
The uniform self�stabilizing orientation of

unicyclic networks

H� James Hoover�

Piotr Rudnickiy

Department of Computing Science

University of Alberta

Technical Report TR �����

���� June ��

Revised ���� August ��

Abstract

We present a very simple protocol for the self�stabilizing orientation of a uni�
cyclic network of uniform processors� It has the same O�n�� performance as the
Israeli and Jalfon protocol for rings but is much simpler to state and furthermore
operates under the weaker model of read�write demon asynchronicity� We also
elucidate some of the techniques used in the design of such protocols� but not often
stated in the literature�

In addition� we propose a cleaner characterization of the various models used for
such protocols by separating the issues of operation atomicity from the behaviour
of the scheduling adversary� This eliminates the need to assume either a fair or
proper scheduler when reasoning about the protocol�

c����� H� James Hoover and Piotr Rudnicki

�Research supported by the Natural Sciences and Engineering Research Council of Canada grant

OGP ������ Author�s address� Department of Computing Science� University of Alberta� Edmonton�

Alberta� Canada T�G 	H
� e�mail address� hoover�cs�ualberta�ca
yResearch supported by the Natural Sciences and Engineering Research Council of Canada grant

OGP ��	�� Author�s address� Department of Computing Science� University of Alberta� Edmonton�

Alberta� Canada T�G 	H
� e�mail address� piotr�cs�ualberta�ca



Orienting Unicyclic Networks � �

� Introduction

In �IJ���� Israeli and Jalfon consider the problem of the uniform self�stabilizing orientation
of a ring of processors so that the processors achieve consistent notions of left and right�
Each processor is a randomized �nite state machine which can communicate directly
only with its two neighbours� All processors are identical and anonymous �i�e� they lack
any distinguishing feature such as a processor id	� and they may be started in arbitrary
states� Furthermore� the processors run asynchronously and an atomic transition consists
of reading all input ports� changing the state� and then writing all output ports�

In their paper� they show that no deterministic protocol exists for the self�stabilizing
orientation of a ring� and also give a randomizedO�n�	 expected time orientation protocol
under the distributed demon� Their protocol is moderately complex� It is composed of
two self�stabilizing sub�protocols� one of which is randomized� the other is deterministic�
The sub�protocols are then combined into the main protocol using the Dolev� Israeli and
Moran �DIJ�
� technique for the fair combination of self�stabilizing protocols�

The notion of orienting a ring can be generalized to orienting any unicyclic graph �a
ring with attached trees	� The contribution of this paper is to give a simple protocol�
both in intuition and implementation� for the self�stabilizing orientation of such a network
under the read�write scheduling adversary� Our protocol has the sameO�n�	 performance
as the Israeli�Jalfon protocol� but it does not require any sub�protocols� and has the
property that it deadlocks exactly when it has stabilized�

� Intuition

Consider the typical conference banquet� You are sitting at a round table containing n
diners� Immediately in front of you is the plate for your main course� To both sides of
you� between you and your neighbours� are salads� Which salad do you choose� How do
you ensure that everyone gets a salad�

In general your fellow diners will have conicting views on which salad to take� The
ensuing confusion� possibly involving some �ghts over the same salad� results in some
diners getting salads� others going hungry� and unclaimed salads remaining on the table�

All of this unseemly behaviour could have been avoided had you all agreed beforehand
upon a rule� say� that one�s salad is always obtained from one�s right� This of course
assumes that each diner knows their left from right� If they do not� then obtaining a salad
�rst requires that all diners consistently orient their handedness� Thus an algorithm for
consistently orienting a ring of identical processors has immediate practical application
to the problem of banquet dining�

One can distribute salads even when diners do not know left from right� and Figure ���
is a protocol that does so� This protocol assumes only two things� that diners can
only communicate with their immediate neighbours� and that if two diners attempt to
simultaneously take the same salad� exactly one wins� It is an interesting side e�ect of
this protocol that in addition to their salad� all diners obtain a consistent notion of left
and right� We will exploit this side e�ect to obtain our protocol�



Orienting Unicyclic Networks � �

while � don�t have a salad 	 f
Attempt to take a salad from your right�
Reverse your notion of left and right�

g
while � � 	 f

Wait for a salad to appear on your right�
Pass the salad to your left� waiting until it is taken�
Reverse your notion of left and right�

g

Figure ���� Informal salad protocol�

Let us call a diner without a salad hungry� and one with a salad satis�ed� We say
that two diners A and B have a consistent orientation if B is to A�s left and A is to
B�s right� or vice versa� The salad protocol has a number of properties which we state
without proof�

�� Hungry diners and unclaimed salads� if any� alternate around the table with satis�
�ed diners between them�

�� Any interval containing only satis�ed diners has a consistent orientation�
�� Any unclaimed salad moves around the table in one direction until it is claimed

by a hungry diner� It cannot reverse direction�
�� When all salads are claimed� every diner is waiting for a salad to be passed to it

from its right�
�� At most O�n�	 salad passing operations are required before all diners are satis�ed�

and ��n�	 may be necessary depending on how simultaneous attempts at taking a salad
are arbitrated�

Moving salads pass orientation information about the ring� The e�ect of passing a
salad is to send a reorientation message to your neighbour� in e�ect saying that I had
to change my orientation� perhaps you might also have to� Salads are removed from
circulation by hungry diners exactly when they have served their purpose of consistently
orienting a segment of the ring� This provides the intuition that forms the basis of our
simple protocol� which we can informally state as follows�

Look in the direction �to the right	 that you do not expect a reorientation
message to arrive� If one does arrive� then revise your notion of left and right�
and pass on this reorientation information to your other neighbour�

� Processor Networks

The idea of a consistent left�right notion for processors on a ring can be generalized to
networks� But before doing so it is worth examining the various computational settings
in which such protocols are studied�



Orienting Unicyclic Networks � �

The orientation protocols will be executed on a processor network in which processors
are placed at the vertices of the network� and all communication between processors
occurs over channels associated with the edges� Each processor at a vertex of degree k
in the network has exactly k ports� numbered 
� �� � � � � k � �� Each port consists of an
input�output pair� which is connected to an input�output pair of a neighbour such that
write conicts are excluded�

A processor network is described by a graph G � �V�E	 with vertex set V �
f
� � � � � n � �g and edge set E � �V � f
� �� �� � � �g	 � �V � f
� �� �� � � �g	� Processor
Pv is associated with vertex v� Each port of Pv is assigned to a distinct edge of E inci�
dent on vertex v� An edge ��v� i	� �w� j		 of E indicates that processor Pv has its i port
connected� via a channel� to port j of processor Pw� G is required to be connected�

Processor networks come in many avours� depending on how one answers the fol�
lowing questions�

� How powerful are the processors� Are they simple �nite�state machines� Are they
event driven� Are they randomized� Are the processors reliable� What kinds of
failures do we consider�

� Are the processors homogeneous� Do they have unique processor ids� Do proces�
sors have any knowledge of the network topology� such as its size� maximum vertex
degree� longest path� and so on�

� Do the processors in the network operate synchroneously� What kind of asyn�
chronous behaviour is permitted� Do the channels have �nite capacity� What
kinds of messages are permitted on the channel� Are they blocking� Are they
reliable� What kinds of errors occur�

� Is there a well�de�ned network state at the beginning of the protocol execution�
Are individual processors required to recognize when the network is in a speci�c
state� Does the network deadlock when it is in the required state� Is the protocol
independent of network topology�

Regardless of avour� we assume that the processors and channels are discrete�state
devices� and thus the complete state description of a network is composed of the complete
states of all the processors and channels�

As a network executes a protocol� it changes state� and as a result one obtains a
notion of progress by simply observing the network state changes� However this simple
notion of progress is essentially meaningless since processor networks at this lowest level
of detail must� at the least� continually sample their inputs� and thus can change their
states without making any progress towards the protocol goal� Thus any useful notion of
execution progress must be based on a projection of certain components of the complete
state of the network�

With this in mind� we informally de�ne a con�guration to be any projection of the
state of a processor network� A con�guration de�nes the observables of the network�
and a processor not changing its observables is not doing anything under this con�gura�
tion� All discussions of execution behaviour are done at the con�guration level� and such



Orienting Unicyclic Networks � �

discussions are incomplete without specifying the projection used to obtain the con�gu�
ration� It is quite possible for a protocol to be correct under one notion of con�guration�
and incorrect under another� as protocol speci�cations are also expressed in terms of a
con�guration�

What are the basic execution models for a processor network� Each such model
will dictate the nature of the interactions among concurrently operating processors� and
consequently will determine the conceptual complexity of the protocol on that model�
These interactions are a�ected by the atomic operations of the processor network and
the way in which these operations are scheduled within the network�

Our basic model of execution uses polling� rather than being event driven� That
is� processors are constantly sampling their environment� Otherwise the network could
fault into a state in which all processors are waiting for events which cannot occur� Self�
stabilization� that is the ability to withstand transient faults� is achievable only under
polling�

A computation model is said to be transient faulting if during computation processors
can fault to an arbitrary con�guration� A correct protocol under a transient faulting
computation model is said to be self�stabilizing�

Polling can be implemented implicitly or explicitly� One way of treating polling is
to model processors as having non�total state transition functions� The state transition
function maps the current state and states of the input ports to the next state� When
the state transition function is de�ned the processor is enabled� otherwise the processor
is disabled� Thus a disabled processor polls its inputs until becoming enabled at which
time it continues to execute�

If one is interested in the �ner details of reading and writing to ports� then implicit
polling is not su�cient� Thus we require explicit polling by processors� In such a case�
the state transition function of a processor is total� and there is no notion of a processor
being enabled or disabled�

In addition� we require the ability to make random choices� If processors can make
random state transitions� we say that the computation model is randomized� otherwise
it is deterministic�

��� Operational Atomicity

Each individual processor or channel can perform certain operations which are atomic at
the con�guration level� All atomic operations take the device instantaneously from its
current con�guration to its next con�guration� Since atomic operations are indivisible�
two atomic operations cannot be temporally overlapped in the sense that one operation
starts before the another completes� But two or more atomic operations can occur
simultaneously at the same instant� In this way� the notion of an atomic operation
for a single processor is extended to the network� An atomic network operation is a
con�guration�level notion involving the scheduler�

Processor networks can have the following kinds of operational atomicity�

Single�Cycle Atomic� The simplest approach to execution is to let each processor be



Orienting Unicyclic Networks � �

a �nite state machine� and let the channels be direct connections between ports�
Each processor repeatedly executes a single atomic operation consisting of reading
all of the input ports and then changing state on the basis of their value and the
current state of the processor� The values that appear on the output ports are not
explicitly written but instead are functions of the current state of the processor�
Thus whenever it chages state so �potentially	 do the outputs� In e�ect� your
neighbour has direct access to some projection of your state�

Read�Write�Subset Atomic� A more general execution model distinguishes between
reading an input and writing an output� In this setting the values appearing at an
input port do not come directly from an output port� but are instead bu�ered by
a register in the communication channel� There are two atomic port operations�
read a �possible empty	 subset of the input ports� and write a �possible empty	
subset of the output ports� Since the read and write are atomic� it is impossible for
a simultaneous write to a port to interfere with a read from the attached channel
� the read will get the value prior to the write�

Read�Write�Single Atomic� This is like Read�Write�Subset Atomic except that only a
single port can be read or written at a time�

Read�Write Non�Atomic� The most complex model attempts to capture the realistic
situation in which reads and writes can be temporally overlapped and thus interfere
with each other� For example a write occurring during a read could cause the read
to return garbage� Thus there are four kinds of atomic port operations� start the
read of a single port� complete the read of the port� start the write of a single port�
complete the write of the port�

A totally di�erent class of model occurs when the processor states are continuous
functions of time� In their most general form� such continuous transition models must
be described using di�erential equations� However� special cases of such models can be
understood using the ideas of Lamport �Lam��a� Lam��b��

��� Scheduling Disciplines

The possible interactions among processors depend on their atomic operations and the
possible ways in which simultaneous processor activity can occur� The possible concurrent
atomic events are determined by the scheduling discipline� Processors have no control
over the way in which their atomic operations are scheduled� and thus a correct protocol
must be able to cope with any permissible schedule within the discipline� We distinguish
the following kinds of scheduling disciplines�

Sequential� Only one processor at a time executes an atomic operation�

Partially Synchronous� A subset of the processors can simultaneously execute one
atomic operation�



Orienting Unicyclic Networks � �

Synchronous� All processors simultaneously execute one atomic operation�

In our execution models every processor is always enabled and capable of executing
an atomic operation� Thus without some notion of fairness� it would be possible for the
scheduling discipline to let one processor execute continuously without causing a change
in the con�guration of the processor network�

The usual requirement is that a scheduler need not be fair� it need only be proper�
When possible� a proper scheduler must schedule the next atomic operations in such a
way that change at the con�guration level is possible� That is� unless no alternative action
is possible� the next atomic events scheduled for execution must result in a con�guration
di�erent from the current one� In the case of randomized processor networks� the next
con�guration need only have a non�zero probability to be di�erent�

But the requirement that a scheduler be proper has essentially no bearing on whether
a protocol is correct or not� Its purpose is to permit the execution time of the protocol to
be counted in terms of scheduling operations� Properties of the scheduler can be ignored
completely if instead we de�ne time in terms of con�guration changes� If the scheduler
schedules an operation� and as a result no con�guration change occurs� then time has
not passed�

A processor network can reach a con�guration in which� no matter how the next
atomic operations are scheduled� the next global con�guration is identical to the current
one� In this case we say that the processor network is deadlocked� Of course a network
can be deadlocked at the con�guration level yet individual processors can be changing
nonobservable components of their states� When time is de�ned as above� a deadlocking
protocol behaves like a halting program � once deadlocked� time ceases to pass�

��� Standard Models

The notions of operational atomicity and scheduling discipline combine to specify the
four common computation models in the literature�

Central Demon� This is a single�cycle atomic processor network under the sequential
scheduling discipline�

Synchronous Demon� This is a single�cycle atomic processor network under the syn�
chronous scheduling discipline�

Distributed Demon� This is a single�cycle atomic processor network under the partially
synchronous scheduling discipline�

Read�Write Demon� This is a read�write single atomic processor network under the
partially synchronous scheduling discipline�

The above de�nitions are not strictly equivalent to those in the literature since the
usual requirements are that the central� synchronous� and distributed demons be proper�
and that the read�write demon be fair�



Orienting Unicyclic Networks � �

Edge Name Condition Pictograph

oriented edge o�v	 � i� o�w	 �� j ��	 ��	
o�v	 �� i� o�w	 � j ��	 ��	

disoriented edge o�v	 � i� o�w	 � j ��	 ��	
ignored edge o�v	 �� i� o�w	 �� j ��	 ��	

Figure ���� States of an edge e � ��v� i	� �w� j		

��
��

���

��
��




��R

��
��




�

�� ��
��

� 


�
���

��
��

� 


��R

��
��
 �

��I

��
��




�
���

�
�
�
�

�
�
�
� �

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure ���� An oriented network

Also note that because all communications occur over edges� the only possible con�
icting simultaneous atomic operations are a read and write to the same channel� Thus in
the read�write single atomic model� partially synchronous scheduling is no more powerful
than sequential scheduling in terms of the variety of behaviour of the processor network�

� The Orientation Problem

To each vertex v of degree k is assigned an orientation o�v	 	 f
� � � � � k � �g� It is
convenient to visualize each vertex as having an internal pointer whose head is directed
toward port o�v	� The orientation of a vertex v is generally a function of the state of the
processor Pv� The orientation of the vertices at the ends of an edge induces a state for
that edge� as de�ned in Figure ���� The orientation of a processor is clearly a component
of the network con�guration�

We say that a network is oriented i� every edge is oriented� That is� exactly one of the
vertices at the ends of each edge is oriented toward that edge� There must be exactly as
many vertices as edges for a network to be orientable� and thus such a network consists
of a single ring with trees attached� Such an oriented network is illustrated in Figure ����

In general terms� the orientation problem is to specify a protocol whose execution�
given an initial con�guration of orientations of vertices� eventually results in an oriented
network� We say that a orientation protocol is correct under a given computation model



Orienting Unicyclic Networks � �

if it orients every permissible initial con�guration of every permissible network topology�
The property of being oriented can be either a dynamic property� or a static property�

A network is dynamically oriented if it is oriented� yet the processor network continues
to make con�guration changes� A network is statically oriented if it is oriented and the
processor network is deadlocked�

There are obvious scenarios in which the orientation problem is solved by the simple
expedient of orienting the network at construction time� We are not interested in these�
Nor are we interested in situations which allow protocols to use a dictator or elected
leader to specify the orientation�

We are interested in uniform orientation protocols in which the processors have no
ids and no idea of the global network topology� That is� the protocol computation by the
processor at a vertex is a function only of the degree of the vertex�

By simple symmetry considerations �consider the ring of two processors	� there is
no correct uniform orientation protocol under any deterministic single�cycle atomic syn�
chronous model� Any correct protocol will require randomization to break symmetry
�IJ����

� Three Simple Random Protocols

Consider the following simple idea for an orientation protocol�

A processor does nothing unless it is oriented towards a disoriented edge� in
which case it randomly changes orientation�

For illustrative purposes� we consider using this idea to implement an orientation pro�
tocol in three models� each progressively less restricted in terms of model and scheduler�
For simplicity� we restrict our attention to rings�

��� Single�Cycle Atomic� Synchronous Scheduling

First consider an execution model that is single�cycle atomic with a synchronous schedul�
ing discipline� Call this the R� protocol�

Each processor in the network is a simple randomized �nite state machine� The
channels between processors are simple direct connections� There is one type of processor
in the network� possessing � ports� and the states f
� �g� The state of a processor is
directly identi�ed with its orientation� with state q indicating orientation toward port q�

The output ports continuously transmit a symbol from fH�Tg� with the symbol
currently transmitted to port i being given by the port i output function �i applied to
the current state q�

�i�q	 �

�
H i � q
T i �� q

Each port output function simply transmits whether the processor is oriented toward�
H� or away from� T � the port�



Orienting Unicyclic Networks � �

The state transition function of a processor is

��q	 �

�
�
� �	 if input port q is H
q otherwise

where �
� �	 denotes the uniform random choice of either state 
 or � as the next state�
De�ne the con�guration of the processor network to be the vector of states of each

processor� and de�ne an atomic operation in the obvious way as the steps consisting of
reading the input ports� changing state� and updating the output ports�

It is clear that for this protocol� orientation is a static property of the network� We
say that a protocol deadlocks if the network running the protocol deadlocks�

Proposition ��� The R� protocol is deadlocked if and only if the network is oriented�

To analyse the protocol� we introduce the higher level notion of an interaction between
two processors� and will express the progress of the protocol in terms of interactions� For
this reason� it is important that a processor be involved in at most one interaction at a
time�

In the synchronous setting� an interaction consists of the simultaneous execution of
an atomic operation by two processors at the end of a disoriented edge� Despite the fact
that interactions are occurring simultaneously� they are independent� and we can analyse
the protocol as if the interactions happened sequentially�

Proposition ��� If the R� protocol is executed on a ring� starting in any con�gura�
tion� then in O�size�G	�	 expected number of interactions �with variance O�size�G	�	�
the protocol deadlocks �with the ring oriented��

Proof� Arbitrarily assign an orientation toG and call it clockwise� Thus each processor
is oriented either clockwise or anti�clockwise� Consider the following statistic for G given
by

h�G	 � number of clockwise processors

Then a network of size n is oriented when h�G	 � n or h�G	 � 
�

Now consider an interaction of two processors at a disoriented edge e� With probability
��� this edge ��	 ��	 stays the same or becomes ignored ��	 ��	� In both
cases h�G	 stays the same� With probability ��� edge e becomes ��	 ��	� and with
probability ��� it becomes ��	 ��	� Thus� with equal probability� h�G	 decreases
or increases by � at every interaction�

Thus changes in h�G	 behave like a simple random walk on an interval with in which the
probability of staying in the same place is ���� and the probability of moving in either
direction is ���� The walk begins at a position somewhere on the interval �
� n�� and
terminates when it hits either end of the interval�

The expected number of steps to a boundary is maximized when the initial position is
in the middle� In such a situation� the expected number of steps before hitting either
boundary is n��� with a variance of n��n� � �	��� �See �Fel��� for the expected value�
Some symbolic manipulation is required to compute the variance�	



Orienting Unicyclic Networks � �


Thus the expected number of interactions to orient G is O�n�	� with a variance of O�n�	�

So long as the network is unoriented� the synchronous scheduling discipline ensures
that at least one interaction is occurring at each con�guration change� and thus the
number of interactions is a loose upper bound on the execution time of the protocol�
Since we make no assumptions about the initial con�guration of the network the protocol
is self�stabilizing� �An interesting problem is to compute a tighter bound on the time by
considering the simultaneous interactions that occur in any synchronous step�	

��� Single�Cycle Atomic� Partially Synchronous Scheduling

Now suppose that we change to a partially synchronous scheduling discipline� In this
case� interactions need not occur at each state transition� because both parties to an
interaction are not required to execute simultaneously� In fact� interactions need not
even occur� as in the case of

��	 ��	 ��	

where the processor in the middle can execute an arbitrarily large number of con�guration
changes before either of the end processors do even one�

To avoid this problem� the protocol implementation must ensure that the processors
at the end of a disoriented edge are forced to interact� This is achieved by making the
protocol self�synchronizing� That is� the parties to the interaction take turns waiting for
each other to complete a phase of the interaction before changing state� thus preventing
one processor from doing arbitrary numbers of state transitions� However� such a self�
synchronizing protocol requires one of the pair of processors to begin the interaction �
a symmetry which itself must be broken through randomization� Furthermore� the alter�
nation created by the self�synchronization causes one processor to �nish its participation
in the interaction before the other processor� This permits the processor that �nishes
�rst to participate in a new interaction� while the other processor has yet to complete
the original interaction � thus destroying the assumption of interaction independence�
and the preceding analysis�

But we can preserve independence and also self�synchronize� This can be accom�
plished by preventing the case where both processors turn away �no change in the ori�
entation statistic	� combined with ensuring that the processor that acts last is the one
that actually changes orientation� Thus the interaction must be complete before either
processor can participate in a new interaction�

For the R� protocol� we de�ne the port alphabet to be � � fI�H� S�Cg� The intu�
ition behind the symbols is as follows� an I at an input port means that the processor
generating it is ignoring the processor receiving it� an H at an input port means that
the generating processor is oriented toward the receiving processor� a S indicates that
the sending processor will be staying in its current orientation� and a C indicates the the
sending processor will be changing orientation�

Each processor has the states fHj � Sj� Cj j j 	 f
� �gg� The state letter indicates
the mode of the processor� and the subscript indicates its orientation� The port output



Orienting Unicyclic Networks � ��

functions simply transmit the mode of the processor to the port it is oriented toward�
and send I to the other ports� Thus

�i�Hj	 �

�
H i � j
I i �� j

�i�Sj	 �

�
S i � j
I i �� j

�i�Cj	 �

�
C i � j
I i �� j

The state transition function � is given by the following table� with dashes indicating
no state change� �Note� i 	 f
� �g	�

input from port i� H S C

Hi �Si� Ci	 Ci �
current
state Si � �Si� Ci	 Hi

Ci H�i���mod � � �Si� Ci	

The key idea is that� unless both processors are in identical modes� only one processor
is capable of making a transition that results in a con�guration change�

When processors are in identical modes� they enter into an arbitration sequence which
is broken by one processor entering the S mode and the other entering the C mode� The
probability of the arbitration succeeding is ���� regardless of whether one processor or
both are scheduled� The probability that the arbitration will require more than k steps is
���k� It is simple to see that the expected number of arbitration steps �not con�guration
changes	 is �� with a variance of ��

The fact the the protocol forces interacting processors to change states in a self�
synchronizing way is easily veri�ed by looking at the transition matrix above�

The o��diagonal entries correspond to the protocol operating on a disoriented edge
� only one of the interacting processors can make a transition� The diagonal entries
correspond to arbitration�

The possible reorientation outcomes for the protocol are equiprobable� regardless of
how the processors are scheduled� Furthermore� the orientation statistic can now be
analysed as a simple random walk� Also� this protocol will survive transient faults� Thus
we have�

Proposition ��� If the R	 protocol is executed on a ring� starting in any con�gura�
tion� then in O�size�G	�	 expected number of interactions �with variance O�size�G	�	�
the protocol deadlocks with the ring oriented�

��� Read�Write Single Atomic� Partially Synchronous Schedul�
ing

Finally� we consider the weaker model in which the basic instruction cycle consists of a
read or write followed by a state change� This is illustrated in Figure ���� The current
state of the machine is q� The function � speci�es the port to be read or written� and �
speci�es the value to be written�

Because transient faults can change the contents of the port registers without a pro�
cessor�s knowledge� they must be continuously refreshed� Thus the basic cycle of the
protocol consists of a read from a port followed by a sequence of writes to ports�



Orienting Unicyclic Networks � ��

while � � 	 f
Read v from port ��q	 and change state q to ��q� v	
or
Write value ��q	 to port ��q	 and change state q to ��q	

g

Figure ���� Basic Read�Write Single Atomic execution cycle�

Since the read and write to a port is not packaged into a single atomic operation it
becomes much more di�cult for one processor to reliably determine the state of the one it
is communicating with� For example� the simple method of arbitration used above where
processors randomly chose between two values until they each obtain di�erent ones will
not always terminate under a partially synchronous scheduler� As pointed out by Amos
Israeli �private communication	 the scheduler can manipulate the executions of the two
processors in such a way that they always think they have the same values and thus they
continue to arbitrate�

The simplest way to cope with the wide range of possible execution sequences of two
interacting processors is to impose some kind of notion of atomic interaction onto their
behaviour� This can be done by forcing every pair of interacting processors to act as if
they were synchronous single�cycle atomic machines� That is� one processors reads from
a port never overlap with the other processors write to the port�

We do this by running a low�level deterministic protocol whose only purpose is to
keep every pair of processors in close synchronization� Each processor maintains a syn�
chronization state for each port� and actually executes the protocol only when it is paying
attention to the port� For a single port� the synchronization protocol has four states� and
is described by the following transition table�

port
input � 
 � � �


 � � 
 

current
state � � � � 

of port � 
 � � �

� 
 
 � 


As two processors execute this protocol� the states of their communicating ports can
never di�er by more than � �modulo �	� except at startup or under a transient fault� The

 entries serve the purpose of resynchronizing the processors in the event of a transient
fault� Once synchronized� the protocol advances through the port states in sequence�

We can now implement the R� protocol on top of the synchronization protocol� We
map the synchronization states onto four phases� idle �phase 
	� read input �phase �	� idle
�phase �	� write output �phase �	� The synchronization states are now used to insure that
any actions taken during the read input phase of one processor cannot overlap actions



Orienting Unicyclic Networks � ��

taken during the other processor�s write output phase� To transmit the four symbols of
the R� protocol requires a port alphabet of �� symbols fI�H� S�Cg � f
� �� �� �g� and a
machine of �� states ������� two synchronization protocols and the R�	 constructed in
the obvious way by combining the R� and synchronization protocols� Call the resulting
not so simple protocol R��

Since the synchronization protocol is deterministic� it does not a�ect the probabalistic
analysis of the correctness or performance of the R� protocol� and so we have�

Proposition ��� If the R
 protocol is executed on a ring� starting in any con�gura�
tion� then in O�size�G	�	 expected number of interactions �with variance O�size�G	�	�
the protocol deadlocks with the ring oriented�

In all three protocols� the network con�guration is the vector of orientations of all the
processors� and every interaction is composed of a constant or expected constant number
of con�guration changes� Thus� interactions are a reasonable measure of execution time�
We wish to emphasize that an interaction at the con�guration level may involve a number
of protocol atomic actions� each of which consists of numerous changes of a processor
state�

� The High�Level Salad Protocol

So far� we have obtained three orientation protocols in three progressively weaker models�
each with the same expected number of interactions as the original Israeli�Jalfon protocol�
Their main weakness is their high variance� and that the analysis only works on a ring�

We now use the ideas of the salad passing protocol to give an orientation protocol
that works in the weakest atomic model and strongest scheduler� and that generalizes to
unicyclic graphs�

We will present our orientation protocol in two stages� The high�level protocol will
be speci�ed in terms of normal �nite state machines� making the additional assumption
that it is possible to arbitrate certain kinds of conicts between adjacent processors� We
will show that this protocol is correct and has the claimed performance� Then we will
show how to implement the high�level protocol with randomized �nite state machines�

The high�level protocol corresponds roughly to the salad protocol described in Fig�
ure ���� In addition to an orientation as described above� each processor has a mode
which is either P or W � We denote the mode of the vertex v by m�v	� The mode P
stands for passing mode� which can be thought of as the processor being in possession of
an extra salad and wanting to pass it to the neighbour it is oriented towards� The mode
W stands for waiting mode� which can be thought of as the processor waiting for a salad
to appear�

This induces a state for each edge described by the orientation and mode of the
processors at its ends� Figure ��� de�nes the various states of an edge�

We note that because the protocol must be self�stabilizing� we cannot make any
assumptions about the initial state of the network� The only thing that we can assume



Orienting Unicyclic Networks � ��

Edge Name Condition Pictograph

properly oriented edge o�v	 � i� m�v	 �W� o�w	 �� j �
W
�	 ��	

improperly oriented edge o�v	 � i� m�v	 � P� o�w	 �� j �
P
�	 ��	

properly disoriented edge o�v	 � i� m�v	 �� m�w	� o�w	 � j �
P
�	 �

W
�	

improperly disoriented edge o�v	 � i� m�v	 � m�w	� o�w	 � j �
P
�	 �

P
�	

or �
W
�	 �

W
�	

ignored edge o�v	 �� i� o�w	 �� j ��	 ��	

Figure ���� States of an edge e � ��v� i	� �w� j		

Current Con�guration Next Con�guration

o�v	 � i� m�v	 � P o�v	 � i� m�v	 � W
o�w	 � j� m�w	 � W o�w	 � �j � �	 mod deg�w	� m�w	 � P

�
P
�	 �

W
�	 �

W
�	 �

P
�	

o�v	 � i� o�w	 � j o�v	 � i� o�w	 � j
m�v	 � m�w	 m�v	 �� m�w	 �arbitrarily	

�
P
�	 �

P
�	 or �

W
�	 �

W
�	 �

W
�	 �

P
�	 or �

P
�	 �

W
�	

Figure ���� The high level protocol at edge e � ��v� i	� �w� j		

is that there is su�cient time between transient faults for the network to stabilize� We
call this interval between transient faults an execution�

For the high level protocol� we assume that processors make changes in orientation
and mode instantaneously like normal �nite state machines� Processors will only interact
with the neighbour they are oriented toward� and thus the rules for the protocol are very
simple� all progress toward orientation occurs at disoriented edges� �At the low level�
writes may occur to ports other than the one the processor is oriented toward�	

