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Abstract
The cost of electricity for the pumping of water in water distribution systems, account fora
large portion of the operating budgets of many water udlities. In North America there is
currently 2 move towards the deregulation of the power industry that will change the rate
structure for water utilities. It is therefore necessary for water utilities to better understand
their power usage and pumping requirements to optimize there power usage to take
advantage of the rate structure. An important component of this project is the accurate
prediction of water demands. An artificial neural network model is presented which has
been developed to predict the daily and 12-day water demands for the City of Edmonton.
The developed daily model has an average error of 2.3%, while the 2 to 12 day model has an

average error of 3.1%. An hourly prediction method that was developed has a 3.4% average

[Sedel
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The Application of Artificial Neural Networks to Water

Demand Modelling

1 Introduction

1.1 Purpose of the Study

EPCOR Water Services currently spends over $3.5 million per year in power costs. These
costs are distributed amongst two water treatment plants, 12 reservoir sites and two booster
pump station sites. The recent changes in the power industry have resulted in a change in
the way power is priced. It is therefore necessary to review the current practices for pump
selection and to develop a tool to aid in the selection of which pumps to operate to meet a
given condition. The first step in developing a pump optimization program is the
development of an accurate water demand forecast; this will be carried out by using artificial
neural networks (ANN) as a predictive model. This is to ensure that an adequate supply of
water is available for use, as well as having an adequate emergency supply available. Having
a demand forecast developed will allow EPCOR Water Services to evaluate the water
demands of the city of Edmonton. By modeling the water distribution system and the
electrical use of the system along with the water demand forecast, a pump schedule can be
developed to minimize the electrical costs. This can be done by effectively using the storage
(teservoir) space that is available, which allows shifting the time of pumping to a time of
lower electrical costs and reducing the peak demands. The purpose of this study is to
develop the first component of the power optimization program, which is the water demand

component. This consists of a hourly, daily and twelve-day water demand forecast.



1.2 General Problem Description

The electricity cost associated with pumping water in the water distribution systems accounts
for a large portion of the operating budget of a water uality. With the changes made by the
Electric Utlities Act (1996) and complete deregulation of the power industry in Alberta set
for the vear 2001, it is important for a water udlity to have a better understanding of its
power use and pumping requirements to minimize their electrical costs. There are different
pricing structure options available to the water udlity, and the proper selection of the pricing
structure can reduce electrical costs. Within most of the pricing structures available, certain
constraints are to be met to reduce the electrical costs, such as a generaton peak charge
within a certain time of day. With the potendal of obtaining electricity at cheaper rates
during off peak consumption periods, and minimizing the water utility’s peak demand in
peak demand perods, these savings can be obtained. Poteatial problems with minimizing
the electrical costs are ensuring an adequate water supply in the reservoirs at all times, and
the proper operation of the pumps to minimize pumping during periods of peak electrical
demand. The overall scope of this project is to develop a2 model system that would be used
to set up a protocol and procedural system to aid operators in choosing the proper rate and
time of pumping. It is expected that EPCOR Water Services can utlize cheaper electrical
rates during off peak hours and that the peak electrical demand can be lowered for the
pumping systems, thus leading to increased savings in electrical costs. Other options for
increased savings may be realized after modeling the system, such as augmentation of the
power supply by stand-by generators, for short periods of time, to avoid higher rates for the
entire peak demand period. The power optimization program would greatly enhance the
capability to assess options such as this in decreasing the overall cost of electrcity for

pumping.



The proposed model system must account for operational constraints, demand forecasting
and electrical pricing structures. As a result development of a modeling system is a
significant task involving 2 number of components. To facilitate timely completion of this
large project it has been divided into a number of distinct componeats. By doing this, each
component can be worked on relatively independently. Automation of the complete process
will not be possible until all components are completed. However, as components are
completed they can be used as part of the decision making process for pumping
optimization. Components that are not completed will have to rely on the current
methodology, which relies greatly on the experience of the staff of EPCOR Water Services.
Although each component can be worked on independently it is also important to recognize
how each component will affect the overall goal of pumping optimization, if at the end all
components are to be integrated into an overall model. As a result the framework for the
overall modelling system is presented in Figure 1.1 and the varous components are

explained below.

