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Abstract

We present a very simple protocol for the self-stabilizing orientation of a uni-
cyclic network of uniform processors. It has the same O(n?) performance as the
Israeli and Jalfon protocol for rings but is much simpler to state and furthermore
operates under the weaker model of read/write demon asynchronicity. We also
elucidate some of the techniques used in the design of such protocols, but not often
stated in the literature.

In addition, we propose a cleaner characterization of the various models used for
such protocols by separating the issues of operation atomicity from the behaviour
of the scheduling adversary. This eliminates the need to assume either a fair or
proper scheduler when reasoning about the protocol.
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1 Introduction

In [1J91], Israeli and Jalfon consider the problem of the uniform self-stabilizing orientation
of a ring of processors so that the processors achieve consistent notions of left and right.
Each processor is a randomized finite state machine which can communicate directly
only with its two neighbours. All processors are identical and anonymous (i.e. they lack
any distinguishing feature such as a processor id), and they may be started in arbitrary
states. Furthermore, the processors run asynchronously and an atomic transition consists
of reading all input ports, changing the state, and then writing all output ports.

In their paper, they show that no deterministic protocol exists for the self-stabilizing
orientation of a ring, and also give a randomized O(n?) expected time orientation protocol
under the distributed demon. Their protocol is moderately complex. It is composed of
two self-stabilizing sub-protocols, one of which is randomized, the other is deterministic.
The sub-protocols are then combined into the main protocol using the Dolev, Israeli and
Moran [DIJ90] technique for the fair combination of self-stabilizing protocols.

The notion of orienting a ring can be generalized to orienting any unicyclic graph (a
ring with attached trees). The contribution of this paper is to give a simple protocol,
both in intuition and implementation, for the self-stabilizing orientation of such a network
under the read /write scheduling adversary. Our protocol has the same O(n?) performance
as the Israeli-Jalfon protocol, but it does not require any sub-protocols, and has the
property that it deadlocks exactly when it has stabilized.

2 Intuition

Consider the typical conference banquet. You are sitting at a round table containing n
diners. Immediately in front of you is the plate for your main course. To both sides of
you, between you and your neighbours, are salads. Which salad do you choose? How do
you ensure that everyone gets a salad?

In general your fellow diners will have conflicting views on which salad to take. The
ensuing confusion, possibly involving some fights over the same salad, results in some
diners getting salads, others going hungry, and unclaimed salads remaining on the table.

All of this unseemly behaviour could have been avoided had you all agreed beforehand
upon a rule, say, that one’s salad is always obtained from one’s right. This of course
assumes that each diner knows their left from right. If they do not, then obtaining a salad
first requires that all diners consistently orient their handedness. Thus an algorithm for
consistently orienting a ring of identical processors has immediate practical application
to the problem of banquet dining.

One can distribute salads even when diners do not know left from right, and Figure 2.1
is a protocol that does so. This protocol assumes only two things: that diners can
only communicate with their immediate neighbours; and that if two diners attempt to
simultaneously take the same salad, exactly one wins. It is an interesting side effect of
this protocol that in addition to their salad, all diners obtain a consistent notion of left
and right. We will exploit this side effect to obtain our protocol.
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while ( don’t have a salad ) {
Attempt to take a salad from your right.
Reverse your notion of left and right.
}
while (1) {
Wait for a salad to appear on your right.
Pass the salad to your left, waiting until it is taken.
Reverse your notion of left and right.

Figure 2.1: Informal salad protocol.

Let us call a diner without a salad hungry, and one with a salad satisfied. We say
that two diners A and B have a consistent orientation if B is to A’s left and A is to
B’s right, or vice versa. The salad protocol has a number of properties which we state
without proof.

1. Hungry diners and unclaimed salads, if any, alternate around the table with satis-
fied diners between them.

2. Any interval containing only satisfied diners has a consistent orientation.

3. Any unclaimed salad moves around the table in one direction until it is claimed
by a hungry diner. It cannot reverse direction.

4. When all salads are claimed, every diner is waiting for a salad to be passed to it
from its right.

5. At most O(n?) salad passing operations are required before all diners are satisfied,
and Q(n?) may be necessary depending on how simultaneous attempts at taking a salad
are arbitrated.

Moving salads pass orientation information about the ring. The effect of passing a
salad is to send a reorientation message to your neighbour, in effect saying that I had
to change my orientation, perhaps you might also have to. Salads are removed from
circulation by hungry diners exactly when they have served their purpose of consistently
orienting a segment of the ring. This provides the intuition that forms the basis of our
simple protocol, which we can informally state as follows:

Look in the direction (to the right) that you do not expect a reorientation
message to arrive. If one does arrive, then revise your notion of left and right,
and pass on this reorientation information to your other neighbour.

3 Processor Networks

The idea of a consistent left-right notion for processors on a ring can be generalized to
networks. But before doing so it is worth examining the various computational settings
in which such protocols are studied.
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The orientation protocols will be executed on a processor network in which processors
are placed at the vertices of the network, and all communication between processors
occurs over channels associated with the edges. Fach processor at a vertex of degree k
in the network has exactly k ports, numbered 0,1,...,k — 1. Each port consists of an
input /output pair, which is connected to an input/output pair of a neighbour such that
write conflicts are excluded.

A processor network is described by a graph G = (V,FE) with vertex set V =
{0,...,n — 1} and edge set £ C (V x {0,1,2,...}) x (V x {0,1,2,...}). Processor
P, is associated with vertex v. Fach port of P, is assigned to a distinct edge of F inci-
dent on vertex v. An edge ((v,%),(w,j)) of E indicates that processor P, has its ¢ port
connected, via a channel, to port j of processor P,. GG is required to be connected.

Processor networks come in many flavours, depending on how one answers the fol-
lowing questions:

e How powerful are the processors? Are they simple finite-state machines? Are they
event driven? Are they randomized? Are the processors reliable? What kinds of
failures do we consider?

o Are the processors homogeneous? Do they have unique processor ids? Do proces-
sors have any knowledge of the network topology, such as its size, maximum vertex
degree, longest path, and so on?

e Do the processors in the network operate synchroneously? What kind of asyn-
chronous behaviour is permitted? Do the channels have finite capacity? What
kinds of messages are permitted on the channel? Are they blocking? Are they
reliable? What kinds of errors occur?

o [s there a well-defined network state at the beginning of the protocol execution?
Are individual processors required to recognize when the network is in a specific
state? Does the network deadlock when it is in the required state? Is the protocol
independent of network topology?

Regardless of flavour, we assume that the processors and channels are discrete-state
devices, and thus the complete state description of a network is composed of the complete
states of all the processors and channels.

As a network executes a protocol, it changes state, and as a result one obtains a
notion of progress by simply observing the network state changes. However this simple
notion of progress is essentially meaningless since processor networks at this lowest level
of detail must, at the least, continually sample their inputs, and thus can change their
states without making any progress towards the protocol goal. Thus any useful notion of
execution progress must be based on a projection of certain components of the complete
state of the network.

With this in mind, we informally define a configuration to be any projection of the
state of a processor network. A configuration defines the observables of the network,
and a processor not changing its observables is not doing anything under this configura-
tion. All discussions of execution behaviour are done at the configuration level, and such
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discussions are incomplete without specifying the projection used to obtain the configu-
ration. It is quite possible for a protocol to be correct under one notion of configuration,
and incorrect under another, as protocol specifications are also expressed in terms of a
configuration.

What are the basic execution models for a processor network? Each such model
will dictate the nature of the interactions among concurrently operating processors, and
consequently will determine the conceptual complexity of the protocol on that model.
These interactions are affected by the atomic operations of the processor network and
the way in which these operations are scheduled within the network.

Our basic model of execution uses polling, rather than being event driven. That
is, processors are constantly sampling their environment. Otherwise the network could
fault into a state in which all processors are waiting for events which cannot occur. Self-
stabilization, that is the ability to withstand transient faults, is achievable only under
polling.

A computation model is said to be transient faulting if during computation processors
can fault to an arbitrary configuration. A correct protocol under a transient faulting
computation model is said to be self-stabilizing.

Polling can be implemented implicitly or explicitly. One way of treating polling is
to model processors as having non-total state transition functions. The state transition
function maps the current state and states of the input ports to the next state. When
the state transition function is defined the processor is enabled, otherwise the processor
is disabled. Thus a disabled processor polls its inputs until becoming enabled at which
time it continues to execute.

If one is interested in the finer details of reading and writing to ports, then implicit
polling is not sufficient. Thus we require explicit polling by processors. In such a case,
the state transition function of a processor is total, and there is no notion of a processor
being enabled or disabled.

In addition, we require the ability to make random choices. If processors can make
random state transitions, we say that the computation model is randomized, otherwise
it is deterministic.

3.1 Operational Atomicity

Each individual processor or channel can perform certain operations which are atomic at
the configuration level. All atomic operations take the device instantaneously from its
current configuration to its next configuration. Since atomic operations are indivisible,
two atomic operations cannot be temporally overlapped in the sense that one operation
starts before the another completes. But two or more atomic operations can occur
simultaneously at the same instant. In this way, the notion of an atomic operation
for a single processor is extended to the network. An atomic network operation is a
configuration-level notion involving the scheduler.
Processor networks can have the following kinds of operational atomicity:

Single-Cycle Atomic: The simplest approach to execution is to let each processor be
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a finite state machine, and let the channels be direct connections between ports.
Each processor repeatedly executes a single atomic operation consisting of reading
all of the input ports and then changing state on the basis of their value and the
current state of the processor. The values that appear on the output ports are not
explicitly written but instead are functions of the current state of the processor.
Thus whenever it chages state so (potentially) do the outputs. In effect, your
neighbour has direct access to some projection of your state.

Read/Write-Subset Atomic: A more general execution model distinguishes between
reading an input and writing an output. In this setting the values appearing at an
input port do not come directly from an output port, but are instead buffered by
a register in the communication channel. There are two atomic port operations:
read a (possible empty) subset of the input ports; and write a (possible empty)
subset of the output ports. Since the read and write are atomic, it is impossible for
a simultaneous write to a port to interfere with a read from the attached channel
— the read will get the value prior to the write.

Read/Write-Single Atomic: This is like Read/Write-Subset Atomic except that only a
single port can be read or written at a time.

Read/Write Non-Atomic: The most complex model attempts to capture the realistic
situation in which reads and writes can be temporally overlapped and thus interfere
with each other. For example a write occurring during a read could cause the read
to return garbage. Thus there are four kinds of atomic port operations: start the
read of a single port; complete the read of the port; start the write of a single port;
complete the write of the port.

A totally different class of model occurs when the processor states are continuous
functions of time. In their most general form, such continuous transition models must
be described using differential equations. However, special cases of such models can be
understood using the ideas of Lamport [Lam86a, Lam86b].

3.2 Scheduling Disciplines

The possible interactions among processors depend on their atomic operations and the
possible ways in which simultaneous processor activity can occur. The possible concurrent
atomic events are determined by the scheduling discipline. Processors have no control
over the way in which their atomic operations are scheduled, and thus a correct protocol
must be able to cope with any permissible schedule within the discipline. We distinguish
the following kinds of scheduling disciplines:

Sequential: Only one processor at a time executes an atomic operation.

Partially Synchronous: A subset of the processors can simultaneously execute one
atomic operation.
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Synchronous: All processors simultaneously execute one atomic operation.

In our execution models every processor is always enabled and capable of executing
an atomic operation. Thus without some notion of fairness, it would be possible for the
scheduling discipline to let one processor execute continuously without causing a change
in the configuration of the processor network.

