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ABSTRACT 
 

In Canada, winter crashes account for a significant portion of crashes each year. This thesis 

investigates the utility of machine learning (ML) for understanding and mitigating winter road 

risks. Despite their potential to achieve high predictive performance in the face of complex data 

structures, ML models often lack interpretability as their predictions lack sufficient explanations 

for users to validate. Numerous studies have utilized ML models in traffic safety modeling; 

however, the transparency of the model predictions remains a challenge. To address this problem, 

this study developed highly interpretable ML models with the assistance of explainable artificial 

intelligence (XAI), which helps determine feature contributions and directionality towards the ML 

predictions. The first part of this thesis analyzed the characteristics of snowstorm-related crashes, 

while the second part developed a winter crash frequency model. Both high-complexity ML 

models were then evaluated using SHapley Additive exPlanations (SHAP) for interpretability to 

understand the inner working mechanisms of the model predictions. 

In the first part, a model for the classification of crash-inducing snowstorm events was built using 

a dataset of 231 snowstorm events occurring over 21 friction testing routes in the City of Edmonton. 

The issue was addressed by integrating SHAP with a Support Vector Machine (SVM) model. Using 

the Radial Basis Function (RBF) kernel, the SVM model achieved an accuracy rate of 87.2% and 

a high recall rate of 80%. SHAP global explanations revealed that duration, road length, and 

precipitation were the most significant factors influencing crash-inducing snowstorms, along with 

some counterintuitive feature characteristics. To understand these counterintuitive features more 

clearly, local explanations were applied to closely examine representative snowstorm events, 

confirming the model's applicability in practical scenarios and informing future enhancements. 
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This study also highlighted the critical role of maintenance activities, such as plowing and anti-

icing, in mitigating accident risks.  

In the second part, an in-depth analysis of winter crash frequency was conducted using a dataset 

of 26,970 winter crashes over four years period. In the data collection step, Ordinary Kriging (OK) 

was evaluated as a valuable tool to interpolate traffic volume at unknown locations. The analysis 

first explored spatial patterns through Hot Spot Analysis (HSA), identifying high and low crash 

clusters. High crash frequency areas were associated with high traffic volume, high functional road 

class, and commercial land use, while low crash frequency areas were typically residential with 

lower traffic volumes and speed limits. Next, both micro and macro level variables were fused to 

build a crash frequency model. Three high-performance tree-based models – XGBoost, Random 

Forest, and LightGBM – were compared. XGBoost emerged as the best-performing model with a 

testing R2 value of 92.67%, MAE of 3.64, and RMSE of 5.77. With the larger dataset, significantly 

more stable SHAP analysis results were obtained, enhancing the understanding of feature 

interactions. The global analysis indicated that road type, speed limit, and the presence of traffic 

enforcement cameras contributed most to the model. Key characteristics between high and low 

crash frequency locations were differentiated using local explanations. 

The framework presented in this thesis underscores the importance of integrating interpretability 

techniques in practical applications to enhance winter road safety. More interpretable models 

provide greater insights into the fairness and trustworthiness of the model decisions, enhancing the 

understanding of winter road safety, and aiding maintenance personnel in effective decision-

making processes and resource allocations. This thesis also recommends larger datasets for more 

stable models and consistent predictions, ultimately improving model reliability and decision-

making processes. 
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Chapter 1: INTRODUCTION 

1.1 Background 

Winter road conditions are responsible for a large percentage of road accidents in North America. 

According to the U.S. Department of Transportation, approximately 15% of fatal crashes, 19% of 

injuries, and 22% of property damage incidents occurred in the presence of adverse weather 

between 2007 and 2016 [1]. Similarly, the Royal Canadian Mounted Police reported that nearly 

30% of collisions occurred in wet, snowy, or icy road conditions in Canada [2]. This high incidence 

of winter-related accidents highlights the challenges of maintaining road safety during adverse 

weather conditions. Analysts have estimated the economic toll of winter-related crashes at $42 

billion [3], underscoring the criticality of understanding how diverse weather conditions influence 

motor vehicle crashes. By gaining insights into the causes of these crashes, appropriate preventive 

measures and maintenance activities can be effectively developed to reduce these impacts to road 

users. 

The complexity of winter road accidents arises from both micro-level and macro-level variables. 

The micro-level variables typically reflect on the immediate influence factors on crashes, such as 

collision records, weather-related factors, road characteristics, and traffic exposure. Collision 

records often contain information about the at-fault party, violation type, and the circumstances of 

the accident. The significance of low ambient temperatures, heavy rainfall, snow accumulation, 

and strong wind speeds is commonly highlighted in literature as major contributors to the 

multifaceted nature of winter collisions [4]. The consistent changes in these weather variables often 

cause rapid variations in road surface properties [5], directly influencing the pavement friction, 

exacerbating driving conditions [6], and ultimately leading to collisions. Studies have shown that 

driving on snowy roads can result in a 30% reduction in driving speed [7], and can cause traffic 

delays up to 50% [8]. Furthermore, road design varies between regions due to the changes in land 

use and travel demand, leading to varying levels of traffic exposure. Therefore, micro-level factors 

are critical in analyzing the characteristics of winter traffic crashes. 

Winter road accidents are also influenced by macroscopic variables including land use patterns 

and spatially identified high and low crash clusters, which capture the characteristics of the spatial 

unit and geographical area. Numerous studies have shown that the different land use patterns 
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influence travel behaviors, often altering the flow of traffic [9]. Research has also revealed that 

driver behaviors are closely associated with land use patterns, where dense and populated areas 

typically require more attentive driving [10, 11]. Furthermore, different purpose [12] of land use 

also necessitate changes in roadway design to accommodate varying capacities and demands [13].  

Spatial analysis plays a crucial role in crash frequency analysis as many scholars have assessed an 

inherent spatial autocorrelation among crashes [14, 15]. Typically, spatial analysis is often 

conducted using hot spot analysis (HSA), which helps identify the hot spots (HS) and cold spots 

(CS), thus detecting the clusters of crashes with similar spatial patterns. However, the 

consideration of spatiotemporal dependencies tends to be overlooked [16], highlighting the 

significance of conducting spatial analysis on winter crashes. Establishing a spatial variable can 

effectively determine whether a crash location occurs in regions without any spatial pattern, or in 

areas with intense, spatially clustered high and low crash frequencies. Furthermore, spatial 

clustering serves as an effective visualization tool, reflecting the characteristics for intense high 

crash frequency locations and intense low crash frequency locations [17]. By integrating a spatial 

variable, a comprehensive crash prediction model can be developed, facilitating a deeper 

understanding of the relative influence of various variables on winter crashes. 

The abovementioned characteristics emphasized the pressing necessity for a comprehensive 

investigation to understand the magnitude of these feature contributions towards winter crashes. 

Most research examines crash characteristics throughout the year, often not separating winter 

accidents from general traffic incidents. This oversight could dilute the specificity and 

effectiveness of safety measures tailored to winter conditions. Previous efforts have extensively 

focused on statistical models that are often constrained by assumptions [18], potentially limiting 

the power of the available crash dataset. In contrast, the power of ML models lies in analyzing the 

underlying patterns within the entire dataset [19], leveraging their exceptional ability to deal with 

non-linearity and non-parametric datasets [20]. With the continuous evolution of ML models over 

the past two decades, these advancements provide great opportunities for researchers to develop 

robust and accurate models [21]. 

Although ML models often demonstrate satisfactory performance and achieve high levels of model 

accuracy, they usually involve a critical trade-off that compromises model transparency [22]. This 

lack of interpretability, cited by a few studies [23, 24], fundamentally limits the utility and 
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trustworthiness of these ML models in real-world applications. Without insights into how and why 

specific predictions are made, assessing the reliability of a given model becomes challenging. This 

gap in understanding becomes particularly important in scenarios such as road safety, where 

understanding the causal factors of collisions is as crucial as predicting their likelihood. 

Furthermore, the performance of the model also depends on the quality of the training data [25]. 

Suboptimal data input can result in a deterioration of model outcomes. Moreover, many scholars 

also highlight the significance of other factors that affect model outcomes, such as model 

normalization and model generalization [26, 27]. 

In light of these challenges, this thesis initially collects a wide range of winter crash micro- and 

macro-level independent variables extensively studied in the literature. Given the complexity and 

non-linear nature of the dataset, an ML model becomes the natural choice to build the foundation 

for a prediction model. Utilizing the processed and fused data, models that fit our dataset are 

developed and compared based on their performance. Then, the optimal model is evaluated using  

eXplainable Artificial Intelligence (XAI) techniques by first identifying the global significance of 

individual features to the model, then by conducting local assessments to evaluate the reliability 

of individual predications. Providing both global and local explanations for the model predictions 

assist in validating the outcomes, rendering the previously opaque decisions more interpretable. 

1.2 Problem Statement and Motivation 

The aforementioned statistical data and empirical evidence emphasize the necessity of formulating 

a comprehensive winter crash prediction model. It is critical to quantify and compare the risk 

factors associated with winter vehicular collisions. The significant loss of lives and property 

damage underscores the urgent need for in-depth exploration of the factors contributing to winter 

crashes. 

To understand the multifaceted nature of the crashes, many existing studies have developed crash 

prediction models based on full-year data [28, 29, 30], often neglecting to focus specifically on 

winter road crashes. Despite this, previously described difficulties and challenges mentioned also 

marks a clear need to having a better understanding of winter road crash (WRC) associated risk 

factors. Given this context, it is important to have the insights and analytics available for harsh 

winter city such as Edmonton. According to historical data provided by Canadian Climate Normals, 
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Edmonton experiences an average January temperature of -10.4 ℃, with temperatures potentially 

dropping as low as -48.3 ℃. Additionally, consistent snowfall results in an average snow depth of 

up to 17mm during winter months [31]. With such knowledge, we can enhance our understanding 

in winter road safety, which in turn improves maintenance personnel’s ability to allocate resources 

effectively and implement preventive measures to minimize harm to road users. 

ML models can be promising tools used in performing both classification and regression tasks. 

Unlike conventional statistical parametric modeling approach, ML models leverage robust data 

capabilities without the constraints of traditional assumptions. This data driven approach is 

extensively explored in many recent studies which have proven that the prediction power of ML 

model often helps obtain the better model performance and accuracy. However, due to their high 

reliance on the data they are trained on, this drawback can potentially impose challenges and 

hinders the power of the ML models. Additionally, their inherently complex internal decision-

making processes make them difficult for human to interpret. The lack of model transparency also 

impedes the veracity of the model outcomes as understanding the reasoning behind model 

predictions is as important as their accuracy. To mitigate this black box nature, XAI techniques 

can assist in understanding the rationale behind the predictions and provide transparency to the 

model decision-making process. 

These challenges and the current gaps in research serve as the driving force behind this thesis. The 

complexity in understanding winter vehicle crashes, shortcomings of the existing prediction 

models, the potential drawbacks of the ML models, and the urging need for transparent model 

solutions collectively emphasize the necessity for in-depth exploration. A thorough investigation 

is conducted with the goal of improving how we are predicting the winter crashes. Having 

transparent model predication outcomes ultimately assists maintenance personnel in making more 

informed and accurate decisions regarding resource allocations. 

1.3 Research Objectives 

The primary objective of this thesis is to leverage the power of ML models to develop robust 

models in crash predictions and uncover the ML inner working mechanism to the winter road 

maintenance personals for practical applications. To achieve this outcome, this thesis is divided 

into two phases to provide a comprehensive understanding of winter crash characteristics. The first 
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phase is to assess the underlying factors that contribute significantly to accidents during the 

snowstorm events. The second phase involves a preliminary assessment on the feature interactions 

in HS and CS, then a crash frequency regression model was built to predict the number of crashes 

and assess the key factors that differentiate the high and low crash frequency locations.  

To achieve these goals, the research outlines the following specific tasks: 

1. Identify and understand the critical risk factors contributing to crash-inducing snowstorm 

events.  

2. Establish ML models to predict the crash-inducing snowstorm events and winter crash 

frequencies. 

3. Explore the inner workings of ML ‘black box’ models using XAI techniques. 

4. Provide global instance explanations to understand the feature contributions to risky 

snowstorm events.  

5. Provide local explanations by examining representative crash-inducing snowstorm events 

to analyze feature interactions. 

6. Apply spatial analysis to preliminarily evaluate the feature interactions at identified hot 

and cold spots. 

7. Conduct a comparative analysis of ML algorithms to identify the optimal crash frequency 

models. 

8. Enhance the understanding of feature behaviors under high and low winter crash 

frequencies using SHAP for global and local explanations. 

By pursuing these tasks, this thesis aims to deliver unique methodological frameworks for 

analyzing the characteristics of crash-inducing snowstorm events and estimating winter crash 

frequencies that are both accurate and intuitive. Through these efforts, this thesis provides practical 

insights that could improve decision-making in winter road maintenance (WRM), ultimately 

leading to enhanced safety and efficient resource allocation. 

1.4 Thesis Structure 

This thesis is split into 6 chapters. Chapter 1 introduces the objective of the study and the 

motivation behind the work.  
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Chapter 2 outlines the literature review, where existing research on estimating crash frequency and 

the several approaches are discussed. These approaches include the use of conventional parametric 

statistical modelling, non-parametric ML approaches, and the application of XAI techniques. The 

risk factors that pose significant influence on the snowstorm events and winter crashes are 

investigated. 

Chapter 3 presents the foundations of the methodologies employed in the study, which can be 

divided into four distinct sections. Firstly, an overview of the different machine learning methods. 

Subsequently, spatial clustering for the HSA. Thirdly, an overview of Kriging estimation 

techniques, and lastly, the SHAP techniques.  

Chapter 4 presents the first phase of the work, providing a comprehensive description of the risk 

factors involved in collision occurred snowstorm events. An ML classification model, SVM, is 

then developed to classify snowstorm events with accidents involved. The performance of different 

kernel functions are also evaluated and compared. Subsequently, the optimal model is subjected to 

examination via the SHAP XAI approach. 

Chapter 5 presents the second phase, beginning with a spatial analysis to identify crash prone 

locations in the city and visualize the feature reactions on the hot spots mapping. A series of crash 

frequency models are then constructed to predict the specific number of crashes by integrating 

both micro and macro-level predictors. The ML models are subsequently calibrated and compared 

using error metrics to select the most optimal model. Finally, using SHAP XAI techniques, the 

inner workings of the optimal model are revealed, detailing the interactions between variables, and 

illustrating behavioral differences amongst risk factors at high and low crash frequency locations.  

Chapter 6 concludes the thesis with a summary and discussion of the research outcomes and 

contributions. Additionally, the chapter mentions the encountered challenges and limitations while 

providing suggestions for further research directions. 
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Chapter 2: LITERATURE REVIEW 

Chapter two aims to provide an overview of the different model approaches in predicting crashes 

for general traffic safety practices. The chapter is further divided into four different sections. The 

first section evaluates the risk factors that significantly contribute to the winter crashes from both 

a micro and macro level. The second section discusses the parametric, statistical model that 

researchers conventionally applied to develop the predictive models. It then discusses, the 

contemporary ML-based approaches that often result in better performance and high efficiency are 

discussed. In the third section, the challenges involving ML model interpretability are explored. In 

the final section, a summary is provided, noting the limitations of the reviewed literatures. 