1.2.1 Maintenance

The maintenance component of the overall model is needed, as general maintenance and
breakdowns change the options that are available for pumping at any given time. With
scheduled maintenance, a new input would be entered in advance so that the pumping
schedule can be adjusted, so that the desired goal can be reached. For instance the new goal
might be to have a reservoir full at a certain time before the scheduled maintenance. The

maintenance component should take into account EPCOR Water Services’ maintenance



schedule, as well as, EPCOR’s Distribution and Transmission’s maintenance schedule for

the electrical distribution system.

Reservoirs Water Demand Water Pump curves
Transmission
Maintenance Pump Power Price
B . e . " Schedule
Optimization
Program
Pump
Schedule(s)

Figure 1.1 Overall Modelling Framewortk for Pump Optimization Program

1.2.2 Reservoirs

To use any type of pump schedule, the physical and safety constraints placed on the

reservoirs must be identfied. These include:

pump capacity at each reservoir

minimum reservoir levels (safety and performance measures)
reservoir circulation (turnover)

sub-station loading at each reservoir

CT requirements



1.2.3 Water Demand Forecast

To determine the pump schedule, an accurate estimate of the water demand is needed as the
pump schedule program needs to anticipate the future demand on the system. The water
demand forecasts needed are the hourly, daily and 12-day demands. The daily and 12-day
demands are to be estimated by using artificial neural networks to model the process. The
hourly demand will be estimated using a different modelling technique where the hourly
demand curves are normalized and superimposed on the daily demand. This is the area of

focus for this research.

1.2.4 Water Transmission

How the water is transmitted through the distribution system is of importance to maintain
the pressure in the system, and to minimize the energy needed to move the water. This
would mostly likely be optimized using the Stoner model that EPCOR Water Services is

currently using.

1.2.5 Pumping Curves

The pumping curve from each pump is needed, so as to know at which flowrates the pumps
are most efficient. This is so that the final optimization program chooses the pumps for the
desired pumping rate, which use the least power. It will identify the most efficient pumps
and utdlize them instead of the less efficient pumps. It will also identify any inefficient

pumps that need maintenance or need replacing.



1.2.6 Power Price Schedule

The power price schedules also need to be input into the program, as the power price is the
main driving factor in minimizing pumping costs. The price of power if preset and any peak
demand charges can be entered in as an input. If the price is on a real-time schedule where
the price is always fluctuating, then the predicted price of power (available from the power
pool) will be needed. With the program broken down into different components, it should
be possible to use the same program with the different price schedules available. This would
allow EPCOR Water Services to evaluate which price schedule would best suit the needs in
reducing the pumping costs even more. Within this component, looking into using an on-
site power generator to reduce the use of electrical grid power during periods of peak

demand may be cost beneficial.

The development of the proposed pumping optimization system should provide significant
benefits for EPCOR Water Services. In addition to the cost savings, the proposed system
will formalize the pumping optimization procedure that currently relies on the experience of
the staff of EPCOR Water Services. The move by EPCOR Water Services to a muld-skilled
workforce may result in operators not being able to specialize to the same degree as
previously, resulting in a need to rely more on formalized procedures rather than specialized

experience.



1.3 Organization of the Thesis

The balance of the thesis is organized into five sections: background informaton,
methodology, results, applications and conclusions and recommendations. The background
information section contains an overview of the water treatment and distribution system,
water demand and artificial neural networks. The methodology section outlines the selection
and collection of the data and model development. In the results section, the results from
each of the 3 different models, daily, twelve-day and hourly water demand estimates are
presented. The application section discusses the options that are available in the
implementation of the models for a water utility. The conclusion and recommendation

section provides a summary of the water demand models and recommendations for future

work.



2 Background

2.1 Overview of EPCOR Water Services’ Water Treatment and Distribution

System

EPCOR Water Services currently owns and operates the E.L. Smith and Rossdale water
weatment plants. The two water treatment plants are located in Edmonton, Alberta, Canada
(Figure 2.1) and provide water for the city of Edmonton and the surrounding communities.

EPCOR Water Services also owns and operates the distribution system.