The usual requirement is that a scheduler need not be fair, it need only be proper.
When possible, a proper scheduler must schedule the next atomic operations in such a
way that change at the configuration level is possible. That is, unless no alternative action
is possible, the next atomic events scheduled for execution must result in a configuration
different from the current one. In the case of randomized processor networks, the next
configuration need only have a non-zero probability to be different.

But the requirement that a scheduler be proper has essentially no bearing on whether
a protocol is correct or not. Its purpose is to permit the execution time of the protocol to
be counted in terms of scheduling operations. Properties of the scheduler can be ignored
completely if instead we define time in terms of configuration changes. If the scheduler
schedules an operation, and as a result no configuration change occurs, then time has
not passed.

A processor network can reach a configuration in which, no matter how the next
atomic operations are scheduled, the next global configuration is identical to the current
one. In this case we say that the processor network is deadlocked. Of course a network
can be deadlocked at the configuration level yet individual processors can be changing
nonobservable components of their states. When time is defined as above, a deadlocking
protocol behaves like a halting program — once deadlocked, time ceases to pass.

3.3 Standard Models

The notions of operational atomicity and scheduling discipline combine to specify the
four common computation models in the literature.

Central Demon: This is a single-cycle atomic processor network under the sequential
scheduling discipline.

Synchronous Demon: This is a single-cycle atomic processor network under the syn-
chronous scheduling discipline.

Distributed Demon: This is a single-cycle atomic processor network under the partially
synchronous scheduling discipline.

Read/Write Demon: This is a read/write single atomic processor network under the
partially synchronous scheduling discipline.

The above definitions are not strictly equivalent to those in the literature since the
usual requirements are that the central, synchronous, and distributed demons be proper,
and that the read/write demon be fair.
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‘ Edge Name ‘ Condition ‘ Pictograph ‘
oriented edge o(v) =1, o(w) ;é] (—) (—)
o(v) # 1, o(w) = j | (&)=——(+)
disoriented edge | o(v) =4, o(w) = j | (—)=——()
ignored edge o(v) # 1, o(w) # j | (¢« )=—(—)

Figure 4.2: An oriented network

Also note that because all communications occur over edges, the only possible con-
flicting simultaneous atomic operations are a read and write to the same channel. Thus in
the read/write single atomic model, partially synchronous scheduling is no more powerful
than sequential scheduling in terms of the variety of behaviour of the processor network.

4 The Orientation Problem

To each vertex v of degree k is assigned an orientation o(v) € {0,...,k — 1}. It is
convenient to visualize each vertex as having an internal pointer whose head is directed
toward port o(v). The orientation of a vertex v is generally a function of the state of the
processor P,. The orientation of the vertices at the ends of an edge induces a state for
that edge, as defined in Figure 4.1. The orientation of a processor is clearly a component
of the network configuration.

We say that a network is oriented iff every edge is oriented. That is, exactly one of the
vertices at the ends of each edge is oriented toward that edge. There must be exactly as
many vertices as edges for a network to be orientable, and thus such a network consists
of a single ring with trees attached. Such an oriented network is illustrated in Figure 4.2.

In general terms, the orientation problem is to specify a protocol whose execution,
given an initial configuration of orientations of vertices, eventually results in an oriented
network. We say that a orientation protocol is correct under a given computation model
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if it orients every permissible initial configuration of every permissible network topology.

The property of being oriented can be either a dynamic property, or a static property.
A network is dynamically oriented if it is oriented, yet the processor network continues
to make configuration changes. A network is statically oriented if it is oriented and the
processor network is deadlocked.

There are obvious scenarios in which the orientation problem is solved by the simple
expedient of orienting the network at construction time. We are not interested in these.
Nor are we interested in situations which allow protocols to use a dictator or elected
leader to specify the orientation.

We are interested in uniform orientation protocols in which the processors have no
ids and no idea of the global network topology. That is, the protocol computation by the
processor at a vertex is a function only of the degree of the vertex.

By simple symmetry considerations (consider the ring of two processors), there is
no correct uniform orientation protocol under any deterministic single-cycle atomic syn-
chronous model. Any correct protocol will require randomization to break symmetry

[1J91].

5 Three Simple Random Protocols

Consider the following simple idea for an orientation protocol:

A processor does nothing unless it is oriented towards a disoriented edge, in
which case it randomly changes orientation.

For illustrative purposes, we consider using this idea to implement an orientation pro-
tocol in three models, each progressively less restricted in terms of model and scheduler.
For simplicity, we restrict our attention to rings.

5.1 Single-Cycle Atomic, Synchronous Scheduling

First consider an execution model that is single-cycle atomic with a synchronous schedul-
ing discipline. Call this the R1 protocol.

Each processor in the network is a simple randomized finite state machine. The
channels between processors are simple direct connections. There is one type of processor
in the network, possessing 2 ports, and the states {0,1}. The state of a processor is
directly identified with its orientation, with state ¢ indicating orientation toward port g¢.

The output ports continuously transmit a symbol from {H,T}, with the symbol
currently transmitted to port ¢ being given by the port ¢ output function m; applied to

the current state q.
H 1=¢
Wi(Q) = { T i+gq

Each port output function simply transmits whether the processor is oriented toward,
H, or away from, T', the port.
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The state transition function of a processor is

§(q) = { (0,1) if input port ¢ is H

q otherwise

where (0, 1) denotes the uniform random choice of either state 0 or 1 as the next state.
Define the configuration of the processor network to be the vector of states of each
processor, and define an atomic operation in the obvious way as the steps consisting of
reading the input ports, changing state, and updating the output ports.
It is clear that for this protocol, orientation is a static property of the network. We
say that a protocol deadlocks if the network running the protocol deadlocks.

Proposition 5.1 The R1 protocol is deadlocked if and only if the network is oriented.

To analyse the protocol, we introduce the higher level notion of an interaction between
two processors, and will express the progress of the protocol in terms of interactions. For
this reason, it is important that a processor be involved in at most one interaction at a
time.

In the synchronous setting, an interaction consists of the simultaneous execution of
an atomic operation by two processors at the end of a disoriented edge. Despite the fact
that interactions are occurring simultaneously, they are independent, and we can analyse
the protocol as if the interactions happened sequentially.

Proposition 5.2 If the R1 protocol is executed on a ring, starting in any configura-
tion, then in O(size(G)*) expected number of interactions (with variance O(size(G)?*))
the protocol deadlocks (with the ring oriented).

Proof. Arbitrarily assign an orientation to (G and call it clockwise. Thus each processor
is oriented either clockwise or anti-clockwise. Consider the following statistic for G given
by

h(G) = number of clockwise processors
Then a network of size n is oriented when h(G) = n or h(G) = 0.

Now consider an interaction of two processors at a disoriented edge e. With probability
1/2 this edge (—) («) stays the same or becomes ignored (+) (—). In both
cases h(() stays the same. With probability 1/4 edge e becomes («)—(+), and with
probability 1/4 it becomes (—) (—). Thus, with equal probability, h(G) decreases
or increases by 1 at every interaction.

Thus changes in h(G) behave like a simple random walk on an interval with in which the
probability of staying in the same place is 1/2, and the probability of moving in either
direction is 1/4. The walk begins at a position somewhere on the interval [0, n], and
terminates when it hits either end of the interval.

The expected number of steps to a boundary is maximized when the initial position is
in the middle. In such a situation, the expected number of steps before hitting either
boundary is n?/2 with a variance of n*(n? + 1)/6. (See [Fel68] for the expected value.
Some symbolic manipulation is required to compute the variance.)
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Thus the expected number of interactions to orient G is O(n?), with a variance of O(n?).

O

So long as the network is unoriented, the synchronous scheduling discipline ensures
that at least one interaction is occurring at each configuration change, and thus the
number of interactions is a loose upper bound on the execution time of the protocol.
Since we make no assumptions about the initial configuration of the network the protocol
is self-stabilizing. (An interesting problem is to compute a tighter bound on the time by
considering the simultaneous interactions that occur in any synchronous step.)

5.2 Single-Cycle Atomic, Partially Synchronous Scheduling

Now suppose that we change to a partially synchronous scheduling discipline. In this
case, interactions need not occur at each state transition, because both parties to an
interaction are not required to execute simultaneously. In fact, interactions need not
even occur, as in the case of

(=)——()—(<)
where the processor in the middle can execute an arbitrarily large number of configuration
changes before either of the end processors do even one.

To avoid this problem, the protocol implementation must ensure that the processors
at the end of a disoriented edge are forced to interact. This is achieved by making the
protocol self-synchronizing. That is, the parties to the interaction take turns waiting for
each other to complete a phase of the interaction before changing state, thus preventing
one processor from doing arbitrary numbers of state transitions. However, such a self-
synchronizing protocol requires one of the pair of processors to begin the interaction —
a symmetry which itself must be broken through randomization. Furthermore, the alter-
nation created by the self-synchronization causes one processor to finish its participation
in the interaction before the other processor. This permits the processor that finishes
first to participate in a new interaction, while the other processor has yet to complete
the original interaction — thus destroying the assumption of interaction independence,
and the preceding analysis.

But we can preserve independence and also self-synchronize. This can be accom-
plished by preventing the case where both processors turn away (no change in the ori-
entation statistic), combined with ensuring that the processor that acts last is the one
that actually changes orientation. Thus the interaction must be complete before either
processor can participate in a new interaction.

For the R2 protocol, we define the port alphabet to be ¥ = {I, H, S,C}. The intu-
ition behind the symbols is as follows: an [ at an input port means that the processor
generating it is ignoring the processor receiving it; an H at an input port means that
the generating processor is oriented toward the receiving processor; a S indicates that
the sending processor will be staying in its current orientation; and a C' indicates the the
sending processor will be changing orientation.

Fach processor has the states {H;,S;,C; | j € {0,1}}. The state letter indicates
the mode of the processor, and the subscript indicates its orientation. The port output
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functions simply transmit the mode of the processor to the port it is oriented toward,
and send [ to the other ports. Thus

s ) H o i= e S 1=y ) C =g
sty =4S =17 5 e ={]

The state transition function é is given by the following table, with dashes indicating
no state change. (Note: ¢ € {0,1}).

input from port ¢ — ‘ H S C
H, | (S,C) C —
Wl S| = (SG) M

Ci | Hiig1)mod 2 - (56, Cs)

The key idea is that, unless both processors are in identical modes, only one processor
is capable of making a transition that results in a configuration change.

When processors are in identical modes, they enter into an arbitration sequence which
is broken by one processor entering the S mode and the other entering the C' mode. The
probability of the arbitration succeeding is 1/2, regardless of whether one processor or
both are scheduled. The probability that the arbitration will require more than k steps is
1/2k. Tt is simple to see that the expected number of arbitration steps (not configuration
changes) is 2, with a variance of 2.

The fact the the protocol forces interacting processors to change states in a self-
synchronizing way is easily verified by looking at the transition matrix above.

The off-diagonal entries correspond to the protocol operating on a disoriented edge
— only one of the interacting processors can make a transition. The diagonal entries
correspond to arbitration.

The possible reorientation outcomes for the protocol are equiprobable, regardless of
how the processors are scheduled. Furthermore, the orientation statistic can now be
analysed as a simple random walk. Also, this protocol will survive transient faults. Thus
we have:

Proposition 5.3 If the R2 protocol is executed on a ring, starting in any configura-
tion, then in O(size(G)*) expected number of interactions (with variance O(size(G)?*))
the protocol deadlocks with the ring oriented.

5.3 Read/Write Single Atomic, Partially Synchronous Schedul-
ing

Finally, we consider the weaker model in which the basic instruction cycle consists of a
read or write followed by a state change. This is illustrated in Figure 5.1. The current
state of the machine is ¢. The function p specifies the port to be read or written, and w
specifies the value to be written.

Because transient faults can change the contents of the port registers without a pro-
cessor’s knowledge, they must be continuously refreshed. Thus the basic cycle of the
protocol consists of a read from a port followed by a sequence of writes to ports.
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while (1) {
Read v from port p(¢) and change state ¢ to 6(¢,v)
or
Write value w(q) to port p(¢) and change state ¢ to 6(q)

Figure 5.1: Basic Read/Write Single Atomic execution cycle.

Since the read and write to a port is not packaged into a single atomic operation it
becomes much more difficult for one processor to reliably determine the state of the one it
is communicating with. For example, the simple method of arbitration used above where
processors randomly chose between two values until they each obtain different ones will
not always terminate under a partially synchronous scheduler. As pointed out by Amos
Israeli (private communication) the scheduler can manipulate the executions of the two
processors in such a way that they always think they have the same values and thus they
continue to arbitrate.

The simplest way to cope with the wide range of possible execution sequences of two
interacting processors is to impose some kind of notion of atomic interaction onto their
behaviour. This can be done by forcing every pair of interacting processors to act as if
they were synchronous single-cycle atomic machines. That is, one processors reads from
a port never overlap with the other processors write to the port.

We do this by running a low-level deterministic protocol whose only purpose is to
keep every pair of processors in close synchronization. Each processor maintains a syn-
chronization state for each port, and actually executes the protocol only when it is paying
attention to the port. For a single port, the synchronization protocol has four states, and
is described by the following transition table:

port
input 01 2 3
011 00
current
state L1 2 20
of port 210 2 3 3
310 0 3 0

As two processors execute this protocol, the states of their communicating ports can
never differ by more than 1 (modulo 4), except at startup or under a transient fault. The
0 entries serve the purpose of resynchronizing the processors in the event of a transient
fault. Once synchronized, the protocol advances through the port states in sequence.

We can now implement the R2 protocol on top of the synchronization protocol. We
map the synchronization states onto four phases: idle (phase 0), read input (phase 1), idle
(phase 2), write output (phase 3). The synchronization states are now used to insure that
any actions taken during the read input phase of one processor cannot overlap actions
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taken during the other processor’s write output phase. To transmit the four symbols of
the R2 protocol requires a port alphabet of 16 symbols {I, H,S,C} x {0,1,2,3}, and a
machine of 96 states (4 X 4 X 6, two synchronization protocols and the R2) constructed in
the obvious way by combining the R2 and synchronization protocols. Call the resulting
not so simple protocol R3.

Since the synchronization protocol is deterministic, it does not affect the probabalistic
analysis of the correctness or performance of the R2 protocol, and so we have:

Proposition 5.4 If the R3 protocol is executed on a ring, starting in any configura-
tion, then in O(size(G)*) expected number of interactions (with variance O(size(G)?*))
the protocol deadlocks with the ring oriented.

In all three protocols, the network configuration is the vector of orientations of all the
processors, and every interaction is composed of a constant or expected constant number
of configuration changes. Thus, interactions are a reasonable measure of execution time.
We wish to emphasize that an interaction at the configuration level may involve a number
of protocol atomic actions, each of which consists of numerous changes of a processor
state.

6 The High-Level Salad Protocol

So far, we have obtained three orientation protocols in three progressively weaker models,
each with the same expected number of interactions as the original Israeli-Jalfon protocol.
Their main weakness is their high variance, and that the analysis only works on a ring.

We now use the ideas of the salad passing protocol to give an orientation protocol
that works in the weakest atomic model and strongest scheduler, and that generalizes to
unicyclic graphs.

We will present our orientation protocol in two stages. The high-level protocol will
be specified in terms of normal finite state machines, making the additional assumption
that it is possible to arbitrate certain kinds of conflicts between adjacent processors. We
will show that this protocol is correct and has the claimed performance. Then we will
show how to implement the high-level protocol with randomized finite state machines.

The high-level protocol corresponds roughly to the salad protocol described in Fig-
ure 2.1. In addition to an orientation as described above, each processor has a mode
which is either P or W. We denote the mode of the vertex v by m(v). The mode P
stands for passing mode, which can be thought of as the processor being in possession of
an extra salad and wanting to pass it to the neighbour it is oriented towards. The mode
W stands for waiting mode, which can be thought of as the processor waiting for a salad
to appear.

This induces a state for each edge described by the orientation and mode of the
processors at its ends. Figure 6.1 defines the various states of an edge.

We note that because the protocol must be self-stabilizing, we cannot make any
assumptions about the initial state of the network. The only thing that we can assume
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‘ Edge Name ‘ Condition ‘ Pictograph ‘
properly oriented edge o(v) =1, m(v) =W, o(w) #j (K) (—)
improperly oriented edge o(v) =1, m(v) =P, o(w) #j (5)—(—>)
properly disoriented edge o(v) =1, m(v) # m(w), o(w) =j (5)—(<E)
improperly disoriented edge | o(v) = ¢, m(v) = m(w), o(w) =j (5)—(&)

or (5)——(&)
ignored edge o(v) #1, o(w) #j (¢ )—(—)

Figure 6.1: States of an edge e = ((v,1%), (w,J))

‘ Current Configuration

‘ Next Configuration

o(v) =1, m(v)=W

3

o(w) =j, m(w)=W o(w) = (j + 1) mod deg(w), m(w) = P
(£)—(=) (Z)—(>)
o(v :i,ow)):j (v) =1, o(w) =

(w) (arbitrarily)

(£)—(&) or (H)—(&)

Figure 6.2: The high level protocol at edge e = ((v,%), (w, j))

is that there is sufficient time between transient faults for the network to stabilize. We
call this interval between transient faults an execution.

For the high level protocol, we assume that processors make changes in orientation
and mode instantaneously like normal finite state machines. Processors will only interact
with the neighbour they are oriented toward, and thus the rules for the protocol are very
simple: all progress toward orientation occurs at disoriented edges. (At the low level,
writes may occur to ports other than the one the processor is oriented toward.)

Suppose that e = ((v,2),(w,7)) is a disoriented edge. The protocol at e is described
by Figure 6.2. Each application of the protocol to a current configuration of two adja-
cent processors which produces a next configuration of the two processors is termed an
interaction. If no interactions are possible on any edge, then the network is deadlocked.

The behaviour of the protocol depends on whether the edge is properly or improperly
disoriented. For a properly oriented edge, the passing processor drops into waiting mode,
and the waiting processor re-orients itself to its next port and enters passing mode. On the
other hand, for an improperly oriented edge, the mode conflicts must first be arbitrated,
converting the edge into a properly oriented one. We assume only that some arbitration
mechanism exists. It need not be fair. (In the implementation, this arbitration will be
done randomly.)
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The following is a direct consequence of the definition of the high-level protocol.

Proposition 6.1 A network executing the high-level protocol is deadlocked if and only if
it is oriented.

6.1 Correctness of the high-level protocol

We must prove that every possible configuration of the network eventually deadlocks.
How does the protocol make progress? Consider a possible execution of the protocol on

a path:
0: (D) =2 (&) = (&) == (5) = (&)
1: (5) == (D) = (&) == (B) == (5
2: (5) =2 (5) == (D) == (B) = (5
3 (5) =2 () =2 (D) == (&) == (&)
4 () =2 () == (B) = (&) == (5
5 (5) =2 () =2 (&) == (&) == (&)
6 : (5) == (&) = (8 == () == (5

We can think of the protocol as transferring the disorientation of a edge (eg. €1) to
an adjacent edge (eg. e3), leaving the first edge oriented. The disorientation state keeps
moving in its original direction until it either collides with an ignored edge (eg. es at
step 2), or reflects off of an improperly disoriented edge (eg. es at step 3). A collision
with an ignored edge reduces the number of unoriented edges and so the protocol makes
progress. Reflection off of an improperly disoriented edge sometimes makes progress in
orientation, and always ensures that arbitration is never required again at that edge.

In addition to improperly oriented edges at the beginning of execution (eg. ey4), the
reorientation of processors during execution can create improperly oriented edges (eg. es
at step 3). However, the definition of the protocol ensures that:

Lemma 6.2 During the execution of the protocol, at most one arbitration can occur at
each edge.

This observation is important because it means that there is an upper bound on the
number of reflections that can occur at an edge. Ignored edges are also important as
they are points at which orientation conflicts are resolved.

Lemma 6.3 The execution of the protocol cannot generate any ignored edges.

It is convenient to reason about the orientation protocol’s behaviour on a tree. An
edge-rooted tree T with root vertex v and root edge e is constructed by taking a tree
with root v and edge e incident on v, and deleting the vertex at the other end of e. All
of our trees will be edge-rooted, so we simply use the term tree. Figure 6.3 illustrates a
prototypical tree used in the proofs that follow.
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Figure 6.3: A typical edge-rooted tree.

The next two lemmas show that ignored and disoriented edges are balanced in a net-
work. Let #7(G) and #p(G) denote, respectively, the number of ignored and disoriented
edges in the network G. When applied to a tree T, the root edge of T' is not counted.

Lemma 6.4 Let T' be a tree with root vertex v and root edge e. If v is oriented toward

e then #1(T) = #p(T). If v is oriented away from e then #1(T) = #p(T) — 1.

Proof. We proceed by induction on the size of T'. For the case of T' being a single
vertex, v must be oriented toward e, and we have #(T) = #p(T) = 0.

Suppose that vertex v has degree k > 1, and edges ey, ..., e;x_1 in addition to e. Then
T looks like the tree of Figure 6.3.

When v is oriented toward e, each of the edges e;, 1 < [ < k, is either ignored or
oriented. If ¢; is oriented, then v; is oriented toward e;, and by induction #(71;) = #p(1}).
If €, is ignored, then v; is oriented away from e;, and by induction #(1;) = #p(1)) — 1.
Adding the ignored edge ¢; maintains the balance between ignored and disoriented edges.

When v is oriented away from e, then it is oriented toward exactly one edge e; which
is either oriented or disoriented. Balance is maintained for the other subtrees as above. If
e is oriented, then v; is oriented away from e;, and by induction #(7;) = #p(1;)—1, and
so #1(T) = #p(T)—1. If ¢ is disoriented, then v, is oriented toward ¢;, and by induction
#1(T1) = #p(T1). Accounting for the disoriented ¢; we have #,(T) = #p(T) — 1. O

Lemma 6.5 Let G be a unicyclic network. Then #1(G) = #p(G).

Proof. If G is oriented then #;(G) = #p(G) = 0. Suppose that G is not oriented.
Pick any edge e = ((v,17), (w, j)) on the cycle of G and cut it, attaching a leaf u to vertex
w with the edge f = ((u,0),(w,7)). The net result is a tree T with root vertex v and
root edge e.

It e was originally disoriented, then edge f will be disoriented, and v will be directed
toward e. That is, edge e : (—) («) becomes the edge f : (—) («), and e
. Applying Lemma 6.4 to T we have #(T) = #p(T).
Since the disoriented edge f in T" accounts for the originally disoriented edge e, we have
balance for G.

becomes the root edge (—)
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It e was originally ignored, then edge f will be oriented, and v will be directed
away from e. That is, edge e : («) (—) becomes the edge f: (—)=——(—), and ¢
becomes the root edge («) . Applying Lemma 6.4 to T' we have #;(T) = #p(T)—1.
The oriented edge f is not counted in 7', nor was the originally ignored e, so we have
balance for G.