Suppose that e � ��v� i	� �w� j		 is a disoriented edge� The protocol at e is described
by Figure ���� Each application of the protocol to a current con�guration of two adja�
cent processors which produces a next con�guration of the two processors is termed an
interaction� If no interactions are possible on any edge� then the network is deadlocked�

The behaviour of the protocol depends on whether the edge is properly or improperly
disoriented� For a properly oriented edge� the passing processor drops into waiting mode�
and the waiting processor re�orients itself to its next port and enters passing mode� On the
other hand� for an improperly oriented edge� the mode conicts must �rst be arbitrated�
converting the edge into a properly oriented one� We assume only that some arbitration
mechanism exists� It need not be fair� �In the implementation� this arbitration will be
done randomly�	



Orienting Unicyclic Networks � ��

The following is a direct consequence of the de�nition of the high�level protocol�

Proposition ��� A network executing the high�level protocol is deadlocked if and only if
it is oriented�

��� Correctness of the high�level protocol

We must prove that every possible con�guration of the network eventually deadlocks�
How does the protocol make progress� Consider a possible execution of the protocol on
a path�


 � �
P
�	 e� �

W
�	 e� �

W
�	 e� �

W
�	 e� �

W
�	

� � �
W
�	 e� �

P
�	 e� �

W
�	 e� �

W
�	 e� �

W
�	

� � �
W
�	

e� �
W
�	

e� �
P
�	

e� �
W
�	

e� �
P
�	

� � �
W
�	 e� �

W
�	 e� �

P
�	 e� �

P
�	 e� �

W
�	

� � �
W
�	 e� �

W
�	 e� �

W
�	 e� �

P
�	 e� �

W
�	

� � �
W
�	 e� �

W
�	 e� �

P
�	 e� �

W
�	 e� �

W
�	

� � �
W
�	 e� �

P
�	 e� �

W
�	 e� �

W
�	 e� �

W
�	

We can think of the protocol as transferring the disorientation of a edge �eg� e�	 to
an adjacent edge �eg� e�	� leaving the �rst edge oriented� The disorientation state keeps
moving in its original direction until it either collides with an ignored edge �eg� e� at
step �	� or reects o� of an improperly disoriented edge �eg� e� at step �	� A collision
with an ignored edge reduces the number of unoriented edges and so the protocol makes
progress� Reection o� of an improperly disoriented edge sometimes makes progress in
orientation� and always ensures that arbitration is never required again at that edge�

In addition to improperly oriented edges at the beginning of execution �eg� e�	� the
reorientation of processors during execution can create improperly oriented edges �eg� e�
at step �	� However� the de�nition of the protocol ensures that�

Lemma ��� During the execution of the protocol� at most one arbitration can occur at
each edge�

This observation is important because it means that there is an upper bound on the
number of reections that can occur at an edge� Ignored edges are also important as
they are points at which orientation conicts are resolved�

Lemma ��� The execution of the protocol cannot generate any ignored edges�

It is convenient to reason about the orientation protocol�s behaviour on a tree� An
edge�rooted tree T with root vertex v and root edge e is constructed by taking a tree
with root v and edge e incident on v� and deleting the vertex at the other end of e� All
of our trees will be edge�rooted� so we simply use the term tree� Figure ��� illustrates a
prototypical tree used in the proofs that follow�



Orienting Unicyclic Networks � ��

v
e

v� vk��

e� ek��

� � �
T� Tk��

��
��

��
��

��
���

�
�
�
��

�
�
�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

Figure ���� A typical edge�rooted tree�

The next two lemmas show that ignored and disoriented edges are balanced in a net�
work� Let �I�G	 and �D�G	 denote� respectively� the number of ignored and disoriented
edges in the network G� When applied to a tree T � the root edge of T is not counted�

Lemma ��� Let T be a tree with root vertex v and root edge e� If v is oriented toward
e then �I�T 	 � �D�T 	� If v is oriented away from e then �I�T 	 � �D�T 	� ��

Proof� We proceed by induction on the size of T � For the case of T being a single
vertex� v must be oriented toward e� and we have �I�T 	 � �D�T 	 � 
�

Suppose that vertex v has degree k � �� and edges e�� � � � � ek�� in addition to e� Then
T looks like the tree of Figure ����

When v is oriented toward e� each of the edges el� � 
 l � k� is either ignored or
oriented� If el is oriented� then vl is oriented toward el� and by induction �I�Tl	 � �D�Tl	�
If el is ignored� then vl is oriented away from el� and by induction �I�Tl	 � �D�Tl	� ��
Adding the ignored edge el maintains the balance between ignored and disoriented edges�

When v is oriented away from e� then it is oriented toward exactly one edge el which
is either oriented or disoriented� Balance is maintained for the other subtrees as above� If
el is oriented� then vl is oriented away from el� and by induction �I�Tl	 � �D�Tl	��� and
so �I�T 	 � �D�T 	��� If el is disoriented� then vl is oriented toward el� and by induction
�I�Tl	 � �D�Tl	� Accounting for the disoriented el we have �I�T 	 � �D�T 	� ��

Lemma ��� Let G be a unicyclic network� Then �I�G	 � �D�G	�

Proof� If G is oriented then �I�G	 � �D�G	 � 
� Suppose that G is not oriented�
Pick any edge e � ��v� i	� �w� j		 on the cycle of G and cut it� attaching a leaf u to vertex
w with the edge f � ��u� 
	� �w� j		� The net result is a tree T with root vertex v and
root edge e�

If e was originally disoriented� then edge f will be disoriented� and v will be directed
toward e� That is� edge e � ��	 ��	 becomes the edge f � ��	 ��	� and e
becomes the root edge ��	 � Applying Lemma ��� to T we have �I�T 	 � �D�T 	�
Since the disoriented edge f in T accounts for the originally disoriented edge e� we have
balance for G�



Orienting Unicyclic Networks � ��

If e was originally ignored� then edge f will be oriented� and v will be directed
away from e� That is� edge e � ��	 ��	 becomes the edge f � ��	 ��	� and e
becomes the root edge ��	 � Applying Lemma ��� to T we have �I�T 	 � �D�T 	���
The oriented edge f is not counted in T � nor was the originally ignored e� so we have
balance for G�

If e was originally oriented� we have one of the above cases�

Since progress is made as disoriented edges move about the tree� we need to know
how they can interact� In a tree T we say that an edge e is between edges e� and e� if e
lies on a path between e� and e�� We say that a disoriented edge e� in tree T is covered
if there exists an ignored edge between e� and the root edge of T �

Lemma ��� Let T be a tree with root vertex v and root edge e� If v is oriented toward
e then every disoriented edge in T is covered� If v is oriented away from e then all but
one disoriented edge in T is covered�

Proof� We proceed by induction on the size of T � For the case of T being a single
vertex� we have no disoriented edges�

Suppose that vertex v has degree k � �� and edges e�� � � � � ek�� in addition to e� Then
T looks like the tree of Figure ����

When v is oriented toward e� each of the edges el� � 
 l � k� is either ignored or
oriented� If el is oriented� then vl is oriented toward el� and by induction all disoriented
edges of Tl are covered� If el is ignored� then vl is oriented away from el� and by induction
Tl has one uncovered disoriented edge f � But el is between f and the root edge e� and
so f is covered� Thus all disoriented edges in T are covered�

When v is oriented away from e� then it is oriented toward exactly one edge el which
is either oriented or disoriented� Any uncovered disoriented edges for the other subtrees
are covered as above� If el is oriented� then vl is oriented away from el� and by induction
Tl has an uncovered disoriented edge which remains uncovered in T � If el is disoriented�
then vl is oriented toward el� and by induction Tl has all disoriented edges covered� Thus
el is the only uncovered edge of T �

Ignored edges serve as separators between disoriented edges in the following manner�

Corollary ��� Let T be a tree with root vertex v and root edge e with v oriented away
from e� Then T can be partitioned into � � �I�T 	 subtrees such that the root edge of
each subtree corresponds to an ignored edge in T � and every subtree contains exactly one
disoriented edge�

Now consider how a single proper disorientation moves about a tree of otherwise
properly oriented edges� Note that the root vertex is oriented away from the root edge�
The protocol forces the disoriented edge to move about the tree in a depth �rst order
induced by the port numbers at each vertex� For the typical tree �Figure ���	� suppose
that e� is properly disoriented with v in passing mode P � The disorientation moves from
e� into subtree T�� moves about T� in depth �rst order� and returns to e� with v� in mode



Orienting Unicyclic Networks � ��

P and v in waiting modeW � The disorientation then passes to e�� This process continues
until v is oriented toward e in mode P � That is� the disorientation has moved out of T �
We call the sequence of edges that a disorientation follows as it depth �rst searches the
tree a trip�

Two things can a�ect the trip that a disorientation takes in an arbitrary tree� One is
encountering an ignored edge� When this happens the protocol replaces the ignored and
disoriented edges with properly oriented ones� and the trip terminates� The other thing
that can occur is for the disorientation to encounter an improperly oriented edge �eg� e�
step � of our example	� In this case� it is possible for the resulting arbitration to cause the
disoriented edge to bounce� causing the subtree below to be skipped �when approaching
from above	� or the subtree to be traversed again �when approaching from below	� A
bounce� since it requires an arbitration� can occur at most once at each particular edge�
Call an edge which has not yet participated in an arbitration an unarbitrated edge�

Thus we can measure progress in the protocol by observing the decrease in the number
of ignored and unarbitrated edges�

Lemma ��� Let T be a tree with root vertex v and root edge e� Then ��� T contains
only oriented edges� or �	� every oriented edge in T is properly oriented� and there is
exactly one disoriented edge� or �
� in at most � size�T 	 interactions between processors
of T the total number of ignored plus unarbitrated edges in T will decrease by ��

Proof� In order for the protocol to be active� T must contain at least one disoriented
edge� so we assume that ��	 does not hold� If there are no ignored edges in T � then
arbitrations will only occur if some edges are improperly oriented� so we also assume
that ��	 does not hold� Then T can contain exactly one improperly disoriented edge�
or exactly one properly disoriented edge and some improperly oriented edges� or some
ignored or some disoriented edges�

Any interactions that occur in T are at disoriented edges� and these cause each such
edge to progress along its depth �rst trip through T �

If there is exactly one disoriented edge� and it is improper� then an arbitration will
occur at the edge to turn it into a properly disoriented one� thus decreasing the number
of unarbitrated edges by ��

If there is exactly one properly disoriented edge then in at most � size�T 	 interactions
the disorientation must encounter an improperly oriented edge and cause an arbitration�
Note� that the disorientations could move out of T and a new one enter � interactions
are all that is important�

The �nal case occurs when there is more than one disoriented edge� By Lemma ���
there must be at most � more disoriented than ignored edges in T � By Corollary ����
the motions of the disoriented edges are occurring in disjoint portions of T connected by
ignored edges� The only way that a disorientation can miss an ignored edge is for it to
bounce o� of an unarbitrated� improperly oriented edge� which results in an arbitration�
If this does not happen� at most � size�T 	 interactions are required before one of the
disoriented edges cancels with an ignored edge�

In all cases the number of ignored plus unarbitrated edges is reduced by ��



Orienting Unicyclic Networks � ��

Corollary ��	 In at most O�size�T 	�	 interactions within tree T with root vertex ori�
ented away from the root edge� exactly one edge is properly disoriented and all other edges
are properly oriented�

Proof� Since resolving an ignored edge can require an arbitration� the number of
ignored plus unarbitrated edges is bounded by � size�T 	� New ones are never created�

Lemma ���
 Let G be a unicyclic network� Then the protocol deadlocks on G�

Proof� We proceed by induction on the size of G� and suppose that the claim holds
for all networks of smaller size�

Suppose for contradiction that some particular execution of the protocol does not
deadlock on G� Then there is at least one disoriented edge in G and by Lemma ��� there
is an equal number of ignored edges�

Since ignored edges are never created� there must be an ignored edge e � ��v� i	� �w� j		
that existed at the beginning of the execution and that will exist forever� So the processors
at both ends of e never orient towards e�

Suppose that the edge e is on the cycle of G� We cut the network at edge e� and
add a leaf vertex u with edge ��u� 
	� �w� j		 to create a tree T with root vertex v and
root edge e� Since neither v nor w orient towards edge e� the particular execution of the
protocol must also fail to deadlock when projected onto T �

But� since vertex v is oriented away from e� by Corollary ���� eventually T will contain
one properly disoriented edge� and all others will be properly oriented� This properly
disoriented edge must eventually move towards e� and so e cannot remain ignored� This
contradicts the choice of e�

Thus e must be inside a tree� It must connect a subtree Tw of size at least � to the
rest of G� �Tw cannot be a leaf because then e would not be ignored�	 So we can cut
the network at edge e� and add a leaf vertex u with edge ��u� 
	� �w� j		 to create a new
network G�� Vertex w never orients toward this new edge� so the particular execution of
the protocol behaves the same when projected onto G�� and so must not deadlock� But
G� is smaller than G and so this contradicts the inductive assumption�

Thus the protocol always deadlocks on G�

Corollary ���� Let G be a unicyclic network� Then in at most O�size�G	�	 interactions
between processors of G the protocol deadlocks�

Proof� Consider a possible serialization of a protocol execution on G� and consider
the edge e of the cycle of G that remained ignored for the longest time� The proof of
Corollary ��� shows that this e could have remained ignored for at most O�size�G	�	
interactions� So after these interactions� no edges of the cycle are ignored� and since
there are exactly as many processors as edges on the cycle� the cycle is oriented�

Any remaining ignored edges occur in subtrees of G� and further interactions cannot
involve processors on the cycle of G� so these interactions are con�ned to subtrees�



Orienting Unicyclic Networks � �


Consider a subtree T � and its ignored edge e closest to the root� By Corollary ����
for the subtree S with root edge e� in O�size�S	�	 interactions within S� every edge of S
is properly oriented except for one properly disoriented edge f � By Corollary ���� edge
f is covered by the ignored edge e� and in O�size�T 		 interactions they will cancel�

Thus at most O�size�G	�	 interactions occur before the protocol deadlocks�

Thus we have�

Proposition ���� If the unicyclic network G is started in any state� and no transient
faults occur� then in O�size�G	�	 interactions the protocol deadlocks with the network
oriented�

� The low�level salad protocol

We now show how to implement the salad protocol under the single�cycle atomic model
with a partially synchronous scheduler� It is then a simple matter to use the techniques
of the R� protocol to obtain an implementation under the read�write single atomic model
with a partially synchronous scheduling discipline�

The processors in the salad protocol are like those in R�� except that a processor at
a degree k vertex has k ports�

When processor Pv is in state qv� the symbol transmitted to output port i of Pv is
�i�qv	 as given by the processor�s port output functions�

For our protocol� we de�ne the port alphabet to be fI�W�P�Rg� The intuition behind
the symbols is as follows� an I at an input port means that the processor generating it
is ignoring the processor receiving it� a W �P � R	 at an input port means that the
generating processor is waiting to receive� �willing to pass� just received the pass	�

Each k�port processor has the states fWj� Pj � Rj j 
 
 j � kg� The state letter is
identi�ed with the mode of the processor� and the subscript with the orientation of the
processor� The port output functions simply transmit the mode of the processor to the
port it is oriented toward� and send I to the other ports� Thus

�i�Wj	 �

�
W i � j
I i �� j

�i�Pj	 �

�
P i � j
I i �� j

�i�Rj	 �

�
R i � j
I i �� j

The state transition function � is given by the following table� It has �k entries for a
k�port machine� Note how the state transition function ignores any ports other then the
one that the processor is currently oriented toward�

input from port i� W P R

Wi �Wi� Ri	 Ri �
current
state Pi � �Wi� Ri	 Wi

Ri P�i���modk � �Wi� Ri	

The key idea is that this low�level protocol is self�synchronizing� At each properly
disoriented edge exactly one of the interacting processors is capable of making a transi�



Orienting Unicyclic Networks � ��

tion� and all future interactions between the two processors remain synchronized �barring
transient faults	�

At a properly disoriented edge� the low�level protocol enters an arbitration sequence
which is broken by the edge becoming properly disoriented� As for the R� protocol�
the expected time to arbitrate is � with a variance of �� To ensure that two interacting
processors can always progress from any state� we require the R vs R transition� Under
normal functioning of the protocol such a situation will never occur�

The fact the the protocol forces interacting processors to change states in a self�
synchronizing way is easily veri�ed by looking at the transition matrix�

The o��diagonal entries correspond to the protocol operating on a properly disoriented
edge � only one of the interacting processors can make a transition� The diagonal entries
correspond to arbitration� Processors can change state without being synchronized until
they are arbitrated into a proper disorientation� �It is worth comparing this to the R�
protocol� in which arbitrations can occur repeatedly at an edge�	

An interaction of the high�level protocol thus corresponds to O��	 expected con�gu�
ration changes �variance O��		 in the low�level protocol� and we have that

Proposition ��� Any unicyclic network G executing the single�cycle atomic low�level
protocol will self�stabilize into a deadlocked� oriented con�guration in an expected time of
O�size�G	�	�

Finally� we obtain�

Theorem ��� Under the read�write single atomic model with partially synchronous sched�
uler there exists a uniform orientation protocol that will self�stabilize on any unicyclic
network �G� into a deadlocked� oriented con�guration within O�size�G	�	 expected number
of con�guration changes with variance O�size�G	�	�

We conjecture that O�size�G	�	 is also the lower bound for this problem�

� Acknowledgements

We wish to thank Amos Israeli for showing us that the problem was interesting� and
Joe Culberson for much stimulating discussion and catching subtle bugs in our earlier
versions� Wayne Eberly is responsible for the key idea of the proof for Proposition ����

References

�DIJ�
� A� Dolev� A� Israeli� and M� Jalfon� Self�stabilization of dynamic systems� In
�th Ann� ACM Symp� on Principles of Distributed Computation� pages �
� 
���� Association for Computing Machinery� August ���
�

�Fel��� W� Feller� An Introduction to Probability Theory and Its Applications� vol�
ume �� John Wiley ! Sons� New York� third edition� �����



Orienting Unicyclic Networks � ��

�IJ��� A� Israeli and M� Jalfon� Uniform self�stabilizing ring orientation� Information
and Computation� ����� To appear�

�Lam��a� L� Lamport� The mutual exclusion problem� Part i�a theory of interprocess
communication� Journal of the ACM� ����	���� ���� �����

�Lam��b� L� Lamport� The mutual exclusion problem� Part ii�statement and solutions�
Journal of the ACM� ����	���� ���� �����


