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Abstract

Recently, increasing attention has been given to the theoretical and practical analysis of large-

scale networked systems. Large-scale systems are usually composed of several interconnected

subsystems connected through material and energy flows. Due to the scale of these systems

and the interactions among subsystems, the design of appropriate process monitoring and

control systems is challenging. To handle the scale and interactions of large-scale networked

systems in process monitoring and control, distributed predictive control and distributed

moving horizon estimation approaches have been developed. The distributed framework

can improve the performance of the decentralized network and outperform the centralized

framework in terms of fault tolerance. Most of the existing distributed control and process

monitoring strategies require the availability of the state measurements of all subsystems;

however this requirement may not be satisfied in many applications.

In this thesis, we propose a distributed adaptive high-gain extended Kalman filtering ap-

proach for nonlinear systems. Specifically, we consider a class of nonlinear systems that are

composed of several subsystems interacting with each other via their states. In the proposed

approach, an adaptive high-gain extended Kalman filter is designed for each subsystem. The

distributed filters communicate with each other to exchange subsystems’ estimates. First, as-

suming continuous communication among the distributed filters, an implementation strategy

which specifies how the distributed filters should communicate is designed and the detailed

design of the subsystem filter is described. Second, we consider the case where the subsystem

filters communicate to exchange information at discrete-time instants. Following this, the
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problem of time-varying delays and data losses in communications between subsystems’ esti-

mators is considered. For these two latter cases, a state predictor is used in each subsystem

filter to provide predictions of the states of other subsystems. Also, to reduce the num-

ber of information transmission among the filters and prevent data trafficking, a triggered

communication strategy is developed. The stability properties of the proposed distributed

estimation schemes with the described communication types are analyzed. Finally, the ef-

fectiveness and applicability of the proposed schemes are illustrated via the applications to

simulated chemical processes and a Three-Tank experimental system.
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Chapter 1

Introduction

1.1 Motivation

Improvement of operating performance in today’s industry is highly demanded, and huge

amount of capital is invested to enhance the productivity and profitability of industrial

processes. Model predictive control is an advanced strategy in process control which can

optimize process operation in real time with the ability to handle constraints and nonlin-

earities. However, advanced control systems typically require measuring the entire process

states which in general is difficult. State estimation is a technique that reconstructs entire

process state estimates based on a process model and output measurements to improve the

control performance and assist in process monitoring.

In the literature, there are many results on the evaluation of centralized and decentralized

schemes in state estimator designs for different classes of systems [1, 2, 3, 4, 5]. However, the

performance of these structures may suffer from poor fault tolerance, high complexity and the

inability to compensate for interactions in systems composed of interconnected subsystems.

In order to resolve the mentioned issues, distributed estimation is proposed which not only

maintains the flexibility of decentralized scheme, but also handles the complexity and poor

fault tolerance associated with the centralized framework.
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Moving horizon estimation and Kalman filter are two main categories of state estimation

which have been designed in distributed framework for linear and nonlinear large-scale net-

worked systems. The existing results on distributed Kalman filtering are mostly developed

based on consensus algorithms with the application to sensor networks [6, 7, 8, 9], however

none of them take the advantage of high-gain extended Kalman fitler to provide the global

convergence for nonlinear systems. In order to hold both the global convergence of high-gain

EKF and the noise smoothing property associated with regular EKF, an adaptive-gain EKF

is proposed in [10]. On the other hand, to handle the nonlinearities in large-scale systems ex-

plicitly, a number of researches have been conducted through the application of distributed

moving horizon estimation subject to communication issues [11, 12, 13, 14]. Despite the

mentioned capability, distributed moving horizon estimation is much more computationally

expensive than Kalman filters. Motivated by the above considerations, this thesis proposes

a distributed adaptive high-gain EKF for a class of nonlinear systems that are composed of

several interacting subsystems.

1.2 Background

Environmental responsibilities, process safety and profitability are highly associated with

the improvement of modern process control systems in today’s industry. The operation

of complex large-scale chemical processes has attracted significant attention in industry to

increase the operating efficiency and profits. Large-scale chemical processes include several

unit operations (subsystems) which interact through material and energy flows. In the design

of automatic control systems for such complex large-scale processes, the increased scale of

the process and interaction among subsystems cause many challenges in fulfillment of the

fundamental safety, environmental sustainability and profitability requirements [15].

One approach to improve the performance of large scale processes is to deploy optimal

plant-wide strategies to ensure safe and efficient operations. Traditionally, the control and
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Figure 1.1: Decentralized framework

monitoring of large-scale networked systems were established in either centralized or decen-

tralized framework. For applications involving large-scale systems, centralized algorithms

are in general not favorable due to organizational difficulties, high computational complex-

ity and poor fault tolerance. To handle the issues associated with the centralized scheme, the

burden of computation can be distributed to several units in the decentralized framework.

As shown in Figure 1.1, a separate computational unit is assigned to each subsystem, and the

units make the decisions in parallel based on the information received from local subsystems.

In addition, this architecture takes the advantage of simpler design for individual units and

increased robustness to component failures. Despite the potential advantage of the decen-

tralized framework in improving the fault tolerance, it fails to account for the interactions

among the subsystems in large-scale systems. This leads to the plantwide problem towards a

suboptimal solution which may lead to lost closed loop stability in predictive control [16, 17].

The distributed framework is a middle ground between the centralized framework and the

decentralized framework. While preserving the flexibility of the decentralized framework,

the distributed structure achieves improved performance due to the ability of computational

units in coordinating their actions via information communication [18, 19, 13]. This frame-

work is achieved by taking a small modification step in the decentralized network which

provides information transmission among distributed computational units as shown in Fig-

ure 1.2.

In the context of model predictive control, distributed scheme has provided attractive

alternative to attain the maximum plant-wide performance by exploiting the interactions of

3



Figure 1.2: Distributed framework

large-scale complex chemical processes [16, 20, 21]. In [22] a distributed MPC is designed

for a system composed of decoupled subsystems with the local states and control variables

of subsystems being coupled in the objective function. Although the DMPC problem was

initially designed for linear systems [23], the extension to the nonlinear constrained systems

seems more practical [24, 25]. However most advanced process control strategies require that

all the states of the systems are available, which is not always possible. A state estimator

may be used to obtain reliable state estimates based on output measurements.

In particular, distributed state estimation of large-scale systems composed of coupled

subsystems has attracted significant attention in process control applications [26, 27, 13]

as well as in many other engineering control applications [15, 28]. In this approach, a

team of collaborated estimators are used to estimate the states of a large-scale system via

local knowledge of the system structure and parameters, local measurements and distributed

computation. In the literature, distributed state estimation has been studied primarily under

two frameworks: distributed Kalman filtering [29] and distributed moving horizon state

estimation [27, 13].

Kalman filters are widely used for state estimation in many applications ranging from

industrial processes [30, 31] to aerospace navigation systems [32]. Distributed Kalman fil-

tering has been investigated extensively in the past decade [29]. A large portion of the

existing results on distributed Kalman filtering (DKF) has been developed for sensor net-

works [33, 15, 34, 28]. Within the application to sensor networks, the optimality of the

distributed filters may be determined based on the type of information transmission to the
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fusion centers [35, 36]. Within process control, a distributed Kalman filtering algorithm

was formulated for multirate sampled-data systems for plantwide control of processes in

[26]. A method for decomposing large-scale processes for distributed Kalman filtering and

distributed control was presented in [37]. Although distributed Kalman filtering has been

formulated for plant-wide control [26] and decomposition of large-scale processes [37], its

application is confined to linear systems. When nonlinear systems are present, extended

Kalman filters (EKF) are typically used in the design of distributed state estimation algo-

rithms [38]. As in the centralized EKF, the global stability of the error dynamics of the

distributed EKF is difficult to establish. However, taking the advantage of high-gain EKF

in the design of each subsystem’s filter, the global stability of distributed framework can be

guaranteed [39].

In recent years, moving horizon state estimation (MHE) has been adopted in distributed

state estimation. One advantage of MHE is its ability to account for state constraints leading

to improved estimates [40]. In [11], a distributed MHE algorithm was developed for linear

systems which was extended to nonlinear systems in [12]. In [41, 27], distributed MHE

schemes based on subsystem models were developed for both linear and nonlinear systems.

In [42], an iterative sensitivity-driven partition-based distributed MHE was developed. In

[13], an observer-enhanced distributed MHE design with potentially tunable convergence rate

was introduced. A method for handling communication delays in distributed MHE was also

developed in [43]. While distributed MHE algorithms are able to handle system nonlinearities

explicitly, they are typically much more computational demanding than Kalman filters.

In order to handle the above issues, adaptive high-gain extended Kalman filtering (AHG-

EKF) method can be adopted in the distributed framework. In the centralized framework,

this approach not only removes the computational complexities associated with MHE, but

also guarantees the global convergence in state estimation for nonlinear systems by adap-

tively tuning the Kalman gain [44, 45]. In reference [39], a distributed AHG-EKF design

was proposed based on the assumption of continuous communication among state estimators.
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Due to the importance of communication between the distributed estimators, the considera-

tion of possible implementation issues like communication data losses and delays is critical.

Recently, some approaches are developed to accommodate time-varying delays [43] together

with data losses [46] in distributed MHE. However, these results are not directly applicable

to distributed AHG-EKF. The handling of communication delays and losses needs to be

carefully addressed in the distributed AHG-EKF framework.

All the above scenarios are developed with the distributed filters communicating through

the network periodically, however the limited capacity of the network may impede the appli-

cability of the above DAHGEKF. Furthermore, the robustness of the distributed estimation

may be reduced by extensive information transmission due to data dropouts in the communi-

cation network. In order to address the drawbacks of the periodic communication paradigm,

an algorithm is proposed in Chapter 5 to reduce the number of information exchange be-

tween local filters based on DAHGEKF designed in [39] via triggered communication. In

the literature, this strategy is widely used in control system design with shared communi-

cation resources [47, 48, 14]. In the context of state estimation, event-triggered approaches

have also been used in wireless sensor networks to attenuate the frequency of information

exchange in the network without loss of stability and performance [49, 50]. Moreover, the

quasi-decentralized framework is utilized in some other designs to minimize the information

exchange for networked control systems by adopting an adaptive forecast-triggered commu-

nication algorithm [51].

Motivated by the above considerations, in this work, we propose a distributed adaptive

high-gain extended Kalman filtering approach for nonlinear systems. The proposed approach

is able to achieve ensured ultimate boundedness and convergence of the estimate and is com-

putationally efficient. Specifically, we consider a type of continuous-time nonlinear systems

that are composed of several subsystems interacting with each other via their states. In

the proposed approach, an adaptive high-gain extended Kalman filter (AHG-EKF) is de-

signed for each subsystem. The distributed Kalman filters communicate with each other to
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exchange estimated subsystem states. In each chapter, the implementation strategy of the

proposed distributed state estimation is discussed. It specifies how the distributed filters

transmit the information regarding the mentioned scenarios and what information should

be exchanged while the detailed design of the subsystem filter is described. Moreover, con-

sidering discrete or delayed communication among filters, state predictors are introduced to

predict the states of other subsystems in each communication interval. The stability prop-

erties of the distributed state estimation are analyzed for all continuous, discrete, delayed

and triggered communications. Finally, the effectiveness and applicability of the proposed

designs are illustrated via simulations of chemical process examples.

1.3 Terms and definitions

In this section, the definitions of some common terms throughout the thesis are provided for

proper clarifications.

Lipschitz property: The Lipschitz property is defined for a continuous function f :

Rq → Rr on a set Ξ ⊂ Rq, if a strictly positive constant exists such that:

‖f(x1)− f(x2)‖≤ L‖x1 − x2‖ (1.1)

Lie derivative: The Lie derivative of a function h(x) with respect to the vector field

f(x) is denoted by the symbol Lfh(x) and is defined as:

Lfh(x) =
∂h(x)

∂x
f(x) (1.2)

Accordingly, the r-th order Lie derivative is defined as Lrfh(x) = LfL
r−1
f h(x).

Two-norm: The two-norm of a vector x ∈ Rn and a diagonal matrix S ∈ Rn×n are
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defined as follows:

‖x‖=
√

(x2
1 + x2

2 + . . .+ x2
n)

‖S‖=
√
λmax

(1.3)

where λmax is the maximum eigenvalue of SHS, with SH being the conjugate transpose of

S.

1.3.1 Transformation of systems to normal form

We deal with input-affine systems of the form

ẋ(t) = f(x(t)) + g(x(t))u(t)

y(t) = h(x(t))
(1.4)

where x ∈ Rn, and also we consider a subset Υ ⊂ Rn under which the system (1.4) is

observable. In order to transform the observable system (1.4) into the normal form, the new

coordinates z ∈ Rn can be defined as:

z =



h(x)

Lf (h(x))

...

Ln−1
f (h(x))


= φ(x) (1.5)

Based on (1.5), the system dynamics in the new coordinates will be transformed into

ż = Az + b(z, u)

y = Cz
(1.6)
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where C = [1, 0, . . . , 0]1×n and

A =



0 1 0 . . . 0

0 1
. . .

...

...
. . . . . . 0

0 1

0 . . . 0


n×n

, b(z, u) =



Lgh(φ−1(z))u

LgLfh(φ−1(z))u

...

LgL
n−2
f h(φ−1(z))u

Lnfh(φ−1(z)) + LgL
n−1
f h(φ−1(z))u


(1.7)

1.3.2 Transformation of subsystems to normal form

Let us consider the system (1.4) is composed of p interacting subsystems with the following

state space equations:  ẋ1 = f1(x) + g1(x)u

y1 = h1(x)

... ẋp = fp(x) + gp(x)u

yp = hp(x)

(1.8)

where x = [xT1 , . . . , x
T
p ]T and xi = [xi,1, . . . , xi,nxi ]

T ∈ Rnxi with i ∈ {1, . . . , p}. In order to

transform the dynamics of subsystems into the normal form, a similar strategy to subsection

1.3.1 can be taken to find new coordinates and change the dynamics of each subsystem to

normal form. Within the network of subsystems, the new coordinates are defined as

Φ(x) =



Φ1(x)

Φ2(x)

...

Φp(x)


(1.9)
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where Φi(x) = [hi(x), Lfhi(x), . . . , L
nxi−1

f hi(x)]T . Using the transformation in (1.9), the

state space equations of subsystem i will be transformed to

żi = Aizi + bi(z, u)

yi = Cizi

(1.10)

where Ci = [1, 0, . . . , 0]1×nxi and

Ai =



0 1 0 . . . 0

0 1
. . .

...

...
. . . . . . 0

0 1

0 . . . 0


nxi×nxi

, bi(z, u) =



Lghi(Φ
−1(z))u

LgLfhi(Φ
−1(z))u

...

LgL
nxi−2

f hi(Φ
−1(z))u

L
nxi
f hi(Φ

−1(z)) + LgL
nxi−1

f hi(Φ
−1(z))u


(1.11)

Notations . The operator ‖·‖ represents the two-norm of matrix or vector and |·|G

denotes the weighted two-norm which is defined as |x|G=
√
xTGx with G being a positive

definite square matrix. The notation M = diag{[m1, . . . ,mp]} represents a diagonal matrix

M whose diagonal elements are mi with i ∈ I and I = {1, . . . , p}. For a system that

is composed of p subsystems, the set Ii ⊂ I denotes the set of corresponding indices of

subsystems which have interaction with subsystem i.

1.4 Thesis outline and contributions

The chapters of this thesis are organized as follows.

In Chapter 2, a distributed adaptive high-gain extended Kalman filtering (DAHGKEF)

approach is presented for a class of deterministic nonlinear systems that are composed of

several interconnected subsystems. For each subsystem a local adaptive high-gain EKF

(AHGEKF) is designed and filters communicate to compensate for subsystems’ interactions.
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In this design, the distributed filters are assumed to transmit information continuously.

An implementation strategy describes how the distributed filters should communicate, and

the design of local filters is an extension of centralized AHGEKF in [10] for distributed

framework. A rigorous stability analysis is carried out to provide sufficient conditions under

which the exponential convergence of state estimates to actual states is guaranteed. The

efficiency of the proposed method is demonstrated via the application to a 2-CSTR process.

In chapter 3, to take more realistic consideration, the proposed DAHGEKF is designed

for a network of coupled subsystems where the distributed filters communicate at discrete

time instants. Within the communication interval, each filter incorporates the latest infor-

mation transmitted from other filters. To improve the performance, a state predictor in

each subsystem filter is used to provide predictions of states of other subsystems between

two consecutive communication instants. The filters are designed based on both determin-

istic and stochastic forms of subsystems. In the deterministic form, sufficient conditions are

provided to guarantee the convergence of estimation error to zero. In addition, the conver-

gence properties of the proposed distributed estimation schemes under the stochastic form

of subsystems is analyzed. The proposed approach is applied to a 4-CSTR process example

to illustrate its applicability and effectiveness.

Chapter 4 deals with the DAHGEKF schemes developed in Chapter 3 to handle time-

varying communication delays and data losses. An open-loop state predictor is designed for

each subsystem which operates based on a two-step predict-update strategy. In other words,

each predictor uses the centralized model to predict the overall states and then updates

the predictions whenever a new information is received from other filters. The stability

of the distributed filtering framework is analyzed under worst case scenario within both

deterministic and stochastic forms of subsystems. Sufficient conditions are derived under

which the convergence within deterministic structure of subsystems and the boundedness of

the estimation error within the stochastic form of subsystems are established. In order to

evaluate the applicability and effectiveness of the proposed approach under random delays
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and data losses in communications, the 2-CSTR process example is used.

In Chapter 5, a DAHGEKF scheme is designed for nonlinear interconnected subsystems

with triggered communication. In this design, although the distributed filters transmit in-

formation at discrete time instants, a trigger is designed for each subsystem to reduce the

information transmission frequency. The triggering condition is determined based on the

difference between the current state estimate and the latest transmitted one. This condition

designates if a trigger lets the corresponding filter send information to other filters. The

conditions are derived based on which the convergence and ultimate boundedness of the

estimation error is ensured. To demonstrate the performance and applicability of the design

based on triggering condition, the simulated 4-CSTR process is utilized.

In Chapter 6, the applicability of the proposed distributed estimation framework is ver-

ified through the application to a Three-Tank experimental system. In order to design the

distributed filters, first a dynamical model is developed and unknown model parameters are

identified. Then the identified model is decomposed into three interacting subsystems and

an adaptive high-gain EKF is designed for each subsystem. Finally, the performance of

distributed adaptive high-gain EKF is compared with that of distributed regular EKF in

estimating the states of the experimental system. Moreover, the effects of communication

among the local filters in the designed distributed framework are evaluated.

Chapter 7 briefly explains the conclusions of the main results of the thesis and describes

future research directions.
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Chapter 2

Distributed adaptive high-gain

extended Kalman filters with

continuous communication

2.1 Introduction

In this chapter, we introduce the proposed distributed state estimation design with continu-

ous communication. The system under consideration is a deterministic system composed of

several interacting subsystems. A schematic of the proposed design is shown in Figure 2.1.

In the proposed approach, an AHG-EKF is designed for each subsystem. In order to design

each AHGEKF, a change of coordinates is required to transform the subsystem into the nor-

mal form which is described in Chapter 1. The distributed AHG-EKFs communicate with

each other to exchange information. The filter of a subsystem estimates the subsystem state

based on the subsystem output measurements and information received from other filters.

In this section, we assume that the distributed filters can communicate and exchange infor-

mation continuously. In Chapter 3, we will extend the results to the case that distributed

filters can only communicate at discrete-time instants. With continuous communication, the
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Figure 2.1: Proposed distributed state estimation design with continuous communiation. In
this design, an AHG-EKF is designed for each subsystem and the filters communicate with
each other.

asymptotic and exponential stability of the distributed estimation approach can be guaran-

teed under certain conditions. The effectiveness of the proposed approach with continuous

communication is illustrated via the application to a chemical process example.

2.2 System description

In this section, we consider a class of deterministic nonlinear systems composed of ny inter-

acting multi-input single-output subsystems. The dynamics of each subsystem is defined as

follows:

ẋi(t) = Aixi(t) + bi(x(t), u(t))

yi(t) = Cixi(t)
(2.1)

where i ∈ I with I = {1, . . . , ny}, xi(t) ∈ Rnxi is the state vector of subsystem i and yi(t) ∈ R

is the output of subsystem i. The input u(t) ∈ Rnu is assumed to be bounded for all times.
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The matrices Ai, Ci and bi(x(t), u(t)) are defined as follows:

Ai =



0 1 0 . . . 0

0 1
. . .

...

...
. . . . . . 0

0 1

0 . . . 0


nxi×nxi

, bi(x, u) =



bi,1(xi,1, u)

bi,2(xi,1, xi,2, u)

...

bi,nxi−1(xi,1, xi,2, . . . , xi,nx,i−1, u)

bi,nxi (x, u)


Ci = [1, 0, . . . , 0]1×nxi

(2.2)

and bi(x, u) is Lipschitz with respect to x and uniform with respect to u. Note that to

simplify the analysis without loss of generality, we assume that each subsystem has only one

measured output.

The entire system state vector x and measured output vector y are defined as follows:

x = [xT1 · · · xTi · · · xTny ]
T ∈ Rn, y = [y1 · · · yi · · · yny ]T ∈ Rny . The dynamics of the entire

system can be described by the following state-space model:

ẋ(t) = Ax(t) + b(x, u)

y(t) = Cx(t)
(2.3)

where A = diag{[A1, . . . , Any ]}, b(x, u) = [bT1 (x, u), . . . , bTny(x, u)]T and

C =



C1 0 . . . 0

0 C2
. . .

...

...
. . . . . . 0

0 . . . 0 Cny


ny×n

(2.4)

It is assumed that the subsystem state xi satisfies the following constraint:

xi ∈ Xi (2.5)

15



for all i ∈ I. It is also assumed that measurements of the outputs of the subsystems are

available continuously.

2.3 Implementation strategy

At the initial time instant (i.e., t = 0), each filter needs to be initialized. Specifically, in

the initialization, filter i (i ∈ I) is initialized with initial subsystem state guesses of all the

subsystems (i.e., zj(0) with j ∈ I), the actual subsystem output measurement (i.e., yi(0)),

and the initial value of the adaptive gain (i.e., θ(0) = 1).

After the initialization, at a time instant, each filter needs to carry out the following

steps continuously:

1. Filter i (i ∈ I) receives its local output measurement yi(t), and the latest state estimates

from all the other filters; that is, zj with j ∈ I \ {i}.

2. Filter i (i ∈ I) calculates its subsystem state estimate zi(t) and updates its innovation

term Ji.

3. Filter i (i ∈ I) sends zi and Ji to other subsystems.

4. Filter i (i ∈ I) updates the adaptive gain θ based on its Ji and Jj (j ∈ I\{i}) from

other subsystems.

These steps will be further clarified in the following subsystem filter design section.

2.4 Design of subsystem filters

For each subsystem, an AHG-EKF is designed. The subsystem AHG-EKF design is based

on the centralized AHG-EKF presented in [52] and [44] with appropriate modifications to

account for interactions between subsystems. In the following, we exclude the notation of

time dependency from the state, state estimate and input and denote them as x, z and u.
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The proposed design of filter i (i ∈ I) is formulated as follows:

żi = Aizi + bi(z, u)− S−1
i CT

i R
−1
θi

(Cizi − yi) (2.6)

where Rθi =
1

θ
θ2(n∗−nxi )Ri with θ being the mutual adaptive gain of filters, n∗ = maxi{nxi}

and Ri being a positive scalar. In (2.6), Si is the solution to the following matrix Riccati

equation:

Ṡi = − (Ai + b∗i (z, u))T Si − Si (Ai + b∗i (z, u)) + CT
i R
−1
θi
Ci − SiQθiSi (2.7)

where b∗i (z, u) denotes the Jacobian of bi(z, u) with respect to zi (i.e. b∗i (z, u) = ∂bi(z,u)
∂zi

) and

Qθi = θΘ−1
i QiΘ

−1
i with Θi = diag

(
[θ−(n∗−nxi ), θ−(n∗−nxi+1), . . . , θ−(n∗−1)]

)
and Qi being a nxi

by nxi symmetric positive definite matrix. It should be noted that in (2.7), the Jacobian of

bi(z, u) with respect to zj, j 6= i, is ignored for simplicity. Indeed, the filters are used in

the distributed framework with interacted subsystems but each subsystem’s filter is designed

based on the Riccati equation as mentioned in (2.7).

In (2.6), the first two terms on the right-hand-side are from subsystem model (2.1) and the

last term is a correction term based on the difference between the subsystem measurement yi

and its estimate. The correction term has a time-varying gain which is determined following

(2.8) and (2.9).