2.1 Risk Factors Affecting Crashes 

There are a variety of influencing factors that contribute to the crashes. They can be categorized 

as two types of variables: microscopic and macroscopic. The use of micro-level features helps 

increase the granularity of the dataset. Macro-level variables reflect larger scale influences of 

demographic, socioeconomics, and network attributes, providing insights for long-term, large-

scale safety planning. 

For the micro-level factors, the current literature focuses on detailed and granular variables such 

as traffic volume, vehicle speed, road surface conditions, and weather data to assess crash risks. 

Wang et al. [32] established and compared three types of crash frequency models based on average 

daily traffic (ADT-based), average hourly traffic (AHD-based), and microscopic traffic at 5 min 

interval for safety analysis. The result showed for all three models that the traffic exposure, speed 

variation, road length, and the existence of diverging segments are positively significant. 

Additionally, Abdel-Aty et al. [33] assessed crash occurrences on the urban freeway using road 

geometric characteristics and microscopic traffic variables to establish their crash frequency model. 

Their findings showed the median type, pavement surface types, and average annual daily traffic 

(AADT) as critical factors contributing to crashes. Peng et al. [34] investigated the effect of 

reduced visibility using real-time microscopic data, concluding that reduced visibility would 

significantly increase the crash risk especially for rear-end crashes and the risk impact varies for 

different vehicle types and lanes. Under heavy rainfall conditions, Jung et al. [35] has evaluated 
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the contributing factors to the crashes. In this study, they collected the multiple data sources from 

microscopic geographics and secondary weather data. It was identified that posted speed limit 

change, presence of off-ramps, and changes of pavement surface material has significant influence 

on the crashes in rainy weather. Similarly, Seeherman and Liu [36] examined the effects of 

snowfall on traffic safety. The study found that heavy snowfall critically impacted on crashes, and 

the effects of mixed precipitation conditions were less impactful than entirely snowy conditions. 

Hermans et al. [37] investigated the impact of severe weather conditions on the number of crashes 

by incorporating a total of 17 climate factors, concluding that an increase in maximum wind gusts 

positively influences crash occurrences, while global radiation and sunshine duration negatively 

impacted crash occurrences. 

With regards to the macro-level variables, existing studies examine broader contextual factors such 

as land use, road networks, socioeconomics, and spatial interactions to understand their impact on 

crashes. Chand et al. [38] considered macroscopic variables from demographic, vehicle utilisation, 

environmental, responder variables, and street network features to establish the crash frequency 

model and found that highly connected and dense road networks were often associated with higher 

crash frequency. Additionally, a comparative analysis conducted by Huang et al. [39] compared 

macro-level Bayesian CAR model with micro-level Bayesian spatial joint model. With an 

integration of both models, the specific treatment strategies could be provided to different 

screening categories. Moreover, Pervaz et al. performed an integrated framework to model crashes 

at macro and micro-level, including roadway and traffic factors, land use, built environment and 

sociodemographic characteristics for model estimation [40]. The researchers demonstrated an 

improved model performance compared to a non-integrated macro model. Furthermore, Wang et 

al. [41] investigated the effect of zonal factors in estimating crash risk for different transportation 

modes. The study found that zonal factors play an important role in model performance on non-

motorized crashes and significantly affect intersection crashes. 

2.2 Methods for Crash Analysis and Estimation 

This section breaks down two different modeling approaches in traffic safety literature. The first 

section concerns the parametric modeling approach, which was prevalent in early modelling 

frameworks. This type of approach is often constrained due to underlying assumptions that hinder 
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the flexibility and accuracy of the model. In response, many literatures have explored the ML 

modeling approach, which has led to high-performance models that fully utilize data which are 

discussed in the second section.  

2.2.1 Parametric Crash Prediction Models 

Traditionally, researchers have analyzed factors affecting collisions through a parametric modeling 

framework that assumes an inherent data distribution. Typical data and methodological related 

issues for statistical analysis of crash frequency modeling often involve over-dispersion, under-

dispersion, time-varying explanatory variables, temporal and spatial correlations, and so on [42]. 

For example, the Poisson model is a basic model for simple estimation; however, it cannot handle 

over-dispersion and under-dispersion, and is significantly influenced by low sample means and 

smaller sample sizes.  

Regardless, researchers Jovanis and Chang [12] proposed to use a Poisson Regression modeling 

approach to analyze the number of accidents and miles traveled. The authors revealed that 

automobile accidents are much more sensitive to environmental conditions than truck accidents. 

Using a similar approach, Jones at al. [43] analyzed urban freeway accident frequency and duration, 

which can be used to assist in the ongoing development of Seattle’s accident management system. 

Besides, Wei and Lovegrove [44] leveraged a Negative Binomial (NB) regression model to predict 

macro level cyclist collisions, and found that an increase in total lane kilometres, intersection 

density, and arterial-local intersection percentages increases the bicycle-auto collisions. To 

examine accident occurrences at signalized intersections, Chin and Quddus [45] utilized a random 

effect NB model to handle spatial and temporal effects in their data. Their study found that the 

total approached volumes, number of phases per cycle, presence of uncontrolled left-turn lanes, 

and the presence of surveillance cameras are major influential factors.  

Additionally, multivariate models, generalized estimating equation models, negative multinomial 

models also are major statistical model types in analyzing the crash frequency data [42]. A previous 

effort conducted by Abohassan et al. [46] examined the effect of maintenance, weather, surface 

conditions, and road safety variables using Structural Equation Modeling and Path Analysis. This 

approach highlighted the interdependency between these variables, offering a deeper 

understanding of how different factors interact to influence winter road conditions.  
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While traditional parametric methods have significantly contributed to our understanding of road 

safety, their dependence on assumed pre-assumptions can constrain their flexibility and accuracy 

[47]. The complexity of winter road conditions, with intricate interactions between variables such 

as weather, traffic, and maintenance, calls for more flexible and data-driven approaches. 

2.2.2 Machine Learning Predictive Models 

In response to these challenges, ML algorithms have emerged as powerful alternatives. These 

algorithms make minimal assumptions about relationships between predictors and the desired 

output variable, leading to higher performance in most applications [48]. Due to significant 

breakthroughs in artificial intelligence (AI), ML has gained lots of favor for researchers for 

developing comprehensive, accurate and efficient models.  

In recent studies, Li and Abdel-Aty [49] developed a real-time crash occurrence prediction model 

using temporal attention-based deep learning and trajectory fusion, showing reasonable 

performance for crash occurrence prediction. Additionally, Li et al. [50] used SVM to predict crash 

frequency on rural frontage roads in Texas with different sample sizes and performed a 

comparative analysis with a conventional NB model. Results show that SVM possesses a better 

prediction performance. However, the reasons behind why an increased data size can result in a 

decrease in model performance remain unclear. Researchers Zarei et al. [51] used Conditional 

Generative Adversarial Networks (CGAN) for Empirical Bayes (EB) analysis of road crash 

hotspots demonstrating the robustness of the CGAN-EB model than traditional NB-EB model. Hu 

et al. [52] developed a deep learning, convolutional neural network (CNN), and decision tree-

based approach using connected vehicle data, finding that the CNN model achieved best accuracy 

to predict the crash risk at intersections. 

In addition to the previous mentioned complex ML approaches, more interpretable tree-based 

models are also popular in predicting crashes. Chang and Chen [53] modelled freeway crash 

frequency with Classification and Regression Trees (CART) and compared the results with a NB 

regression model, leading to a marginally higher prediction accuracy. Noting marginal 

improvement, later researchers have adopted ensemble learning methods, which often combines 

multiple weak classifiers to improve predictive power, decrease sensitivity to noise, and provide 

feature importance for the model. Zhang et al. [54] developed a random forest (RF) model for real-
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time crash occurrence prediction on freeways using crowdsourced probe vehicle data which has 

found better performance against competing models such as logistic regression, XGBoost, and 

SVM. Furthermore, Goswamy et al. [55] developed a XGBoost model for investigating the factors 

affecting injury severity at pedestrian crossing locations with rectangular rapid flashing beacons, 

finding superior performance over the random parameter discrete outcome models.  

Overall, ML algorithms, with their ability to handle non-linearity and non-parametric datasets, 

offer higher performance than traditional parametric models [56]. While ML models excel at 

predicting outcomes, they often do so at the expense of model transparency such as deep learning 

and ensembles [57]. Such a lack of interpretability, as cited by a few studies [23, 24], 

fundamentally limits the utility and trustworthiness of these ML models in real-world applications. 

This gap in understanding becomes particularly important in scenarios such as road safety, where 

discerning the causal factors of collisions on a road segment is as crucial as predicting their 

likelihood. 

2.3 Methods for Enhancing Machine Learning Interpretability 

Due to advancements of ML models and their improved predictive accuracy, ML has led to 

widespread adoptions in industrial applications [58]. However, such enhancements in predictive 

power have often been achieved through an increase in model complexity [57]. There is a clear 

trade-off between the performance of a ML model and its ability to produce explainable and 

interpretable predictions. This phenomenon is often referred as the “black box” problem. To 

address the need to tackle the “black box” nature of ML models, there has been a surge of interest 

in interpretable ML: a system that provides explanations for their outputs [59]. Systems whose 

decisions cannot be well-interpreted are difficult to trust, especially in sectors such as healthcare, 

where moral and fairness issues have naturally arisen [57]. Without understanding how ML model 

predictions are made, there is a significant challenge in adopting these models in applications. The 

prediction outcomes need to emphasize their resolution in the decision-making process. With this 

vision in mind, the need for building trustworthy, fair, robust, but also highly performance models 

for real-world applications has led to the revival of the field of eXplainable Artificial Intelligence 

(XAI) - a field focused on the understanding and interpretation of the behaviour of AI systems. 

Challenges with Complex Machine Learning Model Predictions 
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According to Doshi-Velez and Kim, metrics established in ML such as classification accuracy, are 

not a complete description of most real-world tasks [59]. Understanding the basic interpretability 

requirement, several typical challenges arise in academia regarding ML predictions such as high-

stakes decision impacts, societal concerns, and regulations. In terms of high-stakes decision 

impacts, Wexler [60] has highlighted the danger of deploying automated criminal justice systems 

at every stage, such as incorrect bail decisions that might release potentially dangerous criminals. 

Similarly, faulty pollution models may incorrectly deem dangerous situations as safe [61]. These 

forementioned cases all indicate a partial relevance to computer-aided modeling. Regarding social 

concerns, Doshi-Velez and Kim [59] specified it can be optimized through interpretability, 

highlighting downstream tasks such as fairness, privacy, reliability, causality, and trust. Moreover, 

new regulations require verifiability, accountability, and transparency in algorithm decisions. The 

recently enforced European General Data Protection Regulation (GDPR) provides subjects with 

the right to an explanation of algorithmic decisions involving their data [62]. 

Model Interpretation Using Shapley Additive exPlanations 

There are typically two types of model interpretability: intrinsic and post hoc. The intrinsic 

interpretability involves understanding the constraints imposed on the complexity of the ML model 

itself, whereas the post hoc interpretability involves applying methods to analyze the trained model 

after it has been built [63]. The intrinsic interpretability, also known as model-specific 

interpretation, refers to models that are interpretable by themselves during the in-model phase. 

Post hoc interpretability, or model-agnostic interpretation, involves explanation methods applied 

after the model training phase to provide insights into the model’s decision-making process [61].  

Model-specific interpretation methods are limited due to the reliance on the unique internal 

structure of the model which tends to have simple structures such as the linear, decision tree, and 

rule-based models [57]. Regardless, when it comes to models with higher complexity, model 

agnostic interpretation can be very useful. Currently, SHapley Additive exPlanations (SHAP) has 

emerged as a powerful model-agnostic tool, bringing explanations to complex models. The method 

leverages concepts in game theory to enhance interpretability through the computation of 

importance values for each feature that composes an individual prediction [64]. 
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SHAP has been used in various domains. In the field of healthcare, Moreno-Sanchez [65] 

developed an interpretable model to predict heart failure survival using ensemble ML trees, 

identifying XGBoost as the best amongst models such as Decision Trees, Random Forest, Extra 

Trees, AdaBoost, Gradient Boosting, and XGBoost. SHAP analysis was used to gain the 

interpretability of the prediction model developed. Similarly, Athanasiou et al. [66] developed an 

explainable personalized risk prediction model for cardiovascular diseases in patients with Type 2 

Diabetes Mellitus, utilizing XGBoost alongside the Tree SHAP technique to generate individual 

explanations for model decisions. In finance and marketing sectors, researchers Lin and Gao [67] 

applied group SHAP to evaluate the different abilities of companies, which presented excellent 

performance in local interpretation and with decreased the computation time. Moreover, in the 

marketing field, Meng et al. [68] utilized an XGBoost model along with SHAP to predict and 

explain online review helpfulness. This comprehensive application of SHAP across diverse fields 

underscores its utility in enhancing a model interpretability and transparency, making it a valuable 

tool for understanding complex ML models. 

2.4 Summary 

This chapter has conducted a comprehensive literature review on winter crash risk factors, crash 

prediction models, and methods for improving the interpretability of ML models. Although 

parametric models provide a solid foundation for crash prediction, they often struggle with 

complex, high-dimensional data. In contrast, ML models offer superior performance and flexibility, 

but this often comes at the expense of interpretability. Recent advances in explainable AI, such as 

SHAP, provide promising solutions to bridge this gap, enhancing the transparency and 

trustworthiness of ML models. By combining both powerful predictive models with transparent 

decision-making mechanisms, we can ensure and appreciate a model’s fairness and trustworthiness. 

Future research should focus on integrating these interpretability techniques into practical 

applications to improve winter road safety.  
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Chapter 3: METHODOLOGY 

The previous chapters discuss the limitations in existing crash frequency models due to the 

underlying assumptions behind the statistical parametric model, the limitations on prediction 

variables, and how model transparency remains unknown due to the complexities of ML models. 

To address these identified gaps, this thesis established a series of machine learning based 

frameworks to enhance winter road safety in the city of Edmonton (Figure 3-1). 

 

Figure 3-1 Methodological Framework 
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This thesis performs two phases of analysis to mitigate winter driving difficulties and provide 

insights in hazardous snowstorms and winter crash characteristics using XAI techniques. In the 

first phase, the binary classification model was built to determine the risk factors that lead to crash-

inducing snowstorm events according to the examined friction testing routes. The second phase 

considers both macro and micro level variables to give a holistic evaluation on the entire city of 

Edmonton winter crash risk factors, and how various features interplay differently with each other 

at high and low crash frequency locations. Both phases have developed ML models, and through 

comparisons in model performance metrics, the model with high predictive power are assured. 

