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Abstract
The load and resistance factors currently used for concrete buildings need vz tating.
They do not reflect the current levels of quality control, refined variabilities estabiizhe *
recent studies, load-resistance correlation in the tension failure of columns and sc on. The
probability methods and design formats can be improved to achieve more consistent
reliability. The primary objective of this investigation is to develop an optimum set of loud

and resistance factors for the design of concrete structures in Canada.

Variables that affect the reliability of a structure are established in probabilistic terms.
Present levels of quality control and specifications are reflected in thes: variables. The
companion action load factor format is selected because it models real ;0ad combinations
more accurately than the probability factor format and thus leads to more consistent
reliability. Acceptable levels of reliability are established by evaluating existing successful
practice (viz., CSA A23.3-M84) and by reviewing recommendations of other researchers.

The reliability analysis is based on a variable limit state equation developed by
combining the ‘true’ limit state, where the structure is about to fail, and the design limit

state that is used in the design office. This method proved to be a versatile analysis tool.

The load and resistance factors and load combinations are developed for use with
design methods specified in CSA A23.3-94. Practical limitations and simplicity of load
combinations are taken into account. The resistance factor for concrete is increased

obtained through revised load combinations and factors.
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Q = permanent load

Quw = short term variable load

Q. = variable load

R-square = coefficient of determination

Tercel = random variable relating real cylinder strength to design compressive
strength

193] = normalized dead load variable = D/D,

Tin-situ = random variable relating in-situ strength to real cylinder strength

Ry = factored nominal resistance which is a deterministic value

R, = true resistance (random variable)

IR = random variable relating strengths at R psi/sec and 35 psi/sec

Ty = normalized ith variable load = Q.;/Quy;

S = snow load

s = stirrup spacing

Se rain on snow load

S, = ground snow load

T =  design period in years

t; = holding time of the principal variable load

t = holding time of the companion variable load

\% coefficient of variation (COV), wind velocity in wind load calculations,

base shear in earthquake load calculations
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zonal velocity ratio or Peak Horizontal Ground Velocity (PHV)
variance of x

shear resistance due to concrete

daily maximum wind velocity

factored shear force

COV of the calculation model itself

shear resistance provided by shear reinforcement

represents errors introduced by the test specimen

COV obtained directly from the comparison of the measured and
calculated strengths

represents the uncertainties in the loads measured in an experiment
wind load

weighting for load ratio i

depth of ground snow

load factor

ratio of average stress in rectangular compression block to the specified
concrete strength

load factor for permanent load

load factor for variable load

reliability index

ratio of depth of rectangular compression block to depth of the neutral
axis

target reliability index

a factor which is 1 if (B - Br) is positive and 2 if it is negative

bias factor

resistance factor

resistance factor for concrete

resistance factor for reinforcement

cumulative dstribution function of the standard normal variable X at
value x

weight density of snow

mean

arrival rate of an infrequent event/load

slope of the idealized tension failure line in true space (Figure 7.19)
slope of the idealized tension failure line in factored nominal
space(Figure 7.20)

iongitudinal reinforcement ratio for columns tension reinforcement ratio
for beams

stirrup ratio = Ay/bys
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standard deviatior
load combination probability factor

factor applied to the j characteristic load to convert it to a companion

load (when combined with the ith principal load)

compressive strength

dead load

daily

earthquake load

factored

related to the i* load

related to the j* load

live load due to occupancy

nominal

true resistance variable

loading rate R psi/sec (R x 6.895 x 10™ MPa/sec)
factored resistance

snow load

in-situ strength or strength in a structure
wind load
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ACI
ANSI
ASCE
CEB
cov
CSA
NBCC
PDF
EUDL

std.dev.

CDF

LIST OF ABBREVIATIONS

arbitrary-point-in-time

American Concrete Association
American Society of Civil Engineers
Comite Euro-International du Beton
coefficient of variation

Canadian Standards Association
mean recurrence interval (return period)
National Building Code of Canada
probability density function
equivalent uniform distributed load
standard deviation

cumulative distribution function
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CHAPTER 1

INTRODUCTION

Structural Reliability

The safety of a structure depends on many parameters, such as applied loads,

Recognizing that these parameters are probabilistic variables, safety can be
assessed only in probabilistic terms. The reliability of a structure can be defined as
the probability that the structure is safe. This probability can be defined at various
levels of accuracy which depend on the idealization of the structural reliability,
The accuracy of the method chosen in a reliability analysis should be compatible

with the accuracy of the parameters and variables used in the study.

The design formats used to idealize and combine design loads and resistances
should be chosen to represent the real situation as accurately as possible. They
should also be simple and clear enough to be used in design, The load and
resistance factors should ensure adequate safety in ali possible situationis. An
optimum set of load and resistance factors and design formats should provide

uniform safety for all structural members, structural actions and load ratios.

Scope of Thesis

The objective of this thesis is to develop an optimum set of load and resistance
factors to be used in the design of concrete structures in Canada, These factors
are developed for ultimate limit state design considering flexure, combined flexure
and axial load, and shear. Special consideration is given to tension failure of short

columns where the axial load effect acts to prevent failure. The load and resistance
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factors and load combinations are developed for use with design methods specified

in CSA A23.3 - 94,

base the factors. The desirable target level of safety, i.e., a target reliability index,
Pr, is chosen by observing reliability indices implicit in existing successful practice
and by reviewing levels of safety used and recommended by other researchers. The
reliability indices implicit in practice are obtained by evaluating the reliability of

CSA A23.3-M84,

The reliability analysis is based on a limit state equation. A method of
formulating a limit state equation is developed by combining the ‘true’ random
limit state equation where the structure is about to fail and the design limit state
equation that is used in the design office. This method is a versatile problem
solving tool as it is able to model the real life limit states for complex situations,

without difficulty.

A load factor format and a resistance factor format that could provide uniform
safety with varying load ratios and design situations are chosen. The loads and
resistances are defined and established in probabilistic terms, The basic variables
on which the load effect and resistance depend are obtained from environmental
data or from the literature. Using these basic variables the loads and member
resistances are simulated using Monte Carlo simulation methods. Variable
modelling and distribution fitting are used to establish the type of statistical
distribution. Current levels of quality control and material variability are reflected

in these variables.

Organization of Thesis
Chapter 2 outlines the reliability and probability theory that is used in this

study. In Chapter 3 different safety formats are discussed and a load factor format



and resistance factor format are selected. Load and resistance variables are
established, statistically modelled, and simulated in Chapters 4 and 5. The desirable
target level of safety, i.e., a target reliability index, Pr, is investigated and selected
in Chapter 6. Chapter 7 gives details of the reliability analysis and optimization of
safety factors. The reliability obtained using the proposed factors is compared
with that of the existing factors in CSA A23.3-94, Chapter 8 gives a summary of

the work and the conclusions, and suggests areas of future research.
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CHAPTER 2

THEORETICAL BASIS

Introduction

This chapter outlines the types of reliability theories and other theories used in
this study. In carrying out this study, simulation methods and distribution fitting

methods are developed. These methods are also presented herein.

Reliability Methods

The reliability of a structure may be defined as the probability that the structure
is safe. There are many idealizations and reliability models of structures. Madsen
et al.(1986) ciassify these structural reliability methods based on the information

used in the analysis.

Reliability methods that employ only one “characteristic” value of each variable
are called level I methods. Most design formats used in a design office, inciuding

load and resistance factor formats, are examples of level I methods.

Reliability methods that employ two parameters of each variable (commonly
the mean and variance) are called level II methods. Reliability index methods are

examples of level II methods.

Reliability methods that employ probability of failure as a measure, and
therefore require a knowledge of the joint distribution of all variables, are called

level III methods.
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Finally, a reliability method that compares a structural prospect with a
reference prospect according to the principles of engineering economic analysis is
called a level IV method. In these methods the costs and benefits of construction,
maintenance, repair, consequences of failure, and interest on capital are
considered. Such methods are appropriate for structures of major economic

importance.

In this study, the load and resistance factor method which is a level I method
used in design codes, is calibrated by a level II method. Therefore, level II
methods and other related theory necessary to implement such a method are

presented here.

Reliability Indices

The definitions and notation in this section are based on Madsen et al. (1986).
Reliability index methods are level Il methods. They are also called second
moment methods as the uncertainties of the structural reliability are expressed in
terms of expected value (first moment) and covariance (second moment) of each
relevant parameter. These parameters are called the basic variables and are
denoted by random variables Z;. The basic variables include loading parameters,
strength parameters and other variables associated with geometrical variations and
model uncertainty. It must be possible for each set of values, z;, of the basic
variables to state whether or not the structure has failed. (The random variables
are denoted by upper case letters, Z;, and the sets of values are denoted by lower
case letters, z;, according to standard probability notation.) This leads to a division
of the z-space into a safe set S and a failure set F. The two sets are separated by a

failure surface, L,, defined by the limit state function, g(z) as follows:
[2.0] g(z)>0 zieS
g(z)=0 ziel,

8(z) <0 zeF



The failure surface for a simple two variable case is shown in Fig. 2.1(a).

The different types of reliability indices are defined based on the shape of the
failure surface and the second moment representation of the basic variables

(Madsen et al. 1986). These reliability indices are defined below.

3.1 Cornell Reliability Index

The random variable obtained by replacing the parameters z; in the failure
function with the corresponding random variables Z; is called a safety margin, M,
given by M = g(Z;). The safety margin can also be defined as the capacity minus
the demand and takes a negative value for failure situations and positive value for

safe situations. The Cornell reliability index, B., is defined as
[2.1 a] B.=EM)/om or,

[2.11b] B. o =EM)
where, E0M) = expected value of M

omM = standard deviation of M
Thus P. is a measure of how far the failure surface is from E(M) in units of o.

2.3.2 Mean Value First Order Second Moment Reliability Index

The safety margin, M, is often a non-linear function and consequently its
moments cannot be calculated with the second moment representation of the basic
variables. One way to avoid this problem is to linearize the safety margin around
reliability index is called the first order second moment reliability index. Often the
mean value point is used as the linearization point and the reliability index is known

as the mean value first order second moment reliability index.

This method has many drawbacks because of the arbitrariness of the

linearization point. This causes errors when the g(z;) function is non-linear and the

6
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variance, i.e., B is dependent on how the limit state is formulated. These problems
can be avoided if the linearization point is on the failure surface. On the failure

surface g(z;) and its derivatives are independent of the formulation.

Hasofer and Lind Reliability Index

The reliability index can be interpreted as a measure of the distance to the
margin is used as the scale. Hasofer and Lind (1974) proposed a similar scale in
the case of many basic variables. They used non-homogeneous linear mapping of
basic variables to obtain reduced variables that are a set of normalized and
uncorrelated variables, X;. These X; are standard normal variables. The Hasofer
and Lind reliability index is the distance in the reduced space between the origin

and the closest point to the origin on the failure surface.

The point on the failure surface which is closest to the origin is called the
“design point” where failure is most likely to occur. To find this design point, as
shown in Fig. 2.1, the basic variables, Z;, are transformed to reduced variables, X,
with zero mean and unit variance,

Oz

=
S
(oS
Tl

where }iz; = mean value of Z;

oz; = standard deviation of Z;

can be plotted as shown in Fig, 2.1(b). Here the circles represent values of X; and

X, which are one, two and three standard deviations from the origin.
Substituting [2.2] in g(z,) =0

[2.3] gx(x) =0



The failure surface defined by this equation is shown in Fig, 2.1(b) for the two
variable case.

The design point with coordinates (x,*, x;*, .....x,*) is the point on this surface

which is closest to the origin. It is determined by solving the following system of

minimize f3.

o8y / OX,

: [ E(ng /§Xi)2 ]1/;

[2.5] Xi* = -ou p

]
o

[2.6] gx(x1*, x2*, ....x.*)

The o are a measure of the sensitivity of the reliability to the independent
variables. If the reliability is insensitive to the independent variable it can be

disregarded.

Reliability Methods Used

The Hasofer and Lind reliability index is used to assess the reliability because it
measures the reliability at the design point where failure is most likely to occur.
When the limit state function is linear, [2.4] to [2.6] can be solved easily. But
when the limit state function is non-linear the design point has to be assumed and

an iterative process has to be used to obtain the Hasofer Lind reliability index.
The Hasofer and Lind equations assume that the variables Z; are distributed

approximation of the tail is used for each variable. This normal tail approximation

is made at the design point so that both the true distribution and the approximated

find the design point and the related B while approximating the true distribution
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with a normal distribution was developed by Rackwitz and Fiessler (1978). Further
details of this algorithm can be found in Madsen et al. (1986). The FORM (First
Order Reliability Methods) subroutine (Gollwitzer et al. 1990) that implements this

analysis is used in this study.

Simulation of Variables and Modelling Variables

For problems involving mathematical combinations of random variables with
known or assumed probability distributions, Monte Carlo simulation is appropriate
to model the process. In each simulation, a particular set of values of the random
variables is generated in accordance with the respective distributions. These values
are combined according to the mathematical equation to generate one value of the
variable being simulated. By repeating the process, a simulated sample of the
variable is obtained. This simulated sample is then analyzed and fitted with various
statistical distributions until a satisfactory distribution is found. Since we are
interested in the rare events, where the value of the variable is some distance from

the mean value, the distribution is generally fitted in the appropriate tail region.

The distributions of the basic variables, on which the load or resistance depend,
are established in Chapters 4 and 5. Therefore, the member resistance or loads can

be simulated using these distributions.

In this process it is necessary to generate values of the variables which have
specific probability distributions. For example, to simulate the flexural resistance
of a beam it is necessary to generate values of f; and £.’ from their specific
probability distributions. This can be achieved by first, generating a uniformly
distributed random number between zero and one, and then, by obtaining the |
corresponding random number with the specified probability distribution through
appropriate transformations. One method of doing so, that of Ang and Tang

(1984b), is described here.



Let a random variable X have a cumulative distribution function (CDF) of Fx(x).
Then, as shown in Fig. 2.2,
[2.7] Fx(x) = x,
[2.8] x = Fx''(%)
Xu is a value of the standard uniform variate, X,.
Fxu(x) = %y
P(Xu %) = x4
P(X<x) =P[Fx'(X.)<x]
= P[X, < Fx(x)]
= Fx(x)

This means that if (xu1, Xu2, ....Xum) is a set of values from X, then the corresponding
set of values obtained through x; = Fx'(x,;)) will have the desired CDF Fx(x).

Generation of random numbers in this way is called the inverse transform
method. This method has limitations as the Fx™'(x, ) has to be available. There are
many probability distributions for which the CDF cannot be inverted analytically.
For such cases, other methods are available (Ang and Tang 1984b). Methods of
transforming variables are developed in conjunction with the principles of the

inverse transform method. The methods developed are explained below.

The simulations are made using the statistical software SAS (SAS Institute Inc.
1993). In this program a random normal distribution is generated using an internal
function. Therefore lognormal distributions could also be generated using
appropriate transformations. Since the Gumbel distribution is a double exponential
function, the transformation can be performed by taking the double log. of the

cumulative probability.

10



These methods are used in the SAS programs shown in Appendix A and B.
The three most commonly used distributions are the normal, lognormal and

Gumbel. The generation of these are explained below.

2.5.1 _Generating a Variable That has a Normal Distribution

The SAS program can generate a random standard normal distribution by using
the function rannor(seed). The result is a random number that fits a normal
distribution with a mean equal to 0, and a standard deviation of 1.0. The ‘seed’
value is taken as -1 as recommended in the SAS Manual (SAS Institute Inc. 1993).
For example, to simulate the resistance of a column in bending and compression it
is necessary to generate values of the modulus of elasticity of steel reinforcing
bars, E,. The variable E, has a normal distribution with a mean of 201,000 MPa
and a standard deviation of 6598 MPa (as established in Chapter 5). A random

value of E, is generated by;

[2.9] E, = 201000 + 6598 x rannor(-1)

This is done by using the relationship between the normal and lognormal
distributions. It is illustrated by generating values of the yield strength, f,, which
has a shifted lognormal distribution with a ;14 equal to 442 MPa, oy, equal to 26.5
MPa and shift equal to 365 MPa (as established in Chapter 5). Therefore, f; - 365
has a lognormal distribution with a mean of 442-365 MPa and a standard deviation
of 26.5 MPa. Then, based on the definition of a lognormal distribution, In(f,-365)
is normally distributed with mean, A, and standard deviation, {. From the equation

of the mean and standard deviation of a lognormal distribution

[2.10] Wey - shift = 442-365 = exp(A + £%/2)

[2.11] Oy = 26.5 = exp(A) fexp(C* Jexp(C) - 1]

By solving simultaneous equations [2.10] and [2.11],

11



A=0.334
€ =4.288
Using these In(f, - 365) is generated and consequently f, as shown below

In(fy - 365) = 0.334 + 4.288 x rannor(-1)

2.5.3 Generating a Variable That has a Gumbel Distribution

The following transformation is done for Gumbel distributions. For wind and
snow parameters the maximum value in 30 years is generated by using the annual
maximum established from climatic data.

Let X be the annual maximum variable which has a Gumbel distribution.

Then X30, maximum value in 30 years also has a Gumbel distribution.

Fx(x) = exp{-exp[-a (x - u)]}

From extreme value theory,

[2.12] Fxso(xs0) = [exp{-exp[-ct (x50 - u)]}*°
From [2.7),

Xu = [exp{-exp[-a (x30 - U)]} ]30

[2.13]

Equation [2.13] is used to generate the required Gumbel distributions.

In the case of wind velocity the annual maximum wind velocity, V, for
Vancouver has a Gumbel distribution with parameters u equal to 65.1 kmvhr and o,
equal to 0.151 (km/hr)” (as established in Chapter 4). Therefore using [2.13], and

similar format for 10 year and 100 year maximum, the following equations are

12
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used to generate the required wind velocities. The ranuni(seed) function in the

SAS software generates a variable with a uniform distribution from 0.0 to 1.0.
Xa = ranuni(-1)
Vio=65.1 - {In[-In(x, "1%]}/0.151
V3o = 65.1 -{In[-In(x, **%)]}/0.151

Voo = 65.1 - {In[-In(x, *)]}/0.151

Distribution Fitting and Parameter Estimation

Distribution fitting and parameter estimation is done by transforming variables
and using regression analysis (least squares estimation) to check the fit and obtain
parameters. These methods are used in the SAS programs shown in Appendix A
and B. The three most commonly used distributions the normal, lognormal and
Gumbel are explained below. General methods of goodness of fit, such as the
Kolmogrov-Smirnov test, were not used in this study because most of the
distributions that are encountered here are not normal distributions. The data was
always examined by viewing scatter plots and percentile plots to check for outliers
which might unduly affect the results of the regression. The outlier cutoffs are
taken to be £ 2.7 o (Jobson 1991). In the climatic observations such outliers
were left out of the analysis as they probably were erroneous observations.
Because the outliers were removed, the maximum likelihood estimates obtained
from the least squares estimation were not affected by a single erroneous data

point.

using a plotting function, a data set of simx and corresponding cumulative
probability, F;, can be obtained. The plotting function for i ordered value is taken

as Fi equal to i/(n+1) where n is the number of simulated values used for fitting,

13



2.6.1 _Checking the Fit of Data to a Normal Distribution

The following method is developed to check the fit of simulated data to the

normal distribution.

The SAS program has an inverse function of the standard normal distribution.

This is called probit( F;) function.

If ‘simx’ is normally distributed with mean, p, and standard deviation, o, then

ST2 "B will have a standard normal distribution,

Therefore,  probit(F;) =
; 1. m
[2.14] probit(F) = —simx ~ &
c G

If the simx is normally distributed, regressing probit(Fi) on simx would give a
value of R-square (coefficient of determination) close to 1.0 and the intercept and
variable coefficients will give the parameters p and o of simx. This type of

regression is used to check the fit and find the best fit distribution parameters.

2.6.2 Checking the Fit of Data to a Lognormal Distribution

Checking the fit of data to a lognormal distribution is done by using the
relationship between the normal and lognormal distributions. The inverse function

of the standard normal distribution, probit(F;), is used as in section 2.6.1.

If simx is lognormally distributed then In(simx) is normally distributed, say with

In(simx) - A

parameters A and £, Then —————C——-—-—s would have a standard normal
distribution.
Therefore, In(simx) -2 _ probit(F;)

o
In(simx) = ¢ [probit(F;)] + A

14



If the regression of In(simx) on probit(Fi) gave good fitness parameters, it
implies that simx is lognormally distributed. Further the parameters A and C can be
[2.11], the parameters p and o of simx can be obtained.

2.63 Checking the Fit of Data to a Gumbel Distribution

If simx has a Gumbel distribution then:
Fx(simx) =F; = exp{-exp[-a (simx - u)]}

=ln F]n(F,)] =g simx-ou

Therefore by regressing -In [-In(F;)] on simx the fit can be checked and the

distribution parameters o and u can be found from the regression ccefficients.

15
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Figure 2.1 - Variable transformation in Hasofer and Lind reliability index
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CHAPTER 3

SAFETY FORMATS

Introduction

Fluctuations in loads, variability in material and dimensional properties, and
uncertainties in analytical models must be considered in providing safety in a
structural design. Different safety formats have been adopted by various structural
design codes to address these items. In current limit state design codes, the two
main steps in providing safety are: specifying loads and material properties at a
defined exceedance probability, and applying partial safety factors to these

specified loads and nominal resistances.

In the first step, a margin of safety is provided by defining the specified loads
at a low probability of exceedance, generally around 5%, and by defining the

specified material strengths at a higher probability of exceedance, generally around

variables in structural safety. The dimensional and model variabilities can be
implicitly taken into account in the partial safety factors and code formulations for

sectional resistance, or can be considered in the design calculations.

predetermined margin of safety between the specified loads and resistances. There
are several formats in which partial safety factors are applied io loads and
resistances. These formats are presented and summarized herein and their relative
merits are discussed. Finally, the formats chosen for use in this study are

presented.

18
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3.2.1

Load Combination Formats
Introduction

Loads vary randomly in time and space in a very complex manner. Design
loads are based on a number of simplifications including: uncoupling of loads from
structural characteristics; reduction of the problem to a limited set of parameters,
such as static wind pressure for wind load; and the use of conventional structural
analysis to predict load effects. Time variations are normally included in design by
a statistical analysis of peak values during relatively long time periods coupled with
an analysis of short-time events around such peaks to obtain, for example, wind

gust factors (Turkstra and Madsen 1980).

If two time-varying uncorrelated loads were considered, the sum of the two

the sum of the two loads. To obtain a realistic estimate of the maximum load one
should explicitly consider the time variations of loads in the particular load
combination. A structured methodology or format for load combination is
essential for structural design. These formats should provide a list of realistic and
criti- 1 combinations to be considered and a set of corresponding load factors to be
ap] ;- to specified values of the individual loads. Such a list of combinations and

a related set of load factors is developed.

Background

All loads vary in space, that is, if the loads on a family of similar buildings are

loads with time is quite different for different types of loading. To provide for the
many design situations which can arise, loads are categorized according to their
variation in time, as either permanent or variable loads. Permanent loads (Q;) are
loads such as those due to self weight and prestressing force. Variable loads (Qy)

are quite varied in nature and can be further subdivided. Sometimes variable loads

19



are divided according to the duration of the load, into long term variable loads
(Quw), such as occupancy live loads and snow loads in some regions, and short term
variable loads (Qy), such as transient live loads, wind and earthquake loads. More
recently, recognizing that earthquake loads are infrequent or rare, variable loads
have been further divided into frequent and infrequent loads. These infrequent or
rare loads may need special consideration as explained further in the discussion of

earthquake loads and the specified exceedance probability format.

For variable loads, codes specify load values, normally defined as a value that
has some small probability of being exceeded in any given year. For environmental
loads this probability is taken by convention as 0.033 in the NBCC (1995) and
0.02 in the ASCE 7-95 (formerly ANSI A58. 1) standard. Equivalently, the design
load is said to have a mean recurrence interval (MRI) equal to the inverse of this
probability, i.e.; 30 years = 1/ 0.033 in the NBCC and 50 years = 1/0.02 in the
ASCE 7-95 standard. In this study, the specified loads which have a small
probability of exceedance are called “characteristic” values to distinguish them

from frequent or companion values that are defined later.

The critical combinations of loads applied on structures involve both higher
percentile loads such as characteristic loads and lower percentile loads which are
encountered more often. To account for these lower percentile loads, companion
loads are defined. These are the values of variable loads that are likely to be
present along with another variable load that has its characteristic value. The
variable load that has a maximum or a characteristic value is termed the “principal
load” and the other variable loads present are termed “companion loads”. As
companion loads are a relatively new concept, the definition of these values are not
as well established as for the characteristic loads. A more detailed explanation of

companion load values used, in this study, is given in section 3.2.7,

Ferry Borges and Castanheta (1972) proposed a model to represent loads as
random variables. Loads are assumed to change after prescribed, deterministic,

20



equal, elementary intervals of time t. The interval t is called the holding time of the
load. The magnitudes during different elementary intervals are identically
distributed and mutually independent random variables. The holding time can
therefore be defined as the shortest interval of time over which the load can be
considered to be sensibly constant. They also proposed that these loads be
arranged in order of increasing elementary time interval and that the combination
of a pair of loads be obtained using the ratio of the two elementary time intervals
and binomial theory to account for the zero values of the loads. By progressively
adding two sets of loads at a time any number of loads could be combined.
Turkstra and Madsen (1980) confirmed that the Borges and Castanheta processes

provide a sufficient description of loads for design combination analysis.

This approach to developing load combinations, has a number of difficulties
with its use. As Ellingwood et al. (1980) noted, a major short coming is the
necessity of making assumptions regarding the number of basic intervals and the
probability of a non-zero load value within each one. Information regarding the
elementary intervals and the probability of non-zero values generally is not
available nor is it easily recoverable from available load data. The safety criteria

are quite sensitive to the selection of these parameters.

“Turkstra’s rule” is an alternative way of handling load combinations (Turkstra
1972). It states that the maximum lifetime load is most likely to occur when one

of the variable loads is at its maximum, and other loads take more frequent values.