In the design of (2.6)-(2.7), the parameter θ involved in Rθi and Qθi is an adaptive

parameter whose adaptation depends on the innovation information which will be defined.

When the innovation indicates that the state estimate is close to the actual system state,

θ will be small (i.e., close to 1). When θ = 1, the design of (2.6)-(2.7) essentially reduces

to the standard extended Kalman filter (with interactions taken into account). When the

innovation indicates that the state estimate is far away from the actual system state, θ

will evolve to large values to ensure convergence of the estimate to the actual system state.
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Specifically, the equation governing the adaptation of θ is as follows:

θ̇ = µ(J)D(θ) + (1− µ(J))λ(1− θ)

, F (θ, J)
(2.8)

where µ(s) =
[
1 + e−β(s−m)

]−1

is a β and m parameterized sigmoid function, λ is a positive

constant, and

D(θ) =


1

∆T
θ2, if θ ≤ θm

1

∆T
(θ − 2θm)2, if θ > θm

(2.9)

with ∆T > 0, θm > 1. In (2.8), the variable J is the innovation for the overall system.

The innovation is used to drive the adaptation mechanism since it upper bounds the esti-

mation error as proven in Lemma 50 of [10]. Considering a unique forgetting horizon, d, the

innovation for the whole system can be defined as

J(t) =

∫ t

t−d
‖y(s)− y(t− d, z(t− d), s)‖2ds =

p∑
i=1

Ji(t) (2.10)

where Ji(t) denotes the innovation for subsystem i, defined as follows:

Ji(t)=

∫ t

t−d
‖yi(t− d, x(t− d), τ)− yi(t− d, z(t− d), τ)‖2dτ (2.11)

where yi(t0, x0, τ) is the output of subsystem (2.1) at time τ with x(t0) = x0. Note that

yi(t−d, z(t−d), τ) is an open-loop predicted filter output and is not the actual filter output.

In the calculation of Ji, yi(t−d, x(t−d), τ) for τ ∈ [t−d, t] is measured and yi(t−d, z(t−d), τ)

for τ ∈ [t − d, t] needs to be evaluated. In the evaluation of yi(t − d, z(t − d), τ), the entire

system state estimate z(t− d) is needed and the entire system model should be used due to

the interaction between subsystems.

Remark 1. In order to obtain a proper adaptation function in the local filters, the effective

parameters can be tuned systematically. First, we set the gain θ = 1 and tune the Qi and Ri
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matrices based on standard EKF tuning methods [53, 54, 55]. Next, we tune the maximum

value of the high-gain parameter 2θm in the pure high-gain EKF mode (i.e., θ = 2θm). In pure

high-gain EKF model, the maximum value 2θm is tuned in a way such that the estimation

error converges to a small neighborhood of the actual system state fast. However, the gain

should not be too large such that the noise dominates. Subsequently, we tune the parameters

in the adaptation function. In this step, the forgetting horizon d in the innovation should be

tuned. With small d, fewer previous measurements are taken into account and the innovation

is more sensitive to measurement and process noise, while larger d provides larger delay in

the adaptation of the gain. In the tuning of d a balance between noise filtering and adaptation

delay must be achieved. The parameters mi and βi determine the mean and the slope of the

sigmoid function, respectively. In other words, when the innovation is higher than parameter

mi, the parameter θ starts increasing; and the parameter βi controls the duration of the

transition part of the sigmoid. ∆T is a quantity which determines the rising time of θ (the

smaller ∆T , the shorter rising time of θ). The value of parameter λi determines how fast

the gain must decrease when the innovation is close to zero. In the tunning, the parameters

should be tuned such that excessive oscillation of θ should be avoided in the presence of

noise/disturbances. Also, the adaptation of θ is faster than the dynamics of the system. The

tuning process is an iterative process and should be based on offline simulations. The whole

parameter tuning procedure is summarized in a flowchart as shown in Figure 2.2. It should

be noted that when there are sufficient large online operational changes such that the original

model (or the set of model parameters) is not suitable for describing the new operation, it is

recommended to re-tune the parameters (together with parameter re-identification).

Remark 2. It should be noted that the chemical processes may be subject to online operational

changes. Within small enough changes, the proposed distributed estimation approach has

inherent robustness to handle the model uncertainties. On the other hand, in the presence

of sufficient large online operational changes, the parameters are required to be retuned.
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Figure 2.2: Parameter tuning procedure for distributed adaptive-gain filters

2.5 Stability analysis

In this section, we analyze the stability of the proposed distributed AHG-EKF design. Let

us define the estimation error for each subsystem as εi = zi − xi, i ∈ I. The error dynamics

is:

ε̇i = żi − ẋi =
(
Ai − S−1

i CT
i R
−1
θi
Ci
)
εi + bi(z, u)− bi(x, u) (2.12)

For better explanation of the high-gain effects on the reduction of estimation error, we

consider the following change of variables for i ∈ I:

x̃i = Θixi, z̃i = Θizi, ε̃i = Θiεi, S̃i = Θ−1
i SiΘ

−1
i ,

b̃i(·, u) = Θibi(Θ
−1
c ·, u), b̃∗i (·, u) = Θib

∗
i (Θ

−1
c ·, u)Θ−1

i

(2.13)

where Θc = diag([Θ1, . . . ,Θny ]). From the definition of Θi, it can be verified that:

ΘiAi = θAiΘi, A
T
i Θi = θΘiA

T
i , AiΘ

−1
i = θΘ−1

i Ai, Θ−1
i ATi = θATi Θ−1

i ,

Θ̇i = − θ̇
θ
NiΘi,

d

dt

(
Θ−1
i

)
=
θ̇

θ
NiΘ

−1
i , Θ−1

i CT
i R
−1
θi
CiΘ

−1
i = θCT

i RiCi

(2.14)
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where Ni = diag ([n∗ − nxi , n∗ − nxi + 1, . . . , n∗ − 1]). Based on (2.13) and (2.14), the error

dynamics after the change of variables are:

˙̃εi = Θ̇iεi + Θiε̇i = θ
[
− θ̇
θ2Niε̃i + Aiε̃i − S̃−1

i CT
i R
−1
i Ciε̃i + 1

θ

(
b̃i(z̃, u)− b̃i(x̃, u)

)]
(2.15)

The Riccati equation becomes:

˙̃Si = d
dt

(
Θ−1
i

)
SiΘ

−1
i + Θ−1

i Si
d
dt

(
Θ−1
i

)
+ Θ−1

i ṠiΘ
−1
i

= θ

[
θ̇
θ2

(
NiS̃i + S̃iNi

)
−
(
ATi S̃i + S̃iAi

)
+ CT

i R
−1
i Ci − S̃iQiS̃i − 1

θ
S̃ib̃
∗
i (z̃, u)− 1

θ
b̃∗
T

i (z̃, u)S̃i

]
(2.16)

Let us pick the Lyapunov function ε̃Ti S̃iε̃i for subsystem i, i ∈ I. It can be obtained that:

d
(
ε̃Ti S̃iε̃i

)
dt

= θ

[
−ε̃Ti S̃iQiS̃iε̃i − ε̃Ti CT

i R
−1
i Ciε̃i +

2

θ

(
b̃Ti (z̃, u)S̃iε̃i − b̃Ti (x̃, u)S̃iε̃i − ε̃Ti S̃ib̃∗i (z̃, u)ε̃i

)]
(2.17)

The convergence of the proposed distributed AHG-EKF design will be established based on

(2.17). To state the convergence properties, the following lemmas are first presented.

Lemma 1. Consider a three dimensional matrix F ∈ Rnx×ny×nz and two vectors y ∈ Rny×1

and z ∈ Rnz×1. If Ui = [Fz]y =
ny∑
j=1

[
nz∑
k=1

Fijkzk]yj and U = [U1, . . . , Unx ]
T then

‖U‖1≤ nxKs‖z‖1‖y‖1 (2.18)

where Ks = sup‖Fijk‖1 with ‖·‖1 denoting the one-norm.
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Proof: Multiplying matrix F by vector z results in the following two-dimensional matrix

F z:

F z = [Fz]nx×ny =



nz∑
k=1

F11kzk
nz∑
k=1

F12kzk . . .
nz∑
k=1

F1nykzk

nz∑
k=1

F21kzk
nz∑
k=1

F22kzk . . .
nz∑
k=1

F2nykzk

...
...

...
nz∑
k=1

Fnx1kzk . . . . . .
nz∑
k=1

Fnxnykzk


nx×ny

(2.19)

The product of matrix F z and vector y can lead to a vector U

U = F zy =



ny∑
j=1

(
nz∑
k=1

F1jkzk

)
yj

ny∑
j=1

(
nz∑
k=1

F2jkzk

)
yj

...
ny∑
j=1

(
nz∑
k=1

Fnxjkzk

)
yj


nx×1

(2.20)

Based on (2.20), we would have,

‖U‖1≤ nxsup‖Fijk‖1

ny∑
j=1

nz∑
k=1

‖zk‖1‖yj‖1 (2.21)

and this proves Lemma 1. �

Lemma 2. Consider B = [BT
1 , . . . , B

T
p ]T , with Bi = b̃i(z̃, u) − b̃i(x̃, u) − b̃∗i (z̃, u)εi, where

b̃i(z̃, u) = Θib(Θ
−1
c z̃, u), b̃∗i (z̃, u) = Θib

∗
i (Θ

−1
c z̃, u)Θ−1

i , Θi = diag
([
θ−(n∗−nxi ), θ−(n∗−nxi+1), . . .

, θ−(n∗−1)
])

, Θc = diag([Θ1, . . . ,Θny ]) and εi = zi − xi. If bi is smooth and compactly sup-

ported, and n∗ = maxi{nxi} then,

‖B‖≤ K1‖ε̃‖+K2θ
n∗−1‖ε̃‖2 (2.22)

for some positive constants K1 and K2.

Proof: If b̃i, i ∈ I are compactly supported and smooth, they can be expanded as follows:
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b̃i(z̃ − tε̃, u) = b̃i(z̃, u)−
ny∑
j=1

(∫ t

0

∂b̃i
∂z̃j

(z̃ − τ ε̃, u)dτ

)
ε̃j (2.23)

where ε̃i = z̃i − x̃i and ε̃ = z̃ − x̃, i ∈ I. Moreover, we can write,

∂b̃i
∂z̃j

(z̃ − τ ε̃, u) =
∂b̃i
∂z̃j

(z̃, u)−
ny∑
k=1

(∫ τ

0

∂2b̃i
∂z̃j∂z̃k

(z̃ − ηε̃, u)dη

)
ε̃k (2.24)

Considering t = 1 and inserting (2.24) into (2.23), it can be obtained that

b̃i(z̃ − ε̃, u) = b̃i(z̃, u)−
ny∑
j=1

∂b̃i
∂z̃j

(z̃, u)ε̃j +

ny∑
j=1

[
ny∑
k=1

(∫ 1

0

∫ τ

0

∂2b̃i
∂z̃j∂z̃k

(z̃ − ηε̃, u)dηdτ

)
ε̃k

]
ε̃j

(2.25)

Since x̃ = z̃ − ε̃, from (2.25) we obtain

b̃i(z̃, u)−b̃i(x̃, u)−∂b̃i(z̃, u)

∂z̃i
ε̃i =

ny∑
j=1,j 6=i

∂b̃i
∂z̃j

(z̃, u)ε̃j−
ny∑
j=1

[
ny∑
k=1

(∫ 1

0

∫ τ

0

∂2b̃i
∂z̃j∂z̃k

(z̃ − ηε̃, u)dηdτ

)
ε̃k

]
ε̃j

(2.26)

Taking one-norm of both sides of (2.26), we would have

∥∥∥∥∥b̃i(z̃, u)− b̃i(x̃, u)− ∂b̃i(z̃, u)

∂z̃i
ε̃i

∥∥∥∥∥
1

≤

∥∥∥∥∥ ny∑
j=1,j 6=i

∂b̃i(z̃, u)

∂z̃j
ε̃j

∥∥∥∥∥
1

+

∥∥∥∥∥ ny∑j=1

[
ny∑
k=1

(∫ 1

0

∫ τ
0

∂2b̃i
∂z̃j∂z̃k

(z̃ − ηε̃, u)dηdτ

)
ε̃k

]
ε̃j

∥∥∥∥∥
1

(2.27)

For the first term on the right hand side of (2.27) we have

∥∥∥∥∥
ny∑

j=1,j 6=i

∂b̃i(z̃, u)

∂z̃j
ε̃j

∥∥∥∥∥
1

≤ nxiÑi

ny∑
j=1

‖ε̃j‖1= nxiÑi‖ε̃‖1 (2.28)
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where Ñi =supz̃‖ ∂b̃i∂z̃j
(z̃, u)‖1. Note that ε̃j ∈ Rnxj×1, ε̃k ∈ Rnxk×1 and H = ∂2b̃i

∂z̃j∂z̃k
(z̃− ηε̃, u) is

a three dimensional matrix (H ∈ Rnxi×nxj×nxk ). Using Lemma 1, it can be obtained that

‖[Hε̃j]ε̃k‖1≤ nxiKijk

nxj∑
m=1

nxk∑
q=1

‖ε̃jm‖1‖ε̃kq‖1= nxi‖ε̃j‖1‖ε̃k‖1Kijk (2.29)

where Kijk = supz̃j ,z̃k

∥∥∥ ∂2b̃i
∂z̃j∂z̃k

(z̃ − ηε̃, u)
∥∥∥

1
. Using (2.29), it can be obtained that

∥∥∥∥∥
ny∑
j=1

[
ny∑
k=1

(∫ 1

0

∫ τ

0

∂2b̃i
∂z̃j∂z̃k

(z̃ − ηε̃, u)dηdτ

)
ε̃k

]
ε̃j

∥∥∥∥∥
1

≤ nxi
2
M̃i

ny∑
j=1

ny∑
k=1

‖ε̃j‖1‖ε̃k‖1 (2.30)

where M̃i = maxj,k{Kijk} = supz‖ ∂2b̃i
∂z̃j∂z̃k

(z̃− ηε̃, u)‖1. Noting that θ ≥ 1, it can be said that:

∥∥∥∥∥ ∂2b̃i
∂z̃j∂z̃k

(z̃, u)

∥∥∥∥∥
1

≤ θn
∗−1

∥∥∥∥ ∂2bi
∂z̃j∂z̃k

(Θ−1
c z̃, u)

∥∥∥∥
1

,

∥∥∥∥∥ ∂b̃i∂z̃j
(z̃, u)

∥∥∥∥∥
1

≤
∥∥∥∥ ∂bi∂z̃j

(Θ−1
c z̃, u)

∥∥∥∥
1

(2.31)

From (2.27) and (2.31) we can conclude that

∥∥∥∥∥b̃i(z̃, u)− b̃i(x̃, u)− ∂b̃i(z̃, u)

∂z̃i
ε̃i

∥∥∥∥∥
1

≤ nxiNi‖ε̃‖1+nxi
Mi

2
‖ε̃‖2

1θ
n∗−1 (2.32)

where Mi =supz‖ ∂2bi
∂z̃j∂z̃k

(Θ−1
c z̃, u)‖1 and Ni =supz‖ ∂bi∂z̃j

(Θ−1
c z̃, u)‖1. In the worst case, (2.32)

may be changed to

∥∥∥∥∥b̃i(z̃, u)− b̃i(x̃, u)− ∂b̃i(z̃, u)

∂z̃i
ε̃i

∥∥∥∥∥
1

≤ nxiNi‖ε̃‖1+nxi
Mi

2
‖ε̃‖2

1θ
n∗−1 (2.33)

Considering (2.33) for the overall system,

∥∥∥∥∥∥∥∥∥∥


b̃1(z̃, u)− b̃1(x̃, u)− ∂b̃1(z̃,u)

∂z̃1
ε̃1

...

b̃ny(z̃, u)− b̃ny(x̃, u)− ∂b̃ny (z̃,u)

∂z̃ny
ε̃ny


∥∥∥∥∥∥∥∥∥∥

1

≤ ny(n
∗Nmax‖ε̃‖1+n∗

Mmax

2
θn

∗−1‖ε̃‖2
1) (2.34)
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where Nmax = maxi{Ni} and Mmax = maxi{Mi}. On the other hand, from the norm

properties we know that for a vector v of length n, its one-norm and two-norm (denoted as

‖v‖) satisfy

‖v‖≤ ‖v‖1≤
√
n‖v‖ (2.35)

Consequently, considering K1 = ny
√
nNmax and K2 = ny

√
nn∗

Mmax

2
, from (2.34) it can be

obtained that ∥∥∥∥∥∥∥∥∥∥


b̃1(z̃, u)− b̃1(x̃, u)− ∂b̃1(z̃,u)

∂z̃1
ε̃1

...

b̃ny(z̃, u)− b̃ny(x̃, u)− ∂b̃ny (z̃,u)

∂z̃ny
ε̃ny


∥∥∥∥∥∥∥∥∥∥
≤ K1‖ε̃‖+K2θ

n∗−1‖ε̃‖2 (2.36)

and this proves Lemma 2.�

Theorem 1. Considering Lipschitz property for the nonlinear function, bi(x, u), and its

Jacobian (‖b∗i (x, u)‖≤ Lb∗i ) with respect to x and providing the conditions in Lemma 6 of

[52], for any time T ∗ > 0 and any ε∗ > 0, there exist 0 < d < T ∗, ∆T > 0, θm > 1, βi

and mi for i ∈ I such that for all times t ≥ T ∗ and any initial condition of subsystems and

observers in Xi (i.e. xi(0) ∈ Xi and zi(0) ∈ Xi) for all i ∈ I, the estimation error of the

entire system satisfies:

‖ε(t)‖2≤ ε∗

(2θm)2n∗−2
e−a(t−T ∗) (2.37)

where ε = [εT1 , . . . , ε
T
ny ]

T and a > 0 is a constant.

Proof: It can be verified that ε̃Ti C
T
i R
−1
i Ciε̃i ≥ 0. For a positive definite matrix Qi, there

exists a qmi > 0 such that Qi ≥ qmiI. From (2.17), the following inequality can be written:

d
(
ε̃Ti S̃iε̃i

)
dt

≤ −θqmi ε̃Ti S̃2
i ε̃i + 2ε̃Ti S̃i

(
b̃i(z̃, u)− b̃i(x̃, u)− b̃∗i (z̃, u)ε̃i

)
(2.38)

From Lemma 6 in [52], it is known that there exist scalars αmini > 0, αmaxi > 0 such that

αminiI ≤ S̃i(t) ≤ αmaxiI. This implies that the inequality (2.38) can be further written as:
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d
(
ε̃Ti S̃iε̃i

)
dt

≤−θqmiαmini ε̃
T
i S̃iε̃i + 2ε̃Ti S̃i

(
b̃i(z̃, u)− b̃i(x̃, u)− b̃∗i (z̃, u)ε̃i

)
(2.39)

for all i ∈ I. Adding (2.39) for all i ∈ I together, the following inequality can be obtained:

d

dt

ny∑
i=1

ε̃Ti S̃iε̃i ≤ −θmini{qmiαmini}

×



ε̃1

ε̃2
...

ε̃ny



T 

S̃1 0 . . . 0

0 S̃2 0
...

...
. . .

0 . . . S̃ny





ε̃1

ε̃2
...

ε̃ny


+ 2



ε̃1

ε̃2
...

ε̃ny



T 

S̃1 0 . . . 0

0 S̃2 0
...

...
. . .

0 . . . S̃ny



×





b̃1(z̃, u)− b̃1(x̃, u)

b̃2(z̃, u)− b̃2(x̃, u)

...

b̃ny(z̃, u)− b̃ny(x̃, u)


−



b̃∗1(z̃, u) 0 . . . 0

0 b̃∗2(z̃, u) 0
...

...
. . .

0 . . . b̃∗ny(z̃, u)





ε̃1

ε̃2
...

ε̃ny





(2.40)

Since b̃i(x̃, u) = Θibi(Θ
−1
c x̃, u), b̃∗i (x̃, u) = Θib

∗
i (Θ

−1
c x̃, u)Θ−1

i , according to Appendix B (as

well as Lemma 51 in [10]), the overall vector b̃(x̃, u) and the subsystem matrix b̃∗i (x̃, u) have

the same bound of b(x, u) and b∗i (x, u), respectively, where b̃(x̃, u) = [bT1 (x̃, u), . . . , bTny(x̃, u)]T .

So, the Jacobian matrix b̃∗i (·, u) is bounded such that ‖b̃∗i (·, u)‖≤ Lb∗i , and b̃(·, u) is Lipschitz

such that ‖b̃(x{1}, u)− b̃(x{2}, u)‖≤ Lb‖x{1} − x{2}‖, and it can be obtained that:
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∥∥∥∥∥∥∥∥∥∥∥∥∥



b̃1(z̃, u)− b̃1(x̃, u)

b̃2(z̃, u)− b̃2(x̃, u)

...

b̃ny(z̃, u)− b̃ny(x̃, u)


−



b̃∗1(z̃, u) 0 . . . 0

0 b̃∗2(z̃, u) 0 . . .

...
. . .

0 . . . b̃∗ny(z̃, u)





ε̃1

ε̃2
...

ε̃ny



∥∥∥∥∥∥∥∥∥∥∥∥∥

≤

∥∥∥∥∥∥∥∥∥∥∥∥∥



b̃1(z̃, u)− b̃1(x̃, u)

b̃2(z̃, u)− b̃2(x̃, u)

...

b̃ny(z̃, u)− b̃ny(x̃, u)



∥∥∥∥∥∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥∥∥∥∥∥



b̃∗1(z̃, u) 0 . . . 0

0 b̃∗2(z̃, u) 0 . . .

...
. . .

0 . . . b̃∗ny(z̃, u)





ε̃1

ε̃2
...

ε̃ny



∥∥∥∥∥∥∥∥∥∥∥∥∥
≤ Lb‖ε̃‖+nyLb∗max‖ε̃‖

(2.41)

where Lb∗max = maxi{Lb∗i }. From Lemma 6 in [52] we have αminiI ≤ S̃i ≤ αmaxiI and

by considering S̃ = diag([S̃1, . . . , S̃ny ]), it can be said that αminI ≤ S̃ ≤ αmaxI, where

αmax = maxi{αmaxi} and αmin = mini{αmini}. Multiplying both sides of (2.41) by 2‖ε̃T‖‖S̃‖,

it can be obtained that

2‖ε̃T‖‖S̃‖

∥∥∥∥∥∥∥∥∥∥∥∥∥



b̃1(z̃, u)− b̃1(x̃, u)

b̃2(z̃, u)− b̃2(x̃, u)

...

b̃ny(z̃, u)− b̃ny(x̃, u)


−



b̃∗1(z̃, u) 0 . . . 0

0 b̃∗2(z̃, u) 0 . . .

...
. . .

0 . . . b̃∗ny(z̃, u)





ε̃1

ε̃2
...

ε̃ny



∥∥∥∥∥∥∥∥∥∥∥∥∥
≤

2
(
Lb + nyLb∗max

)
‖ε̃T‖‖S̃‖‖ε̃‖≤ 2

(
Lb + nyLb∗max

)
αmax‖ε̃‖2

≤ 2
(
Lb + nyLb∗max

) αmax
αmin

ε̃T S̃ε̃

(2.42)

Using (2.42) in (2.40) we conclude that:

d

dt

ny∑
i=1

ε̃Ti S̃iε̃i(t) ≤ −θmini{qmiαmini}
ny∑
i=1

ε̃Ti S̃iε̃i(t) +

(
2Lb

αmax

αmin

+ 2nyLb∗max
αmax

αmin

)
ny∑
i=1

ε̃Ti S̃iε̃i(t)

(2.43)

The solution to the differential inequality in (2.43) can be obtained as
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ny∑
i=1

ε̃Ti S̃iε̃i(t) ≤
ny∑
i=1

ε̃Ti S̃iε̃i(t)
∣∣∣
t=0

exp

([
2Lb

αmax

αmin

+ 2pLb∗max
αmax

αmin

− θmin
i
{qmiαmini}

]
t

)
(2.44)

and this inequality can be used globally.

