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ABSTRACT

Much of statistical methodology is concerned with models in which
the observations are assumed to vary independently. Randomization of
the experimental design is introduced to validate analysis conducted us
{f the observations were independent. However, a great deal of data
occur in the form of time series where observations are dependent and
where the nature of this dependence is of interest. The technique
available for the analysis ‘¢ such series of dependent observations is
called time series analysis. Time series models are techniques that
allow the researcher to {dentify the structure of a time series and to
determine if a discrete intervention accounts for a statistically
significant change in the level of the series without artificial
experimental conditions.

Monte Carlo studies were used to analyze issues in time series
procedures with small data sets. Five Autoregressive-Integrated Moving
Average (ARIMA) models with 20 and 40 data points were generated; a
constant intervention effect was added to each time series; values of
the correlation and intervention parameters were varied. The size of
the intervention effect and the bias in intervention effect estimates
were calculated for the true and misidentified ARIMA models. A second
set of Monte Carlo simulations was used to investigate the procedures
used in the model identification stage of time series analysis. ARIMA
model identification is a crucial step in the assessment of intervention
effects in interrupted time series experiments.

The results indicate that correctly identified ARIMA models gave

fairly accurate estimates of the {ntervention effect. However, the

iv



length of the time series realization plays a crucial role in determin-
ing the accuracy of estimates examined in this investigation. The
magnitude of the standard errors, the inaccuracy of the estimated
standard errors, inflation of Type I error rates, and lack of power, are
quite severe in short time series realization. Also, extreme serial
dependence magnifies the problems observed in estimation procedures of
the autocorrelation function as well as the intervention component.
Intervention effect estimates were inaccurate when the ARIMA model was
inadequately differenced, having a detrimental effect on power.

Time series anilysis techniques provide the tools for analyzing
unique behavioral fluctuations through time and a framework for predict-
ing future changes in the individual. The inherent limitations in the
statistical procedures will be helpful in applying time series analysis
techniques to research probleas. The application of time series

analysis to clinical research may provide a scientist-practitioner mode!l

for developing knowledge.
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CHAPTER I

Introduction

The science of nursing becomes explicit when research is used to
guide and enhance practice. In generating knowledge for practice, the
discipline of nursing borrows and blends methods of inquiry from those
of related disciplines. The present study falls within this tradition.
It is an investigation into the utility of the interrupted time series
design for the fleld of nursing. The interrupted time series design
{nvolves a series of observations taken at regular intervals, during
which an interruption or treatment is administered. The purpose of the
interrupted time series experiment is to determine i{f the treatment had
an impact on the measures or observations. The interrupted time series
design has been widely used as a research paradigm by social scientists
{n such areas as educational psychology (Berryman & Cooper, 1982;
Kratochwill, 1978), behavioral psychology (Barlow & Hersen, 1973, 1984;
Kazdin, 1984), psychology (Gregson, 1987; Larsen, 1987; Nurius, 1983),
sociology (Berman, Meyer, & Coats, 1984; Blose & Holder, 1987; Calsyn,
1977), economics (Dalton & Todor, 1984), and law (Glass, 1968; Glass,
Tiso, & Maguire, 1971). Campbell and Stanley (1966) and Cook and
Campbell (1979) have described some of the benefits that this design has
as an alternative to the "experimental-control” design. Among these
benefits are: time series quasi-experiments allow researchers to
seaningfully interpret data that are collected in the absence of
rigorous control over variables necessary in true experimental designs
or when the feasibility of comparison groups is questionable; time

series experiments permit hypothesis testing of treatment effects 1in



studies involving only a single subject or unit of observation; inter-
rupted time series experiments provide information concerning the nature
of the intervention effect over a period of time.

Technically speaking, s time series is a sequence of time-ordered
observations (Yt) of some underlying process; the interval between Yt

and Y and the sources of data are assumed to be fixed and constant.

t-1
Examination of unique fluctuations in phenomena tracked through time can
be modeled using stochastic processes. A stochastic process describes
an underlying process of unobserved errors which make the observed time
series unpredictable. Thus a stochastic process may be defined as a
collection of random variables which are ordered in time according to
certain probabilistic laws. Inferential statistics assume unique
fluctuations to be random error and may hide the significance of
{ndividual differences in predicting behavior. Human behavior camnot
alwvays be explained by a generalized mean observation. If sequences of
observations proceed through time according to probabilistic laws, then
the future evolution of a behavioral series may be predicted by knowl -
edge of its past values if the series is stable and can be modeled
accurately.

In time series designs, a series of measures is assessed on a
single variable over a period of time prior to some intervention. The
same variable is then measured over time subsequent to the intervention.
The hypothesis under consideration concerns the impact of the interven-
tion, which is evaluated by comparing the pre-intervention time series
vith the post-intervention time series. The research design is concep-
tually simple, and researchers may be tempted to use a t-test to compare

the mean of measures collected before the intervention with the mean of



those collected after the intervention. However, dus to the non-
independence of the measures assessed over time, the results of such a
procedure can be fallible. While ordinary least squares regression
estimates of time series parameters are not bilased per se, the estimates
of standard deviations and hence, of significance tests are biased
wvhenever error terms are correlated. Thus, when naturally occurring
events are observed repeatedly over time, events closer to each other in
tise tend to be more correlated with each other than with events further
removed in time. Since time is the independent variable of an ordinary
least squares regression, it follows that the error terms of consecutive
observations may be correlated. Consequently, time series analysis
offers a method of incorporating this correlation into the wmodel,
alloving for the calculation of unbiased estimates of standard devia-
tions in intervention effect estimation. Models which take the interde-
pendence of measures into account are necessary in order to draw
inferences with any degree of confidence on the basis of data collected
in this type of study.

In addition to the statistical problems associated with a simple
comparison of pre- and post-inte.vertion means, there are logical
problems with the procedure. For exawple, a time series process that
follows a steady upward trend will result in a post- intervention mean
that is substantially larger than the pre-intervention sean. A conclu-
sion that the intervention is responsible for the difference would be
illogical however, because the post-intervention mean would be greater
in the absence of the intervention as a result of the upward trend. In
other instances, the equality of pre- and post-intervention means may

lead the researcher to the false conclusion that the intervention had no



impact. This situation may occur {f a time series process follors an
upvard trend prior to the intervention, and the intervention results in
a dowtward trend during the post-intervention phase. This dramatic
intervention effect would not be evident if the researcher simply
compared pre- and post-intervention means.

In summary, an interrupted time series analysis assesses the
magnitude and statistical significance of change in the time series
following an intervention (Cook & Campbell, 1979). This change 1is of
two types, deterministic and stochastic. The deterministic component
describes the systematic behavior of a time series and is not dependent
on error. The stochastic component, the error structure in a time
series, accounts for the unpredictability of change through time.
Statistical analysis of a time series creates a model of the structure
of the systematic stochastic component. Departures from this model
behave like independent random events. The remaining error allows for
calculation of an unbiased estimate of the standard deviation. As a
result, more accurate inferences can be drawn from significance tests of
a parameter representing the change associated with the interruption in
the time series.

In contrast to the time series design, the classical experimental
approach is costly and if properly used, may ignore the changes that can
occur over the normal course of time or changes prompted by the act of
measurement. Unfortunately, either the assumptions of the statistical
models for "true experiments" are too rigid for use in most clinical
paradigms or these assumptions are violated, with possible resulting
false conclusions. Interrupted time series experimentation is proposed

as a viable approach for clinical nursing research. Time series



analysis techniques provide the tools for analyzing behavioral fluctua-
tions through time and a framework for predicting future changes in the
fndividual. This basic ideographic technique has many implications for
clinical research.

Classical time series analysis procedures have not been applied in
nursing research, yet observations over time are often basic features of
clinical studies. Questions related to the outcome of this investiga-
tion are: When is time series analysis appropriate to test for the
presence of intervention effects? What time series models fit the data
in nursing? Can changes of the rder found in nursing research be
detected by interrupted time series experiments? What {i- e form of
change? In this investigation, the appropriate procee:re ' T the
analysis of data from interrupted time series experiments are assessed,
and potential difficulties pointed out that may be encountered in

applying these procedures to "real 1ife" data sets.

gbjecti "es of the Study
The purpose of this study was to explore intervention effect
analysis in short time series processes and subsequent application of
the interrupted time series experiment in the context of clinical
nursing research. There are a variety of practical issues that are
important in the utilization of the interrupted time series experiment.
Issues in the application of time series analysis procedures to small

samples under a variety of conditions were explored.



The objectives of the study were to:

1. exanine time series experiments in comparison to traditional
experimental designs employed in clinical research;

2. investigate intervention effect estimation in short time series
processes; and

3. explicate the issues in the application of interrupted time series
experiments in the context of clinical nursing research.

The discussion in subsequent chapters deals with the basic statis-
tical procedures necessary to model time series processes and to test
for the effect of interventions. Additionally, the benefits and
limitations encountered in the application of time series designs and
analysis are explored, specifically in the context of clinical research.
Statistical inferences regarding intervention effect estimation in
interrupted time series experiments were investigated empirically via

computer simulations.

Significance of the Study

The use of interrupted time series experiments has many implica-
tions for nursing practice. The concept of uniqueness of the individual
is not only allowed to exist as a basis for nursing care but in fact is
central to most developing nursing theories; thus uniqueness provides a
framework for assessing change, not as a deviation from an aggregate
mean, but as an alteration in a consistent pattern. In time series data
sets, successive values are assumed to be related to each other so that
in this respect the model is a plausible representation of reality. In
the clinical research context, this provides a tool for assessing change

statistically, so that decisions can be based upon objective criteria.



The goals of measuring change are to determine whether there is an
{ntervention effect, and what is the functional form of that effect.

A time series approach to clinical research takes advantage of .the
sequence of the nursing process. Time series analysis techniques could
provide a ' -is for computer-assisted clinical decision-making (Metzger
& Schult: 382). Time series analysis offers nurse researchers a
technique that is adaptable to clinical research because intervention
strategies can be evaluated in a normal environment without artificial
experimental conditions. The interrupted time series experiment
provides techniques that allow the researcher both to describe the
structure of processes and to determine 1if a discrete intervention
accounts for a statistically significant change in the series.

The results of clinical research add to nursing knowledge, provid-
ing a basis for clinical practice. How applicable are research findings
to the clinical decision-making process? How may research generate
appropriate knowledge for clinical wutilization? Nursing research
efforts have not exploited the full range of potential procedures for
empirical investigation. For the development of a scientist-practition-
er model of process research, these are concerns warranting attention.
Nursing is concerned with individual as well as aggregate responses to
health problems. In addition, there is an expressed commitment to
understanding the whole person and thosw factors that influence health
status. The study of an individual within an intensive, longitudinal
perspective, maximizing {nternal and external validity, may assist in
bridging the research-practice gap (Meier & Pugh, 1986). The time
series approach is well suited to the humanistic validity-seeking method

of nursing research. To address the issues of interrupted time series



experiments, it is important to begin with the basic underlying statis-

tical procedures that are necessary to model time series processes and

to test for the effect of interventions.



CHAPTER 1I

Time Series Processes

The subject of the present investigation impinges on a broad range
of theoretical and empirical references. To provide clarity in the
review of relevant literature, the content is divided into three sec-
tions. An overview of time series processes is presented in the first
section. The second section is devoted to time series model building,
while the third section is a presentation of the interrupted time series

experiment.

Qverview of Time Series Processes

Time series data occur in many fields of study providing oppor-
tunity for the application of an experimental or quasi-experimental time
series design. These designs and threats to their validity are dis-
cussed extensively in Campbell and Stanley (1966), Cook and Campbell
(1979), and Glass, Willson, and Gottman (1975). Sources of invalidity
in time series experiments are: an event extraneous to the intervention
but coincident with it may produce an alteration of the series; inter-
ventions may come about as reactions ¢o past or impending changes in the
time series: false attribution of an effect to an intervention may occur
when in fact it is dus to the intervention plus a previous intervention;
change in the method of observing the outcome variable may cause an
abrupt change in a time series; random variation in a time series may be
misinterpreted as the effect of an intervention; composition of the
experimental unit may change over time; events unrelated to the inter-

vention may cause the time series to change abruptly at the point of
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intervention; and results may be inappropriately generalized from the
observed time series to subjects other than the ones involved in the
experiment. According to McDowall, McCleary, Meidinger, and Hay (1980),
an interrupted time series quasi-experiment can be diagramed as
.00000000X00000000.

where O represents the observation point and X denotes the intervention.
Time series analysis has gseveral strengths (Velicer & McDonald, 1984).
First, -ime gseries designs can be employed in clinical situations where
traditional between-subject designs are difficult to implement. Second,
time series designs are appropriate for dealing with effects of change.
Third, time series designs permit the study of the pattern of interven-
tion effects through the evaluation of change in the level, or in the
slope, or both (Jones, Vaught, & Weinrott, 1977). The evaluation of
only simple mean changes before and after intervention could obscure
other intervention effects.

The analysis of time series data requires different considerations
than generally encountered in traditional data analysis procedures. The
distinguishing aspect of the structure of time series data 1is the
dependency among observations. Most inferential statistical models are
based on the premise that observations are independent, or uncorrelated,
with each other. This basic assumption is seldom met when data are
collected on the same experimental unit across time (Jones, Weinrott, &
Vaught, 1978). Usually, observations are related to other observations
in close temporal proximity and relatively independent from more distant
observations. To date, the most promising statistical procedure which
accounts for the serial dependency between repeated measures is that

proposed by Box and Jenkins (1970, 1976). The way in which the problem
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of serial correlation is resolved is to empirically model the autocorre-
lation of the observations, and then to test for the presence of an

{ntervention effect while controlling for the autocorrelation.

Autocorrelation and Partial Autocorrelation

The concept of autocorrelation is used to describe the type of
dependence among the observations of a time series process and is
central to the discrimination among time series models. The autocorre-
lation is defined as the correlation between all pairs of observations
separated by a fixed number of points in the time series (Anderson,
1976). For an observed series of length n, the estimated lag k autocor-
relation coefficient (ACF) is given by

n-k n

r, = (I (Y, - Y)(Y -y I, -
k £=1 t t+l +  t=1 t

n-k n

where Yc is the observation at time ¢, Yc+1 represents the observation
at time t+l, and ¥ is the mean of all observations. For a given lag k,
however, variance (denominator of the equation) is estimated over all n
observations, while covariance (numerator of the equation) is estimated
over only n-k pairs of observations. Therefore, the ACF(k) is not quite
the same as the familiar Pearson product-moment correlation coefficient
between tirme series observations. The plot of r, as s function of the
lag k is called the correlogram of the series. The autocorrelations
provide the key by which the model underlying an observed series is
identified. In practice, to obtain a useful estimate of the autocor

relation function, Box and Jenkins (1970) recommend at least 50 observ

tions (n) with k not larger than n/4.
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The partial autocorrelation (PACF) 1is a measure of correlation
between time series observations k units apart, after the correlation of
intermediate lags has been controlled or partialed out (McCleary & Hay,
1980). Unlike the ACF, the algebraic formula for the PACF(k) is
{nconvenient; it is usually estimated from a solution of the Yule-Walker
equation system (Box & Jenkins, 1976). The solution gives the values of
PACF(1) = ACF(1)
PACF(2) = ACF(2) - [ACF(1)]2 / 1 - [ACF(1)]?
and so forth. Thus, the expected partial autocorrelation is a function

of the expected autocorrelation.

stationarity and Nonstationarity

Among the assumptions that are made sbout the nature of the
underlying process when estimating a statistical model of a time series
process, are the conditions of stationarity. Loosely put, stationarity
means that specific characteristics of the underlying time series
process remain stable over time (Gottman, 1981). A finite set of
parameters must be estimated to deternine the model believed to have
generated an observed time series realization; consequently, if the
process was not consistent over time, it would be impossible to apply
the same model to different portions of the time series. One condition
of stationarity is that the mean and variance of a time series process
do not change with historical time. Therefore, a stationary model is
one in which the time series remains in equilibrium around a constant
mean level with uniform variability over time. Another condition of
stationarity is that the autocovariance of a time series process is

independent of historical time. Thus the covariance is determined by
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the relative lag of the time points, irrespective of the function of the
time series under consideration (Gottman, 1981; Gregson, 1983).

Time series data must conform to the conditions of stationarity in
order to properly model the time series process. In actual practice,
data sets often do not conform to these requirements. A realization of
a time series may exhibit one or more of the following forms of nonsta-
tionarity: (1) a change in the level or slope of a series over time,
(2) periodicity (seasonal component), (3) nonconstant variance, and (&)
a shift in the autocovariance structure of the time series (Gottman,
1981). If it is determined that the underlying process is not station-
ary, the researcher should attempt to either model the nonstationaricy,
or transform the data so that the observations conform to the conditions
of stationarity. In general, the autocorrelations of a stationary time
series process lie on the interval -1 to +1, and will approach zero
after a relatively small number of lags. In contrast, a nonstationary
series will result in autocorrelations which very slowly approach zero
as the number of lags increases.

Nonstationarity in the time series may be considered to be either a
deterministic or stochastic process. Deterministic behavior can be
expressed as a fixed function of time; future time points are completely
determined by past observations. Stochastic behavior can be expressed
as a random process operating through time; observations are only
partially determined by previous occurrences (McCleary & Hay, 1980).
One procedure utilized in the analysis of nonstationary series involves
modeling the nonstationary components of the series and subtracting
these components from the original data set. Assuming that the nonsta-

tionarity has been accurately modeled, the removal of these components
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will result in a set of residuals conforming to the conditions of
stationarity. The residuals may then be modeled as a stationary time
series. The nonstationary components may be modeled via ordinary least
squares fitting procedures (Gottman, 1981).

An alternate method for analyzing series that are nonstationary
with respect to level involves a transformation of the data referred to

as differencing. The first differencing of a time series is defined as

VYt - Yt - Yt-l

wvhere v is used to indicate that the time series has been differenced;
all observations are subtracted from the immediately preceding observa-
tion. Thus, if a time series is nonstarionary in level, it will
oscillate around a mean level for a time and then drop or rise to a nev
temporary level. First differencing produces a stationary series. If a
series is nonstationary in slope, it will drift in one direction for a
time and then temporarily shift direction for a time. Second differenc-
ing is necessary to produce a stationary series in this case (Box &
Jenkins, 1970, 1976). In practical applications of time series analy-
sis, it is rarely necessary to difference beyond the second order
(McCleary & Hay, 1980). Gottman (1981) cautions that over-differencing,
for example, differencing a White Noise serles, actually introduces
dependency in the data set.

McCleary and Hay (1980) discuss the potential problems with the
linear regression model for trend, as well as emphasizing the differen-
ces between deterministic trend and stochastic drift. The modeling of
trend via ordinary least squares regression analysis assumes an underly-

ing deterministic process. Differencing on the other hand, assumes an
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underlying stochastic process that is free to vary in a probabilistic
manner. Box and Jenkins (1976) also advocate that the ordinary least
squares regression modeling procedure may be considered to be appropri-
ate only when it can be assumed that the nonstationarity is of a
dsterministic nature. They suggest that the 1issue of deterministic
trend versus stochastic drift is really the {issue of fitting versus
modeling a time series.

To make the description of time series analysis simpler, many
authors have introduced a new mathematical operation known as the
backward shift operation. The backward shift operator (B), is an
operator which shifts the time series backward one point in time. Thus,
the notation B(Yt) refers to Yt-l' The representation of the differenc-
ing operator can be simplified by using the backward shift notation.

First differencing can be represented as:

wo=Y - Y
or - Yt - B(Yt)

or - (I-B)Yt

The backward shift operator also has the property of invertibility, so

that B™1B equals one (McCleary & Hay, 1980).

Iime Series Models

A model is a set of assumptions made about the mathematical process
that may have generated the data (Gottman, 1981). The time series
process model 1is a class of combined Autoregressive-Moving Average
models (ARIMA) of Box and Jenkins (1976) and Box and Tiao (1965, 1975).

ARIMA represents Autoregressive Integrated Moving Average, after the
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three components of the general ARIMA model. Conceptually, in Autore-
gressive processes, each data point is a function of the preceding
value: each value is correlated with all preceding values plus a random
component. In Moving Average processes, esach data point is a function
of the averaged current random shocks plus one or more previous shocks;
each value is a weighted average of the most recent random shocks
(Harvey, 1981). The general ARIMA model can be summarized with the

squation
Yo=Y,  + Y e - 08, -0,

where Yc is the present output or observationm, s is the present input
or random shock, ¢ is the parameter that reflects the influence of
preceding outputs, and O is the parameter that reflects the inf).snce of
preceding inputs. Time series (ARIMA) models are bullt empirically from
the data. The data are closely examined to deteimine tte parameters
that represent the series of observations. The analysis focuses on
identifying one of two systematic stochastic processes: the Autoregres-
sive (AR) and Integrated Moving Average (IMA) components (Glass,
Willson, & Gottman, 1975). These are represented by the structural
parameters p and q respectively, in the ARIMA model. ARIMA (p, 4, q)
sodels describe a time series as the realization of a stochastic or
"noise” process: the relationship between random shocks and the time
series. The integer values of p, d, and q are specified through
statistical analysis called identification and refer to the number of
terms in the AR or IMA processes. The concept of stationarity is
associated with the structural parameter d. The structural parameter d

indicates the number of times a series has to be differenced before it
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is made stationary. Differencing smounts to subtracting the first
observation of the series from the second observation, and so on.

The concept of autoregression is associated with the structural
parameter p. The structural parameter p indicates the autoregressive
order of the ARIMA model or when the time serles are characterized by a
direct relationship between adjacent observations. The parameter p thus
denotes the number of autoregressive structures in the model: the number
of past observations required co predict the current observation.

The concept of moving average is associated with the structural
parameter q which indicates the moving average order of an ARIMA model.
The value of q exceeds zero when the time series is characterized by the
persistence >r legacy of s random shock from omne observation to the
next. In a Moving Average process, the rardom shock persists for no
more than q observations and then its effect on the series is gone.
Glass, Willson, and Gottman (1975) reported the five most frequently
occurring models in behavioral data, in descending order, to be:
Integrated Moving Average, Autoregressive, White Noise, Moving Average,

and Nonstationary series.

Autorsgressive Models

Autoregressive time series models are an extension of common
regression models in that they predict observations in a time series
from a previous set of observations in the series. A first-order

Autoregressive (AR) model is specified as

Y. =#Y. 1 %%
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wvhere ¢ is the autoregressive coefficient that minimizes the squared
error, l{‘ .t2' and L has & mean of zero, a variance of 02. and is
uncorro;::.od with Yt (Glass, Willson, & Gottman, 1975). The observa-
tions of time series processes are usually represented as deviations
from the mean observation. The absolute value of 01 must be less than

one if a first-order Autoregressive process is to be stationary. The

variance of an AR process is:
Var Y_ = 62 /1-¢2

1f 01 is greater than one, a given observation will be more strongly
related to distant observations than to those that are in close temporal
proximity. The autocorrelation function (ACF) of the Autoregressive

process is expected to decay exponentially and can be specified as
- k
ACF (k) 01

where k is the number of lags. As the expected partial autocorrelation
(PACF) is a function of the expected ACF, the PACF(1) is non-zero, wvhile
PACF(2) and all successive lags are expected to be zero for the Autore-
gressive process. Therefore, Autoregression refers to a stochastic
behavior in which a random shock has an exponentislly diminishing impact
over time. The relative simplicity of parameter estimation in Autore-
gressive models has led some researchers (Gottman, 1981) to recommend
their use almost exclusively. However, the consideration of only
Autoregressive models may result in a rather large number of autore-
gressive parameters. Consequently, other researchers prefer ARIMA
models, since they are more parsimonious (Blumberg, 1984; Gorsuch, 1983;

Harrop & Velicer, 1985; Velicer & McDonald, 1984).
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Moving Average Models

As Autoregressive processes are characterized by a dependency
betveen observations that decays exponentially as the number of observa-
tions increases, Moving Average processes are characterized by a
dependency between observations that are separated by a finite number of
time points. Observations separated by more than q points in time are
independent from each other. Vhile Autoregressive processes are modeled
{n terms of previous observations, Moving Average processes are wmodeled
in terms of previous error terms (‘t)' referred to as random shocks.
The principle of the model is that an observation Y. is a function of
the current random shock (a;), and a portion of a fixed number of
previous random shocks. A first-order Moving Average (MA) model 1is
specified as

Y, =a -0,

where O is the moving average coefficient that minimizes the squared
n

error, J atz, and a , white noise, is assumed to have a mean of zero,
t=1

a constant variance of oz. and is uncorrelated with Y. (Glass, Willson,

& Gottman, 1975). The variance of an MA process is:

?

Var Yt -0 /1 + 02)

The absolute value of 01 aust be less than one if a first-order Moving
Average process is to be statiomary, the bounds of invertibility. While
the name is different, the bounds of {nvertibilit; play muclt the same
role as the bounds of stationarity for sutoregressive parameters. In

practice, when ¢p or Oq paraneters exceed the bounds of stationarity or
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the bounds of invertibility, the series is either nonstationary and
reguires differencing, or it was differenced too many times. The
autocorrelation function (ACF) of the first-order Moving Average process
is expected to truncate after a single lag and can be specified as:

-ol
M~ T .62

1+ 01

The partial autocorrelations (PACF) are expected to be non-zero, with

ACF

successive lags of the partial autocorrelation function growing smaller
and smaller in absolute value. Therefore, Moving Average refers to
stochastic behavior which is a weighted summation of random shocks that

truncate to zero after q lags.

Duality of AR and MA processes. There is a fundamental duality

between Autoregressive and Moving Average models. A stationary first-
order Autoregressive process can be represented as an infinite order
Moving Average process. Similarly, a first-order Moving Average process
can be expressed as an infinite order Autoregressive process. The
practical significance of this duality is the flexibility offered in
modeling time series data; one can adequately model a Moving Average
process with an Autoregressive model AR(p), where p is relatively large.
The autocorrelation function of an Autoregressive process decays
exponentially over time, while that of a Moving Average process trun-
cates after lag q. Logically, the potential for modeling the dependency
of an Autoregressive process with a M- ) model would be to specify a
large value of q.

By continuing to go backward in time using the first-order Autore-

gressive model to minus infinity:

Yo=Y 1t 2%
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or

Y, = ()Y, o+ a ) +e

or

2 3
Y o =a +4a et e gt

results in - 1
Y, - izo 4 ey
Thus the first-order Autoregressive process, AR(1), can be written as an
MA(o0) model. This relationship is the case only when |§1k| is less
than one, so that §1k approaches zero as k approaches infinity for the
series to converge to a finite limit (McCleary & Hay, 1980).

Now the first-order Moving Average process, MA(1l) can sometimes be

written as an AR(o0) model. The first-order Moving Average model:

Yc -a - Oat_

1
also implies Yt-l -a 1" °‘t-2
Solving for a1 and substituting the result in t first equation

results in:

Yt -a - O(Yt-l + °‘t-2)

2
or Yt - -OYc_l + a - () ‘t-z

Rewriting the MA(1l) and substituting for &, glves:

Yoo =80 - 98

2
or Y = -OYt_l + a - 0 (Yt-Z + °‘t-3)

2
or Yt - °°Yt-1 -0 Yt_2

3
+ a, - ) a .3

2 3
results in Yt - -OYt_l -0 Yt-z -0 Yt~3 - ..
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with repeated substitutions, which is an AR(o) process. This relation-
ship only holds if O] is less than one, which is known as the inverti-
bility condition. In general, the invertibility condition of the MA(q)
process is similar to the stationarity condition of the AR(p) process.
As Cottman (1981) points out, in practice, data generated by an MA(1)
process could be estimated using an Autoregressive process of high
order, as O to some power will eventually become zero. Nonetheless, the
most parsimonious model is still the MA(l), with only one parameter.
Moreover, the variance of the time series will converge to a finite
limit only if the conditions of stationarity and invertibility are
satisgfied. Consequently, any stationary time series process can be
modeled with an infinite moving average and approximated by a finite
MA(qQ) model. However, this representation is not always the most
efficient model. Autoregressive models are clearer, more flexible, and
easier to handle than Moving Average models. In fact, Gottman (1981)
indicates that at the price of using models with larger numbers of
paraneters, the more tractable Autoregressive model can generally be

used.

Random Walk and Other Integrated Processes

A random walk is a stochastic process wherein successive random
shocks accumulate or integrate over time, hence an integrated process.
The random variate (Yt) can make wide swings from its expected level; it
drifts, and i{f only a short realization of the process is available,
one might conclude that the process follows a trend. Processes thought
of as random walks are encountered in the social sciences, which have

random shocks varying in sign (positive or negative) as vell as in size
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(McCleary & Hay, 1980). Because a random walk observation is the sum of
all past random shocks, the integrated process or Nonstationary (NS)

series can be represented as:

Yt - Yt-l + 00 +a

The series, which follows a linear trend, is simply differenced which
transforms the random walk into a "white noise" process. White Noise
(WN), the residual or error term of the prediction, is the unsystematic
part of the stochastic process. With an integrated model, the best
prediction of the current time series observation (Yt) is the preceding
observation (Yt-l) and a constant, where Qg equals zero. This process
can also be represented as an AR(1l) process with ¢ equal to one.

The most common nonstationary process is the Integrated Moving
Average model. This Integrated Moving Average (IMA) model is depicted
as:

Yo=Y - 08, e

The Integrated Moving Average process will evidence nonstationarity; it
will "wander away" from any given level for long periods of time rather
than oscillating around a single level (Glass, Willson, & Gottman,
1975). The autocorrelations of the non-differenced data do not die out
to zero either exponentially or abruptly. After first differences of
the data, a Moving Average structure is apparent as the lag 1 autocorre-
lation i{s non-zero, but the autocorrelations for successive lags are

essentially zero.
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Time Series Model Building
Box and Jenkins (1976) propose an ARIMA model building strategy

which is an iterative strategy consisting of identification, estimation,
and diagnosis. The model building strategy is outlined in Figure 1.
The goal of the identification process is to determine an ARIMA model
which parsimoniously describes the data set. The pattern of autocorre-
lations and partial autocorrelations are determined and inspected. Once
the correct model 1is chosen, parameter estimation 1is performed.
Finally, the adequacy of one model is assessed in the diagnosis stage,
by fitting the model to the data to determine if any dependency remains.

ARIMA model identification is an important key to the analysis of
time series data and is crucial for testing the hypothesis of an
intervention effect. The practical basis for selecting one tentative
model over another is the pattern of autocorrelation found in the ACFs
and PACFs estimated from the time series realization. Subjective
judgment is involved at this stage of model building, in that no precise
objective method is available for determining the best values of p, d,
and q in the ARIMA (p, d, q) model (McCleary & Hay, 1980). The autocor-
relation and partial autocorrelation functions are examined to determine
the dependency of time series observations. The general properties of

the autocorrelation and partial correlation function are summarized as:

Process I ACF PACF

Truncates after lag p
Decays after lag q

AR(p) Decays after lag p
MA(q) Truncates after lag g



Figure 1. The ARIMA Model Building Strategy

[—> (1)

'

(2)

— (3

(4)

IDENTIFICATION

l

ESTIMATION: Parameter estimates must be
statistically sigunificant and must lie
within the bounds of stationarity-
invertibility. If either criterion is
not met, return to IDENTIFICATION. If
both are met, proceed to DIAGNOSIS.

!

DIAGNOSIS: Model residuals must be white
noise as judged by two criteria. First,
the residual ACF must have no spikes at
key lags. Second, the Q-statistic must
not be significant. If either criterion
is not met, return to IDENTIFICATION. 1£
both are met, accept the model.

!

USE THE MODEL: After a tentative model
has been accepted, it may be used for
intervention effect assessment.

25
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The first consideration in model identification is the stationarity
of the time series process. A tentative identification of the differ-
encing parameter (d) 1is determined. 1If the specified value of the
differencing parameter is too large, dependencies among the observations
are introduced. The problem of over-differencing can be avoided by
applying the difference operator only when the estimated autocorrelation
function unambiguously demonstrates that the tine series process is
nonstationary. Box and Jenkins (1976) as well as McCleary and Hay
(1980) contend that application of time series analyses rarely requires
differencing beyond the second order.

The actual autocorrelation function of a time series process is
never known, thus a finite realization of the time series process is
used to estimate the true ACF and PACF. Ambiguity in identification can
be lessened by placing confidence bands around the ACFs and PACFs. For

the ACF, standard errors (SE) of the ACF(k) are estimated by:

SE(ACFK) = l;}n (1 +2 _% (ACFi)Z]

i=1
and for the PACF, standard errors of the PACF(k) are estimated by:

SE(PACFy) = /1/n
Approximate regions of nominal acceptance or rejection can be formed
around the ACF and PACF using the values of plus or minus two standard
errors. If the ACF and PACF fall within this region, they are consid-
ered to be not significantly different from zero. The width of the
confidence bands are directly related to the number of observations in
the time series process (Box & Jenkins, 1976). Certainty in the iden-
tification of the time series process is increased as the number of

observations in the realization becomes greater.
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Next, after having identified an ARIMA (p, d, q) model for the time
series realization, the ’P and Oq parameters of the model are estimated.
Estimation procedures that converge to a minimum residual sum of squares
( ‘g atz) of an ARIMA model are used. All parameter estimates must be

t=1
within the bounds of stationarity-invertibility, as well as being

statistically significant.