2.1.1 E.L Smith Water Treatment Plant

The E.L. Smith water treatment plant was built in 1976 and was expanded in 1984. It is
located on the North Saskatchewan River and is on the west edge of the City of Edmonton.

The E.L. Smith water treatment plant currently is capable of treadng 281ML/day and can be

expanded to treat 800 ML/day.

2.1.2 Rossdale Water Treatment Plant

The first water treatment plant was built in downtown Edmonton on the banks of the North
Saskatchewan River in 1903. The Rossdale Water treatment plant was built on the same site

in 1947 to provide water to the rapidly increasing population of the city. The Rossdale water

treatment facility can treat 239ML./day.



2.1.3 EPCOR Water Services’ Distribution System

EPCOR Water Services has the third largest distribution system in Canada and supplies
water to 40 communities within a 100-km radius of the City of Edmonton. The Distribution
secton of EPCOR Water Services is responsible for the maintenance of over 2,900
kilometres of water mains, more than 13,000 hydrants, and 39,000 valves. A regional
distribution map can be found in Figure 2.2. Within the City of Edmonton, EPCOR Water
Services has 12 reservoir sites with a total capacity of 808 ML or approximately a two day
supply of water. The reservoir capacity of the system is of utmost importance as it
determines the ability of a water utility to minimize its electrical costs with proper pump
scheduling, while maintaining adequate storage to meet consumer demand. A summary of
the reservoirs and their capacities is located in Table 2.1. The capacity of a reservoir is
broken down into their gross, operating, fire and available storage. The gross storage is the
total amount of storage capacity available in a reservoir. The operating storage is the storage
that can be readily used to supply customers. The operating storage consists of the fire
storage and available storage. The fire storage is the minimum water that must be stored in
the reservoirs that needs to be readily available for fire protection. The available storage is
the storage space in the reservoirs that can be used to supply water to the consumers. The

City of Edmonton’s overall water distribution system is illustrated in Figure 2.1.
y ) igur
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Figure 2.2 Regional Water Distribution System (EPCOR Water Services Inc., 2000)

Table 2.1 Storage Capacity of Existing Reservoirs Owned by EPCOR Water Services

Inc.
Reservoir Gross Operating Fire Available
and Storage Storage Storage Storage
W.T.P. (ML) ML) ML) ML)
Rosslyn 123.08 110.05 20.22 89.93
Papaschase 82.14 76.51 14.21 62.30
Londonderry 45.24 41.68 2.67 39.01
Thorncliff 45.35 40.04 471 35.33
Millwoods 56.23 52.90 7.13 45.77
N.J. Place 46.06 34.40 7.50 26.90
Ormsby 45.27 40.40 4.81 35.59
Clareview 64.60 53.46 4.75 48.71
Castledowns 34.04 25.74 2.51 22.61
Kaskitayo 28.94 25.74 4.77 20.97
Sub Total 570.95 500.92 73.28 427.12
Rossdale 100.00 100.00 0.00 100.00
E.L. Smith 137.47 125.60 0.00 125.60
Sub Total 237.47 225.60 0.00 225.60
Grand Total 808.42 726.52 73.28 652.72
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2.2 Water Demand

2.2.1 Daily Water Demand

The daily water demand is an essential parameter that a water utility needs to evaluate for day
to day operadons. It indicates the volume that is required to be supplied for the entire day.
This gives the operators a target demand that needs to be met at the end of the day. In
1998, EPCOR Water Services had an average water demand of 331 ML/day, with a

maximum of 452 ML/day.

The water demand can be broken down in its use by type of users. There are approximately
176,200 residendal dwellings consuming 50% of the water, 14,600 commercial and industrial
consumers using 27% of the water and 7 wholesale/regional customers using 23% of the

water.

2.2.1.1 Residential Water Use

The residential water use account for roughly 50% of the water used per vear. The main
residental interior use consists of shower/baths, toilets, washing machine, dishwasher, and
faucet use. Residential exterior use consists mainly of lawn and garden watering and car
washing. The interior use remains fairly constant for residential use, as it consists of mainly
water for personal hygiene and cleaning. Conversely, the exterior use varies depending on
the season and meteorological conditions. In the climate that the City of Edmonton is
located in, there is very little to no exterior water use by a typical residential customer during
the winter. In the summer, the exterior use can very dramatically depending on the
meteorological conditions, as the main exterior residential water use is lawn. The fluctuation
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in the residential exterior water use is a major factor in the overall fluctuations in the water

demand during the summer months.