Noting that 1 ≤ θ ≤ 2θm, by applying Lemma 2 to (2.40) we obtain,

d

dt

(
ε̃T S̃ε̃

)
≤ −min

i
{qmiαmini}ε̃T S̃ε̃+ 2K1‖S̃‖‖ε̃‖2+2K2(2θm)n

∗−1‖S̃‖ ‖ε̃‖3 (2.45)

Since ‖ε̃‖3=
(
‖ε̃‖2

)3/2

≤
(

1
αmin

ε̃T S̃ε̃
)3/2

, the inequality (2.45) would change to

d

dt

(
ε̃T S̃ε̃

)
≤
(
−qmminαmin +

2K1αmax
αmin

)
ε̃T S̃ε̃+

2K2(2θm)n
∗−1αmax

(αmin)3/2

(
ε̃T S̃ε̃

)3/2

(2.46)

By applying Lemma 40 in [10], we obtain that if

ε̃T S̃ε̃(τ) ≤

(
qmminαmin − 2K1αmax

αmin

)2

(αmin)3

4 (2K2(2θm)n∗−1αmax)
2 (2.47)

and

qmmin >
2K1αmax
α2
min

(2.48)

then for any t ≥ τ we have

ε̃T S̃ε̃(t) ≤ 4ε̃T S̃ε̃(τ)e−ψ(t−τ) (2.49)

where

ψ = qmminαmin −
2K1αmax
αmin

(2.50)

Based on (2.47), by assuming a real γ such that

γ ≤ 1

(2θm)2n∗−2
min

(
αminε

∗

4
,

ψ2α3
min

4 (2K2αmax)
2

)
(2.51)
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then the inequality ε̃T S̃ε̃(τ) ≤ γ helps to have,

ε̃T S̃ε̃(t) ≤ αminε
∗

(2θm)2n∗−2
e−ψ(t−τ) (2.52)

for any t ≥ τ . Based on the condition (2.47), the inequality (2.52) is satisfied when the

estimation error is small enough. So (2.52) is locally exponentially convergent and in the

following we will verify it in a global sense. When the estimation error is large, the gain

increases and we have θ ≥ θm. In this case, for t ∈ [T, T ∗], T ∗ > T , from the global inequality

(2.44) we can obtain:

ε̃T S̃ε̃(T ∗) ≤ ε̃T S̃ε̃(0) exp
([
BL −mini{θiqmiαmini}

]
T ∗
)

≤M0 exp
[
BLT − Tαminqmmin + (BL − αminqmminθm)(T ∗ − T )

]
=

M0 exp
[
BLT

∗ − Tαminqmmin − αminqmminθm(T ∗ − T )
] (2.53)

where BL = 2(Lb+nyLb∗max)
αmax

αmin

and M0 =supx,z ε̃
T S̃ε̃(0). Now we can tune two parameters

θm and γ such that

M0 exp
[
BLT

∗ − Tαminqmmin − αminqmminθm(T ∗ − T )
]
≤ γ (2.54)

and since e−cte×θm < cte

θ2n∗−2
m

, for θm being large enough, (2.51) and (2.54) would be satisfied

simultaneously. In other words, even if the estimation error is large, the high-gain parameter

can become large enough so that the necessary condition for exponential convergence is

satisfied.

Considering a forgetting horizon d, the overall estimation error at time t − d can be

obtained as

ny∑
i=1

‖zi(t− d)− xi(t− d)‖2= ‖z(t− d)− x(t− d)‖2= ‖ε(t− d)‖2 (2.55)
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According to Lemma 50 of [10], for an MIMO system there exists a constant λt such that

J(t) ≥ λt‖ε(t− d)‖2 (2.56)

Now, it can be claimed that there exists τ ≤ T ∗ such that ε̃T S̃ε̃(τ) ≤ γ. Indeed, if ε̃T S̃ε̃(τ) >

γ for all τ ≤ T ∗ then,

γ < ε̃T S̃ε̃(τ) ≤ αmax‖ε̃(τ)‖2≤ αmax‖ε(τ)‖2≤ αmax
λt

J(τ + d) (2.57)

So, by defining γ1 = λtγ
αmax

, from (2.57) it can be obtained that J(τ + d) ≥ γ1 for τ ∈ [0, T ∗].

Consequently, J(τ) ≥ γ1 for τ ∈ [d, T ∗]. Based on Lemma 42 of [10], when the innovation of

centralized filter is greater than a bound γ1, the centralized filter would be high gain. The

equivalence of this situation in distributed framework is θ ≥ θm for all i ∈ I and t ∈ [T, T ∗]

which makes a contradiction (i.e. ε̃T S̃ε̃(T ∗) ≤ γ) based on (2.53). In other words, even if

the estimation errors of some of filters are far from the origin, when the sum of overall errors

exceeds the bound γ, all the high-gain parameters increase to a value higher than θm and

ε̃T S̃ε̃(τ) > γ.

Finally, for t ≥ τ and using (2.52) we obtain

‖ε(t)‖2≤ (2θm)2n∗−2‖ε̃(t)‖2≤ (2θm)2n∗−2

αmin
ε̃T S̃ε̃(t)

≤ ε∗e−ψ(t−τ) (2.58)

and this proves Theorem 1.

2.6 Simulations on a chemical process

In this section, the proposed distributed AHG-EKF is applied to a chemical process composed

of two connected continuous-stirred tank reactors (CSTRs) as shown in Figure 2.3 [17].
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Figure 2.3: Two connected CSTRs with recycle stream.

Pure reactant A at flow rate F0, molar concentration CA0 and temperature T0 is fed into

the first reactor. The effluent of the first reactor enters the second reactor at flow rate F1,

molar concentration CA1, and temperature T1. Additional pure A at flow rate F3, molar

concentration CA03, and temperature T03 is also fed into CSTR 2. Three parallel irreversible

exothermal reactions take place in the reactors: A → B, A → C, and A → D, where B is

the desired product and C, D are byproducts. A portion of the effluent of the second reactor

is passed through a separator and recycled back to the first reactor at flow rate Fr, molar

concentration CA2 and temperature T2. Each reactor is equipped with a jacket to provide

heat to the reactor. The dynamic equations, obtained from material and energy balance
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Table 2.1: Process parameters for the reactors.

F0 = 4.998 m3/h ∆H1 = −5.0× 104 KJ/kmol
F1 = 39.996 m3/h ∆H2 = −5.2× 104 KJ/kmol
F3 = 30.0 m3/h ∆H3 = −5.04× 104 KJ/kmol
V1 = 1.0 m3/h k10 = 3.0× 106 h−1

V2 = 3.0 m3/h k20 = 3.0× 105 h−1

R = 8.314 KJ/kmol ·K k30 = 3.0× 105 h−1

T0 = 300 K E1 = 5.0× 104 KJ/kmol
T03 = 300 K E2 = 7.53× 104 KJ/kmol
CA0 = 4.0 kmol/m3 E3 = 7.53× 104 KJ/kmol
CA03 = 2.0 kmol/m3 ρ = 1000.0 kg/m3

cp = 0.231 KJ/kg Fr = 34.998 m3/h

under standard modeling assumptions are as follows:

dT1

dt
=
F0

V1

(T0 − T1) +
Fr
V1

(T2 − T1)−
3∑
i=1

∆Hi

ρcp
ki0e

−Ei
RT1CA1 +

Qh1

ρcpV1

dCA1

dt
=
F0

V1

(CA0 − CA1) +
Fr
V1

(CA2 − CA1)−
3∑
i=1

ki0e
−Ei
RT1CA1

dT2

dt
=
F1

V2

(T1 − T2) +
F3

V2

(T03 − T2)−
3∑
i=1

∆Hi

ρcp
ki0e

−Ei
RT2CA2 +

Qh2

ρcpV2

dCA2

dt
=
F1

V2

(CA1 − CA2) +
F3

V2

(CA03 − CA2)−
3∑
i=1

ki0e
−Ei
RT2CA2

(2.59)

where Tj, CAj, Qhj , Vj, j = 1, 2 denote the temperature in the reactors, the concentration

of A, the rate of the heat input/removal to/from the reactors and the reactor volumes

respectively, cp and ρ denote the heat capacity and density of the mixture in the reactors,

∆Hi, ki, Ei, i = 1, 2, 3 denote the enthalpies, pre-exponential constants and activation

energies of the reactions respectively. The values of these parameters are given in Table 2.1.

Constant heat inputs to the two reactors are used: Qh1 = 1.8 × 104 kJ/h and Qh2 =

1.2× 104 kJ/h. These inputs ensure the stability of the process.

It is assumed that the two temperatures T1 and T2 are the continuously measured outputs.

The objective is to estimate the entire system state based on these measurements in a
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distributed manner.

The entire process is decomposed into two subsystems with respect to the two reactors.

For each reactor, an AHG-EKF is designed. In the design of the AHG-EKFs, Q1 = Q2 =

diag([150, 5]) and R1 = R2 = 1, respectively. The parameter θm is uniquely defined for all the

subsystem estimators and it is selected to be θm = 20. In the calculation of the innovation

terms, the two filters use d = 0.02h. The parameters in the adaptation functions are selected

as follows: ∆T = 0.001h, β1 = 5, m1 = 4, λ1 = 100, β2 = 5, m2 = 4, λ2 = 100. In the

simulations, the initial state of the process is x(0) = [360, 3, 320, 2.5]T and the initial guesses

in the two distributed filters are z1(0) = [396, 2.6]T and z2(0) = [352, 10.5]T .

First, we consider the proposed distributed AHG-EKF with measurement and process

noise and with continuous communication between the two filters and study the effect of

adaptive-gain. Consequently we compare the results of distributed adaptive-gain EKF with

distributed regular EKF (DEKF). In the regular distributed EKF design, the subsystem

EKF has the same design parameters (i.e., Q1, Q2, R1, R2) as in the proposed AHG-EKF,

but θi = 1 for i = 1, 2. Figure 2.4 shows the trajectories of the actual process states and

the estimated values as well as the trajectories of the corresponding adaptive gain and the

innovation. From Figure 2.4, it can be seen that the trajectories of both the proposed

DAHGEKF and DEKF are able to track the actual process states, however DAHGEKF

converges much faster than DEKF. It should be noted that the DAHGEKF tracks the two

temperatures very fast. Also, it can be seen that when the estimation errors are large (at the

initial period), the innovation values increase quickly which renders the two adaptive gains θ1

and θ2 to increase quickly. When the estimation errors become small, the innovation values

decrease and the gains θ1 and θ2 decrease to one.

Next, we study the effects of communication frequency in the proposed distributed state

estimation design. In this set of simulations, the two distributed filters do not exchange

information continuously. They send out their state estimates to each other every 36s.

Between two communications, a filter assumes that the state of the other filter remains
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θ θ

Figure 2.4: Trajectories of T1, CA1, T2, CA2 and their estimates, and trajectories of θ and
the corresponding innovation under the proposed distributed AHG-EKF and a regular dis-
tributed EKF with continuous communication.
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θ θ

Figure 2.5: Trajectories of T1, CA1, T2, CA2 and their estimates and the corresponding
innovation under the proposed distributed AHG-EKF with continuous and discrete commu-
nication.
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θ θ

Figure 2.6: Trajectories of T1, CA1, T2, CA2 and their estimates, and the corresponding inno-
vations under the proposed distributed AHG-EKF with permanent high gain and continuous
communication.
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constant. Figure 2.5 shows the simulation results. From this figure, it can be seen that

the distributed filters are still able to track the actual process states. But the speed of

convergence especially for the concentration estimates is slower compared with the case of

continuous communication.

Finally, we evaluate the performance of DAHGEKF with permanent high gain. In this

set of simulations, we take measurement and process noise into account and show the effect of

high gain on process uncertainties. As shown in Figure 2.6, the trajectories of concentrations

represent severe sensitivity to the high gain. This sensitivity is illustrated by high amplitude

fluctuations in the estimates of concentrations. Also, Figure 2.6 shows that within the

high gain, the mean of the estimates matches the mean of actual states very fast, however

the estimation error covariance is highly increased by noise. Due to the high sensitivity of

uncertainties to the high gain, we used a smaller bound for the high-gain parameter (θm = 8)

in this set of simulations.

2.7 Conclusions

In this chapter, a distributed adaptive high-gain extended Kalman filtering approach was

developed for a class of nonlinear systems composed of interacted subsystems. An adap-

tive high-gain extended Kalman filter is designed for each subsystem with the consideration

of continuous measurement. The distributed filters communicate with each other to ex-

change subsystem state estimates which are used to compensate for interactions between

subsystems. Based on the proposed design, an algorithm is developed to describe how the

distributed filters should communicate continuously. Sufficient conditions were derived un-

der which the convergence of the proposed distributed filtering approach is ensured. By

the stability analysis, it is shown that the entire system estimate converges to the actual

state exponentially. The proposed approach was simulated on a chemical process example

to illustrate its applicability and effectiveness.
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As a final remark, we would like to note that one particular limitation of the proposed

approach is in the calculation of the new coordinates for subsystems. In the calculation of

the coordinates, Lie derivatives are needed. Analytical calculation of these Lie derivatives

is prohibitive and numerical methods need to be used. Algorithmic differentiation [56] is

one of the numerical approaches and is able to handle Lie derivatives up to an order greater

than 10.
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Chapter 3

Distributed adaptive high-gain

extended Kalman filters with discrete

communication

3.1 Introduction

In this chapter, we consider distributed state estimation in which the distributed filters

communicate with each other only at discrete time instants. As described in Chapter 2,

the design of high-gain extended Kalman filter requires the transformation of the system

into the normal form. A schematic of the proposed design is shown in Figure 3.1. In this

design, for each subsystem, a state predictor is designed to provide state predictions between

two communication instants to the subsystem filter. We assume that the distributed filters

communicate with each other at discrete time instants tk≥0 where tk = t0 + k∆ with t0 = 0

being the initial time, k being positive integers and ∆ being a positive constant. In this

chapter we will consider both deterministic and stochastic form of nonlinear systems and

sufficient conditions will be derived under which the stability of the proposed approach is

guaranteed.
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Figure 3.1: Proposed distributed state estimation design with discrete communiation and
state predictors.

3.2 Problem formulation

In this section, we consider the interconnected nonlinear subsystem structure in the form of

(2.1) but in a more general form including external inputs and uncertainties. Indeed, the

entire system is composed of ny interconnected subsystems with the dynamics of subsystem i

described as follows:

ẋi(t) = Aixi(t) + bi(x(t), w(t)),

yi = Cixi(t) + vi(t)
(3.1)

where i ∈ I with I = {1, . . . , ny}, xi(t) ∈ Rnxi is the state vector of subsystem i, x =

[xT1 · · · xTi · · · xTny ]
T ∈ Rn is the entire system state vector, w(t) ∈ Rn is the vector of entire

process noise (or input), bi represents the nonlinearities of subsystem i describing interaction

between subsystem i and other subsystems, and yi ∈ R denotes the measured output of

subsystem i with vi ∈ R the associated measurement noise. Further, in (3.1), it is assumed
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that Ci = [1, 0, . . . , 0]1×nxi and

Ai =



0 1 0 . . . 0

0 1
. . .

...

...
. . . . . . 0

0 1

0 . . . 0


nxi×nxi

, bi(x,w) =



bi,1(xi,1, w)

bi,2(xi,1, xi,2, w)

...

bi,nxi−1(xi,1, xi,2, . . . , xi,nx,i−1, w)

bi,nxi (x,w)


(3.2)

Note that to simplify the analysis without loss of generality, we assume that each subsystem

has only one measured output. The entire system measured output vector y is defined as

follows: y = [y1 · · · yi · · · yny ]T ∈ Rny . The dynamics of the entire system can be described

by the following state-space model:

ẋ(t) = Ax(t) + b(x(t), w(t))

y(t) = Cx(t) + v(t)
(3.3)

where A is a diagonal composition of Ai and b(x,w) is a composition of bi(x,w) with i ∈ I

as follows:

A =



A1 0 . . . 0

0 A2
...

...
. . . 0

0 . . . 0 Any


, b(x,w) =



b1(x,w)

b2(x,w)

...

bny(x,w)


, C =



C1 01×nx2
. . . 01×nxny

01×nx1
C2 . . . 01×nxny

...
. . . . . .

01×nx1
. . . 01×nxny−1

Cny


(3.4)

and v = [v1 · · · vi · · · vny ]T ∈ Rny . It is assumed that the process and measurement noises are

bounded such that ‖w‖≤ φw and ‖v‖≤ φv. It is also assumed that the subsystem state xi

evolves following the constraint:

xi ∈ Xi (3.5)
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for all i ∈ I and Xi should be known. It is further assumed that measurements of the out-

puts of the subsystems are available continuously. Note that the assumption of boundedness

of subsystem states is based on the fact that many systems (e.g., chemical processes) are

regulated by control systems and are operated within specified bounded regions. The bound-

edness of subsystem states will be used in the stability analysis of the proposed method.

Remark 3. Note that in order to simplify the discussion without loss of generality, we

assume that each subsystem has only one measured output. The proposed approach can be

extended to consider subsystems containing more than one measured outputs. In the case of

multiple outputs, the subsystem dynamics would be in the form of (3.1), with the matrices

Ai and bi(x,w) being defined as

Ai =



Ai,1 0 . . . 0

0 Ai,2 0
...

...
. . . 0

0 . . . 0 Ai,nyi


,

Ai,j =



0 1 0 . . .

0 0
. . .

...

...
. . . 1

0 . . . 0 0


, bi(x,w) =


bi,1(x,w)

...

bi,nyi (x,w)



(3.6)

where j ∈ {1, . . . , nyi}. In other words, each subsystem should be able to be decomposed into

several smaller single-output subsystems. Please refer to [57, 44] for more discussion on the

extension to the multiple outputs case.

3.3 Predictor design

In this section, the predictors based on the system model in (3.3) will be designed and

an algorithm for the implementation of the proposed distributed estimation with discrete
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communication will be described. We consider subsystem filter i (i ∈ I) at time tk. It

communicates with other subsystem filters and will receive state estimates from other sub-

systems. The next time instant that filter i will communicate with other subsystem filters is

tk+1. In order for the filter i to get more accurate state estimates for t ∈ [tk, tk+1), we use a

state predictor to predict the states of other subsystems and use the predictions in the filter.

The design of the predictor associated with subsystem i for t ∈ [tk, tk+1) is as follows:

ẋp,i(t) = Axp,i(t) + b(xp,i(t), 0) (3.7)

where xp,i(t) includes the estimates of subsystem i, zi(t), and the prediction of the states

of subsystems which interact with subsystem i, xp,ij (t), j ∈ I\{i} within the communication

interval ∆, and

A =



A1 0 . . . 0

0 A2
...

...
. . . 0

0 . . . 0 Any


, b(xp(t), 0) =



b1(xp,1(t), 0)

b2(xp,2(t), 0)

...

bny(x
p,ny(t), 0)


(3.8)

Note that z(tk) is the state estimate of the entire system at time tk and xp,i(tk) = z(tk).

Note also that for all the subsystems, the predictors have the same design.

3.4 Implementation algorithm

The implementation strategy of DAHG-EKF with discrete communication is as follows:

1. At t0 = 0, filter i, i ∈ I, is initialized with subsystem measurement at the initial time,

yi(t0), and the initial guess for the states of overall system z(t0).

2. At tk with k ≥ 0, each filter carries out the following steps:

(a) Filter i (i ∈ I) receives the local output measurement yi(tk).
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(b) Filter i (i ∈ I) calculates the local estimate zi(tk) and updates its innovation term

Ji.

(c) Filter i (i ∈ I) sends zi to other subsystems.

(d) Filter i (i ∈ I) updates the adaptive gain θi based on its Ji.

(e) Predictor i (i ∈ I) is updated with xp,i(tk) = z(tk).

3. Between tk and tk+1, filter i and predictor i perform state estimation and state predic-

tion continuously. When t = tk+1, go to Step 2 (k → k + 1).

Remark 4. Regarding the design of the predictors, the use of the centralized model is neces-

sary since the subsystems are fully coupled. In the predictor of subsystem i, it uses received

subsystem state estimates from other subsystems at a communication instant (i.e., tk) as

the initial condition and uses the centralized system nominal model to predict the states of

other subsystems between two consecutive communication instants (i.e., from tk to tk+1).

The subsystem filter i uses the predictions of other subsystems’ states to compensate for the

interactions between subsystem i and other subsystems. The main purpose of the predictors is

to improve the estimation performance of the distributed filters with discrete communication.

It will be demonstrated in the simulations that the predictors can significantly improve the

estimation performance. If the subsystems are connected in some special patterns (like in se-

ries), it is possible to simplify the design of the predictors without reducing the performance.

Note that the use of a centralized model in subsystem controller or estimator or predictor

designs is not uncommon. This type of strategy has been used in distributed model predictive

control (e.g., [58, 59]), quasi-decentralized control [17], etc. The predictors of the subsys-

tems are independent and are computed in a distributed fashion. One important advantage

of distributed design over a centralized design is its improved fault tolerance.
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3.5 Deterministic systems

In this section, we investigate the stability properties of the proposed distributed estimation

approach in the deterministic system structure, i.e. the specific form of system (2.3) without

process and measurement noises terms being described as follows:

ẋ(t) = Ax(t) + b(x(t), u(t))

y(t) = Cx(t)
(3.9)

where A, b and C are the same as mentioned in (3.4). In this section we assume the nonlinear

function b(x(t), u(t)) is Lipschitz with respect to x(t) and uniform with respect to u(t). In

the following, based on the system structure in (3.9), the filters are designed and the stability

of the distributed filters is analyzed.

3.5.1 Design of subsystem filters

Similar to the previous section, an AHGEKF is designed for each subsystem. Since the

communication between the filters is discrete, the proposed design of filter i (i ∈ I) would

be formulated as follows:

żi = Aizi + bi(x
p,i, u(t))− S−1

i CT
i R
−1
θi

(Cizi − yi) (3.10)

Also, the Riccati equation is changed to

Ṡi = − (Ai + b∗i (x
p,i, u))

T
Si − Si (Ai + b∗i (x

p,i, u)) + CT
i R
−1
θi
Ci − SiQθiSi (3.11)

where b∗i (x
p,i, u) denotes the Jacobian of bi(x

p,i, u) with respect to zi (i.e. b∗i (x
p,i, u) =

∂bi(x
p,i,u)

∂zi
), Rθi =

Ri

θi
and Qθi = θiQi. It should be noted that in (3.11), the Jacobian of

bi(x
p,i, 0) with respect to zj, j 6= i, is not considered. Note that this design significantly

simplifies the design of the Riccati equation while not significantly reduces the performance
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nor loses the stability. In the proposed design, the gain in each filter is adaptive and could

be high which is able to compensate for uncertainty introduced by the simplified Riccati

equation.

In the design of (3.10)-(3.11), the parameter θi involved in Rθi and Qθi is an adaptive

parameter for subsystem i whose adaptation depends on the innovation information which

will be defined. When the innovation of subsystem i indicates that the corresponding state

estimate is close to the actual subsystem state, θi will be small (i.e., close to 1). When

θi = 1, the design of (3.10)-(3.11) essentially reduces to the standard extended Kalman

filter (with interactions taken into account). When the innovation indicates that the local

state estimate is far away from the actual subsystem state, θi will evolve to large values to

ensure convergence of the estimate to the actual subsystem state. Specifically, the equation

governing the adaptation of θi is as follows:

θ̇i = µ(Ji)D(θi) + (1− µ(Ji))λi(1− θi)

, F (θi, Ji)
(3.12)

where µi(si) =
[
1 + e−βi(si−mi)

]−1

is a βi and mi parameterized sigmoid function, λi is a

positive constant, and

D(θi) =


1

∆Ti
θ2
i , if θi ≤ θm

1

∆Ti
(θi − 2θm)2, if θi > θm

(3.13)

with ∆Ti > 0, θm > 1. In (3.12), the variable Ji is the innovation for subsystem i. Con-

sidering a forgetting horizon for subsystem i, di, the innovation for each subsystem can be

defined as

Ji(t)=

∫ t

t−di
‖yi(t− d, x(t− d), τ)− yi(t− d, xp,i(t− d), τ)‖2dτ (3.14)

where yi(t0, x0, τ) is the output of subsystem (3.1) at time τ with x(t0) = x0. Again we

note that yi(t− d, xp,i(t− d), τ) is an open-loop predicted filter output and is not the actual
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filter output. In the calculation of Ji, yi(t − d, x(t − d), τ) for τ ∈ [t − d, t] is measured

and yi(t − d, xp,i(t − d), τ) for τ ∈ [t − d, t] needs to be evaluated. In the evaluation of

yi(t− d, xp,i(t− d), τ), the entire system state prediction xp,i(t− d) is needed and the entire

system model should be used due to the interaction between subsystems.

3.5.2 Stability analysis

In this section, the stability properties of the proposed distributed state estimation approach

for systems with discrete communications are investigated. First the evolution of prediction

error with time is evaluated. An upper bound on the deviation of the predicted system

state given by state predictor from the actual system state is provided by the following

Proposition 1.