Most importantly, for the selected model, the thesis also applies XAI techniques to increase the 

interpretability and improve the models’ transparency. This comprehensive workflow allows the 

model prediction outcomes to be explained, providing insight on how a model established the 

outcome by further decomposing the contributions of each of the individual features. Within this 

chapter, we conduct a thorough examination of the principles behind the applied method. 

3.1 Spatial Analysis via Getis Ord Gi*  

Getis-Ord Gi* is a spatial analysis technique used to identify the hot and cold spots within a 

geographic area. The study performed spatial analysis using the Hot Spots Analysis tool in ArcGIS. 

The output of this tool creates a new output feature class with z-score, p-value, and confidence 

level bins (Gi_Bin). The tool functions by examining each feature within the context of its 

neighboring features, creating a spatial weight matrix based on the proximity between locations. 

For the statistically significant positive z-scores, the larger the z-score is, the more intense the 

clustering of high values (hot spots) [69], which in our context means a cluster with high crash 

frequency. Whereas a negative z-score, indicates an intense cluster of low values (cold spots) 

signifying a cluster with low crash frequency. 

The method is commonly used in transportation engineering. In traffic safety, it is commonly used 

to locate crash-prone sites and give a spatial assessment of the feature influences from the spatial 

distribution of events. In this use case, it helps identify regions within the city with high and low 

crash frequencies. By overlaying additional features on top of the hot spots map, we can conduct 

a preliminary assessment of the influences of these features, thereby enhancing our understanding 
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of crash patterns in winter. Additionally, this investigation aids in the subsequent development of 

an ML crash frequency model. 

The following Equations 3.1 to 3.3 are used for calculating the Getis-Ord local Statistics. 
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𝑺 = √
∑ 𝒙𝒋
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𝒏
− (�̅�)𝟐 (3.3) 

Where 𝑥𝑗 is the attribute value for feature 𝑗, 𝑤𝑖,𝑗 is the spatial weight between feature 𝑖 and 𝑗, 𝑛 is 

equal to the total number of features. 

3.2 Ordinary Kriging 

To understand the concept of Ordinary Kriging (OK), it is essential to first introduce the 

fundamentals of kriging. Kriging operates on the principle that spatially correlated data can be 

used to predict values at unsampled locations. It helps to weigh the surrounding measured values, 

and derive a prediction for an unmeasured location. The general formula for both interpolators is 

formed as a weighted sum of the data as described in Equation 3.4. 

�̂�(𝒔𝟎) = ∑ 𝝀𝒊𝒁(𝒔𝒊)

𝑵

𝒊=𝟏

 (3.4) 

Where �̂�(𝑠0) is the measured value at the 𝑖th location, 𝜆𝑖 is an unknown weight for the measured 

value at the 𝑖th location, 𝑠𝑜 is the prediction location, and 𝑁 is the number of measured values. 
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Amongst all kriging approaches, OK is selected for our study. As OK is the most used form of 

kriging methods due to a combination of its simplicity and high accuracy [70]. It assumes a 

constant but unknown mean across the study area. The model is expressed in Equation 3.5. 

𝒁(𝒔) = 𝝁 + 𝜺(𝒔) (3.5) 

Where 𝜇 is an unknown constant, 𝜀(𝑠) is the residual. Kriging weights are also needed to estimate 

values at unknown points. Spatial autocorrelations imply an internal spatial relationship between 

sample points. Kriging weights therefore depends on both the distance between observations and 

prediction location and the overall spatial arrangement of the observations. The objective of OK 

interpolation is to determine the optimal kriging weights that minimize the estimation variance 

which is illustrated in Equation 3.6. 

�̂�(𝒔) = 𝝁 + ∑ 𝝀𝒊

𝑵

𝒊=𝟏

[𝒁(𝒔𝒊) − 𝒎(𝒔𝒊)] (3.6) 

Where �̂�(𝑠)  is OK estimate, 𝑍(𝑠𝑖)  is the observation at location 𝑠𝑖 , 𝜆𝑖  is the unknown Kriging 

weight for the observation at location 𝑠𝑖 , 𝑠  is the location for estimation, 𝑁  is the number of 

observations, and 𝑚(𝑠𝑖) is the expected values of 𝑍(𝑠𝑖). 

Beside the kriging weight, it is also important to construct a high quality semivariogram to 

determine the accuracy of the estimation results. Semivariance represents the reciprocal of the 

spatial autocorrelation, which is calculated using Equation 3.7. It illustrates how similarity 

between values changes with separation distance. 

𝜸(𝒉) =
𝟏

𝟐
[𝒛(𝒙𝒊) − 𝒛(𝒙𝒋)]𝟐 (3.7) 

Where 𝛾(ℎ) is the semivariance between sample points 𝑥𝑖 and 𝑥𝑗 in ℎ distance, and 𝑧 is the feature 

value. Afterwards, the semivariogram is compared using three commonly used model forms: 

Spherical, Gaussian, and Exponential. The fitted semivariogram model provides three spatial 

parameters: sill, range, and nugget [71]. The sill represents the semivariance level where the model 

begins to plateau. The range is the lag distance at which the semivariance reaches the sill, beyond 

which spatial autocorrelation is considered non-existent. Finally, the nugget represents the spatial 



 18 

variability at distances smaller than the shortest distance between observations, often termed 

measurement error. 

3.3 Machine Learning Algorithms 

ML algorithms are a powerful tool for both classification and regression tasks when it comes to 

the predictive power and robustness of a model. Over the years, ML models have evolved 

dramatically, which surpass some of the conventional traffic safety models that rely on a statistical 

approach, such as the negative binomial model, Poisson model, etc. However, the problem of these 

parametric models is often the constraints caused by the predefined assumption, which limits the 

full utilization of the collected data. This primarily limits the potential of abundant traffic data, 

hindering the pathway to a high-performance model. ML is a heavily data driven and non-

parametric model approach which overcomes the problem from conventional statistical models. 

Because of their high performance, it has quickly gained researchers’ interest in building robust 

predictive models.  

In this section, we discuss the models applied for this study and provide an overall description of 

each model, including its concepts and its characteristics. As previously mentioned, this thesis has 

two phases. The first phase applied SVM to classify whether snowstorm event induced crashes. 

The resulting model is then compared with different kernel functions and evaluated based on the 

performance metrics such as accuracy, precision, recall and F1-score. In the second phase, some 

of the most popular tree-based ML algorithms are applied to perform the regression task for 

predicting crash frequency. Namely, these are Extreme Gradient Boosting (XGBoost), Random 

Forest (RF), and Light Gradient Boosting Machine (LightGBM). The three models are compared 

based on their percentage variance explained and error metrics. 

3.3.1 Support Vector Machine 

SVM is a supervised learning method that can be used for classification and regression [72]. The 

model is renowned for its ability to model high-dimensional relationships [73]. According to 

Vapnik [74], two of the most outstanding qualities for SVM are the power to find the global minima 

(because of convex optimisation), as well as its decreased proclivity to overfitting (because of 

structural risk minimisation principle). Additionally, many literatures also conclude that for studies 

with a small dataset size, the performance of SVM (shallow structure model) for classification 
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tasks tends to produce better classification results than deep structure models [75, 76]. Hence, due 

to the limited total of 231snowstorm events within the dataset of our study, SVM is selected to 

classify the crash-inducing snowstorms.  

According to WS Noble, to grasp the essence of SVM classification, one should understand four 

foundational concepts: separating hyperplanes, maximum-margin hyperplanes, the soft margin, 

and the kernel function [77]. A separating hyperplane is essentially a line that separates different 

classes of samples. SVM selects a hyperplane that maximizes the distance between it and the 

nearest data points. The concept of soft margin allows for a trade-off between hyperplane 

violations and the margin size. In general, the hyperplane that separates the data cannot be found 

in 2-D space; a projection must be made to transform the data into a higher-dimensional space to 

find a separating hyperplane. This projection into higher dimensional space can become 

computationally expensive. Thus, a technique called "kernel trick" is proposed as a solution to this 

problem. The kernel trick is a formula that quantifies the relationship between variables in a higher 

dimension by formulation, eliminating the need to transform the data. There are several forms of 

the kernel trick, and some of the most common are Linear, Polynomial, Radial Basis Function 

(RBF), and Sigmoid [78, 79]. These kernel tricks are explored in our analysis.  

Equation 3.8 is the principal equation that solves the SVM classification problem.  

𝐦𝐢𝐧
𝒘,𝒃,𝜻

𝟏

𝟐
𝒘𝑻𝒘 + 𝑪 ∑ 𝜻𝒊

𝒏

𝒊=𝟏

 

Subject to 𝒚𝒊(𝒘𝑻𝝓(𝒙𝒊) + 𝒃) ≥ 𝟏 − 𝜻𝒊 

𝜻𝒊 ≥ 𝟎, 𝒊 = 𝟏, … , 𝒏 . 

(3.8) 

In other words, in a given set of training vectors 𝑥𝑖 ∈ ℝ𝑃, 𝑖 = 1, … , 𝑛, two classes use a vector 𝑦 ∈

{1, −1}𝑛. The goal of this equation is to find 𝑤 ∈  ℝ𝑃 and 𝑏 ∈  ℝ, such that the prediction given 

by sign(𝑤𝑇𝜙(𝑥𝑖) + 𝑏) is mostly correct among the samples. The equation aims to maximize the 

margin, minimize  ‖𝑤‖2 = 𝑤𝑇𝑤, and apply a penalty when a sample is misclassified. In an ideal 

case, the value 𝑦𝑖(𝑤𝑇𝜙(𝑥𝑖) + 𝑏)  is less or equal to 1 for all the samples. However, a perfect 

separatable hyperplane is not always available. Thus, distance 𝜁𝑖 helps by allowing some samples 



 20 

to fall in the correct margin boundary. 𝐶 is the penalty term acting as an inverse regularization 

parameter [80]. 

3.3.2 Tree-Structured Models 

Extreme Gradient Boost 

XGBoost [81] is a powerful and efficient tool that implements gradient boosted decision trees, 

which are essentially an ensemble method that build the model in a stage-wise manner. It is a 

gradient boosting algorithm that involves building an ensemble of weak learners. This means the 

model starts with a weak learner, then after every iteration, a new predictor comes to account for 

the errors of the previous model, which is then added into the ensemble. The iteration stops once 

the number of boosting rounds ends. 

The model consists mostly of two important parts, a training loss function and regularization. The 

first part is a training loss function, denoted as 𝑙, which measures the difference between the actual 

value and the predicted values. Typically, a differentiable convex function is used. The second 

term, Ω, is the regularization term, which penalizes the complexity of the model, helping smooth 

the final learnt weights to avoid overfitting [82]. The objective function is shown in Equation 3.9.  

𝑶𝒃𝒋(𝒕) = ∑ 𝒍 (𝒚𝒊, �̂�𝒊 
(𝒕−𝟏)

+ 𝒇𝒕(𝒙𝒊)) + 𝜴(𝒇𝒕) + 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕
𝒏

𝒊=𝟏
 (3.9) 

Where 𝑙 is the loss function, 𝑦𝑖 is the target value, �̂�𝑖 is the prediction value, Ω is the regularization, 

𝑓𝑡 is the 𝑡-th regression tree. 

Equation 3.10 provides the definition of the tree, 𝑓(𝑥). And Equation 3.11 defines the complexity 

of the tree, 𝜔(𝑓). 

𝒇𝒕(𝒙) =  𝝎𝒒(𝒙), 𝝎 ∈ 𝑹𝑻, 𝒒: 𝑹𝒅  → {𝟏, 𝟐, … , 𝑻} (3.10) 

Here, 𝜔  is the vector of scores on leaves, 𝑞  is a function assigning each data point to the 

corresponding leaf, and 𝑇 is the number of leaves. 
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𝛀(𝒇)  =  𝜸𝑻 +
𝟏

𝟐
𝝀 ∑ 𝝎𝒋

𝟐
𝑻

𝒋=𝟏
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Where the 𝛾 and 𝜆 are the regularization parameters that prevents the model from overfitting. 

Random Forest 

Random Forest (RF) is an ensemble learning method introduced by Breiman in 2001 [83]. It builds 

multiple decision trees and combines their results to enhance predictive performance. Unlike 

XGBoost, which minimizes an explicit objective function through sequential boosting, RF utilizes 

the bagging method (bootstrap aggregating), and feature randomness to create an uncorrelated 

forest of decision trees. For each decision tree in the forest, a random subset of features and training 

data is used. This helps diversify the trees which helps reduce the variance and prevent overfitting. 

In regards to the RF regression model built for our study, the predictions from each individual tree 

are averaged to generate the final output. Here, an intuition diagram for RF is illustrated in Figure 

3-2. By averaging the trees, the model reduces the impact of the noise and outliers in the training 

data, hence leading to better predictions. 

 

Figure 3-2 The Intuition Diagram for Random Forest Regression Model 
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To better capture the underlying patterns of the data, the model tends to grow more trees and 

increases the depth of each tree. Although this does improve the model performance, this 

inherently increases the complexity of the model. Hence, it once again highlights the importance 

of understanding the inner working mechanisms of the model, which helps us to validate the 

truthfulness of the generated outcome.  

Light Gradient Boosting Machine 

Light Gradient Boosting Machine (LightGBM) is another popular gradient boosting framework 

designed to enhance training efficiency, particularly when dealing with high-dimensional features 

and large datasets [84]. Developed as an improvement over XGBoost, LightGBM aims to 

accelerate model training while maintaining accuracy. To achieve this, LightGBM introduces two 

novel techniques: Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling 

(EFB).  

GOSS is applied to retain instances with large gradients while randomly dropping those with small 

gradients. This selective sampling helps optimize memory usage and significantly reduces training 

time by focusing computational resources on the most informative instances. This technique 

differentiates LightGBM from most decision tree learning algorithms that often grow trees level-

wise. Instead. LightGBM grows trees leaf-wise, [85] which can potentially lead to faster 

convergence [86]. Exclusive Feature Bundling (EFB), on the other hand, addresses the issue of 

high-dimensional feature spaces by bundling mutually exclusive features together. This reduces 

the number of features, further improving training efficiency. 

By combining these techniques with the gradient boosting framework, LightGBM achieves faster 

training speeds, lower memory usage, and improved accuracy. These enhancements make 

LightGBM a "light", yet powerful tool for machine learning tasks involving large and complex 

datasets. 
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3.4 SHapley Additive exPlanations 

A model agnostic XAI technique, SHAP is designed to solve the interpretability problem that 

plagues most ML approaches. By combining SHAP and ML models, we can accurately identify 

collision risks and understand the reasoning behind the model’s selection. 

The main objective of our analytical framework is to determine the contribution of each predictor 

to a single observation instance [64]. SHAP is based on cooperative game theory, where players 

in a game form coalitions, and the rewards gained are distributed to the players. It is unlikely that 

each player contributes equally to the successful outcome. Hence, a system is needed to determine 

the contribution of the players in the coalition. Analogously, in an ML model, the players are the 

features, and the SHAP value is the amount by which the features contribute to the prediction 

output [87]. This approach is highlighted in Equation 3.12, where additive feature attribution 

methods have an explanation model that is a linear function of binary variables. 