The last stage of the model building process involves evaluating
the adequacy of the tentative model. In the diagnosis stage, residuals
(4¢) of a time series model are assessed by analyzing the estimated
autocorrelation function. McCleary and Hay (1980) outline two criteria
for evaluating the adequacy of an ARIMA model. First, there should be
no dependency between the estimated autocorrelation at the first or
second lag. Box and Jenkins (1976) point out that the approximate
standard errors of the estimated autocorrelations of the residuals
(1//7) tend to be inflated . low lags. Thus, discrepancies from the
expected autocorrelation of zero at lags 1 and 2 should, for diagnostic
purposes, be considered significant if slightly less than the confidence
band of two standard errors in magnitude. Second, the residuals of the
tentative model must be distributed as white noise. This diagnostic
check considers an entire set of autocorrelations simultaneously to
evaluate wvhether the set of estimated autocorrelations are different
from zero. Box and Pierce (1970) suggest using the Q-statistic given by

Q- ntzl (ACI-‘t)2
which is dist-ibuted approximately as Chi-square with k-p-q degrees of
freedon, where n represents the number of observations used to estimate
the autocorrelation function, k is the number of lags used for calculat-

ing the estimated ACF, p {indicates the autoregressive order, and q
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indicates the moving average order. When using the Q-statistic to
detect serir" dependency of the residuals, McCleary and Hay (1980)
recommend setting the value of k between 20 and 30 lags. A large value
of k lacks power in rejecting the null hypothesis of independent
observations, whereas a value of k less than 20 will tend to be over-
sensitive and lead to rejections of the null hypothesis even when the
residuals are distributed as white noise.

A variety of other residual checks may be useful in diagnosing the
estimated model (Box & Jenkins, 1976). Inspecting a plot of the
residual series and a plot of the predicted values versus the observed
values are invalusble for assessing the fit and adequacy of the model.
Another procedure is referred to as over-fitting. The basic concept of
model over-fitting is the attempt to find a better fitting model by
adding parameters to the tentative ARIMA model. A statistic, RZ, can be
computed which describes the amount of variance in the time series
accounted for by the ARIMA model (McCleary & Hay, 1980). This statistic
is analogous to the percentage of variance accounted for by a regression
analysis. Another related measure of the goodness-of-fit of the ARIMA

model is the residual mean square, represented by:

RMS = 1/n/ = Mcz

t=1
Models that have a smaller residual mean square are better fitting than

those models with a larger value. Additional parameters should be
selected on the basis of knowledge concerning possible sources of
dependency that may not have been adequately modeled.

Simonton (1977), Algina and Svaminathan (1977, 1979), Gottman
(1981), Glass (1980, 1984), Velicer and Harrop (1983), Velicer and

McDonald (1984), and Harrop and Velicer (1985) have discussed difficul-
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ties in ARIMA model identification. There is a lack of precisicon in the
ARIMA model building procedure which is apparent in the estimation of
the standard errors of the autocorrelation function in the use of the Q-
statistic, and in the evaluation of the goodness-of-fit of a model.
There is also a great degree of subjective judyment involved in the
interpretation of information gained from time series data analysis, as
many properties of the estimators used in ARIMA modeling are not
precisely defined. Interest is developing in providing information upon

which judgments can be made to produce useful time series models.

Interrupted Time Series Experiments

The time series quasi-expeviment was originally proposed as a means
of assessing the impact of a discrete social intervention on behavioral
processes (Campbell & Stanley, 1966). The analysis of the time series
quasi-experiment almost inevitably takes the researcher into a consider-
ation of ARIMA models and strategies (Cook & Campbell, 1979). The
interrupted time series experiment must address the threats to validity
(internal, external, statistical conclusion, and construct). The use of
the statistical ARIMA wmodel involves an adequately designed quasi-
experiment. Intervention assessment is concerned with the effect of an
event (changes in states) and requires the onset of an event be speci-
fied g prioxri. A null hypothesis that an event caused a change in some
behavior can be tested only if the time of the event is known a priori.

A complex model is fit which involves not only ARIMA components,
but also parameters that describe the intervention. The residual values

are then used to test the parameters. In interrupted time series
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analysis, the impact of some intervention or interruption in the series
is represented by:

ARIMA model (Yt) - noiu(nt) + intervention coaponent (It)
The research question asks: (1) does the addition of the intervention
component to the model significantly increase the model’s predictive
power, (2) what causal inference concerning the interrelationship of
separate time series processes can be drawn, or (3) what is the nature
of an intervention effect?

The most common method used for the analysis of interrupted time
series experiments was developed by Box and Tiao (1965) and discussed by
Glass, Willson, and Gottman (1975). This method involves the simultan-
eous estimation of the intervention component and the parameter of an
ARIMA model using nonlinsar estimation procedures. Gottman (1981)
proposes another procedure which involves reducing the time series
realization to a white noise process by removing the dependency of the
observations with an Autoregressive model. The residuals of the AR
model are then used to assess the intervention effect using ordinary
least squares procedures. This alternative is relatively uninvestigated
and not often utilized. Box and Tiao (1975) propose anothsr procedure
for assessing the effect of interventions. McCain and McCleary (1979)
give an introduction to the Box and Tiso (1975) dynamic method of
modeling interventions of which the original Box and Tiao (1965) model
is a special case. More detailed presentations are found in McCleary
and Hay (1980). This approach to modeling the intervention effect
provides a more global technique for incorporating intervention effects.
The one type of intervention effect considered previ..urly was that of an

abrupt constant change in level, where a constant value, w, vas added to
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esach post-intervention point. The development of the Box and Tiao
(1975) dynamic method offers greater flexibility in evaluating a wide
variety of intervention effects.

The time series process is simply assumed to be the outcome of two
components: (1) the stochastic process of ARIMA (p, 4, q) model, and (2)
the deterministic effect of an intervention component. Three different
types of intervention effects can be assessed using the interrupted time
series model (Glass, Willson, & Gottman, 1973). First, the simplest
type of intervention effect is that of an abrupt, constant change {n
level. In this case the intervention component is represented as

I - ol
vhere Ic-O prior to the intervention and It-l after the intervention,
vith ¢ being the intervention effect. Second, a gradual, constant
change can be evaluated by modifyin, he intervention component as

I - cyt"+ wi
vhere the parameter § is in the iu * 4l of -1 to +1, and estimates the
rate at which the intervention effect approaches the asymptote, or the
change in level of the time series. Thus, this model in which ¢ 1is not
equal to zero implies a gradual change in level in which the time series
remains relatively stable throughout the post-intervention phase. In
the extreme case where § =1, the level continues to increase at &
continuous rate instead of eventually reaching a constant level. When
¢ =0, the intervention component reduces to the model representing an
abrupt, constant change. Third, an abrupt, temporary change can be

modeled by:

4
t-1
I, =¢ + "(l'Yt-l)It
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This form of the intervention component represents an abrupt change with
a magnitude of @ at the point of intervention. The intervention effect
then decays at a rate determined by 8 . These three forms of interven-
tion effects {illustrated in Figure 2 probably represent the most
commonly encountered changes in the social sciences (McCleary & Hay,
1980) .

The general procedure of evaluating the effect of an intervention
begins with identifying an ARIMA (p, d, q) model according to the
general model building process. Caution i{s advised since the interven-
tion effect can sometimes change the nature of the ARIMA process from
pre-intervention to post-intervention data. There is an underlying
assumption that the stochastic process of the time series reslization is
equivalent before and after intervention. Some authors suggest expli-
citly modeling the two distinct time series processes if the interven-
tion alters the nature of the time series process (Stoline, Huitema, &
Mitchell, 1980), or relying on the pre-intervention data to identify
the ARIMA model (McCleary & Hay, 1980), and then fit the entire model
including the intervention component. Assuning that the most appropri-
ate ARIMA (p, 4, q) model has been identified, the intervention compo-
nent is added and all of the parameters of the full model are estimated.
The intervention effect is evaluated using the estimate for the parame-
ter o. In the analysis of interrupted time series experiments, the
actual test of the basic hypothesis is relatively simple. Unfortunate-
ly, difficulties often arise when attempting to model the dependency in

data sets.
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A general overview of time series methods and the wide variety of
analytic approaches may be found in Anderson (1977), Makridakis (1976,
1978), and Newbold (198l1). Gottman and Glass (1978) give an overview
and rationale to time series analysis; Stoline, Huitema, and Mitchell
(1980) consider the case of a change in parameter values for an
Autoregressive model. From a methodological perspective, the r . imary
references for the evaluation of interventions are Box and Tiao (1965,
1975) for the dynamic intervention model, and Glass (1972) for the
popular extension of the model based on Box and Tiao (1965). Glass and
several others expanded the technique (Maguire & Glass, 1967; Glass,
1968; Glass, Tiao, & Maguire, 1971; Glass, 1972), which was later
{integrated into a _sneral account of the time series experiment and its
analysis by Glass, Willson, and Gottman (1975). There are numerous
examples of studies employing Glass's approach to evaluating interven-
tions (Blose & Holder, 1987; Bowie & Prothero, 1981; Dalton & Todor,
1984; Hamilton & Waldman, 1983; Rotton & Fry, 1985). Generally, in many
of these studies, no discussion of the model chosen or how well the
model fits the data is given, no attempt to rule out the threat of
history to the validity of the experiment is made, and in some cases the
number of data points is very small.

Other authors have investigated the assumptions of the ARIMA models
and the estimation of an intervention effect in interrupted time series
designs. Padia (1975), using Monte Carlo simulation techniques, found
that failure t. difference a mnon-stationary time series results in a
gross underestimation of Type I error and power; whereas, over-differ-
encing a stationary time series results in large over-estimates of Type

1 error and power. Marquis (1983) also found estimates of Type I error
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considerably higher than the nomjinal level when the ARIMA model {s
inadequately differenced. White (1985) also found similar results in
intervention effect estimation in short time series realization with the
Autoregressive model, as did Padia (1975) and Marquis (1983). Further
clarification of the consequences of violating the assunptions of
ARIMA models when assessing intervention effects is important in the

application of interrupted time series procedures.



Human behavior, if viewed as a sum of deterministic and stochas
processes, can be described by a probabilistic model. With the use
time series analysis in quasi-experimental designs, change can
detected and evaluated in a data set over time, as well as the nat
and process of treatment effects can be detected and described.
relevant issues in the application of interrupted time series desi
are discussed in the following sections. The final section outlines
problems deemed necessary to investigate in the assessment of inten

tion effects in short time series processes.

Utility of the Intexrupted Time Series Design

Time series analysis defines and describes the sequence of rai
variables through the building of a model which describes or pred
interdependent phenomena. The interrupted time series design car
beneficial in a variety of areas of behavioral science research. Fi
in an experimental approach, subjects are typically divided
equivalent experimental and control groups and compared after
experimental group receives the treatment. True experiments em
randomization in the experimental design to validate data anal
conducted as if observations were independent. Many research quest
are impossible to investigate within the structure of traditi
experimental designs. Limitations in true experimental designs
conducting meaningful clinical research have been discussed

Kratochwill (1979), Kazdin (1982), and Barlow and Hersen (1984).

36
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traditional experimental designs, large numbers of homogeneous subjects
are required. In some situations, group comparisons are therefore not
feasible or meaningful due to discrepancies between porulations. For
example, children with cerebral palsy are a heterogeneous population
for which a wide variety of treatments are recommended. In other
instances, it may be unethical to withhold a beneficial treatment from a
sample in order to determine the effect of an intervention, as in
clinical drug studies. Time series quasi-experiments can provide a
strategy for exploring data that are collected in the absence of
rigorous experimental controls (Barlow & Hayes, 1979).

Additionally, classical repeated measures designs assume a constant
covariance structure. Vhen the assignment of a treatment cannot be
randomized, serial correlation becomes important. Behavioral data are
believed to be highly autocorrelated, although there has been a recent
attempt to suggest that the presence of serial correlation is not
statistically significant according to traditional tables (Huitema,
1985). However, successive observations are correlated in any cyclical
data, such as hormonal cycles and circadian rhythns. Time series
analysis evaluates changes in slope and level in data while taking into
account the serial dependency in the data. Removal of autocorrelation
between data points therefore results in an analysis that separates
chance fluctuations from intervention effects.

Time series experiments also permit the assessment of changes 1in
the behavior of individuals. Hypothesis testing of intervention effects
in studies involving only a single subject or unit of observation can be
undertaken. Hartman, Gottman, Jones, Gardner, Kazdin, and Vaught (1980)

provide an overview of the time series method in the context of single-
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subject designs. Kazdin (1978, 1981, 1982, 1984, 1986) provides several
overviews of single-case research designs. The interrupted time series
design affords an empirical approach to clinical practice which can test
the significance of a difference between treatments for an individual.
Individual differences produce variability in the size of a measurable
effect and uncertainty as to the occurrence of a qualitative effect.
Multivariate statistical models can overlook this fact, leaving the
impression that statistical variability is due to external random shocks
of unknown causes. In single-case experiments, the hvpothesis tested is
differences between treatments for an individual, rather than differ-
ences in mean effects for groups. With single-case designs, one knows a
little, but what is known is dependable and reliable; however, there is
also the chance of missing influential treatments. By minimizing the
probability of a Type I errc~, the probability of a Type I1 error 1is
increased. Baer (1977) has argued that minimizing Type I errors in
detecting intervention effects will lead to identification of a few
variables whose effects are consistent and potent across a wide range of
conditions. Time series designs may assist in making inferences and the
ability to discriminate between intervention and error effects.

Lastly, the interrupted time series paradigm also affords the
opportunity to assess the impact of an intervention. The impact of an
intervention on human behavior is complex in nature and unlikely to be
consistent over time. The interrupted t ne series design, most impor-
tantly, provides longitudinal information about the impact of the
intervention. Traditional experimental designs generally assess the
impact of a treatment at a single time po t after the occurrence of the

intervention. It is often of interest . evaluate the immediacy,
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duration, and pattern over time of the intervention effect by examining
the post-intervention data. The time series design provides such a
method which is appropriate to the complexity found in the effects of
{nterventions with human beings (Glass, Willson, & Gottman, 1975). For
example, electrocardiogram changes may be evaluated following the
ingestion of ice water by coronary patients at three, ten, and twenty-
five minute intervals post-ingestion to determine the relationship of
time and volume. Visual inspection alone may overlook reliable but weak
changes in such a series with a potential unstable baseline, intrasub-
ject variability, and small effect size.

Thus, one reason to collect time series daca is to try to discover
systematic patterns in the series so a mathematical model can be built
to explain the past behavior of the series. Another important reason
for doing time series aralysis is to predict future values of the
series. The parsmeters of the model that explained the past values may
also predict future behavior patterns. The ability to make such
predictions, for example, regarding headache sequences, 1is obviously
important. A final reason for utilizing time series data is to evaluate
the effect of some treatment or event that intervenes and changes the
behavior of a series. Crisis intervention and the prevention of
{nstitutionalization, drug therapy and the decrease in blood pressure,
behavior modification and the change in compliance, are examples of
interrupted time series. These have in common an hypothesized interrup-
tion in their usual pattern after the specific time when some outside
event occurred. A primary emphasis in clinical research is therefore
testing the significance of a difference between treatments for indivi-

duals, or the measurement of change.
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Process and Measurement of Change in Clinical Research

A goal of clinical research is to identify, describe, explain, and
predict the effects of processes that bring about therapeutic change
over an eatire course of treatment (Greenburg, 1986). Research ques-
tions are often: Can patterns of change be reliably identified? Are
these patterns of change related to the outcome? The basis of determin-
ing therapeutic change is dependent upon several research design issues.
First, the treatments included in a study need to be representative of
those used in practice. Second, the results should reflect vhat would
actually happen in practice, mnot under ideal, experimental conditions
when treatments are monitored and delivered with special care. Third,
the value of knowing the relative efficacy of alternative treatment
techniques, the difference in the range of effects produced, and the
process through which such effects are achieved, should encompass
critical theoretical and practical questions (Kazdin, 1986); for
example, what warrants the label "improved" and vhen is improvement
clinically significant? Fourth, ethical considerations (such as
withholding a treatment from a control group or the administration of an
ineffective treatment) may limit the choice of research designs. A
related issue is that in reality, the nature of any treatment is often
tailored to the individual; in short, how effective would a specific
treatment be for a specific individual?

It is important to determine whether therapeutic changes are
maintained and whether they surpass the gains that may be associated
with the passage of time without the treatment. Additionally, it is

important to identify the form of change associated with the treatment.
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Tise series designs offer a method which enables examination of various
aspects of treatment effects without altering treatments in a major vay
(Hayes, 1981). 1In a single pretest-posttest design, the effectiveness
of treatment is assessed just once after implementation. This strategy
precludes an analysis of effects during or after treatment. A time
series design allows for a number of repeated observations of a depen-
dent variable over time. Therefore, the form of the intervention
effect as well as the statistical significance of the effect can be
assessed (Edgington, 1967; Shine & Bower, 1971; Namboordiri, 1972;
Glass, Willson & Gottman, 1975).

Group comparison designs may, and typically do, test global
treatments against no trcatment. Although experimental designs can
answer different questions, this strategy obviates an analysis of the
specific mechanisms of change. In order to validly attribute change to
the treatment, a change in behavior needs to be shown to co-vary in a
lawful way with changes in the treatment. There are at least three
patterns of change 1in intervention effects: (1) an abrupt, constant
change, (2) a gradual, jermanent change, or (3) an abrupt, temporary
change. These patterns of change may be masked in the statistical
analysis required by experimental designs. Statistical analysis may
average out this pattern of change yielding non-significant findings.
Time series designs highlight the patterns of change through repeated
measurement and also offer a test to detect differences in the individu-
al or unit of observation. Time series analysis therefore allows the
experimental isolation of the effects of the treatment from the effects

of other factors which may be simultaneously acting upon the subject.
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Another critical issue is the extent to which a study can detect
differences: that is, the power of the design (Cohen, 1977). If effect
size 1s likely to be small, the size of the sample needs to be increased
commensurately. Consideration of effect size, sample size, and alpha
can increase the precision of the test. However, if the sample size is
large enough, statistical significance can be achieved, yet there may
only be a small effect. Various statistical models for analyzing change
are available. Vitaliano (1982) examined several statistical procedures
for analyzing repeated measures designs. One such method, rawv gain,
change, or difference scores, formed by subtracting pre-test scores from
post-test scores, can lead to erroneous conclusions as such scores are
systematically related to any random error of measurement (Cronbach &
Furby, 1970; Burckhardt, Goodwin, & Prescott, 1982). Consequently, gain
scores have a low reliability which can lead to a loss of powver.
Alternatives when studying change over time are: repeated measures
analysis of variance (Winer, 1971); trend-analysis; analysis of covari-
ance on post-test scores, with the pre-test variable treated as the
covariate; factorial analysis of variance with blocking on pre-test
scores; regression analysis; and time series analysis (Cook & Campbell,
1979).

The linear statistical models assume that correlations or covari-
ances between all pairs of repeated measures are equal. This is seldom
the case when the same subject is measured at different time points.
Violation of the assumption may inflate the observed F-values and t-
values, thereby contributing to an inappropriate rejection of a null
hypothesis; increasing the absolute values of the correlations leads to

an increase in the deviation of the actual significance from the nominal



43

level. Another important assumption underlying the appropriate use of
linear statistical models 1is that the residuals of the wmodel are
independent. Frequently, time series data are misanalyzed using
ordinary least squares regression when the assumption of nonindependence
of observations does not hold (Hibbs, 1974). Ignoring a correlated
error structure can lead to over- or underestimates of effects depending
on the nature of the design and the error structure. Traditional
regression solutions ignore the problem of autocorrelation and also face
the problem of increasing variance of the forecast error and diverging
confidence bands around the parameter estimates (Box & Jenkins, 1970).
Therefore, these solutions are acceptable only very near the center of
the baseline period and very near the intervention point (Kazdin, 1984).
The intent of the interrupted time series design is to study the effect
of sn intervention while controlling for threats to validity such as
maturational trends or statistical regression; time series analysis
procedures incorporate serial correlation into the statistical model for
deternining parameter estimates. Time series analysis can thereby
provide confidence in the conclusions drawn about the intervention

effect.

Levels of Inference in Time Series Analysis

Changes in a time series which coincide with the occurrence of an
intervention are presumed to be the effects of the intervention. This
causal claim may be invalid. The paradigmatic assertion in causal
relationships is that the manipulation of a cause will result in the
manipulation of an effect (Cook & Campbell, 1979). To infer effects,

comparison is needed. Random assignment of people to treatments makes
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the expected value of the correlation between treatment and outside
background varisbles equal to zero. Thus, in the long run, the only
systematic difference (a_priori) betveen randomly assigned groups
should be the treatment. Quasi-experiments have treatments, outcome
measures, and experimental units, but do not use random assignment to
create comparison from which change 1is inferred. Therefore, the
{irrelevant causal forces hidden within random assignment need to be made
explicit by separating effects due to treatment from those due to the
initial noncomparability between average experimental units. Experi-
ments probe but do not establish causal hypotheses; alternative hypothe-
ses are successfully eliminated. Generalizations are made from particu-
lar observations to scientific propositions. If the data fit the
pattern, theory is supported, that is, no other current theory accounts
for the data pattern observed, but the theory is not proven to be true.
The problem is that data can fit two inconsistent theories equally well.
Because theories are fallible, all point null hypotheses are false
(Meehl, 1978; Serlin & Lapsley, 1985). Threats to valid inference
making are found in statistical conclusion validity and internal
validity. To test causal hypotheses, internal validity is the sine qua
non of causal inferencs.

Use of statistics helps to portray the uncertainty of data.
Hypothesis testing compares experimental effects against alternative
explanations; in most behavioral sciences, hypothesis testing is not
decision-making. Randomness is the model to which data are compared.
Random generation supplies rival hypotheses; if observed data are
different from those random data, theory is supported. Data can then be

used in theory construction and evaluation. Theory is created from and
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grounded in data (Glaser & Strauss, 1967; Glaser, 1978). For deductive
inquiry, when the theory is strong, the data can be tested against a
point hypothesis which derives from the theory. Weak theories can be
assessed against no differences hypotheses in an attempt to assess
questions like: Is there an effect (relationship)? 1Is this relationship
(effect) due to the treatment or is individual variation a plausible
explanation? Statistical validity first establishes whether two
variables co-vary. 1s there causal relationship and in vhat direction?
If causal relationship is found, what are the hypotheses involved in the
relationship? Given a probable relationship of one construct to another
construct, how generalizable is it across people, settings, and times?
Interrupted time series designs are concerned with effects of a treat-
ment inferred from comparing measures of performance taken at many time
{ntervals before and after a treatment. Consequently, the statistical
significance test only indicates that there is an observed relationship.
The importance of the results from the interrupted time series experi-
mant awaits representative studies. Practical significance of the
results from the interrupted time series experiment is gained through
generalizability studies.

The adequacy of inference in research is a function of how the data
are produced, as well as how they are analyzed (Cohen & Cohen, 1983).
As Cook and Campbell (1979) state, the goal is to rule out as many
threats to validity as possible and reduce the number of possible
alternative interpretations of the data. Inferential statistics assist
in pattern detection in the data by excluding hypotheses of randoam
fluctuations. Statistics sre used to discern the uncertainty of the

effect, whereas the design of the experiment assists in revealing t'e
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source of the effect. The greater the overlap of the sampling distribu-
tions, the lower the power with respect to that alternative. The level
of statistical significance is set by the researcher. Therefore, the
researcher needs to ask: what are the risks in decisions based on the
experimental evidence? The choice of the region for rejection of the
null hypothesis will ultimately affect the statistical power of the
results. Time series designs and analysis can provide an 4 priori basis
for directional hypothesis testing. Inference in time series analysis
is made to the process that may have generated the sample series.

The vast majority of studies evaluating change infer treatment
efficacy on the basis of statistical comparisons between treatment
conditions. These comparisons have limited utility in that they are
based on the average improvement score for all subjects and need not
apply to any one individual. It is possible to detect a change, have a
return to normal functioning, yet the change may not be statistically
reliable as it falls within the margin of measurement error. Since
variability within the group is treated as error to be minimized,
clinical significance cannot be inferred even if statistically
significant effects are obtained (Jacobsen, Follette, & Revenstorf,
1984). However, tests of significance in time series experiments can
also impose a criterion for determining a treatment effect which may
have little clinical relevance. How much change should there be to be
considered improved?

Consequently, in interrupted time series experiments, it may not
only be important to determine that change occurred, or that the
treatment was effective, but also to show that some clear practical

benefit is associated with the change. Statistical significance is a
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function of the size of effect being measured, amount of variance
already present in the population, size of the sample, and level of
significance chosen. All claims of change need to be compared against
alternative explanations. Change ' ' -es mnultiple perspectives,
individual, family, and society, as wall as multiple criteria for
defining the magnitude and {importance of change. Determination of
effect size can lead to a rule for making decisions regarding clinical
judgments of improvement. What is done g priori is in reference to the
effect size that is clinically significant. Measures of clinical sig-
nificance have been suggested such as the extent to which the subject
returns to normative values, the magnitude and range of change, and the
degree to which change is perceived as significant to others (Kazdin &
Wilson, 1978; Hugdahl & Ost, 1981). Effect size is therefore deternined
scientifically, clinically, and practically (Nelson, Rosenthal, &
Rosnow, 1986).

Time series procedures can assist in generating appropriate
knowledge for clinical decision-making. The clinician translates
problems into questions related to theory and tries to derive solutions
from theory; the ultimate goal is to develop knowledge and produce
evidence to validate clinical practice. In returning to the basic issue
of analyzing data statistically rather than clinically, with respect to
the question of, did a treatment change a person’s behavior from level a
to level b, it comes down to choosing a correct unit of analysis to
provide statistical inference (Jacobson, Follette, & Revensto.f, 1984).
Time series analysis procedures can provide more statistical power for
separating real intervention effects from other trends, thus increasing

confidence in the results.
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Issues in Clinical Nursing Resesxch

A crucial question in nursing is whether the science as practiced
furthers the field of interest. Has nursing inquiry idolized experimen-
tal designs and inferential statistics at the expense of more represen-
tative paradigms? What are appropriate paramorphic models of clinical
realities? Measuring changes in behavior occurring along a delineated
time interval is a concern of nursing rezearch. Consequently, issues
related to the nature of the change to be detected require exploration.
What is an appropriate index of change due to an intervention? What
degree of change warrants clinical significance? Are strategies
required which go beyond statistical evaluation of group differences?
Are adequate research methods open to practitioners? Has clinical
research failed to influence clinical practice?

How can the results of clinical research add to nursing knowledge,
and provide a basis for clinical practice? Donaldson and Crawley (1978)
identitied three themes of the nursing perspective: (1) concern with
principles and laws that govern life processes, well-being, and optimum
functioning of human beings, (2) concern wirh the patterning of human
behavior in interaction with the environment in critical life situa-
tions, and (3) concern with the processes by which positive changes in
health status are affected. These are the boundaries of the domain of
nursing and the basis for nursing research. The unique perspective of
nursing is most evident in the research questions posed. Exenplary
investigations reported in a recent issue of Nursing Research are: (1)
patient management of pain medicaticn after cardiac surgery (King,

Norsen, Robertson & Hicks, 1987), (2) predictors of dyspnea intensity in
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asthma (Janson-Bjerklie, Ruma, Stulbarg & Carrieri, 1987), (3) occurren-
ces of symptoms in expectant fathers (Strickland, 1987), and (4) serum
{ndirect bilirubin levels and meconium passage in early fed normal
newborns (Boyer & Vidyasagar, 1987).

Nurse researchers often evaluate nursing interventions through the
use of pre-existing or intact groups. A recent survey found that 27
percent of published nursing research wvas experimental in design, with
two-thirds of such studies being quasi-experiments (Jacobsen & Melning-
er, 1985). Design issues can lead to problems 1in making correct
inferences about the effects of interventions on outcomes. Cook and
Reichardt (1976) discuss the importance of multiple analytic strategies
when analyzing quasi-experimental data to avoid threats to statistical
conclusion validity. Such techniques adjust for the initial nonequiva-
lence between groups by using analysis of covariance with the pre-test
scores entered as the covariate. However, the assumption of the
covariate being specified and measured without error is typically not
met, necessitating reliability adjustments to pre-test values. Despite
the use of more sophisticated research designs and statistical tech-
niques in nursing research, samples continue to be primarily nonprobabi-
lity samples. Of the 90 sample plans of a random selection of research
in Nursing Research, Reseaxrch in Nursing and Health, and The Westein
Journal of Nursing Research (1980-1986), 74 related to applied research.
Randon samples were used in only eight of these studies. Such conve-
nience sampling makes it difficult to effect generalization to the
population.

Brown, Tanner and Padrick (1984) analyzed a sanple of 137 research

articles from Nursing Research, International Journal of Nursing
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Studies. Ressarch in Nursing and Health, and The Western Journal of
Nursing Research, from 1952 to 1980. The following statements were
included among their conclusions: clinical studies have increased,
tendency to select relatively small samples by nonprobability, sampling
unit tends to be an individual, more effort needed in data interpreta-
tion, experimental designs are often unethical or not feasible, insuffi-
cient knowledge to design appropriate experimental interventions, more
longitudinal designs with repeated measures should be employed to study
change processes and outcomes. Jacobsen and Meininger (1985) extended
the Brown, Tanner and Padrick (1984) study by providing more detail and
additional data points to examine trends. They did not include the
1n&g;n‘;1gnl1_"igg;ngl__gj__ﬂg;ging__ﬁ;uﬂigg. The 1issues identified
included: la.k of emphasis on random sampling and replication, lack of
longitudinal and case-control designs, and lack of methods for reducing
bias and strengthening causal interpretations from observational
designs.

To generalize from these articles, it would seem that the major
methodological issues confronting nursing research are statistical
analysis and psychometric properties of data gathering devices. Norbeck
71987) Jdefends the empirical approach and challenges researchers to
design studies to: (1) identify and describe variables of interest, (2)
establish relationships among variables and control for competing
hypotheses, (3) test and define causal models, and (4) test applications
of theory to previous findings. To date, there is minimal evidence to
suggest that research findings are directly influencing the quality of

patient care.
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The traditional group comparison method of research has not readily
been adaptable to applied nursing ressarch. Achieving sufficienr sample
sizes (in context of the presumed effect size, randomized conditions,
and known/expected heterogeneity of the subjects) is often difficult.
Moreover, the ethical considerations of withholding treatment from a
control group have also inhibited clinical research in nursing. Time
series analysis has been suggested as a valuable approach to evaluating
the effectiveness of nursing interventions (Metzger & Schultz, 1982;
Jirovec, 1986), although the technique has not been applied in nursing
studies. Time series analysis allows: (1) the establishment of the
principal characteristics of a time series, (2) the determination of the
nature of the system assumed to be generating a time series, (3) the
forecasting of future values of a series, and (4) the spcecification of
the relationships among time series.

Civen nursing research objectives, it is important to develop an
approach that detects if significant changes occurred and rules out
competing hypotheses and threats to internal validity. The time series
approach accounts for autocorrelation in nursing data to produce an
unbiased estimate of error variance. The objective is to identify the
ARIMA model which most accurately represents the stochastic process
underlying each series, and to adequately account for autocorrelation in
the series, resulting in white noise residuals that can be used for
testing intervention effects.

Time series analysis allows for clinical experimentation without
gome of the difficulties inherent in experimental models. Randon
assignment to experimental and control groups is not an {issue. ..z

treatment effect can be quantitatively analyzed in terms of change
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within an individual through intrasubject design research. The indivi-
dualistic focus of nursing is maintained, yet the change is analyzed
statistically so that research consumers can base their decisions
regarding the usefulness of a particular intervention on objective
criteria.

The longitudinal perspective of serial data takes advantage of and
parallels the natural clinical decision-making process (Hayes, 1981).
Time series analysis lends itself to variables that can be repeatedly
measured in the same subject or group of subjects; for example, response
to illness, frequency of urinary incontinence, medication required per
specified time period. Time series analysis may bring research to the
practitioner level and may therefore be beneficial to nursing in
establishing an empirically based practice. Rival alternative hypothe-
ses are eliminated logically and sequentially: those remaining are
supported by the data. Internal validity {s strengthened through
comparison with all variables of interest and possible explanations.
Therefore, time series analysis assists in developing hypotheses,
interpreting, and applying generic principles to subsequent subjects.

Therefore, as a human science, nursing takes into account various
characteristics of the human realm. The proress nature of human
phenomena signifies continual growth and re-patterning over time. This
i{mpl:es the use of longitudinal time series designs to fully explicate
the phenomena of interest (Metzger & Schultz, 1982). A feasible
approach to clinical investigations is single subject research (Holm,
1983) as the use of an experimental design or a large sample size does
not ensure that a study is ~elevant to nursing in the real world.

Nursing science needs to develop methods of validating the theoretical
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constructs of nursing practice. Research methods are selected to reduce
measurement srror and increase the ‘obability of significant findings.
The results of clinical research add to the body of nursing knowledgs.
providing a basis for clinical practice. The inherent limitations of
traditional experimental research procedures for yielding generaliza-
tions beyond the particular experimental paradigm have been expressed by
Petrinovich (1979). However, time series analysis does not remedy the
{ssue of correlation in errors due to inadequately collected data. It
is only on the basis of theory that one can decide on an appropriate
hypothesis to be tested, on a correct method of statistical analysis,
and on whether the experimental results can be generalized to a popula-
tion of interest (Serlin, 1987).

Silva (1986) reported that only nine out of 62 nursing studies
address validation. 1In clinical nursing research, the true experimental
design required for causal inference is difficult to implement: the
dependent variable is not inert and can change over time regardless of
treatment, there is a lack of precise measuring instruments, random
assignment is often difficult to achieve with humans, control over
variables is difficult to accomplish and often an irrelevant design to
use for theory and practice, it is impossible to isolate phenomena
under investigation from all extraneous sources, and there is a lack of
explicit theories for determining effect size. Methods to evaluate
theoretical constructs of nursing practice are required to provide
evidence of concept identity, confirmation of concept linkages, explana-
tion of prediction, and prescription.

In summary, serial dependencies within data sets are of particular

concern in clinical investigations involving repeated measurements.
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Such instances include many nursing intervention procedures such as
regularizing or stabilizing interventions. There are other clinical
interventions which involve more discrete outcomes which can be investi-
gated either by time series or true experimentation, and there are
others which must be subjected to true experimentation if an ethical
and scientific approach is maintained, such as in developing the state

of clinical investigation.

Problems Associated with the Analysis oi Time Series Data

From a review of the literature, there has been an increase in the
use of time series analysis in the social sciences. However, there
appears to be a tendency to oversimplify the application or to use the
technique inappropriately. Guidelines for the application of time
series analysis are being developed. First, a sufficient number of data
points for analysis should be obtained. A minimum of 50 observations
has been suggested to adequately analyze time series data (McCleary &
Hay, 1980). However, Gottman (1981) addrerses the issue of the number
of data points required for use in time series analysis. He found that
using five baseline and five intervention points had a likelihood of
Type 1 error actually less than five percent. It is the avoidance of
Type 11 errors which requires more data points (Gottman, 1981). Second,
the time series observations should be equally spaced, discrete, and
interval level. Third, the time points should be sensitive to the
intervention effects they intend to measure. A time series should be a
true representation of the underlying process. Fourth, the structure of
the time series needs to be identified in order to determire stationar-

ity. Fifth, the degree of autocorrelation in the serias should be
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determined. Apart from the conceptual assumption underlying behavioral
investigations that performance at a given time (t) is a function of
previous time points (t-1 to t-n) and the present time, there is the
{ssue of the size of the autocorrelation which is necessary to assume
dependence of data points. The preferred conservative procedure is to
assume that any degree of autocorrelation is sufficient to affect future
data points (Sharpley, 1986) . Sixth, a tentative ARIMA model for the
time series realization should be determined and its parameters esti-
mated. A question of practical importance thus appears: What are the
consequences of model misidentification? Of vital importance {is
estimating the integrative component (d value) correctly by checking
that the autocorrelations are not more than twice the standard errors
(Sharpley, 1986). Time series are also not free of a diverging con-
fidence interval around the parameter estimates. The variance of error
increases as time elapses from the last observation (Box & Jenkins,
1970). Seventh, the goodness of fit of the ARIMA model should be
determined by minimizing the value of the residual mean square. Eighth,
the pattern of change in the intervention effect should be identified
and subsequently tested for statistical significance.

Often in the behavioral sciences, the complexity of the time
{ntervention model is not known and fewer observations than 50 are
available for study. What are the consequences of choosing the wrong
model? Padia (1975) studied nine ARIMA models with various misspecifi-
cations and found that a failure to difference a nonstationary series
leads to an underestimation of Type 1 errors and pover. Unnecessary
differencing tends to increase the residual variance of the random shock

component achieved by ARIMA modeling. Also, as some ARIMA models are
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similar and may well be approximated by other models, simply misspecify-
ing the model form may not alvays be very serious. However, the exact
effects of misidentification are not clear, especially if the estimation
procedure used finds the most likely values of the parameters for a
given set of data and a given ARIMA model. Therefore, a wrong ARIMA
model can over- or underestimate the statistical significance of
{nterventions. A model should have an empirical basis as well as being
parsimonious. Over-modeling may be statistically adequate but can lead
to attributing variance to the random component instead of to the
intervention component. Estimation of the intervention effect is a
function of the ARIMA model structure.

Another question in intervention effect analysis is vhether there
is an appropriate time to intervene, given the choice. Glass, Willson,
and GCottman (1975) indicate that choice of time for intervention does
affect the precision of estimates and the pover to detect real differen-
ces from zero in the intervention effect. It has been shown for the
Integrated Moving Average model, thac shorter confidence interval about
the intervention effect occurs when the number of pre- and post-inter-
vention observations are equal. For the Autoregressive model, as ¢
departs from zero, the number of post-interventions should be increased
as the number of pre-interventions is decreased. Also, beyond 90 to 100
data points, extending the number of observations of a time series does
not improve the estimation of the intervention component (Box & Jenkins,
1965).

Serial dependency as a property of behavioral data 1is being
recognized as having an important {nfluence on the judgment of graphical

data. Jones and his associates argue that serial dependency cannot be
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appraised visually (Jones, Vaught, & Weinrott, 1977). Application of
time series analysis as an alternative to the unreliable visual analysis
{s advocated by Jones, Weinrott, and Vaught (1978) and supported by De
Prospero and Cohen (1979). The average magnitude of the errors and the
bias in prediction was smaller for the time series analysis as compared
to those made using the visual analysis techniques (Horne, Yong, & Ware,
1982).

Thus, even though time series analysis offers the benefit of
providing a statistically powerful test for detecting intervention
effects, guidelines are required about the structure and length of the
data. More information is required regarding the accuracy of interven-
tion effect estimates with limited data points and misidentified ARIMA
models. Also, the Type I error rates and statistical power need to be
examined as they are affected by the ARIMA model and the number of

observations in a time series realization.

Statepent of the Problen

Time series experimentation is fundamental to questions posed in
social science research, that is, the study of change over time.
Clinical data are generally represented by limited numbers of obser-
vations, non-random samples, non-random assignment to groups, heteroge-
neity within groups, plus the overall randomness in human response.
Inferences based on estimated parameters from traditional statistical
models can be biased. Violations in estimation occur because data
(error process) are serially dependent (autocorrelated). As a conse-
quence of autocorrelation, the error variance i{s underestimated, leading

to narrow confidence bands, overestimation of parameters, and erroneous-



%8
ly concluding that an intervention exerted a significant influence.
What degree of autocorrelation is present in the time series data? The
stochastic time series processes include this formalized relationship
between error terms in ARIMA model identification. The ARIMA model
building process can be hampered by serial correlation in the data.
Assuming the correct ARIMA model, it is not the parameter estimates
which may be biased by autocorrelation, but rather the estimate of the
variance. With positive correlation the model can appear to fit the
data better than it actually does (Gottman, 198l1). The stationarity
conditions of ARIMA processes are a prerequisite for modeling the
autocorrelation of the time series realization, thus careful attention
must be devoted to this assumption. What are the ramifications of this
assumption?

In the study of change, the researcher wishes to detect small but
significant effects which are buried within noisy data. Visual inspec-
tion alone may overlook small effects that are present and obscured by
uncontrolled error. Exclusive use of clinical criteria for detecting
change presents problems. Change by one clinician may not be defined by
another in the same way. Other errors occur as initially small effects
could combine to produce large effects in subsequent research and small
intervention effects may be {important in the future or show large
effects in replication series, as in clinical drug trials. Inferential
statistical tests complement other approaches by increasing the reliabi-
lity of estimates. In other words, time series designs can assist in
making judgements regarding the validity of the results, in that random

fluctuations are not interpreted as intervention effects.
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Interrupted time series analysis offers the flexibility of modeling
almost any type of intervention effect. What is (ne accuracy and
sensitivity of interrupted time series analysis? Are time series
analysis estimates biased? JCircumstances uinder which the application of
these procedures is appropriate are under investigation. A fundamental
question concerns >he number of data points necessary to accurately
estimate the effect of an intervention. The number of data points is a
practical issue of power; more observations lead to better ARIMA model
identification, which provides a better fit of the ARIMA model to the
data, which in turn makes small effects easier to detect. The ARIMA
model must first be identified on the basis of the estimated autororre-
lation and partial autocorrelation functions. The observed realization
of the time series process must be long enough to appropriately identify
the p, d and q parameters. The question of sufficient length has not
been answerad in the 1literature. Furthermore, it is not known how
severely the misidentification of the ARIMA model will distort the test
of intervention effects. Is it possible that similar time series
processes to the trus ARIMA model will result in a negligible effect on
the test of intervention effects?

Other issues of importance involve the consequences of violating
the assumptions underlying time series processes. In practical applica-
tions, the theoretical assumptions of a statistical procedure are rarely
fulfilled completely. Therefore, there are a variety of practical
issues important to researchers who employ the interrupted time series
quasi-experimental design. What is the robustness of time series
procedures? What are the probleas of applying these procedures to real

clinical data sets? To address these issues, small sample properties of
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interrupted time series procedures will be examined empirically under a
variety of conditions by conducting Monte Carlo simulations. Various
research questions were investigated. With respect to detection of
{ntervention effects: what is the accuracy of the estimates of the
intervention effect when present? What is the actual Type I error rate
when no intervention effect is present? What is the power to detect a
non-revo intervention effect? What is the accuracy of intervention
effect estimation for correctly identified and misidentified ARIMA
models? With respect to time series model identification: What is the
accuracy of parameter estimates? What 1is the sampling variability of
the autocorrelation and partial autocorrelation functions? What is the
power to detect a non-zero parameter? How do the error rates compare
with nominal levels? In particular, the following discussion deals with
the potential limitations and problems encountered in the application of
time series analysis to small samples and the extent to which these

potential .oblems may affect statistical inferences.



CHAPTER 1V

Method of Investigation

The purpose of this investigation was to examine the use of Box-
Tiao-Jenkins intervention analysis (1965, 1975, 1976) with small data
sets of twenty and forty observations. The method of investigation was
conducted as two sets of interrelated Monte Carlo simulations. Monte
Carlo methods are computer-assisted simulation methods designed to
obtain solutions to statistical problems by using random procedures and
samples of random numbers. Statistical distributions are simulared with
random numbers and violations of assumptions behind statistical tests ot
significance are introduced to study the consequences. The first set
of Monte Carlo simulations investigated the estimation of the interven-
tion component and the small sample properties of the test statistic for
the analysis of intervention effects prescribed by Box and Tiao (1965,
1975). The second set of Monte Carlo simulations examined the small
sample properties of the autocorrelation and partial autocorrelation
functisns, as *hey are utilicea ‘n the {dentification of ARIMA (p, d, q)
time series models. The imp ance of the model jdentification stage of
fnterrupted time series anal,.is cannot be underestimated, since it is a

necessary prerequisite to the test of intervention effects.

ARIMA Model Representations

The ARIMA processes can be represented as:

(1) Autoregressive Model or AR(1)

Y, =4 Y1t 3
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(2) Moving Average Model or MA(1)

Y -8, - 08,

(3) Integrated Moving Average Model or IMA(1,l)

e = Yoo " 9% t A

(4) Nonstationary Model or NS

Y

Yo=Yy ¥ 8
(5) White Noise Model or WN

Yt -a,
In each of these models, t refers to a measurement taken at time t. The
value a, is random error, and is assumed to be distributed normally and
independently with a mean of zero and a constant variance. The coeffi-
clents ¢ and O are measures of the serial correlation in the data. The
Autoregressive model represents a process in which the observation at
time t is a function of the previous observation t-1. A Moving Average
model represents a process in which an observation is a function of the
previous random shock. The Nonstationary model represents an integrated
process in which an observation at time t is the sum of the previous
observation and a random shock. If the processes are represented solely
as a function of random error, the Autoregressive model becomes the sum
of an infinite number of random shocks of past time periods, each
modified by a power of ¢. The Moving Average model is a function of a
finite number of previous random shocks, and the Integrated process
becomes the sum of an infinite number of random shocks.

A simplified representation of an ARIMA model is ARIMA (p, d, q),
where p is the number of autoregressive parameters, d is the oruer of

differencing required to produce stationarity, and q is the number of

moving average parameters. The order of differencing refers to the
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pover (exponent) of B (backward shift operator) in the ARIMA model. The

backward shift operator B can be represented as:
nlvt -Y .- €2 o

Thus, ARIMA (1 O 0) represents an Autoregressive model, ARIMA (L 0 1)

2
B Yt -Y

represents a Moving Average model, ARIMA (0O 1 1) represents an Inte-
grated Moving Average model, ARIMA (0 1 0) represents a Nonstationary
model, and ARIMA (0 O 0) represents White Noise.

The intervention component can be represented by

where It is a step variable equal to zero before the intervention, and
one after the intervention. The parameter § varies from zero to one and
represents the way in which a change in level occurs. In this study, §
{s zero, indicating ar <. :pt, permanent change with e representing the
magnitude of the change. Therefore, for the simple ARIMA intervention
model, three parameters (w, ¢, 9) can be varied in addition to changing
the numbar of observations. A summary of ARIMA models investigated and

the parameters varied is presented in Figure 3.



Figure 3. Summary of ARIMA Processes Investigated

General Model
Yo= oI * (1 - &)1 39 %
MODELS INVESTICATED
#RIMA (1 0 D) or AR(1) Autoregressive
ARIMA (0 0 1) or MA(1) Moving Average
ARIMA (0 1 1) or INMA(L,1) Integrated Moving Average
ARIMA (0 1 O0) or NS Nonstationary
ARIMA (0 0 O) or WN White Noise
Parameters Varied Values Assumed
Length of series or n 20 40
Autoregressive Parameter or ¢ 0.2 0.5 0.8
Moving Average Parameter or 0 0.2 0.5 0.8
Order of Differencing or d ) 1
Intervention Effect or e 0.0 0.2 0.5 0.8
Placement of Intervention Unbalanced Balanced
n.1l n.2
n=20 5 15 10 10

n=40 10 30 20 20
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The strategies used to investigate intervention effects in short

time series processes are presented in the following sections.

ARIMA Processes

The ARIMA processes investigated were linited to the five most
commonly encountered in thr social sciences as reported by Glass,
Willson, and Gottman (1975. The values of ¢ and O were limited to the

interval (0,1), since a Moving Average model with sma')l recative values

can be approximated by an Autoregressive model . .} posit ve parameter
values. The selectea values for the correlati. ~ary-e .rs were 0.2,
0.5, and 0 5. From a curso~- veview of the 1it. _.ure, the selected
correlation parameter value; - consistent with low to high values

reported in the social scicn. =: .ok & Campbell, 1979; Jones, Vaught, &
Weinrott, 1977). Specific qu..tions addressed were: (1) What effect
does ARIMA model identification have on intervention effects? (2) Do
parameters change as a function of the intervention? (3) What are the
consequences of choosing the wrong ARIMA - cess? /4) Which ARIMA model
provides a good fit of data from time series iaterventions, or is all
this complexity really necessary? (5) What ARIMA model can be used to
generate effect sizes for changes in the level occurring as a result of

an ‘r*ervention?

Intervention Compenent
When delta (8) equals zero, the {ntervention effect is represented
by omega, which measures a change in the level of the time series. The

chan.e may be .iewed as a change in the mean. Because serial correla-
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tion affects the variance, the size of an intervention effect that can
be detected will vary with the magnitude of ¢ and Q. Therefore, in
order to compare the power of these methods across ARIMA models and
various misspecifications, the {ntervention effect was calculated to
take inte consideration the differences in the variance. Omega (w) was
multiplied by the standard deviation of the observed time series (Yt) to
obtain a true value for the intervention component. Power depends on
the Type I error rate, the variance in samples, and the size of the
effect (Cohen, 1969). An effect s’ e is represented as the difference
between the two means divided by their common standard deviation. Four
values for w (0.0, 0.2, 0.5, or 0.8) were used to represent an effect
size of zero, small, medium. and large. The int~rvention component was
aid ¢ in a balanced and unbalanced location t: the time series realiza-
tion. Specific questions addressed were: (1) What is the accuracy of
{intervent ion effect estimation with ARIMA models? (2) Is the empirical
Type 1 error rate of intervention effect estimate greate- than the
nominal error rate? (3) Does the size of the interven~ion afiact Type 1
error and power rates? (4) What is the puwer of intervention detection
with the various ARIMA models? (5) Does the choice of time at which to
intervene affect the precision of estimates and the power to de real
differences from zero in the intervention effect? (6) Does power to
detect an intervention increase with sample size? (7) What effect do
ARIMA models have on the accuracy of the standard error of intervention

effect estimates?



67

Length of Taime Series Realization

Fifty data points are considered by many researchers to be an
absolute minimum for using time series analysis (Box & Jenkins, 1976;
Gottman & Class, 1978). In this study, data sets of twenty and forty
points were examined. This length of series was considered a represen-
tative number of observations found in situations typically available in
applied or clinical investigations (Barlow & Hersen, 1984). The effects
of the varying number of short Aata points on paramet'r estimation, Type
1 ¢cicor and power rates, and standard ervor estimates were determined.
Specific questions addressed were: (1) What is the number of data
points required for a baseline time series? (2) what is the number of
data points necessary to detect intervention effects? (3) Does the
percentage of null hypotheses rejections increase with the number of
data points? (4) Does the standa 1 error of estimates decrease with the
increased number of data points? (5) Does the estimated autocorrelation

function improve wiin the increased number of observations?

Power of the Test Statistic

Must tests of the null hypothe: s require that certain assumptions
be met if the results of the data analysis are to be meaningfully
interpreted. The decision whether to accept or reject the null hypothe-
sis is based upon a consideration of how probable it is that observed
differences are due to chance alone. The stricter the criterion used
Zor rejecting a null hypothesis, the greater the probability will bte for
accepting a false null hypothesis. A Type 1 error is rejecting a true
null hypothesis. This would occur when the data indicate a statistical-

ly significant result, when in fact, there is no difference. The
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probability of making a Type 1 error (alpha) is often set at 0.01 or
0.05 (nominal value). The exact probability (true value) from tables
and computer printouts, may be less than or greater than 0.01 or 0.05,
depending upon how weli assumptions are met. Monte Carlo methods wvere
used to test the statistical characteristics of small samples. The
consequences of violating the assumptions behind statistical tests of
significance were studied by simulating statistical distributions with
random numbers and introducing violations of assumptions into the
procedure to study the consequences. Specific questions addressed were:
(1) What is t'.e Type I1 error rate involved for the various ARIMA
models? .2) [s che empirical Type 1 error rate of intervention effect
estimates gre-ter than the nominal error rate for shorter length series?
(1) 1s there ¢ . inderestimation of the standard error of the interven-
tion effect wvhici. would increase Type I errors? (4) What is the power
to detect true differences from the null hypothesis? (5) What is the
reiationship between ARIMA processes, number of data points, alpha

leve), and power?

Strategies to Assess ARIMA Model Identification

The strategles used to investigate ARIMA model identification are
presented in the following section. The processes investigated were
limited to the five previously discussed ARIMA models. The se'ected
values for the correlation parameters were 0.2, 0.5, and 0.8. The
amount and direction of bias in significance tests dictated by the
nature and degree of dependency among the residuals were analyzed in the
sample data series. The data under analysis were used to explore the

fssue of identification of the correct ARIMA model to fit the data so



69
that subsequent tests for level changes in the series can be made.
Specific questions addressed were: (1) What is the structure of serial
dependency in the data? (2) Is there a significant level of autocorre-
lation present in the data? (3) What is the extent of bias in the
estimates of the autocorrelation and partial autocorrelation coeffi-
cients with short time series? (4) What length of time series realiza-
tinn i8 necessary to ensure a reasonably high likelihood of an appropri-
ately identified ARIMA model? (5) What risk is taken by processing data
by methods which do not take the presence of autocorrelation into
account when testing for change? (6) How much will traditional signifi-
cance tests be inflated when serial correlation is not taken into

account?

Simulation Procedures
The steps of the Monte Carlo simulations, along with the computer

routines used in each step, are presented in the following sections.

Iime Series Generation

For each specific condition in the two sets of Monte Carlo simula-
tions, 500 time series realizations weie randomly generated according to
a given ARIMA (p, d, q) process using the TIME99 DERS program (Appendix
A). The TIME99 program, based on IMSL routines, was programmed by D.
Harley, Division of Educational Research Services, University of
Alberta. The data generating program allows the user to specify the
autoregressive, moving average, and white noise parameters of the time
series process, as well as the degree of differencing, and length of the

time series realization. An intervention effect of an abrupt, permanent
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change in level was imposed by adding a constant to the appropriate
post-intervention time points. The residuals (a,) are distributed
normally and independently with a mean of zero and a variance of one.
Because of the impact of starting conditio:s wn the ARIMA eries
generated (Anderson, 1979), a specified number of data points were

discarded from the time series.

Parameter Estimation

The time series realizations, correctly identified and misiden-
tified, were submitted to the TIMEO2 DERS program (Appendix B) for
estimation of the parameters via a least squares normal theory analysis.
Box urd Tiao (1965, 1975, demonstrated that a test for ARIMA interven-
tion model parameters being significantly different from zero {is
provided by dividing the parameter estimates by its standard error; this
ratio follows a t-distribution with nj+nz-k degrees of freedom, where k
i{s the mumber of parameters estimated, and nj and np . numbers of
observations pre- and post-interventicn, respectively.

For time series model identification, the TIMEOl DERS program
(Appendix C) was used to estimate autocorrelation and partial autocorre-
lation functions, as well as the chi-square statistic with k-p-q degrees
of freedom. TIMEOl and TIMEO2 are a pair of programs developed by C.P.
Bower, W.L. Padia, and G.V. Glass (1974) at the Laboratory of Education-
al Research, University of Colorado and modified by D. Harley, Division

of Educational Research Services, University of Alberta.
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Iype I Exror and Power Estimates

SPSSx routines were used to calculate means and standard deviations
of parameter estimates, as Vell as the region of nominal acceptance or
rejection. Frequencies were accumulated for significant parameter

values. Either Type I error or power rates were calculated from these

frequencies.

Intervention Effect Estimation

This set of Monte Carlo simulations was designed to investigate the
small sample properties of the test statistic of intervention effect
proposed by Box and Tiao (1965, 1975). The specific 1issues examined
were: (1) the estimation and accuracy of the intervention effect, (2)
the distribution of the test statistic, (3) the statistical power of the
test statistic, and (4) the accuracy of the estimates of standard error.

The form of the intervention effect considered is an abrupt,
permanent change in level of « stationary time series process. This
intervention effect was chosen for investigation on the basis of two
consideratiors. First, an abrupt permanent change in level is the most
common form of impact assessment in social science research applica-
tions (McCleary & Hay, 1980). Second, it is important to gain an
understanding of the sampling properties of a straigntforward interven-
tion model before attempting to study more complicated intervention
components involving additional parameters. In this study, the time of
intervention was known and its presence was constant after its introduc-
tion.

The scope of the study was also limited to the ARIMA mode)s having

at most one non-seasonal autoregressive and/or moving average parameter;
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the order of differencing vas no greater than one. Again, 1t 1is
important to begin the systematic investigation of the intervention
analysis procedure with the more basic time series processes. Thus, the

full model investigated was:

» (1 - OB)
Yo = T8 le * —O@-aAH

The design of the Monte Carlo experiment can be thought of as a
completely crossed factorial experimental design. The factors that
were systematically manipulated were: (1) the magnitude of the autocor-
relation parameter (¢ or @ = 0.2, 0.5, or 0.8), (2) the magnitude of the
intervention parameter (w= 0.0, 0.2, 0.5, or 0.8), (3) the placement of
the intervention (balanced or unbalanced design), and (4) the length of
the time series vealization (n = 20 or 40 time points). The variance of
the time series process is a function of both the white noise variance
of the series and the autocorrelstion of the series. The intervention
paraneter was adjusted by the standard deviation of the time series
realization to produce the generated true value. For each of the five
ARIMA models under consideration, 500 time series realizations were
generated by the TIME99 DERS program. Each series was identified as the
correct model and as each of the four misidentified models. For each
correct ARIMA model and misidentification, the parameters were estimated
and the test statistic calculated with the TIMEOZ DERS program.
Estimates of the intervention component and its standard error were
obtained. Conditions in which the ARIMA model did not include an
intervention effect were also examined. SPSSx routines were employed to
test for the normality of *he distribution of the test statistic, to

generate descriptive statistics of all the estimated parameters, and to
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calculaie the percentage of statistically significant rejections of the
null hypothesis. A summary of this set of simulations used to examine

intervention effect estimation is illustrated in Figure 4.
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Eigure 4. Intervention Effect Estimation
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Tige Series Model Escimation

This set of Monte Carlo simulations was designed to investigate the
sanpling variability of the autocorrelation and partial autocorrelation
functions under a variety of conditions. The bias of the estimates was
considered given the parameters of the ARIMA process and the length of
the time series realization. The specific issues exanined were: (1) the
sampling properties of the autocorrelaiion and partial autocorrelation
functions, (2) the discrepancy between the estimated and empirical
standard errors of the autocorrelation functions, (3) the Type I error
rate and power of the statistical test for a non-zero autocorrelation
coefficient, (4) the Type I error rate and power of the statistical test
for a non-zero partial aut- srrelation coefficient, and (5) the useful -
ness of the chi-square distribution with df=k-p-q, as an unbiased
estimator of White Noise residuals.

For each condition examined, 500 data sets were generated by the
TIME99 DERS program according to the parameters specified in the
condition. The discrepancy between the mean of the 500 parameter
estimates and the true parameter was used to assess the degree of bias
in the various conditions. The sampling variability of the estimates
was measured by computing the standard deviation of the 500 parameter
estimates. This measure was considered the empirical estimate of the
standard error of the autocorrelation and partial autocorrelation
coefficients.

The five simple ARIMA (p, d, q) processes were considered, with
three different parameter values exasined for each of the five models.
The AR(1) and MA(l) processes were generated with ¢ and O values of 0.2,

0.5, or 0.8, respectively. The order of differencing was no greater
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than one. The second factor varied vas the number of time points in the
data set. Each replication consisted of either 20 or 40 time points.
The length of the realization was intended to examine small samples as
most resear:hers consider 50 data points as an adequate number. Thus a
total of 22 ARIMA processes were examined.

The estimates of the autocorrelation and partial autocorrelation
functions. as well as the estimated standard error and Q-statistic,
were computed with the TIMEOl DERS program. SPSSx routines were
employed to estimate the mean and standard deviation of the estimates.
The mean values of the estimated standard errors were then compared with
the empirical standard errors. Regions of nominal acceptance or
rejection were constructed to investigate the Type 1 error rate and

power of testing the null hypothesis.



CHAPTER V

Presentation and Discussion of Findings

The overall objective of the study was to investigate the estima-
tion of intervention effects in short time series processes. The
findings are discussed in two sections. In the first section, the
intervention effect estimation in time series processes is presented,
while in the second section time series model identification is dis-
cussed. Tables delineating the results are grouped at the end of

relevant sections.

Intervention Effect Estimation in Time Series Processes

Monte Carlo simulations were used to investigate the small sample
properties of the fntervention procedure developed by Box and Tiao
(1965, 1975). Five simple ARIMA models were investigated: a first-
order Autoregressive model, a first-order Moving Average model, an
Integrated Moving Average model, the Nonstationary model, and White
Noise. Three characteristics of the time series process were systemati-
cally manipulated: (1) the magnitude of the parameter measuring serial
correlation in the data (¢ or @ = 0.2, 0.5, or 0.8); the Nonstationary
model does not contain explicitly a parameter measuring serial correla-
tion but is equivalent to an Autoregressive model with the correlation
parameter ¢ equal to one, (2) the length of the time series (n = 20 or
40), and (3) the magnitude of the intervention parameter (e=0.2, 0.5,
or 0.8) so as to represent small, medium, and large effects; in order to
assess Type I error rates, a zero effect was also investigated. The

{ntervention effect was added at the midpoint (balanced design) or at

77
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the uneven point (unbalanced design) of the time series process.
Additionally, the value of the intervention parameter vas multiplied by
the standard deviation of the observed time series to obtain a true
value for the intervention component. The white noise variance of the
generated data sets wvas fixed at a constant value of one.

Least squares estimates of the {ntervention parameter were obtained
for 500 replications of each conditiom. Regions of nominal acceptance
or rejection were constructed around the estimates based on the t-
distribution and approximation of the standard error of the estimatoer.
The propcrtion of replications that resulted in the rejection of the
null hypothesis, Ho:u 1 -u 2 = O (vhere i and w) represent the pre- and
post-intervention meanr of *he time series process), was calculated for
each condition. This measure provides an estimate of the empirical Type
1 error rates for conditions in which the null hypothesis is true, and
of the power of the test statistic for conditions in which the interven-
tion component is different from zero.

The primary concern in this study was the estimation of the
{ntervention effect. Three issues were of interest: (1) the accuracy of
the estimates of the intervention effect when present, (2) Type 1 error
rates when no intervention effect was present, ard (3) the power to
detect a non-zero intervention effect. The findings presented discuss
the intervention effect estimation and the time series model. In each
case, the results are discussed for the correctly identified model and

then for the misidentifications.
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Estimates of Intervention Effact

For each specified model, the mean value of the intervention effect
vas calculated over 500 replicatiors. The results of this set of
simulations are presented in Tables 1 to 48, giving estimates of the
{ntervention effect for bcth correctly identified and misidentified
sodels. The trus value of the intervention effect parameter 1is also
presented for the purpose of comparison.

TIrue model: Autoregressive processes. The correctly ident:fied
Autoregressive series with twenty observations gave intervention effect
estimates that tended to be slightly higher or lower than the true
value. The differences ranged from 0.00 to 0.076. The discrepancy
betveen the true value and the estimated value increased as ¢ increased;
often another model gave more accurate estimates than the true model,
although the differences were very slight. Tables 1 and 2 show the
estimated intervention effect for the Autoregressive model with twenty
dats points. There is little change over the discrepancy between the
estimates and the true value for the estimated intervention effect for
the Autoregressive model with forty data points. Tables 3 and 4 show
the estimated intervention effects for the Autoregressive model with
forty data points.

Vith twenty observations, misidentifying the Autoregressive series
as a Moving Average model or White Noise did not give estimates that
varied from the true value by any great difference than the correct
model. In general, the estimates given by these two misidentifications
were similar to those given by the correct model. Misidentification as
the Nonstationary model gave estimates that were generally higher, while

pisidentification as the Integrated Moving Average model gave estimates
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that became increasingly discrepant as ¢ increased. VWith forty observa-
tions, the assumed Moving Average and White Noise models again gave
estimates similar to the correct model. The Integrated Moving Average
and Nonstationary models gave estimates that were generally less than
the true value at all levels of ¢. Therefore, the discrepancy in the
estimates appears larger for the assumed Nonstationary and Integrated
Moving Average Models as compared to the other misidentified models.
This is more notable at low values of ¢ and for the larger number of
observations. Generally, as the length of the series increased, the
discrepancy in the intervention effect estimates decreased in the non-
differenced models. Also, as ¢ increased, the discrepancy 1in the
intervention effect estimates increased for all models, except for the
Nonstationary model.

True model: Moving Average pDrocesses. For the correctly identified
Moving Average model, the discrepancy between the intervention effect
estimated value and the true value ranged from 0.001 to 0.036. There
vas a slight decrease in the discrepancy as the series length increased
from twenty to forty data points and as @ increased. Tables 5 to 8 show
the estimated intervention effect for the Moving Average model with
twenty and forty data points, respectively.

When the number of observations was twenty, the intervention effect
estimates given by the assumed Autoregressive, White Noise, and Inte-
grated Moving Average models were quite close to the correct model. The
Nonstationary model generally gave the most discrepant estimates which
increased slightly with increasing 0. In the series with forty data
points, the Autoregressive, White Noise, and Integrated Moving Average

models gave estimates quite similar to the true model. The Nonstation-
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ary model again, had the largest Aiscrepancy in the intervention effect
estimates. As O increased, the discrepancy in the interventioxn. effect
estimates became larger in the differenced models, but decreased in the

non-differenced models.

Trus model: Integrated Moving Average processes. For the correctly

identified Integrated Moving Average model, the discrepancy between the
intervention effect estimates given by the correctly identified model
and the true value rarge+ fr.ov ~ 00 to 0.07, with the largest differen-
ces occurring at a @ of J . with forty c-ts , ‘~+s, the difference
ranged from 0.001 to 0.04, with the largest difi.-> = c¢:curring at a @
of 0.2. Tables 9 to 12 show the estimated intervention effect for the
Integrated Moving Average model with twenty and forty data points,
respectively.

With series of length twenty, misidentification of the Integrated
Moving Average series as the Autoregressive, Moving Average, and White
Joiie models gave estimates that were nearly similar to the correct
model. Misidentification as the Moving Average or White Noise model
gave intervention effect estimates that tended to be slightly higher
than the true value. The pattern of over and underestimation with the
series length of forty in the Nonstationary series gave estimates
generally lower than the true value. For the larger values of w, the
Autoregressive model overestimated the intervention effect. The Moving
Average and White Noise models generally overestimated the intervention
effect, although the difference decreased as 0 increased. The discrep-
ancy in intervention effect estimates in the Moving Average model was

relatively large. As O increased, the discrepancy in intervention
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effect estimates in the Autoregressive, Moving Average, and White Noise
series decreased.

Irus modal: Nonatationary DEKOCAASES. The results for the Nonsta-
tionary model with twenty observations indicated a difference between
the trus intervention effect and estimated values ranging from 0.03 to
0.16. With forty observations, the intervention effect estimates for
the correctly identified model were more accurate, ranging from 0.04 to
0.11. Tables 13 and 14 shov the estimated intervention effect for the
Nonstationary model with twenty and forty data points, respectively.

The pattern of over and underestimation of the intervention effect
i{s similar in the Nonstationary sodel to that found in the Integrated
Moving Average model. For series with twenty data points, the Autore-
gressive and Integrated Moving Average models tend to slightly overesti-
sate the intervention effect as compared to the true model. With the
White Noise misidentification, slight underestimation of the interveu-
tion effect occurs. With forty observations, the Integrated Moving
Average model gave intervention effect estimates slightly higher than
the trus model. The discrepancy in estimates of the intervention effect
for the Moving Average and White Noise models increased for the longer
series.

True model: White Nojse. The discrepancy between the estimated
intervention effect and the true value for the correctly identified
Vhite Noise model with twenty observations ranged from 0.000 to 0.025.
With forty data points, the largest discrepsncy wvas 0.019. Tables 15
and 16 show the estimated intervention effect for the White Noise model

with tventy and forty data points, respectively.
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The intervention effect estimates given by the misidentified
Autoregressive and Moving Average models vere similar to the true model
regardless of the length of the 3series. The discrepancy in the esti-
mates vas greatest for the assume. Nonstationary model. For the other
models, the discrepancy in t e estimates of the intervention effect
decreased as the length of the series increased.