Proposition 1. Consider the following centralized system and state predictor:

ẋ(t) = Ax(t) + b(x(t), u(t))

ẋp(t) = Axp(t) + b(xp(t), u(t))

(3.15)

where xp(t) is the prediction of x(t), A = diag{[A1, A2, . . . , Any ]} and b(x, u) = [bT1 (x, u), . . . ,

bTny(x, u)]T . The system prediction error e = xp − x satisfies

‖e(t)‖≤ fe(t− t0, ‖e(t0)‖) (3.16)

for all x(t), xp(t) ∈ X ⊂ Rn, where fe(t − t0, ‖e(t0)‖) =
√
n‖e(t0)‖exp[(Lb + 1)(t − t0)] with

Lb being the Lipschitz constant of b(x, u) with respect to x.

Proof: The time derivative of the error is,

ẋp − ẋ = ė = Ae+ b(xp, u)− b(x, u) (3.17)
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According to Lipschitz property of b and the continuity of x and xp, there exists a constant

Lb such that,

∥∥∥∥∥∥∥∥∥∥


b1(xp,1, u)− b1(x, u)

...

bny(x
p,ny , u)− bny(x, u)


∥∥∥∥∥∥∥∥∥∥

1

= ‖b(xp, u)− b(x, u)‖1≤ Lb‖xp − x‖1= Lb‖e‖1 (3.18)

Based on the structure of matrix A in Brunovsky canonical form, we have ‖A‖1= 1. Also

from (3.17) we obtain

d

dt
‖e‖1≤ ‖ė‖1≤ ‖A‖1‖e‖1+Lb‖e‖1= (Lb + 1)‖e‖1 (3.19)

The solution to (3.19) would be

‖e(t)‖1≤ ‖e(t0)‖1exp[(Lb + 1)(t− t0)] (3.20)

and since ‖e‖≤ ‖e‖1≤
√
n‖e‖,

‖e(t)‖≤
√
n‖e(t0)‖exp[(Lb + 1)(t− t0)] (3.21)

and this proves Proposition 1. �

From Proposition 1, it can be inferred that the prediction error given by the open-loop

predictor increases with time between two state updates. In (3.21), t0 is considered as the

initial time in each communication interval. Since the information from other observers

is received discretely, the predicted system states will be used in the filters between two

communication time instants.

Using (3.10), the dynamics of estimation error, εi = zi − xi, would be:

ε̇i = żi − ẋi = (Ai − S−1
i CT

i R
−1
θi
Ci)εi + bi(x

p,i, u)− bi(x, u) (3.22)
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Let us consider the Lyapunov function Vi = εTi Siεi for subsystem i, and use (3.22) and (3.11)

to obtain its time derivative:

d(εTi Siεi)

dt
= ε̇Ti Siεi + εTi Ṡiεi + εTi Siε̇i

= −θiεiSiQiSiεi − θiεTi CT
i R
−1
i Ciεi + 2εTi Si[bi(x

p,i, u)− bi(x, u)− b∗i (xp,i, u)εi]

(3.23)

Theorem 2. Considering system (3.3) defined by subsystems in the form of (3.1), if the

following conditions are held,

1. the nonlinear function, b(x, u), has the Lipschitz property with respect to x ∈ Rn,

2. the subsystem nonlinearity Jacobian, b∗i (x
p,i, u) is bounded,

3. the conditions in Theorem 2.18 of [60] are satisfied

4. all the estimators make the communications at time instants {tk≥0},

5. the following conditions are satisfied:

qmmin > 2nyLb∗max
δmax
δ2
min

(3.24)

and

2
√
nLbe

(Lb+1)∆

mini{θi}qmminδmin − 2nyLb∗max
δmax
δmin

<
δmin
δmax

[
1−

(
2θm

Rminδmin
+
√
nLbe

(Lb+1)∆

)
∆

]2

(3.25)

with ∆ being the discrete communication interval, δmin = mini{δmini}, δmax = maxi{δmaxi}

and Rmin = mini{Ri},

then for any initial condition of subsystems and observers in Xi (i.e. xi(tk) ∈ Xi and zi(tk) ∈

Xi) for all i ∈ I, the error dynamics asymptotically converges to zero.

Proof: It can be verified that θiε
T
i C

T
i R
−1
i Ciεi ≥ 0. If the positive definite matrix Qi is

chosen in a way that Qi ≥ qmiI for a qmi > 0, then from (3.23) the following inequality can
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be obtained:

d
(
εTi Siεi

)
dt

≤ −θiqmiεTi S2
i εi + 2εTi Si (bi(x

p,i, u)− bi(x, u)− b∗i (xp,i, u)εi) (3.26)

From Theorem 2.18 in [60], there exist scalars δmini > 0 and δmaxi > 0 such that δminiI ≤

Si ≤ δmaxiI. This means that (3.26) can be further written as:

d
(
εTi Siεi

)
dt

≤ −θiqmiδminiεTi Siεi + 2εTi Si (bi(x
p,i, u)− bi(x, u)− b∗i (xp,i, u)εi) (3.27)

If we add (3.27) for all i ∈ I, the time derivative of the overall system’s Lyapunov function

satisfies

d

dt

ny∑
i=1

εTi Siεi ≤ −θi mini{qmiδmini}εTSε+ 2εTS

×





b1(xp,1, u)− b1(x, u)

b2(xp,2, u)− b2(x, u)

...

bny(x
p,ny , u)− bny(x, u)


−



b∗1(xp,1, u) 0 . . . 0

0 b∗2(xp,2, u) 0
...

...
. . . 0

0 . . . 0 b∗ny(x
p,ny , u)





ε1

ε2
...

εny




(3.28)

Let us consider the time interval t ∈ [tk, tk+1). Since at tk, the filters communicate and

exchange information and function b is Lipschitz, based on Proposition 1 for t ∈ [tk, tk+1),

we would have

‖b(xp, u)− b(x, u)‖≤ Lb‖xp − x‖≤ Lb
√
n‖e(tk)‖exp[(Lb + 1)(t− tk)] (3.29)

Noting that ε(tk) = e(tk), using the Lipschitz property of nonlinear function b, for the last
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term of (3.28), we have:

∥∥∥∥∥∥∥∥∥∥∥∥∥



b1(xp,1, u)− b1(x, u)

b2(xp,2, u)− b2(x, u)

...

bny(x
p,ny , u)− bny(x, u)


−



b∗1(xp,1, u) 0 . . . 0

0 b∗2(xp,2, u) 0
...

...
. . . 0

0 . . . 0 b∗ny(x
p,ny , u)





ε1

ε2
...

εny



∥∥∥∥∥∥∥∥∥∥∥∥∥

≤

∥∥∥∥∥∥∥∥∥∥∥∥∥



b1(xp,1, u)− b1(x, u)

b2(xp,2, u)− b2(x, u)

...

bny(x
p,ny , u)− bny(x, u)



∥∥∥∥∥∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥∥∥∥∥∥



b∗1(xp,1, u) 0 . . . 0

0 b∗2(xp,2, u) 0
...

...
. . . 0

0 . . . 0 b∗ny(x
p,ny , u)





ε1

ε2
...

εny



∥∥∥∥∥∥∥∥∥∥∥∥∥
≤ Lb

√
n‖ε(tk)‖exp[(Lb + 1)(t− tk)] + nyLb∗max‖ε(t)‖

(3.30)

where Lb∗max = maxi{Lb∗i }. From (3.28) and (3.30), it can be obtained that

d

dt

ny∑
i=1

εTi Siεi(t) ≤ −θi mini{qmiδmini}
ny∑
i=1

εTi Siεi(t) + 2nyLb∗max
δmax

δmin

ny∑
i=1

εTi Siεi(t)

+2Lb
√
nδmax exp[(Lb + 1)(t− tk)]‖εT (t)‖‖ε(tk)‖

(3.31)

where δmax = maxi{δmaxi}, and δmin = mini{δmini}. We assume the estimation error takes

the maximum value at time instant η ∈ [tk, tk+1) within the communication interval, i.e.

‖ε(η)‖≥ ‖ε(t)‖ for any t ∈ [tk, tk+1) which results in

‖ε(t)‖‖ε(tk)‖≤ ‖ε(η)‖2 (3.32)

Based on (3.32), it can be inferred that

ny∑
i=1

εTi (t)Si(t)εi(t) <

ny∑
i=1

εTi (η)Si(t)εi(η) < δmax‖ε(η)‖2:= Λ (ε(η)) (3.33)

We pick V (t) =
ny∑
i=1

Vi(t) as the Lyapunov candidate function for the overall system and use
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(3.33) in (3.31) to obtain

d

dt
V (t) ≤

(
−min

i
{θiqmiαmini}+ 2nyLb∗max

δmax
δmin

)
V (t) + (2Lb

√
nΛ(ε(η))) exp[(Lb + 1)(t− tk)]

(3.34)

In addition, (3.22) for the overall system can be written as

ε̇(t) = Aε(t)−Htε(t) + b(xp(t))− b(x(t)) (3.35)

where Ht = diag{[S−1
1 CT

1 R
−1
θ1
C1, . . . , S

−1
ny C

T
nyR

−1
θny
Cny ]}. Following the boundedness of the

Riccati matrix and the high-gain parameter, we can obtain that

‖S−1
i CT

i R
−1
θi
Ci‖≤ ‖S−1

i ‖‖CT
i ‖‖R−1

θi
‖‖Ci‖≤

2θm
δminiRi

(3.36)

Consequently, the matrix Ht will have the following upper bound:

‖Ht‖≤
2θm

δminRmin

(3.37)

Since the distributed filters communicate at a fixed interval, ∆, and noting that ‖ε(η)‖≥

‖ε(t)‖, by taking the norm of both sides of (3.35) and using (3.37) and (3.36) we can obtain

that,

‖ε̇(t)‖≤
(

2θm
δminRmin

+ 1 + Lb
√
ne(Lb+1)∆

)
‖ε(η)‖ (3.38)

On the other hand, within the time period t ∈ [tk, tk+1) we have

‖ε(t)‖≥ ‖ε(η)‖−max{‖ε̇(t)‖}∆ (3.39)

Also, due to the boundedness of the overall Riccati matrix S, it can be obtained that

V (t) ≥ αmin min{‖ε‖2} (3.40)
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Using (3.38) and (3.39) in (3.40) leads to

V (t)

Λ(ε(η))
≥ δmin
δmax

[
1−

(
2θm

δminRmin

+ 1 + Lb
√
ne(Lb+1)∆

)
∆

]2

(3.41)

From the conditions (3.24) and (3.25) in Theorem 2, and (3.41) it can be verified that

V (t)

Λ(ε(η))
>

2Lb
√
ne(Lb+1)∆

mini{θi}qmminδmin − 2nyLb∗max
δmax
δmin

(3.42)

and it can be concluded that

2Λ(ε(η))
√
nLbe

(Lb+1)∆ −
(

min
i
{θi}qmminδmin − 2nyLb∗max

δmax
δmin

)
V (t) < 0 (3.43)

By comparing (3.43) and (3.34), it can be inferred that dV
dt
< 0 which implies asymptotic

convergence of the error dynamics. This proves Theorem 2.

Remark 5. Note that in Theorem 1 in Chapter 2, we prove that the estimation error decays

exponentially with continuous communication. In the case of discrete-time communication,

it is difficult to establish conditions for exponential decay of the error. Instead, in Theorem

2, we provide conditions that ensure asymptotic convergence of the estimation error. We also

note that in Theorem 2, the results also apply to EKF (i.e., θ = 1). However, we would like

to emphasize that as pointed out in the proof of Theorem 2, the proposed distributed state

estimation scheme with an adaptive gain has much faster convergence rate when error is

large. The fast convergence rate ensures that the proposed scheme can tolerate larger process

disturbances/noise and may have enlarged operating region.

3.6 Stochastic systems

In this section, we consider the more general form of subsystems in (3.1) and design dis-

tributed adaptive high-gain EKF with the effect of noise and disturbance. The schematic of
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the proposed design is the same as shown in Figure 3.1. The distributed AHG-EKFs com-

municate with each other to exchange information and the predictors are designed based on

deterministic form of system (2.3) to provide state predictions between two communication

instants to the subsystem filters.

3.6.1 Design of subsystem filters

For each subsystem, an AHG-EKF is designed. The subsystem AHG-EKF design is based

on the centralized AHG-EKF presented in [52, 44] with appropriate modifications to account

for interactions between subsystems. Since the communication between the filters is discrete,

the proposed design of filter i (i ∈ I) is formulated as follows:

żi = Aizi + bi(x
p,i, 0)− S−1

i CT
i R
−1
θi

(Cizi − yi) (3.44)

The associated Riccati equation is:

Ṡi = −
(
Ai + b∗i (x

p,i)
)T
Si − Si

(
Ai + b∗i (x

p,i)
)

+ CT
i R
−1
θi
Ci − SiQθiSi (3.45)

where b∗i (x
p,i) denotes the Jacobian of bi(x

p,i, 0) with respect to zi (i.e. b∗i (x
p,i) =

∂bi(x
p,i, 0)

∂zi
),

Rθi =
Ri

θi
and Qθi = θiQi. Note that in the deterministic system (3.9), although the inputs

(u(t)) are time varying, they are assumed to be known and the equations (3.10) and (3.11)

are designed based on the nonlinear term bi(x, u) with the uniformity with respect to u(t).

On the other hand, since the inputs (w(t)) are unknown, the filter and Riccati equations in

(3.44) and (3.45) are designed without the consideration of w(t), and as a result, they are

replaced by zero.

Remark 6. We note that the proposed distributed state estimation method is not an optimal

estimation scheme. The proposed method has the following features: (a) the convergence

rate is tunable via the tuning of the upper limit of the gain (i.e., θm) and the convergence

54



rate is potentially fast due to the use of high gains; and (b) the proposed design is less

sensitive to noise compared with designs with high gains. These features that render the

proposed design are very appealing for distributed output feedback control. However, the

proposed design does pose a limitation on the type of systems that can be handled. This

limitation is common for observers/estimators using high gains. We also note that in order

to have deterministic results, we consider bounded process and measurement noises. This is

different from the typical noise realizations in Bayesian based approaches (e.g., [61]). One

important application/motivation of the proposed design is distributed output feedback control

of nonlinear systems.

3.6.2 Stability analysis

In this section, the stability properties of the proposed distributed state estimation approach

with discrete communications are investigated. First the evolution of prediction error with

time is evaluated. An upper bound on the deviation of the predicted system state given by

the state predictor from the actual system state is provided by the following Proposition 2.

Proposition 2. Consider the following centralized system and state predictor:

ẋ(t) = Ax(t) + b(x(t), w(t))

ẋp(t) = Axp(t) + b(xp(t), 0)

(3.46)

where A = diag{[A1, A2, . . . , Any ]}, b(x,w) = [bT1 (x,w), . . . , bTny(x,w)]T and ‖w‖1≤ φw. The

system prediction error e = xp − x satisfies

‖e(t)‖≤ fe(t− t0, ‖e(t0)‖) (3.47)

for all x(t), xp(t) ∈ X, where fe(t− t0, ‖e(t0)‖) = (
√
n‖e(t0)‖+2

Lwb φw
Lxb+1

) exp[(Lxb + 1)(t− t0)]−
Lwb φw
Lxb+1

with t0 being the initial time instant and Lxb and Lwb being the Lipschitz constant of

b(x,w) with respect to x and w, respectively.
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Proof: The time derivative of the error is,

ė = ẋp − ẋ = Ae+ b(xp, 0)− b(x,w) (3.48)

According to locally Lipschitz property of b and the continuity of x and xp, there exists a

constants Lxb , L
w
b such that,

‖b(xp, 0)− b(x,w)‖1≤ Lxb‖xp − x‖1+Lwb ‖w‖1≤ Lxb‖e‖1+Lwb φw (3.49)

Based on the structure of matrix A, we have ‖A‖1= 1. From the above equations, we obtain

d

dt
‖e‖1≤ ‖ė‖1≤ ‖A‖1‖e‖1+Lxb‖e‖1+Lwb ‖w‖1≤ (Lxb + 1)‖e‖1+Lwb φw (3.50)

Solving the above inequality with the initial condition ‖e(t0)‖, it is obtained that

‖e(t)‖1≤ (‖e(t0)‖1+2
Lwb φw
Lxb + 1

) exp[(Lxb + 1)(t− t0)]− Lwb φw
Lxb + 1

. (3.51)

Since ‖e‖≤ ‖e‖1≤
√
n‖e‖, from (3.51) we obtain

‖e(t)‖≤ (
√
n‖e(t0)‖+2

Lwb φw
Lxb + 1

) exp[(Lxb + 1)(t− t0)]− Lwb φw
Lxb + 1

. (3.52)

Given the definition of fe, this proves Proposition 2. �

Using (3.44), the dynamics of estimation error of subsystem i, εi = zi − xi, is

ε̇i = żi − ẋi = (Ai − S−1
i CT

i R
−1
θi
Ci)εi + bi(x

p,i, 0)− bi(x,w) + S−1
i CT

i R
−1
θi
vi (3.53)

Let us consider the Lyapunov function Vi = εTi Siεi for subsystem i. Its time derivative can
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be obtained based on (3.53) and (3.45) as follows:

d(εTi Siεi)

dt
= ε̇Ti Siεi + εTi Ṡiεi + εTi Siε̇i = −θiεiSiQiSiεi − θiεTi CT

i R
−1
i Ciεi

+2εTi Si[bi(x
p,i, 0)− bi(x,w)− b∗i (xp,i)εi] + 2θiε

T
i C

T
i Rivi

(3.54)

The stability of the proposed design will be analyzed based on the above subsystem Lyapunov

function and is summarized in below in Theorem 3.

Theorem 3. Consider system (3.3) with subsystems described by (3.1) with the subsystem

AHG-EKFs designed following (3.44)-(3.45). If the following assumptions are satisfied:

1. function b(·, ·) is locally Lipschitz with respect to its arguments,

2. the Jacobian b∗i (x
p,i(t)) is bounded in the entire operating region of the distributed filters,

3. the conditions in Theorem 2.18 of [60] are satisfied (i.e., the Riccati matrices Si with

i ∈ I are bounded),

4. the positive definite matrix Qi is chosen in a way that Qi ≥ qmiI for certain qmi > 0

for i ∈ I,

5. the following condition is held:

qmmin > 2nyLb∗max
δmax
δ2
min

(3.55)

where qmmin = min{qmi}, Lb∗max = maxi{Lb∗i } with Lb∗i being the Lipschitz constant

associated with b∗i , and δmax and δmin are the maximum and minimum values of the

upper and lower bounds of all the subsystem Riccati matrices Si,

6. the parameter dm is the maximum distance between any two points in X and Rmin =

min{Ri},

then for any initial condition of subsystems and observers in Xi (i.e. xi(t0) ∈ Xi and zi(t0) ∈

Xi) for all i ∈ I, the norm of the overall system’s estimation error ‖ε(t)‖ is descending and
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ultimately smaller than ε∗; that is,

lim
t→∞
‖ε(t)‖≤ ε∗ (3.56)

where ε∗ =
2δmaxLxb e

(Lxb+1)∆

(
√
ndm+

2Lwb φw

Lx
b

+1

)
+

2Lwb φw

Lx
b

+1
δmax+

4θmnyφv
Rmin

min{θiqmi}α
2
min−2δmaxnyL∗

bmax

.

Proof: It can be verified that θiε
T
i C

T
i R
−1
i Ciεi ≥ 0. If the positive definite matrix Qi is

chosen in a way that Qi ≥ qmiI for a qmi > 0, then from (3.54) the following inequality can

be obtained:

d
(
εTi Siεi

)
dt

≤ −θiqmiεTi S2
i εi + 2θiε

T
i C

T
i Rivi + 2εTi Si

(
bi(x

p,i, 0)− bi(x,w)− b∗i (xp,i)εi
)

(3.57)

From Theorem 2.18 in [60], there exist scalars δmini > 0 and δmaxi > 0 such that δmini ≤

Si ≤ δmaxi . This means that (3.57) can be further written as:

d
(
εTi Siεi

)
dt

≤ −θiqmiδminiεTi Siεi + 2θiε
T
i C

T
i Rivi + 2εTi Si

(
bi(x

p,i, 0)− bi(x,w)− b∗i (xp,i)εi
)

(3.58)

If we add (3.58) for all i ∈ I, the time derivative of the overall system’s Lyapunov function

V =
ny∑
i=1

Vi =
ny∑
i=1

εTi Siεi satisfies:

dV

dt
≤ −mini{θiqmiδmini}εTSε+

ny∑
i=1

2θiε
T
i C

T
i R
−1
i vi

+2εTS



b1(xp,1, 0)− b1(x,w)

b2(xp,2, 0)− b2(x,w)

...

bny(x
p,ny , 0)− bny(x,w)


− 2εTS



b∗1(xp,1) 0 . . . 0

0 b∗2(xp,2) 0
...

...
. . . 0

0 . . . 0 b∗ny(x
p,ny)





ε1

ε2
...

εny


(3.59)

Let us consider the time interval t ∈ [tk, tk+1). Since at tk, the filters communicate and

exchange information and function b is Lipschitz in the entire operating region of the dis-
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tributed filters, based on Proposition 2 for t ∈ [tk, tk+1), we would have

‖b(xp, 0)−b(x,w)‖≤ (Lxb+1)

(
(
√
n‖e(tk)‖+2

Lwb φw
Lxb + 1

) exp[(Lxb + 1)(t− tk)]−
Lwb φw
Lxb + 1

)
+Lwb φw

(3.60)

At time instant tk, since the filters communicate and the states of the predictors are reset to

the state estimates, we have ε(tk) = e(tk). From (3.59) and (3.60), it can be obtained that:

dV (t)

dt
≤ −min{θiqmiδmini}V (t) + 2‖ε(t)‖2‖S(t)‖nyLb∗max + 2

√
n‖ε(t)‖‖ε(tk)‖‖S(t)‖Lxb e(Lxb+1)(t−tk)

+
4LxbL

w
b φw

Lxb + 1
e(Lxb+1)(t−tk)‖S(t)‖‖ε(t)‖+2(Lwb φw −

Lwb L
x
bφw

Lxb + 1
)‖ε(t)‖‖S(t)‖+4θmnyφv

Rmin

‖ε(t)‖

(3.61)

where δmax = maxi{δmaxi}, and δmin = mini{δmini}, Lb∗max = maxi{Lb∗i }, Rmin = min{Ri}.

Based on the definition of V and the boundedness of S such that δmin ≤ ‖S‖≤ δmax (ac-

cording to Theorem 2.18 of [60]), it is derived that:

δmin‖ε(t)‖2≤ V (t) ≤ δmax‖ε(t)‖2 (3.62)

From (3.61) and (3.62) and the boundedness of S, it is obtained that:

dV (t)

dt
≤ −min{θiqmiδmini}δmin‖ε(t)‖2+2‖ε(t)‖2δmaxnyLb∗max + 2

√
n‖ε(t)‖‖ε(tk)‖δmaxLxb e(Lxb+1)(t−tk)

+
4LxbL

w
b φw

Lxb + 1
e(Lxb+1)(t−tk)δmax‖ε(t)‖+2(Lwb φw −

Lwb L
x
bφw

Lxb + 1
)‖ε(t)‖δmax +

4θmnyφv
Rmin

‖ε(t)‖

(3.63)

Since ‖ε(tk)‖≤ dm from the definition of dm, ‖t− tk‖< ∆ for t ∈ [tk, tk+1), and based on the

definition of ε∗, it can be verified that if condition (3.55) is satisfied, the time derivative of

the Lyapunov function V is negative for all ‖ε(t)‖> ε∗ and t ∈ [tk, tk+1); that is,

dV

dt
< 0 (3.64)

for all ‖ε(t)‖> ε∗ and t ∈ [tk, tk+1). Since the distributed filters communicate with each other
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Figure 3.2: Four connected CSTRs with recycle streams.

every sampling time, ε is reset to be the same as e every sampling time, using the above

result recursively, it is proved that dV
dt
< 0 for all time as long as ‖ε(t)‖> ε∗. This implies

that within finite time duration, the estimation error ‖ε(t)‖ will be reduced to be smaller

than ε∗. Once ‖ε(t)‖< ε∗, the time derivative of V may be positive and ‖ε(t)‖ may increase,

however, ‖ε(t)‖ will be always smaller than ε∗ because dV
dt
< 0 when ‖ε(t)‖> ε∗. This proves

the theorem. �

3.7 Simulations on a chemical process

In this section, the proposed distributed AHG-EKF is applied to a chemical process composed

of four connected continuous-stirred tank reactors (CSTRs) with recycle streams as shown in

Figure 3.2. Pure reactant A at flow rate F01, molar concentration CA01 and temperature T01

is fed into the first reactor. The effluent of the first reactor enters the second reactor at flow

rate F1, molar concentration CA1, and temperature T1. Additional pure A at flow rate F02,

molar concentration CA02, and temperature T02 is also fed into CSTR 2. A portion of the

effluent of the second reactor is recycled back to the first reactor at flow rate Fr1 and the rest

is directed to the third reactor. Additional pure reactant A is fed into the third and fourth
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tanks at flow rates F03 and F04, concentrations CA03 and CA04 and temperatures T03 and

T04, respectively. There is another recycle stream from CSTR 4 to CSTR 1 at flow rate Fr2.