𝒈(𝔃′) = 𝝓𝟎 + ∑ 𝝓𝒊𝔃𝒊
′

𝑴

𝒊=𝟏

 (3.12) 

Where 𝑔  is the explanation model, 𝓏′ ∈  {0,1}𝑀  is the coalition vector, 𝑀  is the maximum 

coalition size, and 𝜙𝑖 𝜖 ℝ is the feature attribution for a feature 𝑗 – the Shapley values [64].  

The Shapley values are calculated using the following Equation 3.13, 

𝝓𝒊(𝒙) =  ∑
|𝑺|! (|𝑭| −  |𝑺| − 𝟏)!

|𝑭|!
𝑺 ⊂ 𝐅{𝒊}

[𝒇𝑺∪{𝒊}(𝒙𝑺∪{𝒊}) − 𝒇𝑺(𝒙𝑺)] (3.13) 

Where 𝑥 is the observation input, 𝜙𝑖(𝑥) is the Shapley value for the corresponding feature 𝑖 in 

game 𝑓 . 𝐹  represent the feature set. For the trained model, 𝑓𝑆  meaning subset of feature 𝑆  and 

𝑓𝑆∪{𝑖} means the subset of feature 𝑆 and 𝑖. Some restrictions were represented as 𝑥𝑆, meaning the 

restricted input of 𝑥 given the subset of feature 𝑆. Similarly, 𝑥𝑆∪{𝑖} means the restricted input of 𝑥 

given the subset of feature 𝑆 and {𝑖} [87]. 

As SHAP values describe feature importance for a single instance, it is also possible to quantify 

global importance of a given feature by taking the average of the absolute SHAP value for all 

instances with respect to a particular feature. This process is depicted in Equation 3.14,  
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Where 𝐼𝑗 is the feature importance of the 𝑗 th feature and 𝜙𝑗
(𝑖)

 is the Shapley value of the 𝑗 th 

feature of the 𝑖 th sample. 

3.5 Summary 

This chapter provides an overview of the methods applied in this thesis. The application of ML 

serves as the main theme throughout this work, addressing classification and regression tasks 

aimed at improving winter road safety. Consequently, the chapter introduces the mathematical 

principles behind each model and justifies their implementation. 

The ML algorithms section introduces four widely adopted models: XGBoost, RF, LightGBM, and 

SVM. By understanding the working principles and limitations of each model, we can observe the 

differences and similarities between them. It is noteworthy that all four models involved in the 

study have complex structures. Advanced tree-based models often increase the number of trees 

and the tree depth to enhance predictive power at the expense of increasing model complexity. 

SVM, known for its ability to handle high-dimensional unstructured datasets, uses kernel functions 

to project data into a high-dimensional space to find the best-fitting hyperplane. This mathematical 

transformation increases the model's complexity as well. Besides the ML methods, we also 

presented the concept of HSA, which helps identify the crash-prone locations, and the power of 

OK for data interpolation. 

While the increase in ML complexity significantly improves model performance, understanding 

why a model makes a particular prediction and the evidence supporting that prediction remains 

challenging. To address this, we introduce the concept of XAI and a powerful explainability tool 

known as SHAP, which relies on game theory. The application of SHAP helps reflects the feature 

importance in a global perspective and provides local explanations to individual predictions. In the 

following two chapters, we will demonstrate the predictive power of ML algorithms, assisted by 

XAI, to interpret and evaluate the validity of the results. This approach allows us to gain valuable 
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insights into the practical implementation of the framework and contributes to an enhanced 

understanding of winter road safety. 
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Chapter 4: DEVELOPING A MACHINE LEARNING-BASED 

APPROACH FOR IDENTIFYING CRASH-INDUCING 

SNOWSTORM EVENTS1 

In this chapter, the risk factors contributed to the crash-inducing snowstorm events are analyzed at 

the friction testing routes in the city of Edmonton. The first section gives the background of the 

study area and the data collection. This section also describes the location of the friction testing 

routes in the city, showcasing how data was collected and prepared before the modeling phase. 

The second section focused on ML classification model development using a SVM model and 

compared its performance metrics under different kernel functions. In the third section, the 

established complex model is explained using SHAP XAI techniques, where the global 

explanations of all features are examined to give an overview of the key features contributing to 

the model outcome and the impacts of high and low feature values to the prediction. In the final 

section, the representative crash-inducing snowstorm event instances are assessed using SHAP 

local explanations to uncover general patterns and characteristics of these events, making the 

model results transparent and interpret for maintenance personnel. 

4.1 Study Area and Data Preparation 

4.1.1 Study Area 

The study area selected for this research is the city of Edmonton, given its cold and prolonged 

winter season stretching from November to March. The climatic conditions in Edmonton are 

characterized by significant snowfall, icy roads, and fluctuating temperatures, further reinforcing 

its suitability for this study. The datasets, collected over two winter seasons (2017/2018 and 

2018/2019) across an extensive road network in Edmonton, include a total of 234 friction tests 

conducted using the Vericom Brakemeter 4000. In total, 21 routes (13 arterials and 8 collectors) 

were tested across the city shown in Figure 1.  

 
1 Shuai, Z., Kwon, T. J., & Xie, Q. (2024). Using Explainable AI for Enhanced Understanding of Winter Road Safety: Insights 

with Support Vector Machines and SHAP. Canadian Journal of Civil Engineering, (ja). 
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These tests required achieving a speed of 30 km/h before initiating the braking process, resulting 

in a friction measurement based on the device’s internal G-force sensor once the driver came to a 

complete stop. While friction measurements are intermittent and cannot capture all road condition 

variations, they are a pragmatic method of data collection. These measurements were collected 

after snow events over two years and serve as a vital sample that reflects the dynamic nature of 

winter road surfaces in urban environments. 

 

Figure 4-1 Friction Testing Routes 
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4.1.2 Data Preparation 

An overview of the variables used and descriptive statistics for each variable are presented in Table 

4-1 and Table 4-2, respectively. In total, the dataset contains 16 predictors categorized into weather, 

maintenance status, road surface, road type, and traffic exposure variables. After data cleaning, 

231 unique snowstorm events were retained for analysis. Our study adopted an event-based 

approach, with the friction-tested road segments as the spatial units, and the snowstorm events 

duration as the temporal units. By correlating friction test timestamps and location where the test 

conducted with specific snowstorm events, we integrated those factors to assess their collective 

impact on winter road safety.  

In terms of weather-related variables, we used hourly weather data to define each snowstorm event. 

For each event, average ambient temperature, dew temperature, humidity, and wind speed during 

its occurrence are considered. Given the relatively short duration of these events and the 

granularity of hourly data collection, the average of these variables provides a reliable estimate of 

weather conditions. To improve the accuracy of the weather data, readings were collected from the 

closest weather station to the friction test route. The start and end times of snowstorm events are 

systematically determined by the presence of precipitation combined with an average temperature 

of 5 degrees Celsius or below. The event is deemed to have ended following a lapse of three hours 

without precipitation [88]. Moreover, the study accounts for the characteristics of each friction test 

road segment including road type and road length. Regarding traffic exposure variables, this study 

used average daily traffic (ADT) as an indicator of general traffic volume due to AADT being 

unavailable. In addition to weather and traffic exposure categories, three additional supplementary 

variables (Black Ice, T15, and Intensity) were included. Black Ice is a binary variable that is 

assigned a value of “1” when the mean dew point temperature is within a 2-degree range of the 

mean ambient temperature during a snowstorm. T15 is another binary variable representing events 

where the average temperature is -15°C or lower. Precipitation intensity was derived using the 

value of precipitation divided by its corresponding duration [6]. The inclusion of intensity offers a 

critical measure of the storm’s potential impact on road safety which is distinct from mere 

precipitation. This differentiation allows us to distinguish between the mere presence of 

precipitation and its severity, which can vary considerably from one event to another. 
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To enhance the model’s precision, we defined the dependent variable, "occurrence of an accident", 

as a conditional statement. Accidental cases are identified by the presence of crashes, either at the 

midblock or intersection, during a snowstorm event. In the absence of such crashes, the event is 

classified as non-accidental. Analyzing both intersection and midblock crashes is crucial for 

understanding how varying weather conditions impact the likelihood of crashes at different road 

sections. Typically, intersections experience a higher frequency of crashes, largely due to the 

presence of traffic controls. In contrast, midblock crashes provide insights into accidents occurring 

under steady traffic flows. 

Table 4-1 Summary of Predictor Variables 

Variable Category 
Variable 

Name 
Variable Description Data Type 

Weather Variables 

T Temperature in Celsius Continuous 

H Humidity in % Continuous 

P Precipitation in mm Continuous 

W Wind speed in km/h Continuous 

D Duration of snowstorm in hours Continuous 

I Intensity of precipitation in mm/h Continuous 

T15 
Was the average snowstorm 

temperature below -15 Celsius? 
Discrete 

Dew Dew point temperature Continuous 

BI 

Was the average temperature 

during a snowstorm within two 

degrees of the dewpoint? 

Discrete 

Maintenance Status 

Variables 

AI Was anti-icing conducted? Discrete 

Maint Was the road plowed? Discrete 

Road Surface 

Variables 
G Pavement friction Continuous 

Road Type 

Variables 
Arterial Is the road segment arterial? Discrete 

Traffic Exposure 

Variables 

Length Length of the road segment in km Continuous 

ADT 
Average daily traffic volumes for 

the road segment 
Continuous 

MVK Million vehicle kilometers Continuous 

Table 4-1 details the 16 predictors used to predict collision likelihood. Descriptive statistics 

reflecting the diversity and variability of the datasets are provided in Table 4-2 From temperature 

(T) ranging from -31.05 to 1.85 degrees, humidity (H) from 58.8% to 94.66%, and various other 

measures including road type, maintenance status, and traffic exposure, the datasets showcase a 
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wide span of conditions. Standard deviation values further underline the variability within these 

parameters, emphasizing the comprehensiveness of the data. This comprehensive data collection 

underscores the study's potential to provide deeper insights into the factors affecting road safety in 

winter conditions. 

Table 4-2 Descriptive Statistics of the Dataset 

 Min Mean Max Std 25% 50% 75% 

T -31.05 -17.09 1.85 7.36 -22.04 -18.53 -10.82 

H 58.8 76.56 94.66 8.95 70.6 76.6 83.55 

P 0 1.93 11.8 2.97 0 0.2 2.9 

W 1.75 10.68 21.64 4.46 7.44 10.76 13.94 

D 4 16.45 98 15.67 4 11 25 

I 0 0.10 0.36 0.11 0 0.05 0.19 

T15 0 0.61 1 0.49 0 1 1 

Dew -33.78 -20.48 -6.58 7.58 -25.93 -21.63 -14.11 

BI 0 0.14 1 0.35 0 0 0 

Arterial 0 0.74 1 0.44 0 1 1 

AI 0 0.14 1 0.35 0 1 1 

Maint 0 0.35 1 0.48 0 1 1 

G 0.2 0.45 0.82 0.14 0.33 0.44 0.54 

Length 0.83 3.32 7.3 1.64 1.82 3.07 4.28 

ADT 1433 25339.45 74523 23406.75 5922 20198 43015 

MVK 0.95 37.14 170.09 47.13 5.24 20.23 50.01 

 

4.2 Binary Classification Model Development 
 

4.2.1 Classification Model Hyperparameters Calibration 

A critical step in the SVM model development is selecting the right Kernel to transform the dataset. 

As mentioned previously, there are several ways of performing this operation. In this study, we 

focused on the four most popular methods: Linear, RBF, Sigmoid, and Polynomial. In addition to 

finding the most suitable Kernel, a regularization parameter “C” must also be tuned. The 

significance of the “C” parameter is that it controls the size of the soft margin or tolerance for 

misclassification, which directly impacts model accuracy [89]. For the 'rbf', 'sigmoid', and 
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'polynomial' kernels, gamma plays a crucial role in defining the decision boundary. In this study, 

utilizing the python package 'sklearn', the gamma setting of 'auto' denotes that its value is 

automatically determined as the inverse of the number of features in the input data (1/n_features). 

To find the most optimal model, a grid search was performed for each of the four Kernel functions 

to identify the best “C” value between 1 and 101. The evaluation process involves training the 

model using 80% of the data and validating it using the remaining unseen 20%. The performance 

accuracy captured using the unseen 20% validation data is used for the comparison. 

By following the process mentioned above, we identified the best-performing model for each 

Kernel. We document this in Table 4-3. 

Table 4-3 Comparison of SVM Prediction Performance Using Different Kernels 

Performance Metrics 

Kernel Linear RBF Sigmoid Poly 

C 1 16 72 5 

Gamma N/A Auto Auto Auto 

Accuracy 79.0% 87.2% 87.2% 83.0% 

Recall 33.3% 80.0% 63.6% 60.0% 

Precision 11.1% 44.4% 77.8% 33.3% 

F1-Score 16.6% 57.1% 70% 42.9% 

Table 4-3 highlights that the RBF Kernel outperformed all other approaches. It delivers the best 

performance across all metrics, achieving accuracy at 87.2%, precision at 44%, recall at 80%, and 

an F1-Score of 57.1%. To understand these performance metrics: accuracy is derived using the 

ratio of correctly predicted instances to the total instances; recall is the proportion of actual 

positives correctly identified; precision is the proportion of positive identifications that were 

actually correct; and F1-Score is the harmonic mean of precision and recall. From this table, it is 

observed that the Sigmoid Kernel is performing with the same model accuracy with a slightly 

lower recall to compensate for a higher Precision and F1-Score.  

4.2.2 Classification Model Performance 

To further evaluate the performance of the SVM (RBF-based) model, a confusion matrix, shown 

in Figure 4-2, is used to determine the number of true positives (TP), true negatives (TN), false 

positives (FP), and false negatives (FN). As shown below, the model has a high classification in 
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the accident and non-accident categories, with an accuracy of 87.2%. Moreover, of the remaining 

12.8% of misclassifications, the vast majority are FPs, i.e., our model is rather conservative, which 

can be beneficial from a safety point of view. Although these misclassifications are not ideal, the 

consequences associated with these errors are less severe.  

Concerning the Sigmoid Kernel, the reduction in recall makes the model less appealing compared 

to the high recall obtained in the RBF Kernel. Moreover, the optimum ‘C’ value observed in the 

Sigmoid Kernel is significantly higher than the fine-tuned RBF Kernel, which poses a significant 

risk of overfitting with the Sigmoid Kernel. Thus, considering high recall and lower C value, the 

RBF kernel is selected for our SVM model. 