It e was originally oriented, we have one of the above cases. 0

Since progress is made as disoriented edges move about the tree, we need to know
how they can interact. In a tree T we say that an edge e is between edges e, and ey if €
lies on a path between e; and e;. We say that a disoriented edge ey in tree T' is covered
if there exists an ignored edge between e; and the root edge of T

Lemma 6.6 Let T' be a tree with root vertex v and root edge e. If v is oriented toward
e then every disoriented edge in T is covered. If v is oriented away from e then all but
one disoriented edge in T is covered.

Proof. We proceed by induction on the size of T'. For the case of T' being a single
vertex, we have no disoriented edges.

Suppose that vertex v has degree k > 1, and edges ey, ..., e;x_1 in addition to e. Then
T looks like the tree of Figure 6.3.

When v is oriented toward e, each of the edges e;, 1 < [ < k, is either ignored or
oriented. If ¢; is oriented, then v; is oriented toward ¢;, and by induction all disoriented
edges of T; are covered. If e; is ignored, then v; is oriented away from e;, and by induction
T; has one uncovered disoriented edge f. But €; is between f and the root edge e, and
so [ is covered. Thus all disoriented edges in T" are covered.

When v is oriented away from e, then it is oriented toward exactly one edge e; which
is either oriented or disoriented. Any uncovered disoriented edges for the other subtrees
are covered as above. If ¢; is oriented, then v; is oriented away from ¢;, and by induction
T; has an uncovered disoriented edge which remains uncovered in 7T'. If ¢; is disoriented,
then v; is oriented toward ¢;, and by induction 7; has all disoriented edges covered. Thus
e; is the only uncovered edge of T'. 0

Ignored edges serve as separators between disoriented edges in the following manner.

Corollary 6.7 Let T' be a tree with root vertex v and root edge e with v oriented away
from e. Then T can be partitioned into 1 + #1(T) subtrees such that the root edge of
each subtree corresponds to an ignored edge in T, and every subtree contains exactly one
disoriented edge.

Now consider how a single proper disorientation moves about a tree of otherwise
properly oriented edges. Note that the root vertex is oriented away from the root edge.
The protocol forces the disoriented edge to move about the tree in a depth first order
induced by the port numbers at each vertex. For the typical tree (Figure 6.3), suppose
that ey is properly disoriented with v in passing mode P. The disorientation moves from
e1 into subtree 17, moves about 77 in depth first order, and returns to ¢; with vy in mode
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P and v in waiting mode W. The disorientation then passes to e;. This process continues
until v is oriented toward e in mode P. That is, the disorientation has moved out of T
We call the sequence of edges that a disorientation follows as it depth first searches the
tree a trip.

Two things can affect the trip that a disorientation takes in an arbitrary tree. One is
encountering an ignored edge. When this happens the protocol replaces the ignored and
disoriented edges with properly oriented ones, and the trip terminates. The other thing
that can occur is for the disorientation to encounter an improperly oriented edge (eg. e4
step 2 of our example). In this case, it is possible for the resulting arbitration to cause the
disoriented edge to bounce, causing the subtree below to be skipped (when approaching
from above), or the subtree to be traversed again (when approaching from below). A
bounce, since it requires an arbitration, can occur at most once at each particular edge.
Call an edge which has not yet participated in an arbitration an unarbitrated edge.

Thus we can measure progress in the protocol by observing the decrease in the number
of ignored and unarbitrated edges.

Lemma 6.8 Let T be a tree with root vertex v and root edge e. Then (1) T contains
only oriented edges; or (2) every oriented edge in T is properly oriented, and there is
exactly one disoriented edge; or (3) in at most 2size(T') interactions between processors
of T' the total number of ignored plus unarbitrated edges in 1" will decrease by 1.

Proof. In order for the protocol to be active, T' must contain at least one disoriented
edge, so we assume that (1) does not hold. If there are no ignored edges in 7', then
arbitrations will only occur if some edges are improperly oriented, so we also assume
that (2) does not hold. Then T' can contain exactly one improperly disoriented edge;
or exactly one properly disoriented edge and some improperly oriented edges; or some
ignored or some disoriented edges.

Any interactions that occur in T" are at disoriented edges, and these cause each such
edge to progress along its depth first trip through T'.

If there is exactly one disoriented edge, and it is improper, then an arbitration will
occur at the edge to turn it into a properly disoriented one, thus decreasing the number
of unarbitrated edges by 1.

If there is exactly one properly disoriented edge then in at most 2size(T') interactions
the disorientation must encounter an improperly oriented edge and cause an arbitration.
Note, that the disorientations could move out of T" and a new one enter — interactions
are all that is important.

The final case occurs when there is more than one disoriented edge. By Lemma 6.4
there must be at most 1 more disoriented than ignored edges in T'. By Corollary 6.7,
the motions of the disoriented edges are occurring in disjoint portions of T' connected by
ignored edges. The only way that a disorientation can miss an ignored edge is for it to
bounce off of an unarbitrated, improperly oriented edge, which results in an arbitration.
If this does not happen, at most 2size(T") interactions are required before one of the
disoriented edges cancels with an ignored edge.

In all cases the number of ignored plus unarbitrated edges is reduced by 1. 0
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Corollary 6.9 In at most O(size(T)?) interactions within tree T with root vertex ori-
ented away from the root edge, exactly one edge is properly disoriented and all other edges
are properly oriented.

Proof. Since resolving an ignored edge can require an arbitration, the number of
ignored plus unarbitrated edges is bounded by 2size(7T'). New ones are never created.

O

Lemma 6.10 Let G be a unicyclic network. Then the protocol deadlocks on G.

Proof. We proceed by induction on the size of G, and suppose that the claim holds
for all networks of smaller size.

Suppose for contradiction that some particular execution of the protocol does not
deadlock on G. Then there is at least one disoriented edge in G and by Lemma 6.5 there
is an equal number of ignored edges.

Since ignored edges are never created, there must be an ignored edge e = ((v, ), (w, 7))
that existed at the beginning of the execution and that will exist forever. So the processors
at both ends of e never orient towards e.

Suppose that the edge e is on the cycle of G. We cut the network at edge e, and
add a leaf vertex u with edge ((u,0),(w,j)) to create a tree T' with root vertex v and
root edge e. Since neither v nor w orient towards edge e, the particular execution of the
protocol must also fail to deadlock when projected onto 1.

But, since vertex v is oriented away from e, by Corollary 6.9, eventually T" will contain
one properly disoriented edge, and all others will be properly oriented. This properly
disoriented edge must eventually move towards e, and so e cannot remain ignored. This
contradicts the choice of e.

Thus e must be inside a tree. It must connect a subtree T, of size at least 2 to the
rest of G. (T, cannot be a leaf because then e would not be ignored.) So we can cut
the network at edge e, and add a leaf vertex u with edge ((u,0), (w,J)) to create a new
network G’. Vertex w never orients toward this new edge, so the particular execution of
the protocol behaves the same when projected onto G’, and so must not deadlock. But
G’ is smaller than GG and so this contradicts the inductive assumption.

Thus the protocol always deadlocks on G. 0

Corollary 6.11 Let G be a unicyclic network. Then in at most O(size(G)?) interactions
between processors of G the protocol deadlocks.

Proof. Consider a possible serialization of a protocol execution on G, and consider
the edge e of the cycle of G that remained ignored for the longest time. The proof of
Corollary 6.9 shows that this e could have remained ignored for at most O(size(G)?)
interactions. So after these interactions, no edges of the cycle are ignored, and since
there are exactly as many processors as edges on the cycle, the cycle is oriented.

Any remaining ignored edges occur in subtrees of (¢, and further interactions cannot
involve processors on the cycle of GG, so these interactions are confined to subtrees.
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Consider a subtree T', and its ignored edge e closest to the root. By Corollary 6.9,
for the subtree S with root edge e, in O(size(S)?) interactions within S, every edge of S
is properly oriented except for one properly disoriented edge f. By Corollary 6.7, edge
[ is covered by the ignored edge e, and in O(size(T)) interactions they will cancel.

Thus at most O(size(G)?) interactions occur before the protocol deadlocks. 0

Thus we have:

Proposition 6.12 If the unicyclic network G is started in any state, and no transient
Jaults occur, then in O(size(G)?) interactions the protocol deadlocks with the network
oriented.

7 The low-level salad protocol

We now show how to implement the salad protocol under the single-cycle atomic model
with a partially synchronous scheduler. It is then a simple matter to use the techniques
of the R3 protocol to obtain an implementation under the read/write single atomic model
with a partially synchronous scheduling discipline.

The processors in the salad protocol are like those in R2, except that a processor at
a degree k vertex has k ports.

When processor P, is in state ¢,, the symbol transmitted to output port ¢ of P, is
7i(¢y) as given by the processor’s port output functions.

For our protocol, we define the port alphabet to be {1, W, P, R}. The intuition behind
the symbols is as follows: an [ at an input port means that the processor generating it
is ignoring the processor receiving it; a W (P, R) at an input port means that the
generating processor is waiting to receive, (willing to pass, just received the pass).

Fach k-port processor has the states {W,, P;, R; | 0 < j < k}. The state letter is
identified with the mode of the processor, and the subscript with the orientation of the
processor. The port output functions simply transmit the mode of the processor to the
port it is oriented toward, and send [ to the other ports. Thus

SR VR E IR VST R S F

The state transition function ¢ is given by the following table. It has 6k entries for a
k-port machine. Note how the state transition function ignores any ports other then the
one that the processor is currently oriented toward.

input from port ¢ — ‘ %4 P R
Wi | (W, ;) R; -
current
state F; - (VViv Rz’) W;
R; | Plit1)ymodk — (Wi, Ry)

The key idea is that this low-level protocol is self-synchronizing. At each properly
disoriented edge exactly one of the interacting processors is capable of making a transi-
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tion, and all future interactions between the two processors remain synchronized (barring
transient faults).

At a properly disoriented edge, the low-level protocol enters an arbitration sequence
which is broken by the edge becoming properly disoriented. As for the R2 protocol,
the expected time to arbitrate is 2 with a variance of 2. To ensure that two interacting
processors can always progress from any state, we require the R vs R transition. Under
normal functioning of the protocol such a situation will never occur.

The fact the the protocol forces interacting processors to change states in a self-
synchronizing way is easily verified by looking at the transition matrix.

The off-diagonal entries correspond to the protocol operating on a properly disoriented
edge — only one of the interacting processors can make a transition. The diagonal entries
correspond to arbitration. Processors can change state without being synchronized until
they are arbitrated into a proper disorientation. (It is worth comparing this to the R2
protocol, in which arbitrations can occur repeatedly at an edge.)

An interaction of the high-level protocol thus corresponds to O(1) expected configu-
ration changes (variance O(1)) in the low-level protocol, and we have that

Proposition 7.1 Any unicyclic network G executing the single-cycle atomic low-level
protocol will self-stabilize into a deadlocked, oriented configuration in an expected time of

O(size(G)?).
Finally, we obtain:

Theorem 7.2 Under the read/write single atomic model with partially synchronous sched-
uler there exists a uniform orientation protocol that will self-stabilize on any unicyclic

network (G) into a deadlocked, oriented configuration within O(size(G)?) expected number

of configuration changes with variance O(size(G)?).

We conjecture that O(size((G)?) is also the lower bound for this problem.
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