Three parallel irreversible exothermal reactions take place in the reactors: A→ B, A→ C,

and A → D. Each reactor is equipped with a jacket to provide/remove heat to/from the

reactor. The dynamic equations describing temperatures and concentrations of A derived

based on energy and material balances are as follows:

dT1

dt
=
F01

V1

(T01 − T1) +
Fr1
V1

(T2 − T1) +
Fr2
V1

(T4 − T1)−
3∑
i=1

∆Hi

ρcp
ki0e

−Ei
RT1CA1 +

Qh1

ρcpV1

(3.65a)

dCA1

dt
=
F01

V1

(CA01 − CA1) +
Fr1
V1

(CA2 − CA1) +
Fr2
V1

(CA4 − CA1)−
3∑
i=1

ki0e
−Ei
RT1CA1 (3.65b)

dT2

dt
=
F1

V2

(T1 − T2) +
F02

V2

(T02 − T2)−
3∑
i=1

∆Hi

ρcp
ki0e

−Ei
RT2CA2 +

Qh2

ρcpV2

(3.65c)

dCA2

dt
=
F1

V2

(CA1 − CA2) +
F02

V2

(CA02 − CA2)−
3∑
i=1

ki0e
−Ei
RT2CA2 (3.65d)

dT3

dt
=
F2 − Fr1

V3

(T2 − T3) +
F03

V3

(T03 − T3)−
3∑
i=1

∆Hi

ρcp
ki0e

−Ei
RT3CA3 +

Qh3

ρcpV3

(3.65e)

dCA3

dt
=
F2 − Fr1

V3

(CA2 − CA3) +
F03

V3

(CA03 − CA3)−
3∑
i=1

ki0e
−Ei
RT3CA3 (3.65f)

dT4

dt
=
F3

V4

(T3 − T4) +
F04

V4

(T04 − T4)−
3∑
i=1

∆Hi

ρcp
ki0e

−Ei
RT4CA4 +

Qh4

ρcpV4

(3.65g)

dCA4

dt
=
F3

V4

(CA3 − CA4) +
F04

V4

(CA04 − CA4)−
3∑
i=1

ki0e
−Ei
RT4CA4 (3.65h)

where Tj, CAj, Qj, Vj, j = 1, 2, 3, 4 denote the temperatures, the concentrations of A, the

rates of heat input/removal to/from the reactors and the reactor volumes respectively, cp and

ρ denote the heat capacity and density of the mixture in the reactors, ∆Hi, ki, Ei, i = 1, 2, 3

denote the enthalpies, pre-exponential constants and activation energies of the reactions

respectively. The values of model parameters are given in Table 3.1 and the heat inputs to

the reactors are Qh1 = 104kJ/h, Qh2 = 2× 104, Qh3 = 2.5× 104kJ/h and Qh4 = 104kJ/h.
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Table 3.1: Process parameters for the reactors.

F01 = 5 m3/h ∆H1 = −5.0× 104 KJ/kmol
F1 = 35 m3/h ∆H2 = −5.2× 104 KJ/kmol
F2 = 45 m3/h ∆H3 = −5.04× 104 KJ/kmol
F3 = 33 m3/h k10 = 3.0× 106 h−1

F02 = 10 m3/h k20 = 3.0× 105 h−1

F03 = 8 m3/h k30 = 3.0× 105 h−1

F04 = 12 m3/h E1 = 5.0× 104 KJ/kmol
Fr1 = 20 m3/h E2 = 7.53× 104 KJ/kmol
Fr2 = 10 m3/h E3 = 7.53× 104 KJ/kmol
ρ = 1000.0 kg/m3 CA01 = 4.0 kmol/m3

cp = 0.231 KJ/kg CA02 = 2.0 kmol/m3

V1 = 1.0 m3/h CA03 = 3.0 kmol/m3

V2 = 3.0 m3/h CA04 = 3.5 kmol/m3

V3 = 4.0 m3/h T03 = 300 K
V4 = 6.0 m3/h T04 = 300 K
T01 = 300 K R = 8.314 KJ/kmol ·K
T02 = 300 K

It is assumed that the four temperatures T1, T2, T3 and T4 are the continuously measured

outputs. The objective is to estimate the entire system state based on these measurements

in a distributed manner. The entire process is decomposed into four subsystems with respect

to the four reactors. For each reactor, an AHG-EKF is designed. In the design of the AHG-

EKFs, Q1 = Q2 = Q3 = Q4 = diag([5, 5]) and R1 = R2 = R3 = R4 = 1, respectively.

The parameter θm is uniquely defined for all the subsystem estimators and it is selected

to be θm = 20. In the calculation of the innovation terms, the filters use d = 0.03h.

The parameters in the adaptation functions are defined as follows: ∆Ti = 0.001h, βi = 150,

mi = 0.1, λi = 100 for i = 1, . . . , 4. Random measurement noise with an upper bound 1◦K is

added to the measurements. Random additive process noise with upper bounds 1◦K/sec and

30mol/m3/sec for temperature and concentration dynamics, respectively, is also considered.

The discrete communication interval among filters is ∆ = 36sec. In the simulations, the

initial state of the process is x(0) = [340, 2, 350, 3, 345, 2.5, 360, 4]T and the initial guesses in

the four distributed filters are z1(0) = [370, 2.5]T , z2(0) = [335, 2.7]T , z3(0) = [360, 2.65]T
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and z4(0) = [390, 3.6]T .

First, we compare the performance of the proposed distributed AHG-EKF with a regular

distributed EKF design (the proposed design with θi = 1, i = 1, . . . , 4 at all time) in the

presence of measurement and process noise. In both designs, the same design parameters

(i.e., Qi and Ri with i = 1, . . . , 4) are used and both designs take advantage of the predictors

and exchange information as described in the proposed design. Figures 3.3 and 3.4 show the

trajectories of the actual process states and the estimated values as well as the trajectories

of the corresponding adaptive gains and the innovations. From Figures 3.3 and 3.4, it can

be seen that both the proposed distributed AHG-EKF and the regular distributed EKF

are able to track the actual process states; however, the proposed design converges to the

actual states much faster. In addition, it is clear from the figures that the gains of the

distributed filters in the proposed design change adaptively with the innovations. Also, it

can be seen that when the estimation errors are large (at the initial period), the innovation

values increase quickly which renders the four adaptive gains to increase quickly. When the

estimation errors become small, the innovation values decrease and the gains decrease to

one.

Next, we study the effect of adaptive gain in reducing the sensitivity of the estimates

to measurement and process noise. Particularly, in this set of simulations, we fix the gains

of the four distributed filters at high values (i.e., θi = 40) and the gains do not change

over the simulations. The simulation results are illustrated in Figures 3.5 and 3.6. It can

be seen from Figures 3.5 and 3.6 that the estimates of concentrations are very noisy. This

is expected since the high gains increase the sensitivity of the filters to uncertainties. By

comparing the results shown in Figures 3.5 and 3.6 with results in Figures 3.3 and 3.4, it can

be inferred that the proposed distributed AHG-EKF not only gives fast convergence, but

also significantly reduces the sensitivity of the state estimates to process and measurement

noises.

Finally, we evaluate the effect of the predictors in improving the performance of the
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θ θ

Figure 3.3: The trajectories of the states of CSTR 1 and CSTR 2, their gains and innovations
under the proposed distributed AHG-EKF and regular distributed EKF.
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Figure 3.4: The trajectories of the states of CSTR 3 and CSTR 4, their gains and innovations
under the proposed distributed AHG-EKF and regular distributed EKF.
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Figure 3.5: The trajectories of the states of CSTR 1 and CSTR 2 and innovations under the
distributed high-gain EKF.
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Figure 3.6: The trajectories of the states of CSTR 3 and CSTR 4 and innovations under the
distributed high-gain EKF.
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Figure 3.7: The trajectories of the states of CSTR 1 and CSTR 2, their gains and innovations
under the proposed distributed AHG-EKF with and without predictors.
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Figure 3.8: The trajectories of the states of CSTR 3 and CSTR 4, their gains and innovations
under the proposed distributed AHG-EKF with and without predictors.
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proposed distributed AHG-EKF. The objective of the predictors in the proposed design is

to predict the states of other subsystems during communication intervals based on latest

received information. In this set of simulations, we carry out simulations with and without

the predictors. Figures 3.7 and 3.8 show the simulation results. It should be noted that,

when there is no predictor, the interactions between the subsystems are approximated using

the latest available information. From Figures 3.7 and 3.8, it can be seen that the estimates

given by the proposed design with predictors converge faster to the actual states. Also, the

trajectories of the estimates given by the proposed design with predictors are much smoother

than the ones obtained without predictors. In other words, the use of the state predictors

contributes to the significant improvement of the estimation performance.

3.8 Conclusions

In this chapter, we took a more realistic consideration into account and designed a distributed

adaptive high-gain EKF with discrete communication for a type of nonlinear systems com-

posed of interacted subsystems. Considering continuous measurements, the distributed filters

are designed to compensate for interactions between subsystems by exchanging information

at discrete time instants. An implementation strategy is designed based on discrete com-

munication among distributed filters which describes how the filters should communicate.

Then, to enhance the performance of the local estimators, state predictors are designed for

each subsystem based on the deterministic model of the centralized system. Sufficient con-

ditions under which the proposed distributed filtering approach is stable were derived. The

proposed approach was applied to a simulated chemical process example to illustrate its

applicability and effectiveness.
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Chapter 4

Distributed adaptive high-gain

extended Kalman filters with

communication delays and data losses

4.1 Introduction

In this section, we introduce the proposed distributed state estimation design taking into

account communication delays and data losses. A schematic view of the proposed design

is shown in Figure 4.1. In this design, each subsystem is assigned to a local estimator and

each estimator contains an AHG-EKF and a state predictor. The distributed estimators

transmit the information through a communication network. The communication between

subsystem estimators is subject to time-varying delays and data losses. The filter of a

subsystem estimates the subsystem state based on the subsystem output measurements,

the information received from other filters and the predictions provided by the associated

predictor.

In this chapter, the system under consideration is similar to the general form of the

described system in (3.3), and the distributed filters will be designed based on both the
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Figure 4.1: Proposed distributed state estimation design subject to communication delays
and losses.

deterministic and stochastic forms of subsystems in (3.1).

4.2 Modeling of communication network and measure-

ments

In this chapter, each subsystem estimator is assumed to have immediate and direct access to

the measurements of its corresponding subsystem continuously. The subsystem estimators

are also assumed to have the capability of information transmission in a mutual communi-

cation network and the exchange of information is subject to time-varying delays and data

losses at discrete time instants {tk≥0} such that tk = t0 + k∆ with the initial time t0 = 0, a

fixed time interval ∆ and a positive integer k. An auxiliary variable di,j(tk) is incorporated

to denote the associated delay for the information of subsystem j available to subsystem i

at time instants tk, and the possible values for the variable di,j(tk) are positive integers. It is

assumed that there is a predetermined maximum allowable D on the communication delay
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Figure 4.2: The worst case scenario of the available information of filter j to filter i.

di,j(tk), and the data received with time delay larger than D is taken as lost information.

The data losses are also associated with an upper bound Tm on the number of consecu-

tive sampling periods. Because of the existence of D and Tm, a subsystem will receive at

least once information from another subsystem within D + Tm communication periods (i.e.,

(D + Tm)∆). Note that both the upper bounds D and Tm are critical parameters to obtain

deterministic results for the proposed distributed state estimation scheme.

In distributed filtering with communication delays and data losses, a worst case scenario

may occur in which none of the communicating filters transmit information within the period

(D+Tm)∆. To elaborate this scenario, let us consider two filters i and j, where filter j sends

information (zj) to filter i at time tk−D−Tm . As shown in Figure 4.2, the worst case scenario

occurs when no information is received by filter i up to time tk. Then, at the next sampling

time tk+1, filter i must receive another update of zj(tg) with tg > tk−D.

4.3 Distributed state estimation algorithm

The following algorithm describes the information flow between the distributed estimators

and the roles of the predictors and the filters:

1. At initial time instant t = 0, all of the subsystem filters are initialized with guesses

for subsystem state (i.e. zj(0), j ∈ I), the actual subsystem output measurement (i.e.

yi(0)), and the initial value of each filter’s adaptive gain (i.e. θi(0)).

2. At time instant tk ≥ 0 the following steps should be taken:
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(a) AHGEKF i receives the local output measurement yi(tk).

(b) If any new data packages are received by AHGEKF i between the time interval tk−1

and tk, the data will be stored if time delay is less than the maximum allowable

delay (i.e. di,j(tk) < D); otherwise the data package is discarded. If the received

data provides more recent information, di,j(tk) values are updated and the data

packages are stored; else only the data packages are stored.

(c) If any di,j(tk) is greater than 1, then based on previously received information, the

corresponding predictor of AHGEKF i predicts the system state xp,i(tk−1). Then

the state estimate for subsystem i is calculated based on local measurement yi(tk),

the state prediction xp,i(tk−1) and the received information from other subsystems.

(d) AHGEKF i sends the current estimated state zi(tk) to AHGEKF j, j ∈ Ii, j 6= i.

3. Filter i and predictor i perform state estimation and state prediction continuously in

the period tk and tk+1. Return to step 2 at the next sampling time (and k → k + 1)

when t = tk+1.

4.4 Design of subsystem predictors

At a discrete-time instant tk, each filter in the distributed estimation system sends out its

latest state estimate to other filters. However, due to communication delays and losses,

the information sent by a filter may not be received by other filters immediately. Since

a filter requires the state information of other filters to characterize its interaction of its

corresponding subsystem with other subsystems, the unavailable information is predicted

by an open loop predictor for each subsystem filter. In order to reduce the number of

evaluations of the predictor associated with a subsystem, the predictor only calculates at the

communication time instants (i.e. {tk≥0}).

At time tk, predictor i generates a prediction of the entire system state, denoted as

xp,i(tk), using the nominal centralized system model of (3.3). A two-step prediction-update
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algorithm is used to calculate the predictions recursively from tf to tk−1, where the time

tf is determined as follows: (1) If filter i receives information between tk−1 and tk, then tf

would be the time when the oldest state estimate was received. (2) If filter i receives no

information between tk−1 and tk, then tf = tk−1.

For each sampling time period, [tg, tg+1], between tf and tk−1:

• Prediction step. The unreceived state estimates from other filters will be approximated

by the integration of the nominal centralized system model within the period t ∈

[tg, tg+1):

ẋp,i− (t) = Axp,i− (t) + b(xp,i− (t), 0)

xp,i− (tg) = xp,i(tg)
(4.1)

with xp,i− denoting the prediction prior to the update step and xp,i(tg) representing the

prediction at tg after the update step. Also, as denoted in (4.1), in this chapter we

consider the predictor to be function of states only. It should be noted that the initial

condition xp,i(tf ) should be updated first.

• Update step. To obtain the updated predictions xp,i(tg+1), the corresponding portions

of xp,i− (tg+1) are needed to be replaced with the available subsystem state estimates

at tg+1 (including zi(tg+1) and the state estimates received from other filters). For

instance, if filter i receives zj(tg+1) within [tk−1, tk] or previously, zj(tg+1) replaces the

portion of the prediction for subsystem j in xp,i− (tg+1).

The mentioned methodology describes that all the received subsystem state estimates

will be used to update the predictions (obtained at tk−1). Also, it can be inferred that the

filters need to store the received information and in the absence of delay or data losses, no

prediction-update method is necessary.
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4.5 Deterministic system

In this section, we design the distributed filters subject to communication delays and data

losses based on the deterministic form of subsystems in (3.1). The deterministic form of

subsystems is defined as:

ẋi(t) = Aixi(t) + bi(x(t), 0)

yi = Cixi(t)
(4.2)

with the same properties described in Section 3.2. In this section, we assume bi is only a

nonlinear function of overall states and from now on we denote bi(x(t), 0) as bi(x(t)).

4.5.1 Design of subsystem filters

In the proposed design, filter i (i ∈ I) is defined as follows:

żi = Aizi + bi(x
p,i)− S−1

i CT
i R
−1
θi

(Cizi − yi) (4.3)

where zi is the state of the filter, xp,i is composed of the corresponding filter state zi and the

predictions of the states of all other filters xp,ij , j ∈ I, j 6= i, and Rθi =
1

θi
Ri with θi being

the adaptive gain parameter of filter i and Ri being a positive scalar. Also, Si is the solution

to the following matrix Riccati equation:

Ṡi = − (Ai + b∗i (x
p,i))

T
Si − Si (Ai + b∗i (x

p,i)) + CT
i R
−1
θi
Ci − SiQθiSi (4.4)

where b∗i (x
p,i) denotes the Jacobian of bi(x

p,i) with respect to zi (i.e. b∗i (x
p,i) = ∂bi(x

p,i)
∂zi

) and

Qθi = θiQi with Qi being an nxi by nxi symmetric positive definite matrix.

On the right-hand-side of (4.3), the first two terms are from the subsystem model (4.2)

with the interacting states approximated using the predicted states to account for commu-

nication delays and losses. In order to adapt the high-gain parameter, we follow the same

strategy that is described in Section 3.5, since the state predictors in both designs operate
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similarly.

4.5.2 Stability analysis

In this section, the stability of the proposed distributed AHG-EKF design affording commu-

nication delays and information losses is investigated. Defining the estimation error for each

subsystem as εi = zi − xi, i ∈ I, the subsystem’s error dynamics would be

ε̇i = żi − ẋi =
(
Ai − S−1

i CT
i R
−1
θi
Ci
)
εi + bi(x

p,i)− bi(x) (4.5)

Picking εTi Siεi as the Lyapunov function for subsystem i, i ∈ I, we can obtain that:

d
(
εTi Siεi

)
dt

= θi

[
−εTi SiQiSiεi − εTi CT

i R
−1
i Ciεi +

2

θi

(
bTi (xp,i)Siεi − bTi (x)Siεi − εTi Sib∗i (xp,i)εi

)]
(4.6)

The equation (4.6) plays an important role in establishing the convergence of the proposed

distributed state estimation approach with communication delays and data losses. The

properties of the predictors are provided in the following Proposition 3. In this proposition,

the evolution of prediction error is evaluated and an upper bound is established between the

states of the actual system and the predictions provided by the predictors.

Proposition 3. Consider the following centralized system and state predictor:

ẋ(t) = Ax(t) + b(x(t))

ẋp(t) = Axp(t) + b(xp(t))

(4.7)

where xp(t) is the prediction of x(t), A = diag{[A1, A2, . . . , Any ]} and b(x) = [bT1 (x), . . . , bTny(x)]T .

The system prediction error e = xp − x satisfies

‖e(t)‖≤ fe(t− t0, ‖e(t0)‖) (4.8)
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for all x(t), xp(t) ∈ X ⊂ Rn, where fe(t − t0, ‖e(t0)‖) =
√
n‖e(t0)‖exp[(Lb + 1)(t − t0)] with

Lb denoting the Lipschitz constant of b(x) with respect to x.

Proof: From (4.7), the time derivative of the prediction error can be obtained as

ẋp − ẋ = ė = Ae+ b(xp)− b(x) (4.9)

Due to the continuity of x and xp and Lipschitz property of b, there exists a constant Lb

such that,

‖b(xp)− b(x)‖1≤ Lb‖xp − x‖1 (4.10)

and consequently we obtain,

‖b(xp)− b(x)‖1=

∥∥∥∥∥∥∥∥∥∥


b1(xp,1)− b1(x)

...

bny(x
p,ny)− bny(x)


∥∥∥∥∥∥∥∥∥∥

1

≤ Lb‖e‖1 (4.11)

Based on the structure of matrix A in Brunovsky canonical form, it can be obtained that

‖A‖1= 1. Also from (4.9) we obtain

d

dt
‖e‖1≤ ‖ė‖1≤ ‖A‖1‖e‖1+Lb‖e‖1= (Lb + 1)‖e‖1 (4.12)

Since ‖e‖≤ ‖e‖1≤
√
n‖e‖, from the solution to (4.12), it can be obtained that

‖e(t)‖≤
√
n‖e(t0)‖exp[(Lb + 1)(t− t0)] = fe(t− t0, ‖xp(t0)− x(t0)‖) (4.13)

and this proves Proposition 3. �

Theorem 4. Considering system (3.3) defined by subsystems in the form of (3.1), if the

following conditions are satisfied,

1. the nonlinear function, b(x), is Lipschitz with respect to x,
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2. the Jacobian matrix, b∗i (x), is bounded,

3. the following conditions hold,

qmmin > 2nyLb∗max
δmax
δ2
min

(4.14)

and

2
√
nLbe

(Lb+1)(D+Tm)∆

mini{θi}qmminδmin − 2nyLb∗max
δmax
δmin

<
δmin
δmax

[
1−

(
2θm

Rminδmin
+ Lb
√
ne(Lb+1)(Tm+D)∆

)
(Tm +D)∆

]2

(4.15)

where δmin = mini{δmini}, δmax = maxi{δmaxi}, Rmin = mini{Ri}, ∆ is the com-

munication interval, D denotes the maximum allowable delay and Tm represents the

maximum consecutive samples of data losses,

then for any initial condition of subsystems and observers in Xi for all i ∈ I, the error

dynamics is asymptotically stable and the error will eventually converge to zero.

Proof: Since Ri ≥ 0, we can verify that εTi C
T
i R
−1
i Ciεi ≥ 0. Also, considering a positive

definite matrix Qi, there exists a qmi such that Qi ≥ qmiI. Using (4.6) it can be obtained

that

d
(
εTi Siεi

)
dt

≤ −θiqmiεTi S2
i εi + 2εTi Si

(
bi(x

p,i)− bi(x)− b∗i (xp,i)εi
)

(4.16)

Based on Theorem 2.18 in [60], the Riccati matrix in each subsystem can be bounded such

that δminiI ≤ Si(t) ≤ δmaxiI where δmini > 0 and δmaxi > 0 are scalars. So, from (4.16) we

can obtain that

d
(
εTi Siεi

)
dt

≤ −θiqmiδminiεTi Siεi + 2εTi Si
(
bi(x

p,i)− bi(x)− b∗i (xp,i)εi
)

(4.17)

In order for the evaluation of the overall system’s stability, we add (4.17) for all i ∈ I together
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to obtain,

d

dt

ny∑
i=1

εTi Siεi ≤ −mini{θiqmiδmini}

×



ε1

ε2
...

εny



T 

S1 0 . . . 0

0 S2 0
...

...
. . .

0 . . . Sny





ε1

ε2
...

εny


+ 2



ε1

ε2
...

εny



T 

S1 0 . . . 0

0 S2 0
...

...
. . .

0 . . . Sny



×





b1(xp,1)− b1(x)

b2(xp,2)− b2(x)

...

bny(x
p,ny)− bny(x)


−



b∗1(xp,1) 0 . . . 0

0 b∗2(xp,2) 0
...

...
. . . 0

0 . . . 0 b∗ny(x
p,ny)





ε1

ε2
...

εny





(4.18)

As explained in Section 4.2, the worst case scenario of the communication between two filters

occurs when there is no information transmission among them within D + Tm consecutive

samples.

Let us focus on the time interval t ∈ [tk−D−Tm , tk] and assume that there is no infor-

mation transmission between the filters in the time period. Based on Proposition 3 for

t ∈ [tk−D−Tm , tk), we would have

‖b(xp)− b(x))‖≤ Lb‖e(t)‖≤ Lb
√
n‖e(tk−D−Tm)‖exp[(Lb + 1)(t− tk−D−Tm)] (4.19)

Noting that ε(tk−D−Tm) = e(tk−D−Tm), the Lipschitz property of nonlinear function b for the
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last term of (4.18) results in,

∥∥∥∥∥∥∥∥∥∥∥∥∥



b1(xp,1)− b1(x)

b2(xp,2)− b2(x)

...

bny(x
p,ny)− bny(x)


−



b∗1(xp,1) 0 . . . 0

0 b∗2(xp,2) 0
...

...
. . . 0

0 . . . 0 b∗ny(x
p,ny)





ε1

ε2
...

εny



∥∥∥∥∥∥∥∥∥∥∥∥∥

≤

∥∥∥∥∥∥∥∥∥∥∥∥∥



b1(xp,1)− b1(x)

b2(xp,2)− b2(x)

...

bny(x
p,ny)− bny(x)



∥∥∥∥∥∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥∥∥∥∥∥



b∗1(xp,1) 0 . . . 0

0 b∗2(xp,2) 0
...