The two basic load combination methods used in design codes are the
“probability factor design format” and “companion action factor format” which are
described in section 3.2.3. and 3.2.4. A third method known as the “specified
exceedance probability format” described in section 3.2.5. is sometimes used for

combinations including infrequent loads.
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Prgbﬁabjlitv Factor Design Format

[[#%]
i

The probability factor format is given by:

[3.1] Total Factored Load = 0,Qp + W ( £ 0wi Qui)

where

Q; is the characteristic value of the permanent load

0, is the permanent load factor

Q.i is the characteristic value of the i variable load

ayi is the load factor for the i* variable load

v is a load combination probability factor to account for the fact that extreme
values of different loads are unlikely to occur simultaneously. When only one
variable load acts, y is equal to 1.0 . If more than one variable load acts, v is

less than one.

variations in the load effects due to uncertainties in the load models, and variations

due to the structural analysis.

This format is presently used in the NBCC and in ACI 318 to specify the basic
loading cases. However, some researchers consider this format to be illogical and
without basis (Ferry Borges and Castanheta 1972 , Wen 1977, Turkstra and
Madsen 1980) as discussed further in section 3.2.6.

4 _Companion-action Load Factor Format

In some codes, especially European codes, the load combinations are
considered to consist of the permanent load with one variable load at the

characteristic value while all other variable loads take companion values.



3.2.5

This format, proposed by Comite Euro-International du Beton (CEB)(1976)
and the Joint Committee on Structural Safety (1974), is a family of design load

combinations of the general form:
[3.2] Total Factored Load = a,,Q, +at Qv + %1 oij Wij Qy

where,

Q, = characteristic values of permanent loads ( e.g., self weight )

Q.i or Q= characteristic values of variable loads

o, = load factor for permanent load

ol = load factor for variabie load Q.; when it is the principal load

alvij = load factor for variable load Q,; when Q; is the principal load

v;; = factor to reduce the characteristic value of Q,; to a companion value of
Qy

The subscripts i, j, denote particular load types and ;; Q4 is called the

companion value of the load.

Here the variable load Q.;, termed the principal load, takes a maximum value
and the other variable loads, Q.;, take companion values. This format is based on
Turkstra’s rule. For simplicity in usage, companion values of loads are presented

as y; Q, i.e., as a fraction of the characteristic values.

Specified Exceedance Probability Design Format

In a study of a calibration of the new CSA code for fixed offshore structures,
Maes (1986a) divided loads into three categories; frequent loads, occasional loads
and rare or infrequent loads. Infrequent loads are generated by rare events, such as
earthquakes, i.e., events with a low probability of occurrence. The probability
density function (PDF) for such a load has a spike at zero load when the arrival
rate of the infrequent event is small. Figure 3.1(a) shows the probability
distribution of an infrequent load given that an event occurs. However, such

events are rare. The distribution for all time intervals in which events might occur
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is as shown in Fig. 3.1(b) which has a concentration of values at zero (Jordaan and
Maes 1991). Infrequent loads are characterized by a probability density function
that is very flat in the neighborhood of the design point. It is clear from Fig. 3.1
that the extremal PDF cannot be characterized by a COV since the expected value
of the extreme load is likely to be zero for low occurrence rates of load events. It
is much more important to focus on the arrival rate, v of the infrequent event, i.e.,
the expected number of occurrences per year, as well as on the rate of decline of

the tail of the extremal distribution.

Maes (1986a) shows that for earthquake distributions, characterized by long
tails because of the many contributing mechanisms, more uniform safety is attained
with design loads specified directly on the basis of an exceedance criterion, than by
the use of partial factors. This is reiterated by Jordaan and Maes (1991), who
found that the partial factor design format does not yield consistent safety in the
case of rare events. This is chiefly due to the fact that the exceedance probability
of large infrequent loads decreases in very different ways than that for frequent
loads. The tail of an infrequent load depends more on the type of load, the
frequency of occurrence of extreme events, the importance of modelling
uncertainties and other factors. As a result, it is virtually impossible to express a
single partial load factor to serve every possible application. A better approach is
to specify directly the ultimate design load that would have a load factor of 1.0.

This is referred to as the “specified exceedance probability design format”.

The NBCC (1990) effectively adopted the specified exceedance probability
design format in defining earthquake loads and earthquake load factors. The
seismic load factor was separated from that of the wind and assigned the value of
1.0, in contrast to 1.5 in the NBCC (1985) which was used with a lesser load. The
seismic zoning maps used in the NBCC (1990), are based on the probability of
exceedance of the seismic ground motion parameters of 10% in 50 years ( which is

mathematically equivalent to a specified probability of exceedance of 0.0021 per
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3.2.6

annum). The previous value was 0.01 per annum used in conjunction with the

higher load factor.

In essence the specified exceedance probability design format is used when the
principal load is an infrequent load. The characteristic value of the principal
infrequent load is specified at a low probability of exceedance such as 0.0021 per

annum. A load factor of 1.0 is applied to this load.

Comparison of Load Factor Formats

The analytical study on load processes done by Turkstra and Madsen (1980)

shows that the maximum lifetime structural load is most likely to occur when one

combinations of a large class of loads routinely encountered in structural design
were considered in their study. To evaluate the design cases, the sensitivity of
results to a variety of load models and parameters was examined. It was found that
fixed holding time models, as discussed in Section 3.2.2. seemed adequate for
analysis of conventional design loads. Numerical analysis for combinations of
sustained live load, transient live load, snow load, wind load and earthquake load
was based on normalized design values, a spectrum of influence coefficients, the
Rackwitz-Fiessler algorithm, and a relatively simple set of Borges-Castenheta load
models. The theoretical values obtained from this numerical analysis were
compared with results of three combination formats. Typical errors associated with
combinations of loads according to the basic formats were examined. The formats
examined were; the upper bound format in which design load effects are simply
added with no correction for time variations, the probability factor format, and the

companion action load factor format.

Turkstra and Madsen (1980) reported that the simple addition of design loads

led to results ranging from 5 to 82% conservative compared to theoretical values

~ for the sets of loads studied. The probability factor approach also led to significant
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3.2.7

variations relative to theoretical values. With a probability factor, y, of 0.7 the
errors ranged from 23% of the theoretical values (that is 23% conservative
compared to the theoretical values) to -23% of the theoretical values (that is 23%
unconservative based on the theoretical values). Choice of suitable factors,
however, can force the approach to be always conservative, but this would lead to
undue conservatism and a large variation in reliability. Use of the companion
action approach yielded results with an error almost always less than 10% and
normally within 5% of the theoretical values in the cases studied by Turkstra and

Madsen.

Ferry Borges and Castanheta (1972) used the vectorial representation of
statistical loads to examine the combination of loads. For the combination of two

and three variable loads, they concluded that the probability factor method is

building codes is not risk-consistent. Depending on the relative magnitude of the
individual load effects, it may seriously under or overestimate the combined load

These various studies strongly suggest that the load combination factor format

presented in the NBCC (1990) does not represent the actual load combinations as

action load factor format.

Load Combination Format and Load Definitions Used

The companion action load factor format is used for load combinations

including frequent loads. Companion action load factors are developed to reflect



actual load combinations. The principal loads are taken at their characteristic

values and accompanying loads are as defined in this section.

3.2.7.1 Selection of Companion Loads

In the companion action load factor format, the principal load is taken at its
characteristic value. The accompanying loads are taken at the maximum value
they are likely to have when the principal load is at its characteristic value. These

are termed companion values and are defined below.

Loads are idealized by Borges-Castenheta processes with elementary time
intervals. The holding times (as defined in section 3.2.2) used for different types
of loads are given in Table 3.1. These values were based on the frequency of load
changes as indicated by recorded loads, and recommended values given by

Turkstra & Madsen (1980) and Ferry Borges and Castanheta (1972).

In view of the different possible combinations of loads, the following methods

are developed for the definition of companion loads and are used in this study.

Case 1 - The holding time of the principal variable load, t; is greater than the

holding time of the companion load, t;, as shown in Fig. 3.2

The principal variable load is t2ken at its characteristic maximum value.
During the holding time of the principal load a number of companion load values
will occur. Therefore for the critical combination, the companion load is taken as

the maximum likely to occur during the holding period t; of the principal load.

For example, consider the combination of dead, snow and wind. If the snow
load is the principal variable load, the wind load would be the companion variable
load. Therefore from Table 3.1, t;equals 1 day and t;equals 1 hour. Thus t;is
greater than t; one could use the characteristic value of the snow, and the
companion value of wind load which is the maximum hourly wind during the 24
hour holding time of the principal load. Therefore the companion value of wind
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load for this combination of loads is the maximum hourly wind likely to occur in

any given day.

Case 2 - The holding time of the principal variable load, t; is smaller than the

holding time of the companion load, t; , as shown in Fig. 3.3

time of the companion load is longer than that of the princ;ip.al load, only one value
of the companicn load will occur during the holding time of the principal load. The
companion load is taken as the arbitrary-point-in-time (a.p.t.) value. This ap.t.
value is defined as the most likely load that could occur at anytime, e.g., snow has
been recorded on a daily basis, therefore, the daily snow load records are used to

establish the a.p.t. snow load distribution.

For example, consider the combination of dead, snow and live, with snow as
the principal variable load. This gives t; equal to 1 day and tjequal to 8 years.

Since t; is smaller than t;, the characteristic value of the snow load and the

characteristic load is the maximum daily snow load with a 30 year return period
and the a.p.t. load is the expected value of the sustained live load as obtained from

survey data.

For load combinations that include earthquake loads, the specified exceedance
probability design format has been used. The earthquake load, which is always the
principal load, is taken at a specified probability of exceedance of 0.0021 per
annum. A factor of 1.0 is applied on the earthquake load. The companion loads
are taken to be the arbitrary point in time (a.p.t.) values which are the expected
values at any time. For the dead load, in earthquake load combinations, a factor of
1.0 is applied because this is the likely value and because the calculated equivalent
static earthquake load is dependent on the dead load or mass of the structure.

With earthquake loads, the other companion loads have been taken as the a.pt.
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values and are represented as some fraction of the characteristic load. Load

factors for NBCC are reevaluated based on these formats.

In deriving resistance factors and related formats many items need to be taken
into account. Some of the major items are: individual material strength variations,
dimensional variability, uncertainty in the model used to estimate the resistance,
type of failure (sudden or gradual), computational ease, accuracy and user
acceptance (Mirza and MacGregor 1982). Traditionally the factored resistance
has been written in one of two formats. These are the structural action resistance

factor format and the material partial safety factor format. The relative merits of

In this format the resistance factor is applied to the particular structural action

3.3 Resistance Factor Format
3.3.1 _Introduction
these two methods are discussed below.
3.3.2 Structural Action Resistance Factor Format
such as flexure, shear, or axial compression. That is:
Factored resistance = ¢ Nominal resistance
This format is used in ACI Standard 318-89.
3.3.3 Material Partial Safety Factor Format

This format applies the resistance factors to the material strengths. That is:

Factored resistance = Resistance computed using ¢. f.’, ¢, £, etc.

For example:

¢, A, f

Factored moment resistance of a beam = ¢, A, f; (d - ——————)
20,0, . b

£
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This format is used by CEB, CSA A23.3 and CSA S474, where material
resistance factors are specified for each type of structural material. Few codes

have included dimensional variations explicitly.

3.3.4 Comparison of Resistance Factor F ormats

A comparison of the structural action resistance factor format and material
partial safety factor format is given in Table 3.2. As seen in the table, the two

methods are comparable and for final reliability they can give similar results,

3.3.5 Resistance Factor Format Used

This study considers structures made of reinforced concrete which is a

composite material. The material partial safety factor format is appropriate for

CSA A23.3. Hence this format is used herein.
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Table 3.1 - Holding Times Used for Different Types of Loading

Load type Holding time
Sustained live 8 years
Transient live 6 hours
Earthquake 30 seconds
Wind 1 hour
Snow ] day

Table 3.2 - Comparison of Resistance Factor Formats

Major items to
consider

Structural action factor
format

Material partial factor
format

1. Variability of
material properties

Cannot consider individual
variabilities of materials if
more than one material is
involved.

This method can consider
individual strength
variations.

2. Dimensional

Not considered directly.

Not considered directly

A23.3, but used in ACI
standards.

variability unless dimensional
variability is included.

3. Model error Handled directly. This can be handled
indirectly.

4. Type of failure Handled directly. This can be handled
indirectly.

5. Computational Two methods are Two methods are

ease and accuracy | comparable. comparable.

6. User familiarity | Not currently used by CSA | Currently used by CSA

A23.3 standard.

7. Effect of member
classification, i.e.,
whether considered
as a beam, column
etc.

Significant changes in
resistance factors even in the
same equation, according to
member classification

Resistance factors do not
depend on member
classification
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" Lead (Severity of Eifentfj
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Figure 3.1 - Probability distribution of a rare event
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Magnitude of the Load

Magnitude of the Load

4 2t
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Figure 3.2 - Case 1: Holding time of principal load, t; is greater than the holding
time of companion load, t,

principal load

companion load

Y 24

—

3
time

Figure 3.3 - Case 2: Holding time of principal load, t, is smaller than the holding
time of companion load, t,
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4.1

CHAFTER 4

LOAD DISTRIBUTIONS AND PARAMETER VALUES

Introduction

In this chapter, the dead, live, snow, wind and earthquake loads are
established. The companion action load factor format as chosen in Chapter 3 is
used for frequent loads and the specified exceedance probability factor format for
earthquake loads. The required load values, as defined in Chapter 3, are

established.

All load parameters are normalized because normalized loads are required for
the reliability analyses. The loads are normalized by dividing the load variable by
the specified load as given in the NBCC (1990). The mean value of the normalized

variable is termed the bias factor.

The terms ‘specified’, ‘nominal’, ‘true’ variable used in referring to the load

and resistance are explained in Section 6.1.

The variability of the load effect is due to the variability in the load, the load
modelling, and analysis. To account for these uncertainties in the load effect the
structural load is multiplied by a modelling parameter, B, and an influence
coefficient, ¢, (Ellingwood et al. 1980). Uncertainty arises from the load model
which transforms the actual load into a statically equivalent uniformly distributed
load (EUDL). The variability due to this load modeliing is reflected in the
coefficient of variation of the parameter B. Variability is also introduced by the

analysis that transforms the EUDL into the load effect. This variability is
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4.2

accounted for by the coefficient of variation of the influence coefficient, c. The

bias factors of B and ¢ are generally taken as 1.0.

Choosing Representative Geographic Locations

Buildings are subjected to environmental loads, as well as dead and live.
Therefore, it is necessary to select various geographic locations that can be

considered representative of environmental conditions in Canada.

Initially 15 cities, approximately uniformly distributed across Canada were
chosen and used for preliminary studies as given in Sections 4.5 and 4.6. These
are Vancouver, Kelowna, Yellowknife, Edmonton, Regina, Saskatoon, Winnipeg,
Thunder Bay, Sault Ste Marie, Toronto, Montreal, Fredericton, Halifax,
Charlottetown, and St. John's. However for reasons summarnized below all the

cities are not used in all the analyses.

By observing the snow depth and wind speed data it is seen that the load
parameters of some cities are similar, for example, the annual maximum ground
snow depth in Edmonton has a mean that is 8 % higher and a standard deviation
3% higher than that in Regina. Therefore the reliability analysis need not be done
for both cities as results would be very similar, Accordingly, 7 of the cities,
Vancouver, Kelowna, Yellowknife, Regina, Winnipeg, Toronto and St.John’s, are
chosen so that the whole range of wind speed and snow depth distributions are
represented. The snow and wind loads are established for these cities. In the

NBCC (1990) the specified earthquake loads are zero in Regina and Winnipeg and

load is obtained at Toronto, Vancouver and St.John’s.

Once the wind and snow loads were simulated (as explained in Sections 2.5,
4.5.3, and 4.6.3) and used in the reliability analysis it was realized that some cities

gave reliability indices, B s, that are significantly different than other cities with the
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43.1

same load ratios. This may be due in part to the fact that the NBCC (1990)

data used in this study are for the specific city.

The load factors should not be established for the location with the most
critical or variable loads. Instead the load factors should be based on load
parameters that are moderate or representative for Canada. The specified loads at
locations which have parameters significantly different from the moderate values
should be adjusted as discussed later in Section 7.5.7. The locations where the
bias factor of the load is within 1 £ 0.33 times the overall average bias factor are
used in the reliability studies. As explained in Section 4.5.4. the snow loads used
in the analyses are for Kelowna, Regina, Winnipeg, Toronto and St.John’s and as
explained in Section 4.6.5 the wind loads used in the analyses are for Vancouver,

Winnipeg, Toronto and St.John’s, Load parameters and their influence on

Dead Load
Introduction

Because the dead load is to be modelled as a variable the bias factor,
coefficient of variation and type of distribution must be established. In the NBCC
(1990) specified dead load for a structural member is taken to consist of:

(a) self weight of the member,
(b) weight of all permanently supported construction material,
(c) weight of partitions,

(d) weight of permanent equipment.

These loads are relatively constant during the lifetime of the structure. The
uncertainty is due to variations in size of members, density of material, the weight

of the non-structural members and variability in the weight estimation. Of these the
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43.3

variability in non-structural items such as roofing, partitions, etc. is the main cause

of the uncertainty (Ellingwood et al. 1980).

Estimating the Dead Loa

d

As the dead load is often quite predictable and there is relatively little variation
with time, some researchers have assumed that the bias factor, i.e, the ratio of
mean load to nominal (or specified) load, is 1.0 and that the coefficient of

variation, Vp is small as summarized in Table 4.1.

The values in Table 4.1 include the variabilities due to modelling and analyzing
the loads. Ellingwood et al.(1980) in estimating the variability of dead load for
concrete structures considered the variabilities of the density of concrete,
dimensions of members and the superimposed load. When the model and analysis
variabilities were included they found the bias factor, §, equal to 1.03, and the

coefficient of variation, Vp equal to 0.093.

Most investigators have assumed that the probability distribution of the dead
load is normal (Ellingwood et al. 1980). As the variability of the dead load is low
relative to other loads this assumption is more than adequate in modelling the dead

load.

Summary of Values Used

As only concrete structures are considered, a bias factor of 1.03 and Vp=
0.093 are used to model the dead load. The probability distribution of the dead

load is assumed to be normal.

37



4.4  Live Load Due to Occupancy

4.4.1 Introduction

The specified live load due to use of floors and roofs depends on the intended
use and occupancy. The NBCC (1990) gives minimum values for concentrated
loads and uniformly distributed loads. Because concentrated loads influence local
areas and would rarely govern any major element in a concrete structure they are

not considered further,

When the uniformly distributed load acts on a large tributary area, a live load

reduction factor is applied as follows (NBCC 1990):

Where a structural member supports a tributary area greater than 80 m” used for
assembly occupancies designed for a live load of 4.8 kPa or more, or for storage,

manufacturing, retail stores, garages or a foot bridge, the live load, excluding

snow, is multiplied by 0.5+ ,/20/ A .

Where a structural member supports a tributary area greater than 20 m* for

any use or occupancy, other than assembly occupancies and those mentioned

above, the live load, excluding snow, is multiplied by 0.3 + ,/9.8 /AL .

where Ar = tributary area in square meters excluding the area supporting snow.

4.4.2 Probabilistic Model of Live Load

The gravity live load acting on a structural component of an office building can

be represented by two distinct parts (McGuire and Corneli 1974) :

The first, a sustained part, acts continually in time, and represents the ordinary
office furniturs including bookcases and desks and their contents, and normal
personnel. This load is assumed to be a spatially varying random function. In any
particular area this load is assumed to be constant with time until a load change

takes place. These load changes are assumed to occur as Poisson arrivals as shown
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in Fig. 4.1(a). Such a load change may represent a change in tenancy. Zero
sustained live loads are also possible. Load surveys describe this sustained
component acting on the structure at any point in time. Consequently the
distribution of sustained load is the distribution of arbitrary-point-in-time load and

is obtained directly from load survey results.

The second portion of the live load is a transient or extraordinary load which
represents short-term loads such as might be caused by an extraordinary grouping
of people during an office party or by the stacking of furniture in one area during
remodelling of the premises. These extraordinary loads shown in Fig. 4.1(b) occur
essentially instantaneously, and they are assumed to arrive as Poisson events. Very
few sets of data exist on this type of load because live load surveys have not
generally included unusual loading situations (Chalk and Corotis 1980). A model
for the extraordinary load was proposed by McGuire and Cornell (1974) and is
explained in Section 4.4.3.2.

Estimating the Live L.oad

Major data surveys in the UK by Mitchell and Woodgate (1971) and in the
USA by Culver (1976) have been conducted and several different models have
been proposed. The surveys, and consequently the studies, have focused on office
buildings. Ellingwood et al.(1980) concluded that the results for several other
occupancies (e.g., residences, retail establishments) are similar enough so that

these statistics may be applied to them also.

Most surveys and many models have dealt with applied load and not the
structural load effect although the latter is of most importance in setting load
factors. To reduce the complexity of dealing with loads that vary spatially the
loads are generally considered to be uniformly distributed over some area. This
uniformly distributed load is called the “equivalent uniformly distributed load”

(EUDL) and is the uniform load intensity which would produce the same load
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effect as the actual spatially varying live load if applied over the appropriate floor
area. Two different concepts used in defining these “equivalent uniformly

distributed loads” are those of tributary areas and influence areas.

In the case of a member which supports the load directly, such as a slab, the
tributary area is the area supported by the member bounded by the lines of support.
In the case of a member which does not support the load directly but supports
other members, the tributary area is defined as the area bounded by the lines of
support of the member and the lines of zero shear in the members supported,

assuming a uniformly distributed load is acting on the structure (NBCC 1990).

McGuire and Cornell (1974) define the influence area as the area over which
the influence surface for the load effect is significantly different from zero. (For
simple framed structures A; is equal to 2Ar for beams and Ay is equal to 4Ar for
columns.) They emphasize the importance of using the influence area, Ay, rather
than the conventional tributary area, Ar, in comparing load effects. They studied
the load effects produced by occupancy loads on beams and columns for an office
building. They observed that when the upper fractiles of the total EUDL for
midspan moment and column load effects are compared, the fractiles for the two
load effects differ by less than 6% if calculated based on influence area. However,
if based on tributary area the upper fractiles for the two load effects differ by about
12 to 30%. Therefore their study concluded that if common probability level for
columns and beams was the goal load effects should be compared on the basis of
influence area rather than tributary area. The estimates of the EUDL based on

influence area are used herein.

The statistical characteristics of both the maximum total live load, L,x, and
the arbitrary-point-in-time live load, which is the sustained live load, L,, need to be
established as normalized loads, obtained by dividing the loads by the specified or

nominal load (L) given in the NBCC (1990).
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For beams with A; greater than 40 m? (A7 > 20 m?), the nominal live load, L,,

is

[4.1] L

Lu[o.3+\/E] KN/ m?
A,

and for columns with A; greater than 80 m? (At >20 m?) it is

r4.2] L, =L, [0.3 +

:LE(O.3+/£'2=J KN/ m?
A,

where L, = Minimum specified uniform load for the particular type of

use and occupancy (NBCC 1990)

4.4.3.1 Sustained Live Load

As explained in Section 4.4.2 the sustained live load is the arbitrary-point-in-
time load. The following probabilistic load model is given for sustained loads by

Peir and Cornell (1973):

[4.3] W(X,y) = m + Yya + var + £(X,Y)
where, w(x,y) = instantaneous sustained live load intensity
m = mean live load for the type of occupancy considered
Yua = deviation of the building average of unit load from m
Yar = deviation of the floor average of unit load from the
building average (m + yy1a)
e(x,y) = stochastic process representing the deviation from the

floor average (m + Ypia + Yar )



Based on this model and assuming that e(x,y) is a "white noise process" (Chalk
and Corotis 1980) the mean and variance of the equivalent uniformly distributed
load (EUDL) L are:

[4.4] EL)=m
[4.5] Var(L) = 6% + o + [6%/ Ailx
=g’ +[0% / Al

where o%j4 = variance among building average loads

o’ = variance among floor average loads

o’ = 0”4 + 04

o’ =an experimental constant
A = Influence Area
K = mean square of the height of the influence surface divided

by the average height of the influence surface taken

over the area A;

These parameters have been established from load surveys. The results from

the main surveys are summarized in Table 4.2. Ellingwood and Culver (1977)

As the survey data represent the sustained load, using the weighted average
values from the surveys the following expressions for the sustained load, L,, are
obtained.

[4.6] E(L,) = 0.566 kN/m?

[4.7] Var(L,) = 0.044 +3.212/ A KN%m*

effect, these values have to be augmented with the variation in influence
coefficient, ¢, and modelling parameter, B (as discussed in Section 4.1). Based on
Ellingwood et al. (1980) the coefficients of variation of these are taken to be V. =

0.05 and Vg = 0.10 with a bias factor of one for each.
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Corotis and Doshi (1977) report that Mitchell and Woodgate (1971),
investigated the variation of loading with time due to change in occupancy, noting
that the average period of occupancy (which is the average holding time of the
sustained load) is 8.8 years. Ellingwood and Culver (1977) on analyzing survey
data found that the average occupancy duration is 8 years. The average holding

time for sustained live loads is taken as 8 years herein.

(1977) concluded that the sustained live load has a Gamma probability distribution.
This distribution provides a good estimate of the observed loads in the upper tail

region. Therefore the Gamma distribution is used to model L,.

4.4.3.2 Maximum Total Live Load

The total live load is the sustained load together with an extraordinary or
transient live load as shown in Fig. 4.1(c). As the transient load is not measured in
load surveys, a theoretical model was proposed by McGuire and Cornell (1974).
Each transient load event is modelled by a random number of randomly-sized
loaded areas or load cells occurring randomly in space. The average number of
load cells per unit area (and therefore the average load per unit area) decreases
with increasing area. As there is little data to estimate the parameters involved in

this model, parameters are assumed.

For purposes of structural design, the mean lifetime maximum total, EUDL
Loy, is of interest, as it is this EUDL which is analogous to the design live load
specified in building codes and standards. Ellingwood and Culver (1977) show by
Monte Carlo simulations that the upper fractiles (0.9-0.99) of Ly, may be
estimated as the corresponding upper fractiles of the maximum sustained load,

Lymax plus the mean of the extraordinary load for the period over which L, acts.

Two sets of expressions for the mean and variance of L., are given in Table
4.3. As may be deduced, there is significant difference between the two mean loads
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for small influence areas. Ellingwood and Culver (1977) attribute this difference to
the parameters used in the transient load model. In particular, they suggest the
discrepancy is related to the parameters representing the average number of load

cells in an area. The expressions developed for the U.S.A. data are used herein,

To obtain the total variability in the maximum live load effect the above load
variability has to be augmented with modelling parameter, B, and influence
coefficient, c, uncertainties (as discussed in Section 4. 1). Based on Ellingwood et
al. (1980) a bias factor of 1.0 and V= 0,20 and V.= 0.05 are used herein. Note
that the Vi is higher than for the sustained load as modelling the transient load

adds more variability.

