates
of compression factor, the data set should be reconstructed with the original sampling
interval. The reconstruction was not attempted in this study because it was already clear

that the data were much too compressed for data-driven analyses.

6.10.2 A proposal for harmless storing of data

Ideally, data should not be compressed. I compression is absolutely necessary, data should
not be compressed more than a factor of 3. In order to ensure this, an algorithm such as

one explained in Figure 6.18 can be implemented in data historian before storing the data.

| Specify R .
deviation limit Compression
no
Y
CF
Ves calculation

Figure 6.18: An algorithm for storing of data with little loss of information.
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6.11 Quantization

Modern control systems work with the help of computers or digital equipments. Because
computers cannot read analog signals, all analog signals must be converted to digital
signals. For digitization, two steps are required: sampling and quantization. Sampling
is only the first phase of acquiring data into a computer. Computational processing further
requires that the samples be quantized — analog values are converted into digital form. In
short, one needs to perform analog-to-digital (A/D) conversion. The number of bits of the
A/D converter determines the precision of the digitized data. Old A/D converters have
a lower number of bits, i.c., low resolution. Those may introduce a significant amount
of quantization errors. Significant quantization crrors produce oscitlations (Horch, 2000)
in process variables. Sometimes the quantization errors are too large to use the data for
any practical analysis. A method will be described herein to quantify the amount of
quantization in the process data.
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Figure 6.19: An example of heavily quantized data representing a process variable.

Figure 6.19 shows an example of a heavily quantized process data. The quantized data
usually resembles staircases. They are easy to be detected through visualization of the data.
However, to check quantization in hundreds of variables in the data preprocessing stage,
an automatic method of detecting quantization is required. A quantization factor has been
defined as

- Ql evel
o= o
Q o)

where Qyevel 1s the quantization level present in the data and can be obtained from the

(6.15)
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Figure 6.20: An industrial data set where some of the variables were heavily quantized.

minimum value of the non-zero first difference of the data, ¢ is the standard deviation of
the data, and QF is the quantization factor. For data that have no quantization problems,
the magnitude of QF should be close to zero. In contrast, for a heavily quantized data
set the magnitude of QF will be closer to 1. Figure 6.20 depicts an industrial example
of heavily quantized data. This data set represents vibration monitoring data of a large
pump. The right side of the figure shows the quantization factor cstimated for cach data
tag. Clearly, tags 3, 6,9, 12, and 13 are heavily quantized. The example shown in Figure
0.19 represents tag 3 of this industrial data set for which the estimated quantization factor
was 1.0, indicating heavy quantization of the data.

For most plants that implement modern control systems, quantization is not a problem
because they use high resolution A/D converters. However, many plants still use old control
systems and sensors, where quantization remains a problem. This automatic quantization
detection algorithm can be used in the data preprocessing stage to check for quantization,
and may serve as a useful diagnostic tool to decide which variables are not worth further

analysis.
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6.12 Conclusions

Time and frequency domain plots were presented for data from continuous processes
to show how well the trends were reconstructed after compression. Piecewise lincar
compression using the swinging door algorithm altered key statistical features of the data
set such as mean and standard deviation. Other data-driven analyses were also influenced.

A procedure for detection of compression during the pre-processing stage of a data-
driven analysis, plus additional features required for its application to industrial data were
presented. An expression based upon estimation of the number of zero-value second
derivatives provided a lower bound for the compression factor. To reconstruct the data at
the original sampling interval is important for an accurate assessment of the compression
factor. If the reconstruction interval is longer than the original, then characteristic pairs of
non-zero second derivatives become evident. In such an event, a warning must be issued to
reconstruct the signal at the correct sampling rate.

On the basis of this study, it is strongly recommended that caution be exercised in the
use of compression in process data archives. Because of pressure from customers and
the cheaper costs of storage, newer data historians (e.g. AspenWatch) are beginning to
use uncompressed data. It is hoped that this study will provide end-users, who wish to
climinate the usc of data compression, with solid, quantitative reasons for doing so.

Finally, the quantization problem in process data analysis has been discussed.
Quantization may cause limit cycles in control loops. An automatic method to detect and

quantify quantization has been presented.
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Conclusions

This chapter lists the contributions of this thesis and the directions identified for future

research.

7.1 Contributions of This Thesis

The main contributions of this thesis can be summarized as following:

o A tutorial introduction of a complex subject matter, higher order statistics, has been
presented in Chapter 2. Unlike most discussions in the literature, this chapter is

readily understood and self-explanatory due to the illustrative examples.

e The usc of higher order moments is suggested for detection of of nonlinearities in
a signal. Two new indices — the Non-Gaussianity Index (NGI) and the Nonlinearity

Index (NLI) - have been developed for detecting nonlinearities in time series.

161
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7.2  Recommendations for Further Work 162

e An algorithm for diagnosing the causes of poor performance of control loops has

been developed and applied successfully to industrial and simulation data sets.

e Much confusion surrounding the term ‘stiction’ exists in the literature. Through a
detail model of stiction and a thorough discussions of all terms related to stiction,
stiction has been clearly explained and defined in this thesis. A new gencralized

formal definition of *stiction’ has been proposed.

e A (wo-parameter data driven model has been developed for stiction. The model is
casy to understand, relatively simple to use, and yet powerful enough to simulate

stiction phenomena in control valves.

e An automatic algorithm for detection and quantification of stiction in control valves
has been developed and successfully evaluated through several industrial case

studics.

e The impact of compression on data quality has been systematically studied and
presented. It is recommended that data should not be compressed unless storage

space is extremely limited.

o An automatic method for detection and quantification of compression in process data
has been developed. A new method for storing data with little loss of information has

been recommended.

e An automatic method for detecting quantization in process data has been developed.

7.2 Recommendations for Further Work

Diagnosis of the causes of poor control loop performance remains a challenging area for
further rescarch. In particular, an automatic procedure with minimum human intervention
must be developed. The procedure must be non-invasive, plant-friendly, casy to understand,
and simple to implement. Further work in this and related arcas should consider all these

issues, and can be categorized as follows:

o Most disturbances entering a control loop are assumed to be lincar in the diagnosis
of poor loop performance. Further investigations should be carried out to examine

the effect of nonlinear disturbances on the loop diagnosis results.
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7.2  Recommendations for Further Work 163

The quantified stiction in this thesis is termed as ‘apparent stiction’ because of the
effect of loop dynamics, especially the controller action that compensates for some
stiction. The effect of controller and loop dynamics on the quantified stiction should

be investigated further.

¢ Because of the absence of a by-pass line, a sticky valve cannot be taken out of service
for maintenance immediately. A method that can facilitate continued operation of
the plant until the next planned shutdown — minimizing the impact of sticky valves —

would be invaluable for the process industry.

e The method and algorithm for the diagnosis of poor loop performance has been
developed based on the assumption of a single loop. It does not take into account
the multivariate nature of the process. Further research should be done to investigate

the plant-wide propagative nature of disturbances or faults.

e An automatic procedure for the root-cause diagnosis of plant-wide oscillation(s)
would be useful to process industrics. A detailed study aimed at understanding
the mechanism(s) of oscillation propagation, and amplification and attenuation of

oscillations as they travel through various process units, should be performed.

e Process model(s) identified from compressed data is inadequate. A systematic
study should be performed to quantify the effect of data compression on model

identification.

e Alternative methods of data compression and reconstruction that do not cause

significant degradation of data quality need to be investigated.
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