...
. . . 0

0 . . . 0 b∗ny(x
p,ny)





ε1

ε2
...

εny



∥∥∥∥∥∥∥∥∥∥∥∥∥
≤ Lb

√
n‖ε(tk−D−Tm)‖exp[(Lb + 1)(t− tk−D−Tm)] + nyLb∗max‖ε(t)‖

(4.20)

where Lb∗max = maxi{Lb∗i }. From (4.20) and (4.18), the following inequality can be obtained

d

dt

ny∑
i=1

εTi Siεi(t) ≤ −mini{θiqmiδmini}
ny∑
i=1

εTi Siεi(t) + 2nyLb∗max
δmax

δmin

ny∑
i=1

εTi Siεi(t)

+2
√
nLbδmax exp[(Lb + 1)(t− tk−D−Tm)]‖εT (t)‖‖ε(tk−D−Tm)‖

(4.21)

Let us assume that ζ ∈ [tk−D−Tm , tk) is the time at which the estimation error takes the

maximum value over the time period, i.e. ‖ε(ζ)‖≥ ‖ε(t)‖ for any t ∈ [tk−D−Tm , tk). Then we

have

‖ε(t)‖‖ε(tk−D−Tm)‖≤ ‖ε(ζ)‖2 (4.22)

Also, we can further obtain that

ny∑
i=1

εTi (t)Si(t)εi(t) ≤
ny∑
i=1

εTi (ζ)Si(t)εi(ζ) ≤ δmax‖ε(ζ)‖2:= Ω (ε(ζ)) (4.23)
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Defining V (t) =
ny∑
i=1

εTi Siεi(t) and substituting (4.23) into (4.21) we get

d

dt
V (t) ≤

(
−mini{θiqmiδmini}+ 2nyLb∗max

δmax

δmin

)
V (t)

+ (2
√
nLbΩ(ε(ζ))) exp[(Lb + 1)(t− tk−D−Tm)]

(4.24)

On the other hand, from (4.5) for the overall system we obtain

ε̇(t) = Aε(t)−
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ε(t) + b(xp)− b(x)

(4.25)

Since δminiI ≤ Si(t) ≤ δmaxiI and 1 ≤ θi ≤ 2θm we can have,

‖S−1
i CT

i R
−1
θi
Ci‖≤ ‖S−1

i ‖‖CT
i ‖‖R−1

θi
‖‖Ci‖≤

2θm
δminiRi

(4.26)

Hence,

∥∥∥∥∥∥∥∥∥∥∥∥∥
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∥∥∥∥∥∥∥∥∥∥∥∥∥
≤ 2θm
δminRmin

(4.27)

By considering a fixed communication interval (Tm +D)∆, from (4.25), (4.27) and (4.19) we

can have,

‖ε̇(t)‖≤ (
2θm

δminRmin

+ 1)‖ε(t)‖+Lb
√
ne(Lb+1)(Tm+D)∆‖ε(tk−D−Tm)‖ (4.28)

82



and since ‖ε(ζ)‖≥ ‖ε(t)‖ for any t ∈ [tk−D−Tm , tk) we obtain,

‖ε̇(t)‖≤
(

2θm
δminRmin

+ 1 + Lb
√
ne(Lb+1)(D+Tm)∆

)
‖ε(ζ)‖ (4.29)

The norm of estimation error within the time period t ∈ [tk−D−Tm , tk) satisfies

‖ε(t)‖≥ ‖ε(ζ)‖−max{‖ε̇(t)‖}(Tm +D)∆ (4.30)

and since

V (t) = εT (t)S(t)ε(t) ≥ δmin min{‖ε(t)‖2} (4.31)

plugging (4.29) and (4.30) into (4.31) results in

V (t)

Ω(ζ)
≥ δmin
δmax

[
1−

(
2θm

δminRmin

+ 1 + Lb
√
ne(Lb+1)∆(Tm+D)

)
(Tm +D)

]2

(4.32)

If (4.14) and (4.15) are satisfied, from (4.32) it can be obtained that

2
√
nLbe

(Lb+1)(D+Tm)∆

mini{θi}qmminδmin − 2nyLb∗max
δmax
δmin

<
V (t)

Ω(ε(ζ))
(4.33)

and as a result,

0 > 2
√
nΩ(ε(ζ))Lbe

(Lb+1)(D+Tm)∆ +

(
−min

i
{θi}qmminδmin + 2nyLb∗max

δmax
δmin

)
V (t) (4.34)

Plugging (4.34) into (4.24) leads to V̇ (t) < 0, which means that the error dynamics is

asymptotically stable. This proves Theorem 4.

Remark 7. Referring to condition (4.15) in Theorem 4 (as well as (4.33) in the proof), it

can be seen that with increased gain θi, a smaller value can be obtained for the lower bound of

V (t) which implies that the error decreases faster. In the next section, we will demonstrate in

simulations that high gains in the distributed filters ensure fast convergence and adaptation
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of the gains according to innovation can remove the sensitivity of high gains to noise.

4.6 Stochastic system

In this section, the general form of nonlinear systems including the uncertainties in the

process and measurements is considered. The system is decomposed into the subsystems in

the form of (3.1) with the same properties that are described in Section 3.2. In Section 3.6,

the distributed filters were designed for the stochastic form of the interconnected subsystems

based on discrete communications where the distributed filters communicated at discrete time

instants simultaneously. In this section we will analyze the distributed filters for stochastic

processes where they not only communicate discretely but also are subject to delays and data

dropouts in information transmission. Also, the state predictors are designed for distributed

filters to compensate for the missing information within delays and data losses.

4.6.1 Design of subsystem filters

The filter design in this section is similar to the that of section 3.6, however the information

transmission time instants randomly change among different filters. The predictors are

designed based on predict-update strategy for each filter to predict the delayed and lost

information and update the predictions at the information arrival time.

4.6.2 Stability analysis

In order to have a comprehensive analysis of the proposed distributed filtering approach

with process and measurement uncertainties, we consider the worst case scenario in commu-

nication of distributed filters. As described in Subsection (4.2), the communications among

filters are allowed for having bounded delays and bounded consecutive dropouts in informa-

tion transmission. Consequently, the distributed filters will experience the worst condition in

information exchange when none of the distributed filters have received information from the
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communication network after the maximum possible sampling time delays and consecutive

data losses, i.e. (D+ Tm)∆. This case of communication provides a discrete communication

scenario in which the distributed filters communicate every (D + Tm) sampling times.

Theorem 5. Let us consider a network of interacting subsystems described by (3.1) with

local AHGEKFs designed by (3.44)-(3.45). If the following conditions are satisfied:

1. subsystems’ nonlinear function b(·, ·) is locally Lipschitz with respect to its arguments

2. the Jacobian b∗i (x
p,i(t)) is bounded in the entire operating region of the distributed filters,

3. the Riccati matrices Si with i ∈ I are bounded (i.e., the conditions in Theorem 2.18 of

[60] are satisfied),

4. the elements of covariance matrix Qi ≥ qmiI satisfy

qmmin > 2nyLb∗max
δmax
δ2
min

(4.35)

where Lb∗max = maxi{Lb∗i } with Lb∗i being the Lipschitz constant associated with b∗i , and

δmax and δmin are the maximum and minimum values of the upper and lower bounds

of all the subsystem Riccati matrices Si,

5. considering dm as the maximum distance between any two points in X, ∆ as the max-

imum allowable sample delay and Tm as the maximum consecutive data loss in com-

munication among AHGEKFs and Rmin = min{Ri},

then for any initial condition of subsystems and observers in Xi (i.e. xi(t0) ∈ Xi and zi(t0) ∈

Xi) for all i ∈ I, the norm of the overall system’s estimation error ‖ε(t)‖ is descending and

ultimately smaller than ε∗; that is,

lim
t→∞
‖ε(t)‖≤ ε∗ (4.36)

where ε∗ =
2δmaxLxb e

(Lxb+1)∆(D+Tm)

(
√
ndm+

2Lwb φw

Lx
b

+1

)
+

2Lwb φw

Lx
b

+1
δmax+

4θmnyφv
Rmin

min{θiqmi}α
2
min−2δmaxnyL∗

bmax

.
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Proof: In this section, since the model of the nonlinear subsystems and communication

of their corresponding filters are the same as the described model in Section 3.6, the filter

dynamics and the Riccati equation will be the same as (3.44) and (3.45), respectively. Also,

it can be verified that by considering the same model of the centralized system and predictor,

Proposition 2 holds as well. By considering the worst case scenario in communication delays

and data losses among the distributed filters, we may follow the same proof described in

Section 3.6; however in this scenario the analysis is performed within t ∈ [tk−D−Tm , tk).

Consequently, by picking Vi = εi(t)Si(t)εi(t), and V =
ny∑
i=1

Vi as the Lyapunov functions for

each subsystem and the entire system, respectively, the equations (3.57)-(3.59) hold and

based on Proposition 2 for t ∈ [tk−D−Tm , tk] we obtain,

‖b(xp, 0)− b(x,w)‖≤
(

(
√
n‖e(tk−D−Tm)‖+2

Lwb φw
Lxb+1

) exp[(Lxb + 1)(t− tk−D−Tm)]− Lwb φw
Lxb+1

)
×(Lxb + 1) + Lwb φw

(4.37)

In the worst case scenario, since the last communication among filters has been made at

time tk−D−Tm , then ε(tk−D−Tm) = e(tk−D−Tm). So, based on (4.37) and Proposition 2, we can

obtain

dV (t)

dt
≤ −min{θiqmiδmini}V (t) + 2‖ε(t)‖2‖S(t)‖nyLb∗max +

4θmnyφv
Rmin

‖ε(t)‖

+2(Lwb φw −
Lwb L

x
bφw

Lxb + 1
)‖ε(t)‖‖S(t)‖+4LxbL

w
b φw

Lxb + 1
e(Lxb+1)(t−tk−D−Tm )‖S(t)‖‖ε(t)‖

+2
√
n‖ε(t)‖‖ε(tk−D−Tm)‖‖S(t)‖Lxb e(Lxb+1)(t−tk−D−Tm )

(4.38)

where δmax = maxi{δmaxi}, and δmin = mini{δmini}, Lb∗max = maxi{Lb∗i }, Rmin = min{Ri}.

According to the definition of Lyapunov function V and the boundedness of S such that
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δmin ≤ ‖S‖≤ δmax, we obtain δmin‖ε(t)‖2≤ V (t) ≤ δmax‖ε(t)‖2 and based on (4.38) we get

dV (t)

dt
≤ −min{θiqmiδmini}δmin‖ε(t)‖2+2‖ε(t)‖2δmaxnyLb∗max +

4θmnyφv
Rmin

‖ε(t)‖

+2
√
n‖ε(t)‖‖ε(tk−D−Tm)‖δmaxLxb e(Lxb+1)(t−tk−D−Tm ) + 2(Lwb φw −

Lwb L
x
bφw

Lxb + 1
)‖ε(t)‖δmax

+
4LxbL

w
b φw

Lxb + 1
e(Lxb+1)(t−tk−D−Tm )δmax‖ε(t)‖

(4.39)

As stated in Theorem 5, from condition (4.35) and the definitions of dm and ε∗, we can verify

that ‖ε(tk−D−Tm)‖≤ dm ,‖t− tk−D−Tm‖< (Tm +D)∆ for t ∈ [tk−D−Tm , tk) and

dV

dt
< 0 (4.40)

for all ‖ε(t)‖> ε∗ and t ∈ [tk−D−Tm , tk), which means that the overall Lyapunov function

is decreasing. If we consider the distributed filters communicating with each other every

(D + Tm)∆ based on worst-case scenario, ε is reset to be the same as e every sampling

time, and using the above result recursively, it is proved that dV
dt
< 0 for all time as long as

‖ε(t)‖> ε∗. This implies that within finite time duration, the estimation error ‖ε(t)‖ will be

reduced to be smaller than ε∗. Once ‖ε(t)‖< ε∗, the time derivative of V may be positive

and ‖ε(t)‖ may increase; however ‖ε(t)‖ will be always smaller than ε∗ because dV
dt
< 0 when

‖ε(t)‖> ε∗. This proves the theorem 5. �

4.7 Application to a simulated chemical process

In this section, we apply the proposed distributed AHG-EKF to a simulated chemical process

allowed for data losses and delays. This process is a 2-CSTR system which was described in

Section 2.6. Constant heat inputs to the two reactors are used: Qh1 = 1.4 × 104 kJ/h and

Qh2 = 1.4× 104 kJ/h. These inputs ensure the stability of the process.

The two temperatures T1 and T2 are assumed to be the continuously measured outputs.
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Based on these measurements, the estimation of the entire system state is desired. The whole

process is divided into two subsystems with respect to CSTR1 and CSTR2, and an AHG-EKF

is designed for each subsystem. In the design of the AHG-EKFs, Q1 = Q2 = diag([50, 5])

and R1 = R2 = 1, respectively. In the simulations, the communication interval is 36 seconds,

the maximum time delay is picked as 108 seconds and the maximum allowable consecutive

data loss samples is 72 seconds (i.e. ∆ = 10, D = 3 and Tm = 2). For all the subsystem

estimators the parameter θm = 10. Also, a unique value is used for the calculation of the

innovation terms, d = 0.01h. The parameters in the adaptation functions are selected as

follows: ∆T = 0.001h, β1 = 5, m1 = 1, λ1 = 1000, β2 = 5, m2 = 1, λ2 = 1000. In

the simulations, the initial state of the process is x(0) = [360, 3, 320, 3]T and the initial

guesses in the two distributed filters are z1(0) = [396, 2.1]T and z2(0) = [352, 9.7]T . Also

the uncertainty in the temperature measurement is considered as 1◦K in each subsystem,

the process noise for temperature and concentration dynamics are considered as 3◦K/sec

and 60 mol/m3/sec, respectively. In order to have excited concentration trajectories in the

simulations, a periodic F0 is used; that is, F0 = 10(1 + 0.9 sin(0.008t))m3/h.

First, we compare the proposed design with regular distributed EKF design (i.e., the

proposed design with θ = 1 all the time). In both of the designs, the two distributed

filters communicate to transmit information as in the proposed design. The communication

between the two filters is subject to delays and losses. The sequences of the data loss and

communication delays among the filters in the simulations are shown in Figure 4.3. Note

that the predictors are used in both designs to predict the missing information. Figure 4.4

shows the simulation results given by the proposed DAHG-EKF and the regular distributed

EKF. It can be seen from the figure that the system states can be tracked in both of the

designs. However, the proposed DAHG-EKF converges to the actual system states much

faster than the regular distributed EKF. This result is also reflected by the innovations. The

innovations of the two subsystems under the proposed DAHG-EKF decrease much faster

to values close to zero compared with the innovations under the regular EKF. Moreover, it
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can be seen that the gain of each subsystem filter in the proposed design increases to a high

value quickly when the initial innovation is large and then decreases to 1 when the innovation

becomes small. The adaptive gains in the proposed design ensure that the estimates are not

sensitive to measurement noise which is demonstrated in the next set of simulations. The

ability of the distributed filters to track more challenging dynamics is illustrated in Figure

4.5. In order to provide more visible variations in the states, the heat inputs to the tanks

are assumed constant and the input flow-rate F0 to the first tank varies with a sinusoidal

trend. Figure 4.5 shows that although sinusoidal input on the first subsystem results in more

variations on the actual states, the local filters can follow them effectively.

Next, we show the effectiveness of adaptive gains in reducing the sensitivity of the es-

timates to measurement noise. Specifically, in this set of simulations we use constant high

gains in the two distributed EKF. Figure 4.6 shows the simulation results when the gains

remain high all the time. From Figure 4.6, we see that the concentration estimates are very

noisy with high fluctuations. This is expected when high gains are used in the filter designs.

If comparing the results in Figure 4.6 with the results of the proposed distributed AHG-EKF

shown in Figure 4.4, we can conclude that the proposed distributed AHG-EKF maintains the

fast convergence of the estimates while significantly reducing the sensitivity of the estimates

to measurement noise.

Then, we evaluate the importance of state predictors in the proposed design. Figure 4.7

shows the simulation results of the proposed design and a design without the predictors.

Note that when there is no predictor, the latest available information is used to approximate

the interactions between subsystems. Figure 4.7 shows that the estimates of the proposed

design with predictors converge much faster to the actual system state compared with the

case without predictors. From Figure 4.7, it can be inferred that the use of state predictors

significantly improves the estimation performance.

Finally, the performance of the proposed approach is evaluated under the consideration

of model-process mismatch in the design of predictors. In this set of simulations, the model
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Figure 4.3: Communication delay and data loss sequnces between the subsystems with D = 3
and Tm = 2. The delay and loss of information of subsystem j to subsystem i is denoted by
dij. The delay is indicated by solid lines and the discontinuity of the lines represents data
losses.
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θ θ

Figure 4.4: Trajectory of the states and their estimates, and trajectories of θ and the corre-
sponding innovation under the proposed distributed AHG-EKF and the regular distributed
EKF with communication delay and data loss.
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θ θ

Figure 4.5: Trajectory of the states and their estimates, and trajectories of θ and the cor-
responding innovation under the proposed distributed AHG-EKF with sinusoidal flow input
F0, communication delay and data loss.
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θ θ

Figure 4.6: Trajectory of the states and their estimates, and trajectories of θ and the corre-
sponding innovation under distributed high-gain EKF without gain adaptation.
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θ θ

Figure 4.7: Trajectory of the states and their estimates, and trajectories of θ and the cor-
responding innovation under the proposed distributed AHG-EKF with and without state
predictors.
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Figure 4.8: Trajectory of the states and their estimates, and trajectories of θ and the cor-
responding innovation under the proposed distributed AHG-EKF with model mismatch in
predictors.

95



mismatch is considered as an uncertainty in the recycle flow-rate (Fr) to the first CSTR.

Figure 4.8 shows the results of a small mismatch (i.e., the recycle flow rate in the predictor is

Fr +1m3/h) and a large mismatch (i.e., the recycle flow rate in the predictor is Fr +5m3/h).

It is seen that when the mismatch is small, the distributed filters still work well due to the

inherit robustness of the design. However, when the mismatch is too large, the use of the

predictor may not improve the performance of the distributed filters.

4.8 Conclusions

In this chapter, we demonstrated that the distributed adaptive high-gain extended Kalman

filtering is a practical strategy to handle communication delays and data losses for a class of

nonlinear systems made of several interacting subsystems. In this approach, a local adaptive

high-gain extended Kalman filter is designed for each subsystem. The subsystem estimators

are capable of exchanging information to effectively compensate for the interactions via their

communications. In the proposed design, a prediction of the entire system state is generated

for each subsystem estimator to provide a contribution for handling communication delays

and data losses. Sufficient conditions were established by a rigorous analysis under which

the proposed distributed estimation approach provides a bounded overall estimation error.

Finally, a simulated chemical process is used to evaluate the practical performance of the

proposed approach.
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Chapter 5

Distributed adaptive high-gain

extended Kalman filters with

triggered communication

5.1 Introduction

In this chapter, a DAHGEKF scheme with triggered communication is designed for nonlinear

systems. Particularly, a class of continuous-time nonlinear systems composing of several in-

terconnecting subsystems is considered. In the proposed approach, an adaptive-gain EKF is

first designed for each subsystem together with a trigger which determines when the informa-

tion transmission is required. Each filter sends information through the network whenever its

corresponding triggering condition is satisfied. Second, the implementation algorithm of the

proposed design in distributed framework is discussed. This algorithm describes when the

distributed filters communicate and what information should be transmitted. Conditions

are specified under which the stability of the DAHGEKF with triggering communication

is guaranteed. A simulated chemical process is used to demonstrate the applicability and

effectiveness of the proposed design.
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Figure 5.1: Proposed distributed state estimation design with triggered information trans-
mission.

5.2 Distributed estimation scheme with triggered com-

munication

In this section, we describe the proposed distributed adaptive high-gain extended Kalman

filtering (DAHG-EKF) design with triggered communication. Figure 5.1 illustrates the struc-

ture of the proposed design. In the proposed design, each estimator has an AHG-EKF and

a transmission trigger which determines if the information of the local estimator should be

sent out to the other estimators at a sampling time. Based on the triggered strategy, the fre-

quency of information transmission between the estimators will be reduced and the ultimate

boundedness of the estimation error demands the local estimators in previous chapters to

be redesigned to take the lack of state updates between estimators into consideration. The

reduction of communication frequency is achieved by triggering the transmission of infor-

mation among filters. In order for better explanation of the methodology, we may consider
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Figure 5.2: An illustration of the triggered communication.

two distributed filters communicating each other through their states as shown in Figure

5.2. A trigger is designed for each filter which sends out information whenever its triggering

condition is satisfied. As shown in Figure 5.2, the triggering condition of trigger 1 is satisfied

at discrete time instant tk, and filter 1 transmits information to filter 2. Then, the triggering

condition of filter 1 is reset. In Figure 5.2, the triggering condition of trigger 1 is not satisfied

again for the next q sampling times and filter 2 uses the information received at time tk (i.e.

z1(tk)) within the time period from tk to tk+q. Filter 1 sends information to filter 2 again at

tk+q+1 when the triggering condition of trigger 1 is satisfied.

This study is aimed to incorporate the DAHG-EKF scheme in [39, 62] to develop an

approach accounting for the frequency reduction in information transmission between the

estimators. Based on the difference between the current state estimate and the last sent

state estimate, the triggering condition is designed for each trigger.

5.3 Implementation algorithm

In this work, we assume that the output measurements of the subsystems are available for the

corresponding estimators continuously. The triggers of subsystems are checked at discrete

time instants {tk ≥ 0} where tk = t0 + k∆, t0 is the initial time, ∆ is the constant time

interval (a positive constant) and k is a positive integer. In order for the initialization at

the initial time instant (i.e., t = 0), initial subsystem state guesses of all the subsystems
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(i.e., zj(0) with j ∈ I), the actual subsystem output measurement (i.e., yi(0)), and the initial

value of its adaptive gain (i.e., θi(0) = 1) are required to be available for estimator i. After

this step, the following steps are carried out:

1. At time instant tk > 0

(a) AHGEKF i has direct and immediate access to the local output measurement

yi(tk).

(b) Based on the local measurements yi(t) and the latest information received from

other estimators zl(t
l
q) for l ∈ Ii, with tlq as the last time instant that AHGEKF

i receives information from AHGEKF l, AHGEKF i calculates the current state

estimate zi(t).

(c) Trigger i receives the corresponding state estimate zi(tk) and checks the triggering

condition. If the condition is satisfied, the trigger updates the transmission time

tiq = tk and sends zi(tk) to estimators that need the states of filter i; otherwise, no

information will be sent from subsystem i, and other filters continue to use the

last updates from estimator i, i.e. zi(t
i
q).

2. Filters continue evaluating state estimates based on the the latest available information

and go to step 1 at the next sampling time tk+1.

5.4 Design of communication triggers

The triggering condition in each trigger is determined based on the difference between the

state estimates of its corresponding AHGEKF when it sent information to other estimators.

Particularly at time instant tk, the triggering condition for trigger i is designed as follows:

Wi(tk) =

 1 if ‖zi(tk)− zi(tiq)‖≥ Lzi

0 if ‖zi(tk)− zi(tiq)‖< Lzi

(5.1)
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where zi(tk) is the current state estimate of AHGEKF i, zi(t
i
q) is the last transmitted state

estimate of AHGEKF i, tiq is the last time instant when AHGEKF i sent information to

other AHGEKFs and Lzi is a predetermined threshold for trigger i. The triggering condition

is not satisfied when Wi(tk) = 0 and no information will be sent out from AHGEKF i

to other AHGEKFs and they continue to use zi(t
i
q). On the other hand, the triggering

condition will be satisfied when Wi(tk) = 1 and AHGEKF i updates tiq = tk and sends out

zi(tk). Note that the triggering condition of each estimator is only dependent on the states

of the corresponding subsystem, and as a result, each estimator may send out information

at different time instants.

5.5 Design of subsystem filters

For each subsystem, the local estimators are designed based on the centralized AHG-EKF

presented in [52] and [44], and the appropriate modifications are applied accounting for the

interactions between subsystems. The state estimator for subsystem i (i ∈ I) is designed as

follows:

żi = Aizi + bi(z
i, 0)− S−1

i CT
i R
−1
θi

(Cizi − yi) (5.2)

where zi is the state of the filter i, zi(t) = [z1(t1q), . . . , zi−1(ti−1
q ), zi(t), zi+1(ti+1

q ), . . . , zny(t
p
q)] is

composed of the estimated states of distributed filters at different time instants, Rθi =
1

θi
Ri

with Ri being a positive scalar and θi being the adaptive gain parameter of filter i. The

vector zi(t) includes the current estimate of the corresponding filter, zi(t), since each filter

is assumed to have immediate and direct access to its corresponding subsystem’s estimates.