2.2.1.2 Industrial and Commercial Water Demand

The commercial and industrial water demand accounts for approximately 27% of the total
water demand. Commerdal and industrial users cover a2 wider range of customers, they
range from shopping malls, office buildings, food processing plants to breweries. The water
use for commercial and industrial customers on average increases in water usage in the
summer months. Most commercial and industrial customers water demand has little

fluctuation, with some exceptions for the industries that have seasonal cycles, such as hotels.

2.2.1.3 Regional Water Demand

The regional water demand is composed of the other surrounding towns, cities and
municipalides. Each of these customers are in turn composed of residental, commercial and
industrial customers to varying degrees. The major problem with the regional customers is
that they have their own reservoirs for storage. Thus they control when and at what rate
they draw water into their system. With the storage that the regional customers have they
can draw large quandties of water in a short period of time, which is than recorded on the
SCADA system as a demand on EPCOR’s distribution system. As the control of some of
the regional customers’ reservoirs have no set pattern and are not operated in conjunction
with their customers real time use, there is no way to predict their operation; thus a portion
of their resulung demand acts as noise in the modelling process. The problem with this is it

is not real-time actual use by the residential, commercial and industrial customers. So the
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demand that EPCOR experiences from the regional customers is not the real time usage of

the water. This is detrimental to the modelling process and adds uncertainty to any water

predicton that is made.

2.2.2 Hourly Water Demand

The hourly water demand is of even more importance than the daily demand when
considering distribution needs. Simply producing the volume of water required on a daily
basis does not mean that the water demand will be met at all times of the day. This is due to
the fluctuadons in the water demand throughout the day. A typical hourly water demand
curve and the ideal plant flow can be seen in Figure 2.3. The water treatment plant produces
water at a constant rate that will satisfy the demand at the end of the period. However,
water demands that are higher than the constant water production rate is satisfied by using
stored operating water. The hourly water demand is also a very important component of
developing a proper pump schedule. When the hourly demand exceed the water treatment
rate, the reservoir will release water. The reservoir can fill when the hourly (instantaneous)
demand is less than the water production rate. This eliminates the difficulty of trying to
operate the water treatment plant to meet the instantaneous demand, which would be
undesirable from an operational standpoint. In the process of treatng the water it is
desirable to keep the plant flow constant so that each treatment process can be controlled
and maintained close to a steady-state conditions. This then allows the operators to
optimize each water treatment process and maintain it. With fluctuating water flows through
a water treatment plant, plants operators would be constantly varying chemical feeds, and

other parameters, which would lead to lower water quality in the finished water. Using
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reservoirs for storage also allows for smaller water treatment facilities to be built as they only
nced to be designed to meet a2 maximum 5-day demand (can be shorter or longer period
depending on the storage available). An hourly peak demand can easily exceed 600 ML/day
while a 5-day demand would be approximately 400 ML/ day. Thus, a water treatment facility
with adequate storage can be two-thirds the size of a water treatment facility with very little

storage, and still provide the same quality of water and still meet consumer demands.
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Figure 2.3 Typical Hourly Demand Custve and Ideal Plant Flow

2.2.3 Twelve Day Water Demand

The hourly and daily water demands are used for the short-term planning to meet the water
demand of EPCOR Water Services’ customers. Knowing the water demand for a number
of days into the future is also of importance to a water utlity because it allows the udility to

slowly increase or decrease water production so that it can meet these demands and at the
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same time minimize its costs. EPCOR Water Services forecasts the current day and the
following 11 days of water demand as a tool to plan the operations of the water treatment
plants and storage reservoirs. This 12-day forecast allows EPCOR Water Services to foresee
any potential shortages. If there is a potential shortage of water, then production can be
increased to raise the reservoir levels so as to avert the shortage. Management also uses the
12-day forecast when scheduling maintenance that will interrupt the regular water supply. If
at any time the maintenance will lead to the reservoirs dropping below 60% of their capacity,
the maintenance is postponed to a later date, unless the maintenance is absolutely crucial.
Maintaining a 60% volume in the reservoirs ensures an adequate and safe supply of water, in
case of a breakdown in the water treatment plant or a major water main break. This gives
EPCOR Wiater Services roughly a day, to a day and a half to remedy the problem without

disrupting the transmission of water to its customers.