Time seriss model effect on intervention sffecC estimates. I
summary, selecting a model with the incorrect order of differencing and
with forty observations led to estimates of the intervention effect that
were either too large (not differencing when needed) or too small
(differencing when not needed). With the incorrect order of differenc-
ing, the discrepancy in the estimates of the intervention effect wvas
large. Assuming a White Noise model for a true Autoregressive or Moving
Average series did not appear to give biased estimates of the interven-
tion effect. This is the result one would expect from a theoretical
perspective. However, the White Noise estimates for a wmodel that
requires differencing are not as accurate; that is, slightly underes-
timated for the shorter series and slightly overestimated for the longer
series. For the non-differenced models, misidentification as a Nonsta-
tionary model usually led to estimates of the intervention effect that
were discrepant. Misidentification as an Integrated Moving Average
model gave estimates that were slightly less discrepant. In the case of
misidentifying a differenced model as Moving Average or White Noise, the
obtained estimates for the intervention effect were usually slightly
lover than the true model. In general, the Autoregressive fdentifica-
tions are more accurate in intervention effect estimation with the

longer series, regardless of the true model. The discrepancy iu inter-



vention effect estimates is somevhat smaller in time series realizations
of greater length and balanced design. Therefore, in terus of error of
estimation, the worst probleam of sisidentification occurs with incorrect
differencing. When the correct time series sodel is specified, the
procedure seems to give {iatervention effect estimates that are quite
close to the true value; the Autoregressive model tended to give
{ntervention effect estimates that were the least discrepant from the

true value.
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Table 1

Etstimates of Intervention Effect
True Model: Autoregressive
Series Length = 20.1

Unbalanced Design

Effect Size
True Assumed
Model Model Zero Small Medium Large
True Omega
0.000 0.197 0.497 0.794
AR
0.2 AR 0.008 0.138 0.468 0.797
MA 0.020 0.129 0.470 0.804
IMA 0.004 0.155 0.438 0.803
NS -0.067 0.197 0.497 0.844
WN 0.007 0.138 0.471 0.787
AR True Omega
0.5 0.000 0.214 0.533 0.861
AR 0.059 0.265 0.508 0.861
MA 0.040 0.256 0.499 0.853
IMA 0.051 0.253 0.454 0.853
NS 0.113 0.278 0.485 0.882
WN 0.052 0.271 0.539 0.853
AR True Omega
0.8 0.000 '0.268 0.663 1.054
AR -0.049 0.30S 0.623 1.078
MA 0.018 0.208 0.556 1.118
IMA -0.019 0.337 0.643 1.114
NS -0.018 0.310 0.660 1.085
WN 0.011 0.201 0.563 1.134




Table 2
Estimates of Intervention Effect
True Model: Autoregressive
Series Length = 20.2
Balanced Design
Effect Size

True Assumed

Model Model Zero Small Medium Large

AR True Omega

0.2 0.000 0.196 0.495 0.801
AR -0.002 0.183 0.525 0.765
MA -0.006 0.172 0.526 0.767
IMA -0.003 0.209 0.527 0.765
NS -0.010 0.262 0.590 0.802
WN 0.002 0.180 0.517 0.766

AR True Omega

0.5 0.000 0.213 0.544 0.851
AR -0.011 0.287 0.550 0.927
MA -0.022 0.261 0.531 0.903
IMA -0.062 0.263 0.547 0.948
NS -0.094 0.191 0.544 0.974
WN -0.013 0.267 0.544 0.901

AR True Omega

0.8 0.000 0.264 0.653 1.065
AR 0.025 0.270 0.683 1.047
MA 0.091 0.163 0.706 1.11%
IMA 0.030 0.268 0.691 1.039
NS 0.009 0.307 0.677 1.044
WN 0.098 0.137 0.727 1.111
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Table 3
Estimates of Intervention Effect
True Model: Autoregressive
Series Length = 40.1
Unbalanced Design
Effect Size

True Assumed

Model Model Zero Small Medium Large

AR True Omega

0.2 0.000 0.202 0.502 0.814
AR 0.011 0.190 0.508 0.764
MA 0.013 0.187 0.509 0.768
IMA 0.006 0.188 0.517 0.747
NS 0.055 0.239 0.515 0.842
WN 0.009 0.184 0.506 0.766

AR True Omega

0.5 0.000 0.222 0.554 0.895
AR 0.008 0.207 0.517 0.918
MA 0.007 0.209 0.509 0.921
IMA -0.009 0.232 0.542 0.882
NS 0.034 0.222 0.546 0.856
WN 0.010 0.209 0.505 0.932

AR True Omega

é=0.8 0.000 0.291 0.731 1.184
AR 0.055 0.248 0.749 1.119
MA 0.103 0.304 0.775 1.163
IMA -0.020 0.229 0.681 1.158
NS -0.029 0.232 0.671 1.144
WN 0.122 0.326 0.780 1.182




Table 4
Estimates of Intervention Effect
True Model: Autoregressive
Series Length = 40.2
Balanced Design
Effect Size

True Assumed

Model Model Zero Small Medium Large

AR True Omega

0.2 0.000 0.203 0.500 0.804
AR 0.018 0.194 0.484 0.800
MA 0.016 0.194 0.483 0.798
IMA 0.027 0.178 0.480 0.792
NS -0.043 0.201 0.475 0.764
WN 0.020 0.194 0.485 0.796

AR True Omega

0.5 0.000 0.221 0.557 0.895
AR -0.030 J.190 0.573 0.911
MA -0.034 0.181 0.568 0.897
IMA -0.044 0.254 0.556 0.883
NS -0.006 0.222 0.578 0.903
WN -0.034 0.181 0.571 0.903

AR True Omega

0.8 0.000 0.294 0.731 1.195
AR 0.025 0.273 0.696 1.173
MA 0.011 0.256 0.775 1.279
IMA -0.009 0.300 0.647 1.156
NS -0.003 0.318 0.657 1.162
WN 0.005 0.267 0.799 1.300
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Table 5
Estimates of Intervention Effect
True Model: Mo ing Average
Series Length = 20.1
Unbalanced Design
Effect Size

True Assumed

Model Model Zero Small Medium Large

MA True Omega

0=0.2 0.000 0.206 0.508 0.815
MA -0.003 0.195 0.507 0.793
AR -0.014 0.194 0.506 0.796
IMA -0.010 0.193 0.496 0.795
NS 0.003 0.105 0.422 0.862
WN -0.016 0.192 0.499 0.797

MA True Omega

0=0.5 0.000 0.224 0.561 0.898
MA 0.019 0.226 0.532 0.905
AR 0.018 0.220 0.538 0.916
IMA 0.024 0.218 0.540 0.909
NS 0.066 0.142 0.638 0.852
WN 0.024 0.218 0.540 0.909

MA True Omega

0-0.8 0.000 0.261 0.644 1.032
MA 0.002 0.297 0.636 1.025
AR -0.006 0.286 0.643 1.032
IMA -0.006 0.286 0.648 1.025
NS -0.012 0.267 0.723 0.964
WN -0.006 0.286 0.648 1.025




Table 6
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Estimates of Intervention Effect
True Model: Moving Average
Series Length = 20.2
Balanced Design
Effect Size
True Assunmed
Model Model Zero Small Medium Large
MA True Omega
0=0.2 0.000 0.205 0.505 0.805
MA 0.007 0.197 0.519 0.774
AR 0.008 0.190 0.517 0.780
IMA 0.008 0.186 0.520 0.783
NS -0.001 0.097 0.495 0.839
WN 0.012 0.188 0.515 0.784
MA True Omega
0=0.5 0.000 0.225 0.561 0.907
MA 0.010 0.212 0.533 0.941
AR 0.010 0.211 0.547 0.933
IMA 0.021 0.213 0.544 0.930
NS 0.088 0.246 0.671 0.857
WN 0.017 0.213 0.550 0.930
MA True Omega
0=0.8 0.000 0.260 0.639 1.042
MA 0.008 0.242 0.643 1.040
AR 0.011 0.248 0.646 1.035
IMA 0.009 0.256 0.648 1.029
NS 0.007 0.375 0.685 0.904
WN 0.009 0.256 0.648 1.029
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Table 7
Estimates of Intervention Effect
Irue Model: Moving Average
Series Length = 40.1
Unbalanced Design
Effect Size

True Assumed

Model Model Zero Small Mediun Large

MA True Omega

0=0.2 0.000 0.203 0.507 0.821
MA 0.011 0.201 0.525 0.786
AR 0.011 0.200 0.526 0.784
IMA 0.014 0.199 0.529 0.782
NS 0.019 0.113 0.735 0.772
WN 0.012 0.198 0.528 0.783

MA True Omega

0=0.5 0.000 0.224 0.559 0.901
MA -0.001 0.233 0.549 0.908
AR 0.004 0.232 0.552 0.901
IMA 0.001 0.231 0.553 0.897
NS -0.123 0.212 0.570 0.772
WN 0.001 0.231 0.553 0.897

MA True Omega

0=0.8 0.000 0.258 0.636 1.012
MA -0.002 0.248 0.626 1.016
AR 0.001 0.256 0.632 1.011
IMA 0.005 0.254 0.630 1.014
NS 0.102 0.215 0.621 1.054
WN 0.005 0.254 0.630 1.014
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Table 8
Estimates of Intervention Effect
True Model: Moving Average
Series Length = 40.2
Balanced Design
Effect Size

True Assumed

Model Model Zero Small Mediunm Large

MA True Omega

0=0.2 0.000 0.203 0.507 0.814
MA -0.038 0.198 0.493 0.802
AR -0.036 0.197 0.495 0.802
IMA -0.036 0.198 0.496 0.802
NS 0.006 0.173 0.535 0.689
WN -0.036 0.198 0.496 0.800

MA True Omega

0=0.5 0.000 0.227 0.558 0.900
MA -0.001 0.231 0.546 0.916
AR -0.002 0.232 0.547 0.917
IMA -0.002 0.237 0.551 0.915
NS -0.054 0.378 0.726 0.83)
WN -0.002 0.236 0.550 0.916

MA True Omega

0=0.8 0.000 0.254 0.648 1.022
MA 0.003 0.255 0.644 1.025
AR 0.004 0.257 0.639 1.023
IMA 0.005 0.260 0.640 1.025
NS 0.064 0.331 0.662 1.068
WN 0.005 0.260 0.640 1.026
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Table 9
Estimates of Intervention Effect
True Model: Integrated Moving Average
Series Length = 20.1
Unbalanced Design
Effect Size

True Assumed

Model Model Zero Small Mediun Large

IMA True Omega

0=0.2 0.000 0.253 0.629 0.992
IMA 0.037 0.278 0.651 1.007
MA 0.028 0.282 0.683 1.008
AR 0.082 0.301 0.652 0.997
WN 0.093 0.310 0.622 1.006
NS 0.105 0.337 0.634 0.974

IMA True Omega

0=0.5 0.000 0.242 0.603 0.975
IMA -0.044 0.263 0.592 0.944
MA -0.007 0.248 0.611 0.959
AR -0.037 0.247 0.606 0.988
WN -0.036 0.238 0.609 0.984
NS -0.005 0.248 0.552 0.980

IMA True Omega

0=0.8 0.000 0.258 0.651 1.030
IMA 0.038 0.249 0.667 0.987
MA 0.035 0.309 0.664 0.973
AR 0.036 0.264 0.641 0.992
WN 0.039 0.267 0.648 0.993
NS 0.045 0.276 0.615 0.880
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Table 10
Estimates of Intervention Effect
True Model: Integrated Moving Average
Series Length = 20.2
Balanced Design
Effect Size

True Assumed

Model Model Zero Small Medium Large

IMA True Omega

0=0.2 0.000 0.250 0.631 1.000
IMA -0.070 0.198 0.594 0.997
MA -0.053 0.221 0.604 0.996
AR -0.049 0.221 0.599 0.985
WN -0.047 0.228 0.614 1.002
NS -0.048 0.207 0.565 1.057

IMA True Omega

0=0.5 0.000 0.240 0.620 0.983
IMA 0.036 0.240 0.687 0.943
MA 0.034 0.262 0.685 0.971
AR 0.041 0.270 0.679 0.985
WN 0.036 0.273 0.669 1.001
NS -0.029 0.316 0.646 0.983

IMA True Omega

0=0.8 0.000 0.260 0.653 1.035
IMA -0.012 0.228 0.659 1.066
MA -0.008 0.242 0.659 1.055
AR -0.001 0.241 0.666 1.055
WN 0.001 0.245 0.663 1.045
NS 0.085 0.273 0.628 1.011




Table 11

Estimates of Intervention Effect

Series Length = 40.1

Unbalanced Design

True Model: Integrated Moving Average

Effect Size
True
Model Zexro Small Medium Large
IMA True Omega
0=0.2 0.000 0.256 0.638 1.026
I -0.034 0.223 0.602 0.994
MA -0.005 0.226 0.640 1.042
AR -0.019 0.207 0.622 1.011
WN -0.017 0.215 0.636 1.001
-0.013 0.213 0.555 0.958
IMA True Omega
0=0.5 0.000 0.243 0.606 0.975
IMA -0.004 0.231 0.584 1.001
MA -0.031 0.216 0.586 0.977
AR -0.006 0.232 0.581 0.984
WN -0.006 0.235 0.582 0.984
NS 0.021 0.148 0.587 1.013
IMA True Omega
0-0.8 0.000 0.259 0.655 .034
IMA 0.012 0.251 0.649 1.035
MA 0.028 0.244 0.637 1.031
AR 0.015 0.249 0.648 1.035
WN 0.012 0.250 0.649 1.035
NS 0.022 0.104 0.662 1.067
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Table 12
Estimates of Intervention Effect
True Model: Integrated Moving Average
Series Length = 40.2
Balanced Design
Effect Size

True Assunmed

Model Model Zero Small Medium Large

IMA True Omega

0=0.2 0.000 0.255 0.640 1.015
IMA 0.008 0.289 0.626 0.974
MA -0.014 0.282 0.641 1.018
AR -0.016 0.298 0.672 1.011
WN -0.019 0.302 0.677 1.022
NS 0.011 0.264 0.628 0.954

IMA True Omega

0=0.5 0.000 0.246 0.611 0.978
IMA -0.026 0.238 0.627 0.973
MA -0.007 0.220 0.620 0.972
AR -0.013 0.240 0.617 0.978
WN -0.015 0.244 0.615 0.976
NS 0.000 0.173 0.611 1.079

IMA True Omega

0-0.8 0.000 0.259 0.648 1.051
IMA 0.012 0.265 0.657 1.049
MA 0.012 0.245 0.656 1.050
AR 0.010 0.264 0.657 1.050
WN 0.009 0.265 0.656 1.049
NS -0.019 0.365 0.882 1.070
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Table 13
Estimates of Intervention Effect
True Model: Nonstationary
Series Length = 20.1
Unbalanced Design
Effect Size
True Assumed
Model Model Zero Small Medium Large
True Omega
NS 0.000 0.269 0.682 1.095
NS 0.163 0.222 0.578 1.167
MA -0.015 0.309 0.623 1.117
AR 0.035 0.268 0.587 1.180
IMA 0.127 0.274 0.648 1.138
WN -0.002 0.280 0.650 1.178
Series Length = 20.2
Balanced Design
True Omega
NS 0.000 0.274 0.671 1.08¢
NS -0.029 0.398 N.618 0.992
MA 0.002 0.354 0.714 1.036
AR 0.017 0.327 0.733 1.013
IMA 0.038 0.306 0.646 1.043
WN 0.018 0.360 0.768 1.032




Table 14

Estimates of Intervention Effect

True Model: Nonstationary

Series Length = 40.1

Unbalanced Design

Effect Size
True Assumed
Model Model Zero Small Medium Laxge
True Omega
NS 0.000 0.275 0.699 1.110
NS 0.095 0.236 0.616 1.106
MA 0.020 0.238 0.692 1.109
AR 0.030 0.249 0.662 1.096
IMA 0.048 0.271 0.705 1.105
WN 0.020 0.252 0.659 1.097
Series Length = 40.2
Balanced Design
True Omega
NS 0.000 0.277 0.690 1.114
NS -0.112 0.231 0.643 1.109
MA 0.002 0.212 0.692 1.096
AR -0.031 0.201 0.702 1.113
IMA -0.068 0.184 0.686 1.165
WN -0.013 0.190 0.704 1.102




Table 15

Estimates of Intervention Effect
True Model: White Noise
Series Length = 20.1

Unbalanced Design

Effect Size
True Assused
Model Model Zero Saall Medium Large
True Omega
WN 0.000 0.200 0.494 0.798
WN 0.011 0.175 0.501 0.797
MA 0.000 0.176 0.510 0.812
AR 0.009 0.174 0.506 0.801
IMA -0.011 0.181 0.505 0.801
NS -0.037 0.181 0.392 0.833
Series Length - 20.2
Balanced Design
True Omega
WN 0.000 0.198 0.490 0.799
WN -0.009 0.198 0.478 0.779
MA -0.006 0.196 0.484 0.769
AR -0.006 0.199 0.480 0.777
IMA -0.011 0.214 0.480 0.765
NS 0.009 0.320 0.613 0.808
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Table 16
Estimates of Intervention Effect
True Model:. White Noise
Series Length = 40.1
Unbalanced Design
Effect Size
True Assumed
Model Model Zero Smsall Medium Large
True Omega
WN 0.000 0.199 0.498 0.784
WN 0.009 0.208 0.496 0.783
MA 0.008 0.209 0.502 0.784
AR 0.009 0.209 0.500 0.783
IMA 0.011 0.212 0.506 0.787
NS 0.023 0.274 0.488 0.765
Series Length = 40.2
Balanced Design
True Omega
WN 0.000 0.198 0.493 0.791
W -0.018 0.197 0.474 0.778
MA -0.019 0.196 0.473 0.778
AR -0.017 0.196 0.473 0.778
IMA -0.011 0.191 0.481 0.773
NS -0.028 0.180 0.538 0.815
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Estinates of Type I Exror for Intervention Effect

The Type I error rate vas determined by the proportion of interven-
tion effects found to be significant when in fact, the intervention
effect was zero. The test for significance was done at the 0.05 level
using a two-tail test with appropriate degrees of freedom for the number
of observations. The results are presented in Tables 17 to 21, which
give the estimates of Type 1 error for both correctly identified and
misidentified ARIMA models. The estimates for the twenty data point
series and the forty data point series appear in the same table.

True model: Autoregressive processes. An examination of the Type I
error rate shows that for all conditioms the empirical rate of rejection
of the null hypothesis is greater than the nominal error rate. Table 17
gives the estimate of Type I error rates for the Autoregressive model.
The inflation of Type 1 error is somewhat smaller for time series
realizations of forty observations. For twenty observations, the Type I
error rate fluctuated between 0.08 and 0.22, depending on the value of
¢. For the longer series, the Type 1 error rate ranged from 0.08 to
0.16. Furthermore, the inflation of Type 1 error becomes more severe as
the value of the autoregressive parameter increases. Misidentifying the
Autoregressive series as either Integrated Moving Average or Nonstation-
ary models, resulted in Type 1 error rates that were approximately the
same as or slightly lower than the rates obtained for the true model.
However, misidentifying the series as White Noise or the Moving Average
model led to Type I error rates that were higher than the true model,
increasing as ¢ and the length of the series increased. For the other

assumed models, error rates decreased slightly with the longer series.
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True model: Moving Average DPIrocesses. In the Moving Average model
with twenty observations, the Type 1 error rate appeared to decrease as
0 increased, moving from 0.37 to 0.31 with the unbalanced design and
0.36 to 0.21 with the balanced design. With the longer series, the
error rate appeared to increase as 0 increased. At a O of 0.8, the
error rates increased as the series length increased. Otherwise, the
{nflation of Type 1 error for other values of O is somewhat smaller for
balanced time series realizations of greater length. Estimates of Type
* error rates for the Moving Average model are presented in Table 18.
The issue of inflated Tv- ' error rates will be discussed in subsequent
sections when possible =p ne ions are considered. The Moving Average
model is the only model i- which misidentifications had a consistent
effect on Type I error. In all cases, the misidentifications yielded
relatively low Type I error rates; these rates ranged from 0.00 to 0.06,
and ware lower than the rates obtained for the true model. Therefore,
misidentifying a Moving Average model appears to have a rather conserva-
tive effect. Except for the assumed Nonstationary model, all Type 1
error rates decreased as O increased.

True model: Integrated Moving Average processes. In the Integrated
Moving Average model with twenty and forty observations, the Type 1
error rate fluctuated between 0.00 and 0.14, with the rate decreasing as
the length of the series and value of O increased. The rate was fairly
constant between the unbalanced and balanced designs. The Type 1 error
rate estimates for the Integrated Moving Average model are presented in
Table 19. As indicated by the values in Table 19, misidentifying the
Integrated Moving Average model as a Moving Average model resulted in

higher Type 1 error rates than were obtained for the true model; these
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rates ranged from 0.04 to 0.32. For the other assumed models, the Type
1 error rate decreased somewhat as 0 increased and were less for the
balanced design and longer series. For most conditions, the empirical
rate of rejection of the null hypothesis is greater than the nominal

error rate.

True model: Nonstationary procesges. The Nonstationary model with

both twenty and forty data points had estimated Type I error rates near
the nominal error rate of 0.05. The estimated Type 1 error rates for
the Nonstationary model are presented in Table 20. The Nonstationary
model misidentified as White Noise and Integrated Moving Average models
had inflated error rates, while the misidentified Autoregressive model
had rates only slightly higher than the true model. The estimated Type
I error rates were overall, slightly higher for the balanced design and
longer series. In the case of twenty observations with the Moving
Average unbalanced design model, the estimated Type I error rate was
0.33; this rate decreased to nominal error level in the longer series.
True model: White Noise. The White Noise model with both twenty
and forty observations had estimated Type 1 error rates near the nominal
rate of 0.05, similar to the Nonstationary model. The estimated Type 1
error rates for the White Noise model are presented in Table 21. Once
again, the error rates for the assumed Moving Average model were high,
ranging from 0.10 to 0.31. The misidentified Integrated Moving Average
and Nonstationary models have error rates somewhat closer to the nominal
error rate. Little change in error rates occurred between length or
design of the series. The assumed Autoregressive model had inflated
error rates of 0.09 and 0.11 for the unbalanced and balanced series of

twenty observations, respectively.
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Tine seriss model effect on Type ] erxor estimates. In summary, as
with estimation of intervention effects, the models group together by
whether or not they require differencing. The effect of misidentifica-
tion as a differenced model generally yielded relatively lowver Type 1
error rates. Alternatively, higher Type 1 error rates occurred for
misidentifications in which a non-differenced model was assumed for the
Nonstationary or Integrated Moving Average model or the comparable
Autoregressive model with a ¢ value of 0.8. Misidentifying a series as
an Autoregressive model yiclded Type 1 error rates consistently close to
the nominal error rate. The Moving Average model had inflated Type I
error rates for both the true and misidentified cases. The inflation of
Type 1 error is somewhat smaller for time series realizations of greater
length and balanced design. Furthermore, the inflation becomes wmore
severe as the value of the autoregressive or moving -vet.go.pnrnnotor
increases. Therefore, the difficulty encountered was a consistently
higher empirical Type 1 error rate than the nominal level for time
series of length twenty and even for some time series realizations of

forty data points.
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WN .43 .46 .51 .54

Table 17
Estimated Type I Error Rates for Intervention Effect
True Model: Autoregressive
Nominal Alpha = 0.05
Number of Replications = 500
Type 1 Type I Type 1 Type 1
Error Error Error Error
n=20.1 n=20.2 n=40.1 n=40.2
True Assumed Unbalanced Balanced Unbalanced Balanced
Model Model Design Design Design Design
AR
0.2 AR .08 .11 .08 .08
MA .23 .24 .09 .10
IMA .09 .10 .11 11
NS .04 .03 .06 .03
WN .09 .10 .11 11
AR
$0.5 AR .12 .16 .12 .13
MA .22 .20 .17 .17
IMA .19 .26 .19 .18
NS .06 .06 .07 .04
WN .20 .27 .25 .28
AR
0.8 AR .19 .22 .16 .16
MA .43 .36 .39 .42
IMA .21 .25 .10 .09
NS .04 .06 .04 .04
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Table 18
Estimated Type 1 Error Rates for Intervention Effect
True Model: Moving Average
Nominal Alpha = 0.05
Number of Replications = 500
Type 1 Type I Type 1 Type 1
Error Exrror Error Error
n=20.1 n=20.2 n=40.1 n=40.2
True Assuned Unbalanced Balanced Unbalanced Balanced
Model Model Design Design Design Design
MA
0=0.2 MA .37 .36 .15 .18
AR .06 .05 .04 .07
IMA .02 .01 .01 .01
NS .04 .05 .06 .05
WN .01 .01 .01 .02
MA
0=0.5 MA 4l .37 .31 .29
AR .02 .02 .01 .01
IMA .00 .01 .00 .00
NS .05 .05 .04 .06
WN .00 .00 .00 .00
MA
0=0.8 .31 .21 .44 .31

MA

AR .01 .00 .00 .00
IMA .00 .00 .00 .00
NS .05 .04 .04 .05
WN .00 .00 .00 .00
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Table 19
Estimated Type I Error R.tes for Intervention Effect
True Model: Integrated Moving Average
Nominal Alpha = 0.05
Number of Replications = 500
Type 1 Type 1 Type 1 Type 1
Error Error Error Error
n=20.1 n=20.2 n=40.1 n=40.2
True Assumed Unbalanced Balanced Unbalanced Balanced
Model Model Design Design Design Design
IMA
0=0.2 IMA .14 .14 .12 .11
MA .32 .10 .05 .04
AR .09 .06 .05 .04
WN .12 .11 .10 .11
NS .06 .05 .04 .03
IMA
0=0.5 IMA .07 .07 .04 .03
MA .31 .20 .05 .05
AR .04 .04 .02 .01
WN .04 .04 .04 .03
NS .04 .07 .05 .06
IMA
0=0.8 IMA .02 .01 .00 .00
MA .32 .19 .15 .13
AR .02 .00 .00 .00
WN .01 .00 .00 .00
NS .05 .06 .05 .04
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Table 20
Estimated Type 1 Error Rates for Intervention Effect
True Model: Nonstationary
Nominal Alpha = 0.05
Number of Replications = 500
Type 1 Type 1 Type 1 Type 1
Error Ercor Error Error
n=20.1 n=20.2 n=40.1 n=40.2
True Assumed Unbalanced Balanced Unbalanced Balanced
Model Model Design Deaign Design Design
NS
NS .03 .04 .05 .06
MA .33 .08 .05 .07
AR .07 .09 .05 .07
IMA .18 .20 .18 .19
WN .15 .16 .14 .17
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Table 21
Estimated Type I Error Rates for Intervention Effect
True Model: White Noise
Nominal Alpha = 0.05
Nunmber of Replications = 500
Type 1 Type 1 Type 1 Type 1
Error Error Error Error
n=20.1 n=20.2 n=40.1 n=40,2
True Assumed Unbalanced Balanced Unbalanced Balanced
Model Model Design Design Design Design
WN
WN .04 .06 .05 .06
MA .31 .29 .10 .11
AR .09 .11 .06 .07
IMA .04 .07 .05 .05
NS .04 .04 .05 .05
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Power was determined by the proportion of intervention effects
found to be significant when in fact, the {ntervention effect did not
equal zero. The test of significance vas done at the 0.05 level with a
tvo-tail test using the appropriate degrees of freedom for the number of
observations. The results are presented in Tables 22 to 29, which give
the estimates of power for both correctly identified and misidentified
ARIMA models. As mentioned previously, the white noise variance of the
generated data sets vwas fixed at 1.0 in order to facilitate the compari-
son of conditions in which the correlation parameter differed. The
results indicate the percentage of rejections of the null hypothesis,
Ho: w1 - w2 = 0, for situations in vhich the intervention component is
equal to 0.2, 0.5, or 0.8. Obviously, the power of the test statistic
increases in proportion to the Type I error rate and as the magnitude of
the intervention parameter becomes larger.

Irus model: Autoregressive DIOCESSeS. The impact of the autore-
gressive parameter on the power of the test statistic is of interest.
The power of the test statistic for a large effect size diminishes as
the autoregressive parameter becomes larger. The estimated pover ratio
for the Autoregressive model with misidentifications are presented in
Tables 22 and 23, illustrating the importance of serial corrslation in
determining the probability of correctly rejecting the null hypothesis
at the 0.05 level. The length of the time series realization is also
important in deteraining the power of the test statistic. Forty data
points 1is apparently not a sufficient length to assume certainty in
rejecting the null hypothesis vhen an intervention effect is in fact

present. It can be seen that there is very little power (only about
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one-third of the test statistics fall in the region of rejection) for an
Autoregressive time series realization of forry data points and a large
autoregressive parameter of 0.8. Even a large intervention effect size
results in only rejecting the null hypothesis in 34 percent of the
replications at the 0.05 level. Therefore, as the magnitude of the
autoregressive parameter increases, the ability to detect an interven-
tion effect diminishes.

Misidentifying the Autoregressive model as a differenced model,
either Nonstationary or Integrated Moving Average, resulted in lower
power in all cases. Misidentifying the Autoregressive model as either a
Moving Average or White Noise model resulted in power estimates that
were slightly higher than those of the true model. This result is
consistent with the higher Type 1 error rates obtained for these same
misidentifications in the Autoregressive model when the intervention
effect was zero.

Irus model: Moving Average pIOCeSSeS. Generally, the power to
detect small, medium, and large effects increased as the moving average
parameter increased and as the series length increased with a balanced
design. The estimated pover rates for the Moving Average model with
misidentifications are presented in Tables 24 and 25. The Moving
Average model had consistent effects across all misidentifications as in
the situation of Type I error. Misidentifications led to power values
that were lower than those obtained for the trus model. Generally, the
power of all misidentified models decreased as 0 increased. Also,
misidentifying the Moving Average model as a differenced model resulted
in a substantial reduction in power across all values of 0 and w .

Misidentifying the Moving Average model as either White Noise or Autore-
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gressive models also reduced power, although the power of the assumed
Autoregressive model vas usually greater than the power of the assumed
WVhite Noise model. Therefore, misidentifying a Moving Average wmodel
resulted in generally lower power estimates.

Trus modsl: Integrated Moving Average processes. The power of che
true Integrated Moving Average model to detect non-zero intervention
effects decreased as the serial correlation increased. The power values
{ncreased with intervention effect size and length of series. The
estimated power rates for the Integrated Moving Average model are
presented in Tables 26 and 27. The power values are very low for small
and medium effect sizes but increase substantially for a large effect
size at O = 0.8. As anticipated from the higher Type 1 error for
misidentifying the Integrated Moving Average model as a non-differenced
model, these same misidentifications resulted in higher estimates of
pover. For a small intervention effect size, these values of power were
closer to the true model for the misidentified Autoregressive and Whice
Noise series. In the forty observation series, power estimates of the
misidentified Autoregressive series are slightly lower than the true
model. In the twenty observation series, the misidentified Moving
Average series has power estimates consistently higher than the true
model, which increase as the value of 0 increases. For the other
misidentified models, power values decreased as the serial correlation
increased. Misidentification of the true Integrated Moving Average as &
Nonstationary model resulted in power values that were fairly constant
across all values of the correlation parameter. However, as 0 in-

creased, the power of the true modsl increased: consequently, the power

9
-
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estimates between the twvo models diverged. Generally, power estimates
{ncreased in all cases as the length of the series increased.

TIrus modal. Nonstationary PLOCESSSS. The power rates for the
Nonstationary model are fairly constant across intervention effect size
and series length, with the values being consistently low. The esti-
mated power rates for the Nonstationary model are presented in Table 28
for both series lengths. Misidentification as the other models resulted
in generally higher power values in all cases than the true model. In
general, power appeared to be higher for the longer series and large
effect size.

Trus model: White Noige. The power values for the true White Noise
model tend to increase as the series length and effect size increases.
The estimated power rates for the White Noise model are presented in
Table 29 for both series lengths. Misidentifying White Noise as a
differenced model substantially reduces power, which parallels the
results obtained for the true Autoregressive and Moving Average models.
The reduction in power is most spparent in the aisidentified Nonstation-
ary model at a largs effect size. However, misidentifying White Noise
as a non-differenced Autoregressive or Moving Average model resulted in
povwer rates similar to, yet slightly higher than, the true model.

Time seriss model effect on pover estimates. In summary, the
effects of the type of time series model on power parallel the effects
found for Type I error. For those cases in wvhich lower Type I error
rates were found, lower power rates were also found, and for higher Type
1 error rates, higher pover rates were found. A similar pattern was
detected with differenced models, generally resulting in lower power

than the true model. When the assumed model was a non-differenced model
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applied to & true model that vas differenced, ‘e misidentification

resulted in higher power rates in most cases, but slightly lower power
rates occurred for a large effect size in the -ue Integrated Moving
Average model. The true Autoregressive model resulted in estimated
power rates which diminished as the autoregressive parameter became
larger. With the true as well as the assumed Moving Average model,
pover estimates were considerably higher and generally tended to
increase as the correlation parameter and series length increased.
Misidentification of the true Moving Average or Autoregressive models as
a differenced series resulted in lower power estimates. Generally, the
power of the test statistic to detect a non-zero intervention effect is

less than desirable for many of the cases studied.
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Table 22
Estimated Power Rates for Intervention Effect
True Model: Autoregressive
Unbalanced Design n = 20.1
Balanced Design n = 20.2
Number of Replications = 500
True Assumed Power Powerx Power
Model Model Small Effect Medium Effect Large Effect
n=20.1 n=20.2 n=20.1 n=20.2 n=20.1 n=20.2
AR
0.2 AR .11 .12 .17 .20 .33 .35
MA .25 .23 .31 .34 .46 .43
IMA .11 .11 .16 .22 .33 .37
NS .04 .06 .06 .07 .10 .09
WN .11 11 .16 .23 .34 .38
AR
0.5 AR .14 .18 .18 .27 .31 .34
MA .26 .23 .28 .34 .37 .40
IMA .21 .25 .23 ) .34 47
NS .07 .04 .09 .06 .10 .10
WN .20 .27 .26 .36 .37 .45
AR
0.8 AR .22 .20 .23 .26 .30 .33
MA 45 .33 .41 .40 .48 .46
IMA .25 .25 .26 .29 .32 .36
NS .08 .06 .14 .09 .16 .16

WN .45 42 .41 .46 48 .53
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Table 23
Estimated Power Rates for Intervention Effect
True Model: Autoregressive
Unbalanced Design n = 40.1
Balanced De n n = 40.2
Number of Replications = 500
True Assuned Power Power Power
Model Model Small Effect Medium Effect Large Effect
n=40.1 n=40.2 n=40.1 n=40.2 n=40.1 n=40.2
AR
0.2 AR .10 .13 .24 .26 .41 .56
MA .13 .14 .25 .28 .43 .58
IMA .12 .14 .25 a1 .44 .61
NS .05 .03 .07 .06 .10 .11
WN 14 16 .28 35 S0 66
AR
0.5 AR .16 .14 .19 .25 .35 .43
MA .19 .19 .26 .31 .43 .53
IMA .20 .19 .21 .25 .31 .38
NS .05 .05 .10 .09 .14 .17
WN 28 27 .35 43 52 62
AR
0.8 AR .16 .19 .23 .23 .34 .34
MA .37 42 .43 .50 .51 .54
IMA .11 .10 .14 .16 .26 .26
NS .06 .06 .10 .09 .20 .20
WN .45 .51 .52 .58 .57 .63
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Table 24
Estimated Power Rates for Intervention Effect
True Model: Moving Average
Unbalanced Design n = 20.1
Balanced Design n = 20.2
Number of Replications = 500
True Assumed Power Power Power
Model Model Small Effect Medium Effect Large Effect
n=20.1 n=20.2 n=20.1 n=20.2 n=20.1 n=20.2
MA
0=0.2 MA .39 .4l .51 .56 .67 .72
AR .09 .09 .21 .29 .40 .51
IMA .02 .04 .10 .13 .22 .33
NS .05 .05 .06 .06 .09 .07
WN .02 .04 .10 .13 .22 .34
MA
0=0.5 MA .51 .47 .75 .78 .92 .96
AR .05 .04 .20 .30 .99 .76
IMA .01 .00 .02 .04 .17 .27
NS .04 .03 .05 .07 .10 .08
WN .01 .00 .03 .04 .17 .28
MA
=0 MA .60 .50 .90 .95 .99 .99
AR .02 .01 .25 .32 .68 .85
IMA .00 .00 01 .01 11 .17
NS .06 .04 .06 .06 .06 .06

WN .00 .00 .01 .01 .12 .17
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Table 25
Estimated Power Rates for Intervention Effect
True Model: Moving Average
Unbalanced Design n = 40.1
Balanced Design n = 40.2
Number of Replications = 500
True Assumed Pover Power Power
Model Model Small Effect Medium Effect Large Effec:
n=40.1 n=40.2 n=40.1 n=40.2 n=40.1 n=40.2
MA
0=0.2 MA .24 .24 .52 .57 .79 .89
AR .13 .12 .40 .45 .72 .84
IMA n’ .03 .23 .26 .51 .70
NS .06 .09 .09 .08 .08
WN N 04 .25 27 53 72
MA
0=0.5 MA .49 .50 .84 .91 .99 .99
AR .07 .09 .52 .62 .93 .99
IMA .00 .00 .08 .17 .58 .84
NS .05 .05 .05 .09 .06 .08
WN .00 .00 .10 .20 .61 .87
MA
0=0.8 MA .80 .89 .99 1.00 1.00 1.00
AR .01 .01 .63 .86 .99 1.00
IMA .00 .00 .03 .07 .72 .92
NS .05 .06 .05 .06 .08 .07

WN .00 .00 .03 .08 .65 .96
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Table 26
Estimated Power Rates for Intervention Effect
True Model: Integrated Moving Average
Unbalanced Design n = 20.1
Balanced Design n = 20.2
Number of Replications = 500
True Assumed Power Power Power
Model Model Small Effect Medium Effect Large Effect
n=20.1 n=20.2 n=20.1 n=20.2 n=20.1 n=20.2
IMA
0=0.2 IMA .15 .12 .24 .25 .33 .43
MA .34 .10 .42 .16 .57 .34
AR .07 .06 .15 .11 .24 .27
WN 11 .10 .20 .19 .32 .40
NS .05 .04 .06 .05 .12 .10
IMA
0=0.5 IMA .08 .08 .13 .20 .26 .37
MA .33 .16 .44 .33 .53 .42
AR .05 .05 .12 .14 .21 .30
WN .04 .06 .12 .16 .27 .37
NS .06 .05 .07 .07 .08 .09
IMA
0-0.8 IMA .03 .03 .07 .10 .21 .30
MA .39 .25 .57 .47 .66 .66
AR .01 .01 .07 .09 .23 .31
WN .01 .00 .06 .07 .20 .31
NS .05 .04 .03 .06 .07 .08
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Table 27
Estimated Power Rates for Intervention Effect
True Model: Integrated Moving Average
Unbalanced Design n = 40.1
Balanced Design n = 40.2
Number of Replications = 500
True Assumed Power Power Power
Model Model Small Effect Medium Effect Large Effect
n=40.1 n=40.2 n=40.1 n=40.2 n=40.1 n=40.2
IMA
0=0.2 IMA .13 .19 .29 .36 .46 .54
MA .05 .09 .19 .22 R .50
AR .05 .10 .19 .20 .37 .43
WN .12 .21 .31 .41 .50 .65
NS .05 .06 .06 .07 .11 .10
IMA
0=0.5 IMA .04 .06 .19 .28 .57 .68
MA .06 .06 .16 .21 .39 .48
AR .03 .04 .16 .22 .46 .57
WN .05 .06 .20 .30 .58 .72
NS .06 .05 .06 .07 .09 .13
IMA
0=0.8 IMA .01 .01 .09 .15 .60 .83
MA .22 .21 .42 .42 .59 .67
AR .01 .01 .12 .18 .58 .B1
WN .01 .01 .09 .16 .62 .85
NS .07 .09 .07 .09 .10 .10
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Table 28
Estimated Power Rates for Intervention Effect
True Model: Nonstationary
Unbalanced Design n = 20.1
Balanced Design n = 20.2
Number of Replications = 500
True Assumed Power Power Power
Model Model Small Effect Medium Effect Large Effect
n=20.1 n=20.2 n=20.1 n=20.2 n=20.1 n=20.2
NS
NS .06 .06 .08 .06 .10 .10
MA .61 .12 .45 .19 .60 .28
AR .10 .12 .26 .17 .26 .23
IMA .20 .22 .27 .28 .40 .40
WN .18 .21 .23 .30 .37 .40
Unbalanced Design n = 40.1
Balanced Design n = 40.2
n=40.1 n=40.2 n=40.1 n=40.2 n=40.1 n=40.2
NS
NS .06 .04 .08 .06 .13 .10
MA .11 .08 .24 .27 .49 .54
AR 11 .05 .15 .18 .30 .37
IMA .20 .18 .30 .33 .46 .55
WN .21 .18 .28 .39 .53 .60
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Table 29
Estimated Power Rates for Intervention Effect
True Model: White Noise
Unbalanced Design n = 20.1
Balanced Design n = 20.2
Number of Replications = 500
True Assumed Pover Power Power
Model Model Small Effect Medium Effect Large Effect
n=20.1 n=20.2 n=20.1 n=20.2 n=20.1 n=20.2
WN
WN .15 .09 .16 .17 .29 .37
MA .31 .34 .40 .42 .57 .60
AR .10 .13 .21 .24 .38 .42
IMA .06 .10 .17 .16 .28 .36
NS .05 .05 .06 .05 .09 .07
Unbalanced Design n = 40.1
Balanced Design n = 40.2
n=40.1 n=40.2 n=40.1 n=40.2 n=40.1 n=40.2
WN
WN .10 .09 .26 .31 .54 .68
MA .16 .16 .36 .36 .61 1
AR .13 .11 .30 .33 .58 .68
IMA .09 .08 .25 .29 .52 .65
NS .07 .06 .08 .08 .08 .09
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Accuracy of Intervention Effect Estinates

The final results presented in this section concern the accuracy of
the estimated standard error of the intervention parameter. The results
presented in Tables 30 to 45 are a comparison of the mean estimated
standard error of the intervention parameter over 500 replications and
the empirical measure of the standard error obtained by calculatiug the
standard deviation of the 500 estimates of the intervention parameter,
for both true and assumed time series models. The standard deviation of
500 parameter estimates provides an empirical measure of the standard
error in the absence of a theoretically derived expression for an exact
estimate of the standard error. Comparison of the estimated and
empirical standard error serves to reveal bias in the parameter estima-
tion procedures which in turn assists in the explanation of anomalies in
the Type I error and power analysis. For example, in Type 1 error
analysis, the estimated standard error is used; if it is too large, the
power may be low. As would be expected, the intervention component does
not influence the magnitude of either the estimated or empirical
standard error, and thus the values for conditions with the intervention
parameter equal to zero will be considered.

True model: Autoregressive processes. For the true Autoregressive
model, it can be seen in Tables 30 to 33 that the mean estimated
standard error is substantially larger than the enpirically obtained
standard error, especially when ¢ equals 0.2 in the longer series. The
empirical standard error increased as the autoregressive parameter
became larger, and as the length of the realization becomes shorter,
wvhile the estimated standard error increased as the autoregressive

parameter became larger, and as the length of the realization becomes
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longer. Misidentifying the Autoregressive wmodel as White Noise or
Moving Average resulted in increasing Type 1 error as the autoregressive
parameter increased. The discrepancy between the estimated and empiri-
cally obtained standard error reflects this increasing Type I error
rate. On the other hand, misidentifying an Autoregressive model as a
model with differencing resulted in decreased power. For the assumed
Nonstationary model, the error estimates of intervention effects were
always greater than that for the true Autoregressive model.

True model: Moving Average procesges. For the true Moving Average
model, the mean estimated standard error is consistently smaller than
the empirically obtained standard error. This discrepancy becones
greater as the series length increases and as the moving average
parameter increases. These results are presented in Tables 34 to 37.
The underestimation of the standard error of the intervention component
is the most reasonable explanation for the constant inflation of Type I
error as reported. The size of the error in estimation of the interven-
tion effect decreases slightly with increasing series length and value
of the moving average parameter. Recall that no Moving Average model
misidentification had serious consequences for Type I error, but did
lead to reduced power in most cases. The exception was in the case in
which the Autoregressive model often had about the same power as the
true Moving Average model in the forty observation series. The overes-
timation of the estimated standard error above the empirically estimated
standard error can be seen for the assumed Autoregressive model.

True model: Integrated Moving Average processes. For the true
Integrated Moving Average model, there is a small discrepancy between

the mean estimated standard error and the enpirically estimated standard
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error. The empirical standard error decreased slightly with longer
series length and increased value of the correlation parameter. The
estinated standard error increased slightly with an increased correla-
tion parameter value and decreased slightly with the longer length
series. The results are presented in Tables 38 to 41. The difficulty
in misidentification of the Integrated Moving Average model was an
{nflated Type I error rate when the assumed model was Moving Average,
Autoregressive, or White Noise. These assumed models had similar empiri-
cal standard errors as the true Integrated Moving Average model;
however, the assumed Moving Average model had a lover estimated standard
error and the Autoregressive model had a consistently higher estimated
standard error. Misidentifying Integrated Moving Average series as a
Nonstationary model did not greatly affect Type I error, but did lead to
reduced pover. The error of intervention effect estimation was consis-
tently higher for the assumed Nonstationary model than the true model.

True model: Nonstationary processes. For the true Nonstationary
series, there is little discrepancy between the estimated standard
error and empirical standard error and demonstrated little variation
between lengths of the series. The results are presented in Tables 42
and 43. Substantial Type 1 error occurred when the true Nonstationary
sodel assumed a Moving Average or White Noise model. For these assumed
sodels, as well as the assumed Integrated Moving Average model, the
empirical standard error is higher than the estimated s:andard error,
but still lower than the trus model in all cases. The assumed Autore-
gressive model had an estimated standard error slightly higher than the

empirical standard error of the {nte. vention effect.
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Trus model: White Noias. For the true White Noise model there is

little difference between the estimated standard error and empirical
standard error with only a slight decrease occurring with the increased
length of the series, as reflected by the small discrepancy reported
betveen the nominal and empirical Type 1 error rates. The results are
presented in Tables 44 and 45. Misidentifying whito' Noise as a Nonsta-
tionary model resulted in a substantial loss of po\ut.‘ The assumed
Nonstationary model had a consistently higher level of error in both the
mean estimated standard error and empirically estimated standard error
of the intervention effect. Misidentifying White Noise as Moving
Average or Autoregressive models led to slightly greater Type 1 errors.
Again the pattern of discrepancy between the estimated and empirical
standard errors for these models was seen as before. For the assumed
Moving Average model, the empirical standard error is lower than the
estimated standard error, vhile for the assumed Autoregressive model the
estimated standard error is higher than the empirical standard error.
The error estimates of the intervention effect for the assumed In-
tegrated Moving Average model were about the same as for the true model.

Time series model effect on accuracy of standard error estimates.
In summary, for the correctly identified Moving Average model the
underestimation of the standard error of the intervention component
explains the persistent inflation of Type 1 error as reported. Bias in
the least squares estimation procedure was profoundly attenuated in
Moving Average time series processes. The least squares procedure for
estimating the approximate standard error overestimates the actual
magnitude of the autocorrelation function. This finding is discussed in

the next section. Whereas, for the Autoregressive model, the standard
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error was consistently overestimated. The size of the error in estima-
tion of intervention effects generally decreases with increasing series
length. For the true differenced models and White Noise, there is
little difference between the mean estimated standard error and empiri-
cally estimated standard error of intervention effects. For the
correctly identified models, thers vas little difference in the size of
the standard error of estimation between the series of twenty observa-
tions and those of forty observations, except for those differences in

the Moving Average model at large values of the correlation parameter.



Table 30

Mean Estimated Standard Error (EST) and Empirical

Standard Error (EMP) of Intervention

Effect Estimates
True Model: Autoregressive

Unbalanced Design n = 20.1
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True Assumed It-0.0 It—0.2 xc-o.s It-0.0

Model Model EST EMP EST EMP EST EMP EST EMP

AR

4 0.2 AR 1.270 0.617 1.239 0.626 1.253 0.649 1.245 0.682
MA 0.161 0.638 0.158 0.639 0.160 0.663 0.158 0.711
IMA 0.515 0.735 0.504 0.733 0.509 0.749 0.505 0.776
NS 1.286 1.249 1.252 1.291 1.267 1.259 1.258 1.324
WN 0.512 0.614 0.502 0.617 0.507 0.621 0.503 0.683

AR

0.5 AR 1.125 0.83 1.137 0.818 1.116 0.89% 1.122 0.85%6
MA 0.208 0.836 0.201 0.865 0.201 0.89% 0.205 0.590
IMA 0.538 1.013 0.537 1.012 0.531 1.106 0.536 1.045
NS 1.136 1.125 1.149 1.168 1.128 1.219 1.134 1.148
WN 0.536 0.833 0.535 0.818 0.529 0.878 0.534 0.875

AR

0.8 AR 1.013 1.177 1.028 1.19 1.033 1.136 1.040 1.152
MA 0.276 1.506 0.288 1.449 0.287 1.361 0.289 1.391
IMA 0.606 1.219 0.619 1.268 0.€22 1.266 0.620 1.241
NS 1.021 1.046 1.036 1.092 1.042 1.061 1.050 1.075
WN 0.602 1.629 0.617 1.556 0.563 0.620 0.618 1.496




Table 31

Mean Estimated Standard Error (EST) and Empirical

Standard Error (EMP) of Intervention
Effect Estimates
True Model: Autoregressive

Balanced Design n = 20.2
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True Assumed Ic-0.0 Ic.°°2 It-O.S Ic-O.B

Model Model  EST EMP EST EMP EST EMP EST EMP

AR

0.2 AR 1.267 0.545 1.239 0.567 1.244 0.562 1.266 0.558
MA 0.136 0.564 0.133 0.545 0.138 0.562 0.137 0.558
IMA 0.444 0.610 0.435 0.619 0.440 0.665 0.445 0.698
NS 1.280 1.216 1.252 1.352 1.257 1.324 1.278 1.258
WN 0.441 0.547 0.432 0.528 0.438 0.537 0.442 0.547

AR

0.5 AR 1.132 0.817 1.113 0.794 1.135 0.847 1.124 0.798
MA 0.169 0.815 0.166 0.762 0.170 0.827 0.169 0.776
IMA 0.463 1.113 0.457 1.025 0.463 1.011 0.459 0.965
NS 1.143 1.173 1.123 1.157 1.145 1.126 1.135 1.140
WN 0.460 0.824 0.454 0.769 0.461 0.838 0.456 0.779

AR

0.8 AR 1.035 1.177 1.063 1.115 1.027 1.187 1.031 1.194
MA 0.226 1.354 7.233 1.252 0.218 1.379 0.229 1.418
IMA 0.515 1.244 0.542 1.240 0.508 1.306 0.520 1.297
NS 1.0642 1.063 1.052 1.061 1.035 1.072 1.039 1.060
WN 0.512 1.471 0.521 1.359 0.505 1.502 0.517 1.536




Table 32

Mean Estimated Standard Error (EST) and Empirical
Standard Error (EMP) of Intervention
Effect Estimates
True Model: Autoregressive

Unbalanced Design n = 40.1
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True Assumed It-°°° It-0.2 It-O.S 1 «0.8

Model Model EST EMP EST EMP EST EMP EST EMP

AR

0.2 AR 1.262 0.436 1.258 0.455 1.262 0.448 1.277 0.449
MA 0.085 0.4346 0.087 0.453 0.084 0.447 0.085 0.449
IMA 0.372 0.527 0.372 0.530 0.371 0.526 C.376 0.532
NS 1.280 1.368 1.276 1.295 1.281 1.2°S 1.296 1.275
WN 0.366 0.436 0.366 0.452 0.364 0.443 0.369 0.451

AR

0.5 AR 1.126 0.696 1.134 0.678 1.121 0.675 1.129 0.700
MA 0.117 0.690 0.117 0.683 0.120 0.673 0.122 0.681
IMA 0.402 0.996 0.402 0.931 0.401 0.934 0.406 0.944
NS 1.142 1.200 1.150 1.186 1.137 1.180 1.145 1.227
WN 0.395 0.706 0.396 0.701 0.39 0.697 0.399 0.710

AR

0.8 AR 1.035 1.025 1.025 1.043 1.029 1.030 1.033 1.068
MA 0.211 1.245 0.202 1.255 0.208 1.246 0.217 1.216
IMA 0.512 1.115 0.502 1.113 0.504 1.096 0.514 1.136
NS 1.048 1.051 1.038 1.073 1.042 1.061 1.047 1.128
WN 0.506 1.351 0.494 1.366 0.497 1.368 0.507 1.318
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Table 33
Mean Estimated Standard Error (EST) and Empirical
Standard Error (EMP) of Intervention
Effect Estimates
True Model: Autoregressive
Balanced Design n = 40.2
True Assumed It-0.0 It-0.2 It-O.S It-O.B
Model Model EST EMP EST EMP EST EMP EST EMP
AR
0.2 AR 1.257 0.398 1.275 0.394 1.259 0.388 1.259 0.412
MA 0.071 0.397 0.072 0.396 0.071 0.388 0.072 0.412
IMA 0.333 0.476 0.326 0.458 0.323 0.473 0.324 0.491
NS 1.272 1.241 1.291 1.274 1.275 1.311 1.275 1.33
WN 0.313 0.398 0.318 0.393 0.315 0.392 0.316 0.6.6
AR
0.5 AR 1.137 0.625 1.129 0.602 1.124 0.609 1.132 0.67¢2
MA 0.100 0.618 0.100 0.594 0.102 0.609 0.102 0.633
IMA 0.352 0.922 0.349 0.873 0.352 0.938 0.353 0.928
NS 1.151 1.217 1.143 1.128 1,138 1.199 1.146 1.163
WN 0.363 0.632 0.341 0.609 0.343 0.618 0.344 0.644
AR
0.8 AR 1.045 1.020 1.030 1.011 1.028 1.018 1.031 1.017
MA 0.1764 1.231 0.172 1.234 0.167 1.220 0.177 1.311
IMA 0.4446 1.118 0.436 1.065 0.431 1.109 0.441 1.102
NS 1.057 1.071 1.042 1.030 1.040 1.036 1.042 1.069
WN 0.436 1.334 0.426 1.320 0.421 1.306 0.432 1.411




Table 34

Mean Estimated Standard Error (EST) and Empirical

Standard Error (EMP) of Intervention

Effect Estimates

True Model: Moving Average

Unbalanced Design n = 20.1
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True Assumed It-0.0 It-0.2 It-O.S It-0.8

Model Model  EST EMP EST EMP EST EMP EST EMP

MA

0=0.2 MA 0.129 0.449 0.130 0.475 0.131 0.471 0.130 0.484
AR 1.525 0.418 1.555 0.45° 1.516 0.438 1.533 0.458
IMA 0.531 0.438 0.540 0.45¢ 92.532 0.460 0.534 0.461
NS 1.2 1.517 1.572 1.592 1.533 1.576 1.550 1.523
WN 0.528 0.421 0.537 0.453 0.529 0.436 0.531 0.456

MA

0=0.5 MA 0.120 €.331 0.119 0.338 0.118 0.367 0.120 0.386
AR 1.805 0.318 1.812 0.317 1.818 0.352 1.797 0.360
IMA 0.591 0.352 0.591 0.345 0.593 0.365 0.593 0.385
NS 1.825 1.857 1.833 1.790 1.839 1.778 1.817 1.991
WN 0.588 0.351 0.588 0.345 0.590 0.364 0.590 0.386

MA

0=0.8 MA 0.125 0.258 0.126 0.276 0.124 0.303 0.124 0.332
AR 2.109 0.257 2.155 0.278 2.138 0.305 2.135 0.327
IMA 0.679 0.327 0.690 0.334 0.683 0.358 0.683 0.380
NS 2.134 2.262 2.180 2.253 2.163 2.175 2.159 0.239
WN 0.676 0.325 0.687 0.333 0.679 0.357 0.680 0.379
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Table 35
Mean Estimated Standard Error (EST) and Empirical
Standard Error (EMP) of Intervention
Effect Estimates
True Model: Moving Average
Balanced Design n = 20.2
True Assumed It-0.0 It-0.2 It-O.S It-°‘8
Model Model  EST EMP EST EMP EST EMP EST EMP
MA
0=0.2 MA 0.109 0.377 0.111 0.379 0.111 0.411 0.110 0.423
AR 1.497 0.371 1.537 0.371 1.506 0.403 1.506 0.402
IMA 0.453 0.379 0.465 0.372 0.458 0.416 0.457 0.429
NS 1.512 1.603 1.553 1.664 1.522 1.530 1.522 1.509
WN 0.450 0.374 0.462 0.368 0.455 0.404 0.454 0.396
MA
0=0.5 MA 0.105 0.272 0.104 0.268 0.104 0.290 0.105 0.321
AR 1.807 0.278 1.825 n.261 1.811 0.289 1.828 0.313
IMA 0.515 0.318 0.517 G.284 0.515 0.345 0.520 0.331
NS 1.826 1.933 1.844 1.794 1.829 1.990 1.848 1.947
WN 0.512 0.304 0.514 0.284 0.511 0.313 0.516 0.330
MA
0=0.8 MA 0.109 0.188 0.109 0.196 0.109 0.221 0.111 0.260
AR 2.136 0.187 2.167 0.193 2.114 0.227 2.154 0.261
IMA 0.593 0.243 0.598 0.245 0.588 0.269 0.600 0.296
NS 2.159 2.226 2.190 2.223 2.136 2.211 2.176 2.256
WN 0.589 0.242 0.594 0.244 0.585 0.268 0.596 0.296
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Table 36
Mean Estimated Standard Error (EST) and Empirical
Standard Error (EMP) of Intervention
Effect Estimates
True Model: Moving Average
Unbalanced Design n = 40.1
True Assumed It-0.0 It-0.2 It-O.S Ic-0.8
Model Model  EST EMP EST EMP EST EMP EST EMP
MA
0=0.2 MA 0.062 0.297 0.062 0.308 0.061 0.306 0.062 0.306
AR 1.548 0.294 1.533 0.307 1.529 0.304 1.549 0.303
IMA 0.382 0.299 0.379 0.313 0.379 0.307 0.384 0.307
NS 1.571 1.576 1.555 1.516 1.551 1.565 1.571 1.618
WN 0.375 0.298 0.372 0.311 0.372 0.306 0.377 0.304
MA
0=0.5 MA 0.052 0.207 0.051 0.206 0.052 0.215 0.051 0.246
AR 1.843 0.206 1.817 0.209 1.821 0.213 1.834 0.244
IMA 0.425 0.214 0.421 0.225 0.420 0.225 0.423 0.256
NS 1.870 1.793 1.844 1.923 1.848 1.834 1.861 1.865
WN 0.416 0.213 0.4612 0.224 0.412 0.223 0.415 0.255
MA
0=0.8 MA 0.047 0.138 0.048 0.141 0.048 0.149 0.048 0.195
AR 2.123 0.140 2.161 0.144 2.127 0.157 2.111 0.192
IMA 0.477 0.170 0.486 0.179 0.479 0.189 0.477 0.212
NS 2.155 2.159 2.193 2.211 2.159 2.119 2.141 0.206
WN 0.467 0.168 0.476 0.176 0.470 0.186 0.467 0.211




Table 37

Mean Estimated Standard Error (EST) and Empirical

Standard Error (EMP) of Intervention
Effect Estimates
True Model: Moving Average

Balanced Design n = 40.2
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True Assumed It-0.0 It-0.2 IC-O.S It-0.8

Model Model EST EMP EST EMP EST EMP EST EMP

MA

0=0.2 MA 0.053 0.260 0.052 0.254 0.052 0.267 0.053 0.274
AR 1.546 0.261 1.531 0.251 1.526 0.265 1.530 0.270
IMA 0.333 0.265 0.330 0.254 0.331 0.274 0.332 0.283
NS 1.564 1.614 1.55)! 1.619 1.546 1.640 1.550 1.619
WN 0.3264 0.264 0.322 0.254 0.322 0.265 0.323 0.270

MA

0=0.5 MA 0.046 0.160 0.045 0.175 0.044 0.185 0.045 0.200
AR 1.830 0.159 1.853 0.175 1.816 0.183 1.834 0.199
IMA 0.367 0.169 0.373 0.184 0.366 0.193 0.368 0.209
NS 1.8564 1.834 1.877 1.858 1.839 1.965 1.858 1.854
WN 0.358 0.168 0.363 0.183 0.357 0.192 0.359 0.208

MA

0=0.8 MA 0.042 0.093 0.042 0.094 0.042 0.126 0.042 0.169
AR 2.141 0.099 2.122 0.106 2.177 0.136 2.138 0.171
IMA 0.420 0.128 0.417 0.130 0.426 0.161 0.419 0.188
NS 2.168 2.154 2.149 2.206 2.205 2.219 2.165 2.127
WN 0.409 0.127 0.407 0.128 0.415 0.159 0.409 0.186
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Table 38
Mean Estimated Standard Error (EST) and Empirical
Standard Error (EMP) of Intervention
Effect Estimates
True Model: Integrated Moving Average
Unbalanced Design n = 20.1
True Assumed It-0.0 It-0.2 It-O.S 1.=0.8
Model Model  EST EMP EST EMP EST EMP EST EMP
IMA
0=0.2 IMA 0.637 0.972 0.648 0.992 0.643 0.969 0.633 0.987
MA 0.2046 0.884 0.217 0.842 0.212 0.866 0.205 0.885
AR 1.405 0.867 1.409 0.819 1.400 0.798 1.392 0.839
WN 0.634 0.832 0.645 0.780 0.640 0.799 0.630 0.882
NS 1.419 1.539 1.424 1.491 1.415 1.447 1.407 1.512
INA
0=0.5 IMA 0.632 0.788 0.630 0.722 0.626 0.679 0.636 0.726
MA 0.180 O0.744 0.176 0.741 0.176 0.777 0.176 0.767
AR 1.529 0.642 1.537 0.598 1.514 0.636 1.531 0.633
WN 0.630 0.610 0.627 0.566 0.624 0.618 0.632 0.603
NS 1.546 1.550 1.553 1.570 1.530 1.647 1.548 1.555
IMA
0=0.8 IMA 0.698 0.545 0.680 0.583 0.685 0.593 0.677 0.556
MA 0.168 0.635 0.165 0.677 0.165 0.671 0.165 0.645
AR 1.801 0.482 1.737 0.471 1.762 0.531 1.740 0.510
WN 0.695 0.477 0.676 0.459 0.681 0.504 0.674 0.500
NS 1.821 1.824 1.756 1.818 1.782 1.691 1.760 1.841
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Table 39
Mean Estimated Standard Error (EST) and Empirical
standard Error (EMP) of Intervention
Effect Estimates
True Model: Integrated Moving Average
Balanced Design n = 20.2
True Assumed It-0.0 It-0.2 It-O.S It-0.8
Model Model EST EMP EST EMP EST EMP EST EMP
IMA
0=0.2 IMA 0.552 0.862 0.557 0.820 0.560 0.938 0.554 0.982
MA 0.179 0.649 0.181 0.629 0.180 0.659 0.179 0.692
AR 1.397 0.715 1.407 0.696 1.406 0.741 1.396 0.788
WN 0.548 0.686 0.553 0.652 0.556 0.700 0.550 0.717
NS 1.411 1.395 1.420 1.375 1.420 1.429 1.410 1.416
IMA
0=0.5 IMA 0.548 0.717 0.543 0.627 0.561 0.699 0.555 0.695
MA 0.151 0.579 0.154 0.555 0.154 0.571 0.156 0.591
AR 1.532 0.557 1.511 0.513 1.567 0.546 1.545 0.555
WN 0.544 0.506 0.539 0.504 0.557 0.506 0.552 0.520
NS 1.547 1.683 1.526 1.592 1.582 1.587 1.560 1.614
IMA
0=0.8 IMA 0.590 0.425 0.596 0.505 0.598 0.578 0.592 0.530
MA 0.145 0.446 0.146 0.432 0.146 0.467 0.145 0.525
AR 1.73¢ 0.384 1.750 0.380 1.758 0.397 1.744 0.471
WN 0.586 0.351 0.592 0.345 0.594 0.378 0.588 0.432
NS 1.752 1.792 1.768 1.737 1.775 1.838 1.762 1.779




Table 40

Mean Estimated Standard Error (EST) and Empirical

Standard Error (EMP) of Intervention
Effect Estimates
True Model: Integrated Moving Average

Unbalanced Design n = 40.1
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True Assumed Ic-0.0 It-0.2 It-O.S It-O.B

Model Model EST EMP EST EMP EST EMP EST EMP

IMA

0=0.2 IMA 0.476 0.795 0.474 0.767 0.471 0.829 0.474 0.798
MA 0.116 0.546 0.113 0.533 0.111 0.580 0.111 0.568
AR 1.411 0.569 1.415 0.565 1.406 0.595 1.417 0.583
WN 0.465 0.554 0.465 0.541 0.463 0.574 0.466 0.576
NS 1.431 1.401 1.435 1.396 1.426 1.452 1.437 1.447

IMA

0=0.5 IMA 0.450 0.401 0.453 0.406 0.452 0.444 0.455 0.452
MA 0.082 0.479 0.083 0.482 0.084 0.473 0.084 0.503
AR 1.532 0.405 1.538 0.392 1.528 0.4246 1.545 0.430
WN 0.442 0.396 0.4446 0.384 0.443 0.414 0.446 0.418
NS 1.554 1.564 1.560 1.566 1.550 1.559 1.567 1.565

IMA

0=0.8 IMA 0.493 0.262 0.487 0.262 0.492 0.280 0.485 0.29%
MA 0.069 0.365 0.068 0.334 0.068 0.381 0.067 0.381
AR 1.782 0.270 1.757 0.263 1.785 0.283 1.754 0.296
WN 0.484 0.259 0.477 0,257 0.483 0.278 0.476 0.291
NS 1.808 1.940 1.783 1.83C 1.810 1.789 1.780 1.777
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Table 41
Mean Estimated Standard Error (EST) and Empirical
Standard Error (EMP) of Intervention
Effect Estimates
True Model: Integrated Moving Average
Balanced Design n = 40.2
True Assumed It-0.0 Ic-0.2 It-C.S It-O.S
Model Model EST EMP EST EMP EST EMP EST EMP
IMA
0=0.2 IMA 0.409 0.709 0.408 0.727 0.412 0.734 0.409 0.812
MA 0.094 0.473 0.096 0.487 0.094 0.499 0.095 0.506
AR 1.405 0.497 1.403 0.534 1.412 0.530 1.405 0.542
WN 0.399 0.493 0.398 0.537 0.402 0.523 0.399 0.536
NS 1.422 1.388 1.420 1.414 1.430 1.455 1.423 1.480
IMA
0=0.5 1IMA 0.398 0.374 0.401 0.422 0.398 0.384 0.398 0.6412
MA 0.070 0.400 0.072 0.393 0.071 0.400 0.073 0.392
AR 1.550 0.346 1.561 0.351 1.550 0.359 1.541 0.373
WN 0.388 0.342 0.391 0.342 0.387 0.349 0.388 0.366
NS 1.569 1.706 1.580 1.628 1.570 1.608 1.560 1.642
IMA
0=0.8 IMA 0.425 0.217 0.426 0.208 0.425 0.214 0.430 0.243
MA 0.059 0.293 0.060 0.280 0.059 0.302 0.059 0.325
AR 1.769 0.203 1.763 0.211 1.767 0.217 1.792 0.245
WN 0.415 0.200 0.415 0.205 0.414 0.212 0.420 0.240
NS 1.791 1.786 1.786 1.891 1.789 1.780 1.815 1.844