McGuire and Cornell (1974), Ellingwood and Culver (1977) and Ellingwood
et al. (1980) fitted the upper fractiles of L to a Type 1 Extreme value

distribution. This distribution is used to model Lax.

Summary of Values Used

The following values are used:

From [4.1], the nominal load for beams with A; >40 m?,

L, =L, [0.3 +
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where L, = Minimum specified uniform load for the particular type of
use and occupancy as given in NBCC (1990)
The arbitrary-point-in-time live load or sustained live load ( L,) has a Gamma

probability distribution and an average holding time of 8 years with
[4.6] E(L,) = 0.566 KN/m?

[4.7] Var(L,) = 0.044 + 3212/ A, kN?%/m*
with Ve = 0,05 and Ve=0.10

Maximum Total Live Load ( Lmy) has a Type I Extreme Value distribution
with (from Table 4.3)

E(Lnax) = 0.895 + 7.6/ [A, kN/m?
Var(Lmx) = 0.033 + 4.025/A, kN%/m*
with Ve = 0.05 and Vg = 0.20
Snow Load

Introduction

The roof snow load is modelled as a random variable. The two types of snow
load considered are, the characteristic snow load and the arbitrary-point-in-time
(a.p.t.)load. Bias factors, coefficients of variation and types of distributions for
the ground snow load are established at representative locations in Canada. The
roof snow load is dependent on many other basic variables. These variables are

modelled and then a simulation is performed to find the roof snow load.

According to the NBCC (1990), the specified loading due to snow
accumulation on a roof or any other building surface subject to snow accumulation

shall be calculated from the formula

[4.8] §=§,(CCyC,C)+ S,
where
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S, =the ground snow load in kPa

S; = the associated rain load in kPa

Cy = the basic roof snow load factor of 0.8
C. = the wind exposure factor

C. =the slope factor

C. =the accumulation factor

The factor Cg = (Cy Cy C, C,) is called the ground to roof conversion factor.

The ground snow load depends on two basic variables;

[4.9] Ss=vy
where, y = weight density of snow

y = depth of ground snow

Both y and y are variables with significant variability at a given site. Therefore

[4.8] can be re-written as:
[4.10] S=y yCe+S5,

To model the roof snow load as a probability distribution y, y, Cg and S, need

to be modelled for different types of roofs.

4.5.2 Statistical Description of Variables

4.5.2.1 Background

Newark et al. (1989) state that since 1961 Canadian estimates of the maximum
snow depth (y) are made using the Type I (Gumbel) extreme value distribution,.
Ellingwood and Redfield (1983), have researched the appropriate model for the
USA. They concluded that the lognormal distribution is preferable to extreme
value distributions for describing annual maximum water-equivalent data, subject
to the proposition that it is desirable to specify only one probability distribution for

describing ground snow loads. The observation that data at a minority of stations
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appeared to be fit by Type I or Type II was thought to be due to sampling errors
caused by limited sample size. It is noted that water-equivalent snow load data

take into account variations due to both y and y.

A comparison of current values and distributions used for defining ground

snow load is given in Table 4.4.

The 30 year maximum snow load is taken as the characteristic snow load. The
distribution of the 30 year maximum can be obtained from the annual maximum
distribution. Therefore the annual maximum snow depth is first established and the
30 year maximum is derived from it. The a.p.t. value is taken as the load that
could occur at anytime. As snow depth has been recorded on a daily basis, the

daily snow load records are used to establish the a.p.t. snow load distribution.

4.5.2.2 Annual maximum Ground Snow Depth

Service, Environment Canada. Stations across the country record rainfall in
millimetres, snowfall and ground snow depth in centimetres on a daily basis
throughout the year. Snowfall data have been recorded for many years, but the

ground snow depth has been documented starting on or after 1955.

As the total accumulated ground snow depth records are relatively short, an
attempt was made to find a relationship between snowfall and ground snow depth,
with the hope of utilizing snowfall records. It was found that in consistently cold
climates (e.g. Edmonton ) the snowfall and ground snow depth followed the same
probability distribution with the same dispersion coefficient but with different mean
values. However, in coastal regions and in areas with highly varying weather this
was not so; the ground snow depth varied much more than the snowfall.

Therefore, it was decided to use only the ground snow depth data.
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The following steps are followed to derive a distribution for the annual maximum

ground snow depth:
(1) From the raw data the maximum ground snow depth in each month is obtained.

(2) If the records for more than two winter months are missing that year is rejected
(the winter months are taken as October to March). The cities and years of

record are listed in Table 4.5.

(3) The maximum depth in a year is obtained and a frequency table is formed by
sorting the data in ascending order and using the plotting position Fi=i/ (n+1)
where, i is the rank of the maximum annual depth and n is the total number of

years of record.

(4) The depth data is fitted to a Gumbel distribution. The fitting is done using a
transformation of the Gumbel distribution function (Ang and Tang 1984b):

4.11} F(x) =exp (-exp (-a (x-u)))
where,  u=modal value
o = inverse dispersion parameter

This is rearranged as:

{4.12] -In(-In F(x))) =oax-ua
which has the formof Y=ax+b

(5) By performing a regression analysis of x on Y, the best estimates of the
parameters o and u are obtained. Using the regression analysis, the fit of the
Gumbel distribution to the data is assessed. The fit is good as indicated by the
coefficients of determination (R-squared values) in column 9 of Table 4.5. The
overall goodness of fit of the Gumbel distribution is significant as shown by the
fact that the F-statistic (i.e., mean square due to regression/mean square due to

error) in column 10 of Table 4.5 is large.
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(6) The mean, p, and standard dcwviation, o, of the annual maximum snow depth is

obtained from u and a as follows (Ang and Tang 1984b):

i3] pmus 2577
o,

T

V6o

[4.14] o

4.5.2.3 Arbitrary-point-in-time Ground Snow Depth

The following steps are followed to derive a distribution for the a.p.t. ground

snow load;

(1) From the raw data, which are the daily ground snow depths for around 37
P
years, the average ground snow depth for each day of the winter period is

obtained.

(2) The average daily snow depth for the winter period is extracted. The 'winter
period' for each city is selected by observing the average daily ground snow
depth for that city. The period where there are predominantly non-zero values

is taken to be the winter period.

(3) A frequency table is formed by sorting the data in ascending order and using
the plotting position F; =i/ (n+1) where, i is the rank of the maximum annual

depth and n is the total number of years of record.

(4) The best fit distributions are found by using transformations and regression
analyses. Eight types of distributions; i.e., uniform, Gumbel, normal, f,
lognormal, gamma, beta, and t distributions, and the log and exponential

transformations are tested. The results are summarized in Table 4.6.

Other than for Vancouver, the a.p.t. snow depth values are fitted best by a
uniform distribution. In Table 4.6 the parameters ‘a’ and ‘b’ for the uniform

distribution are the minimum and maximum respectively, i.e., the mean is given by
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(a+b)/2 and variance by [(b-a)?}/12. For Vancouver, the Gamma distribution is
found to be the best fit distribution (with parameters 'a' and 'b'). As the Gamma
distribution is positively skewed, the lower values of snow depth have a higher
probability of occurrence in Vancouver, as would be expected in a temperate

climate,

4.5.2.4 Snow Density

Determining a representative value of snow density for a particular location is a
complicated problem. Snow density has been the subject of many investigations
using many techniques and according to literature can vary from as little as 10
kg/m’ in the case of freshly fallen snow to as much as 700 kg/m’ in the case of

thawing firm snow (Newark 1984).

The work of McKay and Findley (1971) classifying average snow density by
forest region was adapted by Newark (1984). McKay and Findley reasoned that
the type of forest in Canada is governed to a large degree by climatic conditions
and therefore that snow density could be classified by forest regions. Newark's

values are given in Table 4.7.

Newark (1984) has accounted for the local variation in snow density. His
values are used in this study and are given in Table 4.7. As the type of distribution
is not specified, a normal distribution is assumed. The forest region and

parameters of unit weight are listed in Table 4.8 for each of the cities.

4.5.2.5 Rain-on-Snow

Rain falling on roof’s carrying a heavy snow load is an important aspect of roof
failures in North America. The weight of water, both in capillary and transient
liquid form, should be considered as an additional load which must be supported

by the roof (Colbeck 1977).
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The maximum weight of liquid depends on properties of snow, size, slope and
shape of roof, spacing and type of drains and intensity and duration of rainstorm.
The NBCC (1990) takes S, to be the 24 hour maximum rainfall during the winter
months but not exceeding S,(CyC,C,C,). The factors influencing the rain load may

be indirectly considered; e.g., if the slope of the roof is high, C, is low and

The annual maximum winter rain load is obtained by analyzing the 24 hour

winter rain load data. The procedure outlined in Section 4.5.2.2 is used, with the
rain depth used instead of the ground snow depth. The Gumbel distribution is
found to fit the data except in the case of Yellowknife. Therefore the rain load
parameters are obtained for this distribution. The results are given in Table 4.9,
The lack of fit for Yellowknife is probably due to the fact that the winter rain load

in Yellowknife is quite small.

4.5.2.6 Ground-to-roof Conversion Factor

Isyumov (1977) reports that the coefficient of variation of the roof snow load
is approximately double that of the ground snow load.

O'Rourke (1977) states that the most important parameter affecting the
conversion factor is the wind speed during and after the storm. The conversion
factor should reflect wind speed, roof geometry (i.e., slope, size and valleys),
exposure to wind action, orientation of roof to wind, air temperature, rainfall and

thermal characteristics of roof,

It is reported by Taylor (1980) that although the Institute for Research and
Construction of the National Research Council has been measuring snow on roofs
since 1956, no surveys lasted for more than 12 years (up to 1980) and they are
not, therefore, on a sound statistical basis. As a result, roof snow loads in the
NBCC (1990) are obtained by multiplying the 30 year return ground load by

various coefficients that depend on external geometry and exposure to wind.
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There is, however, no statistical connection between roof and ground loads

because the coefficients are not statistically derived.

1982. He used depths and specific gravities of snow recorded on 44 single and
multi-level flat-roofed buildings between Halifax and Edmonton. Histograms of
normalized maximum snow loads on upper and lower roofs given by him are used

to obtain an estimate of the ground-to-roof conversion factor, C,, from

The histograms include the class frequency as well as the cumulative

frequencies. A distribution for the factor, C, is derived as follows:

for the maximum roof to ground ratio (or ground-to-roof conversion factor,
C,) is obtained for both upper and lower roofs away from drifts. Upper roofs
are either the roofs of the single level flat roofs or the top level of the multi-

level-flat roofs. All other multi-level-roofs are considered to be lower roofs.

(2) The best fit distribution for this data is found to be a normal distribution; with
R-square (coefficient of determination) values of 0.90 and 0.96 respectively for

upper and lower roofs.

(3) As the characteristics of the lower roofs are not given, the category of roofs
according to the NBCC (1990) (C,, = 1.0 or 0.75) is unknown. Therefore, the
upper roof values only are used. The NBCC gives vaiues of C, =0.8, C,, =1.0
or 0.75, C,= 1.0 and C,= 1.0 for an upper flat roof. It has been assumed that
the roofs are exposed to the wind and thus Cy, is taken as 0.75. Using Cy, =

0.75 rather than 1.0 tends to conservative load factors.

From the results summarized in Table 4.10, C;, is taken to have a normal

distribution with a mean of 0.32 and standard deviation of 0.20.
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4.5.3.1 Introduction

The roof snow load, S, is taken as:

[4.17 S =CgzS,+S,

[ =

=Cgyy+S

The two types of roof snow loads that have to be simulated are the

both types the component variables Cg, y, ¥ and S, are established in the previous
sections as distributions with the relevant parameters. To simulate the roof snow
load values Cg, y, y and S, are generated using the simulation procedures given in

Section 2.5 and distribution fitting to S is carried out as given in Section 2.6.

4.5.3.2 Simulation Procedure

The basic steps followed in the simulation of S are:
1. Generate 10,000 sets of randomly selected values each of Cy,, y, Y and S,
2. Calculate the corresponding 10,000 values of S

3. Check the fit of the values of Cg, vy, y and S; against the assumed distributions

If the values (mean, quantiles) change significantly from simulation to
simulation the number of data points generated may be insufficient. Check the
mean against the calculated value of the mean. Check the mean against the

values from the NBCC (1990).

5. Fit different distributions to the generated values of S.
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For the characteristic values of S the distributions are fitted to the upper tail
(above the 95th percentile). For the a.p.t. values of § the distributions are

fitted to all 10,000 points of generated data.

6. Find the best fit distribution and the corresponding statistical parameters.

A program to carry out this procedure is developed in the programming
language of SAS (SAS Institute Inc. 1993). A similar program developed for wind
loads is given in Appendix A.

4.5.3.3 Simulation of Characteristic Roof Snow Load

For characteristic roof snow load, the variables C;, and y have normal

distributions. To obtain the characteristic y the annual maximum ground snow

and extreme value theory the distribution and parameters of the 1 in 30 year
maximum ground snow depth y, the characteristic y, can be found. The 1 in 30
maximum of a Gumbel distribution is also a Gumbel distribution according to
extreme value theory (Castillo 1988). The 1 in 30 year maximum §, is also
obtained using the same procedure as for the characteristic y. The 30 year
maximum snow load is combined with the 30 year maximum rain load as a heavy

snow storm can turn into a rain storm.

In calculating the values of S, it is assumed (as in the NBCC 1990, Section
4.1.7.1.) that S, which is the rain component cannot be larger than the snow
component Cg S,. As in such a case it is assumed that the snow would be washed
away. Therefore, if S, is less than Cy S, , S is taken as Cy, S, plus S, . If S, is
greater than Cy S,, the maximum rain load S, that cDuld be added to the snow

without washing it away is assumed to be equal to C, S,.

The results of the simulations are summarized in Table 4.11. (The reasons for

choosing representative cities and the subsequent deletion of some cities from the
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the distributions used to generate values of C, y, y and S,. In columns (10) and
(11) the mean and standard deviation of the 10,000 values of simulated S are
given. Column (12) gives the number of times when the generated rain component
is greater than the generated snow component (out of 10,000 generations).
Columns (13) to (15) gives the mean value of S calculated using the mean values
of Cyg, y, v and §, in [4.17]. Mean value of C, and y are given in column (2) and
(6) respectively. The S is taken equal to the smaller of Cy, S,+S, and 2Cg S,. The
mean value of y and §; are obtained using the model parameter, u, and inverse

dispersion parameter, o, as follows:

If,
y = annual maximum which has a Gumbel distribution with parameters u and o
y30= 30 year maximum which is the 1 in 30 maximum of y

the mean of y = u, =u, + 0.577/at,

from Simiu (1979)

the mean of y3o= py + In30 / oty = uy + 0.577/cty + In30 / aty

Therefore, using [4.10] mean value of S, s, is given by

[4.18]  ps= pcg x [uy + (0.577 + In30)/aty ] x py + [us, +(0.577 + In30) / atg, ]

Columns (16) to (18) give the values of ground snow load, S, and winter rain
component, S, from the NBCC (1990). S is calculated using [4.17] with Cg = 0.6
from Table 4.10. Columns (19) to (22) summarize the results for the distribution
fittings. The best fit distribution and the corresponding adjusted R-square, obtained
when the data is regressed against the transformed probabilities are given in
columns (19) and (20). The best fit distribution parameters are given in columns
(21) and (22). 'u' is the mode of the distribution with units of kN/m? and o is the
inverse dispersion parameter with units of (k\N/m? )", In columns (23) to (26) the
normalized values are given, e.g., the columns (23) and (24) are the values in
columns (21) and (22) divided by the nominal value in column (18). The mean and
standard deviation values in column (25) and (26) are obtained by using the

parameters in columns (23) and {24).
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4.5.3.4 Simulation of a.p.t. Roof Snow Load

4.5.4

In simulating the values of the a.p.t. roof snow load, S, Cg and y have normal
distributions and y has a uniform or gamma distribution. The a.p.t. rain
component, S,, is neglected as it is very much smaller than the snow component
during the winter period. Therefore, the apt SistakenasCy S,=Cp y v. The
best fit distribution for S (for ail the values generated) is obtained as for the
characteristic values.

The results are summarized in Table 4.12. The a.p.t. values are generally below
20% of the characteristic values and the coefficient of variation of the a.p.t. values
is high (around 1.0), which is expected as the average value of snow load on any

given (winter) day has a high variability.

Summary of Values Used

The normalized a.p.t. and characteristic snow loads each have a Typel

Extreme Value distribution. The parameters, are summarized in Table 4.13.

As seen in Table 4.13 there is a significant difference between the parameters
for the different cities. This is due in part to the fact that the NBCC (1990) ground
snow loads are area weighted averages (Newark et al. 1989). It is not possible to
include this area weighting in the analysis of S because only one station is studied
from a region. The overall average of the bias factor (mean of the normalized
load) for the characteristic snow load is 0.928. The bias factors for Yellowknife
and Vancouver are very different from the overall average. Unlike the majority of
the cities Vancouver has a highly variable marine snow environment and
Yellowknife has an arctic climate. Thus Vancouver and Yellowknife are excluded
from the snow load analyses in succeeding chapters. The reasons for choosing
representative cities and the subsequent deletion of some cities from the analysis is
explained in Section 4.2. The applicability of the results in different locations is

discussed in Section 7.5.7.
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4.6

4.6.1

Wind Loads

Introduction

The wind load is modelled as a variable. Bias factors, coefficients of variation
and types of distributions for the wind load are established at representative
locations in Canada. As the wind load (wind pressure or suction ) is dependent on
any other basic variables, the basic variables are first modelled and then a

simulation is performed to model the wind load.

According to the NBCC (1990), the specified wind pressure or suction due to

wind on part or all of a surface of a building is calculated from
[4.19] p=qC.C;C,

where,

p = the specified external or internal pressure acting statically and in a direction
normal to the surface either as a pressure directed towards the surface or as a
suction directed away from the surface,

q = the reference velocity pressure

C. = the exposure height factor

C, = the dynamic gust response factor

C, = the pressure coefficient or the shape factor, i.e., the external or internal

pressure coefficient

The variations in the wind pressure are also dependent on two other factors,
namely, the directional effect factor, C4, and the modelling uncertainty factor, Cp.
The reference velocity pressure, q, varies with the wind velocity and the density of
air. The basic equation for the wind pressures gives the reference velocity pressure,

q, in terms of the density of air, r, and the reference wind speed, V.

[4.20] q=12rv*=C,V?
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4.6.2

Therefore, the equation of the true wind pressure (when treated as a variable )
is:
=Cyw V> C.Cy C, C4 Cyy

Detailed descriptions of each of these variables follow,

Statistical Description of Variables

4.6.2.1 Background

Allen (1975), Ellingwood et al.(1980) and Davenport (1981) have established
and used most of the wind related variables. A summary of the factors used in their
studies are given in Table 4.14 where some of the values given above were not

given directly but were implied or could be derived from the given data.

In Allen (1975) the 'Cy in q = Cy, V* was taken as a constant value. The
maximum annual wind speed, V.n , was plotted on Extreme Value Type I paper,
for two Canadian locations. On examination of the 30 year velocity pressure (q), a
value of 0.20 for the COV was assumed. Directionality and modelling was
accounted for by applying a reduction of 0.85 in each case to the bias factor of the

wind load. The COV values of directionality and modelling were neglected.

Ellingwood et al. (1980) have taken a return period of 50 years, as used in the
U.S.A. . The directionality effects were accounted for by applying a reduction of
0.85 only to the bias factor. The modelling factor was assumed to be included in
the C., C; and C, factors. The distribution fitting was done in the 90th percentile

and above.

Davenport (1981) developed factors for the wind loading of a tall building
computed according to the detailed method outlined in the NBCC. Explanations

on how these values were obtained are not given in that paper.
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As seen in Table 4.14 the values given in the three papers are similar,

4.6.2.2 Estimation of Variation in Wind Velocity (V)

This is determined by extreme value analysis of meteorological observations of
hourly mean wind speeds. These observations are taken at sites chosen to be
representative of open exposure and adjusted to correspond to an elevation of 10
m above the ground surface. The appropriate value for wind velocity, V, is
chosen in accordance with the annual probabilities of exceedance for the different

structural components given in Table 4.15.

Canadian Climatic Normals (1951-80) published by Environment Canada give

environmental load related variables including wind velocity. These climatic

retrieved from Environment Canada's mainframe computer in Ottawa and is
expensive to obtain and manipulate. The climatic normals give average and
maximum hourly wind speeds for the period of time that data is reported. These
wind speed values from climatic normals are used to model the variable wind

speed by using extreme value theory. To check the accuracy of such an analysis a

Then, the two methods of analysis are compared.

4.6.2.3 Method of Analysis Based on Climatic Normals

The data given in the climatic normals include, for wind, the number of years
of observation, T,; the mean hourly wind speed, V,.; and the maximum hourly
wind speed in T, years, V.. Assuming the hourly wind speed, V, is an
independent variable, V, is taken as the annual maximum hourly wind speed. The
variable V, can also be described as the 1 in ‘n” hour maximum wind speed where

‘n’ is the number of hours in a year, i.e., n is equal to 8766.

The units used are as follows:

Period of observation =T, years



Mean hourly wind speed = Vave km/hr
Maximum hourly wind speed in T, yr. = Vi km/hr
Assuming V is an independent variable
Take V  =Hourly wind speed (km/hr)
Vo = Annual maximum hourly wind speed (km/hr)
The probability density functions of V and V, are shown in Fig. 4.2 and P, is the
probability that V is greater than V,,, .
From Fig. 4.2 (a),

P(V> Vi) =Py
[4.22] P(V<Vn)=1-Ps
From Fig. 4.2(b),
P(Ve> Vinax) = 1 /(To)
[4.23] P(Va<Vm)=1. . . To)
As there are 8766 hours in a year n is equal to 8766 hours.
Using extreme value theory, as V,, is the 1 in n maximum of v,
P(Va < Vi) = P(V < V)" = P(V < Vi)V
substituting using [4.22] and [4.23]
1-1/(T,) = (1 -Py)¥
from which (2ssuming wind velocities in successive hours are uncorrelated)
[4.24] Py =1-[1-1/T,))""
From this equation, as T, is given, P, can be found. Using [4.24] and by assuming
the types of distributions for V and V, the parameters of the two distributions can

be determined.

It is assumed that the distribution of V is lognormal and therefore the distribution

of V;, can be taken as an extreme value Type I (Gumbel).
If the random variable V has a lognormal distribution (Ang and Tang 1984a)

the probability density function of V is

2
1 1{Iinv-»A .
" \/—Z_nc;vexr)[ 2( : )JW‘
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[4.25a] E(V) =exp (A +c%/2)

[425b]  ov  =exp(h+cH2) yeS -1

and the cumulative distribution function of V is

[4.26] Fy(v) =®[(Inv - A)/c]

where ®[x] is used to designate the cumulative distribution function of the
standard normal variate X,

From [4.25a],

[4.27] Ve = exp (A + ¢%/2)
and from [4.22] and [4.26],
[4.28] 1-Pa=®[ (In Vi - A)/c]

ASs Vi, Pa, and Vi, are known quantities A and ¢ can be found from the two
simultaneous equations [4.27] and [4.28].
Using extreme value theory, when V, is the 1 in n maximum of V which has a
cumulative distribution function Fy(v), and V, has a extreme value Type 1
distribution with a mode of u, and an inverse dispersion parameter o, (Ang and
Tang 1984b)
thus from [4.26],

[4.29] ®[(In u,-A)c] =1~ U/n and

n ) 1 (Inun —7\.)2
= —m—————Xp| —— | ———
,—/:2 Tgu, | 2 c .
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From [4.29] and [4.30] u, and o, for the distribution of V, can be found and

then the mean and standard deviation of V,, can be found using extreme value

theory.
[431] Mva= un'*"o-577/a4n
[4.32] ovel = /(6 a2)

In the analysis it is assumed that the 8766 hours are chosen randomly and that
the maximum is chosen as V,. But this is not so because the 8766 consecutive
hours which make up a year are not randomly chosen. The errors introduced by
this are believed to be small based on comparison with hourly wind speeds for
three cities. In writing [4.23] it is assumed that the maximum hourly wind speed in
T, years, Vi, is the modal value of the 1 in T, year maximum hourly wind speed.

This is the best estimate from the available data.

Example - (Summary given in Table 4.16)

From the data given in the climatic normals for Edmonton wind speeds

T, =28 years
Ve =16.7 km/hr
Vimax =71 kn/ hr
Using [4.24]
Pa =1-[1-1/(28)]"™
= 4.1x10°"

Substituting into [4.27] and [4.28]
16.7 =exp (A + ¢*/2)
1-4.1x10%=[ (In71 - A)/c]
solving these equations give
A=2758
¢=0.340

Equation [4.29] gives ®[(Inu, - 2.758)/.340]=1 - 1/8766
which gives u, =55.150 km/hr



Equation [4.30] gives

o= [ 8766/(\/?7? x 0.340 x 55,15) ] exp[-1/2 {(In55.15 - 2.758)/0.340}%]
Oty = 0.209 hr/km

and from [4.31] and [4.32]

u, +0.577 / a,

=55.150 +0.577/0.209

=57.9 km/hr

H va

=p/ (V6 x 0.209)
= 6.1 kmvhr

This analysis is done for all fifteen cities and is summarized in Table 4.16.

The data modelled are the annual maximum hourly wind speeds (V,). The 30
year maximum hourly wind speed, V3, , is found by using extreme value theory. In
this an extreme distribution is estimated and then used to estimate a further
extreme value distribution. Because V, has a Type I extreme value distribution,
V3 would also have a Type I extreme value distribution. The mean (uvso) and

coefficient of variation (Vvao) is obtained from (Simiu 1979);

[4.33] bvio = Hva ( 1+ v/6/7 Vyy In(30))
[4.34] Mvio Vvio = Hva Vva

4.6.2.4 Comparison of Methods of Analysis

To check the accuracy of the analysis given in section 4.6.2.3, three sets of
hourly data are obtained, and analyzed as in section 4.5.2.2. The results of the twe

methods of analysis are compared in Table 4.17.
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The location parameters i.e.; the mean and mode, u, , differ by a maximum of
about 9 %. The dispersion parameters (standard deviation and o, ) differ more but
when both the location and dispersion parameters are used to estimate 10, 30 and
100 year wind pressures the differences in pressures computed by the two methods

become relatively small as shown in Table 4.18 and as discussed subsequently.