It should be noted that tiq is the last time instant when AHGEKF i sent information to

other AHGEKFs, and will be explained further in the following subsections. Si in (5.2) is

determined by solving the following matrix Riccati equation:

Ṡi = − (Ai + b∗i (z
i))

T
Si − Si (Ai + b∗i (z

i)) + CT
i R
−1
θi
Ci − SiQθiSi (5.3)
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where b∗i (z
i) denotes the Jacobian of bi(z

i, 0) with respect to zi (i.e. b∗i (z
i) = ∂bi(z

i,0)
∂zi

) and

Qθi = θiQi with Qi being a nxi by nxi symmetric positive definite matrix. The tuning

strategy for the high-gain parameter θi will follow the one described in Section 3.5. Note

that the variable Ji in the adaptation function in this design is defined as follows:

J(t) =
ny∑
i=1

Ji(t)

Ji(t)=
∫ t
t−d‖yi(t− d, x(t− d), τ)− yi(t− d, zi(t− d), τ)‖2dτ

(5.4)

where yi(t − d, z(t − d), τ) for each filter is calculated based on the last estimates received

from the other filters, since no predictor is designed for the distributed filters.

5.6 Stability analysis

In this section, the stability of the proposed distributed AHG-EKF design with triggered

information transmission will be evaluated. The estimation error for each subsystem is

defined as εi = zi − xi, i ∈ I. Based on (5.2)-(5.3), the error dynamics for each subsystem

can be obtained as

ε̇i = żi − ẋi =
(
Ai − S−1

i CT
i R
−1
θi
Ci
)
εi + bi(z

i, 0)− bi(x,w) (5.5)

Let us pick εTi Siεi as the Lyapunov function for subsystem i, i ∈ I. Based on (5.3) and

(5.5) it can be obtained that:

d
(
εTi Siεi

)
dt

= θi

[
−εTi SiQiSiεi − εTi CT

i R
−1
i Ciεi +

2

θi

(
bTi (zi, 0)Siεi − bTi (x,w)Siεi − εTi Sib∗i (zi)εi

)]
(5.6)

The significant role of (5.6) in establishing the convergence of the proposed distributed state

estimation with triggered communication will be shown in the following theorem.

Theorem 6. Consider system (3.3) with subsystems described by (3.1) with the local filters
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designed following (5.2)-(5.4). If the following conditions are satisfied:

1. nonlinear function bi(., .) is locally Lipschitz with respect to its arguments,

2. the Jacobian b∗i (z
i) is bounded,

3. the local Riccati matrices Si with i ∈ I are bounded (Theorem 2.18 of [60] are satisfied),

4. ‖żi(t)‖≤Mi for any t ≥ 0,

5. for certain qmi the positive definite matrix Qi is chosen such that Qi ≥ qmiI and

qmmin > 2n2
yL

x
bmax

αmax
α2
min

+ 2nyLb∗max
αmax
α2
min

(5.7)

where αmin and αmax are the minimum and maximum values of the lower and upper

bounds of all Si, and qmmin = mini{qmi}, Lxbmax = maxi{Lbi}, Lb∗max = maxi{Lb∗i } with

Lbi and Lb∗i being the Lipschitz constant for bi and b∗i , respectively,

then for any initial condition of subsystems and filters (i.e. xi(t0) ∈ Xi and zi(t0) ∈ Xi) for

all i ∈ I in Xi, the norm of the whole system’s estimation error ‖ε(t)‖ is descending and

ultimately smaller than εt; or

lim
t→∞
‖ε(t)‖≤ εt (5.8)

where

εt =
2ny(ny − 1)Lxbmax(Lzmax +Mmax∆)αmax + 2αmaxnyL

w
b φw + 4θmny

φv
Rmin

+ δ

α2
min mini{θiqmi} − 2n2

yL
x
bmax

αmax − 2nyLb∗maxαmax
(5.9)

with Rmin = mini{Ri} and δ a small positive constant.

Proof: For a positive definite Ri, it can be verified that εTi C
T
i R
−1
i Ciεi ≥ 0. Also, since Qi

is a positive definite matrix, there exists a qmi such that Qi ≥ qmiI. By using (5.6) we can

obtain that

d
(
εTi Siεi

)
dt

≤ −θiqmiεTi S2
i εi + 2εTi Si

(
bi(z

i, 0)− bi(x,w)− b∗i (zi)εi
)

+ 2θiε
T
i C

T
i Rivi (5.10)
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According to Theorem 2.18 in [60], there exist scalars αmini > 0 and αmaxi > 0 for AHGEKF

i such that the local Riccati matrix is bounded as αminiI ≤ Si(t) ≤ αmaxiI. So, from (5.10)

it can be obtained that

d
(
εTi Siεi

)
dt

≤ −θiqmiαminiεTi Siεi+2εTi Si
(
bi(z

i, 0)− bi(x,w)− b∗i (zi)εi
)
+2θiε

T
i C

T
i Rivi (5.11)

In order to analyze the stability of the overall system for t ∈ [tk, tk+1), we add (5.11) for all

i ∈ I together to obtain,

d

dt

ny∑
i=1

εTi Siεi(t) ≤ −mini{θiqmiαmini}εTSε(t) +
ny∑
i=1

2θiε
T
i (t)CT

i Rivi + 2εTS(t)

×





b1(z1, 0)− b1(x,w)

b2(z2, 0)− b2(x,w)

...

bny(z
p, 0)− bny(x,w)


−



b∗1(z1) 0 . . . 0

0 b∗2(z2) 0
...

...
. . .

0 . . . b∗ny(z
p)





ε1(t)

ε2(t)

...

εny(t)




(5.12)

where zi includes the estimation of all interacting states, either received from other filters

at time tlq (i.e. zl(t
l
q)) or computed at the local filter i at time t (i.e. zi(t)). Note that tlq is

the last sampling time when the information from filter l is sent to the other communicating

filters.

According to the Lipschitz property for the nonlinear terms of subsystem i we have:

‖bi(zi, 0)− bi(x,w)‖≤ Lxbi‖z
i − x‖+Lwb φw (5.13)

Based on the triangular inequality and the design of the triggering conditions, it can be
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obtained that

‖zi(t)− x(t)‖≤
∑

l∈Ii,l 6=i
‖xl(t)− zl(tlq)‖+κi‖xi(t)− zi(t)‖

≤ κi‖xi(t)− zi(t)‖+
∑

l∈Ii,l 6=i

(
‖zl(tk)− zl(tlq)‖+‖xl(t)− zl(tk)‖

)
≤ κi‖xi(t)− zi(t)‖+

∑
l∈Ii,l 6=i

(
‖zl(tk)− zl(tlq)‖+‖zl(tk)− zl(t)‖+‖zl(t)− xl(t)‖

)
(5.14)

where κi can be either 0 or 1 representing whether the local state estimates are present in

the set of interacting state for subsystem i.

Whenever the estimates of the subsystem l do not change significantly in the consecutive

sampling times from tlq to tk, the triggering condition for the estimates of subsystem l is not

satisfied and we would have ‖zl(tk) − zl(tlq)‖< Lzl . Since ‖żi(t)‖≤ Mi, for any t ∈ [tk, tk+1)

we can obtain that

‖zl(tk)− zl(t)‖≤Ml∆ (5.15)

Hence, from (5.14) and (5.15) and the triggering condition (‖zl(tk) − zl(t
l
q)‖≤ Lzl) we

obtain

‖zi(t)−x(t)‖≤ κi‖εi(t)‖+
∑

l∈Ii,l 6=i

(Lzl +Ml∆ + ‖εl(t)‖) ≤ (ny−1)(Lzmax+Mmax∆)+ny‖ε(t)‖

(5.16)

On the other hand, using the Lipschitz property we have

∥∥∥∥∥∥∥∥∥∥∥∥∥



b1(z1)− b1(x,w)

b2(z2)− b2(x,w)

...

bny(z
p)− bny(x,w)



∥∥∥∥∥∥∥∥∥∥∥∥∥
≤ nyL

x
bmax ((ny − 1)(Lzmax +Mmax∆) + ny‖ε(t)‖) + nyL

w
b φw

(5.17)
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Since αminiI ≤ Si ≤ αmaxiI, from (5.12) and (5.17) it can be obtained that

d

dt

ny∑
i=1

εTi Siεi(t) ≤ −mini{θiqmiαmini}εTSε(t) + 2n2
yL

x
bmax

αmax
αmin

εTSε(t) + 2nyLb∗max
αmax
αmin

εTSε(t)

+2ny(ny − 1)Lxbmax(Lzmax +Mmax∆)‖ε(t)‖‖S(t)‖+2‖ε(t)‖‖S(t)‖nyLwb φw + 4θm
pφv
Rmin
‖ε(t)‖

(5.18)

where Lb∗max = maxi{Lb∗i }. If

‖ε(t)‖> εt (5.19)

where εt is defined in (5.9), then by multiplying both sides of (5.19) by αmin‖ε(t)‖ we obtain

that

αmin‖ε(t)‖2>
2ny(ny − 1)Lxbmax(Lzmax +Mmax∆)αmax + 2αmaxnyL

w
b φw + 4θmny

φv
Rmin

+ δ

αmin mini{θiqmi} − 2n2
yL

x
bmax

αmax
αmin

− 2nyLb∗max
αmax
αmin

‖ε(t)‖

(5.20)

and since V (t) = εTSε(t) ≥ αmin‖ε(t)‖2, based on (5.7), from (5.20) it can be obtained that

(
−mini{θiqmiαmini}+ 2n2

yL
x
bmax

αmax
αmin

+ 2nyLb∗max
αmax
αmin

)
V (t)

+2‖ε(t)‖
(
ny(ny − 1)Lxbmax(Lzmax +Mmax∆)αmax + αmaxnyL

w
b φw + 2θmny

φv
Rmin

+ δ
2

)
< 0

(5.21)

Also, due to the boundedness of the Riccati matrix (i.e. ‖S(t)‖≤ αmax), from (5.21) we

obtain that,

(
−mini{θiqmiαmini}+ 2n2

yL
x
bmax

αmax
αmin

+ 2nyLb∗max
αmax
αmin

)
V (t) + 2‖ε(t)‖‖S(t)‖nyLwb φw

+2ny(ny − 1)Lxbmax(Lzmax +Mmax∆)‖ε(t)‖‖S(t)‖+4θm
nyφv
Rmin
‖ε(t)‖< −δ‖ε(t)‖< −δεt

(5.22)

By comparing (5.22) with the right hand side of (5.18), it can be obtained that V̇ (t) < −δεt

which implies that the estimation error decreases when its norm is greater than εt. It also

implies that the error will become smaller than εt in finite time. After the error is smaller

than εt, the error may not decrease but the error will be bounded in εt. This proves the

theorem. �
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Figure 5.3: Two connected CSTRs with recycle stream.

Remark 8. Note that due to process and measurement noises and the use of triggered com-

munication, the estimation error will not decrease to zero. The value of εt which ultimately

bounds the estimation error depends on the magnitudes of the process noise, measurement

noise and the thresholds used in the communication triggers as can be seen from the definition

of εt in (5.9). However it should be noted that the high gain parameter plays an important

role in the value of εt. When the estimation error is big, the gain increases and causes εt to

decrease which contributes the estimation error to be confined to a smaller region.

5.7 Application to a chemical process

In this section, the performance of the proposed DAHGEKF and its triggering communica-

tion will be evaluated via the application to a chemical process composed of four connected

continuous-stirred tank reactors (CSTRs). This process is described in Section 3.7 in de-

tails. In the simulations, the heat inputs to the four reactors are selected as constant values:

Qh1 = 1.0× 104 kJ/h, Qh2 = 2× 104 kJ/h, Qh3 = 2.5× 104 kJ/h and Qh4 = 1.0× 104 kJ/h.

The stability of the process is guaranteed under the utilization of these inputs.

It is assumed that the four temperatures T1, T2, T3 and T4 are the continuously measured
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outputs of the process, and it is desired to estimate the entire system state based on these

measurements. In this process, each reactor plays the role of one subsystem in the process and

an AHGEKF is designed for each CSTR. The covariance parameters of each AHG-EKF are

tuned as, Q1 = Q2 = Q3 = Q4 = diag{[5, 5]} and R1 = R2 = R3 = R4 = 1, respectively. In

this set of simulations, unique values are selected for the bound of high-gain parameter, θm =

20, and the forgetting horizon in the calculation of innovation terms, d = 0.03h. The other

parameters included in the adaptation of high-gain parameter are selected as follows: ∆T =

0.001h, βi = 150, mi = 20, λi = 100 for i = 1, . . . , 4. The initial states of the subsystems and

initial guesses of the corresponding filters are selected as x1(0) = [340, 2]T , x2(0) = [350, 3]T ,

x3(0) = [345, 2.5]T , x4(0) = [360, 4]T , z1(0) = [340, 2]T , x2(0) = [350, 3]T , x3(0) = [345, 2.5]T ,

x4(0) = [360, 4]T . In the simulations, the temperature measurements are corrupted with

noise of zero mean and variance of 1◦K. Also, the triggering condition for each subsystem is

evaluated based on the normalized form of (5.1), i.e.

∥∥∥∥[(Ti(tk)−Ti(tiq))
Ti(tiq)

,
(CAi(tk)−CAi(tiq))

CAi(tiq)

]
Hi

∥∥∥∥,

with the weighting matrix Hi = diag{[200, 1]} and the triggering thresholds Lzi = 0.02 for

i = 1, 2, 3, 4.

In this set of simulations, the effects of the triggered communication on the proposed dis-

tributed state estimation design is studied. In this design, the triggers are checked every 18s.

When the triggering condition is satisfied, the filters send information through the commu-

nication network and when the triggering condition is not satisfied, there is no information

transmission from the filter. Figure 5.4 shows the sequence of information transmission in

the trigger of each subsystem. It can be seen that during the initial periods, each filter sends

out information consecutively (i.e., every 18s) because the subsystem estimates change sig-

nificantly. When the system estimates change slowly after the initial periods, the filters

may not send information at some time instants. The simulation results are illustrated in

Figures 5.5 and 5.6. These figures show that the distributed filters track the actual process

states, however a steady state error may remain between estimated and actual states due to

the use of triggering conditions as discussed in the stability analysis in the previous section.

108



0 5 10
0

0.5

1

1.5
Subsystem 1

S
eq

ue
nc

e

Time(h)
0 5 10

0

0.5

1

1.5
Subsystem 2

S
eq

ue
nc

e

Time(h)

0 5 10
0

0.5

1

1.5
Subsystem 3

S
eq

ue
nc

e

Time(h)
0 5 10

0

0.5

1

1.5
Subsystem 4

S
eq

ue
nc

e

Time(h)

Figure 5.4: The triggering communication sequences
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θ θ

Figure 5.5: The trajectories of the states, high-gain parameters and innovations in the filters
of CSTR 1 and CSTR 2 in the presence of measurement noise.
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Figure 5.6: The trajectories of the states, high-gain parameters and innovations in the filters
of CSTR 3 and CSTR 4 in the presence of measurement noise.
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Figure 5.7: The effect of high-gain on the trajectories of the states and innovations in the
CSTR 1 and CSTR 2 in the presence of process and measurement noises.
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Figure 5.8: The effect of high-gain on the trajectories of the states and innovations in the
CSTR 3 and CSTR 4 in the presence of process and measurement noises.
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Figure 5.9: Performance index and the number of information transmission in the proposed
DAHGEKF based on triggering condition (5.1) with Lzi , i = 1, 2, 3, 4, varying from 0 to 0.1.

On the other hand, it can be seen from Figures 5.5 and 5.6 that the distributed adaptive-gain

EKF can contribute to improve estimation performance compared with distributed regular

EKF in terms of convergence speed and estimation error. Moreover, the estimated values

of the concentrations converge the actual states slower compared with the temperatures,

since the innovation is defined based on measured temperatures. Based on the definition

of innovation in (5.4), the high-gain parameter decreases followed by an initial increment.

Furthermore, the presence of process and measurement noises amplifies the uncertainty of

the estimation, however the change of high-gain EKF to regular EKF smooths out the effect

of noise. If the filters remain in the high-gain mode, they are not able to reduce the noise

effect as illustrated in Figures 5.7 and 5.8.

Another set of simulations is also provided to evaluate the performance of the distributed

estimation with triggered communication with varying triggering thresholds. Particularly,

the simulations are conducted under random noise sequences and the performance index for

AHGEKF i is designed as Ui =
M∑
k=0

|zi(tk)− xi(tk)|2Gi where i = 1, 2, 3, 4, and the simulation
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is run from t0 = 0 to tM = 10h. The parameters Gi, i = 1, 2, 3, 4 are used to compensate

for the different scales of the states, and Gi = diag{[1, 200]}. The overall performance is

calculated as U = U1 + U2 + U3 + U4. As shown in Figure 5.9, it can be inferred that

the number of information transmission among filters decreases when triggering threshold

increases. On the other hand, from the Figure 5.9 it can be implied that the overall trend

of performance deteriorates by the increment of triggering threshold. Indeed, based on

the bound of estimation error provided in Theorem 6, the increment of triggering threshold

results in an increase of the value of εt. Based on both plots in Figure 5.9, it can be concluded

that the optimal triggering threshold demands a balance between the performance index and

the number of information transmission. In addition, Figure 5.9 shows that the trend of both

performance index and the number of information transmission fluctuates due to the presence

of process noise and measurement noise.

In the last set of simulations, the effect of various high-gain parameter bounds (θm) is

illustrated in Figures 5.10 and 5.11. From these figures, we can see that by increasing the

high-gain parameter of each filter (θi), the speed of convergence of measured states (Ti)

increases and when their estimates get close enough to the actual states, the corresponding

high-gain parameter drops quickly, and the estimator becomes regular EKF. On the other

hand, Figures 5.10 and 5.11 show that increasing the gain makes an initial overshoot on the

estimates of unmeasured states, and as θm is higher, the bigger overshoots occur. After the

overshoots’ occurrence, since the high-gain parameters are decreased to 1 and the standard

EKFs take the action to reduce the estimation error for the rest of simulation, a bigger

value for θm increases the convergence time of the estimates of the concentrations. That is

improper tuning of parameter θm may affect the estimation performance.
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Figure 5.10: The effect of different bounds of high-gain parameters on the convergence rate
of state estimates in CSTRs 1&2.
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Figure 5.11: The effect of different bounds of high-gain parameters on the convergence rate
of state estimates in CSTRs 3&4.
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5.8 Conclusions

We developed a distributed adaptive high-gain extended Kalman filter with triggered com-

munication for nonlinear systems. Specifically, we considered a class of nonlinear systems

which can be decomposed into several interacting subsystems. Each subsystem takes the

advantage of a local adaptive high-gain EKF equipped with a trigger to schedule informa-

tion transmission leading to the reduction of communication frequency. Each of the designed

triggers sends out information when a local triggering condition is satisfied. The triggering

condition is determined based on the difference between the current state estimate and the

last estimate sent out. The ultimate boundedness of the estimation error was established

with sufficient conditions. Finally, a simulated chemical process example was utilized to

illustrate the performance of the proposed approach.
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Chapter 6

Application of distributed filtering

approach to a Three-Tank system

6.1 Introduction

In this chapter we apply the proposed distributed adaptive high-gain extended Kalman filter

to a Three-Tank experimental system. The system under consideration is located in process

control laboratory at the University of Alberta. This system is composed of three tanks

that are connected through pipes from the bottom, middle and top of the tanks as shown

schematically in Figure 6.1. The water is pumped from the discharge tank to tanks 1 and 3

and the water may also flow to tank 2 when the related valves are open, and finally returns

to the discharge tank through valves V5, V7 and V9.

The valves V1 to V9 are solenoid valves which are in either ON or OFF positions. By

opening or closing each of the valves in this system, a new dynamics for the whole system

will be obtained. As shown in Figure 6.1, there is a level transmitter for each tank and a

flow transmitter for each pump to measure the corresponding water levels and flow-rates,

respectively. The information that is measured by the flow and level transmitters is sent and

recorded by MATLAB on a computer connected to the system through the OPC connection.
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Figure 6.1: A schematic view of the experimental system

The control loops are designed and tuned in a Simulink file, and based on the received data

the control signal is generated and sent to the level and flow controllers through the OPC

connection.

In order to increase the robustness and reduce the disturbances to the flow rate, a cascade

control circuit is designed for level control in tanks 1 and 3. This circuit is composed of two

feedback control loops, primary and secondary loops, that are designed based on level and

flow measurements. The primary control loop which controls the level of the tanks determines

the set point of the flow control loop, and the secondary loop tunes the flow loop to reduce

the flow disturbances. The cascade control loop for tank 1 is shown in Figure 6.2, where the

controllers designed for level and flow are PID controllers.
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Figure 6.2: Cascade control loops for tank 1 in Three-Tank system

6.2 Model description

In spite of PID control strategies, a model of the process is required to design state estimators

for any process. In order to derive a first principle model for the Three-Tank system, mass

balance equations can be used. Based on the mass balance equations for each of the three

tanks, i.e.

{rate of accumulation of mass} = {rate of mass in} − {rate of mass out} (6.1)

and by considering the dynamics of interactions between the neighbor tanks, the following

differential equations can be obtained:

ẋ1 = (b1u1 − Sp1ap1sgn(x2)
√

2g|x2| − Sd1ad1

√
2gx1)/S

ẋ3 = (Sp1ap1sgn(x2)
√

2g|x2|+ Sp2ap2sgn(x4)
√

2g|x4| − Sd2ad2

√
2gx3)/S

ẋ5 = (b2u2 − Sp2ap2sgn(x4)
√

2g|x4| − Sd3ad3

√
2gx5)/S

ẋ2 = ẋ1 − ẋ3

ẋ4 = ẋ5 − ẋ3

(6.2)
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Table 6.1: Definition of parameters and variables for the Three-Tank system.

x1 Level of tank 1
x2 Interaction between tanks 1 and 2 (x1 − x3)
x3 Level of tank 2
x4 Interaction between tanks 3 and 2 (x5 − x3)
x5 Level of tank 3
u1 Input flow-rate for tank 1
u2 Input flow-rate for tank 2
S Cross section area of all three tanks
Spi Pipe cross section area between tank i and i+ 1
Sdi Discharge pipe cross section area of tank i
api Out-flow coefficient of the flow between tanks i and i+ 1
adi Out-flow coefficient from tank i to the discharge tank
g Gravitational acceleration
bi Multiplier of input i which compensates for its unknown unit

where the variables and parameters are defined in Table 6.1. It should be noted that the

calibration multipliers b1 and b2 are considered for the flow inputs. Model (6.2) is a general

model for the Three-Tank system without the prior knowledge about the direction of the

flow between the tanks and can be described in the following control-affine form:

ẋ = f(x) + g(x)u

y = h(x)
(6.3)

However, based on the structure of the system and the performed experiments, it rarely

occurs that the level of tank 2 be higher than the levels of other tanks. As a result, model

(6.2) can remain valid for the most of the operating regions of the systems even by excluding

the sign function. It should be noted that, in the Three-Tank system model (6.2), the

interactions are assumed to be unmeasured states and will be the objective of distributed

estimation design in the following sections. Also, in this model the inputs are the flow rates

to tanks 1 and 3 and the outputs are the tanks’ levels that can be measured by the level
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sensors, i.e.

y1 = x1, y2 = x3, y3 = x5 (6.4)

6.2.1 Observability

Since the model in (6.2) is a multi-input multi-output nonlinear model, the observability

can be verified by linearization of the model equations around the possible operating points.

Indeed, based on this approach the observability can be verified by checking the rank of the

observability matrix for linearized systems, i.e. O = [C, CA, CA2, . . .]T where C is the

jacobian of output matrix h(x) with respect to x and A is the jacobian of the state transition

matrix f with respect to x. According to the performed verification, the overall system is

found to be observable.

6.2.2 Parameter estimation

In model (6.2), there are some out-flow parameters which are unknown. Furthermore, the

unit of the measured inputs in the actual system is not specified and two calibration pa-

rameters (b1 and b2) can be added as the input multipliers. In order to identify the model

parameters, some persistently exciting inputs can be used and the resulting outputs together

with the inputs can be used to identify the model parameters. Since there is feedback con-

trol loop for the flow-rates to the tanks, the inputs should be carefully selected. Figure 6.3

shows the elements that usually exist in closed loop identification. This figure shows that

although the reference input to the Three-Tank system is injected based on the set point, the

immediate input U and output Y should be collected for identification of the system. Here

it should be noted that the system is nonlinear and the input signals should be able to excite

the system sufficiently. For this purpose, a pseudo-random binary sequence signal can be

designed where the inputs can move the system to operate within different operating points.