Table 42

Mean Estimated Standard Error (EST) and Empirical

Standard Error (EMP) of Intervention
Effect Estimates
True Model: Nons<-ationary

Unbalanced Design n = 20.1
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True Assunmed It-0.0 It-O.Z Ic-O.S 1 «0.8
Model Model  EST EMP EST EMP EST EMP EST EMP
NS
NS 1.407 1.435 1.381 1.445 1.391 1.465 1.424 1.328
MA 0.255 0.919 0.243 0.933 0.266 0.951 0.264 0.945
AR 1.392 0.966 1.367 0.970 1.377 1.062 1.409 0.964
IMA 0.701 1.103 0.681 1.063 0.686 1.146 0.693 1.025
WN 0.698 0 941 0.678 0.966 0.683 1.029 0.689 1.017
True Model: Nonstatic . ;¢
Balanced Design n=20.%
True Assumed It-0.0 Ic-0.2 It-O.S It-O.B
Model Model  EST EMP EST EMP EST EMP EST EMP
NS
NS 1.381 1.413 1.388 1.436 1.367 1.344 1.401 1.393
MA 0.213 0.733 0.212 0.759 0.212 0.756 0.212 0.731
AR 1.367 0.893 1.376 0.954 1.354 0.891 1.388 0.920
IMA 0.595 1.067 0.597 1.052 0.585 0.999 0.596 0.992
WN 0.591 0.880 0.593 0.905 0.581 0.901 0.592 0.846
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Table 43
Mean Estimated Standard Error (EST) and Empirical
standard trror (EMP) of Intervention
Effect Estimates
True Model: Nonstationary
Unbalanced Design n = 40.1
True Assumed Ic-0.0 It-O.Z It-O.S It-0.0
Model Model  EST EMP EST EMP EST EMP EST EMP
NS
NS 1.6412 1.389 1.383 1.428 1.402 1.425 1.400 1.507
MA 0.133 0.589 0.134 0.666 0.138 0.613 0.134 0.645
AR 1.392 0.689 1.364 0.766 1.383 0.708 1.380 0.805
IMA 0.510 0.935 0.506 1.084 1.203 0.970 0.509 1.049
WN 0.501 0.680 0.495 0.755 0.505 0.691 0.500 0.729
True Model: Nonstationary
Balanced Design n = 40.2
True Assumed It-0.0 It-0.2 It-O.S It-O.B
Model Model EST EMP EST EMP EST =~ EMP EST EMP
NS
NS 1.401 1.469 1.402 1.382 1.402 1.425 1.420 1.389
MA 0.115 0.543 0.114 0.539 0.112 0.518 0.112 0.528
AR 1.386 0.671 1.385 0.662 1.385 0.612 1.402 0.633
IMA 0.447 0.973 0.443 0.928 0.442 0.913 0.446 0.904
WN 0.436 0.532 0.432 0.627 0.431 0.605 0.435 0.627




Table 44

Mean Estimated Standard Error (EST) and Empirical

Standard Error (EMP) of Inte.vention
Effect Estimates
True Model: White Noise

Unbalanced Design n = 20.1
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Trus Assumed It-0.0 It-0.2 It-O.S xt-o.a
Model Model  EST EMP EST EMP EST EMP EST EMP
WN
WN 0.507 0.506 0.515 0.519 0.508 0.542 0.516 0.511
MA 0.142 0.541 0.143 0.557 0.142 0.576 0.141 0.550
AR 1.369 0.516 1.392 0.527 1.363 0.573 1.391 0.522
IMA 0.510 0.591 0.518 0.584 0.510 0.605 0.518 0.544
NS 1.385 1.410 1.407 1.439 1.378 1.391 1.407 1.439
True Model: White Noise
Balanced Design n = 20.2
True Assumed It-0.0 It-o.z It-O.S It-0.0
Model Model EST EMP EST EMP EST EMP EST EMP
WN
WN 0.638 0.474 0.441 0.472 0.438 0.456 0.445 0.484
MA 0.121 0.492 0.121 0.485 0.119 0.476 0.121 0.500
AR 1.357 0.481 1.373 0.476 1.374 0.464 1.385 0.496
IMA 0.441 0.541 0.643 0.570 0.441 0.492 0.448 0.538
NS 1.370 1.371 1.388 1.402 1.388 1.368 1.400 1.299




Table 45

Mean Estimated Standard Error (EST) and Empirical

standard Error (EMP) of Intervention
Effect Estimates
True Model: White Noise

Unbalanced Design n = 40.1

143

True Assumed Ic-0.0 It-0.2 It-O.S 1 =-0.8
Model Model EST EMP EST EMP EST EMP EST EMP
WN
WN 0.363 0.364 0.364 0.374 0.363 0.376 0.358 0.367
MA 0.072 0.370 0.072 0.377 0.072 0.377 0.071 0.369
AR 1.376 0.368 1.378 0.378 1.386 0.377 1.365 0.368
IMA 0.370 0.383 0.371 0.383 0.370 0.401 0.365 0.375
NS 1.397 1.413 1.398 1.471 1.407 1.496 1.385 1.414
True Model: White Noise
Balanced Design n = 40.2
True Assumed Ic-0.0 It-0.2 It-O.S It-O.B
Model Model EST EMP EST EMP EST EMP EST EMP
WN
WN 0.313 0.313 0.314 0.318 0.312 0.312 0.313 0.325
MA 0.062 0.313 0.061 0.319 0.061 0.314 0.062 0.325
AR 1.380 0.313 1.383 0.319 1.362 0.315 1.363 0.324
IMA 0.320 0.329 0.322 0.337 0.320 0.322 0.321 0.357
NS 1.397 1.419 1.401 1.424 1.380 1.427 1.380 1.438
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Ascuracy of ARIMA Parameter Estimates

The estimates of ARIMA parameters obtained in short series of
twen » ' forty data points were biased. The bias is, in part, due to
the . .nematical intractability of calculating the exact likelihood
function. In longer series, this difficulty does not affect the
estimates as much as it does in short series. Bias is also introduced
by the function used for making the estimates of the correlation
parameters (Box & Jenkins, 1976; Osborn, 1982). The least squares
estimates of the parameters in the ARIMA intervention model are only
approximations to the full maximum likelihood estimates. As a standard
procedure, the non-linear optimization algorithm suggested by Box and
Jenkins (1976) has been used. However, non-linear optimization algo-
rithms cannot guarantee that a global minimum is achieved; it is assumed
that the initial estimates used as input are good enough to bring the
optimization sufficiently close to global minimunm.

Generally, the method used in this study (least squares normal
theory analysis of Box and Jenkins (1970]), gave an overestimate of ©
for the Moving Average model. In the Moving Average series for 0 of
0.2, 0.5, and 0.8 with twenty observatioms, the mean estimated value of
O was 0.605, 0.843, and 0.936, respectively. The modal estimated value
of O was consistently 0.98 for all true parameter values of 0.2, 0.5,
and 0.8. For the Moving Average series with forty data points, the
parameter values vere, agai ', consistently overestimated at all true
levels of O, with a modal estimated value of 0.98 for all moving average
parameter values. On the other hand, the autoregressive parameter was
underestimated for all values of ¢ in short series. When the number of

observations was increased to forty, the estimated values of the
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autoregressive parameter wvere closer to the true values, but still
remained smallexr. The estimated ARIMA parameter values are presented in
Tables 46 and 47 for the Moving Average and Autoregressive models.
Each least squares analysis produces a residual error variance by which
the marimum likelihood estimates of the parameters may be found.
Therefore, the maximum likelihood estimated value of the parameter
corresponds to the minimum residual error variance. The standard
deviation of the 500 parameter estimates is presented for comparison.
Estimates of the error variance vere similar for both Moving Average and
Autoregressive models.

wwmm_m_mnmL—ﬁ—Jnﬁm
effect analysis. In summary, using the least squares procedure for
estimation, the estimates of the correlation parameters were often
biased, even when the correct model was identified. The direction and
amount of bias depended on the actual values of the correlation paramet-
er, the method for calculating the initial values in the estimation
procedure, and the actual estimation function used. When considering
only those Moving Average series with an estimated corielation parameter
value of 0.98, the number of significant intervention effects when » was
zero was very high. The Type 1 error rate for intervention effect
estimates was therefore inflated above the nominal level for a large
proportion of Moving Average series with an estimated correlation
parameter of 0.98.

To assess the bias in the parameter estimation procedure, data sets
vere examined where the moving average parameter was estimated at 0.98
and where a significant change in level with a zero intervention effect

was found. Ten of these Moving Average data sets (0 - 0.50, w= 0) were
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chosen from series of both twenty and forty time points. These genera-
ted series were resubmitted to TIMEO2 least squares analysis. The
maximun likelihood estimated value of 0 at the true value of 0.50 was
compared to the corresponding minimum error variance and least squares
estimate of the intervention effect. The intervention parameter wvas
exanined for a significant change in level. In the random sample of ten
series with the moving average parameter estimated at 0.98 and a
significant change in level with a zero intervention effect, a general
reduction in Type I errors for intervention effect estimates vas found
at the true value of O for the Moving Average series. This reduction in
Type 1 errors of {ntervention effect estimates at the true parasster
value, was further decreased as the series length increased. For
example, out of ten randomly selected series with the moving average
parameter of 0.98, only two series had a significant change in level at
the true parameter value of 0.50, for the longer series length of forty
data points. The number of significant intervention parameters found at
the estimated ARIMA parameter values for the true Moving Average series
with a O of 0.50 are presented in Table 48. The bias in the estimation
procedure could therefore also account for the large inflation of Type I
error rates found in intervention effect estimates, particularly in the

Moving Aversge time series processes.
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Table 46
ARIMA Parameter Estimates
True Model: Moving Average
True Estimated
Parameter Parameter Standard Error
Value Value Deviation Variance Mode Median
Series Length = 20.1
Q- .2 0.619 0.436 0.859 0.980 0.980
Q9= .5 0.874 0.256 0.826 0.980 0.980
Q- .8 0.957 0.127 0.919 0.980 0.980
Series Length = 20.2
0= .2 0.605 0.450 0.810 0.980 0.980
0=~ .5 0.843 0.281 0.841 0.980 0.980
0~ .8 0.936 0.166 0.944 0.980 0.980
Series Length - 40.1
Q- .2 0.337 0.289 0.965 0.980 0.280
Q= .5 0.699 0.251 0.949 0.980 0.660
Q- .8 0.941 0.106 0.923 0.980 0.980
Series Length = 40.2
0= .2 0.338 0.268 0.961 0.980 0.280
9=~ .5 0.695 0.246 0.929 0.980 0.640
0~ .8 0.911 0.126 0.966 0.980 0.980




148

Table 47
ARIMA Parameter Estimates
True Model: Autoregressive
True Estimated
Paranmeter Parameter Standard Error
Value Value Deviation Variance Mode Median
Series Length = 20.1
é=- .2 0.066 0.229 0.961 0.120 0.080
- .5 0.322 0.266 0.936 0.460 0.340
é- .8 0.588 0.283 0.903 0.980 0.620
Series Length = 20.2
é-.2 0.055 0.233 0.949 0.120 0.080
é=-.5 0.299 0.264 0.945 0.300 0.300
¢~ .8 0.556 0.299 0.928 0.980 0.560
Series Length = 40.1
é-.2 0.126 0.167 0.971 0.180 0.140
é=.5 0.404 0.158 0.965 0.320 0.400
¢~ .8 0.701 0.166 0.977 0.760 0.720
Series Length = 40.2
¢-.2 0.123 0.156 0.954 0.060 0.120
é¢~-.5 0.395 0.159 0.977 0.380 0.400
¢~ .8 0.710 0.163 1.004 0.700 0.700
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Table 48
Estimated Intervention Effect and ARIMA Parameter
True Model: Moving Average
True Value © = 0.50
Series Length = 20.2
Intervention Effect Estimates
Nonsignificant Significant Total N
0-10.98 216 172> 388
ARIMA
Parameter 0 = all 102 10 112
Estimates other
values
Total N 318 182 500
* Five of ten random series had a significant change in level at 0 -
0.50
Series Length = 40.2
Intervention Effect Estimates
Nonsignificant Significant Total N
0 =-0.98 65 113 178
ARIMA
Parameter 0 = all 278 44 322
Estimates other
values
Total N 343 157 500
* Two of ten random series had a significant change in level at 0 -

0.50
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Time Series Model Estimation

Monte Carlo methods were used to examine the sampling properties of
the autocorrelation functions under a variety of conditions. Five
simple ARIMA models wvere investigated: a first-order Autoregressive
model, a first-order Moving Average model, an Integrated Moving Average
model, the Nonstationary model, and White Noise. Two characteristics of
the time series process wvers systematically manipulated: (1) the
magnitude of the parameter measuring serial correlation in the data ¢
or @ = 0.2, 0.5, or 0.8), and (2) the length of the time series (n = 20
or 40). The primary interest was in the empirical estimation of the
standard errors of the autocorrelation and partial autocorrelation
coefficients. The extent of bias in these estimates can be determined
theoretically provided that the true parameters of the ARIMA (p, d, q)
process are known. Information concerning both the standard error and
the bias of the estimates is essential for determining the length of
time series realizations that is necessary to ensure a reasonably high

likelihood of an appropriately identified ARIMA (p, 4, q) model.

Estimates of Correlation Parameters

The mean estimates over 500 replications of the autocorrelation and
partial autocorrelation functions for lags 1 through 4 vere obtained for
each condition. Regions of nominal acceptance or rejection were
constructed around the mean value of the autocorrelation coefficient.
The proportion of replications for which the estimate was outside of the
region of acceptance, that is, the proportion that resulted in the
rejection of the null hypothesis, Ho: o = O (vhere p represents the

correlation rameter of the time series process), were calculated for
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each condition. This measure provides an estimate of the empirical Type
1 error rates for conditions in vwhich the null hypothesis is true and of
the power of the test statistic for conditions with a non-zero autocor-
relation parameter. Estimation of the time series model has implica-
tions for the use of the model in the intervention assessment context.
The power to detect a significant correlation parameter plays a role in
selecting a particular model, and consequently in making misidentifica-
tions as well. With respect to the time series models, three issues
were investigated: (1) the accuracy of the correlation coefficient
estimatio ., (2) Type I error rates for conditions in which the true
correlation coefficient is equal to zero, and (3) the power to detect a
non-zero correlation coefficient. The results presented in Tables 49 to
65 discuss the correlation coefficient estimation for the time series
models. The purpose of methods presented in this section is to account
for the dependence in serial observations and correct for it so that
intervention effects can be estimated and tested with techniques which
assune independent observations.

Autoregressive processes. The mean estimates of the autocorrelation
function for lags 1 through 4 of the Autoregressive series and the
standard deviation of these estimates are presented in Table 49. The
true parameter value of each autocorrelation coefficient 1is also
presented for comparison. The mean estimate of the autocorrelation
function reflects a considerable bias in the estimator when applied to
snall sample sizes. The bias is a function of both the true autocorre-
lation parameter and the number of observations in the series. The bias
{s always downward, which results in an underestimation of the autocor-

relation. The degree of underestimation increases as the autocorrela-
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tion parameter becomes larger and as the number of observations become
smaller. Furthermore, the magnitude of the bias increases as the lag
of the autocorrelation coefficient increases. The pattern of downward
bias of the asutocorrelation function can be seen at lags 1 through 4.
As the number of data points in the realization increases, the mean of
the estimated autocorrelations approaches the true parameter values.

The standard deviation of the parameter estimates provides a
measure of the espirical standard error. The standard error at lag 1 is
a function of the parameter and sample size; the standard error becomes
smaller as the autocorrelation parameter and series length become
larger. The relative magnitude of the standard error is most variable
at larger lags. This result can be explained in that the standard error
is a function of all autocorrelations at lags less than the lag being
considered. The autocorrelation function of a data set with greater
serial dependence will exhibit large autocorrelations at several lags,
and consequently, autocorrelations estimates will be more variable. In
each case, the estimated standard error decreases as the number of data
points increases.

The partial autocorrelation function of lags 2, 3 and 4 of the
Autoregressive process are presented in Table 50. The true value of the
parameter for all conditions is zero. In all cases, the bias in the
estimator results in a mean estimate less than zero. The extent of the
bias is minimal for conditions in the longer series of forty observa-
tions. The underestimation of the partial autocorrelation coefficient
is considerably larger for shorter series of twenty data points. The
variability of the partial autocorrelation estimates increases as the

length of the realization becomes greater.
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Moving Average processes. The mean and standard deviation of the
estimates of the autocorrelation and partial autocorrelation functions
for the Moving Average series are presented in Tables 51 and 52. The
bias in estimation of the autocorrelation function drifts upwards, which
results in an overestimation of the autocorrelation. The degree of
overestimation increases as the autocorrelation parameter becomes
smaller and as the number of observations becomes snaller. The standard
error becomes smaller as the autocorrelation parameter and series length
become larger. The relative magnitude of the discrepancy in the
estimates and standard error is greater at larger lags. The bias in the
estimation of the partial autocorrelation function results in a mean

estimate less than zero in all cases.

Integrated Moving Average pIOCCSSeS. The mean and standard

deviation of the estimates of the autocorrelation and partial autocor-
relation functions for the Integrated Moving Average series are present-
ed in Tables S3 and 54. Similar results occurred as were reported with
the Moving Average processes and will not be discussed further.

Nonstationary processes. The mean and standard deviation of the
estimates of the autocorrelation and partial autocorrelation functions
for the Nonstationary series are presented in Tables 55 and 56. Similar
results occurred as were previously reported with the differenced Moving
Average processes and will not be discussed further.

white Noise. The mean and standard deviation of the estimates of
the autocorrelation and partial autocorrelation functions for White
Noise are presented in Tables 57 and 58. The bias in estimation of the
autocorrelation function is always downward, which results in an

underestimation of the autocorrelation. The degree of underestimation
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increases as the number of observations becomes smaller. The bias in
the partial autocorrelation function results in a mean estimate less
than zero in all cases. The standard error becomes smaller as the

series length becomes longer.
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Table 49
Mean Estimated Autocorrelation (ACF) and
Empirical Standard Error (SE)
Autoregressive Processes
AR n Lag 1 Lag 2 Lag 3 Lag &4
ACF SE ACF SE ACF SE ACF SE
0.8 TP 0.800 - 0.640 - 0.512 - 0.410
40 0.689 0.117 0.460 0.177 0.294 0.207 0.175 .219
20 0.561 0.192 0.284 0.243 0.104 0.238 -0.010 .219
0.5 TP 0.500 - 0.250 - 0.125 - 0.062
40 0.437 0.141 0.167 0.172 0.043 0.169 -0.014 .165
20 0.363 0.200 0.089 0.216 -0.044 0.213 -0.083 .193
0.2 TP 0.200 - 0.040 - 0.008 - 0.002
40 0.151 0.151 -0.004 0.152 -0.024 0.158 -0.020 0.154
20 0.102 0.208 -0.036 0.199 -0.053 0.197 -0.054 0.181
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Table 50
Mean Estimated Partial Autocorrelation (PACF) and
Empirical Standard Error {SE)
Autoregressive Processes
AR n Lag 2 Lag 3 Lag 4 Estimated
PACF SE PACF SE PACF SE SE

0.8 TP 0.000 - ¢.000 - 0.000 - -

40 -0.056 0.139 -0.013 0.066 -0.035 0.107 0.167

20 .0.109 0.187 -0.045 0.123 -0.052 0.159 0.250
0.5 TP 0.000 - 0.000 - 0.000 - -

40 .0.055 0.149 -0.024 0.122 -0.028 0.141 0.167

20 -0.102 0.189 -0.070 0.175 0.093 0.172 0.250
0.2 TP 0.000 - 0.000 - 0.000 - -

40 .0.052 0.150 -0.015 0.156 -0.038 0.149 0.167

20 .0.094 0.193 -0.047 0.192 .0.087 0.169 0.250
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Table 51
Mean Estimated Autocorrelation (ACF) and
Empirical Standard Error (SE)
Moving Average Processes
MA n Lag 1 Lag 2 Lag 3 Lag 4
ACF SE ACF SE ACF SE ACF SE
0.8 TP -0.488 - 0.000 - 0.000 - 0.000 -
40 .0.460 0.118 -0.017 0.186 -0.006 0.173 0.005 0.173
20 .0.445 0.155 -0.014 0.235 0.006 0.228 -0.009 0.221
0.5 TP -0.400 - 0.000 - 0.000 - 0.000 -
40 .0.388 0.115 -0.015 0.163 0.001 0.157 -0.007 0.153
20 .0.371 0.167 -0.017 0.228 -0.013 0.225 -0.012 0.206
0.2 TP -0.192 - 0.000 - 0.000 - 0.000 -
40 .0.208 0.149 -0.002 0.158 -0.016 0.156 -0.021 0.155
20 .0.204 0.202 -0.030 0.211 -0.035 0.196 -0.029 0.195
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Table 52
Mean Estimat~d Par:cial Autocorrelation (PACF) and
Ewpirical Standard Error (SE)
Moving Average Processes
MA n Lag 2 Lag 3 Lag &4 Estimated
PACF SE PACF SE PACF SE SE

0.8 TP -0.312 - -0.221 - -0.165 - -

40 .0.311 0.131 -0.194 0.137 0.042 0.162 0.167

20 .0.298 0.177 -0.143 0.172 0.016 0.213 0.250
0.5 iP -0.190 - -0.094 - -0.047 - -

40 .0.213  0.133 -0.097 0.132 0.005 0.149 0.167

20 .0.216 ©0.190 -0.091 0.196 -0.016 0.199 0.250
0.2 TP -0.038 - -0.008 - -0.002 - -

40 .0.072 0.146 -0.026 0.149 -0.036 0.148 0.167

20 .0.122 0.198 -0.060 0.188 -0.058 0.182 0.250
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Table 53
Mean Estimated Autocorrelation (ACF) and
Empirical Standard Error (SE)
Integrated Moving Average Processes
IMA n Lag 1 Lag 2 Lag 3 Lag 4
ACF SE ACF SE ACF SE ACF SE
0.8 TP -0.488 - 0.000 - 0.000 -
40 0.020 0.110 -0.440 0.116 0.002 0.177 -0.023 0.171
20 0.013 0.151 -0.419 0.157 -0.011 0.225 -0.011 0.220
0.5 TP -0.400 - 0.000 - 0.000 -
40 0.150 0.113 -0.332 0.129 -0.018 0.168 -0.025 0.171
20 0.128 0.167 -0.319 0.174 -0.017 0.220 -0.043 0.205
0.2 TP -0.192 - 0.000 - 0.000 -
40 0.33 0.119 -0.167 0.161 -0.033 0.170 -0.031 0.167
20 0.297 0.170 -0.186 0.223 -0.052 0.211 -0.057 0.208
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Table 54
Mean Estimated Partial Autocorrelation (PACF) and
Empirical Standard Error (SE)
Integrated Moving Average Processes
IMA n Lag 2 Lag 3 Lag 4 Estimated
PACF SE PACF SE PACF SE SE

0.8 TP -0.488 - -0.312 - -0.221 - -

40 -0.458 0.115 0.028 0.136 -0.228 0.107 0.167

20 -0.452 0.151 0.012 0.183 -0.204 0.141 0.250
0.5 TP -0.400 - -0.190 - -0.094 - -

40 -0.380 0.118 0.123 0.147 -0.148 0.136 0.167

20 -0.380 0.160 0.092 0.187 -0.165 0.155 0.250
0.2 TP -0.192 - -0.038 - -0.008 - -

40 -0.334 0.125 0.183 0.144 -0.057 0.161 0.167

20 -0.339 0.174 0.117 0.185 -0.111 0.180 0.250
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Table 55
Mean Estimated Autocorrelation (ACF) and
Empirical Standard Error (SE)
Nonstationary Processes
NS n Lag 1 Lag 2 Lag 3 Lag 4
ACF SE ACF SE ACF SE ACF SE
0.0 TP 0.000 - 0.000 - 0.000 -
40 0.458 0.107 -0.049 0.174 -0.045 0.175 -0.051 0.175
20 0.394 0.160 -0.122 0.221 -0.093 0.210 -0.083 0.206
Table 56
Mean Estimated Partial Autocorrelation (PACF) and
Empirical Standard Error (SE)
Nonstationary Processes
NS n Lag 2 Lag 3 Lag 4 Estimated
PACF SE PACF SE PACF SE SE
v.0 TP 0.000 - 0.000 - -
40 .0.34 0.124 0.185 0.136 -0.017 0.162 0.167

20 .0.368 0.161 0.127 0.196 -0.082 0.182 0.250
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Mean Estimated Autocorrelation (ACF) and

Empirical Standard Error (SE)

White Noise
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WN n Lag 1 Lag 3 Lag 4
CF SF SE ACF SE
0.0 TP s 0.000 - 0.000
40 .0.029 0.150 -0.030 0.148 -0.031 0.l44 -0.C28 0.140
20 .0.064 0.205 -0.050 0.205 -0.035 0.203 -C.044 0.185
Table 58

Mean Estimated Partial Autocorrelation (PACF) and

Empirical Standard Error

White Noise

WN n Lag 2
PACF SE
0.0 TP 0.000 -
40 -0.055 0.149

20 -0.101 0.206

(SE)

Lag 4 Estimated
PACF SE SE
0.000 - -

-0 049 0.133 0.167
-0.080 0.171 0.250
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Accuracy of Correlation Parameter Estinates

The results of the comparison of the estimated standard error of
the autocorrelation function and empirical standard error assessed as
the standard deviation of the estimates over 500 replications are
presented in Tables 59 to 63. For the Autoregressive processes, the
mean estimated standard error is consistently gre.ter than the empirical

andard error. The discrepancy between the estimated and empirical
standard errors is largest for the Autoregressive processes with greater
values of the correlat{on parameter. Also, the discrepancy is related
to the lengtt of the time series realization. Table 59 illustrates the
results at ‘ags 1 through 4, respectively.

For the Mcving Average processes, the estimated standard errors at
those lags where the true autocorrelation parameter is equal to zero
(lags 2, 3, and 4) are relatively close to the empirical estimates of
the standard error for the longer series of forty observations. On the
other hand, at lag 1 there is a tendency to overestimate the standard
error of the autocorrelation coefficient. These results are demonstrat-
ed in Table 60.

For the Integrated Moving Average processes, again at those lags
where the true autocorrelation parameter ic equal to zero, the es.imated
standard errors are relatively close to the empirical estin. :s of the
standard error for the longer length series. Whereas at lr- 1 and lag 2
there is a tendency to ¢ ‘ercstimate the standard error of the autocorre-
lation coefficient. These results are shown in Table 61. For the

Nonstationary series, paralle’ results occurred and are demonstrated in

Table 62.
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For White Noise, the mean estimated standard error is consistently
greater than the empirical standard error. The discrepancy is greatest
at increasing lags and decreasing series length. Table 63 {illustrates
these results.

Therefore, the procedure for estimating the approximate standard
errors of the autocorrelation function often overestimates the actual
magnitude of the standard error. The greater the autocorrelation
coeffi ient differs from zero, the greater the standard error estimates
deviate from the true standard error. In most conditions, the estimated
standard errors are larger than the true values, which may result (n a
large Type II error rate. Series lengths of forty and less observations
provide relatively inaccurate estimates of the staundard error of the

autocorrelation coefficients.

O
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Table 59
Mean Estimated Standard Error (EST) and
Emuirical Standard Error (EMP)
of the Autocorrelation Function
Autoregressive Processes
Lag 1 Lag 2 Lag 3 Lag &
AR n EST EMP EST EMP EST EMP EST EMP
¢
0.8
40 0.158 0.117 0.222 0.177 0.246 0.207 0.258 0.175
70 0.224 0.192 0.290 0.243 0.311 0.238 0.321 0.219
¢
0.5
40 0.158 0.141 ).188 0.172 0.195 0.169 0.199 0.165
20 0.224 0.200 0.258 0.216 0.268 0.213 0.276 0.193
)
02
40 0.158 0.151 0.1 ).152 0.168 0.158 0.172 0.154
20 0.224 0.208 0.235 0.199 0.243 0.197 0.251 0.181
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Table 60
Mean Estimated Standard Error (EST) and
trpirical Standard Error (EMP)
of the Autocorrelation Function
Moving Average Processes
Lag 1 Lag 2 Lag 3 Lag 4
MA n EST EMP EST EMP EST ENP EST EMP
+]
0.8
40 0.158 0.118 0.190 0.186 0.195 0.173 0.198 0.173
20 0.224 0.155 0.268 0.235 0.278 0.228 0.286 0.221
)
0.5
40 0.158 0.115 0.182 0.163 0.185 0.157 0.189 0.153
20 0.224 0.167 0.257 0.228 0.267 0.225 0.276 0.206
Q
0.2
40 0.158 0.149 0.168 0.158 0.171 0.156 0.175 0.155
20 0.224 0.202 0.241 0.211 0.250 0.196 0.257 0.195
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Table 61
Mean Estimated Standard Error (EST) and
Empirical Standard Error (EMP)
of the Autocorrelat‘on Function
Integrated Moving Average Processes
Lag 1 Lag 2 Lag 3 Lag &4
IMA n EST EMP EST EMP EST EMP EST EMP
]
0.8
40 0.15%0 0 0.160 0.116 0.189 0.177 0.193 0.171
20 0.224 )1 0.229 0©.157 0.268 0.225 0.277 0.220
]
0.5
40 0.158 0.113 0.163 0.129 0.182 0.168 0.185 0.171
20 0.224 0.167 0.233 0.174 0.259 0.220 0.268 0.205
0
0.2
40 0.158 0.119 0.177 0.161 0.184 0.170 0.188 0.167
20 0.224 0.170 0.264 0.223 0.264 0.211 0.272 0.208
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Table 62
Mean Estimated Standard Error (EST) and
Empirical Standard Error (EMP)
of the Autocorrelation Function
Nonstationary Processes
Lag 1 Lag 2 Lag 3 Lag 4
NS n EST EMP EST EMP EST EMP EST EMP
0.0
40 0.158 0.107 0.189 0.174 0.194 0.175 0.198 0.175
20 0.224 0.160 0.260 0.221 0.272 0.210 0.281 0.206
Table 63
Mean Estimated Standard Error (EST) and
Empirical Standard Error (EMP)
of the Autocorrelation Function
White Noise
Lag 1 Lag 2 Lag 3 Lag 4
WN n EST EMP EST EMP EST EMP EST EMP
0.0
40 0.158 0.150 0.162 0.148 0.165 0.144 0.168 0.140
20 0.224 0.205 0.233 0.205 0.242 0.203 0.251 0.185
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The proportion of replications for which the estimate was outside
the region of nominal acceptance were calculated, resulting in a Type 1

error rate for conditions in which the true utocorrelation is equal to

zero, and a power estimate for those condi - - with a non-zero autocor-
relation parameter. The resul”s are prese in Tables 64 to 68. For
the Autoregressive processes in Table 6 .ne autocorrelation function

is greater than zero for lags 1 throuph 4. Thus .:jection of the null
hypothesis is a measure of the powe of the procedure to detect a
significant autocorrelation parameter. It can be seen that the power of
the test varies with the length of the time series realization and the
magnitude of the parameter. The theoretical autocorrelation function
for the Autoregressive process is characterized by an exponential rate
of decay. As the lag increases, the autocorrelation parameter of an
Autoregressive process becomes smaller and more difficult to detect.
The proportion of null hypotheses rejected for the test of the partial
autocorrelation coefficient are also presented. The coefficients are
zero for &ll cases and the Type I error in these conditions are very
close to the nominal value of alpha with a tendency toward a deflated
Type 1 error rate.

Moving Average processes are presented in Table 65. In this
situation. the autocorrelation coefficient at lags greater than 1 is
equal to zero. The empirical Type 1 error rates in these cases is
relatively close to the nominal alpha level of 0.05. The power to
detect true differences from zero at lag 1 is fairly gcod for the time
series realization of length forty and high autocorrelation parameter

values. Failure to consider autocorrelation coefficients at lags 2 and
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beyond as different from zero may result in a misidentification of an
Autoregressive process as a Moving Average process.

The Integrated Moving Average processes are 1llustrated in Table
66. Sir'l\ar results are found in the Nonstationary processes presented
in Table o7. Fairly good power levels are found with series length of
forty observations. The Type 1 error rate for the White Noise process
is depicted in Table 68. Empirical Type I error rates for White Noise
are similar or slightly lower than the nominal error rate of 0.05.
Therefore, for practical implications, the power to detect true differ-
ences from zero at each lag 1 through 4 is necessary to form accurate
judgments about the form of the autocorrelation and partial autocorrela-
tion functions in order to properly identify a time series process.

A chi-square test (Q-statistic) of lags 1 through 10 was performed
to determine whether the series or differenced serjas 1is White Noise.
Regions of nominal acceptance or rejection were constructed around the
correlation parameter estimates based on the chi-square distribution
with df = k - p - q, and the approximation of the standard error of the
estimator. The proportion of replications that resulted in the
rejection of the null hypothesis, Hy:ACF(l) = ... = ACF(k) = 0, were
calculated for each condition. The null hypothesis states that the
residual autocorrelation function is not different than White Noise.
Tables 69 and 70 present the estimates of the empirical Type I error
rates for conditions in which the null hypothesis is true. The higher
rate of Type I error for longer length series could be explained by the
use of only up to lag 10 for estimation of the Q-statistic. For the
shorter length series of twenty observations, the empirical alpha level

{s considerably less than the noaminal alpha level. The test statistic
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is sensitive to th. value of k, that is, to the number of lags in the
residual autocorrelation function. For a relatively long autocorrela-
tion function of 40 lags, the test statistic is likely to underestimate
the serial correlation in the model residuals. The problea here is in
that using an autocorrelation function of twenty lags, the null hypothe-
sis might be rejected. For the same set of residuials, using an autocor-
relation of 40 lags, the null hypothesis might not be rejected. It is
recommended that a minimum of 20 lags be used in calculation of the tast
statistic. The conditions when bias of the Q-statistic is troublesome
occur with the estimation procedure, relatively short time series
realizations, and relatively high degrees of serial dependence.