Table 4.18 gives, in columns 2 to 4 , values derived using the information given
in the climatic normals using extreme value theory and assuming that the maximum
annual hourly wind speed (V,m) has a Gumbel / Extreme Value Type I distribution.

'q' values are derived from Vo, V3 and Vg0 using g = CyV?. Columns 5 to 7
give values of qio, qs0 and q100 derived from hourly data and columns 8 to 10 give
the same values obtained from the NBCC (1990). In columns 11 to 13, bias
factors for values from climatic normals, i.e.; mean/nominal value from the NBCC,
are given. Columns 14 to 16 give bias factors for values from hourly data analysis.

Columns 17 to 19 give the ratio of bias factors for wind pressures obtained by
dividing those obtained from the climatic normals by those from the hourly
observations for the 10, 30, and 100 year return period winds. This ratio for the

two methods of analysis ranges between 0.87 and 0.98.

Therefore, the somewhat approximate but less expensive analysis of using the
climatic normals to obtain the various velocity values, as given in Table 4.16, is

used.

4.6.2.5 Estimation of Variation in Pressure Calculation Factor (Cy)

From [4.20], Cy is a factor that depends on the air density which in turn
depends on the atmospheric pressure and the air temperature. The atmospheric
pressure is a direct function of the elevation above sea level, but also varies about
the mean with changes in the weather. Some researchers (Allen 1975, Ellingwood

et al. 1980) have considered the variation in C,, o be negligible.
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Variations in air density over Canada and the related values of the C,, factor
were examined by Boyd (1967) where values of C, are given for many cities at
different elevations. Observations made in January and July were used to estimate
the effect of the variation of temperature on density. These observations were used
with the equation for Cy in terms of temperature and pressure given by Boyd to
estimate the location and dispersion parameters of Cy. The distribution of Cy, is
assumed to be normal and the results are given in Table 4.19 . The normalized C,,
is the variable C, divided by the nominal value 50 x 10 given in the NBCC
(1990) when the velocity is in km/hr. The values of C,, given in Table 4.19 are

used to model the wind load.

4.6.2.4 Exposure Height Factor (C.)

The exposure height factor reflects changes in wind speed with height, and also
the effects of variations in the surrounding terrain and topography. Hills can

significantly amplify the wind speeds near the ground.

The parametric values from the existing literature given in Table 4.14 are
similar. This is especially true for the Canadian studies by Allen and Davenport
whose values result in similar parameters for the final wind pressure. Each factor
considered in these studies does not take the same variations into account, but
collectively they do consider the same effects. It is reasonable therefore to take
the estimates for all the factors from one study. The parameters given by Allen
(1975) are used, mainly because the types of distributions and methods of
derivation are explained in detail and more variables are established by him. The
effects or variations taken into account and how they are accounted for are known.

The subsequent study by Davenport (1981) is for tall buildings only and the factor

variabilities are not described.

The values and distribution types for C. used are given in Table 4.20.
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4.6.2.7 Dynamic Gust Response Factor (C, )

The dynamic gust response factor, C,, is intended to take into account the

superimposed dynamic effect of gusts. This factor is defined as:

C; = maximum effect of the loading / mean effect of the loading
The dynamic response includes the action of
(a) random wind gusts acting for short durations (such as 3 seconds) over all or
part of the structure,
(b) fluctuating pressures induced by the wake of the structure, including "vortex
shedding forces", and

(¢) fluctuating forces induced by the motion of the structure itself through the

wind.

These forces act on the external surfaces of the structure as a whole or on
cladding components and may also affect internal surfaces. They may act
longitudinally , laterally or torsionally and further they may be amplified by
resonance of the structure at one or more of its natural frequencies NBCC 1990,

Davenport 1967).

The statistical estimate for C; was taken as given by Allen (1975). The values

used are given in Table 4.20.

4.6.2.8 Shape Factor or Pressure Coefficient (C, )

The pressure coefficient is defined as,

C, = wind induced pressure / velocity pressure at the reference height

Pressures on the surface of the structure vary considerably with the shape,
wind direction and profile of the wind velocity. Pressure coefficients are usually
determined from wind tunnel experiments on small scale models, although in a few

recent instances measurements on full-scale buildings have been used directly.
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The statistical estimates for C,, are taken as given by Allen (1975). The values

used are given in Table 4.20,

4.6.2.9 Directional Effect Factor (Cy )

To assume that the worst wind speed consistently comes from the worst
direction (that is the direction for which the pressure coefficient is highest) is
clearly conservative. It is apparent that the alignment of the peak pressure
coefficient contour with the direction of the prevailing winds has a large influence
on the risk. If the peak pressure coefficient aligns with a direction of relatively

weak winds, the reduction can easily reach a factor of 2 (Davenport 1983).

The statistical estimates for C4 are taken as given by Allen ( 1975). The values

used are given in Table 4.20,

4.6.2.10 Modelling Uncertainty Factor (Cp)

The factor Cr, accounts for the overall predictive accuracy of wind tunnel

(Davenport 1983).

The errors in wind tunnel modelling can be directly assessed from full scale to

the height or number of neighboring buildings.

The statistical estimates for Cy, are taken as given by Allen (1975). The values

used are given in Table 4.20.

4.6.2.11 Summary of Statistical Description of Variables

A summary of the statistical descriptions of the factors or variables used in the -

simulation of the wind load is given in Table 4.21. Columns 2 to 5 give the
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parameters of Cy and the annual maximum velocity for each city. Using extreme
value theory the 10, 30 and 100 year maximum velocity values are calculated,
These values are combined to give q and are normalized by dividing by the nominal
values from the NBCC (1990) as given in columns 8 to 10. The variable Vg is the
daily maximum wind speed modelled by a Gumbel distribution. These values are
estimated by finding the ratio of the annual maximum to daily maximum from the
hourly data for Edmonton, Vancouver and Toronto. Both the annual maximum
and the daily maximum are found to be fitted best by a Gumbel distribution. This
ratio is then applied to the annual maximum values given in columns 4 and 5 to
obtain the daily maximum values given in columns 6 and 7. Normalized values of
the other factors are given in the remainder of the Table. As Cn and C, are taken

as constants (see Table 4.20) they are not shown in Table 4.21.

4.6.3 _Simulation of Wind Load Distribution

4.6.3.1 Introduction
From [4.21]
p=CuwV*C.C, CygCyCn
when normalized with respect to the NBCC (1990) values, the normalized

pressure is (Cy V?) (C. C, C; Cq4 Cn) / g . This expression is used in the

simulation of the wind load (pressure), p.

The three characteristic wind loads are the 10, 30 and 100 year maximum wind
loads. The three companion loads that have to be simulated are the daily, 2 year
and 8 year maximum wind loads, selected because, as explained in Chapter 3, other
potential principal loads have these holding time. The characteristic and
companion values are normalized with respect to the specified loads from the

NBCC (1990).
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4.6.3.2 Simulation Procedure

The generation of variables and simulation is done according to the procedure
outlined in Sections 2.5 and 4.5.3.2 (Computer program given in Appendix A).

The summary of the values used is given in Table 4.21,

4.6.3.3 Results of Simulation

4.6.4

Results of the simulations for characteristic values are given in Table 4.22,
Results for po, pso and pygo , i.e. the simulated values of the mean and standard
deviation are given in columns 2 to 7. Mean values of pio, pso and pyoo are
calculated as a check for the simulated values. These are given in columns 8 to 10
and the values are virtually identical to those obtained from the simulations. Next
different distributions are fitted to the simulated values and the best fit distributions

and their parameters are summarized in columns 11 to 22. These values are used.

Results of the simulations for companion values are given in Table 4.23. The
daily, 2 year and 8 year maximums (pq, p2 and pg respectively) are simulated and
the simulated values of the mean and standard deviation are given in columns 2 to
7. Mean values of pq, p; and ps are calculated as a check for the simulated values.
These are given in columns 8 to 10. These values are almost equal to the values
obtained from the simulations as given in columns 2, 4 and 6. Next different
distributions are fitted to the simulated values and the best fit distributions and

their L arameters are summarized in columns 11 to 22. These values are used.

Summary of Values Used

The normalized companion and characteristic values of wind loads have Type
I Extreme Value distributions except that the daily maximum, py, has a lognormal
distribution. The statistical parameters of these loads, used here are summarized in

Table 4.24.
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Table 4.24 shows a significant difference between the parameters for the
different cities. The overall average of the bias factor (mean of the normalized
load) for the p3o is 0.731. The bias factors for Kelowna, Yellowknife and Regina
fell outside of the range of 1  0.33 times the overall average and they are not
considered in the calibration work done in the next chapters. This problem is

discussed in Section 7.5.7.

Load due to Earthquakes

Introduction

The philosophy of seismic design does not lend itself well to the development
of a material-independent load criterion, and the problem of how earthquake loads
should be treated in load combinations is still unresolved (Ellingwood et al. 1980).
New approaches to probabilistic seismic design have been studied in Canada by
Maes (1986a,b) and Heidebrecht et al. (1983). Maes (1986a) developed a seismic
design approach for use in the CSA code for fixed offshore structures (CSA-S471)
. The NBCC (1990) has adopted the probabilistic estimates by Heidebrecht et al.
(1983) for use in defining seismic forces. As it is not within the scope of this study
to change the definitions and formulations of the loads defined in the NRCC, the
seismic forces defined in the NBCC (1990) are used.

Lateral load effects due to seismic activity are determined for conventional
buildings using the equations given in the NBCC (1990):
[4.35] V=(V/R)U
where,
V = minimum design base shear
V. = equivalent lateral seismic force representing elastic response
R = force modification factor

U =0.61s a calibration factor and,
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[4.36] Ve=vSIFW
where,
v = zonal velocity ratio
S = seismic response factor
I =importance factor
F = foundation factor

W = weight of structure

forces. The uncertainty in the base shear, V, is dominated by that of the zonal

velocity ratio, v.

In the formulation for the NBCC (1990) seismic provisions, only the zonal
velocity ratio, v, is specified explicitly, whereas the zonal acceleration ratio, a, is
used implicitly via the seismic response factor, S. The zonal velocity ratio, v, is
derived from the probabilistic study of ground motions in the 1 second period
range, normalized to a spectral velocity of 1.0 m/s, Similarly, a zonal acceleration
ratio, a, is obtained from probabilistic evaluation of the ground motions in the 0.2

second period range, normalized to 1.0 g (Heidebrecht et al. 1983).

4.7.2 Statistical Description of Variables

4.7.2.1 Background

Ellingwood et al. (1980) have estimated the earthquake load by describing the

base shear in terms of the 50-year maximum peak ground acceleration, A. This

distribution. They also established a load factor to be used with the above

definition of the earthquake load.
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In a calibration study for the CSA code for fixed offshore structures, Maes
(1986a) explains the need for the specified exceedance probability design format.
In this format no partial factor is used for the earthquake load, but, instead, the
design load is directly specified at a given probability of exceedance. This
specified exceedance probability design format is used for earthquake load

combinations as described in Section 3.2.5.

In 1990, the NBCC effectively adopted the specified exceedance probability
design format in defining earthquake loads. The probability of exceedance of the
seismic ground motion parameters was changed to 10% in 50 years ( an annual
probability of exceedance of 0.0021) from the previous value of 0.01 per annum

used in earlier codes based on the probability factor design format.

4.7.2.2 Zonal Velocity Ratio, v

When using [4.35] and [4.36] to estimate the minimum base shear, V, the zonal
velocity, v, dominates the uncertainty in the base shear. The zonal velocity ratio, v,
is derived from the probabilistic study of Peak Horizontal Ground Velocity, PHV,
in the 1 second period range, normalized to a spectral velocity of 1.0 m/s. The

specified exceedance level for PHV is 10% in 50 years.

Figure 4.3 is used to explain the development of the distribution of the peak
horizontal ground velocity that has a 10% chance of exceedance in a 50 year
building life. Table J-2 of the Commentary J of the NBCC (1990) gives three
points on the tail of the annual maximum horizontal ground velocity. By fitting a
probability distribution to this estimate of the tail, the distribution of the annual
maximum horizontal ground velocity is obtained. Figure 4.3(a) shows the three
points and the resulting distribution for Vancouver. By using extreme value
theory, the 50 year maximum horizontal ground velocity, xso, is derived from this
annual maximum distribution and is shown in Fig. 4.3 (b). The probability
distribution of In(xso) is given in Fig. 4.3(c) and it is a Type I distribution. Using

extreme value theory again the 1 in 10 maximum value of In(xs0) is obtained and is
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shown as a Type I distribution in Fig. 4.3(d). Finally the Type I distribution of Fig,
4.3 (d) is transformed into the Type II distribution of Fig. 4.3 (e) which gives the
peak horizontal ground velocity with a 10% probability of exceedance in a 50 year
life.

A sample calculation of this analysis is given below for the city of Vancouver

and is also given in Table 4.25.

Table J-2 of the NBCC (1990) Commentary J gives the following values of PHV
for Vancouver:
for a probability of exceedance = 0.01 PHV=0.077 m/s
= 0.005 PHV =012 m/s
= 0.0021 PHV =0.21 m/s
shown in Fig, 4.3.
From the three points on the tail of the distribution in Fig. 4.3(a)
@( (In(0.21)-A)/c) = 1-0.0021 = 0.9979
[4.37] (In(0.21)-A)/c =2.86
similarly for the other two points
[4.38] (In(0.12)-A)/g =2.575
[4.39] (In(0.077)-A)/c =2.33
Solving [4.37], [4.38] and [4.39] the estimates are
A=-691
c=1.87
note: E(X) = exp (A) = 0.001

When the variable X has a lognormal distribution the n® largest value of X, X,,
would converge to the Type II asymptotic form with the following parameters
(Ang and Tang 1984b, pp 218)

[4.40] va=exp(c y/2Inn -¢(InInn+ndn)/(242Inn )+ 1)
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[4.41] k= 2Inn /¢

Using these equations and n equal to 50 the following parameters for the
distribution of Y (or Xso) as shown in Fig. 4.3 (b) are obtained
vn=0.050
k,=1.499
When the variable Y has a Type II asymptotic distribution then In Y has a Type I
asymptotic distribution with the following parameters (Ang and Tang 1984b, pp
217)
[4.42] s = In (vy)
[4.43] o =ky
Usiﬁg these equations
u, =-2.991
o, =1.499
The mean and standard deviation of In(Y) shown in Fig. 4.3(c) can be found .
[4.44] Ha = Up+0.577 / On
[4.45] o= mn/(6a,’) also,
[4.46] COV,=0n/ ln

Since In(Y) has a Type I extreme value distribution, the 1 in 10 maximum of
In(Y) would also have a Type I extreme value distribution. The mean (piy,) and
coefficient of variation (COV,,) can be obtained from (Simiu 1979):

[4.47) o = My ( 1+ V6 /n COV, In(10))
[4.48] Hn COVp = U COV, or On = G,
Using [4.44] to [4.48]

Un = -2.606

o, = 0.856

COV,=-0.328

M = -1.070

O = 0.856
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Using [4.44] and [4.45] the parameters of In (Z) depicted in Fig. 4.3(d) are

Upy = -1.455

Olnn= 1.499
Using [4.42] and [4.43] the parameters of Z which is the zonal velocity ratio with a
10% probability of exceedance in 50 years, as shown in Fig. 4.3(e), are

Van = 0.233

knn = 1.499

Table 4.25 gives values for Toronto and St.John's as well for which values are

given in Table J-2.

L.7.3__ Summary of Values Used

The specified exceedance probability factor format is used with earthquake
load combinations therefore the load factor on the earthquake is always 1.0. There
are many factors involved in establishing earthquake loads but they do not have to
be established to develop the relevant load factors. Because loads are specified
differently in this format, v is established as an example in this study. Table 4.26
gives the statistical descriptions of v, which has a Type II extreme value
distribution, The other parameters in [4.35] and [4.36] depend on many factors
such as the foundation, the soil conditions, the dead weight of the structure,
ductility of the structure and so on, The variabilities in these parameters have not

been established.



Table 4.1 - Literature review for dead load parameters

Reference & =E(D)/D, COVp

Allen (1976) 1.00 0.10
Ellingwood (1978) 1.00 | 0.10
Ellingwood et.al.(1980) 1.05 7 D 10 )
Ellingwood et.al.(1980) 1.03 0.093

(for concrete structures)

Ravindra and Galambos 1.00 0.08
(1978)

Lind (1976) 1.05 0.09

76



Table 4.2 - Live load survey results for equations (4.4) and (4.5)

Parameter UK. data U.S.A. data Weighted average of
surveys on areas greater
than 18.6 m*
m (kN/m%) | 0.565 0.555 0.566
(Peir & Cornell, | (Ellingwood & (Lai, 1981)
1973) Culver, 1977)
o® (kN¥m*) | 0.0466 0.0601 0.044
(Ellingwood &
(Lai, 1981) Culver, 1977) (Lai, 1981)
o%(kN*/m?) | 1.782 1.407 1.460
(McGuire & (Ellingwood & {(Lai, 1981)
Cornell, 1974) Culver, 1977)

Table 4.3 - Estimated expressions for the parameters of Ly

McGuire & Cornell (1974) Ellingwood & Culver
using UK. data (1977) using U.S A. data
E(Lms) [N’ 1 0.714 +36.548/ A, 0.895 +7.588/.,/A,
6" (Lrax) [KNm*] | 0.0005 + .719/A; 0.033 + 4.025/A;
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Table 4.4- Current definitions of ground snow load

Canada (Newark et al. 1989)

USA (Ellingwood and
Redfield 1983)

extreme ground snow load =

S=yy

Type I extreme value /
Gumbel distribution - for be*h
S,and y, asy is taken as a

constant,

Lognormal distribution

(2) Mean recurrence interval | 30 yrs 50 yrs

(MRI)

(3) Probability of exceedance | 0.033 0.02

in any given year

(4) Distribution of lifetime Type I extreme value / Type I extreme value /
extreme ground snow load Gumbel distribution Gumbel distribution
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Table 4.7 - Average

s€ason

al snow density by region based on type of forest

Region ) Regional | p (kg/m®) o (kg/m®) T cov i
number

A = Acadian 1 220 7 50 0.23
AG = Aspen Grove ) 2 Z;EO 7407 70.18
B = Boreal 3 190 60 0.32 7
C= CBS?St 4 430 7 25 . 0.06 )
CL = Columbia 5 360 35 7 0.10 7
GL = Great Lakes 6 ;272@7 . 60 ) 0.27 )
M = Montane 7 7 260 .:257 0.10
P = Prairie ) 8 21(37 40 0.19

SA = Subalpine 9 360 30 ) 0.08
T = Tundra 7 10 300 ) 80 0.27
TA = Taiga ) 11 200 80 0.40
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Table 4.8 - Snow density

Unit weight (kN/m’)

‘orest
Location _region u c
Vancouver _SA | 353 0.29
Kelowna 1 M | 255 0.25

g2l

Yellowknife TA | 196 | 078
Edmonton_ _AG | 216 | 039
Regina _ P 206 | 039

Saskatoon , AG | 216 | 039
Winnipeg AG | 216 | 039

Thunder Bay AG | 2.16 0.39
Sault Ste Marie GL | 216 | 059

Toronto GL | 216 | 059
Montreal GL | 216 | 059
Fredricton A | 216 | 049
Halifax A | 216 | 049
Charlottetown A 216 | 049
St.John's A 2.16 0.49

Table 4.9 - Annual maximum winter rain load o .
Rain (mm) Rain load (KN/m?)
u o R-square |F-statistic u | a

Vancouver | 3288]  008]  096]  1168] 0.323] 8.134

Kelowna | 607 0.34]  0.96] 523]  0.059] 34.495)
Yellowknife _ _-0.12 0.81]  0.65 86| -0.001| 82.571
Edmonton _

- 1.43 0.55] 098] 2179 0.014] 55.668
Regina ~0.57 0.34]  0.85 525 0.006] 34.152
Saskatoon I o 047 078]  338] 0.001] 48.287
Winnipeg |  167]  0.15 0.82 240  0.016] 15.144

Thunder Bay _ 2 638] 012 097 1479]  0.063] 12.297

Sault SteMarie | 14.16]  0.13] 098]  1240[ 0.139] 12.896
Toronto 20.64 0.14 0.99] 19911 0.202] 14.031

Montreal 2012 0.12] 099 12259] 0.197] 12.524
Fredricton 2579 0.09 0.97 2958  0.253] 9.637

Halifax | 43.44 0.07 0.95 732]  0.426]  6.780

Charlottetown | 2094]  0.10] 098]  3687] 0.205] 9.855
Stlohns 33.60]  007]  099]  4615] 0330 7.464
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Table 4.10 - Ground to roof conversion factor

1690 NBCC value for C;

Upper Roof Lower roof
Distribution of C, (R-square) | Normal (0.90) Normal (0.96)
u for Cy 0317 0.304
o for Cg; 0.200 0.235
0.6 cannot be sure
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Table 4.14 - Statistical data for wind load factors

Varia Allen (1975) Ellingwood et al. Davenport (1981)
ble (1980)

) COV | Distn |8 COV [ Distn | § COV | Distn

Vi | Table given TypI | Table given

Cu |* * ' 10 005 |* * * *

Jao 1.1 0.20 TypI * * * 1.0 0.25 *

Cp 1.0 0.10 | * 1.0 0.12 |* 1.0 0.10 |*

C, 1.0 0.10 | * 1.0 011 [* 1.0 005 |*

Cq 085 ]0.0 * 085 |00 * 08 000 |*

poy [0.80 | 026 |Typl |0.78 [037 | Typls|085 |029 |*

paity | 0.08 | 1.0 lgnm [0.01 [0.07 |TypI |* * *

where, 0 = bias coefficient = COV = Coefficient of Variation
Distn = Distribution Typl = Extreme Value Type I
* = Not mentioned Ignm = Lognormal distribution
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Table 4.15 - Probability of exceedance of V, for different elements

For the design of : Probability of exceedance in any one
year

Cladding 0.10

Structural members for deflection and | 0.10

vibration

Structural members for strength 0.033

Structural members for strength for 0.010

post-disaster buildings
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Table 4.20 - Estimates of wind load factors common to all cities

) COV | Distribution

C. 1.0 0.08 | Normal

of 0.85 0.0 Constant

Can 0.85 0.0 Constant
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Table 4.26 - Summary of zonal velocity parameters
Normalized values

Location \4 k ominal \s k

Vancouver 0.23 1.50] 0.20 1.17 10.30
Toronto 0.04 1.50] 0.05 0.86 0.07
St.John's 0.06 1.08] 0.05 1.24 0.05
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(a) Sustained live load

load

time

(b) Transient live load

Total
load I

(c) Total liveload

Figure 4.1 - Model of live load
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probability

density R
' V>V _)=P,

P(V<V,)= 1-P,

‘hu
-

Hourly wind speed, V
(a) Probability density function of hourly wind speed, V

probability

, P(V,>V, )=1/T,
density

P(V,<V,)=1-1/T,

- —\f e ™
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CHAPTER 5

RESISTANCE DISTRIBUTIONS AND PARAMETER VALUES

Introduction

As an initial step in the calculation of resistance factors, it is necessary to study
the variability of the strength of reinforced concrete members in flexure, shear, and
combined axial force and flexure. The true strength of a reinforced concrete
member differs from the calculated or “nominal resistance”. This is due to
variations in the basic variables such as the material strengths and dimensions of
the member, as well as the uncertainties inherent in the equations used to compute
the member strength. The variability of these basic variables have been established

by other researchers.

Section 5.2 of this chapter documents these basic resistance variables.
Simulation methods used to calculate the member resistances are given in Section
5.3. Finally, Section 5.4 summarizes the results of simulations performed using the

basic variables.

The terms ‘specified’, ‘nominal’ and ‘true’ variable used in referring to the load

and resistance are explained in Section 6.1.

Basic Variables

The true strength of reinforced concrete members depends on the variability of

the basic variables that affect the strength. These basic variables are the properties
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Properties of Concrete

5.2.1.1 Concrete Strength in Compression

Bartlett and MacGregor (1994) have established a relationship between the
compressive strength of concrete in a structure and the cylinder strength, both
tested at a standard rate of loading, assumed to be 35 psi/sec (0.241 MPa/sec). In
their study, the relationship between the specified strength of concrete, f;', and the
corresponding compressive strength in an element or structure, fi, is described

[5.1] fess =F Fo f)
Factor F represents the ratio of the average strength of standard cylinder

provided will meet specifications, the concrete producer typically ensures that F,
exceeds 1.0. Factor F; is the ratio of the average in-situ strength to the average
strength of 28 day old standard cylinder specimens, and depends on the age and

height of the element and on the quality of curing provided.

For conventional concretes the mean value of the product of F; F, for cast-in-
place and non-steam-cured pre-cast construction is described by a lognormal
distribution. Cast-in-place concrete has a mean of 1.2 for shallow elements and
1.3 for tall elements (elements greater than 0.45 m high). For non-steam-cured
precast construction the mean values are roughly 6% less, i.e., 1.13 and 1.23 for
shallow and tall elements respectively. This mean value of the product of F; F
has a coefficient of variation (COV) of 18.6% for cast-in-place construction and
15% for non-steam-cured precast construction. The COV due to in-situ strength
variation throughout the structure (i.e., the within structure variation) is 0.130 for
cast-in-place and 0.103 for precast construction. Thus the overall COV of the in-

situ strength of concrete, fo, for a cast-in-place structure composed of many
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members and cast from many batches, is 0.227 as shown in Table 5.1. Similarly

the overall COV of the in-situ strength of concrete in precast units is 0.182,

These values for the mean and COV of f.u3s derived by Bartlett and
MacGregor (1994) are augmented by the rg factor given by Mirza et al. (1979) to
account for a loading rate, R, that is different than the standard 35 psi/sec (0.241

MPa/sec). The in-situ concrete strength in compression was given as:

[5.2] festiR = fe' Toreal Tin-situ TR

where

fewr = in-situ concrete compressive strength loaded at a rate of R psi/sec

Teest = random variable relating real cylinder strength to design compressive
strength

Tinsine = random variable relating in-situ strength to real cylinder strength

The mean in-situ concrete strength in compression is given by:

[5.3] four = Fostr3s0.89(1+0.08 log R)

where R = loading rate in psi/sec

Mirza et al. (1979) found the variation in f.yx due to the loading rate in a

structure to be negligible therefore it is neglected in this study.