Then by collecting the injected inputs and the resulted outputs, we collected around 12000

samples, from which 9000 samples were used for training the model and the rest was used to
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Figure 6.3: Inputs and outputs for closed loop identificaion

verify the identified model. Figure 6.4 verifies that the trajectories in identified model can

track the actual states. From Figure 6.4, it is clear that the model is not accurate enough to

regenerate the state of tank 2, however the mismatch between the model and actual process

is inevitable from any modeling exercise. In this case, since we will focus on tanks 1 and

3, this model can be used for state estimation purposes. Finally, the identified parameters

were found as follows:

ap1 = 3.43 ap2 = 2.15

ad1 = 18.15 ad2 = 7.78 ad3 = 18.98

b1 = 4.56× 10−4 b2 = 4.16× 10−4

(6.5)

The identified parameters in (6.5) to some extent prove the symmetry in the model, since

the symmetric parameters are very close to each other. Moreover, by comparing the values

of outflow parameters ap1 and ap2 with other outflow parameters, it can be concluded that

the resistance over the flows between the tanks is higher than that between tanks and the

discharge tank. In other words, the impact of the levels in tanks 1 and 3 on the level of tank

2 is not strong. Also, it should be noted that the sampling time in the experimental set-up

is 1 second, and it is important to determine the sampling time in the identification. Indeed,

for any specified sample time, the parameters should have been identified accordingly.
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Figure 6.4: Measured and modeled trajectories to verify the identified model.

6.3 System decomposition

In order to implement the proposed distributed filtering algorithm, it is required to decom-

pose the system into several interconnected subsystems. For this purpose, we can select

the level of tank 1 and its interaction with tank 2 as the states of the first subsystem, and

similarly select the level of tank 3 and its interaction with tank 2 as the states of the third

subsystem and the remaining level of tank 2 as the single state of the second subsystem

as shown in Figure 6.5. Based on this decomposition, the state space equations of the
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Figure 6.5: Decomposition of system to three subsystems

subsystems can be written as follows:

Subsystem 1


ṙ11 = (b1u1 − Sp1ap1

√
2gr12 − Sd1ad1

√
2gr11)/S

ṙ12 = ṙ11 − ṙ2

y1 = r11

Subsystem 2

 ṙ2 = (Sp1ap1
√

2gr12 + Sp2ap2
√

2gr32 − Sd2ad2

√
2gr2)/S

y2 = r2

Subsystem 3


ṙ31 = (b2u2 − Sp2ap2

√
2gr32 − Sd3ad3

√
2gr31)/S

ṙ32 = ṙ31 − ṙ2

y3 = r31

(6.6)

where r11 = x1 and r12 = x2 are the states of subsystem 1, r2 = x2 is the state of subsystem

2, and r31 = x5 and r32 = x4 are the states of subsystem 3. Furthermore, it can be seen that

each subsystem has a single-input single-output model.

6.3.1 Transformation to normal form

Since distributed high-gain observer design requires the subsystems to be in normal form, we

can transform all the subsystems’ coordinates in (6.6) using the method described in Section
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1.3. Consequently, the new coordinates for the subsystems would be obtained as follows:

z1 = r11

z2 = Lfy1 = (−Sp1ap1
√

2gr12 − Sd1ad1

√
2gr11)/S

z3 = r2

z4 = r31

z5 = Lfy3 = (−Sp2ap2
√

2gr32 − Sd3ad3

√
2gr31)/S

(6.7)

and the dynamics of subsystems within the new coordinates can be obtained as:

ż1 = z2 +
b1u1

S

ż2 = − 1

S
(Sp1ap1

√
2g

ṙ12

2
√
r12

+ Sd1

√
2g

ż1

2
√
z1

)

ż3 = ṙ2

ż4 = z5 +
b2u2

S

ż5 = − 1

S
(Sp2ap2

√
2g

ṙ32

2
√
r32

+ Sd3

√
2g

ż4

2
√
z4

)

(6.8)

where the transformations of r12, ṙ12, ṙ2, r32 and ṙ32 can be achieved from (6.7) and (6.6).

6.4 Distributed filtering design

In this section, we design the distributed filters based on the method described in Chapter

2. In order to show the effectiveness of the proposed method, we used a time-varying input

signal for the Three-Tank system. These inputs cause time-varying trajectories of the states,

however the distributed estimators should be tuned such that the estimates follow the actual

trajectories well.

For each of the tanks an AHG-EKF is designed, however only EKF can be designed for

the tank 2 since it has only one state. In the design of AHG-EKFs, Q1 = Q3 = diag([0.5, 20]),

Q2 = 0.5 and R1 = R2 = R3 = 0.5. The bound of high-gain parameter is selected as 2θm = 6

and is uniquely defined for all the estimators. The forgetting horizon in the calculation of
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Figure 6.6: Trajectories of the levels, interactions and innovations in DEKF and DAHG-EKF
frameworks with continuous communication for the first and third subsystems.

innovation terms is uniquely selected as d = 0.03h, and the parameters in the adaptation

functions are as follows: ∆T = 0.001h, βi = 450, mi = 0.1, λi = 20, for i = 1, 2, 3. Also, the

initial state of the process based on (6.2) is x(0) = [51.08, 35.02, 16.05, 40.88, 56.93] and the

initial guesses in the three filters are x̂1(0) = [60, 50], x̂2(0) = 15, x̂1(0) = [50, 67].

Figure 6.6 shows the distributed estimation with continuous communication results for

the Three-Tank system when the system takes almost constant inputs, and the system ex-

periences a step change in inputs in the middle of operation. It should be noted that the

levels of the tanks may change between 0cm and 100cm, and the estimates cannot go be-

yond this range. As shown in Figure 6.6 the state estimates in both DEKF and DAHG-EKF
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θ θ

Figure 6.7: Trajectories of the levels, interactions and innovations in DAHGEKF with con-
tinuous, discrete and absence of communication for the first and third subsystems.

travel towards the actual states, however due to the process-model mismatch the estimates

of the unmeasured states may have some bias. Figure 6.6 also compares the performance of

distributed framework with adaptive high-gain EKF and the one with standard EKF formu-

lation. As shown in the figure, the high-gain parameter increases whenever the innovation

becomes higher than the threshold and this contributes to the result that the state estimates

get closer to the actual states.

In another case, we evaluate the effects of communication on the distributed state esti-

mation performance. Figure 6.7 shows the results of distributed estimation for three cases:
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continuous communication, discrete communication with 90 seconds communication interval

and decentralized estimation where no communication exists among the distributed filters.

As shown in Figure 6.7, the trajectories of estimates of DAHGEKF with continuous and

discrete communications are very similar while the absence of communication reduces the

performance resulting in the local filters to be in high-gain mode more frequently.

6.5 Conclusion

In this chapter, we verified the proposed distributed adaptive high-gain extended Kalman

filter on a Three-Tank system. This system includes three interconnected tanks and the

dynamical equations of the system were derived in which the interactions between the tanks

are considered as virtual states. The unknown parameters of the system were identified

by injecting persistently exciting inputs to the system. Then, the identified model was

decomposed into three subsystems and a DAHG-EKF was designed for each subsystem.

The performance of the DAHG-EKF was compared with that of distributed regular EKF

(DEKF) based on continuous communication assumption among the filters. The results show

that the DAHGEKF gives improved estimates than the DEKF. Moreover, by comparing the

trajectories of DAHGEKF with continuous, discrete and no communication cases, the effects

of communication on the performance of DAHGEKF were evaluated.
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Chapter 7

Conclusions and future work

7.1 Conclusions

This thesis considers the development and implementation of distributed adaptive high-gain

extended Kalman filtering approaches on nonlinear systems. Specifically a class of nonlinear

systems are considered which can be decomposed into several interacting subsystems.

To date, many algorithms have been developed for centralized estimation in which a single

filter/estimator performs the task of estimation of the entire system state and decentralized

estimation in which each local filter estimates the states of the corresponding subsystem only

based on the local measurements. However, the former design is not favourable in terms of

fault tolerance and computational loads and the latter one degrades the performance of

estimation due to the absence of communication between filters. To acquire the desired

performance, this thesis proposes a distributed estimation framework which removes the

above difficulties by providing a communication channel between interconnected subsystems.

This communication network is used to exchange state estimates between the distributed

filters to compensate for the subsystems interactions.

Chapter 2 dealt with the distributed adaptive high-gain EKF (DAHGEKF) in which the

distributed filters communicated continuously. The system under consideration was a type
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of deterministic nonlinear system composed of interconnected subsystems. Each subsystem

was assigned a local filter which receives measurement from the corresponding subsystem

and state estimates from interacting filters. Indeed, the presented local filter design was

an extension of the research in [10] where the multi-input multi-output system is broken

into several multi-input single-output subsystems. The methodology for the communication

of the distributed filters was described and the exponential convergence of the proposed

approach was ensured under certain conditions. In order to demonstrate the performance of

the proposed DAHGEKF, a simulated chemical process was used.

Since the continuous transmission of digital data is difficult to be established practically,

we took a more realistic step in Chapter 3 and considered the filters to communicate at dis-

crete time instants. In this framework, a state predictor was designed for each local filter to

compensate for the missing information within communication intervals. The design of pre-

dictors has been previously studied in the prediction of missing measurements in distributed

model predictive control [59, 17]. The asymptotic stability of the proposed approach is en-

sured under sufficient conditions within both deterministic and stochastic schemes of the

system. To illustrate the applicability of the proposed algorithm, a 4-CSTR process is used,

and the effectiveness of the predictor design is illustrated through the simulations.

In Chapter 4, one more step ahead was taken to consider data loss and delay within the

discrete communication among the distributed filters. This chapter describes an extension

of possible scenarios in communication losses and delays in distributed model predictive

control [58] and distributed moving horizon estimation [46]. To compensate for the missing

communications caused by the delays and data dropouts, a state predictor was designed for

each local filter. By considering maximum allowable time delay and maximum consecutive

samples of data losses within both deterministic and stochastic system structures, the worst

case of information transmission was introduced under which the adequate conditions were

derived to provide the stability of the distributed estimation approach. In the stochastic

structure, the algorithm ensures that the overall estimation error remains bounded, however
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it asymptotically converges to zero within the deterministic scheme.

The results in Chapter 3 were obtained with periodic discrete communication, however

the network’s capacity may not support the volume of information transmission. In Chapter

5, a DAHGEKF scheme was proposed to reduce the frequency of information transmission

through the communication network. For this purpose, a triggering strategy was introduced

to determine when each filter should sent out information to other filters. Indeed, this

strategy contributes to reducing network traffic in the communication network which may

lead to delay or loss of information. Consequently, a communication trigger was designed for

each filter which sends out local information whenever the corresponding triggering condition

is satisfied. The appropriate conditions are derived under which the convergence and ultimate

boundedness of the estimation error is ensured.

In Chapter 6, a Three-Tank system was used to evaluate the applicability of the proposed

distributed filtering algorithm. First, a dynamical model was developed for the Three-Tank

system and the model parameters were identified appropriately. Then the system was de-

composed into three subsystems and a local AHGEKF was designed for each subsystem. The

obtained distributed estimation results demonstrated the advantage of adaptive high-gain

EKF over standard EKF in distributed framework. Furthermore, the distributed estimation

results illustrated that the performance is improved when there is communication between

the subsystems compared with the decentralized case.

7.2 Future work directions

Within the course of the work in this thesis, some potential areas of future work can be

considered. A few of these areas are listed as follows:
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7.2.1 Extension to continuous-discrete case

This thesis provided an insight to the distributed adaptive high-gain extended Kalman filter-

ing design with applied communication types. Within these designs, we always considered the

subsystems which send the measurements to the corresponding filters continuously; however

this may not hold in practice. Consequently, the combination of discrete communication and

discrete measurements in distributed estimation may pave ways to more applicable results.

Moreover, another scenario can be considered in which the sensors send the measurements to

the corresponding filters with random time delays in addition to the communication issues

in the distributed filtering framework.

7.2.2 Extension to coordinated DAHGEKF

Although distribute framework surpasses the centralized scheme in terms of fault tolerance

and computational complexities, it may not be able to achieve the centralized performance.

In order to obtain the ideal performance, a coordinator is required to make a two-level

filtering, in which the upper level (coordinator) coordinates the decision making process of

local filters at lower level.

7.2.3 Integration of estimation and control

State estimation task can be used both for process monitoring and control. In order for

controller design in large scale systems, distributed estimation framework can be utilized to

estimate the unmeasured states required for state feedback controls. So, the integration of

estimation and control tasks can contribute to the applicability of the proposed approach

even for unstable large scale systems.
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Appendix A

Derivation of the Riccati equation

A.1 Preliminaries

For an unforced, time-varying and linear dynamic system

ẋ(t) = A(t)x(t) (A.1)

with a known initial condition x(t0), the general solution is

x(t) = φ(t, t0)x(t0) (A.2)

From (A.2), the followings properties can be inferred for φ(t, t0):

φ(t0, t0) = I

φ(t0, t) = φ−1(t, t0)

φ(t2, t0) = φ(t2, t1)φ(t1, t0)

(A.3)

By replacing (A.2) into (A.1) we also obtain,

φ̇(t, t0)x(t0) = A(t)φ(t, t0)x(t0) ⇒ φ̇(t, t0) = A(t)φ(t, t0) (A.4)
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In another case, let us consider a forced, time-varying linear system

ẋ(t) = A(t)x(t) +B(t)u(t) (A.5)

For the case of u(t) 6= 0 we seek to replace x(t0) by a function g(t) which satisfies

x(t) = φ(t, t0)g(t) (A.6)

where g(t) is a vector of unknown functions and it is clear that g(t0) = x(t0). By differenti-

ating (A.6)

ẋ(t) = φ(t, t0)ġ(t) + φ̇(t, t0)g(t) = φ(t, t0)ġ(t) + A(t)φ(t, t0)g(t) (A.7)

Substituting (A.6) in (A.5) and comparing the result with (A.7) we obtain,

φ(t, t0)ġ(t) + A(t)φ(t, t0)g(t) = A(t)φ(t, t0)g(t) +B(t)u(t) (A.8)

Therefore,

ġ(t) = φ−1(t, t0)B(t)u(t) (A.9)

whose integration result in,

g(t) = x(t0) +

∫ t

t0

φ−1(τ, t0)B(τ)u(τ)dτ (A.10)

Substituting (A.10) into (A.6), the general solution would be obtained

x(t) = φ(t, t0)x(t0) + φ(t, t0)

∫ t

t0

φ−1(τ, t0)B(τ)u(τ)dτ (A.11)
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According to (A.3) we know that

φ(t0, τ) = φ(t0, t)φ(t, τ) ⇒ φ−1(τ, t0) = φ−1(t, t0)φ(t, τ) (A.12)

Finally, by plugging the result of (A.12) into (A.11) we obtain

x(t) = φ(t, t0)x(t0) +

∫ t

t0

φ(t, τ)B(τ)u(τ)dτ (A.13)

A.2 Description

We consider an observable nonlinear system whose subsystems’ dynamics are described in

the following canonical form:

ẋi(t) = Aixi(t) + bi(x(t), u(t)) + wi(t), wi(t) ∼ N(0, Qi(t))

yi(t) = Cixi(t) + vi(t), vi(t) ∼ N(0, Ri(t))
(A.14)

Then the dynamics of filter i can be as follows:

żi(t) = Aizi(t) + bi(z(t), u(t)) + ki(t)(yi(t)− Cizi(t)) (A.15)

Defining the subsystem’s estimation error as ε(t) = z(t)− x(t) we obtain

ε̇i(t) = Fi(t)εi(t) + bi(z(t), u(t))− bi(x(t), u(t)) + λi(t) (A.16)

where Fi(t) = Ai − ki(t)Ci, λi(t) = ki(t)vi(t) − wi(t). From the definition of λi, it can be

found that,

E{λi(t)λi(t)T} = Qi(t) + ki(t)Ri(t)ki(t)
T (A.17)

144



Also, by linearizing bi(x) in the neighborhood of z we obtain that

bi(x, u) ≈ bi(z, u) +
∂bi(x, u)

∂x
|z(x− z) = bi(z, u)− b∗i (z)εi +

∑
j∈Ii\i

∂bi(z, u)

∂zj
(xj − zj) (A.18)

where b∗i (z) =
∂bi(z)

∂zi
. If we neglect the last term on the right hand side of (A.18), and use

the remaining in (A.16) we obtain

ε̇i(t) = (Fi(t) + b∗i (z(t), u(t)))εi(t) + λi(t) (A.19)

Using the matrix exponential solution, the solution to the system (A.19) can be found as

εi(t) = φi(t, t0)εi(t0) +

∫ t

t0

φi(t, τ)λi(τ)dτ (A.20)

where φ̇i(t, t0) = [Fi(t) + b∗i (z(t), u(t))]φi(t, t0). The state error covariance is defined by

Pi(t) = E{εi(t)εi(t)T} (A.21)

Substituting (A.20) into (A.21) and assuming that λi(t) and εi(t0) are uncorrelated,

Pi(t) = φi(t, t0)Pi(t0)φTi (t, t0) +

∫ t

t0

φi(t, τ)[Qi(t) + ki(t)Ri(t)ki(t)
T ]φTi (t, τ)dτ (A.22)

Taking the time derivative of (A.22) gives

Ṗi(t) =
∂φi(t, t0)

∂t
P (t0)φTi (t, t0) + φi(t, t0)Pi(t0)

∂φTi (t, t0)

∂t

+
∫ t
t0

∂φi(t, τ)

∂t
[Qi(τ) + ki(τ)Ri(τ)ki(τ)T ]φTi (t, τ)dτ

+
∫ t
t0
φi(t, τ)[Qi(τ) + ki(τ)Ri(τ)ki(τ)T ]

∂φTi (t, τ)

∂t
dτ

+φi(t, t)[Qi(t) + ki(t)Ri(t)ki(t)
T ]φTi (t, t)

(A.23)
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Using the properties of the matrix exponential we have

∂φi(t, t0)

∂t
= (Fi(t) + b∗i (z(t), u(t)))φi(t, t0) (A.24)

and (A.23) would be changed to

Ṗi(t) = (Fi(t) + b∗i (z(t), u(t)))φi(t, t0)Pi(t0)φTi (t, t0) + φi(t, t0)Pi(t0)φTi (t, t0)(Fi(t) + b∗i (z(t)))T

+(Fi(t) + b∗i (z(t), u(t)))
∫ t
t0
φi(t, τ)[Qi(τ) + ki(τ)Ri(τ)ki(τ)T ]φTi (t, τ)dτ

+
∫ t
t0
φi(t, τ)[Qi(τ) + ki(τ)Ri(τ)ki(τ)T ]φTi (t, τ)dτ(Fi(t) + b∗i (z(t), u(t)))T

+φi(t, t)[Qi(t) + ki(t)Ri(t)ki(t)
T ]φTi (t, t)

(A.25)

Based on (A.22), (A.25) changes to

Ṗi(t) = [Ai − ki(t)Ci + b∗i (z(t), u(t))]Pi(t) + Pi(t)[Ai − ki(t)Ci + b∗i (z(t), u(t))]T +Qi(t)

+ki(t)Ri(t)ki(t)
T = [Ai + b∗i (z(t), u(t))]Pi(t) + Pi(t)[Ai + b∗i (z(t), u(t))]T +Qi(t)

+ki(t)Ri(t)ki(t)
T − ki(t)CiPi(t)− Pi(t)CT

i k
T
i (t) + Pi(t)C

T
i R
−1
i (t)CiPi(t)

−Pi(t)CT
i R
−1
i (t)CiPi(t) = [Ai + b∗i (z(t), u(t))]Pi(t) + Pi(t)[Ai + b∗i (z(t), u(t))]T

+Qi(t)− Pi(t)CT
i R
−1
i (t)CiPi(t) +

[
ki(t)Ri(t)− Pi(t)CT

i

]
R−1
i

[
ki(t)Ri(t)− Pi(t)CT

i

]T
(A.26)

We need to have ki(t) such that Pi(t) is as small as possible. So, if ki(t)Ri(t) = Pi(t)C
T
i then

Ṗi(t) would be minimized and the optimal gain would be,

ki(t) = Pi(t)C
T
i R
−1
i (t) (A.27)
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Replacing (A.27) into (A.26) we obtain

Ṗi(t) = [Ai + b∗i (z(t), u(t))]Pi(t) + Pi(t)[Ai + b∗i (z(t), u(t))]T +Qi(t)− Pi(t)CT
i R
−1
i (t)CiPi(t)

(A.28)

and defining Si(t) = P−1
i (t), from (A.28) it can be obtained that,

Ṡi(t) = −[Ai+ b∗i (z(t), u(t))]TSi(t)−Si(t)[Ai+ b∗i (z(t), u(t))]−STi (t)Qi(t)Si(t)+CT
i R
−1
i (t)Ci

(A.29)
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Appendix B

Lipschitz constant of normal form

nonlinearities

In Chapter 2, it was discussed that the Lipschitz constants of the vector filed b(x, u) and

b̃(x̃, u) as well as the bound of b̃∗(x̃, u) and b(x, u) are equivalent. Although this result is

proved on page 215 of [60] for a centralized filter, here we prove it for distributed framework.

First we recall from Chapter 2 that the high-gain parameter satisfies θ(t) ≥ 1. Then, from

the observable structure of the nonlinear function b̃i(·, u) for subsystem i (i ∈ I), i.e.

bi(x, u) =



bi,1(xi,1, u)

bi,2(xi,1, xi,2, u)

...

bi,nxi−1(xi,1, xi,2, . . . , xi,nx,i−1, u)

bi,nxi (x, u)


(B.1)

we consider a component b̃ki (·, u), k ∈ {1, . . . , nxi − 1} and from the definition of b̃ (i.e.

b̃i(·, u) = Θibi(Θ
−1
c ·, u)), we can obtain that

b̃i,k(x, u) =
1

θn
∗−nxi+k−1

b(θn
∗−nxixi,1, . . . , θ

n∗−nxi+k−1xi,k, u) (B.2)
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and by considering Lb as the Lipschitz constant of b(x, u) with respect to variable x, it can

be obtained that,

‖b̃i,k(x, u)− b̃i,k(z, u)‖=
1

θn
∗−nxi+k−1‖b(θn

∗−nxixi,1, . . . , θ
n∗−nxi+k−1xi,k, u)− b(θn∗−nxizi,1, . . . , θ

n∗−nxi+k−1zi,k, u)‖

≤ Lb
θn

∗−nxi+k−1‖(θn
∗−nxixi,1, . . . , θ

n∗−nxi+k−1xi,k, u)− (θn
∗−nxizi,1, . . . , θ

n∗−nxi+k−1zi,k, u)‖

≤ Lb
θn

∗−nxi+k−1 θ
n∗−nxi+k−1‖(xi,1, . . . , xi,k, u)− (zi,1, . . . , zi,k, u)‖

≤ Lb‖(xi,1, . . . , xi,k, u)− (zi,1, . . . , zi,k, u)‖
(B.3)

which means the Lipschitz constants of both b and b̃ are equivalent. It should be noted that

in the derivation of (B.3) we considered all the elements of b̃i except the last one which may

be a function of system’s overall states x. Now we consider the element b̃i,nxi and prove that

its Lipschitz constant remains consistent.

For the states of the overall system we know that

‖Θ−1
c x−Θ−1

c z‖≤ θn
∗−1‖x− z‖ (B.4)

and also based on the definition of the matrix Θc for all nxi , i ∈ I, we have

b̃i,nxi (x, u) =
1

θn∗−1
bi,nxi (x, u) (B.5)

Hence, according to (B.4) and (B.5) we obtain,

‖b̃i,nxi (x̃, u)− b̃i,nxi (z̃, u)‖≤ Lb‖x̃− z̃‖ (B.6)

which implies that the change of coordinates does not change the Lipschitz constant.

The above consistency holds for the Jacobian matrix b̃∗(·, u) as well. In order to prove

this, we consider an element of the matrix b̃ denoted as b̃∗i,j and based on the definition of
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the matrix b̃ we obtain that

b̃∗i,j(z̃, u) =
1

θp
b∗i,j(z̃, u)θq (B.7)

where p and q are natural numbers and p ≥ q. Not that due to the structure of bi, as

described in (B.3), the Jacobian matrix is lower triangular. Consequently,

‖b̃∗i,j(z̃, u)‖≤ θq−p‖b∗i,j(z̃, u)‖≤ ‖b∗i,j(z̃, u)‖≤ Lb∗ (B.8)
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