Time Series model effect on correlation parameter estimates. In
summary, aucocorrelation and partial autocorrelation functions of five
different time series processes vere examined. For each of the models,
the length of the time series realization and the value of the serial
dependence of the observation were -aried. The approximate fdentifica-
tion of an ARIMA (p, d, q) process is difficult for short series.
Given the combination of bias and large standard errors of the estimated
autocorrelation and partial autocorrelation functions, the accuracy of
ARIMA models identified on the basis of forty or less observations is
questionable. The power to detect autocorrelation parameters is greater
at longer length series. Also, a correlogram should not be computed
without regard to intervention effects. The presence of an intervention

effect can greatly increase autocorrelation coefficients.
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Table 64
Proportion of Null Hypotheses Rejected for
Four Lags of Estimated Autocorrelations (ACF)
and Partial Autocorrelations (PACF)
Autoregressive Processes
Nominal Alpha = 0.05
AR n ACFl ACF2 ACF3 ACF4 PACF2 PACF3 PACF4
¢
0.8 TP 0.800 0.640 0.512 0.410 0.000 0.000 0.000
40 0.994 0.560 0.208 0.056 0.016 0.002 0.004
20 0.774 0.114 0.000 0.000 0.016 0.000 0.004
¢
0.5 TP 0.500 0.250 0.125 0.062 0.000 0.000 0.000
40 0.812 0.118 0.028 0.016 0.028 0.004 0.026
20 0.378 0.022 0.044 0.004 0.020 0.012 0.006
¢
0.2 TP 0.200 0.040 0.008 0.002 0.000 0.000 0.000
40 0.152 0.040 0.038 0.022 0.038 0.026 0.030
20 0.062 0.018 0.018 0.006 0.012 0.016 0.004
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Table 65
Proportion of Null Hypotheses Rejected for
Four Lags of Estimated Autocorrelations (ACF)
and Partial Autocorrelations (PACF)
Moving Average Proces.:es
Nominal Alpha = 0.05
MA n ACF1 ACF2 ACF3 ACF4 PACF2 PACF3 PACF4
0
0.8 TP -0.488 0.000 0.000 0.000 -0.312 -0.221 -0.165
40 0.884 0.044 0.026 0.030 0.426 0.138 0.050
20 0.526 0.018 ©0.008 0.002 0.126 0.022 0.026
0
0.5 TP .0.400 0.00¢ 0.000 0.000 -0.190 -0.094  -G.047
40 0.738 0.028 0.020 0.016 0.206 0.032 0.024
20 0.650 0.022 0.012 0.008 0.058 0.01% 0.018
')
0.2 TP -0.192 0.000 ©0.000 0.000 -0.038 -0.008 -0.002
40 0.250 0.038 0.028 0.020 0.028 0.022 0.030
20 0.116 0.018 0.010 0.000 0.024 0.012 0.000
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Table 66
Proportion of Null Hypotheses Rejected for
Four Lags of Estimated Autocorrelations (ACF)
and Partial Autocorrelations (PACF)
Integrated Moving Average Processes
Nominal Alpha = 0.05
IMA n ACF1 ACF2 ACF3 ACF4 PACF2 PACF3 PACF4
0
0.8 TP .0.488 0.000 0.000 -0.488 -7.312 -0.221
40 0.006 0.85% 0.032 0.024 0.860 0.010 0.170
20 0.008 0.412 0.020 0.008 0.390 0.004 0.022
0
0.5 TP -0.400 0.000 ©0.000 -0.400 -0.190 -0.09
40 0.062 0.526 0.024 0.028 0.654 0.080 0.086
20 0.024 0.220 0.008 0.008 0.238 0.010 0.006
0
0.2 TP -0.192 0.000 0.000 -0.192 -0.038 -0.008
40 0.568 0.120 0.036 0.028 0.542 0.142 0.048
20 0.192 0.090 0.012 0.010 0.192 0.016 0.012
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Table 67
Proportion of Null Hypotheses Rejected for
Four Lags of Estimated Autccorrvelations (ACF)
and Partial Autocorrelations (PACF)
Nonstationary Processes
Nominal Alpha = 0.05

NS TP ACF1 ACF2 ACF3 ACF4 PACF2  PACF3 PACF4
0.00 TP 0.000 0.000 0.000 0.000 0.000

40 0.900 0.03+ 0.024 0.026 0.532 0.138 0.034

20 0.378 0.030 0.012 0.000 0.214 0.028 0.006
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Table 68
Proportion of Null Hypotheses Rejected for
Four Lags of Estimated Autocorrelations (ACF)
and Partial Autocorrelations (PACF)
White Noise

Nominal Alpha = 0.05

WN n ACF1l ACF2 ACF3 ACF4 PACF2 PACF3 PACF4

0.00 TP 0.000 0.000 0.000 0.000 0.000 0.000 0.000

40 0.038 0.026 0.018 0.018 0.032 0.022 0.024
20 0.044 0.020 0.018 0.008 0.022 0.012 0.004




Table 69

Proportion of Null Hypotheses Rejected for Ten Lags

of Autocorrelation (ACF) Estimates

Nominal Alpha = 0.05

177

True Value ARIMA MODEL
Parameter n AR MA IMA
0.8
40 0.826 0.198 0.142
20 0.074 0.008 0.000
0.5
40 0.266 0.096 0.088
20 0.002 0.002 0.000
0.2
40 0.026 0.050 0.086
20 0.000 0.000 0.002
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Table 70
Proportion of Null Hypotheses Rejected for Ten Lags
of Autocorrelation (ACF) Estimates
Nominal Alpha = 0.05
True Value ARIMA MODEL
Parameter n NS WN
0.0

40 0.204 0.008

20 0.000 0.000




CHAPTER VI

Summary and Conclusions

The primary purpose of this study was to explore the use of Box-
Jenkins-T’ao interrupted time series models in assessing intervention
effects with short time series realizations. Monte Carlo sisulations
were conducted to provice information with respect to the small sample
properties of several estimators used in time series analysis. The
first set of Monte Carlo simulations examined the small sample proper-
ties of Box and Tiao’'s (1965, 1975) test statistic for the presence of
an intervention effect in a time series process, while the second set of
simulations investigated procedures used in the model identification
stage of ARIMA (p, d, q) time series analysis. 1In all of the simula-
tions, the nature of the autocorrelation structure and the length of the
time series realization were manipulated.

The discussion in the following sections summarizes the results of
the study in terms of the research questions posed and the relationship
of these results to previous relevant studies. Limitations of the study
as wvell as suggestions for further investigation in the application of

time series analysis in clinical research are proposed.

Intervention Effect Estimation in Time Sexies Processes
Monte Carlo simulations were used to examine the statistical test
of an abrupt, permanent change in level of a stationary time series
process as proposed by Box and Tiao (1965, 1975). The criteria employed
for assessing the estimation of intervention effects in short time

series processes were: (1) Type I error rate, (2) power to detect a non-

179
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zero intervention effect, and (3) accuracy of the estimates of the
{ntervention effect. In this study, the estimates of the intervenrion
parameter do not seem to be biased. When the correct ARIMA model v s
specified, the estimates of the intervention effect deviated only
slightly from the true value. The results of the study also indicate
that generally, the estimated standard error of the intervent.on
component was considerably smaller than the standard deviation of the
500 estimates of the intervention effect. In addition, the Type 1 error
rate of the test statistic was inflated for most conditions considered,
with the inflation being smaller in longer series than in shorter time
series realizations. This result can most likely be attributed to the
noted underestimation of the standard error of the intervention effect
and the use of the L.ast squares estimation procedure. This problea was
notably acute for short Moving Average time series. Finally, the power
of the test statistic is less than desirable for many conditions that
were studied.

Therefore, although the correct ARIMA model works fairly well in
the intervention context, the results also indicate that for every
model, there is at least one nmisidentification that leads to serious
error. Thus no single model appears adequate for all time series
processes. An arbitrary strategy of always fitting a particular kind of
ARIMA model will lead to unacceptable Type 1 error rates in some cases
and very reduced power in other situations. For example, always using
an Autoregressive model will give reduced power if the true model is
Moving Average; always using a Moving Average model will give increased
Type 1 error if the true model is Autoregressive, especially with high

values of ¢; always using White Noise will give high Type I errors when



181

the true model is Autoregressive, or will give a too conservative test
1f the true model is Moving Average. However, the Autoregressive sodel
tended, oversll, to give intervention effect estimates that were fairly
close to the true value. Inaccurate estimates were encountered vhen the
model misidentification involved an incorrect order of differencing. In
goneral, misspecifying the order of differencing led to {ntervention
effect estimates that were relatively extreme to the trus value.
Differencing a time series process that does not require it, gave low
Type 1 error rates, but had a detrimental effect on power. While no
single ARIMA model can be fit in all cases, there are models that, at
particular values of the correlation coefficient, behave very such like
other models either in terms of Type I error or power. In the case of
these similar models, misidentifications may not have as serious con-
sequences. Furthermore, problems with the estimation of the interven-
tion effect become more severe as serial correlation increases; the
inflation of Type I error becomes greater and there is a large reduction
in the statistical power to detect an intervention effect.

The problems encountered in intervention effect estimation with
short time series processes of twenty and forty data points were
generally consistent with results of three other relevant studies.
Padia (1975) used 122 data points and fixed values of the parameters for
the misidentified ARIMA models. Padia found inflated Type I error rates
for intervention effect estimates when identifying a differenced model
as White Noise, misidentifying an Autoregressire model as a Moving
Average model, and decreased Type 1 error rates vhen misidentifying a
true Moving Average series as Autoregressive or White Noise models.

Padia also claimed that regardless of the value of differencing, the
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results of the misidentifications would be the same. For example,
risidentification of the Moving Average model as White Noise (d=0)
should give the same results as misidentifying the Integrated Moving
Average modsl as the Nonstationary model (d=1). In the present study,
the results for Type I error of {ntervention effect estimates when
misidentifying the Moving Average model as White Noise were 0.00 to
0.02, whereas misidentifying the Integrated Moving Average model as the
Nonstationary model gave Type I error rates of 0.03 to 0.07.

Marquis (1983) used twenty and 50 data points with varying values
of the parameters for the misidentified ARIMA wmodels. Marquis also
found estimates of the Type I error rates for intervention effects
~onsiderably higher than the nominal level when the model is inadequate-
ly differenced. Type Il error rates reported were consistent with, yet
lower than, those of the present study. Misidentifying a true Moving
Average series as Autoregressive or White Noise models achieved de-
creased intervention effect Type I error rates. However, Marquis’ Type
1 error rates when identifying a differenced model as White Noise were
nearly half as large as those obtained by Padia (1975). Reduced power
was also found in misidentifying the Moving Average model as White Noise
or the Nonstarionary model. Marquis found very conservative interven-
tion effect Type 1 error rates (0.00 to 0.01) when misidentifying the
Moving Average model as White Noise, whereas misidentifying the Inte-
grated Moving Average as the Nonstationary model gave error rates of
0.04 to 0.05.

White (1985) used 60, 90, 120, or 150 time points with varying
values of the parameters for only the Autoregressive time series

process. No consequences of testing for an intervention effect when the
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ARINA (p, 4, q) model is misidentified were investigated. Similar

results in intervention effect estimation problems — the magnitude of
standard errors, the accuracy of estimsted standard errors, inflation of
Type 1 error rates, and lack of power — wexe also found with the
Autoregressive model in short time series realizations and increased
serial correlation. Type I error rates reported over 1000 replications
ranged from 0.14 to v.l/ at values of ¢ equal to 0.9 and 0.3, respec-
tively.

In summary, the size of the error in estimation of intervention
effects generally decreased with the increased length of time series
realizations. The mean estimated standard error was generally smaller
than the empirically obtained standard error, which increased the Type I
error rate of intervention effect estimates. The inflated Type 1 error
rate in estimation of intervention effects was remarkably predominate
vith Moving Average series. As tests of significance are based on the
estimated standard error, the bias in the least squares procedure for
estimating the approximate standard error of the autocorrelation
function overestimated the actual msagnitude of the standard error,
thereby contributing to high Type 1 error rates and low power. The
pover of intervention effect detection increased with the number of dats
points. The placement of the intervention parameter in the time series
realization did not greatly affect the problems encountered in estima-
tion with short time series processes. As autocorrelation between data
points contributes to the accuracy of interrupted time series aralysis,
ARIMA model identification is therefore a crucial step in the assessment

of intervention effects.
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Iime Series Model Estimation

Monte Carlo simulations were used to examine the properties of the
estimators of autocorrelation and partial autocorrelation in time series
processes. The estimated autocorrelation and partial autocorrelation
functions provide the basis for model identification, and thus, an
understanding of their small sample properties is essential for the
meaningful application of interrupted time series analysis. The results
of this study emphasize the importance of measuring the time series
process over a sufficient number of data points. As demonstrated in
this set of simulations, the problems of estimation and discrepancy in
the estimates are attenuated as the number of observations in the time
series decreases. In comparing the estimated values of the standard
error with empirical estimates of the standard error of the autocorrela-
tion and partial autocorrelation functions, a wide discrepancy for many
of the conditions investigated was found, with the estimated standard
error generally exceeding the empirical standard error. As the tests of
significance are based on the estimated standard errors, the empirical
Type 1 error rates and power of the test statistic for short time series
realizations tend to be insufficient due to the overestimation of the
standard error of the autocorrelation function.

The results indicate that, in fact, it is difficult to identify the
correct structure of correlation in the data with as few as twenty
observations; the power to detect a significant ARIMA parameter in the
short series is quite low. When the number of data points increased to
forty, the amount of bias generally decreased and the power increased.
These results reinforce previous caveats in the literature that time

series of limited length make identification of a correct model diffi-
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cult (Box & Jenkins, 1976; Glass, Willson & Gottman, 1975; Hartmamn,

GCottman, Jones, Gardner, Kazdin & Vaught, 1980; Jones, Vaught &
Weinrott, 1977; Osborn, 1980). The direction and amount of bias depends
on the actual values of the correlation parameter, the method for
calculating the initial values in the estimation procedure, and the
actual estimation function used. The results of this study generally
follow the pattern reported in other studies; an underestimation of ¢ at
all values of the correlation coefficient and an overestimation of 0.

In summary, the estimated autocorrelation and partial autocorrela-
tion functions improve with increasing data points; the standard error
of estimation decreases with the increased length of time series
realizations. Thus, the percentage of null hypotheses rejected in-
creases with a larger number of observations; the power to detect true
differences from zero at lag 1 is greater for longer time series, with
Type 1 error rates being closer to the nominal level. In the model
{dentification stage of time series analysis, problems in estimation of
the autocorrelation function increase as the serial dependency becomes

more severe.

Limitations of the Study
The findings of the present study are limited in several respects.
The limitations of the study relate to those parameters that were not
manipulated or were limited in the values assumed. The conditions
selected for investigation were limited to: the AR(1), MA(1l), IMA(1,1),
NS, and WN models; an intervention component of an abrupt permanent
change in level added at an even or uneven time point; correlation

parameter values of 0.2, 0.5, or 0.8; and time series realizations of
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length twenty or forty observations. Numerous other conditions could
have been selected for investigation which may have led to different
results. Investigation of other first-order models as well as second-
order models, and the use of negative values for the correlation
parameters, especially in Moving Average models, could be undertaken.

The practical considerations in using simulation procedures
involved conducting 500 replications for each condition. Although the
trends in the ARIMA models and misspecifications were consistent, more
replications may have given a better indication of the population value.
Specifically, more information on the estimates of Type 1 error for the
Autoregressive and Moving Average models with only twenty data points
would be beneficial. As well, full maximum 1likelihood estimation
procedures, although costly, may be useful in analyzing a limited set of
time series realizations.

Although the significance of the placement of the intervention
effect was investigated, another type of model misspecification that
warrants attention is the change in the time series process at the point
of intervention. The intervention component may simultaneously affect
both the level of the time series process and the nature of the interde-
pendence among the observations; however, this study did not investigate
this form of model misspecification. An assumption of this study was
that the intervention did not change the underlying ARIMA model.
Investigation of time series in which the intervention may change the
variance of the series, or change the size of the correlation parameter,
or change the ARIMA model, is needed to determine how to recognize

these changes and how they may affect intervention effect assessment.
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conclusions From Simulation Studies

The primary purpose of this study was to explore the use of Box-
Jenkins-Tiao interrupted time series models in assessing intervention
effects in small samples. Since the mathematical the~ry on which the
procedures are based assumes large samples, it is difficult to provide
definitive guidelines for the application of interrupted time series
analysis with limited observations. 1In addition to providing specific
information with respect to the small sample properties of the estima-
tors used in time series analysis, what conclusions can be drawn by
considering these two sets of Monte Carlo simulations and what questions

arise from these results to guide future research?

Length of Time Series Realizations

An important conclusion concerns the length of tks time series
realization that is necessary to obtain meaningful results on the basis
of the statistical procedures in interrupted time series experiments.
The small sample properties of the test statistic are sample dependent,
and thus vary according to the autocorrelation structure of a particular
data set. This difficulty is accentuated by the large standard error of
the estimated autocorrelation coefficients that are b;sed on a small
nunber of data points. In addition, the problems are magnified when
analyzing time series data with extreme serial dependence. Therefore,
the extensive discrepancy and bias of the small sample estimates linit
the usefulness of pilot testing as a method of evaluating the extent of
serial dependency in a time series process. Consequently, in applica-

tions of time series analysis, the number of observations required is
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determined in the absence of knowledge concerning the autocorrelation
structure of the process.

Based on the findings presented, it is recommended that time series
realizations consist of more than forty observations. The length of
time series realizations play a critical role in determining the quality
of estimates that are obtained when applying interrupted time series
procedures. The magnitude of standard errors, inaccuracy of estimated
standard errors, inflation of Type I error rates, and lack of power, are
less severe for more lengthy time series realizations. Thus, effort
should be made to obtain lengthy data sets, and recognize that conclu-

sions based on short time series realizations may be misleading.

Robustness of Time Series Procedures

Additional concerns in the application of time series analysis to
actual data sets involves the assumptions of stationarity and the proper
fdentification of an ARIMA (p, d, q) model. The results presented in
this study are based on the assumptions of homogeneity of variance and
normal distribution of the error term in simulated data sets that are
generated according to known stationary ARIMA processes. In actual
practice, data sets are not likely to fit an identified ARIMA (p, 4, Q)
process as closely as the generated data sets of the Monte Carlo
simulations. Furthermore, in social science research, time series data
are unlikely to conform to the assumption of stationarity, and thus, the
idiosyncracies of the actual data sets may magnify the concerns identi-
fied in the present study. How well these procedures work in short
time series where the assumptions of the model are violated requires

more investigation.



189

Serial Dependence in Time Series Processes

Another general conclusion concerns the degree of serial dependence
in time series processes. Generally, for all conditions examined in
this study, high serial dependence increases the severity of estimation
problems in interrupted time series procedures. In the model identifi-
cation stage of time series analysis, both the bias in the estimation
of the autocorrelation function and the overestimation of the standard
error of autocorrelation coefficients becomes more severe as the serial
dependence becomes more severe. Furthermore, problems in the estimation
of the intervention component become more severe as the serial correla-
tion increases: inflation of Type 1 error increases and the statistical
power to detect an intervention effect decreases. It is important for
researchers to be aware of the severity of the estimation problems that
are encountered when the autocorrelation among data points is large.

In summary, although the statistical analysis of time series
processes is a valuable tool, it is important in the application of
ARIMA models, to be aware of the limitations and potential problems with
the procedures. Two questions should be addressed: (1) Given that -ome
correct ARIMA model identifications will occur as well as some misiden-
tifications, what expectations can be drawn regarding Type I error and
power to detect an intervention effect? (2) Given that the correct
ARIMA model works well in assessing intervention effects, and given that
ARIMA model misidentifications can lead to serious error, what guide-
lines are available to identify the correct model and rule out unsatis-

factory models, in short time series realizations?
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Iype I Exror Rates and Power for Intervention Effect Estimates

In practical applications of time series analysis with short
series, it appears that if unsatisfactory ARIMA models can be ruled out,
one might expect a slightly higher Type I error rate than the nominal
level and somewhat lower power than would be obtained by always using
the correct model. Definite statements regarding this conclusion depend
upon the likelihood of being both able to rule out ARIMA models with
very serious errors and to select models that are correct or close to
the true ARIMA model. As noted, selection of the Moving Average model,
particularly which short time series, renders highly inflated Type 1
errors in estimation of the intervention effect. The bias in the least
squares analysis procedure results in underestimation of the standard
error of the intervention component for Moving Average processes.
Application of the Moving Average model to short time series should be

done with caution and knowledge of the bias in parameter estimation.

Iime Series Model Identification

A useful tool in the ARIMA model {dentification stage of a time
series process 1is the autocorrelation function. Anderson (1976)
suggests that the autocorrelation function is unstable for lags greater
than n/4, where n is the number of observations. In the case of short
time series realizations with twenty observations, only five values of
the autocorrelation function would be used to help identify the model.
This appears to be too few to be helpful in model identification. The
autocorrelation function is used to determine the adequacy of the
selected ARIMA model. The lack of significant correlation in the

residuals is generally assumed to be confirming evidence for the fit of
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an ARIMA model. The usefulness of this tool for short series of tyenty
and even forty observations is questionable. The findings affirmeq (hat
the power to detect a significant ARIMA parameter in short series is
low, especially when the values of the autocorrelation coefficien: sre
small and especially for second and higher autocorrelation funcejons:
As the value of the autocorrelation coefficient increases, the power t©
detect a significant correlation coefficient increases. Cap tVvo
different ARIMA models for the same time series process have signifgicsnt
ARIMA parameters? There are no clear criteria for selecting the correct
model in short time series processes.

Another diagnostic tool for the adequacy of an ARIMA model ¢, the
Q-statistic which considers the general residual autocorre]gtion
function taken as a whole. The statistic is sensitive to the valye ©°f
the number of lags (k) (Davis, Triggs, & Newbold, 1977). Newbold (1931)
reported that k must be at least twenty, a value that precludes using Le
in series of twenty data points. Additionally, in ruling out poor ARIMA
model choices, the standard error of estimate tends to reflece the
degree of accuracy of the fitted model. As noted, in short time geries
the approximate standard errors of the autocorrelation function often
overestimate the actual magnitude of the standard errors. The grester
the autocorrelation coefficient differs from zero, the greatey the
standard error estimates deviate from the true standard error. H.rquls
(1983) reported that ARIMA misidentifications with serious conseqyuefnces
generally had an average residual mean square that was signifjcently
larger than that associated with the true ARIMA model. Perhaps vith

further investigation, the residual mean square may prove to pe a
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dlagnostic tool {n ruling Out unsatisfactory ARIMA models in short time
series processes, |

Another aid in determining the correct ARIMA model may be to
exanine the patteyns which appear to develop in the data. It was noted
from the simulatign dats that the parameter estimates tended to cluster
{n patterns baseq on the OFder of differencing; the Nonstationary and
Integrated Moving Averag® model estimates tended to group together,
while the Moving average and White Noise model estimates were generally
similar. Moreovey, the ©Stimates of the Autoregressive model were
generally closest ¢o the true model. Similarly, the pattern that occurs
in the standard qrror of eStimates may also aid in selecting a correct
ARIMA model. Dogg the Moving Average model consistently underestimate
the standard erroy? For the® ARIMA models requiring differencing, which
assumed non-diffeyenced wodel has the highest error of estimate? For a
true ARIMA model, which asSumed model has the highest average residual
mean square?

In summary, yith short ctime series processes it is important to
identify the coryrect ARIMA model. The tools used to identify the
correct model neeq to be adapted and further investigated to be helpful
in the identificqpion process of short time series processes. Although
methods for the ,cat15t1C‘1 analysis of time series processes are a
functional tool, {¢ is important to be aware of the inherent limitations
and potential pyobless 1N sPplication of interrupted time series

procedures.

n

-
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Application of Intarrxupted Time Series Analysis

The measurement of the varied phenomena of interest to nurses spans
the field of basic, applied, and clinical research as it is germane to
nursing practice. The refinement of research techniques to measure the
phenomena that are uniquely nursing are crucial issues in aursing
research. There is a relationship between research in the fleld of
professional study, the nature of research in that field, ard the
obligation to ask questions about how to improve practice. Doer nursing
care make a difference? The questions of intervention vesearch are’ Is
the intervention effective? When is the intervention most effective?
Has a reliable change been produced? The issue is one of separating
intervention effects from mere fluctuations. Time series analysis
procedures may be a viable strategy for reducing the uncertainty in
nursing interventions. An analysis of outcome studies in nursing
research could be done to determine what effect time series designs and
analysis techniques would have on the results. Specific questions to be
addressed are: (1) When is time series analysis appropriate in nursing
research? (2) What is the degree of serial dependence in nursing data?
(3) Are interrupted time series designs applicable in nursing research?
(4) What ARIMA models are applicable in nursing research?

Data evaluation consists of methods that are used to draw conclu-
sions about behavior change. In clinical nursing research, experimental
and therapeutic criteria are invoked to evaluate data. The experimental
criterion refers to the way in which data are evaluated to determine if
an intervention has had a reliable effect on behavior. The therapeutic
criterion refers to whether the effects of the intervention are impor-

tant. Even if the change is reliable and clearly related to the
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¢ \tervention, the change may not be of clinic8l sygnificance. Statiscy.
cal anslysis provides a quantitstive method to determine if a particular
{ntervention effect is reliable and deternines whecher the change meets
the experimental criterion. Research that 18 focused on the evaluation
of nursing interventions enables nursging t° advance as a profession by
{ncreasing the scilentific base for practice, However, individual
studies of the effects of nursing {nterveNtiong on patient outcomes
frequently consist of small samples and B38Y Not produce statistically
significant results. Algo, evaluation of interyention effects can be
difficult when performance during baselin® ig often systesatically
jmproving. Statistical analysis in single-Subjact research may Provide
s valusble supplement to visual ingpection abgye the effects of an
{ntervention. Research.based nursing practice cun offer professional
nurses the means with which to quantify patient oyuccomes.

Time series analysis cospares dats OVer tige for separate phases
for an individual or group of subjects. The post basic time series
design requires one experimental unit and multip)e observations before
and after & treatment. Changes in a time series yhich coincide with the
occurrence of an intervention are presuned to pe the effects of the
{ntervention. This claim may be jnvalid; events unrelated to the
{ntervention may cause the series to chan8® abryptly at the point of
{ntervention and/or random vsriation in & time gories may be misinter-
preted as the effect of an intervention. EVen though the time series
design does not eliminate all of the problems ¢ interpreting change,
the extended time perspective strengthens the ahjlicy to attribute any

change to the experimental manipulation. The tine series design Permics
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the ruling out of the possibility that the data reflect an unstable
measurément pade only at two time points.

One major advantage of a time series design over other forms of
quasi-experi{gental analysis is that a maturational trend can be assessed
prior to the intervention. Secondly, with time series designs, the
possibilicy of a cyclical trend in the cata being interpreted as an
intervention effect is reduced. As well, a further strength of time
series designs is that they allow assessment of the pretest trend,
thereby permitting a check on the plausibility of statistical regression
accounting for alternative explanations. The main threat to internal
validity wich most single time series designs is the effect of history
-- the poggibility that factors other than the intervention came to
influence the dependent variable. A control for history is possible by
adding a no.intervention control group. Another threat is instrumenta-
tion. 1In time series designs, it is important to pay attention to the
definition of constructs and to possible changes in experimental
procedures. Simple selection can also occur in time series designs when
the compogition of the experimental unit changes abruptly at the time of
the intervention. When this happens, it is necessary to determine
wvhether the intervention caused an interruption in the series or whether
the 1htorruption was due to different persons being in the pre- and
post-intervention series. Finally, time series are subject to many
influences of a cyclical nature, including attitudes or variations in
POffOflancc, and these influences can be interpreted as intervention
effects. 4, lengthy time series is therefore required to control for and

to estimate the cyclical pattern.
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In terms of construct validity, interpretation of the data for a
single time series is not likely to be hindered if the same respondents
are repeatedly measured and if they know when the intervention was
implemented. Typically there will only be one operationalization of the
{ntervention effact in time series data. Therefore, the intervention
needs to be independently measured and tailored to a specific construct.
However, there is the difficulty of obtaining multiple measures of an
effect, as well as obtaining reasonably reliable measurements and
consequently, the time series for each measure requires separate
examination. Additionally, to determine external validity, the time
series for each experimental unit needs to be examined to determine
vhether an effect hulds across various subgroups. One 1is generally
restricted to the variables in the investigation. Finally, as noted
previously, inferential techniques based on the assumption of indepen-
dent data cannot safely be applied to nonstationary time series. The
practical significance of the failure to deal with the dependence among
observations is that null hypotheses will be rejected with high power
even when the time series evidences no abrupt intervention effect.
ARIMA time series analysis procedures help only in ruling out threats to
inferences regarding statistical conclusion validity.

In contrast to conventional tests, time series analysis depends
upon the serial dependency in the data, adjusts to the specific depen-
dency relationships among data points, and provides separate analysis
for changes in light of special characteristics of the data. The time
series design provides a method appropriate to the complexity of the
effects of interventions with human beings. However, short time series

have two undesirable consequences: (1) wmodel-fitting (especially
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differencing) is performed with less confidence in the adequacy of the
model, and (2) statistical tests of intervention effects are less likely
to detect real changes. Greater than forty observations seea necessary
to decrease Type I error and increase power of intervention effect
detection, especially with Moving Average series. In short time series
realizations where the usual identification and diagnostic procedures
may not work very well, the best strategy may be to fit all simple ARIMA
models and select the best one on the basis of the pattern of the
parameter estimates, the significant parameters, and the residual mean
square. If there is a large residual mean square, the model may be
ruled out; if the correlation parameter is not significant, the model is
probably not appropriate. Questions to guide the analysis would be:
What is the size and pattern of parameter estimates? Do the estimates
of the cocrelation parameter coincide with the expectations of the ARIMA
process? Are the estimates of the intervention effect consistent and
close in value over other models? 1Is the intervention effect signifi-
cant regardless of the ARIMA model?

This suggested method of fitting all simple ARIMA models departs
from the proposals of Simsonton (1977}, Gottman (1981), Velicer and
Harrop (1983), and Harrop and Velicer (1985), which bypass the trouble-
some identification step and apply the Autoregressive model to a vide
variety of complex time series designs. When serial correlation exists
in the errors, the corralation between observations from the same
subject would be expected to decrease as the time separation increases.
The simplest model for serial correlation when the repeated observations
on a subject are ordered in time (not randomized) 1is the first-order

Autoregressive process. Although the use of only the first-order or
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higher-order Autoregressive models is potentially more flexible, results
of the simvlations in this study support the problem of inflated error
rates. As well, perhaps the Autoregressive model may not be representa-
tive of the time series processes occurring in clinical nursing re-
search, recalling that Glass, Willson, and Gottman (1975) reported the
Integrated Moving Average model to be the most common model found in 22
out of 95 social science cases. Identification of the structure of
autocorrelation in nursing data is needed to reduce bias in detecting
the ARIMA parameters, recalling that as serial dependency increases, ic
becomes harder to estimate the ARIMA model. Determining the degree of
serial correlation in nursing processes would assist in deciding which
approach is more feasible: fitting all simple ARIMA models or the sole
use of a first-order Autoregressive process.

Despite the utility of the interrupted time series design, a number
of problems frequently arise in view of the practical and inferential
difficulties in conducting interrupted time series research. Many
clinical interventions are not implemented rapidly. A gradual versus an
abrupt change may slowly diffuse through a population so that the
intervention 1is better modeled as a diffusion ogive than as a step
function. Also, many effects are not instantaneous but occur with
unpredictable time delays which may differ among populations from one
historical moment to the next. Delayed causation may occur even vhen a
treatment is homogeneously implemented. Finally, many time series are
shorter than forty data points, with fifty observations being recommend-
ed for statistical analysis (Glass, Willson, & Gottman, 1975; Gottman,

1981; McCleary & Hay, 1980). Situations arise in clinical research when
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fewer observations than this are possible. However, more observations
are achieved than with a single pretest-posttest design.

To illustrate the use of interrupted time series analysis tech-
niques, the results of the simulation studies can be applied to poten-
tial studies in clinical nursing research. The status of a patient
undergoing intensive post-operative therapy is evaluated by monitoring
cardiovascular variables, such as heart rate, associated with the
patient. Clinically significant changes in the status of the patient
can be indicated by step changes and trends in the monitored series. At
the same time, artifacts may be obseived with external factors mnot
associated with the status of the patient. A method of . ct'ng
artifacts, step changes and slope changes, and a way of distingu: ™ung
between them 1is required. For example, post-cardiac surgery, the
variables of heart rate and arterial blood pressure could be monitored
at one-minute intervals over ninety data points. Intuitively, the time
seri~-s realization would most likely fit the Integrated Moving Average
model. Slope and step changes could then be distinguished from arti-
facts.

Another application of time series procedures could be in evaluat-
ing electrocardiogram changes following ice water ingestion by coronary
patients. Does the time and volume of ice water ingestion have an
effect on the electrical conduction of cardiac muscle? Electrocardio-
gram recordings could be taken at three, ten, and twenty-five minutes
post-ingestion. The ARIMA model would be identified and the effects of
fce water ingestion detected. The time ser‘es design assists in estab-
1ishing internal validity of these case studies and through replication,

external validity can subsequently be established.
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Time series analysis could also provide a physiological foundation
for establishing the timing as well as the effectiveness of nursing
therapies. Is there a physiological basis for the timing of electrolyte
replacements? The circadian rhythms of plasma electrolytes could be
modeled to determine the effectiveness of nursing therapies on electro-
lyte balance. For example, the results of such a study may provide
guidelines for timing potassium replacement with circadian variation tc
achieve an optimal patient response.

Numerous examples could be given where the sample in nursing
research 1is not homogeneous and single-subject time series analysis
could be applied: clinical drug trials for monitoring drug therapy in a
mentally retarded person; evaluating treatment outcomes in the elderly
where individual variation increases with age, psychomotor response
decreases, and brevity of observations is necessitated. However, if one
departs from the straightforward comparisons of changes from one phase
to another, interrupted time series analysis is of unknown relevance in
assessing the comparative effectiveness of two or more concurrent
treatments. These might be examined in a simultaneous treatment design
or a multiple-baseline design.