The terms F, and F; used by Bartlett and MacGregor (1994) are equivalent to

the terms rerey and rinsin. Therefore, using [5.3] and substituting for f__,; from
[5.1],

[5.4] four =F Fy £ 0.89(1+0.08 log R)
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This equation is used to find the mean value of in-situ concrete strength and
the results are given in Table 5.2(2) and 5.2(b) for shallow and tall members
respectively. The loading rate R, in the structure, used in this analysis is f.'/3600
MPa/sec corresponding to a one hour loading to failure. The variation due to the
loading rate is negligible (Mirza et al. 1979) therefore the coefficient of variation
given by Bartlett and MacGregor (1994) remains the same.

It should be mentioned that in reinforced concrete design the equivalent stress
in the concrete stress block is taken as 0.85 f.' before 1994 and as o, f.' in CSA
A23.3-94 where a; equal to 0.85 - 0.0015 £’ but not less than 0.67. This, at
least in part, takes the loading rate into consideration. This a; factor is used in the
calculation of nominal resistance to take the loading rate into account. But in the
calculation of true random concrete strength the variable values developed herein

are used and the loading rate is accounted for by the ry factor.
5.2.1.2 Concrete Strength in Tension and Modulus of Elasticity

Mirza et al. (1979) concluded that the probability model of the splitting tensile
strength of concrete in a structure can be described with a normal distribution with

mean value and coefficient of variation calculated from:

[5.5] s = 64 [Fuss| - [0.96 (14011 logR)] x 6895x 10 MPa
V2
[5.6] Vasr = -22—"—& +013%2 >V2 o

where Vur is the coefficient of variation of f.uz. As Vg is assumed to be

negligible VA, r = Viuss.
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5.2.2

Similarly, based on Mirza et al. (1979), the probability model of the strength of
in-situ concrete in flexural tension is assumed to follow a normal distribution with

the mean and coefficient of variation calculated from:

[5.7] Frur =83[Fonss] * [096 (14011 x logR)] x 689510 MPa
2 VastiR | nna2 = v2
[5.8] VR = %{E +0.20° =2 Vegur

The distribution for initial tangent modulus of elasticity of /n-sifu concrete was
assumed to be a normal distribution. The mean and coefficient of variation are

given by:

[5.9] Eqpr = 60,400 [f,0s]" (116-008 x logt) x 6895 x 107 MPa

2 VAR | 102
[5.10] vcim=-—°%+oées

where t = loading duration in seconds

These equations are used with f,.;;and V2_,; estimates given by Bartlett and
MacGregor (1994) to obtain the results given in Table 5.2(a) and 5.2(b) for

shallow and tall members respectively.

Properties of Reinforcement

Mirza and MacGregor (1979b) analyzed data for the mechanical properties of
reinforcement bars from 273 mill tests. They found that the data was positively
skewed and was in good agreement with a shifted lognormal distribution in the
lower tail and mid regions. They also found that the beta distribution fitted the
whole range of data. They estimated that the difference between the mill test yield
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distributions and parameters they established were for bars that were manufactured

according to imperial units, having yield strengths of 60 ksi (413 MPa).

More recent data from quality control tests by Canadian steel manufacturers
was investigated by Nessim et al. (1993) for a steel grade of 400 MPa and bar
sizes between 20M and 35M. They concluded that the bar size does not have a
significant influence on either the mean or the coefficient of variation of the yield
strength. The mill test yield strength for grade 400 steel was found to have a mean
value of 470 MPa and a COV of 0.06. The yield strength was defined as the yield
force divided by the nominal area, and therefore the variability of the yield force
combines variabilities of both the yield strength and the cross-sectional area. As
loading rate effects were neglected by Nessim et al. (1993), the static yield
strength was not calculated. In this study loading rates are taken into account and

therefore the mean of 470 MPa is adjusted by subtracting the difference of 28 MPa

MacGregor (1979b). Therefore, the mean of the static yield is estimated by 470 -
28 = 442 MPa and the COV is 0.06 (i.e., a standard deviation of 26.5 MPa) for the

current manufacturing practices.

Many types of distributions have been used to describe the yield strength.
Nessim et al. (1993) used a lognormal distribution to describe the steel yield
strength. MacGregor (1976) gives a fitting of yield strength data produced in
Sweden as an example and in this a positively shifted lognormal distribution was
used. On looking at yield strength data a positive skewness and a certain minimum
limit is evident. This is expected since quality control procedures weed out under-
strength heats. Therefore, a beta or shifted lognormal distribution would be most
appropriate in describing the yield strength. A beta distribution fit the whole
distribution in Mirza and MacGregor’s (1979b) analysis. The shifted lognormal
distribution gave a good fit in the lower tail region which is the critical region.

Cansequéntlyg a shifted lognormal is used to describe the static yield strength.
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The shift in the static yield strength is equal to the minimum static yield
strength that is possible in reinforcement used in structures. In Canada billet steel
bars for concrete reinforcement are manufactured and controlled by CSA Standard
G30.18 which states that Grade 400 steel has to have a minimum yield strength of
400 MPa. The standard also states that (depending on the size of the heat) at least
one tension test shall be made of each bar size rolled from a heat. Therefore bars
that are marketed have been tested and found to have a minimum dynamic yield
strength of 400 MPa. But there is a strength variation within the bars
manufactured from one heat. Therefore the minimum yield strength has a
variability of its own. The minimum dynamic yield strength is assumed to have a
mean of 400 MPa and the minimum static yield strength a mean of 400 - 28 MPa.
The coefficient of variation within a bar size from the same source is estimated to
be 1- 4 % (Mirza and MacGregor 1979b). It is assumed that from the same heat
the COV is 1%. Therefore the minimum static yield strength has a COV of 1%
which corresponds to a standard deviation of 0.01 x (400 -28) = 3.72 MPa.

Assuming the minimum static yield has a normal distribution and that the minimum

value lies two standard deviations below the mean, the minimum of the minimum
static yield strength (or shift) is estimated as, Ays = (400 - 28) - 2 x 3.72 =365
MPa. These values are summarized in Table 5.3. This is the lowest static yield

strength allowed in the distribution.

The probability distribution of modulus of elasticity of reinforcing steel is
considered normal with parameters given in Table 5.3 (Mirza and MacGregor

1979b).

Because the reinforcement in a concrete member must be some combination of
whole bars, the area of steel actually provided may differ from the calculated. This
effect was considered to have a.modiﬁed (shifted) lognormal distribution having a
mean of 1.01, a COV of 0.04 and a modification constant (shift) of 0.91 below
which the modified lognormal distribution equals zero (Mirza and MacGregor
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1982). It is recognized that their study used imperial bar sizes and the SI bar sizes

would give slightly different values.

_Dimensions

sections are best characterized by the means and standard deviations of the
differences as shown in Table 5.3 (Mirza and MacGregor 1979a). Since the
dimensional variations in beams are roughly independent of beam size, the COV
decreases as the member size increases. This was not strictly the case for column

dimensions, which were found to be somewhat size-dependent.

i
W

quantify the strength. Test data from two studies (Hognestad 1951, and Ibrahim
1994) is analyzed to obtain the model error and check calculations. However, due
to the few points of applicable data the variability of the model error could not be
adequately estimated. Therefore, the model error is calculated according to Mirza
and MacGregor (1982). Because the theoretical models used to estimate beam and
beam-column action and shear are similar in both their study and this study, their
model errors are assumed to be applicable to this study as well. To determine the
model error the accurate calculation procedure was compared with tests to get the

mean and COV of the ratio of test strength to calculated strength.

The values of model error used are given in Table 5.4.

Calculation of Member Resistance

A method of obtaining the statistics of the unfactored member resistance, R,
(i.e., the ‘true’ member resistance) and the nominal factored resistance, R,; (i.e.,
the factored resistance calculated using nominal or specified values as opposed to
using true values) is established. The statistics of the unfactored ‘true’ member
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resistance represent the real life values. The nominal factored resistance represents
the factored resistance calculated by the design engineer. The results of these

analyses are presented in Section 5.4.
The member resistances are obtained as follows:

1. Representative cross sections and loading ratios are selected for each type of

structural action, viz., flexure, shear and combined flexure and axial load.

2. For each structural action a relatively accurate method of calculating member
resistance is selected. In general these methods are more accurate and
comprehensive than design procedures. The model error explained in Section
5.2.4 is used to account for the bias and variability in the theoretical

computational method.
3. For each representative cross section the following calculations are performed:
(a) The nominal factored resistance is calculated using the nominal material

strengths, nominal dimensions, material resistance factors and the calculation

procedure used in design i.e., CSA A23.3-M84 or CSA A23.3-94 as appropriate.
(b) A Monte Carlo simulation is used to generate the probability distribution of the
unfactored ‘true’ resistance. This involved the following :

(i) A set of material strengths and dimensions is generated randomly from the
statistical distributions of each basic variable. (Theoretical details of this
procedure are given in section 2.5.)

(ii) These values are used with the accurate calculation procedure to estimate the
theoretical unfactored capacity of the member.

resistance values for the particular cross section. The number of simulations used
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is selected by testing how many simulations are necessary to give repeatable

results,

(iv) Different types of distributions are fitted to the sample of unfactored resistance
values and the best fit distribution is chosen. The distributions are fitted to the
lower tail of the 5000 point sample. The tail is taken to be below the 10th
percentile, so that the fitted tail has 500 points (Theoretical details are explained in
Section 2.6).

(v) Checks are performed by deterministic direct calculation of the means,
maximums and minimums. In some instances theoretical predictions are compared

with test results.

Beam and Beam Column Action

The SAS statistical package (SAS Institute Inc., 1993) is used to develop a
program which simulates the resistance and fits distributions to the simulated

values.

For a given axial load the flexural capacity of a reinforced concrete member is
computed by deriving the moment-curvature diagram for the cross section. The
maximum moment capacity for the particular axial load is then taken as the highest
point on the moment-curvature diagram. This approach allowed either
compression or tension failure to be detected in concrete members without a
change in calculation procedures or equations. For beams, the axial load is set
equal to zero. For columns, a sufficient number of axial load levels are considered
to develop an interaction diagram that is used to determine the strengths at various

eccentricity ratios.

The calculations are based on the following assumptions:

(1) The strains are assumed to be proportional to the distance from the neutral
axis.
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(2) The concrete and steel stresses are calculated as functions of the strains.

(3) The concrete stresses in compression are computed using the stress strain
curve given by Thorenfeldt et al. (1987) . Thorenfeldt et al. found that the stress
strain diagrams for concretes of all strength classes (including strength classes with
characteristic cube strength up to 105 MPa) can be approximated by curves of the

same type, given by the equation:

[5.11] fex - N(ecx /€9)
fom n-1+ (ecx / eo)nk
where,
fix = stress

f.m = maximum stress on the stress-strain curve
€x = Strain

€, = strain at maximum stress f.n,

_ femn
Ec (n - l)
E. = initial tangent modulus (MPa)
n =08+ _f;Tm (MPa)

k =10for 2% < 10
€o

= O.67+f':—m but not less than 1.0 for =X > 10
62 €

These curves have shapes similar to the curves recorded when testing at

constant strain rate, including the descending part.

The maximum stress on the stress-strain curve, .., for concrete in the member
was found to be 0.85 times the cylinder strength by Hognestad (1951). Grant
(1976) also found that using 0.85 to 0.87 times cylinder strength for the

maximum stress on the stress-strain diagram gave a good fit to data. When
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calculations were checked against test data, f.n, = 0.85 fﬁﬁg is found to give a

good fit. Therefore this value is used to define the curve.
(4) No allowance is made for shrinkage and creep.

(5) For concrete in tension a linear brittle stress-strain diagram with the tensile

strain at rupture equal to f/Ecinr is assumed.

(6) An elastic-plastic stress-strain curve is assumed for reinforcing bars. Mirza and
MacGregor (1982) found that of all the assumptions made, this had the greatest
effect on the accuracy of the solutions for reinforced concrete members. Their
calculations suggest that inclusion of strain hardening would increase thexultimate
moment by an amount ranging from less than 5% for steel ratios representative of
beams to as much as 20% for very lightly reinforced slabs. Other researchers
(Grant 1976, Mirza and MacGregor 1982, Ellingwood et al. 1980) have ignored
the effect of strain hardening because the deformations required to utilize strain
hardening are very large and are accompanied by a risk of failure due to bond or
shear before a complete hinge system develops. An exception to this is thin, lightly
reinforced slabs in which large redistribution of moments is possible. Ellingwood
et al. (1980) showed that the effect of the increase in mean strength due to strain
hardening on the resistance factor, ¢, in such members, is offset by the increased
variability resulting from the large variability of the effective depth in shallow

members.

(7) According to the CSA A23.3 continuous flexural members have to be desig:ned
for pattern loading. Even though some redistribution is allowed this redistribution
in beams depends on many variables and is difficult to assess in probabilistic terms.
A beam is assumed to fail if one section reaches its moment capacity. This would
be the case for statically determinate members. As members are often statically

indeterminate this assumption adds conservatism to the factors developed.
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Shear in Beams

The shear strength regression equation developed by Zsutty (1971) is used to

estimate the true shear resistance in beams.

3
[5.12] V=bd [2.17(& o d) + ‘;v y,}

a s
where, b = web width
d = depth of beam
p = longitudinal tension reinforcement ratio
a = shear span
A, = area of one vertical stirrup
s = stirrup spacing

f,» = yield strength of stirrups

Zsutty derived this equation for beams in the literature that have A.f},/bs
greater than 60psi (0.414 MPa), s/d smaller than 0.5 and a/d greater than 2.5.
Previously, he derived an equation having only the first term in the square brackets

for beams without stirrups and a/d greater than 2.5.

5.4 Resistance Statistics
54.1 Beams

The analysis explained in Section 5.3.1 is performed on the beams given in
Table 5.5. The specified material strengths are taken as f; equal to 400 MPa and
f.” equal to 35 MPa.

The following design rules and material resistance factors obtained from CSA -
A23.3-M84 and 94 are used together with the nominal values of f; and £’ to
calculate the factored moment resistance (M.). The calibration of Br is based on

the 1984 code since there has been a decade of successful performance of designs
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based on this code. However, load and resistance factors developed are applicable

to the 1994 code.

[5.13] My =6, A, (d - 8/2)
A T
[5.14] a= _dli__s__y_
apdc fe b
where

oy =0.85 according to A23.3-M84

[5.15] o) =085-0.0015 f{ 20.67 according to A23.3-94

These calculated M, valu'es, according to A23.3-M84 and A23.3-94, are also
given in Table 5.5. The o values for the 1994 code are smaller than in the 1984
code, but because the beam reinforcement is taken proportional to the balanced p,

which is higher in the 1994 code, the M,, values for the 1994 code are higher.

Using the basic variables (in-situ concrete strength, static yield strength and
dimensions) established, 5000 possible beam configurations are simulated for each
nominal beam. Thus 5000 possible values of the unfactored moment resistance,
M,, are generated for each beam. Several types of distributions are fitted to the
500 points in the lower tail (i.e., below the 10th percentile) and the normal
probability distribution curve gave one of the best fits in each case. (Distribution
fitting and parameter estimation procedures are explained in section 2.6.) By
performing a statistical analysis the statistical parameters are obtained for the
normal distribution fitted to the tail. The statisticai parameters obtained, viz., the
mean and standard deviation, for the beams are given in Table 5.6 . These can be
compared to the factored nominal strengths given in Table 5.5. The goodness of
fit for the simple linear regression model is usually expressed in terms of the R-

square, the coefficient of determination. The R-square value is the proportion of
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54.2

the variation in the dependent variable explained by the fitted linear regression

relationship, in terms of the explanatory variable.

These values do not include the model error factor. As it is a directly

mulitiplicative value it is included when doing the reliability analysis.

Short Columns

The analysis explained in Section 5.3.1 is performed on the columns defined by

the nominal dimensions and material properties given in Table 5.7.

Using the nominal material strengths and dimensions and equilibrium and
compatibility conditions with the stress block based on the CSA - A23.3 (M84
and 94) the nominal factored resistances given in Table 5.8 are calculated. These
are for eccentricities of e/h=0.1 for the compression failures and e/h equal to 0.7

and 1.2 for tension failure of Column 1 and Column 2, respectively.

For each nominal cross section and a number of constant axial load levels, P,,
5000 possible columns were simulated using the basic variables established earlier.
For each of these 5000 simulated columns a moment curvature diagram is
developed and the maximum moment on the curve is taken as the unfactored
moment resistance, M,. These values are analyzed and distributions are fitted to
the lower tail (i.e., below the 10th percentile). Distribution fitting is done
according to the theory developed in Section 2.6. (The SAS programs developed
for the simulation, moment curvature analysis, interaction diagram development,
statistical analysis and distribution fitting are given in Appendix B.) The normal
probability distribution gave the best fit and the statistical parameters obtained are

given in Table 5.9. The value Py ,given in Table 5.9, is a deterministic arbitrary

interaction diagram to be estimated at similar intervals.
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For values of axial load above P, equal to 0.6 P, some simulations gave
negative values of moment due to the variability in the location of the steel.
Simulations beyond P, equal to 0.6 Py are not carried out because they are not
necessary to estimate the lower tails of the distributions for compression and
tension failure at the chosen e/h ratios. The distribution of the axial load at zero

moment is estimated purely to complete the interaction diagram.

The five curves shown in Figs. 5.1 and 5.2 are the 2.3, 15.9, 50, 84.1, and 97.7
percentile curves from the Monte Carlo simulation. These are the mean and one or
two standard deviations from the mean. The lines are spaced approximately equal

distances apart indicating that the distribution is close to a normal distribution.

Fig. 5.3 compares the percentile values of the simulated unfactored resistance,
Po, with the nominal factored resistance, Py, and nominal unfactored resistance, P,,
where nominal values are calculated according to CSA A23.3-94, The value of P,
is between the 2.3 and the 50" percentile lines and P, is below even the 2.3

percentile.

Lines representing eccentricity ratios, e/h, equal to 0.1 and 0.7 are given on

The distribution for compression failures is taken as the distribution of the axial
forces, P, obtained from the intersection of the line for e/h=0.1 and the curves in
Figs. 5.1 and 5.2. The lower tail of the unfactored axial load resistance, P,
(obtained at e/h equal to 0.1) is estimated from the 2.3, 15.9 and 50.0" percentile

lines in Figs. 5.1 and 5.2. These values are given in Table 5.10.



The percentile lines in Figs. 5.1 and 5.2 and Table 5.10 are almost equally
spaced. This shows that the distribution of P, is symmetric and normally
distributed. Therefore, the distances between the 2.3, 15.9 and 50" percentiles are

equal to the standard deviation of the distribution. The mean is given by the 50"

percentile. The distribution is fitted to the lower tail values as this is the critical

region for the resistance. The resistance statistics are given in Table 5.10.
5.4.2.2 Tension Failure

When evaluating present practice for calibration purposes the moment
resistance is used as the resistance for tension failure. For this purpose, the
distribution for tension failures is taken as the distribution of the moment
resistance, M,, obtained from the intersection of the line for e/h equal to 0.7 (or e/h
equal to 1.2 for Column 2) and the percentile curves in Figs. 5.1 and 5.2. The
estimates for the lower tail of this unfactored moment resistance, M,, are given in

Table 5.11.

The values in Figs. 5.1 and 5.2 and Table 5.11 show that the distribution of M,
is not skewed and as the percentile values are equi-distant it is normally
distributed. Therefore, the distances between the 2.3, 15.9 and 50" percentiles are
equal to the standard deviation of the distribution. The mean is given by the 50"
percentile. The distribution is fitted to the lower tail values as this is the critical

region for the resistance. The resistance statistics are given in Table 5.11.

The values in Table 5.10 and 5.11 do not include the model error factor. As it

is a directly mulitiplicative value it is included when doing the reliability analysis.

The variable interaction diagrams are also used to obtain variables Mpu. and 6
for a more accurate tension failure analysis explained in section 7.5.1. (See Fig.
7.19 for a definition of M, and 6.) The values of M. and 6 used are obtained
from Figs. 5.1 and 5.2. The variability of M. is evaluated at the e/h values where
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The nominal values Mpurerr and 6, (defined in Figure 7.20) are also given in Table

5.12

5.4.3 Shear in Beams
The range of properties of the beams chosen are within the range of values for

which the theoretical model in Section 5.3.2. is developed. As the factored design

strength is obtained according to CSA A23.3-94 the maximum and minimum
reinforcement limitations and spacing limitations in this code are also satisfied in
choosing the beams. All the beams have the same dimensions but have different

longitudinal and shear reinforcement.

The nominal properties of the beams are given in Table 5.13 together with the
notations used to identify the beams. In the beam notation s1, s2, and s3 refers to
beams with p equal to 0.43, 1.08 and 3.59 % while v0, v1, and v2 refers to beams
with py ,i.e, A,/ bs equal to 0.0, 0.2 and 0.6% . The nominal resistances
calculated according to CSA A23.3-94 are also given in Table 5.13. As shear
resistance is not evaluated according to CSA A23.3-M84 this resistance is not

necessary.

Monte Carlo simulations are used, with Zsutty’s regression equation and the
basic variables established earlier, to estimate the shear resistance of the 9 beams
chosen. The results of the simulations with the estimated shear resistance statistics

are given in Table 5.14.
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Table 5.1 - Values of COV from Bartlett and MacGregor (1994)

Variable for cast-in-place for non-steam-cured pre-
construction cast construction

Mean of F; F, 0.186 0.150

Within structure 0.130 0.103

variation of F; F,

F1 Fz /01862 +0130° 01502 +0103%
=0.227 =0.182
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Table 5.3 - Properties of reinforcement and dimensions

Averzge(cast-in-place)

Shift

- Excellent (pre-cast) | Distribu -
Property B | o |COV|] pn s |cov tion
Reinforcement
Static yield strength (MPa)
f; = 400 MPa 4420 | 26.5 | 0.06]| 4420 | 26.5 | 0.06| shifted |365.0
lognorm.
Modulus of elasticity (MPa) 201000f 6599 | 0.03 |201000] 6599 | 0.03 | normal
Effect of discrete bar sizes, A/A;| 1.01 | 0.04 [0.04| 1.01 | 0.04 | 0.04| shifted | 0.1
lognorm.
Deviation of beam dirnensions
from nominal values
Flange width (mm) - - 4.1 6.4 normal
Stem width {mm) 23 4.8 0.0 4.8 normal
Flange depth (mm) 0.8 11.9 0.0 4.8 normal
Overall depth (mm) -3.0 6.4 3.0 4.1 normal
Depth of top steel (mm) -6.4 17.5 3.0 8.6 normal
Depth of bottom steel (mm) 4.8 12.7 3.0 8.6 normal
Stirrup spacing (mm) 0.0 135 0.0 6.9 normal
Beam spacing and span (mm) 0.0 17.5 0.0 8.6 normal
Deviation of slab dimensions
from nominal values
effective depth (mm)
Top reinforcement -19.1 } 159 0.0 24 normal
Bottom reinforcement -7.9 159 0.0 24 normal
Deviation of column dimensions
from nominal values :
Overall width and thickness (mm)| 1.5 6.4 = - == | normal
Concrete cover for h x h column
exterior bars 6.4+ 472 - - -- | normal
0.004h
interior bars 1.0 5.1+ -- - = | normal
0.033h

From: Nessim,et.al.(1993), Mirza and MacGregor (1979a and b, 1982)
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Table 5.4 - Model error

For resistanc; of - 8 cov 7

Flexure and Axial load 1.00 | 0.035

Shear ;.09 0.11 o
From Mirza and MacGregor (1982) 7 o
Table 5.5 - Nominal beam properties

Beam b (mm)

h (mm)

p/pp

A23.3-
Ms84

by 7 be |he |h ] . x 10° x 10°
R-0.14 | 200 |200 |330 | - |267 |0.14 |23.3 25.1
R-g,Bl 200 jzoic) 330 | - 2;37 0.31 4%.4 51.5
R-0.57 2007 200 |330 | - |267 |0.57 |80.1 83.5 )

200

0.71

T-0.14 {300 | 1200|600 | 150|525 |0.14 |541.6 582.6

1200 | 300

150

~J

545.2
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Table 5.6 - Simulation results for the unfactored moment resistance of beams, M,

Beam

designation

Fit to normal

distribution

Adjusted R?

# (Nmm) x

10°

o (Nmm) x 10°

COV%

R-0.14

R-0.31

R-0.57

R-0.71

T-0.14

T-0.71

0.9923

0.9939

0.9982

0.9966

0.9958

0.9966

32.1

68.4

116.

144,

753.