2.3 Conventional Modelling Methods for Water Demand

Many methodologies have been used in the past and are currently being used to model water
demand. These include state - space and multiple regression methods (Billings and Agthe
1998), muld-linear regression, time series methods, and artficial neural networks (Fleming
1994), fuzzy logic and artficial neural network hybrid program (Lertpalangsunt and Chan
Chrstine 1997), deterministic chaos method (Oshima and Kosuda 1998), pattern recognition
(Shvartser et al. 1993), memory based learning in combination with neural networks
(Tamada et al. 1993), as well as a vardety of other methods and combinations of these
methods. Artficial neural networks (ANNS) have been used as a component of a variety of

these models. ANNs are valuable in modeling non-linear problems (Tamada et al. 1993)
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such as water demand forecasts. ANNs has also been shown to have superior modeling
capabilities with fewer variables than multi-linear regression and time series methods

(Fleming 1994).

Knowledge of the study domain is needed to use ANN for modelling water demand. Darta
relatng to relevant input parameters are needed to train the model. It has been suggested
that the some of the important parameters that affect water demand are the weather such as
temperature, rainfall, humidity, sunshine hours (Shvartser et al. 1993; Ormsbee and Lansey
1994; Tamada et al. 1993; Hall and Maidment 1990; Hittle et al. 1996; Palmer et al. 1995; Jain
and Ormsbee 1993; Fildes et al. 1997), season of the year (Ormsbee and Lansey 1994; Hall
and Maidment 1990; Hittle et al. 1996; Kulshreshtha et al. 1996; Palmer et al. 1995), past
water use trends (Ormsbee and Lansey 1994; Hall and Maidment 1990; Hittle et al. 1996;
Jain and Ormsbee 1993; Fildes et al. 1997), and day of the week indicator (Hirtle, et al. 1996;

Shvartser et al. 1993).

Work has been done in the past to predict daily and hourly water consumption using ANNs
(Crommelynck et al. 1992). Crommelynck et al. (1992) incorporated, various meteorological
data, human behavioral data, seasonal, weekly and daily cycles into their ANN model, which
udlized 54 different inputs in total. However, problems can arise when a large number of
inputs are used. Increasing the number of inputs beyond the minimum number required to
describe the process will diminish the model’s capacity to differentiate berween important

and unimportant inputs.

-17-



In addition to having a sound knowledge of the study domain, the proper model architecture
must be used. Generally, most time-series forecasting methods reported in the literature
employ backpropagation architecture, as this tends to be one of the most robust

architectures for forecasting problems.

2.4 Overview of Artificial Neural Networks

2.4.1 NeuralShell 2 Software

NeuralShell 2 is a general artificial neural network software that is made by Ward Systems
Group Inc. and is the software used in this research. It requires a PC running Windows 95,
98, 2000 or NT operating system, with an 80486 or higher process, 16 megabytes of RAM,
and 20 megabytes of hard drive space. NeuralShell 2 is designed to be used for classifying
data or for predictions. The software is also designed to give liberal control and flexibility to

allow for experimentation.

2.4.1.1 Architecture

24.1.1.1  Backpropagation Architectures

Backpropagation networks are used on the vast majority of neural network problems as they
generalize well on a wide variety of problems. They are classified as a supervised type of
nerwork, as they are trained on both the inputs and outputs. In contrast a Kohonen
network is an unsupervised network, as it doesn't use output in the training, but classifies

and separates out the similar data patterns into a specified number of categories.
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Backpropagation networks can vary in the way that the layers are interconnected and are

outlined below.

2.4.1.1.1.1 Standard Connections

The standard connections in the backpropagation network are that each neuron is connected
only to each neuron in the previous layer. They have one input layer, one output layer and

from 1 to 3 hidden layers. A basic 3-layer backpropagation network can be seen in Figure

2.4
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Figure 2.4 Three-layer Backpropagation Network
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2.4.1.1.1.2 Jump Connections

The backpropagaton network using jump connections means that every neuron is
connected to each neuron in all the previous layers. They have one input layer, one output

layer and from 1 to 3 hidden layers.