  

(a) (b) 

Figure 4-2 (a) Training Set Confusion Matrix and (b) Testing Set Confusion Matrix 

 

4.3 Global Interpretation of Variable in the Crash-Inducing Snowstorm Events 

Model 

Recall that the most prominent issue associated with ML models is that they are opaque in their 

decision-making process, which is evident in our developed SVM model. Although the model that 

we developed can identify road segments where collisions are likely, the model does not tell us 

much about why accidents are more likely to happen on this road segment. As a result, it is difficult 

to gauge the intuitiveness of the model and to pinpoint the actions needed to improve road safety. 
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The SHAP interpreter allows the user to assess the importance of the predictor features. By using 

SHAP, we can identify the factors responsible for crash-inducing snowstorm events, allowing 

decision-makers to develop remediation procedures that target the identified factors. There are two 

ways to visualize feature importance using SHAP; one is through the feature importance diagram 

(Figure 4-3 a), and the other is through the SHAP summary plot (Figure 4-3 b).  

  

(a) (b) 

Figure 4-3 (a) SHAP Feature Ranking Plot. (b) SHAP Summary Plot. 

Based on Figure 4-3 (a), the two most important predictors for collisions are snowstorm duration 

(D) and road length (Length); their importance is more than double that of the next most important 

feature. Many severe winter-related car crashes have shown that a longer road can induce fatigue 

or stress. Moreover, the severity and prolonged snowstorms can be problematic as well [90]. 

Weather forecasts often discourage driving on snowy days since snow can reduce visibility and 

create slippery road conditions. This issue poses a significant challenge to snowplowing operations.  

Apart from these two predictors, other factors such as precipitation (P), Average Daily Traffic 

(ADT), wind speed (W), and intensity of precipitation (I) play a significant role in predicting 

accident occurrence. In winter cities like Edmonton, high wind speed can affect the stability and 

control of vehicles. In addition, the intensity of precipitation can often impair drivers’ visibility 

and amplify the effects on traffic flow which in turn increases the crash rate [91, 92]. Besides, 
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research has shown that there is a higher relative accident risk associated with intensive 

precipitation or slippery roads [93]. This is often because wet and icy conditions reduce pavement 

friction, resulting in a decrease in tire-pavement grip. Moreover, ADT serves as an additional 

indicator, reflecting traffic volume and density where increased vehicle interactions often lead to 

higher risk.   

Another notable finding is the relative importance of plowing operations (Maint) over anti-icing 

(AI). Both of these are common responses to winter weather conditions, but our findings suggest 

that plowing operations are more effective, possibly due to infrequent deployment of anti-icing 

operations in the city. This finding aligns with previous research on mitigating snowstorm 

accidents, which emphasized the importance of proactive winter maintenance during severe 

snowstorm events [91]. Friction value (G) was also found to be significant with moderate 

importance, further supporting our previous findings that G directly affects collisions [6].  

The remaining variables have relatively lower contributions. In descending order of significance, 

they include million vehicle kilometers (MVK), arterial road (Arterial), humidity (H), ambient 

temperature (T), dew point temperature (Dew), black ice (BI), and ambient temperature below -15 

degrees (T15). 

Similar to the feature importance diagram, the SHAP summary plot Figure 4-3 (b) also provides 

the same feature importance ranking on left side of the plot. In this case, a larger spread of the red 

and blue dots highlights the importance of a feature. Besides indicating feature importance, the 

SHAP summary plot shows the directionality of the predictors to the outcome based on the SHAP 

value, determining whether a predictor contributes positively or negatively to a prediction. Taking 

the snowstorm duration (D) feature as an example, blue dots are located on the left side of the 

vertical axis with negative SHAP value, indicating that low values of duration contribute to the 

prediction of “no-collision”. We concede that we would reach the same conclusion on the feature 

importance by focusing only on the size of the spread in each predictor. However, the value of this 

diagram lies in its ability to clearly show how these features contribute to the prediction analysis. 

The concentration of blue dots on the left side of the graph for D, Length, and P makes it evident 

that lower values of snowstorm duration, road length, and precipitation are more beneficial for 
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road safety. Conversely, it also shows that a high true value of these three features creates 

conditions for road accidents.  

For ADT, W, and I, high wind speed is shown to lead to collisions, whereas a higher ADT and 

precipitation intensity lead to a lower likelihood of collisions. The issue with this observation is 

that the relationship found for I and ADT is unintuitive. This is perplexing as research shows that 

ADT is positively correlated with collision frequency, which is logical because high ADT means 

that there are more interactions between vehicles. Likewise, higher precipitation intensity should 

lead to more contaminated road segments. The presence of water, snow, and ice should increase 

the likelihood of collisions due to the loss of friction. Comparatively, precipitation (P), which 

should be positively correlated with the intensity of precipitation, behaves as expected, with lower 

P leading to lower collision probability. When looking at maintenance (Maint) and friction (G), a 

similar pattern emerges where densely accumulated low feature values appear on the right side of 

the plot. This indicates that increased road friction and active road maintenance contribute to a 

reduced accident risk, while findings from MVK also demonstrate that reduced traffic exposure is 

associated with a decrease in the likelihood of collisions. On the other hand, Arterial feature 

behaves in a mixed manner where SHAP is close to zero. However, the blue dots tend to fall to the 

left with lower SHAP values. This inclination means that non-arterial roads often lower collision 

odds. 

Moving along to additional features with lower feature significance, it is observed that high 

humidity (H) tends to increase accident rates. This is because humidity can lead to slippery roads 

due to a loss of friction. Dew point temperature and ambient temperature displayed a similar 

pattern, indicating lower values make the road more prone to accidents. Since low temperature is 

associated with severe weather conditions, the obtained pattern is reasonable. In terms of the 

remaining variables, AI and BI, it’s difficult to interpret them due to red and blue dots appearing 

on both sides of the graph, meaning their importance varies depending on the instance in question. 

Finally, it appears that both blue and red dots of T15 are primarily concentrated around zero SHAP 

value, indicating a lower level of influence for this specific feature. 

While a summary plot offers valuable global insights, it may present some counterintuitive feature 

relationships such as those observed with ADT and precipitation intensity. These can arise due to 
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the SVM model's sensitivity to outliers [94] or the small sample size of our dataset, which may not 

fully capture the complex, nonlinear interactions in the data. Moreover, the nature of SHAP's 

interpretation, grounded in cooperative game theory, inherently assumes a linear additive 

contribution of features [64], which may not always align with the nonlinear decision boundaries 

formed by SVMs. 

 

4.4 Interpretation of Representative Crash-Inducing Snowstorm Events  

Up to this point, we used SHAP to provide global explanations for our developed SVM model. In 

Section 4.4, SHAP waterfall plots are employed to further explain individual instances. This local 

evaluation allows for a more detailed analysis, complementing the broader model tendencies 

presented in Section 4.3, and is crucial for confirming the model's applicability in practical 

scenarios and informing future enhancements. We note that the presence of certain outlier instances 

may complicate the explanations provided. For example, we observed that ADT and intensity of 

precipitation displayed an illogical relationship with collision occurrence.  

To make sense of this apparent contradiction, a SHAP waterfall plot was employed, allowing us to 

investigate individual instances. Since SVM provides confidence probabilities for the predictions 

made, we selected the top four most confident predictions (True Positives). The choice of these 

instances ensures that the analysis focuses on the most statistically significant predictions, thereby 

reflecting the core behaviors of the model in a manageable and coherent way. The prediction 

probabilities of the top four instances are 84.94%, 71.91%, 69.93%, and 69.26%. Correspondingly, 

Figure 4-4 presents four waterfall plots arranged by descending prediction confidence. To 

illustrate this, Figure 4-4 (a) corresponds to the instance with an 84.94% prediction probability, 

while Figure 4-4 (d) represents the 69.26% probability instance. Since we are dealing with a single 

instance, each plot represents the contribution of a specific feature value to the final prediction. 

For example, in Figure 4-4 (a), the first row, P=11.8, indicates that the precipitation feature value 

is 11.8 for this particular instance. The red arrow on the right indicates that precipitation contributes 

positively to collision occurrence. The magnitude of the bar shows that it is the most important 

predictor. Had the color of the bar been blue, this would have indicated that the feature contributed 

negatively to the final prediction.  
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When looking at the four plots, ADT appears to contribute positively in instances where it is an 

impactful variable. In Figure 4-4 (a) and (d), ADT nudges the prediction towards “accident”, 

which aligns with our previous findings. However, Figure 4-4 (b) ADT appears to be 

counterintuitive where it shows a blue bar with a high feature value, which means that a high ADT 

negatively contributes to collision odds. This conflicts with the previous observation. Such 

discrepancies may originate from the use of limited datasets or the inherently local interpretability 

of SHAP. Lundberg and Lee (2017) have noted that using Kernel SHAP could potentially violate 

its local accuracy or consistency, which in turn could lead to unintuitive behaviors. Other 

researchers also identified a propensity for the Kernel SHAP approximation method to overlook 

feature dependence due to its reliance on marginal expectation [95]. 

  

(a) (b) 

    

(c) (d) 

Figure 4-4 SHAP Waterfall Plots. Top 4 Instances Based on High Prediction Probability 

from True Positive. (a) Instance 65, (b) Instance 23, (c) Instance 51, (d) Instance 128. 
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Regarding intensity of precipitation (I), it is featured in only one of the four instances depicted in 

Figure 4-4 (d), where an intensity value of I=0.246 contributes negatively, suggesting that higher 

precipitation intensity may reduce the probability of collisions. This is counterintuitive, given that 

high-intensity precipitation leads to dangerous driving conditions. These factors should increase 

the risk of a collision. Similar to ADT, the counterintuitive finding regarding precipitation intensity 

further highlights the limitations of the SHAP analysis in accounting for the complexities of real-

world conditions that affect collision probabilities. This suggests that SHAP values should be 

interpreted with caution, especially when they contradict widely accepted phenomena. 

Another notable observation is the contribution of friction. The waterfall plot shows how friction 

(G) contributes to collision prediction. Among all four cases, it is consistently shown that a low 

friction value increases the collision odds, further supporting our previous findings. 

In summary, waterfall plots are useful for understanding the behavior of the model, especially 

when global explanations do not adequately clarify feature contributions. This visualization 

technique provides a detailed view into the inner workings of complex ML models, enabling a 

thorough exploration of the influence of each feature. This then allows users to validate model 

predictions with their domain expertise. Nonetheless, it is important to recognize the limitations 

that may arise from the dataset’s size or Kernel SHAP’s oversight of feature interdependence. 

These limitations can result in counterintuitive conclusions that do not fully capture the complexity 

of the underlying data. 
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Chapter 5: EVALUATING WINTER CRASH FREQUENCIES 

USING MACHINE LEARNING TECHNIQUES 

The previous chapter explored the crash-inducing snowstorm events characteristics and how 

weather features act differently in specific instances of crash-occurred snowstorm events. The 

interplay among the harsh weather variables illustrates the significance of active winter road 

maintenance. With the pattern of the leading significant risk factors in mind, maintenance 

personnel can effectively use available resources to mitigate the storm impact to the road users.  

In this chapter, the focus is now on evaluating the general winter crash behaviors at high and low 

crash frequency locations. To understand this, this chapter has been broken down into five sections. 

The first section composes the discovery of the winter crashes associated risk factor from both the 

micro and macro level.  

In the second section, the winter crashes are analyzed using Hot Spot Analysis (HSA) in ArcGIS, 

a spatial analysis tool that helps locate crash prone regions in the city. A preliminary assessment 

was conducted to investigate the feature behaviors at hot spots (HS) and cold spots (CS). To 

achieve this, we perform an ArcGIS visualization by overlaying the features on top of the identified 

hot and cold spots.  

Moving on to the third section, with the significance of the features in mind, the crash frequency 

machine learning (ML) model is then built using the cleaned and processed data. Three widely 

adopted tree-based ML models are chosen for a comparative assessment of their performance. 

Upon the completion of the training for each model, they are then evaluated based on their 

explained variance and error metrics.  

The fourth and fifth sections leverage the power of XAI to enhance the understanding of the ML 

model decision making progress. In the fourth section, the global interpretation is first examined 

to quantify the impact of the feature values for different risk factors towards the model prediction. 

The global explanation gives an idea of the key features that contribute most to the model outcome, 

but it does not provide any explanations to the outcome of each instance. Hence, in the fifth section, 

the SHAP local interpretation are adopted to discover the interplay of the features at high and low 
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crash locations, enhancing the understanding of the similarities and differences between these two 

types of crash locations.  

5.1 Data Processing 

Similar to the previous chapter, this chapter also presents the development of an ML model that 

improves winter road safety. According to the city of Edmonton’s weather data report, the annual 

snowy period often begins from November to March of the following year [96]. Hence the winter 

crash frequency model is developed based on this duration for four years of the collision dataset, 

from 2016 to 2020. 

The study initially starts with an exploration on the winter crashes related risk factor in addition to 

the previous chapter identified weather variables. To conduct a thorough and comprehensive 

analysis on the ML model, additional features are further explored at the micro and macro level. 

The micro level features crash record information and estimated traffic volume are incorporated 

with previously identified weather variables. The macro level features involve the spatial variables 

and land use variables. Such a combination between the micro and macro level elements has 

proven effective in improving the model performance and provides a holistic understanding of the 

behavior of the risk factors [97].  

To understand the winter crashes from a spatial context, HSA is conducted to observe the crash 

prone locations in the city. Acknowledging locations of these HS and CS, we can better understand 

the feature involvement in these locations by overlaying the investigated features on top. This 

helps us in conducting the preliminary analysis on the significance of the features.  After removing 

the missing information and cleaning the feature data, the total number of crashes we analyzed 

was 26,970, which are later used for developing a ML-based predictive model. 

5.1.1 Micro-Level Variables 

In terms of the micro-level variables, the study has mainly considered the following variables: 

crash record variables, weather variables, road characteristics, and traffic volume variables. The 

crash record data provides comprehensive information about the crash environment and collision 

details. These include a detailed record of the location of the crash record, the crash severity, the 

road conditions, relevant driver information, and the driving maneuver. With respect to the weather 
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variables, the data is acquired from the City of Edmonton’s open data portal. These features include 

the ambient temperature, dew point temperature, humidity, wind speed, and precipitation. 

Moreover, road characteristics are also obtained to describe the geographic components of the 

collision. This includes the collision road type, the condition of the road surface, the function class 

of the road where the accident happened, the regulated speed limit, the presence of automatic 

traffic enforcement cameras, the presence of preventive measure medians, and the snow ice 

clearing priority of the route. Finally, the traffic volume is estimated using the ordinary kriging 

(OK) approach. Since hourly traffic volume records are unattainable, the traffic volume estimation 

performed in this study instead utilizes the annual average weekday traffic volume (AAWDT). 

While traffic volume variables could pose a limitation to the study, AAWDT often provides a 

reliable estimate of the overall traffic volume pattern across the entire city road network.  