In conclusion, interrupted time series analysis provides a methodo-
logy for the quantitative synthesis of intra-subject design research.
Time series designs provide the opportunity for concurrent as opposed to
retrospective assessment of observations over time. To illustrate, the
recording of life events and symptoms over time might detect a time
series model of living with uncertainty of a chronic illness. By
conducting interrupted time series analysis, the clinical researcher

can: improve the quality of visually based judgements, assess more
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adequately the pattern of treataent effects, and protect against both
false acceptance of non-existent effects and the false rejection of
existent treatment effects. These benefits should compensate for the
effort required to perform the analysis and the precautions needed in
the applic: of interrupted time series analysis procedures with

short time series processes.
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TIME99
Jan 1988
Revised:
999/99-999
UNIVERSITY OF ALBERTA
Division of Educational Research Services
COMPUTER PROGRAM DOCUMENTATION
TITLE: GENERATE AN ARIMA TIME SERIES
MACHINE: AMDAHL 5270
LANGUAGE: FORTRAN 1V
PROGRAM TYPE: COMPLETE
SYSTEM: TIME
SUBPROGRAMS : INTERNAL - PVEC7, GENSER, STDDEV
XDER:SUB - TITLE, ERRR, FLGCHK, FLGCHR, CHKFMT,
PVEC, WARN

IMSL: GGUBFS, FTGEN
LIMITS: See limits from page 2

TIME: Approximately * Seconds for * Observations
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EREPARATION CARDS
Card
Seq Card Type Columns Description
1 Title Card 1-80 Any description of the job
being run. Must not be left
blank.
2 Parameter Card 1-5 Number of cases to generate
6-10 Length of time series
(max.=100)
11-15 Number of autoregressive
parameters (Max.=10)
16-20 Number of moving average
parameters (Max.-10)
21-25 ‘1’ to input starting values;
‘0’ otherwise
26-30 Number of parameter sets
(Max.=20)
31-35 1’ to include difference
specifications; 'O’ otherwise
36-40 Number of initial points to
discard
41-45 *1' to introduce shock; ‘O’
otherwise
46-50 White noise variance
51-55 Overall moving average para-
meter
3 Differencing Parameters 1-80 "1’ to take differences; ‘O’
otherwise
4 Shock 1-5 Number of pre-shock points
6-10 Number of post-shock points
11-15 Size of shock; 0 to 999
5 Format Card(s) 1-80 F-format for autoregressive and

moving average parameters
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Card
Seq Card Type Columns Description
6 Starting Values 1-80 Starting values in (16F5.3)
format
7 Data Cards Time series parameters as
defined by format card
8 End of Data 1-8 SENDFILE
9 End of Job Card Blank card to indicate end of

job; if more jobs, this card
should be a Title Card of next
job.
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DATA_OQUTPUT BY PROGRAM

1. Title

2. Summary of input parameters (varnirg if errors detected)

3. Format for input of autoregressive and moving average parameters.
4. Interpretation of input format (varning if errors detected).

5. Time Series Parameter Set: - starting value for the time series

- sutoregressive parameter
- moving average parameter

6. Confirmation of file output
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SAMPLE INPUT

$SIGNON CSID (SIGNON CARD)
PSWORD (PASSWORD CARD)
SRUN XDER:PROGRAM PAR=-TIME99 (RUN CARD)
Generate Moving Average Series Theta = 0.8 (TITLE CARD)

50 20 0 1 0 1 0o 20 1 1.0 0.8

5 15 0.0
(PARAMETER CARDS)
(2F3.1) (Format Card)
0.00.2 (Parameter Card)
(Blank Card)
$SIGNOFF (Signoff Card)
FIWETS T TENEN Yy KW RN TR YTRY SUSTUY

LASY AEVISION: DERS - JAN/eS
CSRNERATE HMOVING AVEAAGE SERIES THETASG . & ONEGA®S.§ aefe. .

SYMMAAY BF THPUT PARANETERS

AYNeER 8P CASES TO GENERATE =

LENGTR OF TiNE SERIES o

WUNMOEA OF AUTORRERESSIVE PARANETERAS o
NUNBER 6F NOVING AVERAGE PARAMETEAS o
INPUTTING STARTING vALWES ¢
PARAMETER SETS o

GPTION OF I1NCALUOING BIPFEARNCE CARDS o
NUNAER OF INITIAL POINTS TO BISCARD o 3
SPTION OF INTROOUCING 4 $NOCK =
wiiTE NOISE VARIANCE ¢ 1.000
GVERALL MOVING AVERAGE PARAMETER o o.000

» e
e=-0~-000

-

SHOCK T8 OS2 INTAGOUCED INTO Tne SERIES

WUNOER OF PRE-SHOCK GATA POINTS » s
GUNEER OF POSTY-SNOCK PATA POINTS o 18
SHOCH SCALAR PARANETER o o.80000

FOANAY FOR AUTORRGRESSIVE ANG NOVING AVERAGE PARANETERS :
1373 . 1)

L.IM' INTRRPAGTATION
hacoad ¢ CoLVNNS VARIAGLE OESCRiIPTION
] 1 - 3 ]

atay wive 1 SECiINAL PLACES
1 e - O  § REAL WwitH 1 sEcCinaL PLaCES
8 VARIASLES ARBAP PRON 1 AGCORSS.

rARANETER S8V ]
sssescnesssessene

STAATING VALUES POR TING SERIES
0.00883

AUTORECAESEIVE PAAANETERS
0.0

“'l‘. AVERASE PARANETERS
e.8
00 CASES SUTPUT TO WNIY V

TINGSS NOARALLY TEAMINATED WITH A SLANK CARD ON APR 2%, 1080
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ERROR MESSAGES

1. An error message will be given and the run interrupted 1if the
following parameters are outside their specified rangse:
Number of cases to generate 1 - 99999
Length of time series 1 -10
Number of autoregressive parameters 0 10
Number of moving avserage parameters 0 -10
Option to input starting values 0 -1
Number of parameter sets 1 -20
Option to include difference cards 0 -1
Option of introducing a shock 0-1
vhite noise variance 0 - 99999
overall moving average parameter 0 - 99999

2. +#*ERROR 1: NUMBER OF PARAMETER CARD ERRORS IS nnn

The number of errors found on the parameter card is printed.
Computation stops.

3. **ERROR 2: FORMAT CARD ERROR

This error indicates that the

Format Card was uninterpretable.

Possible causes include unmatched parentheses, invalid char -cters,

or invalid character sequences.

Computation stops.
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UNIVERSITY OF ALBERTA

Division of Educational Research Services

Computer Program Documentation

TITLE: TIME SERIES ANALYSIS (PART 2) (GLASS)*

MACHINE:  IBM 360/67

LANGUAGE: FORTRAN 1V

PROGRAM TYPE: Complete

SUBPROGRAMS: LIMCHK,PSIWGT ,RESVAL,SETLIM, SWP, SWPSET ,FMI'S
(XDER:SUB) TITLE

LIMITS: Total of pre-intervention plus post intervention points must

be less than 300.
TIME: Time depends upon options selected.
PROGRAMMER : C.P. Bower, W.L. Padia, G.V. Glass and modified by
T.C. Montgomerie
DOCUMENTED: T.C. Montgomerie

Description:

TIMEOLl and TIMEO2 are a pair of programs required for carrying
out a time series analysis. Given a series of measures prior to an
intervention point, and a series of measures after the intervention point,
the programs allov an analysis to be made of the effects of the intervention.
TIMEOl permits the identification of the appropriate model to be used as
well as its parameters. The parameters from TIMEOl become input to
TIMEO2 for a 'least squares mormal theory analysis'.

References:

Bower, C.P., Padia, W.L., & Glass, G.V., T™MS: Two Fortran IV Programs
for analysis of Time-Series Experiments. Laboratory of Educational
Research, University of Colorado, Boulder, Col., October 1974,

NOTE: In the above reference CORREL should be read as IIMEOl, and
TSX should be read as TIMEO2 in order that the reader may relate
the program described in the manual to those named in the DERS
lidbrary.

*This progran was obtained from the Laboratory of Educational Research at
the University of Colorado. It was originally writtem for the CDC 6400
by C.P. Bower, W. Padia, and G.V. Glass.



Preparatior of Keader Cards for

TIMEQ2

Card
Seq.

Card Tvpe

Cols.
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Description

1
2

T

Title

Paraneters

1-80
1-5

6-10
11-15

16-20

21-25

26-30

31-35

36-40

41-45

46-50

31-55

56-60

61-65

66-70

Any description of the jod

P, the order of the autoregression
(0<p<3)
d, order of differencing
(0<d<d)
q, order of moving average
(0<q<3)
number of pre-intervention
points 1f column 30 14s 0 or 1;
if column 30 is 2, then om,
the number of design parameters.
number of points after
intervention {f column
30 is 0 or 1; else total nuzber
of points if col. 30 s 2
0 for 2 design parameters
(level)
1 for 4 design parameters
(level plus drift)
2 for user specified design matrix
number of points per cycle if
seasonal data; else blank for
non-seasonal model
step increment for ¢, or 8, if

3 3

other than default values;
else leave blank

if 0, ‘J and OJ will range from

lover to upper bound of entire
invertibility-stationaricy

region; 1 user option to limit
range

1 if residual values are to be
printed and output on cards

for values of ‘j and GJ
else leave blank.

61, 1f col. 50 4s 1; blank 4f
‘1 greater than p

‘2. if col. 50 4f 1; blank 1if
¢, greater than p

‘3. if col. 50 is 1; blank 1if
‘2 greater than p

01. if col. 50 1s 1; blank if
91 greater than p




Preparation of

Header Cards for TIMEQ2 Continued:
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Card See
Seq. Notes* Card Tvpe Cols. Description
71-75 92. if col. 50 is 1; blank
if 92 greater than p
76-80 03, if col. 50 is 1; blank
if 93 greater than p
3 6 Upper & Lower
Limics 1- 5 | Previous run step increment
for ¢.'s
(only 4f col. 45 6-10 cutrentjrun step increment
is 1 on Card 2) for éi's
11-15 61 from previous run
16-20 ‘2 from previous run
21-25 d3 from previosus run
26-30 | previous run step increment
for Oj's
31-35 | current run step increment
for Oj's
36-40 01 from previous run
41-45 Os from previous run
46-50 93 from previous run
4 6 Format for
Design Matrix 1-80 | use only 1f co'. 30 on
Card 2 1s a 2,Format 1is
for transpose of N x m
design matrix (N=total
nunber of points, and m
is number of design parameters.)

5 6 Design Matrix N x m matrix according to format
of Card 4 (use only if card &
used)

6 Format for Data 1-80 | format for data points. Data
points must be less than 1000
in absolute value

7 Data Cards as described in Carxd 6.

End of job A blank card if no further
processing; else this should
be the Title card of the mext job.
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User Motes*

1)
2)

3

4)

5)
6)

p,d, and q specify the model for the data froz TIMEOL.

2-design parameter involves level and change in level, while the
4 design parameter model involves level and change in level, as well
as drift and change in drift.

Default values for step increment are: p & g Step Increment
1 .02
2 010
3 '25
4,5, & 6 .50

Default for upper and lower bounds on invertibility-stationarity
regions are as follows:

a) p=1 -1<d1<1
B) pw2  -l<d,<l; 6 +h<l; d,m6 <1

d) the saze are true independently for values of 0 and q.

Note card output requires CARDS = on $SIGNON card.

These cards must be omitted if the noted parameter does not specify
their use.

Manipulation Prior to Processing

No DATRAN subroutine is available.

Data Output by TIMEQ2

A.

User title on every page. "

Number of points before and after intervention and degrees of freedox
for the design (df = total number of data points minus number of
parameters estimated). If user-supplied design matrix, only total
nunber of points and degrees of freedom are printed.

Identification of model (p, d, g/.

Any options selected by user.

Input format of data.

Design matrix format if specified by user.
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Data Output by TIMEQD2

G. Design matrix if specified by user.

H. Pre-intervention data points followed by post-intervention data points,
unless design matrix specified by user; in this lacter case, all data
points are printed as a group.

I. For each increment of ‘j and/or 0,:

J
1. Current values of ¢, and/or °j (values of 6, are incremented before

values of ‘j and with ‘j' ‘1 incremented first, then 62. then 63,

and similarly for OJ.

2. The residual error variance.

3. The estimate of the true level of the series at time O and a
t-statistic. (If ICODE < 1.)

4. The estimate of the change in level, §, and a t-statistic for
testing the significance of the difference of the estimate from
zero. (If ICODE < 1.)

5. The estimate of the deterzinist.c drift component and associated
t-statistic. (If ICODE = 1.)

6. The estimate of a change in the deterministic drift component
and a t-statistic. (If ICCDE = 1.)

7. 1f ICODE = 2, estimates of each design parameter and associated
t-statistics are printed.

J. At the end of all iterations, the minimum error variance is printed
with the values of ¢, and 6, at which it was found. If, as

J b

occasionally happens, more than one set of values of ‘j and OJ are

found for the minimum error variance, up to five sets of values will
be printed, and thereafter stopped, although the program counts and
prints the total number of such occurrences.

K. 1If the user requested that residuals be printed and punched for a set
of values of ‘j and Oj, these are printed next, exactly as punched

(both in 10F8.4 format).



Exazple c¢f Input Data

$SIGNON CSID
PSWORD

SRON XDEP:PROGRAM PAR=TIVEN2

SAMPLF PROBLEM FOP TI®F SERIFR (PART 2)

0

(10P3. 1)

55
13
53
35
70
88
66
51
9
27
38
28

56
69
63
79
88
79
72
47
51
26
33
40

48
72
RQ
74
AR
AU
62
49
19
29
23
31

$SIGNOPP

1

46
51
65
73
85
7R
27
sS4
27
1
25
17

56
72
78
77
17
75
52
A
19
29
24
3u

ue
69
64
76
6?
7%
4?7
56
17
3R
29
43

Example of Output

See pages 9 to 1ll.

Error Messages

Technical Notes

60

59
68
72
Rz
21
PhH
65
50
u?
37
17
38

69
69
77
7
9y
79
59
Su
41
2h

LAY

3

60

52
79
82
74
72
7%
77
45
27
11
12
78

58
17
17
91
R
87
47
Y3
29
us
21
35

(SIGNON CARD)
(PASSWORD CARD)
(RUN CARD)
(TITLE CARD)
(PARAMETER CARD)
(FORMAT CARD)
(DATA CARDS)

(BLANK CARD)
(SIGNOFF CARD)

The error messages for TIMEO2 are self explanatory.

The computational formulae used in TIMEOl and TIMEO2 can be found
in Appendix A of Bower, Padia & Glass.

Suggestions for Modifying Times for Other Installations
1.

This program is a modification of the TSX program (Bower, Padia,
& Glass) written for a CDC 6400.
10 byte/word machines should contact the Laboratory of Educational
Research at the University of Colorado for a copy of the program

It is recommended that users of

which would be more easily implemented on their machines.
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Sucpestions for Mcd{fyinp Times for Other Installations Continued:

2. The one subroutine which will require modifications on all machines
not using the MIS operating Systex is the TITLE Subroutine. The
function of the subroutine vital to the program is to check an
incoring Title Card to see if it is totally blank, execution is
terminated normally if this is the case. If the title card 1is not
blank, the title is stored in the Unlabelled COMMON array, along
with the time and the date. The Title, time and date are printed
on a new page on the output device, and a normal exit to the calling

prograz is made.

3. The word length of the IBM 360/67 is 4 bytes. If the machine
which TIMEQLl and TIMEO2 being converted to does not have a 4

byte word size, all format statements containing A4 (or AX, where

X is greater than the word length must be changed to the word
length of the particular machine.

4, Variable formats are stored in LOGICAL*l arrays. Machines which

are incapable of handling character a:rays stored as LOGICAL*

data will need to convert th: subroutine FMIS. This subroutine

sets up the format for printing the headings for each page of
iterations over phi and theta and the format for printing the
results. The elements of both formats are variable because

phi and theta may both range from zero to three and because the
number of parameters and t - statistics is variable. In order to
assist the programmer who has the task of modifying the programs,

the following is a description of the contents of each of the
144 bytes of HFMT, and the 55 bytes of FMI, respectively, the

array for the page heading, and the array for the line by line

print format.

HIMT

Byte Condition Contents

1 (

2 - 13 p=0
p = 1 2X,3HPHI | 1X,
P =2 5X, 3HPHI, 4X,
p=3 8X,3HPHI, 7X

14 - 18 Q=0
q¥0 24 ,,

19 - 22 q=0
qQ=1 1X,5ETHETA, 1X,
qQ =2 4X, SHTHETA, 3X,
Q=3 7X, SHTHETA, 6X,
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HFMT Continued:

Byte
33 - 45
46
47 - 74
75 - 95
96 ~-143
144
FMT
Byte
1l
2
3 -12
13 - 17
18 #
19 - 28
29 - 55

Condition

icode ¢
icode =
mdim
mdim
mdin
odim
odim

ae 8t R LW

[V IR NS g

icode ¢
icode =

w W

icode ¢
icode =

W W

icode =
icode ¢

NN

Condition

9v9YvvoYv
ne 0D
WN =~ O

oo
-
(=N}

0, q=0

oo
[ I B B h )
W =0

.40 A N 0 00

< 8
[~ =)

231

Contents

3X,7HERR VAR,

3
1
2
3
4
S
X,SHLEVEL,3X,6HT STAT,1X,7HL
(3X,2HB(,11,1H),4X
4X 6HT STAT

EV CHG,3X,6HTSTAT

»3X,SHDRIFT ,3X,6HT STAT,1X,7HDFT CHG,3X,6HI STAT

Chntents

(

w8 -

(1X,F5.2),

0, and q ¢ O2H ,,

w8 -

(1x,F5.2),

1x,F9.3,5(1x,F7.2,1X,F8.2))
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THETA

-n, 98
-0,96
-0.94
-f,92
-0,.40
-0.A08
-P,A6
-t A4
'00"?
-0.'0
-C.7A
'0.7"
-h,78
-0,72
-N,70
-OQh’
-N.66
-0.08
-0.52
-0.“0
-N.58
“0.5h
-ﬁaﬁﬂ
-N.52
‘0.')0
-00."
-N,ub
-N,04
'00“2
N, 40
-N. 14
‘O. ’6
-0.1.
'0.32
-0-10
-C.?O
-ﬂ-Zb
-N,20
"‘.;2
-C.40
<090
-C. 16
-N, 19
-0. ‘2
-6.10
M NY
-0006
-n.08
-0.02
o.o

SARFLY PRGALEN FOR TIALE SERIES (PART 2)

Thit VAR

Q229K HR0
1227.4€2
1170, 451
1049,.577
Yo', 719
8R4, hb7?
12, 140
Tun, 128
692,152
LX) Y by
590. 680
SSn6.R22
-9,
A9, bR
061, 2R2
835, 14
s12.0°¢
39z.nC?
31, 109
185, RO
je0.20
325.6%8
1M2.3n2
30C.ne?
b LI PY |
278,102
208,277
c99.1° 4
250.55%:
262,500
235.12%
227,969
221,322
215,002
209,188
203.5M
19n, 290
192,28%
104,516
104,727
179,738
175,057
171,767
00, 0%7
108,579
164,129
157,891
154,791
151,820
148,975

rrvre

e,
LT 1
ye, o
HA 0T
AC .52
AVRA
FANN B
hR, 20
(IO
L )
61,79
no 9
SEL.NY
87.7"
fp.Yr
Hh,2?
AN Y]
592"
LY I
v ,%9
ne,. )b
Su.'8
54,00
n"?. 98
51,87
5:.n2
S KO
LRI
82,02
g, NS
§r. 90
52,45
Su.01
Su,08
549,15
54,72
S4, 10
se,17
Sy, 48
S6,%¢
"4,%9
4, kS
Su, 71
Su.1?
Se A2
sS4 .87
S“.q.
4,95
Su,.YP
&5.00

1 3%

11.21
9,74
1.93
6,7k
5.99
90
4,v?
". bn
"D )s
U. 16
“.02
), o1
). a?
}. 70
.n
J.h?
J.uH
3. ¢
JeL2
" .

T.82
.02
LR |
T.H8
,0“6
1,40
1.70
. n
L 719
’l ”
1, 8n
.A)
1. 86
1.7
J."2
LI
1,99
a,0?
.06
g, 10
4,14
4,10
4ozs
,h
4,30
“, ¥
U, 8
4,82
e b
4,51

T

L5V Lt

28.26
.01
""Zb
s, 5
12.12
27,10
22,00
15,499
*1.n1
w59
ML)
-2.18
-5.49¢C
-1,21
1™ 11
19, 0%
e'h Ak
-12, 718
-2C,4)
-7%.4)
2.0
«24.9)
-:"‘.07
“2%.598%
«20,09
'2’).‘02
«2n,R)
«71.79
=27.19%
«27.21
°2,02‘
)7,
-27,09
°2°o°1
«2h,h0
’2”.!,
E T 1]
25,12
25,117
«2h.NN
-24,62
-24,0?
‘2‘0'2
-2%92
-2,003
«22.59
-22.19
«21,7A
-21039
-21.00

1 GTAT

J.0°
J.un
3.1
2.04a
2.1)
1.9
1.54
1.%4
r, N
n.e3
c. '
" 4
«N, 1R
-0, 0
B L]
N, 9%
PEBRY
-'023
-1.15
-1,u8%
-1,5)
-1001
Y]
1.7
.1
1.8
‘1.”‘
-1.A7
"009

Te1.91

-1.92
.!.o”
-1.9)
-1,9)
-1,
1,92
1,42
-1,
-1.'q
-1.0R8
1,07
-%.05%
-1,
-1..:
-1,80
‘.1
1,17
-1,7%
1,78
-1,12
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SARPLE PRODLLEA FOR TINE SERIES (PART 2)

TI'TTA FOM VAR LEVTPL T STAT Liev CNC T TAY
r.02 196,239 &R0 ",% =70.0) -1,
h.0u 142, 600 $%.03 4,nd -20,27 -'.hY
0.7k 141, Cv1? 80,013 Q. A8 14,9 -1 h4
n.rA 1R, 606 $5.0? 4, h9 <19,49 -t . h7
n,1n 1%, 222 $¢.0: e, n -19,21 -t ity
n.1n2 1,78 S%5.100 .MM =, 79 -, 05
0.14 121,929 S1,.98 Y.32 -'.174¢ -t.n9
0.' 129.R2% Se,.95% 4,"9 <=1R,41 -1,604
r.1R ©27.%2 S4,.92 .98 =13, 27 -t,hy
n,20 125,903 Su,04 4,97 -1¢,09 -1,h4
foe 154, 00Y Se.H) 5.C% =17.91 «1.6%
n,24 122,209 Su.78 .10 1. M PN Y
N.% ©20.4%) Se .12 5.6 <~'1,6% 1.0
0,28 1148, Tno Se,b¢ 8.2 =11.9% 1. hi)
0.1n 117.135¢€ Se,%9 .4 =17,50 1,49
0.2 148, 9%1 96,52 $.78 «17,46 1,21
n.%w 1‘.0022 Se,. 48 .".“2 -17."5 -‘.1“
0, 112, Sug Se.)7 %.49 <=17,u4 -1,7e
n,2A 111.109 Se, 2R 8,87 -17,97 -1,H0
0.40 109, 7¢2 S5¢,20 S.h8 =17.%7 1.k}
0n,e2 108,370 50,11 S.71Y <11.hh -1,A?
nf.eu 107.076 Se,0) .41, 1. M -1.91
(S ] ) 105.81¢ $7,9% S.4Y =17,419 -1,96
n0.48 16,997 82,09 AN 0N <1A,0h -2,01
0.50 102 600 s, mn A1V =N, 28 -2.07
n.s2 102. 2RC $3.m9 6,2 -18,4) -2.1)
(" 101. 10¢ $3.061 .13 -18.0S -2,.0
n,5% 100,157 52.89% h.90 -11,87 ~sesh
n-". ’“|117 53..‘) ‘-oho -'\’012 -2036
N.60n 98, 185 ]2, 004 6,8 =19,V -2 U4
0.0 Y71, 266 $3.%2 6,90 =14,b4 -2,.%4
n,b4 96, 396 3.0 7.7 11,92 EhN 1)
0.06 95,612 83,62 7,27 20,21 -2.7%
0. AR 9%, 908 LA T T4 =20n,59 - N7
f. 1N 94, 294 81,5 .72 -20.82 -3.00
0.7 93).71%? 53.6¢ 7.00 <24, °4 -3.95
0.74 93,836 %3.0) H.28 =21,4H -3.%
0.7 93,250 tu, 00 .6 =20 -,4N0
0.8 ¥, 28R Ss. M7 R, 99 =22,22 -1,68
0,80 92,617 Se,. 70 9,47 22,01 -3.10
0.A2 98, 736 “5.06 Y.,98 =23,09 -4,
0. AN 9%, %92 $%.90 N5 =27,82 -4,83
N.R6 97.6°¢S %0.71 11,28 =-24,24 -, N
n, AR 100,722 &7.7%8 12,1 =Ju.99 “S.d0
n,9n 108.%0% S9.n@ 13,19 24,87 -5.78
n.v2 112. 8% 8C .88 10,07 <20, W 0,47
ncq“ 12.0'1? 63.22 1“."! -2no1J -7.‘0
0.9% 140, 7 66,3y 19,43 =2y,3e ]
r.ON T 1S59,.008 69,90 20,99 <30, -11,08
AINTRUA ERROR YAPIANCE OF 93,250 FOUND AT Y VALUE(S) OP PHI AND/OR THETA NELOW

THEFPA = 0.7
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UNIVERSITY OF ALPLRRTA

Division of Educational Research Services

Computer Program Documentation

TITLE: TIME SERIES ANALYSIS (PART 1) (GLASS)*
MACHINE: 1IBM 360/67

LANGUAGE: FORTRAN 1V

PROGRAM TYPE: Complete

SUBPROGRAMS : (XDER:SUB) TITLE
LIMITS: Total of pre-intervention plus post intervention points

aust be less than 300.

TIME: Time depends upon options selected.
PROGRAMMER: C.P. Bower, W.L. Padia, G.V. Glass and modified by

T.C. Montgomerie
DOCUMENTED: T.C. Montgomerie

Description:

TIMEOl and TIMEO2 are s pair of programs required for
carrying out a time series analysis. Given a series of measures prior
to an intervention point, and a series of measures after the intervention
point, the prograss allow an analysis to be made of the effects of the
intervention. TIMEOl permits the identification of the appropriate
model to be used as vell as its parameters. The parameters from TIMEOL
become input to TIMEQO2 for a 'least squares normal theory analysis'.

References

Bover, C.P. Padia, W.L. & Glass, G.V., TMS: Two Fortran IV Programs for
analysis of Time-Series Experiments. Laboratory of
Educational Research, University of Colorado, Boulder, Col.,
October 1974.

NOTE: In the above reference CORREL ghould be read as TIMEOL,
and TSX should be read as TIMEO2 in order that the reader
may relate the programs described in the manual to those
named in the DERS library.

*This program was obtained from the Laboratory of Educational Research
at the University of Colorado. It was originally writtem for ths coC
6400 by C.P. Bower, W. Padias, and G.V. Glass.
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Preparation of Hesder Cardg for TIMEOL
Card See

Seq. Notes®* Card Type Cols. Degcription

1
2

Next

Title Card 1-80 | Any description of the problem

Parameter 1- 5 | Number of pre-intervention

points

6-10 | Number of post-intervenmtion

1 15 Blank for correlogras output

of raw data

1 gives correlogram for raw
& log transforwed data

2 gives correlogram for log
transformed data only

(If 1 or 2, card output is

mnade)

16-20 | Constant to be added to

observation points prior to

log transformation. (Use F

format); else leave blank.

2 21-25 | Length of seasonal cycle,

(I format); else leave blank.

Format 1-80 | F format for data

Data cards As descridbed in Card Type ).

Data points must be less than

1000 in absolute value.

Next End of job Blank card if no further jobs

to be run; else this should
be the Title card of the next
job.

USER NOTES*

V)

2)

If option 1 or 2 is given be sure to specify the number of cards
expected on the $SIGNON card.

The original reference motes the following: "For non-seasonal data,

the lag k auto-corrslations are computed for differences of order

zero through four; for sessonal (cyclic) data, the lag k sutocorrelations
are computed for seasonal differences of order one and two and within
each seasonal difference for order zero, one, and two. In both the
seasonal and non-seasonal case, k lag auto correlatioms are calculated
for each difference where k is half the number of differenced or
non-differenced data points."

Manipulation of Dsts Prior to Processing
No DATRAN subroutine is availadble in these prograss.
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Data Output for TIMEOL

The

1.
2.
3.
4.

10.

(Note

following dats is output by the program:

Susmary of parameter card and format card(s).
The pre-intervention observations.
The post-intervention observatioms.

The sutocorrelations and partial autocorrelations for the
pre-intervention observations.

The autocorrelations and partial autocorrelations for the post-
intervention observations.

The log-transformed pre-interveamtion observations.
The log-transformed post-intervention observations.

The autocorrelations and partial autocorrelations for the log-
transforned pre-intervention observations.

The autocorrelations and partial auto correlations for the log-
transformed post-intervention observatioms.

Card output of the log-transformed pre-intervention snd post-
intervention observations. If the log-transformation of input
observations is selected, the log-transformed data will be punched
on cards in the format (10F8.4).

- the output of items 2-10 above are optional, depending on the
specifications of the parameter card.)

Example of Input Data for TIMEOL

$SIGNO™ CSID (SIGMON CARD)
PSUORD (PASSWORD CARD)
SROW EINDEP:PROGRAM PAR=TIVEN? (RUN CARD)
SAMPLF PROBLEM POP TIW® SERIFS (PART 1) (TITLE CARD)

6C 60 (PARAMETER CARD)
(10P3.1) (FORMAT CARD)
55 %6 48 46 56 46 59 60 S5 58 (DATA CARDS)

73 69 72 5 72 69 68 69 79 77
53 63 R0 65 78 64 72 77 82 77
35 79 7% 73 77 76 R? 7Y 7R 91
70 88 SR 85 77 6 91 94 72 R}
88 79 Am 7R 7S 7S Rfh 79 75 %7
66 7 62 27 52 u7 65 59 77 47
S1 47 49 Su4 S8 56 SN SU US ARF

19 51

39 27 39 37 ud 41 27 29

27 26 29 1 24 3R 17 24 31 45
38 33 13 25 24 29 17 ?5 T2 N
28 0 31 27 34 43 MW I 2R 35

ssIGrore (BLAMK CARD)

(SIGNOFT CARD)



1

Example of Output for TIMEOL

See pages 5 & 6.

Error Messages for TIMEQL

The error messages for TIMEOL are self explanatory.

Technical Notes

The computational formulae used in TIMEOl and TIMEO2 can be found in
Appendix A of Bower, Padia, & Glass.
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DI turw g 17 "= W

Staanapn SPPNAR- Q, ¢
PHT (Y, 9) - M outre
rILEr, M. M, e
LR B N2 "
PHI (e, 0y " oY LB
PHT (£,5) " J.et0%
PHL (1., m = Lol LR ]

DIFPFEINCE IS NOOHEN 1

SPLAYNARD EPRACe L I [
rPHE (Y, -, ubh0s
T2, =7, 6568
PHE (3, M " «0,2'p0
PHT (v, 8)® e.00AS
PRI (S,S) " 0.406
PHI (o,8)® -%.2009

ACGTOUORRELATIONS Pnrp PAST-INTFAYFYTICT DATA

TAL DATA IS 7P DIFPERTACT ORDED O

AEANS .0.9')) VAPIANCEs *06.%079
B 0.6152 0.5%0% 0.3702
0.)18% ¢. 27 2,27
0.9803 [P-ALY] 3.02%
«C.1366 -0, 1685 -0,1790

STAIDARD ERNOY
0.1291 [SRRAA] c.197%
c.2871 f.29Y ~.2962
0, 309¢ ¢. 3997 [ 14 )
3162 a.072 ~LAAT
CAI=SQUARE STRTISTIC * rC.76

DEGRETS OF PREEDA® ARE 20 =1 (TP "PAN 1vCLUDED,

enE DATA IS OF PIFPEPYYICEY OPCPR ¢

SEAMs «0.52% YAPTACEY 149,097
L -c.0738 c.'7%y -, 5269
0.760¢ -0, 1M? A, 12¢0
0.0621 -0.01¢ -n, 0526

1207 «0.0%1: c.0579
STANDARD CRENR
0.1302 ", 157 c.1598
%.1700 N. 170 AT
-, 1051 ~, 10% PRI 21}
. 1906 [P LAL] ~1922
CHI=SONARE SVATTISPIC = 7,78

ARGRTPS OF PRFENCA APT 2y =V (1P ATAW InCLUDED,

gtperagece 13 “v0% 9
STANDARD FRPNAs 2.1334
"MI(I,Nne 7.615?
U2, " 3.0878
PHT (Y, )" -3.927
Pt (e,8) 3. '0887
PRz (5,9 9,512
PHI (6,60 " 9.5256

pIPreereCce IS "Onep 1

LTAMNARD ERRNAR- [PRAALY
ULV, LL S AT
PHY (2,2) " LLNRL 2]}
MY (Y, M. %, %963
PHT(e,0)" LIS A R TY
PHLS, O 9,92
PHL (e, ,0) " 5, 9508

PARYIAL

FAR 1LAGS 1 TO 30

0.4319
0.2180
0.012¢

-0.2278

c.2n06
0.209?
n.2Cy?
0.'20?

PAR LAGS Y TO 29

0.0260
-C.1028
0.2066
6.v06?

0.9652
0.175%2
c.*0%7
0.1929%

0 or

PARTIAL

TIAP0Y NORRALLY TRENIGATED wi™H A JLANE CABD O AVG 17,

13: 76,50 1.982 *Cep

~ OTHERJISE)

ADOTOCORRELATIONS

0.69%" 0.9%483 0.515%0
0.2784 . 1006 0.1219
~0.0707 «0.1702 «0.2222
-0.2087 =0.260C
f.2262 c.2)%2 0.2600
0.)02¢ c.307¢ c. 3000
c.3c9? C.J10¢ 0.311¢
~.2230 C.3262

- P =@ - P(SEASHIVAL) =~ Q(SEASD®AL)

-C.133 c.1080 0.%819
0,196 «C.07a0 0.069¢
-0.0278 -0.0826 -0.0600
=0.0100
0.163%) c. 1671 0.6 92
0.177¢ 0.10%8 0.1019
0.189% 0.109% 0. 1090
0.192%
NEPVISE) = P = Q@ = P(STASIWAL) = Q(SEASORAL)
ADTNCORPILATIONS
1978

24)

0.02)9
0.0182
-0.19%8

0.2748%
0.)09%
¢. 3183

-0.0)9)
-0,17Ce
0,077

0.1499
0.102¢
0.1901