2.4.1.1.1.3 Recurrent Networks

Recurrent networks are trained in a similar way as standard backpropagation networks. The
one major difference is that when using a recurrent network the data must be presented in
the same order, this means that a rotatonal pattern selection is needed. The rotational
pattern selection is needed because there is an extra layer identical to the input layer, which
contains the previous inputs. The first hidden layer is then fed the current inputs as well as
the previous set of inputs. This method is useful for time series data. However, if there is

no temporal structure to the data, the extra layer will act as random noise to the network.

2.4.1.1.1.4 Ward Networks

The hidden layers in Ward networks can either have standard and/or jump connections.
Also each hidden layer may be made up of multiple slabs. A slab is a group of neurons with
the same activation function applied to them. In using standard connections each layer is
one slab, as all the neurons in the layer have the same activation function. In a Ward
network you can have multiple slabs in one hidden layer, and each slab having a different
activation function. The reasoning for having different activaton functions is that one
activation function may detect the features in one range of data, while another activation

functon may yield better results for another range of data. This gives the network the
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unique ability to give the output layer different views of the data, which can lead to

improved performance.

2.4.1.2 Scaling Function

A scaling function is needed when loading input variables into a neural network. It is needed
to scale their numeric range into a range that the neural network can deal with efficiently.

The NeuralShell 2 software supports both linear and non-linear scaling functions.

Typically the inputs are scaled between 0 and 1 or —1 and 1. If the linear scale js denoted as
<<0,1>> or <<-1,1>>, larger or smaller values will not be clipped off. If the linear scale is
denoted as [0,1] or [-1,1], then larger or smaller values will be clipped off. For instance, if
the data have a range of 0 to 100 and a new input of 135 is entered, then it would be scaled

to 1 if using [0,1] and 1.35 if using <<0,1>>.

For non-linear scaling there are the tanh and logistic scaling functions. The tanh function
scales the data to (-1,1) using the formula f(value)=tanh((value-mean)/sd). The logisdc
scaling function scales the data to (0,1) using the formula f(value)=1/(1 +¢ (e-men/ Y. The
tanh and logistic scaling function by definition exclude the possibility of having a value
outside of the range of —1,1 and 0,1 respectively. By using these non-linear scaling
functions, there are no out of range data as any out of range data are squeezed together at
the high or low ends and are not clipped as when a linear function is used. Non-linear

scaling functons are useful to minimize the effect of outliers, but in doing so also minimize
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the importance of extreme events, which may be of interest. In addition to the above main

scaling functions, a scaling function can be customized to a specific problem.

2.4.1.3 Activation Functions

An actvation function is needed in the hidden and output layers. The hidden and output
layers produce outputs using the sum of weighted values that are fed into them. They
produce their output by applying an activation function to the sum of the weighted values.
The NeuralShell 2 software supports 8 activation functions. The logistic function tends to
be the most widely used, but for each individual problem there is a specific activation
function that will work best. A list of activation functions with their equations and mapping
ranges, supported by NeuralShell 2 is presented in Table 2.2. The corresponding graphical

representation of each of these functions can be found in Figure 2.5 to Figure 2.12.

Table 2.2 Activation functions

Acuvaton Function Equadon Range of Mapping
logistc f(x) =1/(1+e™) 0,1

linear f(x)=x 0,1or-1,1

tanh f(x)=tanh(x) -1,1

tanh15 f(x)=tanh(1.5x) -1,1

sine f(x)=sin(x) -1,1

symmetric logistic f(x)=(2/(1+e™)-1 -1,1

Gaussian f(x)=e*> 0,1

Gaussian complement fx)=1-e*2 0,1
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2.4.1.4 Learning Rate

Each ume a pattern is presented in the training process, the weights leading to the output
node are modified to produce a smaller error the next time the same pattern is presented.
The weight modification is the error multiplied by the learning rate. Thus, for a learning rate
of 0.1, the weight change is one-tenth the error. The larger the learning rate the larger the
weight change that occurs, thus the learning will proceed faster. There is the risk when using

a high learning rate that the model will oscillate and not converge to the desired outcome.