5.1.2 Macro-Level Variables 

The forementioned micro-level variables helps capturing the specific conditions and contextual 

factors at the time and location of the crash. Such granular details enable the model to obtain the 

dynamic aspects of the crash frequency. In addition to the micro level variables, macro-level 

variables encompass broader contextual factors such as land use and spatial variables. These 

variables are essential as they often provide a boarder also wider information about the 

environment which crashes occur. A land use variable includes information about the surrounding 

area, such as residential, commercial, industrial, agricultural zones. Specific land use regulations 

often shape the landscape of infrastructures, which in turn affects traffic behavior and patterns. 

Regarding spatial variables, the analysis identifies hot and cold spots of crash-prone locations, 

providing a clear representation of the intensity of high and low crashes clusters. 

5.1.3 Traffic Volume Estimation 

The traffic volume variable is a critical component in transportation planning. It often serves as a 

key indicator to estimate traffic exposure and provides insights for city planners to evaluate crash 

locations. However, collecting sufficient traffic volume data across an entire city is challenging, 

as it often demands significant manpower and infrastructure development [98], which can be costly 

[99]. Due to the limited coverage of traffic counters in the city, this study employed OK to estimate 

traffic volume from 2016 to 2020 for all winter crashes. 
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2018 2019 
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Figure 5-1 Semivariogram from 2016 to 2020 

OK is a widely adopted geostatistical interpolation technique based on the assumption of 

stationarity, meaning that the variance and mean are constant. In this study, the semivariogram was 

constructed using the ArcGIS geostatistical analyst tool. The generated semivariograms, 

showcased in Figure 5-1, help determine the spatial autocorrelation of the interpolated data points 
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and the accuracy of the estimated AAWDT results. Three commonly used functional forms are 

compared when modeling the empirical semivariogram: Spherical, Exponential, and Gaussian. To 

validate the estimation performance of these functional forms, two statistical measures; namely, 

Mean Standardized Error (MSE) and Root Mean Square Standardized Error (RMSSE), are 

evaluated. The closer the MSE is to 0 and the RMSSE is to 1, the higher the accuracy of the 

estimated results. Table 5-1 provides a summary of these metrics for the years 2016 to 2020, 

demonstrating the model's good overall accuracy. 

Table 5-1 Summary of Yearly AAWDT Semivariogram Models 

Year Model Partial Sill Range Nugget MSE RMSSE 

2016 Exponential 78,743,419 2,015.670 105,561,048 0.00425 1.12409 

2017 Spherical 56,482,751 4,337.141 141,224,344 -0.00030 1.09708 

2018 Spherical 52,194,757 3,821.394 125,405,395 -0.00081 1.09807 

2019 Spherical 52,689,223 5,586.850 140,297,708 0.00027 1.08134 

2020 Spherical 39,984,723 3,821.394 95,997,382 -0.00080 1.09827 

5.1.4 Descriptive Statistics for All Features 

Table 5-2 presents an illustration of the 22 features involved in training a crash frequency model. 

It categorizes these features into micro-level and macro-level variables, providing descriptions and 

corresponding data types for each feature. Table 5-3 also provides detailed descriptive summary 

statistics of these predictors, showcasing the diversity and variety of features. Incorporating both 

macro and micro-level variables, it enables a thorough understanding of winter crashes, facilitating 

better resource allocation during the long, harsh winter season in city of Edmonton. The crash 

count, which serves as the dependent variable, is determined using ArcGIS Collection Event tool, 

as discussed in the HSA before conducting the preliminary assessment. 
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Table 5-2 Variable Descriptions 

Variable 

Category 
Variable Name 

Data 

Type 
Variable Description 

Micro Level Variables 

Collision 

Record 

FAT_AND_INJ Binary 
Fatal injury crashes (2) or PDO 

(1) 

AGE Numerical Driver's age 

ROAD_TYPE Binary 
Intersection crash (1) or 

midblock crash (0) 

ROAD_SURFACE Ordinal Dry (3), wet (2), icy (1) 

VLTN_IMP_MANEU Binary 
Improper driving maneuver 

violation 

VLTN_ROW Binary Right of way violation 

VLTN_LOC Binary Loss of control violation 

Weather 

Variables 

Temperature Numerical Ambient temperature (°C) 

Dew Numerical Dew point temperature (°C) 

Humidity Numerical Humidity (%) 

Wind_Speed Numerical Wind speed (km/h) 

Total Precipitation (mm) Numerical 
Average daily precipitation 

(mm) 

Road 

Characteristics 

Function_Class Ordinal 
Road function class: least (0) to 

most important (4) 

Speed_Limit Numerical 
Speed limit (km/h) at crash 

location 

ATE Binary 
Traffic enforcement camera 

presence (within 150 meters) 

Snow_Ice_Clearing_priority Ordinal 
Route clearing priority: most (1) 

to least important (4) 

Median Binary Presence of median island 

Traffic 

Exposure 

Variable 

AAWDT Numerical 
Estimated average annual 

weekday traffic volume 

Macro Level Variables 

Land Use 

Variables 

LU_Residential Binary Residential land use 

LU_Commercial Binary Commercial land use 

LU_Industrial Binary Industrial land use 

Spatial 

Variables 
Gi_Bin Ordinal 

Spatial bins: +3/+2/+1 (hot 

spots), -3/-2/-1 (cold spots), 0 

(normal) 
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Table 5-3 Variable Summary Statistics  

Variable Name Min Mean Max Std 25% 50% 75% 

FAT_AND_INJ 1 1.1 2 0.3 1 1 1 

AGE 14 39.49 102 16.26 26 36 50 

ROAD_TYP

E 

0 0.71 1 0.45 0 1 1 

ROAD_SURFAC

E 

0 1.61 3 0.88 1 2 2 

VLTN_IMP_ 

MANEU 

0 0.63 1 0.48 0 1 1 

VLTN_ROW 0 0.17 1 0.38 0 0 0 

VLTN_LOC 0 0.08 1 0.27 0 0 0 

Temperature -37.6 -8.52 19.4 9.46 -15.6 -7.3 -0.6 

Dew -41.3 -12.74 7.4 9.18 -19.6 -11.4 -5.3 

Humidity 6 68.84 100 20.44 61 72 81 

Wind_Speed 0 10.46 51 6.41 6 10 14 

Total 

Precipitation 

(mm) 

0 0.72 9 1.49 0 0.6 1 

Function_Class 0 1.52 4 1.19 1 2 2 

Speed_Limit 20 52.34 110 12.63 40 50 60 

ATE 0 0.13 1 0.33 0 0 0 

Snow_Ice_Cleari

ng_ 

priority 

1 1.62 4 1.08 1 2 2 

Median 0 0.55 1 0.5 0 1 1 

AAWDT 475.33

9 

13646.7

51 

47469.8

34 

5662.52

7 

9513.28

7 

12995.0

11 

17087.6

22 

LU_Residential 0 0.34 1 0.47 0 0 1 

LU_Commercial 0 0.2 1 0.4 0 0 0 

LU_Industrial 0 0.03 1 0.17 0 0 0 

Gi_Bin -3 0.75 3 1.42 0 1 1 
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5.2 Preliminary Feature Assessment for Hot and Cold Spots 

As described earlier, a spatial analysis is first conducted to evaluate the characteristics of the high 

collision clusters and low collision clusters which is derived from HSA. To perform this task, the 

ArcGIS Getis-Ord Gi* method is applied. This method identifies HS and CS regions, facilitating 

a preliminary assessment of the features contributing to these spatial clusters. 

To deploy the HSA, the four-year winter crash data is first projected on the map using the recorded 

longitude and latitude for each crash. The Collection Events method is then conducted to combine 

the coincident points with the exact same X and Y centroid coordinates [100]. This helps generate 

the crash counts at the same locations, which serve as the dependent variable of the study. This 

method converts the individual instances to weighted points, aiding the subsequent spatial analysis. 

Finally, the HSA is performed by specifying the following: conceptualization of spatial 

relationships, distance method, distance band or threshold distance, and false discovery rate (FDR). 

A fixed distance band is selected to define the spatial relationships between features, meaning each 

feature is analyzed within a consistent fixed distance. Euclidean distance is applied for the distance 

method to measure spatial relationships as it is a common choice for easy and straightforward 

interpretation. The distance band or threshold distance is not specified, as ArcGIS automatically 

determines an appropriate threshold distance by ensuring each feature has at least one neighbor, 

preventing isolated points from effecting the analysis. Lastly, the FDR option is unchecked as this 

serves as a preliminary assessment intended to identify the possible trends and patterns rather than 

to confirm definitive results, hence applying FDR is not essential. Using these settings ensures that 

the analysis captures meaningful spatial patterns for winter crash frequency in Edmonton. 

Upon completion of the HSA, the output feature class returns z-score, p-value, and confidence 

level bin field (Gi_Bin). The z-scores and p-values are measures of statistical significance and the 

Gi_Bin field identifies statistically significant hot and cold spots. Feature in the +/- bins reflect 

statistical significance with a 99% confidence level; features in the +/- 2 bins reflect a 95% 

confidence level; +/- 1 bins reflect a 90% confidence level; and bin 0 represent statistically 

insignificant [101]. The visualization of the resulting HS and CS are shown in Figure 5-2, where 

the HS are shown in red and CS in blue, with deeper color representing the higher confidence.  
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Figure 5-2 Hot Spots Analysis in the City of Edmonton 

To fully comprehend this derived spatial pattern mapping, the additional analyses are performed 

using visually prominent land use features (Figure 5-3), road characteristic features (Figures 5-4 

to 5-7) and traffic exposure features (Figure 5-8) as layers on top of HS and CS to provide visual 

cues towards understanding the feature interactions at hot and cold spots. 
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Looking at the land use visualization shown in Figure 5-3, it can be seen that HS are mostly 

concentrated around the commercial zones, whereas CS fall in agricultural zones and their borders, 

which typically intersect with residential neighbourhoods.  

 

Figure 5-3 Land Use Layer on Hot and Cold Spots  
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In evaluating the road characteristic of speed limits (Figure 5-4), it is observed that in HS, there 

is an dense concentration of road networks with speed limits ranging from 50 to 60 km/h. 

Conversely, in CS, the road network appears to be less dense with lower speed limits ranging from 

20 to 40 km/h.  

 

Figure 5-4 Speed Limit Layer on Hot and Cold Spots  



 50 

Regarding snow and ice clearing priority routes (Figure 5-5), HS regions typically feature 

numerous intersections of high-priority snow clearing routes, along with densely packed areas of 

low clearing priority. Conversely, CS regions generally have fewer intersections of high clearing 

priority routes. 

 

Figure 5-5 Snow Clearing Priority Route Layer on Hot and Cold Spots 
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Figure 5-6 illustrates the ATE placement in the city. It is observed that, compared to CS, HS have 

a higher number of ATE placements, indicating that the city has strategically placed ATEs to 

regulate and monitor high-collision locations.  

 

Figure 5-6 ATE Layer on Hot and Cold Spots  
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Figure 5-7 illustrates the road function class. It is acknowledged that higher function classes, often 

designed for arterial roads with high traffic demand, correspond to routes with high snow clearing 

priority. Therefore, a similar pattern to that observed in Figure 5-5 can be seen.  

  

Figure 5-7 Road Function Class Layer on Hot and Cold Spots 
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Finally, the OK derived AAWDT traffic volume data is visually evaluated. To improve its 

visualization, the estimated AAWDT is converted into raster data using inverse distance weighted 

interpolation as shown in Figure 5-8. This figure highlights the traffic volume differences between 

HS and CS, where HS tend to have higher traffic volumes whereas CS do not. 

 

Figure 5-8 AAWDT Layer on Hot and Cold Spots  
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From this preliminary assessment using HSA, the feature interactions are revealed visually as 

demonstrated in the figures. This analysis helps in identifying the location of HS and CS regions 

within the city. By incorporating additional features juxtaposed on top of HS and CS, the 

interactions within these regions become intuitive and easier to interpret. This preliminary spatial 

analysis provides a fundamental understanding of the spatial patterns and interactions of various 

features within the clusters. These insights are critical as they form the basis for developing the 

subsequent ML crash frequency model, allowing for a more targeted approach in predicting and 

mitigating winter crashes. 

5.3 Crash Frequency ML Model Development 

Having visually confirmed the interactions between external features and crash distributions 

through spatial analysis, we now move on to the development of a crash frequency ML model. 

This phase involves leveraging ML techniques to predict crash frequencies based on the identified 

features and patterns. By incorporating these insights, we aim to build robust models that can 

accurately forecast crash occurrences and assist in proactive road safety management. The 

following sections detail the hyperparameter calibration of the ML models and compare their 

performance. 

5.3.1 ML Model Hyperparameters Calibration 

During the model training phase, the dataset was split such that 80% of the data was utilized to 

train the model, and the remaining 20% was used to validate the model's performance. To optimize 

performance, each machine learning model was fine-tuned with its hyperparameters using grid 

search. This approach allowed the models to learn the most from the training data. Upon obtaining 

the optimal hyperparameters, the models were then evaluated based on their percentage of retained 

variance and lowest error. The results presented below include the fine-tuned model parameters 

and descriptions of the hyperparameters.  

For the XGBoost model, the learning rate was set to 0.05, controlling the step size the model takes 

towards minimizing the loss function. A lower rate results in slower convergence but can lead to 

better accuracy. The model max_depth was 10, helping the model capture complex data patterns, 

although higher value can result in overfitting. The n_estimators was 1000, indicating the number 
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of trees grown. More trees can improve the model's performance, but they also increase 

computation time. The min_child_weight was set to 3 to prevent overfitting by making the trees 

more robust to noise. Regularization alpha (reg_alpha) was 0.8, serving as the L1 regularization 

term on weights, which helps with feature selection. Regularization lambda (reg_lambda) was 1, 

acting as the L2 regularization term on weights, preventing overfitting by penalizing large weights.  

As for the RF model, the fined tuned model shows n_estimators of 1000, and max_depth of 12. 

Regards to LightGBM model with num_leaves of 31, max_depth of -1, learning_rate of 0.05, 

n_estimators of 1000 give the prime model performance. For LightGBM, num_leaves control the 

maximum number of leaves in one tree. A max_depth of -1 meaning there was no limit to the depth 

of the trees. 

5.3.2 A Comparison of ML Model Performance 

The study conducted a thorough examination of three different crash frequency ML models. After 

fine-tuning the models, they were assessed using the R2 value (shown in Figure 5-9) and error 

metrics (Figure 5-10) for both the training and testing sets across the three ML models used in our 

study: XGBoost, Random Forest (RF), and LightGBM. The R2 value, also known as the coefficient 

of determination, measures the proportion of variance in the dependent variable that is predictable 

from the independent variables. Mean Absolute Error (MAE) and Root Mean Squared Error 

(RMSE) are examined using the prediction errors of the models, with lower values indicating better 

performance. Therefore, these key metrics are utilized to evaluate the performance of regression 

models.  