844,

2.04

4.65

9.01

17.6

93.3

6.36
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Table 5.7 - Nominal column properties

Property Column 1 Column 2
f, (MPa) 400 7 400

f.' (MPa) 35 35

E, (MPa) 200 x 10° 200 x 10°
b (mm) 450 45(';

h (mm) 450 450 .
cover (mm) 40 40

d (mm) 387 ) 378

o 0.01 7 0.04
A=A/ 2#25 3#45
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Table 5.8 - Nominal factored resistance of columns

Column 1 Column 2
A23.3-MB84 | A23.3-94 A23.3-M84 | A23.3-94

P, for 3.41 3.24 4.94 4.76
compression
failure, N (x 10°)
M,, for tension 244 242 611 578
failure, Nmm
(x 10°)

[
[ ]
)




Table 5.9 (a) - Simulated M, values for Column 1

Axial load level yof M, o of M, Fit to normal

tail

P/P;" | Po(N) | (Nmm) (Nmm) R’

x10° [ x10° x10°

0.0 0.00 168 8.70 0.9977

0.1 0.847 304 13.0 0.9950 7

0.2 1.69 420 33.5 0.9853

03 2.54 467 60.3 0.9953

0.35 2.97 468 78.0 0.9973

0.4 3.39 458 99.0 0.9872

0.5 4.24 408 126 0.9954

0.6 5.08 297 138 0.8911

" P, is taken as a deterministic number equal to 0.9 f.' (hxb-A,-A",) + f,(A+AY)
calculated using mean values.
Note: At M,=0.0 the distribution of P, is normal with mean = 7.53 x10° N and

standard deviation = 1.12 x10° N.
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Table 5.9(b) - Simulated M, values for Column 2

Axial load level n of M, ocof M, | Fittonormal

P,(N) | (Nmm) (Nmm) R?
x10% | x10° x10°

Po/Px

0.0 0.00 7 577 27.9 0.9982
0.1 LIC; 7 738 380 0.9962
0.2 2.19 865 7 80.1 ) 0.9971
0.3 7 3.29 7 789 93.5 0.9965 )
0.4 4,38 694 109 0.9959

0.5 5.48 580 130 0.9967

0.6 6.57 450 141 0.9929

" P, is taken as a deterministic number equal to 0.9 f.' (h b - A, - AY,) + f(AF+AY)
calculated using the mean values.
Note: At M=0.0 the distribution of P, is Normal with mean = 9.92 x10° N and

standard deviation = 1.01 x10° N.
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Table 5.10 - Compression failure resistance values for P, (N)

Vaiﬁe

Column 1
ate/h=0.1

Column 2

at e/h =0.1

2.3 perceﬁtile
15.9 percentile
50.0 percentile

41x10°
4.8 x10°
5.5 x 10°

T50x10°
6.7 x 10°
7.5 x 10°

55x10°

7.5 x 10°

0.7 x 10°

0.8 x 10°

Table 5.11 - Tension failure resistance values for M, (Nmm)

Value

Column1

at e/h =0.7

Column2

ate/h=12

2.3 percentile
15.9 percentile

50.0 percentile

T2.8x16%
3.1x10°
3.4 x 108

6.7 x 10°
73 x 10°
7.9 x 10*

M 3.4 x 10° 7.9 x 10°
o 0.3 x 10° 0.6 x 10°
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Table 5.12 - Tension failure properties

MP'-“ (Nmm) 0 Mp\gg-m' en
H o (Nmm)

Column 1

3.0

Column 2

[N ]
—

4,59 x 10°

132




sarpadosd weaq Jeays [eUnION - £1°C 9[qRL

[sv18e 90961 6288 | SVI8E | 90961 | 6788 | Sv18 | 90961 | 688 | ol X (N) *A
| 05Tz | tizs | 0o | ostsz 6 | 000 | oszsz | 1iss | 000 | OIX(0"A
| 686 | $686 | 6288 | S686 | $6'86 | 6288 | S686 | S686 | 6288 | 01 X(N)™A
| |

| o1l (1743 - 011 ; oze | - o1l 0z€ - (wuys |
| oot 00z o | ooz 002 0o | o0z 00T 0 () *y
| | [ [ |
| 000S 0005 0005 00S1 0051 , 0051 ,, 009 009 | 009 () "y .
7 0oy | 0oy 00¥ 00% 00¥ 00% 00F 00% 00¥ (ed) 9 : -

43 | SE 93 CE , g 53 | 3 g s€ (edn) *. 3 ,
: opl1 | ovil | opll | ob11 ,, ovll | orll | opil W ovll ovll (wuw) e
sy LSy | LS¥ LSt Lsy | Lsp tsv | sy | sy | uwp

S0€ | SOE | SOE SOE ”, S0€ 0€ <O€ | o€ SOE (unu) *q

TAES IAES oags | TATS 1azs | oazs | zAls IAls | oals | Awadoig

weagy ,



Table 5.14 - Simulated shear resistance values

Beam

tail fit to

normal

- | R |px10)N| oxI10)N | COV_
sIv0 | 0.992 109 18.0 16.5

Tslvl | 0998 | 251 ~ 31.8 12.6
slvz | 0.997 511 ~ 599 11.7

T s2v0 | 0995 149 T 255 17.1
s2vl | 0999 | 291 T 391 13.4
s2v2 | 0997 | 555 682 | 123
$3v0 | 0994 | 224 38.2 171

Cs3vl | 0996 | 363 487 13.4
s3v2 | 0997 | 632 T 784 124
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CHAPTER 6

TARGET RELIABILITY INDICES

Introduction

Probability based load and resistance factors are derived for a set of target
reliability indices selected to provide a predetermined probability of failure. Before
load and resistance factors can be derived it is necessary to establish target

reliability indices, Br.

In Section 6.3 the reliability indices that are implicit in present design practice
by CSA A23.3-M84 are established. The evaluation is based on the load and
resistance probability distributions and the first order second moment (FOSM)

reliability theory detailed in Chapters 2 to 5.

The target beta values are also be based on recommendations given in other
studies and the CSA standard S408 - 1981 “Guidelines for the Development of
Limit State Design”, Section 6.2 reviews these studies and standard. The selection

of PBr values for this study is outlined in section 6.4.

For each load and resistance variable there are mainly 2 types of values that are
used herein. The ‘true’ variable value is the best estimate of the load or resistance
and is a random variable represented by a probability distribution and relevant
parameters. The ‘nominal’ value is the deterministic value used in design as the
load or resistance. The nominal load is called the specified load in design codes
and therefore this terminology is also used when considering load values from
codes. The nominal load and resistance values are multiplied by load or resistance

factors to obtain factored nominal values. In this study two limit states are

138



6.2

considered; one in terms of the ‘true’ variable values and the other in terms of the

factored nominal values. These limit state equations are developed in Section 6.3.

Literature Review

Traditionally, consequences of failure are taken into account in selecting the B
and the related notional probability of failure. Many types of consequences are
considered in reliability studies. Some of these are ( MacGregor 1976, Allen

1992): economic cost of failure, potential loss of life, cost to society in lost time

alternate load paths), importance of element in structural system, inspection level,

and the level of risk accepted by society.

Most of these are subjective considerations. They have been quantified and
studied by researchers and By values are recommended accordingly. Some of these
studies and recommended values are discussed below,

Different definitions or reliability formulations will yield slightly different
values of B. Reliability formulations such as the methods used in this study give
more accurate B values than the B values obtained by using methods such as the
lognormal formulation. The lognormal formulation has been used by many
researchers due to its simplicity in calculation. As the method of formulation is

significant it is noted in the summary of the references given below.

Allen (1992)

A target reliability index for use in bridge evaluation has been determined on
the basis of life safety considerations and is calibrated to experience in the design
and evaluation of bridges. For a typical case of an element without alternate paths

of support, the By is given as 3.0 for gradual failure and 3.5 for sudden failure.
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6.2.2 Mirza and MacGregor (1982)

e

Mirza and MacGregor (1982) chose Br values for the calibration of ¢ factors
to be used with the NBCC load factors. The ¢ values were chosen to produce 8
values close io those computed for practical cases of reinforced concrete beams
designed acc. - . .0 CSA A23.3-M78. The Br values were set to 3.0 and 3.5
respectively for structures exhibiting gradual failure and sudden failure. These

values fell near the lower end of the range of p values obtained from evaluation of

CSA A23.3, and for this reason ¢ values were chosen conservatively.

_Kennedy and Gad Aly (1980)

Performance factors were determined for steel building columns and beams

used.

representative of those associated with existing designs in the USA. The
evaluation using first order second moment methods vielded B values from 1.5 for
some metal tension members to over 7.0 for certain masonry walls. It was
observed that many flexural and compression members tended to fall within the
rangep =2.5t03.0 fortheD+L, D+ S and D + L + W load combinations.
These are among the most common combinations governing designs in large parts
of the USA and present designs in these cases were considered satisfactory.
Therefore it was considered appropriate for B1’s to be within this range. The
following B values were used:

Br=3.0 forD+LandD+ S

Br=25 forD+L+W

Br=1.75 forD+L+E
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6!3

> _CSA Standard S408 -1981

Ellingwood (1994) mentions that the apparently lower reliability for W and E is
a result of inconsistencies propagating into new specifications due to calibration to

older practice.

CSA Standard S408 - 1981 gives the guidelines for the development of limit
states design. It is mentioned that life safety, economics, and socio-economic
considerations should be considered in determining acceptable levels of reliability.
Calculated reliability indices should be compared with failure rates in service to
obtain By values. It is estimated that the present failure rate in Canada corresponds
to a probability of failure of around 10 in 50 years for engineered structures. The

probability of failure of 10 for a normal probability curve indicates a reliability

in use for steel and concrete buildings:
Br = 3.5 for gradual failure
Bt = 4.0 for sudden failure

Evaluation of CSA A23.3-M84

The objective of this evaluation is to determine the B values implied in CSA
A23.3-M84. This code has been used successfully for more than 10 years. While
some areas of the code may be overly conservative, there are no known areas
where the code is excessively unconservative. This evaluation helps identify gross
errors in the proposed methodology and also identifies opportunities where the

specifications in A23.3 can be improved.

The A23.3-M84 code uses the NBCC probability factor format for load
combinations and the material partial safety factor format for the resistance. The
evaluation is done by performing the reliability analysis using the FORM program
(Golliwitzer et al. 1990) explained in Section 2.4.
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To use FORM it is necessary to establish a limit state equation that represents
the interaction of the loads and resistances at the limit state. A general equation
for use with all types of members and ultimate limit states is developed.

Let R, =unfactored ‘true’ resistance (variable)
R, = factored nominal resistance (deterministic)
R, = nominal resistance (deterministic)
Qp = dead load effect
Q.; = i" variable load effect
op = dead load factor
v = load factor for the i variable load

subscript n = nominal value

If, as in most similar studies, the structural action resistance factor format is
used and only one factor is applied to the resistance the factored resistance Ry,
could be written as ¢ R,. However, the material partial safety factor format is used
in this study, therefore a resistance factor for each material has to be applied. The
overall resistance is not multiplied by all the factors, i.e., Ry # ¢ R, This is

illustrated by an example. For a beam the nominal moment resistance is

R,=M,= A,f,(d As fy
Y( i 2a1fc'g)

and the factored nominal resistance is:

bs A fy

= = Q@ fd- —m——
M A Ty

#¢ R,

This illustrates that ¢, and ¢. cannot be extracted as an overall multiplicative
factor. Therefore the limit state equation was developed to accommodate the

material partial safety factor format.
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For a specific member at an ultimate limit state, the ‘true’ unfactored resistance

is equal to the unfactored load effects applied

[&1] R.,a’DaZQﬁEQ

factored nominal load EﬁECtS applied

[:62] R'nf QDD Zaw Q =

all i
where,
R., D, Q; are ‘true’ random variables
R, is the factored nominal resistance which is a deterministic value
D;, Quw are deterministic nominal/specified load values

Olp, O are deterministic load factors

By multiplying and dividing each term in [6.1] by nominal values

R, . D Q.
~Oo R =D -%v= =0
5 Quui

Rﬂf M n ! llllQ
D . o Q.

but —=rp is the normalized dead load variable and —¥-=

n vni

i" variable load. Also R, can be substituted using [6.2]

dividing by D,

R, [og *Zavigm_j =[rp + 2, s 1=0
i D

[6-3] all i D

rar B a

This equation is the basic ultimate limit state equation. Therefore for this

analysis the variables R,, rp and r,; are necessary with the appropriate loading
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ratios ?"“‘ , the nominal value R, (which has been calculated using ¢, and ¢.) and

n

the load factors op and a.;. The model error term is included in R,

For load combinations that involve wind or earthquake loading the loading rate
would be higher. The member strength increases for a higher loading rate. This
effect of the rate of loading has been included in the calibration by multiplying the
resistance variable R, by 1.05 (Ellingwood et al. 1980).

Typical loading ratios are obtained from the literature (Ellingwood et al. 1980)
and also by considering common values in design. The values used are given in

Table 6.1.

__Beams

The most commonly encountered load combinations for beams are D, D+L,

The results for D+L are given in Figs. 6.1 and 6.2 for rectangular beams. The
beam with a steel ratio of 0.71 py, (approximately the maximum allowed by A23.3-
M84) has a significantly lower reliability for low L/D ratios, as seen in Fig. 6.2,
indicating that the maximum steel ratio allowed in beams might need to be revised
to a lower value than 0.71 p. Even though such a beam is nominally under-
reinforced, due to the variability in beam parameters some members are over-
reinforced, giving a higher variability in member strength. The three beams that
have 0.14, 0.31 and 0.53 p, have similar results. A representative value for p for
the D+L load case is around 3.75 for the beams with lower ratios of steel and

around 3.5 for the beam with p = 0.71 py.

The results for D+S are given in Fig. 6.3. The f§ values depend heavily on the

snow load parameters and especially on the variability of the snow load. The
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typical values of B taken at middle of the typical range (that is around S/D equal to
1.0) range from 2.6 for Kelowna, which has a highly variable snow load, to 3.25

for Toronto which has a low variability in its snow load.

The results for D+L+W are given in Fig. 6.4. The p for wind is in the range of
2.5 to 3.5 for the practical range of W/D values. When the wind variability is high,
as it is in St.John’s, the values of B decrease with higher values of W/D.

Short Columns

For short columns compression and tension failures are considered separately.
For compression failure the load combinations D, D+L and D+L+W are used. For
tension failure the load combination D+W is used with the limit state equation

written in terms of moment.

6.3.2.1 Compression Failure

The beta values for the D and D+L combinations are given in Fig. 6.5. The 8
value for the dead load only case is above 3.5. For D+L the f§ value is between 3.5
and 4.0 for the typical L/D ratios for compression failure. The case of dead load
only seems to be less reliable than others. This suggests that a separate load case

with only dead load and a higher dead load factor is needed in the design code.

The W/D load ratio, based on axial effects, for compression failure ranges from
0to 0.5 . Fig. 6.6 shows that the f values are uniform just above 4.0 for most of

the typical load ratios.

6.3.2.2 Tension Failure

The results for the load case of D+W are given in Fig. 6.7. The B values are
highly dependent on the wind load parameters. Therefore the calculated reliability

index is quite different for different cities.



6.4

6.4.1

Selection of Target Beta Values

Code calibration provides a degree of comparability between structures
designed by the new and old criteria. It also permits reduction of the large range in
member reliability in the old criteria that resulted from their inconsistent treatment
of uncertainties. Unfortunately, calibration also may allow inconsistencies in
current practice to propagate into the new specifications as suggested in Section

6.2.4 (Ellingwood 1994).

The evaluation of B values implicit in A23.3-M84 yielded a large range of
values. Although the average P values are around 3.5, the whole range is between
2.0 and 5.0 This high range of B is partly due to the probability factor load
combination format that is used in CSA A23.3-M84 (as shown in Chapter 7, Figs.

7.29 to 7.36). It is seen that the 3 is lowest at high load ratios of variable loads.

The literature review suggests that a desirable range of Br values is from 3.0 to

3.5. The values used are given below.

Summary of Target Reliability Indices Used

Considering all the B values obtained in the calibration and the values used by
other researchers, the following Br values are used in developing the load and
resistance factors.

Br =3.00 to 3.25 for gradual failure

Br =3.25to 3.50 for sudden failure

These Br values apply to loads that are defined at a probability of exceedance

0f 0.033 and for normal structures with a design life of 30 years.
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Table 6.1 - Typical loading ratios

Loading ratios investigated®
Member Type of Load L/DorS/D | W/D orE/D
failure combination
Reinforced | Flexural D+L 00to 1.5
concrete
beams D+S 00to 1.5
D+L+W 00to 1.5 0to1.0
Short Compression | D+L 0.0t0 0.75
column
D+L+W 0.0t00.75 0t00.5
Tension D+L+W 0.0tc 0.75 0.25t05.0
D+L+E 0.0t0 0.75 0.5t05.0
D+W 2.0t05.0

* used specified values with reduction factors where appropriate.

* Larger ranges of loading ratios were initially used but for the optimization of load

factors these ranges were used.
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Figure 6.1 - Reliability index of beams for D+L according to A23.3-M84
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Figure 6.2 - Variation of reliability index with p for A23.3-M84
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Figure 6.3 - Reliability index of beams for D+S according to A23.3-M84
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Figure 6.4 - Reliability index of beams for D+L+W according to A23.3-M84
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CHAPTER 7

OPTIMIZATION OF LOAD AND RESISTANCE FACTORS

Intreduction
The previous work in Chapters 2 to 6 is used to optimize load and resistance
factors. The load and resistance variables established in Chapters 4 and 5 are used

to obtain load and resistance factors for the safety formats chosen in Chapter 3. In

+ doing so, the first order second moment methods and related theory outlined in

Chapter 2 are used, and the target reliability index, Pr, as established in Chapter 6

is provided.

The objective here is to optimize the load and resistance factors used in limit
state design of reinforced concrete buildings. The load values in NBCC (1990) are
used as the specified values (also called nominal values). The NBCC (1995)
values are compared at the end of the chapter as they were not available during the
time this study was conducted. Ultimate limit states of flexure, shear, and
combined flexure and axial load are considered. Special consideration has been

given to tension failures of columns and the unique characteristics of such a failure,

The terms ‘specified’, ‘nominal’, ‘true’ variable used in referring to the load

and resistance are explained in Section 6.1,

Background

Probability based load and resistance factors are known to be dependent on
many factors. Some of these factors such as the load and resistance variabilities
established in this study can be taken into account explicitly in selecting the load
and resistance factors. However, other dependencies, even though known, cannot
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be explicitly taken into account because of practical limitations. One example is
the dependency of the load and resistance factors on the load ratios, the ratio of
variable loads to dead load. As it is not practical to have load and resistance
factors dependent on the load ratios in a design code, the load and resistance
factors have to be specified as constant over the whole range of load ratics. To
get the optimum constant value that can give reliabilities close to the target it is
necessary to employ methods of optimization.
As there are many independent variables involved, one can theoretically
conceive of a multitude of possibilities to consider in the optimization process.
However the possibilities can be limited, using practical considerations and by
observing trends in the behaviour of load and resistance factors. Ellingwood et al.
(1980) made the following observations which are helpful in planning the
optimization:
(1) Resistance factors are relatively insensitive to the time varying load or loads
in the combination.

(2) Load factors do not appear to be especially sensitive to the resistance
statistics.

(3) A certain amount of coupling exists between the load and resistance

factors but it is relatively weak.

7.3  Method of Analysis and Strategy in Optimization

7.3.1 Formulation of the Limit State Equation

The reliability analysis is based on the limit state equation given in Section 6.3.
This equation is developed by considering the two idealizations or versions of the
ultimate limit states that impact on the reliability of a member. The first version is
the ‘true’ limit state at which the unfactored ‘true’ strength of the member equals
the unfactored ‘true’ load effect. These strengths and load effects are uncertain
variables and are taken as probability distributions. The other version that impacts

on the reliability is the factored limit state considered by the design engineer. The
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specified load effect. This equation involves deterministic values. By combining
the ‘true’ random limit state equation and the deterministic factored design
equation the limit state equation, [6.3], is developed. Later these same principles of
formulating the limit state equation are used as a tool to formulate more complex

cases encountered. This formulation is a versatile problem solving tool.

Equation 6.3 is the basic ultimate limit state equation used in the reliability
considerations. Here R,, rp and r,; are random variables and other parameters are
deterministic. The algorithm described in Section 2.4 is used with this limit state
equation to obtain the reliability index. The deterministic load and resistance
factors are adjusted so that the reliability index falls within the desirable target

range.

7.3.2 Strategy in Optimization

Based on the observations reported in Section 7.2, the resistance factors are

optimized for the dead and live load combinations. Once these resistance factors

Because there is interdependency, these two steps are repeated until the reliability

index is as close as possible to the target values.

As seen in Figs. 7.1 and 7.2 the resistance factors (¢ factors) change the
reliability over the whole range of load ratios but the load factors (a factors) affect
the reliability where that particular load is dominant (e.g. o of the live load affects
the reliability most when the live load ratio, L/D, is large). This observation helped
in the optimization by indicating which factor should be changed. For example,
when the present code factors are used, the reliability index for members is high in
the whole range of load ratios indicating that the resistance factors are too
conservative. On the other hand, if the reliability had been too high for large L/D

ratios this would have indicated an over-conservative o .
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In the optimization process, a data set of the safety factors with the
corresponding P values are generated for each combination of load and resistance
variables. This data set contained all the safety factors that would give B values
close to the target range. For example for the D+L combination when ¢ and ¢,
are being optimized, a data set of all combinations of (¢, ¢,, L/D) and B values

corresponding to each combination are generated.

This data set is utilized in three ways to find the optimum factors.:

(1) Graphs of load ratio vs. ¢

Graphs of load r=*i0 vs. ¢ values that gave B values that are within the target
reliability range are drawn. This displayed the ¢ values necessary to obtain the
target reliabilities as shown in Fig. 7.3. From these the combination of ¢ values

that ensured the target reliability are chosen.

(2) Using an optimization function

As observed earlier the influence of the load factors on the reliability changes
with load ratio. A set of optimum load factors can be obtained by defining a
function that measures the closeness of the reliability index, B, obtained with each
set of load factors, to the target reliability index, Br. The set of load factors that
gives the minimum dispersion is considered the optimum set for that range of load
ratios. Because some load ratios are more frequently encountered in practice than
others, the optimization function must be weighted accordingly. The optimization
function is based on the square of the difference between the B values.

Unconservative differences are weighted twice as heavily as conservative

differences:

[7.1] Optimization function = ¥ (B- B, ) x W,
i=l

where y = a factor which is 1 if (B - Br) is positive and 2 if it is negative
w; = weighting for load ratio i
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7.4

74.1

i = Load ratios ranging 1 ton

The weightings (given in Table 7.1) are taken to be similar to those used by
(Ellingwood et al, 1980) based on judgment rather than empirical data. Because
the optimization function including the weightings is subjective the results are

considered to be only a good estimate of the optimum factors. The optimum

(3) Graphs of load ratio vs.

Once the ‘theoretical optimum’ is estimated as detailed in (2) above, it is
plotted as a load ratio vs. B chart as shown in Fig. 7.4, The theoretical optimums
for the different load combinations varied widely. For practical use in a design
are discussed in Section 7.5. The load factors are adjusted according to these
constraints while trying to keep the reliabilities close to the target. Load ratio vs.
f graphs are used in these adjustments to observe how different the final

reliabilities are from those obtained with the ‘theoretical optimum’.

Optimization of Resistance Factors (¢ factors)

Trends Observed

First, some of the trends in the reliability with the ¢ factors are observed. As
mentioned earlier, the resistance factors affect the reliability of the whole range of
load ratios almost uniformly as seen in Fig. 7.1. Figures 7.5 and 7.6 show the
effect of ¢. and ¢, on the reliability of an under-reinforced beam in flexure. Itis
clear that the reliability in flexure depends strongly on ¢, and not very much on ¢..
Similarly, as seen in Figs. 7.7 and 7.8 reliability of columns that develop

compression failures depends more on ¢. than ¢,.
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Figure 7.9 shows the different shapes of B curves obtained for different types
of beams (using the A23.3-94 code stress block). The flexural resistances of
beams with low steel ratios have lower COV values and lower My/M,, values than
beams with high steel ratios. The shape of the B vs. load ratio curve is determined
by the ratios of ‘true’ to factored nominal resistance (and load) and their COV
values. When the COV of the resistance is low the reliability increases at L/D

close to ratios 0.2 where the load variation is low. At L/D close to 0.0 the

high the beams with lower steel ratios and consequently lower M/M,, values have
a lower reliability. When the COV of the resistance is high ( as in R-0.71 and
columns) the f is not affected significantly by the load ratio and a flatter curve is
obtained. Out of the sample of beams chosen for this study beams R-0.71
(rectangular section with p equal to 0.71 pea) and T-0.14 (T beam with p equal to
0.14 pya) are the most critical ( have the lowest B values in the different L/D

ratios). Therefore, these two are chosen as the two critical beams to investigate.

Similarly in columns, as seen in Fig. 7.10, Column 1 (the column with p =0.01)
gave the lower reliability and is chosen as the critical column to investigate. Cases

other than the load case shown in Fig. 7.10 confirmed this decision.

Beam Flexure

Figures 7.11 and 7.12, for beams R-0.71 and T-0.14 respectively, give the
ranges of ¢, possible, with different ¢. and L/D values, to give B values within the
target range of 3.00 to 3.25. Only four values of ¢. are considered for beams
because the reliability of beams in flexure is not strongly affected by ¢.. The D+L
combination is considered in Figs. 7.11 and 7.12. The low reliability when L/D is
close to zero suggests that a separate load case with D only should be considered.

The highest ¢, values that ensure B is within or above the target range are chosen
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7.4.3

from Figs. 7.11 and 7.12 and are summarized in Table 7.2. The value of ¢, at L/D
equal to 0.0 is ignored as this is governed by the D only load case introduced in
Section 7.5. From Table 7.2, ¢, equal to 0.85 is chosen because this would
provide the necessary reliability when ¢ is in between 0.6 and 0.7. This is the
value used in CSA A23.3-M84 and 94.

Column Compression Failure

7.4.4

Figs. 7.13 and 7.14, for Columns 1 and 2 respectively, give the ranges of ¢.
possible with different ¢, and L/D values. These factors ensure 3 values within the
target range of 3.25 to 3.5, as compression failure is a brittle failure. Only four
values of ¢, are considered for columns because the reliability of columns failing in
compression is not strongly affected by ¢,. The highest ¢, that ensures the B is
within or above the target range is chosen from the Figs. 7.13 and 7.14 and are
summarized in Table 7.3. It is clear from Table 7.3 that Column 1 is the critical
column. Again, the ¢. value at L/D equal to 0.0 is ignored because it is governed
by the D only load case introduced in Section 7.5. From Table 7.3 ¢. equal to 0.65
is chosen as this would provide the necessary reliability in all cases considered.
Column 1 approaches the maximum fraction of the column load which can be
carried by concrete in a practical tied column and hence approaches the case most

influenced by ¢..

Beam Shear

As observed in Chapter 5 the bias factors of the shear resistance vary widely
suggesting that the shear resistance equation for the simplified method given in
A23.3-94 does not adequately consider all relevant variables. The reliability
according to A23.3-94 for the nine different beams is shown in Fig. 7.15. In the
beam notation s1, s2, and s3 refers to beams with p equal to 0.43, 1.08 and 3.59 %

while v0, v1, and v2 refers to beams with p., i.e., A,/ b s % equal to 0.0, 0.2 and
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0.6% . The amount of flexural reinforcement is not accounted for in the equation
specified in A23.3-94. As shear reinforcement decreases, the effect of longitudinal
reinforcement is more significant. As developing an adequate equation for shear is

beyond the scope of this study, the types of members addressed are limited.

If the limitation specified in A23.3-94 clause 11.2.8.1 is applied, namely, that
Vi shall be less than or equal to V./2 for beams without stirrups, the reliability for
beams without stirrups would be governed by this limitation leading io higher
values of B for some beams as shown in Fig. 7.16, However this limitation does
not apply to footings and slabs where shear reinforcement is usually not used. The

shear mechanisms in these cases are more complicated and are not considered.