It was observed that the XGBoost model exhibited the highest R2 value among the three models, 

with a testing R2 value of 92.67%. Following XGBoost, the RF model achieved an R2 value of 

90.96%, while LightGBM had the lowest R2 value of 85.38%. The high R2 value for XGBoost 

indicates that the model can explain a substantial portion of the variance in the complex dataset, 

making it a desirable choice for our predictive analysis. With respect to the MAE and RMSE, the 

XGBoost model also possessed the lowest error of 3.64 and 5.77, respectively. This comparison 

for both the R2 value and error metrics underscores that the XGBoost emerging as the best 

performing model, followed by Random Forest, and then LightGBM. 
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Figure 5-9 Model Training and Testing R2 Value Comparison. 

 

Figure 5-10 Model Testing Set MAE, RMSE Comparison 

The disparity between the training and testing R2 values suggests a potential risk of overfitting, 

particularly in the case of XGBoost, where the training set R2 value reached 99.69%. Overfitting 

occurs when a model learns the training data too well, capturing noise along with the underlying 

patterns, which could lead to poorer performance on new data. While overfitting is a consideration 
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given that XGBoost sequentially builds models that could potentially incorporate noise from the 

training data, its ability to correct errors from previous iterations and capture complex patterns 

makes it highly effective for our dataset. The Random Forest model shows more subdued 

overfitting due to its method of building multiple decision trees from random data subsets, which 

generally improves model robustness. Despite these considerations, XGBoost, with its superior 

computation efficiency and accuracy, was chosen as the optimal model for subsequent SHAP 

analysis, balancing performance with interpretability. 

Following the selection of XGBoost for further analysis due to its efficiency and accuracy, Figures 

5-11 and 5-12 provides a visual representation of the performance of the fine-tuned XGBoost 

model.  

Figure 5-11 presents the actual crash frequency versus predicted crash frequency. In this plot, each 

point corresponds to a data instance from the testing set, where the actual value is plotted on x-

axis and predicted value is plotted on y-axis. To aid in assessing the model's performance, two 

trendlines are included in the figure: a diagonal black dashed line that represents the ideal scenario 

where predictions perfectly align with actual values, and a red polynomial trend line that fits the 

scatter data, indicating the overall prediction trend. The proximity of these trend lines suggests that 

the model performs well. 

 

Figure 5-11 XGBoost Testing Set Visualization Actual vs. Predicted Values 
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Furthermore, Figure 5-12 presents a histogram of residuals, which visualizes the distribution of 

prediction errors by calculating the difference between the actual and predicted values.  The x-axis 

denotes the residual values while the y-axis shows their frequency, offering a quantitative insight 

into the model's prediction accuracy. Overlaid on the histogram is a kernel density estimate line, 

which provides a smoothed representation of the residuals' distribution. This line helps in 

identifying the density and spread of errors more clearly. Observations from this figure show that 

the residuals predominantly cluster around zero, which is indicative of a well-calibrated model. 

This clustering suggests that the model’s predictions are generally accurate and well-aligned with 

the actual data, demonstrating no significant systematic error in terms of overestimation or 

underestimation. 

 

Figure 5-12 XGBoost Testing Set Distribution of Residuals 

5.4 Global Interpretation of Winter Crash Frequency Model Variables  

This section utilized the SHAP (SHapley Additive exPlanations) for the global analysis of the 

model, which helps in examining important feature rankings as shown in Figure 5-13 (a) and 

understanding how different feature values influence crash frequency, illustrated by the SHAP 

summary plot in Figure 5-13 (b). 
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(a) (b) 

Figure 5-13 XGBoost Model (a) SHAP Feature Ranking Plot (b) SHAP Summary Plot 

These SHAP global explanations offer insights into the top twenty significant features that 

contribute to building the crash frequency model. In Figure 5-13 (a), it is observed that road type, 

speed limit and ATE are the top three most important features among the features listed. Existing 

research indicates that crashes tend to occur more frequently at intersections compared to 

midblocks. Intersections are critical points on roads where a variety of modes and traffic directions 

intersect. Intersections, being complex traffic points where different directions and modes intersect, 

become particularly hazardous in winter due to increased stopping distances and reduced visibility 

from adverse weather conditions [102]. Conversely, midblock sections are comparatively simpler 

than the intersections due to the consistent surrounding transportation infrastructures.  

The speed limit is identified as the second most crucial feature. It has been identified in many 

literatures that a higher speed limit often results in more crashes, and the severeness of the crash 

is often higher [103]. With the added impact of adverse winter weather and road conditions, it can 

exacerbate the crash risks for road users. ATE ranks third as it acts as an important tool in 

modifying the driver behavior by imposing a deterrence effect. 
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The following are some additional significant features where the magnitude of the feature 

significance is about half of the first three forementioned key features. They are AAWDT, snow 

ice clearing priority route, Gi_Bin, and road function class, each sharing a commonality in traffic 

exposure. High traffic exposure often leads to more frequent vehicle interactions, which increases 

crash risks [104]. Gi_Bin is a spatial variable that areas with intense crash clustering, typically 

characterized by high traffic exposure [105]. 

Moderately significant features include land use variables, violation type, and road characteristics. 

Land use is often an important contributor, as it dictates to the layout and design of the road 

network; in turn the traffic demands are often different from one land use to another. Frequent 

traffic exposure under winter seasons induces greater danger to road users due to decreases in 

driving visibility. This reduced visibility hinders driving judgment, which evidently increases the 

frequency of faulty driving maneuvers. Hence, improper driving maneuvers becomes an important 

traffic violation type.  The median is a preventive measure that separates opposing lanes of the 

traffic [106], organizing the flow of traffic, reducing the likelihood of confusion for drivers, while 

also acting as a visual cue to keep drivers aligned within their lanes, which is critical in low 

visibility conditions [107].  

The remaining features have comparatively low significance to the model outcome. In descending 

order, the features are temperature, dew point temperature, humidity, drivers age, wind speed, 

precipitation, road surface condition, industrial land use, and right of way violation. Amongst the 

weather variables, the ambient temperature appears as the most influential weather feature. 

Like the feature ranking diagram, the SHAP summary plot shown in Figure 5-13 (b) also provides 

the feature importance in descending order. The figure provides an indication in how feature value 

influences the SHAP values, hence providing insight as to how feature values contribute to crash 

frequency. Similar to the explanation provided in Chapter 4, the feature names are on the y-axis of 

the diagram, while the x-axis represents the corresponding SHAP values, with a black vertical line 

at a SHAP value of zero as a visual aid to separate the positive and negative SHAP values. 

Additionally, the high feature values are shown in red dots whereas the low feature values are in 

blue.  
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It appears that the three most significant features on the SHAP summary plot are road type, speed 

limit, and ATE, having a similar spread and placement of feature values. The three features all have 

a clear distinction between red and blue clusters, where the red dots tend to accumulate at positive 

SHAP values, while the blue dots accumulate at negative SHAP values. This gives a clear 

illustration that areas with an intersection road type, high speed limit, or the presence of ATE, will 

contribute towards increasing the crash frequency. Conversely, midblock road types, low speed 

limits, and the absence of ATE indicate areas with lower crash frequency.  

For AAWDT, it is observed that high traffic volumes can have extremely high SHAP values, which 

increases crash risks. However, at a medium or low traffic volume, the contributions are mixed 

and concentrated around the SHAP value of zero, which is difficult to provide a definitive 

conclusion for. Such mixed conditions means that the contribution of AAWDT varies depending 

on the instance. Following is the snow ice clearing priority variable. According to the summary 

plot, routes with high clearing priority often have increased crash risks while routes with low 

clearing priorities tend to be safer. This is an indication that the city has appropriately classified 

high priority clearing routes correctly as those roads have a higher propensity for crashes.  

Moving along are spatial analysis, function class, commercial land use, and improper driving 

maneuver variables. For these variables, high feature values tend to be distributed in the positive 

SHAP value regions, it concludes that spatial hot spots, high function class roads, commercial use 

land, and improper driving maneuvers often leads to higher accident frequency. In regards to 

residential land use, there is no clear pattern of blue and red dots, as red dots appear on both sides, 

and blue dots tend accumulate in the middle, which makes interpretation ambiguous. In terms of 

the median variable, it is observed the red dots (presence of median) have a dominantly negative 

SHAP value, thus illustrating the importance of median in reducing the winter crashes. 

Moving forward to the features with lower significance to the model prediction, these features 

have all presented a mixture of red and blue dots close to the zero SHAP value. They are ambient 

temperature, dew point temperature, humidity, driver age, wind speed, precipitation, road surface 

condition, industrial land use, and right of way violation. Among those features, they are 

dominated by the weather variables. It suggests that the importance of these weather features varies 

depending on the specific characteristics of the instances. This could be due to the collected coarse 
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data obtained as daily average weather conditions, which is a limitation of this study. We 

acknowledged that finer hourly weather data could potentially enhance the model performance 

while also improving the models explainability.  

5.5 Exploring Feature Dynamics at High and Low Crash Frequency Locations 

5.5.1 Feature Interplay at High Crash Frequency Locations 

The randomly generated high crash frequency waterfall plots are shown in Figure 5-14 ordered 

by increasing predicted crash counts, ranging from 30.36 in Figure 5-14 (a) to 118.72 in Figure 

5-14 (d). This arrangement clearly illustrates how features behave differently as the predicted crash 

frequency increases and highlights the key findings derived from these plots.  

The comparison table between the predicted crashes and the actual crashes for these four instances 

is summarized in Table 5-4, indicating that the predicted value is generally close to the actual 

value, with marginal percentage difference of about 2 to 3%.  

Table 5-4 High Crash Frequency Model Prediction vs. Actual Frequency 

Instance Predicted Actual Absolute % Difference 

(a) 8251 30.36 31 2.06 

(b) 25325 39.50 41 3.66 

(c) 4148 55.75 57 2.19 

(d) 8184 118.72 118 0.61 

To understand these waterfall plots, note that the y-axis in each instance ranks features by 

descending importance, with the most contributing features at the top and the least at the bottom. 

Feature values are displayed on the left side of each feature name, indicating their position within 

their respective categories, which can be referenced from the summary statistics (Table 5-3). Red 

bars indicate positive contributions to the model outcome, while blue bars represent negative 

contributions. The width of each bar visually indicates the significance of the feature's impact on 

the specific instance's prediction. The final prediction value, denoted as 𝑓(𝑥), is the cumulative 

result of all feature contributions, while the mean value 𝐸(𝑥)=16.359, is shown below the x-axis 

for all cases. 
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(a) (b) 

  
(c) (d) 

Figure 5-14 Waterfall Plots of High Winter Crash Frequency Instances in Ascending Order 

(a) Instance 8251, (b) Instance 25325, (c) Instance 4148, (d) Instance 8184 

With a firm understanding of the basics of a waterfall plot, we can now investigate Figure 5-14 to 

understand the feature interplay at high crash frequency locations. Across multiple instances, 

AAWDT consistently emerges as a highly influential factor. For instance, in Figure 5-14 (a), 

AAWDT is 23105.735, significantly higher than the mean value of 13646.751 The substantial size 

of its respective bar underscores its critical role in predicting higher crash frequencies. Although 

AAWDT's contribution in Figure 5-14 (d) is less pronounced compared to other instances, despite 

being above the average traffic volume, the high-speed limit in a commercial zone significantly 

amplified the predicted crash frequency. 

In addition, other critical factors are the road type feature and snow clearing priority route. Among 

all four instances under high crash frequency waterfall plots, intersections and snow clearing high 

priority routes have been recurrently highlighted as the top significant positive contributors. This 

finding reinforces the literature that shows intersections often have more complex traffic 
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movements, thereby increasing the potential for collisions, especially under diverse winter weather 

conditions. Furthermore, it emphasizes the importance of winter road maintenance on these high-

priority routes. Similar to the high snow and ice clearing priority routes, the high importance of 

road function class also significantly influences the number of collisions positively. Snow clearing 

priority routes and function class rank are fundamentally regulated and ranked based on traffic 

volume demand, reflecting the level of traffic exposure. 

Moreover, high speed limits also have an extremely high contribution to the model outcome. The 

magnitude of influence tends to increase as the predicted crash frequency rises. When the speed 

limit is identified as 50 km/h, as shown in Figure 5-14 (a) and Figure 5-14 (c), it shows an unclear 

pattern to the influence on crashes as it can either increase or decrease. However, in Figure 5-14 

(b) and Figure 5-14 (d), where the speed limit is 60 km/h and 70 km/h, respectively, the influence 

on the model prediction outcome becomes significantly higher, as indicated by the size of the red 

bar. This clearly shows the danger of high-speed limits, which magnify the impact on increasing 

crash frequency. Additionally, these two figures also identify that the locations are in commercial 

land use zoning, which further exacerbates the impact of increasing the number of crashes. 

Literature often cites that commercial zoning tends to have a more complex landscape and a variety 

of infrastructures, which demand much higher driver attention to the driving environment. 

In Figure 5-14 (c), the presence of ATE shows a significant positive influence on the prediction 

outcome. For the rest, in Figure 5-14 (a) and (b), it shows that the absence of enforcement cameras 

lowers the chance of accidents. This aligns with the previous conclusion that the city has 

effectively installed traffic cameras at high-risk and crash-prone locations to alert drivers to their 

driving behavior. Moreover, the absence of preventive measures such as medians, as shown in 

Figure 5-14 (d), has increased the odds of collisions. However, a contradictory finding is shown 

in Figure 5-14 (c), where the high percentage of humidity lowers the accident rate. This 

discrepancy may be related to the limitations of the SHAP linear explanation, which can sometimes 

lead to inaccurate predictions as feature importance decreases. 

When examining the behavior of the spatial variable, it is identified that Figure 5-14 (c) and (d) 

show a Gi_Bin of (+3), which spatially identifies 99% confident hot spots with the most intensely 

clustered high number of crashes. This indicates that spatially identified hot spots often tend to 
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result in a higher number of crashes compared to the normal spots shown in Figure 5-14 (a) and 

(b), which do not demonstrate a statistically significant spatial clustering pattern. 

5.5.2 Feature Interplay at Low Crash Frequency Locations 

Previously, Figure 5-14 illustrated the behavior of high crash frequency risk factors, highlighting 

the significance of traffic volume, ATE, speed limit, and spatial characteristics. Here, Figure 5-15 

provides insights into the feature behaviors at low crash frequency locations. Similar to the 

previous section, the instances are randomly generated at first. Then, based on the predicted value, 

the figures are ranked and listed in order of increasing crash frequency, from a predicted crash 

frequency of 1.27 in Figure 5-15 (a) to 12.49 in Figure 5-15 (d). This arrangement helps reveal 

the trend of feature values, providing better insights and capturing consistent patterns in feature 

behaviors.  

As in the previous section, the comparison between the predicted number of crashes and actual 

crashes are also applied to the low crash frequency instances shown in Table 5-5. It is observed 

that the prediction for the low crash instances tend to have a larger percentage difference compared 

to their actual crash frequency than the high crash frequency instance, which is reasonable, as low 

crash locations tend to be more spatially scattered than the relatively condensed high crash 

frequency locations. 

Table 5-5 Low Crash Frequency Model Prediction vs. Actual Frequency 

Instance Predicted Actual Absolute % Difference 

(a) 18547 1.27 1 27.00 

(b) 15231 2.48 4 38.00 

(c) 7752 4.32 4 8.00 

(d) 8634 12.49 11 13.55 
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(a) (b) 

  
(c) (d) 

Figure 5-15 Waterfall Plots of Low Winter Crash Frequency Instances in Ascending Order. 

(a) Instance 18547, (b) Instance 15231, (c) Instance 7752, (d) Instance 8634 

At first glance, it is clear that some key features exhibit drastically different behaviors. These 

include road type, snow clearing priority, and speed limit. Regarding road type, Figure 5-15 (a) 

suggests that midblock shows a negative influence in blue bar that reduces the crash frequency 

whereas the intersection in red bar increases. Hence confirming that midblock sections are safer, 

contributing to fewer crashes compared to intersections, as shown in Figure 5-15 (b), (c), and (d). 

Additionally, comparing the snow clearing priority routes, we see an increasing trend from low to 

high priority from Figure 5-15 (a) to (d), with a corresponding increase in crashes. This indicates 

that high clearing priority routes often have more traffic exposure, highlighting the importance of 

active clearing on these routes under harsh weather conditions. Speed limit is another prominent 

feature consistently ranked at the top. For these low crash frequency locations, the speed limit 

typically falls at 40 km/h or at 50km/h, reducing the crashes shown in all low crash frequencies 

instances in Figure 5-15. 
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An interesting phenomenon that can be observed is the reduced significance of traffic volume at 

low crash frequency locations. According to the descriptions from Figure 5-15 (b), (c), and (d) 

the traffic volume tends to be far less than the average traffic volume which negatively contribute 

to the crash risks. However, taking a closer look of these three plots, it is also observed that with 

the increase of AAWDT, it influences the prediction outcome towards increasing. This finding 

aligns with research, indicating that lower traffic exposure results in less congestion, fewer vehicle 

interactions, and thus fewer collisions. Among all low crash frequency locations, the presence of 

ATE is uncommon, often due to the lower traffic demand in these areas. 

These low-accident frequency locations typically occur in residential with lower speed limits. 

Unlike commercial zones, which are mostly identified in high crash locations with higher traffic 

volumes, residential areas tend to have lower traffic volumes. Additionally, the road function class 

at low crash frequency locations differs significantly from high crash frequency locations. Crashes 

at low frequency locations often occur on collector roads, as shown in Figure 5-15 (b) and (c). 

These local roads are designed to connect neighborhoods and have lower traffic capacity. Typically, 

these regions are well-equipped with preventive measures and narrower road widths to limit 

vehicle speeds, resulting in safer driving maneuvers, as illustrated in Figure 5-15 (a), (c), and (d). 

When spatially describing these low crash frequency locations, they often occur in normal spots 

and occasionally in cold spots, as shown in Figure 5-15 (b), within residential neighborhoods with 

lower speed limits. This is markedly different from the behaviors observed in high crash frequency 

instances, where crashes are mostly located in hot spot regions. This identification effectively 

conveys that areas with intense clustering of low crash values often have lower speed limits and 

less traffic volume, resulting in fewer vehicle interactions and lower crash occurrences. 
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Chapter 6: CONCLUSIONS 

This chapter provides the final remarks of the thesis. It starts with an overview of the thesis, 

restating the objective and motivations that have driven this study. It then gives a highlight of the 

key findings and contributions. Additionally, the thesis also acknowledges the limitations of this 

study, and discusses future research and recommendations. 

6.1 Overview of the Thesis 

One of the primary motivations behind this thesis is the enhancement of traffic safety under harsh 

winter conditions. It is critically important for maintenance personnel to conduct effective and 

accurate executions of winter road maintenance (WRM) tasks to ensure the safety of road users in 

the winter. The thesis first explores the classification of crash-inducing snowstorm events by 

utilizing weather data, traffic exposure data, road condition data, and most importantly, 

maintenance data. To address the high dimensional dataset with a limited 231 events collected 

from two winter seasons, Support Vector Machine (SVM) was utilized due to its proficiency in 

dealing with high dimensional and non-linear datasets. This approach helps understand the risk 

factors that contribute the most to crash-inducing snowstorms and the interplay of underlying 

features from specific prediction instances. By applying explainable artificial intelligence (XAI), 

the transparency of the model decisions is revealed, uncovering the decision-making process 

within the model. 

Additionally, efforts were made to develop a granular crash frequency model. The goal was to 

establish a model that can accurately predict the number of crashes, considering both micro and 

macro-level variables. Micro-level variables include collision records, weather variables, road 

characteristics, and traffic volume, while macro-level variables incorporate spatial analysis and 

land use for a more comprehensive analysis. Due to traffic volume data coverage issues during the 

data collection phase, an Ordinary Kriging (OK) method was applied to interpolate the traffic 

volume for crash locations lacking data, enabling a spatially continuous traffic volume estimation 

for the study period. In terms of spatial analysis, hot spots (HS) and cold spots (CS) for winter 

collisions were successfully identified using the Hot Spot Analysis (HSA) tool in ArcGIS. By 
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layering additional features on top of the hot spot map, we could visually inspect feature behaviors 

and perform a preliminary assessment before building the model. 

Upon evaluating the features, the focus shifted towards training and establishing an optimal model 

by comparing three widely adopted tree-based machine learning (ML) models: XGBoost, Random 

Forest (RF), and LightGBM. With XGBoost demonstrating the best performance, the model was 

further examined using the SHAP XAI technique to determine feature behaviors at high and low 

crash frequency locations. 

Overall, the thesis follows a structure of building an optimal high predictive power ML model, 

followed by an application of XAI to explain the model outcomes and bring transparency to the 

model predictions. Achieving both high performance and credible explainability ensures that these 

models are practical and applicable in real-world scenarios. 

6.2 Key Findings of the Thesis 

The key findings of this thesis consist of two parts. The first part involved identifying crash-

occurred snowstorm events using an SVM classification approach. The model considered risk 

factors from a microscopic perspective, focusing on weather variables, road conditions, traffic 

exposures, and maintenance record variables. In the second part, a ML model was built to predict 

the crash frequency under the influence of both micro level and macro level variables. The included 

micro-level variables are similar to that of part one, which are the weather variables, road 

characteristics, traffic exposure, and collision records. To enhance the predictive power of this 

granular prediction model for the regression task, macro-level variables including land use and 

spatial analysis were incorporated. With such a holistic analysis from both micro and macro level, 

the model gives a high prediction accuracy in predicting the number of crashes. For both parts of 

our study, the model’s working mechanisms are revealed using SHAP XAI technique. By utilizing 

this additional analysis coupled with high-performance ML models, we were able to examine 

feature contributions to the model from both global and local perspectives. 

6.2.1 Classification of Crash-Inducing Snowstorm Events and SHAP explanations 

To classify crash-inducing snowstorm events, the study applied SVM modeling due to its ability 

to handle non-linear and high dimensional datasets. The model with the best performing kernel, 
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the radial basis function (RBF), achieved an accuracy rate of 87.2% and a recall rate of 80%. The 

model was further evaluated using SHAP to uncover the models internal decision-making structure, 

revealing that duration, road length, and precipitation were the most significant factors. Besides, 

SHAP summary plot not only demonstrated the feature importance to the model outcome, but also 

showed the impact of different feature values. Findings suggest that longer snowstorm duration, 

longer road length, and higher precipitations are the top three leading factors associated with higher 

risk of accidents. Furthermore, it highlights the importance of maintenance activities in winter 

cities like Edmonton, illustrating that the absence of plowing operations and anti-icing increases 

the risk of accidents.  

This study also acknowledges issues with counterintuitive feature behaviors observed using the 

SHAP summary plot interpretation, particularly with precipitation intensity and ADT. This 

prompted the use of SHAP local explanations to investigate representative instances, ultimately 

assisting in explaining these counterintuitive behaviours. In addition, it is important to reiterate 

that SHAP uses a linear explanation model to provide local estimates, which can disregard feature 

dependence. This sometimes results in unintuitive explanations for certain features. Despite 

generally sound explanations for many features, maintenance personnel are encouraged to 

critically evaluate these outcomes using their industry expertise. 

6.2.2. Winter Crash Frequency Model and SHAP explanation 

Beyond the classification model in the first part of the analysis, the study also performed an in-

depth analysis of winter crash frequency, encompassing 26,970 winter crashes. This model 

provided a more granular analysis, facilitating the discovery of broader winter crash patterns, 

specifically for high and low crash frequency locations. Unlike the previous analysis, this part 

included both micro and macro-level variables. With the help of spatial analysis, HS and CS 

regions were then identified. Overlaying additional features revealed that HS were often associated 

with high traffic volume, high function class, higher snow and ice clearing priority routes, 

commercial zoning, and intersections with higher speed limit routes. Conversely, CS were 

typically located in areas with lower traffic volumes, lower function class, and lower speed limits, 

mostly condensed in residential zones.  
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After conducting the preliminary assessment of feature interactions to HS and CS regions, the 

crash frequency ML model was developed with the addition of this spatial variable. The study first 

evaluated three tree-based models, XGBoost, RF, and LightGBM due to their high performance 

and computational efficiency. After fine-tuning via hyperparameter optimization, XGBoost was 

selected as the best-performing model with a testing R2 value of 92.67%, a MAE of 3.64, and a 

RMSE of 5.77 which had the highest R2 value and the lowest error among the three models. Using 

the identified optimal model, SHAP analysis was implemented to demonstrate both the global and 

local interpretations of the model’s predictions, revealing feature behaviors at high and low crash 

frequency locations.  

From SHAP global interpretation, the road type, speed limit, and the presence of ATE cameras 

were identified as the top three significant features contributing to winter crashes. A SHAP local 

explanation was then implemented to further demonstrate how features interacted differently at 

high and low crash frequency locations. For high crash frequency locations, the top contributing 

features were high traffic volume, presence of ATE, intersection, high speed limits, and high-

priority snow clearing routes. For the global features, high frequency regions were mostly 

categorized as commercial zones, which often fell into the identified HS. Low crash frequency 

locations were typically associated with midblock sections, absence of ATE, low priority clearing 

routes, lower speed limits, and lower traffic volumes. Regarding macro level features, these 

locations were commonly identified as residential zones at cold spots or normal spots, indicating 

low vehicle interactions, ultimately reducing crash likelihoods. 

Compared to the previous crash-inducing snowstorm analysis, this crash frequency model was 

developed on a much larger dataset. This made the model more stable, and the explained features 

more intuitive. This supports the commonly accepted notion that larger datasets would allow for 

more consistent behaviors in the model predictions and reduce the chance of counterintuitive 

outcomes. 

6.3 Contributions of the Thesis 

Throughout the entire thesis, substantial methodological and practical contributions have been 

made as summarized below. 
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6.3.1 Methodological Contributions 

• Enhanced the understanding of the significant risk factors in crash-inducing 

snowstorm events. Applied weather data, maintenance record data, road friction, traffic 

exposure data to predict crash-inducing snowstorm events and justified the prediction with 

reasoning based on feature contributions. 

• Conducted spatial analysis to identify clusters of high and low crash regions in the 

city. Screened the crash-prone locations and visualized how various features behaved 

differently at hot and cold spots. 

• Improved the crash frequency model’s predictive power by combining both micro 

and macro-level variables.  The combination of micro and macro-level variables 

improved the model performance and enhances the model comprehensiveness. 

• Conducted comprehensive comparisons of high-performance machine-learning 

algorithms for classification and regression tasks. The SVM RBF kernel function 

worked the best in evaluating the crash-inducing snowstorm events, while the XGBoost 

model was the most accurate algorithm in predicting crash frequency. 

• Improved transparency of model predictions using the SHAP XAI technique. 

Although ML algorithms show high predictive power in application, model transparency 

is a critical concern. To understand the rationale behind the predictions, SHAP analysis was 

deployed to provide both global and local analysis of prediction outcomes. 

6.3.2 Practical Contributions 

• Provided comprehensive analysis of ML prediction outcomes to assist winter road 

maintenance personnel in decision-making. The application of XAI revealed the 

reasonings behind ML predictions, assisting WRM personnel in making informed 

decisions, ultimately enhancing the effectiveness of resource allocation. 

• Identified and evaluated crash-inducing snowstorm events to improve winter road 

safety. Deploying a model that accurately predicts the crash-inducing snowstorm events 

along with insights on the prediction outcomes can improve the effectiveness of WRM 

decisions-making. 
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• Locate crash prone locations and understand their characteristics. Through detection 

and evaluation, the characteristics of high or low crash locations provided insights which 

can guide planners in design and infrastructure development towards improving winter 

road safety. 

6.4 Limitations and Future Work 

This section discusses the limitations encountered during the study and outlines the potential areas 

for further research as listed below. 

• The study faced challenges in collecting granular traffic volume data from the city, 

particularly in acquiring hourly traffic volume datasets to increase the ML predictive power 

and interpretability. In the first part of the study, ADT was used for snowstorm events, 

while the second part involved the use of AAWDT for traffic volume estimation. The traffic 

volume data was obtained using coarser and interpolated traffic volume estimates, which 

may have affected the accuracy of the predictions. This limitation underscores the need for 

more detailed and accurate traffic volume data in future studies. 

• This thesis focused on developing and comparing ML model algorithms for predictive 

modelling for winter road safety, providing an intensive analysis of data-driven approaches. 

However, traditional statistical models remain unexplored. Future research could include a 

comparative analysis between non-parametric models and conventional parametric models 

to better understand the strengths and weaknesses of each approach. 

• One major limitation of this study is the data size. Larger datasets tend to increase model 

stability and overall reliability. Addressing this limitation could significantly enhance the 

effectiveness of the predictive models used in this research. 

• While SHAP enhances ML model transparency, it faces several limitations, including its 

linear assumption, issues with global interpretation, feature independence, and 

computational efficiency. In particular, SHAP's additive nature assumes linear feature 

contributions, which may fail to capture non-linear interactions in complex ML models like 

SVM. Moreover, while global interpretability offers insights into overall trends, and local 

interpretations can reveal potential counterintuitive results, these may not always align with 

human intuition. Additionally, the computational intensity of SHAP calculations can limit 
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its usage in real-time applications. Future work could focus on exploring more efficient 

algorithms or approximations to mitigate these computational demands. 

• In addition to SHAP, several other XAI techniques can be utilized to improve model 

interpretability such as LIME (Local Interpretable Model-agnostic Explanations) and PDP 

(Partial Dependence Plots). Like SHAP, LIME also provides explanations for individual 

predictions by generating perturbed samples around the instance of interest to capture the 

model’s local behavior. PDP helps visualize the effects of a feature on the predicted 

outcome by marginalizing other features. While SHAP offers high interpretations at the 

cost of high computation expense, LIME and PDP can be less complex approaches that 

increase both the computation efficiency and model transparency. 
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