Note N11.3.5. of the handbook for A23.3-94 (CPCA 1995) says:

the shear strength of large lightly reinforced members that do not contain
stirrups. Because of this concern [A23.3] Equation 11-6 is restricted to
members that contain stirrups or that have effective depths not exceeding
300 mm. The concrete contribution, Ve, for large members with no stirrups
members with no stirrups is strongly influenced by the amount of longitudinal
reinforcement the member contains. In the simplified method this influence is
neglected and hence, [A23.3] Equation 11-7 can give conservative results for

heavily reinforced sections.”

Zsutty’s regression equation, [5.12], which is used to estimate the ‘true’ shear
strength, does not adequately represent the strength of lightly reinforced beams
with stirrups. Furthermore, the depih is only considered in the ratio a/d and not by

itself.

Beams that have a longitudinal reinforcement percentage greater than 1.0% are

considered here after. The members without stirrups that are not governed by V;
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7.4.5

smaller or equal to V./2 are also not considered. These limitations, eliminate beams
s1v0, s1v1 and s1v2. The shear strength of beams s2v0 and s3v0 is governed by
the V¢ smaller or equal to V./2 limitation and is not critical. The beams considered
in the analysis are shown in Fig. 7.17 which shows that beam s2v1 is the most
critical. This beam is further investigated with different combinations of factors,

with the results given in Table 7.4. The code equation for the shear carried by the
concrete can be written as: V. equal to C A ¢. \/?':- bw d where CSA A23.3-94
gives C equal to 0.20 for use with ¢. equal to 0.60. As the ¢, is increased, it is
necessary to decrease the constant C in the V. equation to produce similar
reliability indices. Table 7.4 shows that ¢. equal to 0.65, ¢, equal to 0.85 and the

constant in the V. equation equal to 0.17 would give B values within the target

range taken as 3.25 to 3.50 for members displaying brittle failures.

Optimum Resistance Factors Chosen

7.5

As explained in the preceding sections the following resistance factors are
chosen: ¢. equal to 0.65 and ¢, equal to 0.85 for concrete and non-prestressed
reinforcement respectively, with V. equal to 0.17 A ¢. ﬁ: by d for members with

flexural reinforcement ratio greater than or equal to 1.0%. This value of V. is
applicable to members with stirrups or beams without stirrups that are governed by

clause 11.2.8.1 of A23.3-94.

Optimizatien of Load Factors (a factors)

As explained in Chapter 3 the companion action load factor format is used for
load combinations with the specified exceedance probability format used in the

cases where earthquake loads are involved.

The load types considered are: the permanent load D and the variable loads L,

S, W and E. The variable loads take principal values (denoted by subscript i) or
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companion values (denoted by subscript ij). This gives the following possible
combinations to consider in developing load factors:

(HD

Q) D+L;

GB)D+W;+L;

() D + 8 +1L;

(9)D+S;

(6)D+L;+S8,

(MDD+W;+§;

(B) D+ 8;+ W,

(9) D +L+ Wi

(10) D + W; where the load effects oppose each other

(11) D+E;

(12) D+ 8; +E;

(13) D+L; +E;

Load combinations (1) to (4) and especially (1) and (2) are important for floor
systems where gravity loads govern. Snow load combinations are important for
roof systems and columns. Wind and earthquake loads are important for lateral
load carrying systems such as columns and beams in framed structures, for floor

and roof diaphragms and for bracing systems.

In Section 6.3 it is explained that the limit state equation is developed by
As designers use only specified loads and are not aware of the magnitude of the
companion loads, the factored nominal design equation is written based on
specified loads. Thus the factors developed are applied to the specified
characteristic loads. The true variable limit state however has to model the real
load combinations on a structure and thus is written in terms of principal values

and companion values, both modelled as random variables.
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As explained in Section 7.3, the optimization function method and the

the practical optimum is explained in Sections 7.5.2 to 7.5.5. The resistance

factors summarized in 7.4.5 are used to define the factored resistances.

Two important observations about the behaviour of load factors are shown in
Fig. 7.18. The dead load factor affects the reliability in the lower ranges of the load
ratio L/D. The variable load factor affects the reliability in the higher ranges of the

load ratio.

Special considerations are necessary for developing load factors for the tension

failure of columns. These are explained in Section 7.5.1.

Special Considerations for Tension Failure of Columns

In column failures both axial load and applied moment contribute to the load
effect. Historically the compression failure limit state has been formulated in terms
of axial force and the tension failure limit state has been formulated in terms of

moment.

In the case of a compression failure, a higher axial load and a higher moment
would both lead to failure and therefore an axial load formulation is appropriate.
However, in the tension failure region a lower axial load and a higher moment
would tend to lead to failure because of the shape of the tension failure portion of
the interaction diagram (See, for example, Figs. 5.1 and 5.2). Therefore a
formulation of the limit state for moment alone does not account for the
contributing effect of the axial load to the strength. To overcome this problem the
limit state equation is formulated using both axial load and moment terms. The

same principles used in the development of the limit state equation, [6.3], are used.
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First, consider the interaction diagrams in, Fig, 7.19 which is in terms of ‘true’

The axial load, P/A,, and moment, M/A,h, are used so that the dimensions on
both axes are the same. In Fig. 7.19 the interaction diagram is a variable diagram
like the ones developed in Chapter 5. The load effect, (P/Ag, M/Ag h), is
represented by a PDF and is given by the average plotted as a point and the
variation plotted as percentiles. In Fig. 7.20 the interaction diagram is a
deterministic factored diagram and the load is a point. The proximity of the load
point to the interaction diagram is a gauge of the safety. The tension failure region
of each diagram can be idealized as a straight line, the equation of this line can be
used to formulate the limit state equation.
Let 6 = slope of the idealized tension failure line in ‘true’ space, as shown in
Fig. 7.19
Mpure = the ‘true’ pure moment resistance in true space, which is a normal
distribution, as shown in Fig. 7.19
also 6, = slope of the idealized tension failure line in factored nominal
space, as shown in Fig. 7.20
Mar-pure = the factored nominal pure moment resistance (Fig. 7.20)
Both 6 and M. are ‘true’ resistance characteristics and are obtained from the
variable interaction diagrams established in Chapter 5. The true variable load point

is given as (P/Ag , M/A,h) in Fig. 7.19.

The deterministic factored values 8, and Miy.pue are factored nominal resistance
characteristics. These values include the new resistance factors developed in
Section 7.4. The load point in factored nominal space is (Ps/Ag , Ms/A, h) in Fig.
7.20.

For the limit state in true space (i.e., when the load point is on the tension failure

line),
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A A,h) LA, h

B

The limit state in factored nominal space is
Po_g (Ma)_g (Musm
A, "(Ah "\ Ah

These two equations are simplified to

a5 )

[7.3] =fn+(—M"‘F“") —(%) =0
8, '\ h h

These equations are used to formulate the limit state equation. The D and W
load case is considered because the moment is maximum due to the wind and the
axial load is minimum, which is a critical condition for tension failure. A similar
situation is encountered with D and E, but this case is handled with the other

earthquake load combinations.

For the combination of D, L and W, the live load would add a moment and
axial load. Whether this combination is more critical depends on the relative
values of L/D and W/D. On analyzing this case it was found that when W/D is
low and L/D is high the reliability is low. This means that in some cases when
W/D is low, adding live load will decrease the reliability. This occurs if the
increase in the moment is more significant than the increase in axial load, but this
condition is rare and the change in B was never greater than 0.2. Therefore, only
the D with W combination was considered for tension failure.
tension failures and let

P=Pp and Ps=Pps
M=Mp+Myand Ms=Mps+Mws
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substituting these in [7.2] and [7.3]

P, M) 1., . s ,
[?B-F%JiE(MD +Mw)=0

Py Mype) 1, f
(B M=) ot 20000

By combining these equations in the same manner as in Section 6.3

1 o M, o M M ,
D e [ Dnﬂ,!&__n]_(r_ﬁn,k anzo
8™ "M (meh “Poh o8.) (PP, h VP, h

Y hr=pure

This is the limit state equation used in the reliability analysis of tension failure.
As men‘ioned before, Myur, Ip and ry are the variables and have the values
established in Chapters 4 and 5. The load ratios are not in conventional form, so,
they have to be developed as follows:
Mby, = Ppn €pn
Assume eonh=0.1 and Mw/Mp, =2.0t0 5.0
Therefore,

M. -20t050, ie, My, =021t005
P, h

Using these ranges of load ratios and the limit state equation, [7.4], the
reliability analysis is performed for tension failure. Values of ap and oy that
yielded f values closest to the range of target B values are chosen. The results of

this analysis are given later when the D+W load case is considered.
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7.5.2 Load Combinations with L as the Principal Variable I.oad

7.5.2.1 Combinations (1): D, and (2): D + L;
The “theoretical optimums’ obtained with the D + L; combination for the two

critical beams R-0.71 and T-0.14 and the critical Column 1 are given in Table 7.5.
But, because it is assumed that a dead load factor less than 1.2 would not be
accepted by the design community, a dead load factor of 1.2 is selected. With ap =
1.2 different values of oy, are compared graphically. It is found that the existing
factor in NBCC (1990) of 1.5 would give the best results with ap equal to 1.2
except at very low L/D ratios where the reliability index would be too low.
Therefore ap equal to 1.2 and oy, equal to 1.5 are chosen for the D + L;
combination and a D only load case which would govern in this range of low L/D

values is developed.

For the D only load case to govern over 1.2D + 1.5L the op for this case
would have to be higher than 1.2, Values above 1.2 in steps of 0.05 are tried and

1.3 is found to give reliabilities closest to the target f range.

The reliability indices obtained with the theoretical optimum and the practical
optimum chosen above is shown in Figs. 7.21, 7.22 and 7.23 for beam R-0.71,
beam T-0.14 and Column 1, respectively. The lack of consistent reliability for

beam T-0.14 is due to the fact that the op is set equal to 1.2,

The D only case governs up to L/D equal to 0.07. Therefore if L/D is equal to
0 the member would be designed for dead load only. At L/D equal to 0.07 the
factored specified loads for D only and D +L; are the same; i.e., 1.2D, +1.5L, =
1.3D,.

When L/D is less than 0.07, the member would experience both D and L; but

state equation is developed to obtain the reliability for 0.0 <L/D < 0.07 . In this
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case the ‘true’ limit state equation is written for both D + L, and the factored
design equation is written for the D only case with op equal to 1.3.

For 0.0<L/D <0.07

the ‘true’ random limit state equation

R,=D+L

governing design limit state equation

Rx=13D,

by combining these two equations, the limit state equation is

[7.5] 1}:0 (13) - (rD i, .II_;_) -0

nr

The reliability for the case where D only governs is obtained using this
equation and is shown in Figs. 7.21, 7.22 and 7.23. Beyond L/D equal to 0.07 the
D +L; design case governs and the true load combination is also the same.

It is seen from Table 7.5 and Figs. 7.21, 7.22 and 7.23 that the beam T-0.14 is the

critical member when load ratios are in the mid to high range. The reliability in the
lower range of load ratios is important in the choice of aip which is already chosen.
Therefore beam T-0.14 is taken as the critical member in choosing all other load

factors.
7.5.2.2 Combination (3): D + W + L;

With ap equal to 1.2 the theoretical optimum set of load factors obtained are
ow equal to 0.1 and oy, equal to 1.4 for St.John’s. ( This city is chosen because it
has ‘moderate’ load parameters. Further details of this choice are given in Section
7.5.7) In this combination the factored load awW, equal to 0.1W, is insignificant
and can be ignored with little effect on B. The relevant wind load safety check is

the load case D + L;; + W; developed later.
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7.5.2.3 Combination (4): D + S;; + L;

With ap equal to 1.2 the theoretical optimum set of load factors obtained had
os <0.1 and oy, < 1.4 for all the cities considered. In this combination the factored
load oS, equal to 0.18S, is insignificant and can be ignored. The relevant snow

load safety check would then be the load case D + L;; + S; developed later.

71.5.3__Load Combinations with S as the Principal Variable Load

7.5.3.1 Combination (5): D + §;

For this combination the theoretical optimum is ap < 1.1 and o5 equal to 1.9.
However, due to practical considerations ap is chosen to be 1.2 as explained in

Section 7.5.2.1. With ap equal to 1.2 the optimum o is 1.7.

7.5.3.2 Combinations (6): D + L;; + S;, and (7): D + W;; + §;

For the D + L;; + S; combination with ap, equal to 1.2, the theoretical optimum
load factors are o, equal to 0.2 and o5 equal to 1.9. For the D + W;; + §;
combination the theoretical optimum load factors are oiw equal to 0.5 and s equal
to 1.3. Figures 7.24 and 7.25 show that the compromise of 1.2 D + 0.5 L (or
0.4W) + 1.7 § is not unconservative and is also close to the target B values. In the

interest of having easier combinations to use in design these factors are adopted.

7.5.4 Toad Combinations with W as the Principal Variable Lgad

7.5.4.1 Combination (8): D + §;; + W;

With ap equal to 1.2 the theoretical optimum set of load factors obtained had
os smaller or equal to 0.1 and aw smaller or equal to 1.2 for all the cities
considered. In this combination the factored load asS, equal to 0.18, is
insignificant and can be ignored. The relevant wind load safety check would then

be the load case D + L;; + W; developed in the next paragraph.
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7.5.4.2 Combination (9): D +L; + W,
With o equal to 1.2 the theoretical optimum load factors are oy, equal to 0.2

and ouw equal to 1.6. Since oy, is equal to 0.5 is used above with snow load, this
value is checked. The optimum oy is then equal to 1.5. These two sets of values

are compared in Fig. 7.26. The oy equal to 0.5 and aw equal to 1.5 are chosen.

7.5.4.3 Combination (10): D + W;

The D + L;; + W; load case will take care of the cases where D and W effects
add. Member failures where D and W effects oppose each other are considered
herein. As member failure is considered, D opposing W will not be critical for
flexure and shear. As overturning of a member is not a member failure it has not
been considered. This D + W; combination is developed for the tension failure of
columns.

The tension failure analysis is explained in Section 7.5.1. The optimum factors

are found to depend heavily on the wind load parameters. As explained in Section

theoretical optimum obtained is ap equal to 0.85 and aiw equal to 1.5. These

values are shown in Fig. 7.27.

1.5.5 Load Combinations with E as the Principal Variable Load

7.5.5.1 Combinations (11): D + E;, (12): D+ S; + E;, and (13): D + L+ E;

As explained in Chapter 3 the specified exceedance probability format is used
with E combinations. The earthquake load distribution is established for a
specified exceedance probability of 0.0021 which is equivalent to a one in 475 year
load. This is a more extreme distribution than the one in 30 year load. Compared
with the 30 year load the annual probability of exceedance of E is approximately

16 times less.

The load combination. - that include E are formatted differently hecause of the

nature of the earthquake load (infrequent load). An earthquake occus rarely with
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comparatively short holding times. Therefore, when E is the principal load the

expected values of the other loads are their a.p.t. value. In all three load

a.p.t. or expected values which are 1.0D, 0.25 and 0.5L (except in the case of

storage live load which is not considered).

The target B values of 3.0 to 3.5 were established for a building life of 30
years. While all other loads (for normal buildings) are specified at an annual
probability of exceedance of 0.033 the earthquake loads are specified at an annual
probability of exceedance of 0.0021. Because the probabilities of exceedance are

so different the target B values are not applicable to the earthquake loads.

7.5.6 Optimum Load Factors Chos

en

The following 13 load combinations are selected in sections 7.5.2 to 7.5.5. The
factors are developed to be used with the specified loads D, L, S, W and E.
(113D
(2)12D+15L
3)12D+0.1W+14L
(4)12D+0.18+1.4L
(5)1.2D+1.78
(6)1.2D+05L+1.78
(7)12D+04W+178
(8)1.2D+0.1S+1.2W
(9 12D+05L+1.5W
(10)0.85D+1.5W
(11)1.0D+1.0E
(12)1.0D+02S8S+1.0E
(13)1.0D+05L+1.0E



factored loads. Combination (2) governs over cases (3) and (4) in almost all

practical cases. Therefore combinations (3) and (4) are neglected.

When combination (5) is compared with (6) and (7) it is seen that (5) will

never be the governing load case. Therefore combination (5) is neglected.

Similarly, combination (8) is negligible when compared to combination (9).
When load effects add up combination (11) is negligible when compared to
combination (12) and (13). However, when load effects oppose as in tension

failure (11) will govern over (12) and (13).

When load combinations (3), (4), (5) and (8) are deleted the proposed load
combinations and load factors are:
13D
1.2D+15L
12D +0.5L(or0.4W)+1.7$
12D+05L+15W
085D+1.5W
10D+1.0E
10D+02S(or05L) +1.0E

7.5.7 Variable Load Parameters and Their Influence on Reliability

geographical location. Therefore the load variables in the equation should
represent the local variation of the environmental loads. In past studies, average
parameters of environmental loads have been used for all locations. To represent
better the local variation the environmental load distributions for representative
cities are established and these values are used to analyze the reliability at each

location.
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Fifteen major cities distributed uniformly throughout Canada are initially
chosen as representative cities. However, the number of cities considered is
reduced as explained in Section 4.2 and the cities considered for the final analysis

are given in Table 7.6.

The reliability analysis explained in this chapter is done for these cities, It is
clear from the results that the optimum safety factors are sensitive to the load
parameters. This indicated that considering the individual cities separately is
important. If the average of the climatic parameters is used the most critical

combinations of load parameters may not be considered. However, it would also

parameters that existed in a few locations. Therefore, the dependency of reliability

on the load parameters is further investigated.

The optimum load factors obtained for the different cities are found to be
proportional to the mean, |, and standard deviation, o, of the normalized load.
Table 7.6 gives the values of the normalized loads. Figure 7.28 shows that B
depends strongly on the pt and & of the normalized load. Table 7.7 shows that the

load factors required are proportional to the product . x o.

Two strategies are available. The first is to derive the load factors for the city
having the highest |1 x o in which case, they would be conservative, sometimes
excessively so, for all other cities. The second strategy would be to derive the load
factors for a group of cities having a moderate combined value of . x ¢ and to
adjust the specified climatic loads for cities with values of . x o that are
significantly different from the moderate values. The second strategy is used in

this study.

To get consistent safety in different cities the specified load has to be such that
M and o of the normalized load gives a moderate combined value; i.e., around 0,25
to 0.35 depending on the combination, as shown in Fig. 7.28.
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It should be noted that the pu and o of the normalized load both depend on the
nominal load specified for that city; for example,

Sw

and o =

n n

for wind load, p =

where, W is the ‘true’ mean of the wirid load
Ow 18 the ‘true’ standard deviation of the wind load

W, is the nominal/specified wind load.

Therefore, by changing the nominal/specified wind load for a city both the p

and o of the normalized load are changed.

Thus by specifying an appropriate nominal load for each city the uxo values of
all cities can be made similar so that the reliability of the factors would be uniform
for all locations. Load factors are developed for cities where the normalized load
parameters are moderate. For the other cities considered in this study the results
indicate the specified snow load should be increased for Kelowna (because o and
os are both higher for Kelowna as seen in Table 7.7). The specified snow load for
St.John’s, Toronto and Winnipeg seem appropriate. The specified wind load
needs to be decreased in Vancouver and perhaps increased in Regina. Further

study is necessary in specifying load parameters.

The above recommendations are developed using the snow and wind loads in
the NBCC (1990). The NBCC (1995) values were available only very late in
1995. The only changes in 1995 version for the cities used in this study are an
increase in snow load parameters for Kelowna and a decrease in wind load

parameters for Vancouver. These changes agree with the findings herein.

The sensitivity of the load factors to the load parameters can be considered by
looking at the ‘theoretically optimum’ load factors. As subjective measures, such

as graphical comparison, are used to obtain the final load factors their sensitivity to
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7.6

the load factors cannot be measured independently. Table 7.7 shows that

John’s and Winnipeg it is seen that a 9 % difference in 1 x o did not have an
impact on the ‘theoretical optimum’ load factors. When comparing Toronto and
Winnipeg it is seen that a 24% difference in snow load H x o made a 12%

difference in the corresponding load factor.
Comparison of Existing and Proposed Load and Resistance Factors

The load and resistance factors proposed in this study are compared with the
existing factors specified in A23.3-94 and NBCC (1990). Figures 7.29 to 7.3< give
graphical representations of B for the different load combinations. The load

combinations with E are not given here because the target (3 value do not apply to

The true failure is modelled using Turkstra’s rule (Turkstra 1972) which states
that the critical load combination is most likely when one variable load takes a
maximum and the other loads take companion values. The governing load cases
are handled by using the governing case for the factored design equation and
actual load combination for the ‘true’ variable equation (as detailed in section

7.5.2.1).

When a two load combination and three load combination are compared, the
true load idealization gets more complicated. This is because the two load

combination involves only characteristic loads while the three load combination
the combination giving the lowest reliability of these possibilities are given in the

Figs. 7.29 to 7.36. The proposed load and resistance factors give B values very

close to the target range.
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Table 7.1 - Weightings used for different load ratios

SD Weight
02| 255
04| 208
0.6 17.1
0.8 13.0
1.0 9.3
1.2 6.9
1.4 3.7
1.6 23
1.8 1.4

Table 7.2 - Highest ¢, values that ensure B
within or above the target range

L/D Weight
0.0 0.0
0.2 11.8
0.4 23.5
0.6 23.5
0.8 17.6
1.0 94
1.2 7.1
1.4 5.9
1.6 1.2
1.8 0.0

Beam
[ R-0.71 |T-0.14
0.60 1.00 0.85
0.65 0.95 0.85
0.70 0.90 0.85
0.75 0.875 0.825

Table 7.3 - Highest ¢ values that ensure 8
within or above the target range

Column
s Column 1]Column 2
0.80 0.675 0.750
0.85 0.675 0.725
0.90 0.650 0.700
0.95 0.650 0.675

177

W/D___ |Weight
05 10
1.0 10
1.5 10
2.0 10
2.5 10
3.0 10
3.5 10
4.0 10
4.5 10
50, 10




Table 7.4 - Results of shear analysis o
b 0.7 0.65 0.65] 07
8 0.85 0.85 0.85 0.85
Constant* 0.2 0.2 0.17 0.17
LD _ i B _
' 0 2.73 2.91 3.26 3.11
0.4 3.12 3.28 3.61 3.46

0.8 3.12 3.27 3.58 3.44

1.2 3.05 3.20 3.49 3.36

1.6 2.99 3.13 341 3.29

2 2.95 3.08 3.36 3.24

24 291 3.05 3.32 3.20

) 2.8 2.89 3.02 3.28] 316
*Constant in V, equation ' -

Table 7.5 - 'Theoretical optimums' for D + L; combination
I}iember, - ] 9D é-;L
Beam R-0.71 1.15 1.50

Beam T-0.14 1.00 1.65

Column1 1.25 1.25
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Table 7.6 - Normalized characteristic load parameters used in this study

R — Normalized load
Load |City Ty c_ | COV | uxo

D 1.03 0.096 0.093 0.10
L 0.92 0.24 0.26 0.22

S Kelowna 1.04 0.41 0.39 0.43
Regina 0.76 0.32 0.42 0.24
Winnipeg 0.84 0.37 0.44 0.31
Toronto 1.01 0.25 0.25 0.25
St.John's 0.94 0.36 0.38 0.34

W |Vancouver] 0.49 0.15 0.31 0.07
Winnipeg 0.61 0.23 0.38 0.14
Toronto 0.65 0.21 0.32 0.14
St.John's 0.81 0.29 0.36 0.23

Table 7.7 - Normalized load parameters with required load factors

Theoretical optimum with ap =12

_DHLj+S; D+L+W;

_Load [City | uxo oL | o5 ay, Olw

S Kelowna 0.43 0.5 1.9
Regina 024 0.2 1.7
Winnipeg 0.31 0.2 1.9

Toronto 0.25 0.2 1.7
St.John's 0.34 0.2 1.9

W Vancouver] 0.07 <0.1 <1.1
Winnipeg 0.14 0.2 1.2
Toronto 0.14 0.2 1.2
St.John's 0.23 0.2 1.6
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Beam R-0.14 with ¢. = 0.6 for different values of ¢,

ﬂ

05 1 15 2 25
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Figure 7.1 - Effects of changing a resistance factor

Beta for R-0.57 with op=1.25 for different o values
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Figure 7.2 - Effects of changing a load factor
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Beam T-0.14 with ¢.= 0.65 for p = 3,00 - 3.25
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Figure 7.3 - Graph of ¢, vs L/D for the target f range
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Figure 7.4 - Graphical representation of adjusted optimum factors
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Beam R-0.14 with ¢, = 0.85 for different values of ¢,

45— - —

35 D e - e S

o _ —9—0.60
25 1— T —f— —m—065
24— — - —_—— —A—0.70
15 {— — — S R ——

05 I N —

Figure 7.5 - Effect of ¢, on the reliability of under-reinforced beams in flexure

—6—085
—8—09

Figure 7.6 - Effect of ¢, on the reliability of under-reinforced beams in flexure
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Column 1 with ¢, = 0.86 for different values of .

e
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B 2+ ~8—0.65
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Figure 7.7 - Effect of ¢. on the reliability of columns (compression failure)

Column 1 with ¢.=0.60 for different values of ¢,

3+

25+ ——0.80
—8—0.85

B 27 —4—090
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Figure 7.8 - Effect of ¢, on the reliability of columns (compression failure)
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Beta for A23.3-M94
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Figure 7.9 - Reliability of different kinds of beams
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Figure 7.10 - Column reliability for A23.3-94



Beam R-0.71 with ¢, = 0.60 Beam R-0.71 with ¢. =0.70
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Figure 7.11 - Combinations of ¢, and ¢,, for R-0.71, that ensure = 3.00 to 3.25



Beam T-0.14 with ¢.= 0.60

1.1
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Beam T-0.14 with §.=0.70
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Figure 7.12 - Combinations of ¢, and ¢,, for T-0.14, that ensure 8 = 3.00 to 3.25
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Column 1 with ¢,= 0.80 Column 1 with ¢,= 0.90
0.8 09 _ o
0.8 0.8 ) I A
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Figure 7.13 - Combinations of ¢ and ¢,, for Column 1, that ensure B = 3.25 to 3.50
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Column 2 with 4,= 0.80
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Column 2 with ¢,= 0.90
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Figure 7.14 - Combinations of ¢, and ¢,, for Column 2, that ensure B = 3.25 to 3.50
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Figure 7.15 - Shear reliability of nine different beams

According to A23.3-94 with Vf<Vc/2

——s1v0
—A—sivi
—M—351\2
——s52v0
——52v1
——s52v2
—0—s3v0
~—s3v1
T ” ] ) ~0—353v2

T

ha
Ko W

—

o :
o o= in

|

]

|

|

\

|

|

0 05 1 1.5 2 25 3

Figure 7.16 - Shear reliability of nine different beams with
limitation for beams without stirrups
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Shear reliability according to A23.3-94
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Figure 7.17 - Shear reliability of beams considered in this study
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Beta for R-0.57 with ap=1.25 for different o, values
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Figure 7.18 - Effect on B when the dead load and live load factors are changed
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Figure 7.19 - Interaction diagram in 'true’ space
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Figure 7.20 - Interaction diagram in factored nominal space
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Reliability of R-0.71 for different {ap,aL) combinations

[ ———{1.15.1.5) theoretical

optimum
1 =X~ (1.2,1.5) practical
B optimurn with 1.3 facter
154 for D only
- == = - - Target beta range
1 =+
05 o
0 ' I
0 0.5 1 15 2 25 3

Flgufe 7.21- Rehablhty of thlmum load factors for beam R-0.71 for D+L;
combination (with a D only case introduced for the practical optimum)

Reliability of T-0.14 for different (ap,c,) combinations

—8—(1.0,1.65) theoretical
optimum

{—| —%—(1.2,1.5) practical
optimum with 1.3 factor
for D only

= = = = - - Target beta range

Figure 7.22 - Reliability of optimum load factors fDr beam T-0.14 for D+L;
combination (with a D only case introduced for the practical optimum)
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Reliability of Column 1 for different (ap,x ) combinations

——(1.25,1.25) theoretical _
optimum
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2+ optimum with 1.3 facter
B for D only

151 * = == - - Target Beta range

Figure 7.23 - Reliability of optimum load factors for Column 1 for D+L; combination
(with a D only case introduced for the practical optimum)
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Reliability for different («.,cs) combinations
Beam T-0.14 - St.John's with L/D = 1.0
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Figure 7.24 - Reliability of optimum load factors for beam T-0.14 for D+Li+S;
combination
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Figure 7.25 - Reliability of optimum load factors for beam T-0.14 for D+W;+S;
combination
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Reliability for T-0.14 for different («,aw) combinations
St.John's with L/D = 1.0
45 1
4 4
35+
R o —@—(0.2,1.6) theoretical
e R 0T optimum
254 —X-—(0.5,1.5) practical
B 2l optimum
------ Target Beta range
151
1 o+
05+
0 t t t t !
0 1 2 3 4 5
WD

Figure 7.26 - Reliability of optimum load factors for beam T-0.14 for DL +W;

combination
Reliability for Column 1 for different (ap,0w) combinations
D + W, for tension failure .
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Figure 7.27 - Reliability of optimum load factors for Column 1 for D + W, combination
(Tension failure)
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With 1.2 D +0.2 L +1.8 W and the o of the normalized W
load held constant at 0.3 (L/D = 1.0)
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Comparison of factors in flexure - Beam R-0.71
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Figure 7.29 - Comparison of proposed load and resistance factors with
those from CSA A23.3-94 (Beam R-0.71 for max. of D and D+L )

Comparison of factors in flexure - Beam T-0.14
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Figure 7.30 - Comparison of proposed load and resistance factors with
those from CSA A23.3-94 (Beam T-0.14 for max. of D and D+L )
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Comparison of factors under compression failure
Column 1 - Max. of D and D+L
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Figure 7.31 - Comparison of proposed load and resistance factors with
those from CSA A23.3-94(Column 1 for max. of D and D+L )
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Figure 7.32 - Comparison of proposed load and resistance factors with
those from CSA A23.3-94 (Beam s2v1 for max. of D and D+L )
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Comparison of factors - Beam T-0.14
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Figure 7.33 - Comparison of proposed load and resistance factors with those
from CSA A23.3-94 (Beam T-0.14 for max. of D+L, D+L+W and D+W )

Comparison of factors - Beam T-0.14
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Figure 7.34 - Comparison of proposed load and resistance factors with
those from CSA A23.3-94 (Beam T-0.14 for max. of D+L, D+L+S and D+S)
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Comparison of factors - Beam T-0.14
D+W+S with W/D=2.0
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Figure 7.35 - Comparison of proposed load and resistance factors with
those from CSA A23.3-94 (Beam T-0.14 for D+W+S)
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Figure 7.36 - Comparison of proposed load and resistance factors with
those from CSA A23.3-94 (Beam T-0.14 for D+W )
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CHAPTER 8

SUMMARY AND CONCLUSIONS

Summary

The objective of this thesis is to develop an optimum set of load and resistance
factors to be used in the design of concrete structures in Canada. Load and
resistance factors are utilized in the design of structures to provide a desired

reliability.

A preliminary study of the types of reliability methods is performed. The
Hasofer and Lind reliability index is chosen for use because it provides mechanical
invariance and is a measure of the reliability at the ‘design point’ where failure is
most likely to occur. The Hasofer and Lind reliability method is essentially a first
order second moment method but by using the normal approximation of the critical
tail regions of the variables the distribution type can also be incorporated in the
analysis. This is done using the Rackwitz Fiessler algorithm. The FORM (First
Order Reliability Methods) subroutine (Gollwitzer et al. 1990) that performs this

algorithm is adapted to perform the main reliability analysis.

A load factor format and a resistance factor format that could provide uniform
safety with varying load ratios and design situations is necessary. The different
load and resistance idealizations and the methods of finding the maximum probable
load combination are studied. The Borges and Castenheta processes are found to
represent variable loads adequately. The companion action load factor method is
selected because the load combination format for combinations of frequent loads
because it is the best representation of the maximum load combinations. The
specified exceedance probability design format is selected for load combinations

including earthquake loads because this format better represents combinations of
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infrequent loads. Similarly, the material resistance factor format is selected as the

most appropriate format for concrete structures in Canada.

The loads and resistances that are necessary to derive the load and resistance
factors are defined and established in probabilistic terms. The basic variables that
affect the load effect and resistance are obtained from environmental data or from

the literature.

Data for snow and wind loads, ground snow depth, rain on snow and wind
speed data are obtained from Environment Canada. Fifteen cities geographically
distributed though out Canada are initially chosen as representative locations. The
variables necessary to simulate the snow load and the wind speed are obtained for
all these cities. The observation that similar values occurred in several cities
allowed a reduction in the number of cities considered. Therefore seven cities are
chosen so that the whole range of wind speeds and snow depths are represented.
These seven cities are Vancouver, Kelowna, Yellowknife, Regina, Winnipeg,

Toronto and St.John’s.

Other basic variables that affect the snow and wind load, such as ground to
roof snow load conversion factor, snow density, air density, and so on are obtained
by analyzing data given in the literature. Where appropriate, these are also

obtained for the representative cities.

Using the basic variables, the wind and snow loads are simulated using Monte
Carlo simulation methods. This is done for all seven representative cities. A
computer program is developed to generate the random variables, model variables,
carry out the simulations and fit distributions. This program is written in SAS

software programming language and an example is given in Appendix A.
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The distributions of the earthquake load are developed using extreme value
theory and data from literature. This is done for the representative cities that had

significant earthquake loading,

Once the wind and snow loads were simulated and used for the reliability
analysis it was realized that the different cities gave significantly different load
factors. Because it is not possible to calibrate the load factors to suit this whole
range, the locations where the bias factor of the load is within plus or minus one
third of the overall average bias factor for the seven cities are used for the
reliability studies. As explained in Sections 4.5.4 and 4.6.5 the snow load values
used in the calibration are for Kelowna, Regina, Winnipeg, Toronto and St.John's

and the wind load values are for Vancouver, Winnipeg, Toronto and St.John’s.

The proposed load factors were obtained for locations with moderate load
parameters. The implications of the climatic variability are discussed in Section
7.5.7 where it is recommended that the specified load values in NBCC for some

locations need reconsideration, The existing load factors were derived for average

with moderate parameters. Thus the proposed factors are no less applicable to the

whole of Canada than the existing factors.

Basic variables for member resistances are obtained from the literature. Current
levels of quality control and types of variability are reflected in these variables.
Member resistances are simulated using Monte Carlo simulation methods. For the
simulation of beam and column resistances the moment curvature analysis, variable
modeling, simulation and distribution fitting are done by developing a SAS
program. These simulation results are utilized to develop flexural strength
distributions for beams and variable interaction diagrams for the columns. The

shear resistance is simulated using Zsutty’s (1971) regression equations.
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It is necessary to establish acceptable measures of reliability upon which to
base the load and resistance factors. The desirable target level of safety, i.e., a
target reliability index, Br, is chosen by evaluating reliability indices implicit in
existing successful practice and by reviewing levels of safety used and
recommended by other researchers. The reliability indices implicit in practice are
obtained by evaluating the reliability of CSA A23.3-M84.

The reliability analysis is based on a limit state equation. A method of
formulating a limit state equation is developed by combining the ‘true’ limit state,
where the structure is about to fail, and the design limit state, that is used in the

design office. The ‘true’ limit state is written in terms of variables which are the

situations.

The load and resistance factors are developed for ultimate limit state design
considering flexure, combined flexure and axial load, and shear. A method of
analyzing the reliability of column tension failure is developed. Tension failure of
columns where the axial load effect due to gravity load acts to prevent failure has

to be analyzed both in terms of moment and axial force so that the characteristics

of the tension failure portion of the interaction diagram can be taken into account.

The load and resistance factors are optimized to give desirable safety indizes in
all situations, but practical limitations and simplicity of load combinations are also
taken into account. Optimization is done using both an optimization function as
well as graphical methods. A wide range of possible load combinations are
considered. Once the load factors were developed, some load combinations were
combinations presented in the conclusions are the critical load combinations that

need to be considered. The load and resistance factors and load combinations are
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developed for use with design methods specified in CSA A23.3 - 94 and the loads
specified in NBCC 1995,

8.2 Conclusions

Results of Evaluating NBCC 1990 and CSA A23.3-M84

The beam with a steel ratio of 0,71 Py (approximately the maximum allowed by
A23.3-M84) has a significantly lower reliability for low live to dead ratios than the
beams with lower steel ratios., This suggests that the maximum steel ratio allowed
in beams should be revised to a lower value than 0.71 py. It appears that even
though such a beam is nominally under-reinforced, some members will be over-
reinforced due to the variability in beam parameters giving a higher variability in
member strength. A representative value for B for the dead plus live load case is

around 3.75 for the beams with lower ratios of steel and around 3.5 for the beam

with p = 0.71 p,,

For beams with dead plus snow loads the typical values of B, range from 2.6
for Kelowna, which has a highly variable snow load, to 3.25 for Toronto which has
a low variability in its snow load. It is found that B for dead plus live plus wind
loads is in the range of 2.5 to 3.5 for the practical range of W/D values, It is also
observed that when the wind variability is high, the values of B decrease with

higher values of W/D.

- For column compression failures, the B values obtained are around 3.5 to0 4.0.
For tension failures of columns B varied significantly according to the load

parameters.

The evaluation of B values implicit in NBCC 1990 and A23.3-M84 yielded a
large range of values. Although the average [ values are around 3.5, the whole

range is between 2.0 and 5.0.
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8.2.2 Selection of Target Beta Values

As the existing probability factor load combination format cannot yield uniform
reliabilities as a function of load ratios, a conservative average P is necessary to
make the reliability adequate for the critical load ratios. Therefore the average
value B = 3.5 obtained from evaluating existing practice is considered to be a

conservative value for B,

The literature review suggests that 3.0 to 3.5 is a desirable range of Br values.
Considering all the B values obtained in the calibration and the; values used by
other researchers the following Br values are selected for use in developing the
load and resistance factors in this study.

Br =3.00 to 3.25 for gradual failure

Br =3.25 to 3.50 for sudden failure

8.2.3 Selection of Load And Resistance Formats

Companion action load factors reflect actual load combinations more closely
than the probability factor format. The companion action load factor format is used
to develop load factors for frequent loads. The principal loads are taken at
characteristic values and accompanying companion load definitions are given in

Section 3.2.7.

For load combinations that include earthquake loads the specified exceedance
probability design format is used. The earthquake load, which is always the
principal load, is taken at a specified probability of exceedance of 0.0021 per
annum. A factor of 1.0 is applied on the earthquake load. For the dead load, in
earthquake load combinations, a factor of 1.0 is used because this is the likely
value and because the earthquake load is dependent on the dead load or mass of
the structure. With earthquake loads the other companion loads have been taken
as the a.p.t. values and are represented as some fraction of the characteristic load,

Load factors for NBCC were reevaluated based on these formats,
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The resistance factors are developed using the material resistance factor
format. The resistance factors are developed for use with design methods specified
in CSA A23.3 - 94,

8.2.4 Recommended Resistance Factors

The optimum set of resistance factors for concrete buildings in Canada,
developed in this study, are; ¢ = 0.65 and ¢, = 0.85 for non-prestressed concrete
and reinforcement respectively. These resistance factors require a minor revision
in the calculation of V.. It is recommended that V, = 0.17 A, de E bw d be used
for members with flexural reinforcement ratios greater than or equal to 1.0%. This
value of V. is applicable to members with stirrups or members without stirrups that

are governed by clause 11.2.8.1 of A23.3-94.

5 _Recommended 1oad Factors and Combinations

load factors are derived. Out of these combinations the following set of
combinations are found to be the critical cases that would govern. Therefore the

proposed load combinations and load factors are:

13D

12D+15L

1.2D+05L (or 0.4 W)+ 1.7 8
12D+05L+1.5W
085D+15W

1.OD+1.0E
1.0D+0.28S(or0.5L) +1.0E

Environmental load parameters are found to vary significantly throughout
Canada and locally. Averaging load parameters for reliability studies is found to be

inappropriate. A number of cities are identified where the NBCC specified loads
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8.3

appear to need adjustment. These anomalous cities are not used in the load and

resistance factor calibration.

The load factors are found to depend heavily on the normalized load
parameters. Load factors are developed for load parameters in-cities with moderate
normalized load parameters. For the cities with moderate load parameters the
nominal load parameters specified in NBCC (1990) are appropriate for the load
distributions of that city. For the other cities considered in this study the results
indicate (as seen in Table 7.5 and 7.6) the specified snow load should be increased
for Kelowna and decreased for Regina. The specified wind load should be

decreased in Vancouver.

Future Research Areas

As already noted, the reliability at different locations varied significantly
according to the normalized load parameters. The reliability of a member depended
heavily on the mean and the standard deviation of the normalized load. By
specifying nominal loads according to the load distributions and variabilities
uniform reliability could be achieved. Further investigation is necessary to specify
loads appropriately.

Loads due to prestressing, imposed deformation (such as temperature, creep,
shrinkage and support settlement) and earth pressure need to be investigated in a
reliability analysis,

Extension of this study to steel, timber and masonry structures is necessary, so

that common load factors for all materials can be established.
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APPENDIX A
SAS PROGRAM TO SIMULATE AND MODEL WIND LOAD

The following program was developed to simulate and model the wind load for
Vancouver. Similar programs were developed for snow load etc. The parameters of the
basic variables used in this program is established in section 4.6, The background to the
procedure for which the program is used is given in sections 4.5.3 and 4.6.3

options nocenter;
libname lib 'c:\saslib’,;

*¥***Simulating Cw,V,Ce,Cp,Cg and p;
data wlvanl;

doI=1to 10000;
*Generating Cw;
Cw = 4.82e-5+5.10e-7*rannor(-1),
*Generating V10,V30 and V100;
u3 =ranuni(-1);
V10 = 65.082 - (log(-log((u3)**(1/10))))/.151;
V30 = 65.082 - (log(-log((u3)**(1/30))))/.151;
V100 = 65.082 - (log(-log((u3)**(1/100))))/.151;
*Generating Ce;
Ce = 1.0+ .08*rannor(-1);
*Generating Cp;
Cp = 1.0+ .1*rannor(-1);
*Generating Cg;
Cg = 1.0+ .1*rannor(-1);
*Calculate p10,p30 and p100;
pl10 = Cw*V10**2/45*Ce*Cp*Cg* 85* 85;
p30 = Cw*V30#*2/.55*Ce*Cp*Cg*.85* 85;
p100 = Cw*V100**2/.67*Ce*Cp*Cg*.85* .85;
output;

end;run;

**#%*Check if Cw has a normal distribution;
data checkC;

set wivanl(keep=Cw);
proc sort;

by Cw;
data sorted1; set checkc;

obs= n_;
prob=obs/10001;
fx=4.82e-5+5.10e-7*probit(prob);



proc reg; model fx=c;
title 'Check if Cw has a normal distribution';
run;

**#**Check if V's have maxima of Gumbel distribution;
data checkV;
set wivan1(keep=V10);
proc sort;
by V10,
data sorted2; set checkV;
obs= n_;
prob=0bs/10001;
£x=65.082 - (log(-log((prob)**(1/10))))/.151;
proc reg; model fx=V10;
title 'Check if V10 has a maxima of Gumbel distribution';
run,
data checkV;
set wlvanl(keep=V30);
proc sort;
by V30,
data sorted2; set checkV;
obs= n_;
prob=0bs/10001;
£x=65.082 - (log(-log((prob)**(1/30))))/.151;
proc reg; model fx=V30;
title 'Check if V30 has a maxima of Gumbel distribution’;
run,
data checkV,
set wlvanl(keep=V100);
proc sort;
by V100;
data sorted2; set checkV;
obs=_n_;
prob=obs/10001;
£x=65.082 - (log(-log((prob)**(1/100))))/.151;
proc reg; model fx=V100;
title 'Check if V100 has a maxima of Gumbe! distribution';
run;

**¥%*Check if Ce has a normal distribution;
data checkd;
set wlvanl(keep=Ce),
proc sort;
by Ce;
data sorted3; set checkd;
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obs=_n_;
prob=0bs/10001;
fi=1+.08*probit(prob);
proc reg; model fx=Ce;
title 'Check if Ce has a normal distribution’;
rmn,

*#¥**Check if Cp has a normal distribution;
data checkd;
set wivan1(keep=Cp);
proc sort;
by Cp;
data sorted3; set checkd;
obs=_n_;
prob=0bs/10001;
fi=1+.1*probit(prob);
proc reg; model fx=Cp;,
title 'Check if Cp has a normal distribution';
run;

*#***Check if Cg has a normal distribution;
data checkd;

set wlvanl(keep=Cg);
proc sort;

by Cg;
data sorted3; set checkd;

obs=_n_;

prob=0bs/10001;

fix=1-+.1*probit(prob);
proc reg; model fx=Cg;

title 'Check if Cg has a normal distribution';
run;

*****Find the best fit distribution to p (above the 95th percentile);
data wlvan2;
set wlvanl(keep=p10);
proc sort;
by p10;
proc univariate;
data wlvan95; set wlvan2;
obs= n_;
fi=obs/10001;
if fi>=95;
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run,;

data fits;
set wivan95;
rl=fi;
r2=log(fi) ;
r3=exp(fi) ;
r4=-log(-log(fi)) ;
rS=probit(fi) ;
fratio=1.0; dfi=5.0; df2=10.0; ré6=fhonct(fratio,dfi,df2,fi/2);
r7=probit(fi);
r7=exp(r7);
ag=35.0; r8=gaminv(fi,ag);
ab=2.0; bb=5.0; r9=betainv(fi,ab,bb);
t=1.0; df=20.0; r10=tnonct(t,df,fi);
proc reg ; model r1=p10; run;
proc reg ; model r2=p10; run;
proc reg ; model r3=p10; run;
proc reg ; model r4=p10; run;
proc reg ; model r5=p10; run;
proc reg ; model r6=p10; run;
proc reg ; model r7=p10; run;
proc reg ; model r8=p10; run;
proc reg ; model r9=p10; run;
proc reg ; model r10=p10; run; quit;
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APPENDIX B
SAS PROGRAM TO SIMULATE AND MODEL COLUMN STRENGTH

The following program was developed to simulate and model column strength. This
program simulates the moment resistance of the Column 1 at the axial load level 0.1 Py.
Similar programs were developed for other axial load levels so that the variable interaction
diagram could be developed. The parameters of the basic variables used in this program is
established in Chapter 5. The background to the procedure for which the program is used

is given in section 5.4.2.

options nocenter,;

data mean;
input fcIn fyn Asln Asn dn d1n bnn hn;
cards;

41.68 442 1023 1023 379 72 451.5 451.5

]

data constP;
set mean,;

Px= 0.9*fcIn*(bnn*hn-Asn-As1n)+fyn*(Asn+AslIn);
prop=0.1;
P = prop*Px;

data basic (keep = fcl fy fir Ec Asl AsEsd d1b hP phi Mr),
set constP (keep=prop P);
***x*Simulating basic variables;
do sec = 1 to 5000;
*Generating b and h;
bn=450.0;
db = 1.5 + 6.4*rannor(-1);
b = bn + db;
h=b;
*Generating d;
d =379 + 7.7*rannor(-1);
*Generating d1;
d1 =72 + 4.2*rannor(-1),
*Generating fy;
Infy = 4.288 + 0.3345*rannor(-1);
fy = exp(Infy)+365;
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*Generating fc1,fir & Ec;

Infc1 = 3.705 + 0.224*rannor(-1);

fcl = 0.85*exp(Infcl);
fir=8.3*((fc1*145.033)**0.5)*0.96*(1-+0.11*log10(fc1*145.033/60/60)) *6895¢-6:;
Ec=60400*((fc1*145.033)**0.5)*0.96*(1.16+0.08*log1 0(60*60))*6895¢-6;
*Generating Es;

Es = 201000 + 6598*rannor(-1);

*Generating As;

InAfAc = -2.383 + 0.4*rannor(-1);

AfAc = exp(InAfAc)+0.91;

Asn=1012.5;

As = Asn*AfAc;

Asl=As;

*#****Find coordinates of M-phi diagram;

stop=100. ;
Mr=0.0e0;
format Mr el0.;
if prop=0.99 then do;
star=0.5;
incr=0.5;
end;
else if prop=0.0 or prop=0.1 then do;
star=20.;
incr=2.;
end,;
else do;
star =3;
incr =2 ;
end;
do i = star to stop by incr;
phi =i*1.e-6;
format phi el0.;
ep1=0.001;
doj=11to070;
ep4= epl- phi*h;
c=epl*h/(epl-ep4d);
if c>h then cact =h ;
else cact=c;
*******************Find CC and MCC;
if cact>h/2 then do;
step=cact/25,
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mark=25,
end;
else do;
step=cact/15;
mark=15;
end,
epex=ep1-+step/2*phi;
Cc=0.0;
Mcc=0.0;
n=0.8+fc1/17;
Ec2=3320*sqrt(fc1)+6900;
epO=n*fcl/(Ec2*(n-1));
do k=1 to mark;
epx=epex-k*step*phi;
x=epx/ep0;
if x<=1.0 then kk=1.0;
else kk=0.67+fc1/62;
if kk<1.0 then kk=1.0;
fex=fc1*n*x/(n-1+x**(n*kk));
Cce=Cc + fex*step*b,
Mcc=Mcc+ fox*step*b*(h/2+step/2-k*step);
end;
epct=-fir/Ec;
dt=epct/phi,
if cact-dt<=h then do;
Ce=Cc + 0.5*fir*dt*b;
Mece=Mcc + 2/3*dt*0.5*fir*dt*b;
end;
it*******************;
ep2=epl-(epl-ep4)*d1/h;
if Es*ep2>-fy and Es*ep2<fy then fs2= Es*ep2;
else if Es*ep2>fy then fs2=fy,
else fs2=-fy;
x2=ep2/ep0;
if x2>0.0 then do;
if x2<=1.0 then kk2=1.0;
else kk2=0.67+fc1/62;
if kk2<1.0 then kk2=1.0;
fe2=fc1*n*x2/(n-1+x2**(n*kk2));
Cs=(fs2-fc2)*Asl,;
end;
else do;
Cs=(fs2)*Asl;
end;
ep3=epl-(epl-ep4)*d/h;
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if Es*ep3>-fy and Es*ep3<fy then fs3= Es*ep3;
else if Es*ep3>fy then fs3=fy;
else fs3=-fy;
x3=ep3/ep0;
if x3>0.0 then do;
if x3<=1.0 then kk3=1.0;
else kk3=0.67-+fc1/62;
if kk3<1.0 then kk3=1.0;
fe3=fc1*n*x3/(n-1+x3**(n*kk3));
end;
if c<d then T=fs3*As;
else T=(fs3-fc3)*As;
sigP=Cc+Cs+T;
dif=P-sigP;
* put "ep1 sigP " ep1 sigP;
if abs(dif)<(P+6000)*1e-3 then go to out;
if prop=0.99 or prop=0.9 then change=3.e-10;
else if prop=0.0 or prop=0.1 then change=7.e-10;
else change=4.e-10;
epl=epl+dif*change,;
if ep1<0 then go to out2;
end,;
if abs(dif)>(P+6000)*1e-3 then go to out3;
out:;
M=Mecc+Cs*(h/2-d1)+T*(h/2-d);
if M>Mr then Mr=M;
else i=stop;
* put "Mr" Mr;
* put "phi" phi;
end; '

phi=phi-incr*1.e-6;

output;

end;

out2:TF EP1<0 THEN put "ERROR!!! NEGATIVE EP1";
out3:1f abs(dif)>(P+5000)*1e-3 then put "P didnot converge";
out4:If M>=Mr then put "Mr is not a maximum":

runm;

#¥¥*¥Find the best fit distribution to Mr ;
. data fitmo;
set basic(keep=Mr);
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title 'Check fit of Mr',
proc sort;

by Mr;
proc univariate;,
data fitmoreg; set fitmo;

obs= n_;

fi=0bs/5001;

if fi<=0.10;

run;

data fitsmo;
set fitmoreg;

rl=fi;

r2=log(fi) ;

r3=exp(fi) ;

r4=-log(-log(fi)) ;

r5=probit(fi) ;

fratio=1.0; dfi=5.0; df2=10.0; ré=fnonct(fratio,dfi,df2,£i/2);
r7=probit(fi);

Inmr=log(Mr);

ab=2.0; bb=5.0; r9=betainv(fi,ab,bb);
t=1.0; df=20.0; r10=tnonct(t,df,fi);
proc reg ; model r1=Mr; run;

proc reg ; model r2=Mr,; run;

proc reg ; model r3=MTr; run;

proc reg ; model r4=Mr; run;

proc reg ; model r5=Mr; run;

proc reg ; model r6=MTr; run;

proc reg ; model Inmr=r7; run;
proc reg ; model r9=Mr; run;

proc reg ; model r10=Mr; run;
run;quit;
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