2.4.1.5 Momentum

Using large learning weights can lead to oscillation and nonconvergence, thus the model can
converge to a solution that is not the optimum or the learning will not even complete. To
allow for faster learning without the oscillation, the weight change is made a function of the
previous weight change to keep the learning process in the right direction. The momentum
factor controls the proportion of the previous weight change that is added into the new

weight change thus providing a smoothing effect.

2.4.1.6 Weight Adjustment

The weights in the NeuroShell 2 program can be updated in 3 ways. It can use a slightdy
modified plain vanilla algorithm, 2 momentum update or a TurboProp™ update method. In
using a modified vanilla algorithm only the learning rate is applied to the weight updates. A
momentum update method uses the learning rate as well as a portion of the last weight

change. The higher the momentum term, the greater the dampening effect will be on the
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weight fluctuations. This makes it ideal for problems with noisy data or where a high
learning rate is desired. The last method to update the weights is by using TurboProp™.
This method is not sensitive to the learning rate or momentum. The TurboProp™ method
uses a separate weight update for each different weight, instead of using the same learning
rate and momentum to adjust all the weights. It also differs in that when using
Turboprop™ the weights are adjusted at the end of each epoch instead of after each learning
event. TurboProp™ generally works better for recurrent networks, it is also recommended

to use TurboProp™ when ir is difficult to find the right values for the learning rate and

momenmum.

2.4.1.7 Pattern Selection

When training a backpropagation problem there are two different ways to present the data to
the model. The first method is a rotational pattern selection. This method selects the
training patterns in the order that they appear in the pattern or the training file. It is
recommended to use rotational pattern selection when the training patterns are dispersed
evenly throughout the data set or if training a recurrent network, as order is important. The
second method is a random pattern selection. When using random pattern selection, the
training pattern is randomly chosen. This also means that not every training pattern will be
chosen an equal number of times. Random pattern selection is recommended for training
sets that are cyclical such as data that contin seasonal variations and/or complicated

problems with numerical outputs.



2.4.2 ANN Development

ANNSs are computer programs, which convert one or more input signals to one or more
output signals by means of an interconnected set of simple non-linear signal processors
called neurons. ANNSs are designed to simulate the way a simple biological nervous system
is believed to operate. They are based on simulated nerve cells or neurons, which are joined
together in a variety of ways to form a network. This network has the capacity to learn,

memorize and recognize relationships amongst data.

2.4.2.1 Characteristics of ANNs

ANN modelling is an artificial intelligence method that mimics the human brain’s problem
solving ability. ANN modelling does not have pre-determined bias to the type of problem
that is being modelled. Thus, the type of relationship between the input and the output is
determined only from the data the model is presented with. ANNs are inherently fault
tolerant, they can learn to recognize patterns, which are noisy, distorted or even incomplete.
The reasoning for this is that in training, an ANN aquires redundant or distributed
information encoding (storage) (Maren 1990). This is similar to the human brain. Brain cells
are dying constantdy with dme (new ones are also being created), but our knowledge
generally still remains intact. This gives ANNs the ability to produce correct or nearly
correct responses when presented with partially incorrect or incomplete stimuli (Rajasekaran,
etal. 1996). ANNSs are unique in that they learn from the partterns (historical data) presented
to them. They do not require complex mathematical formulas or algotithms. ANNs are
useful for problems where the factors are known, but the interactions between the factors

are not known. For example, in predicting water demand the major factors are
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meteorological factors and human behavior, but the exact influence of each and their

interactions are not clearly known.

With the unique ability to learn from historical data, even if the historical data are noisy or
incomplete, comes some disadvantages or limitations. The first limitation is that ANNs are
generally considered a “black box” modelling approach; data are input and an output is
produced with little knowledge of the rules governing the phenomena being modelled.
There is some debate as to whether ANN models are true “black box” models as the
algorithms governing the learning process are understood and defined. There is currenty
wortk going on in the ANN community to unravel the workings of the ANN black box. As
a result of ANNss being considered a black box model, they are also prone to being misused
in a variety of ways. It should be noted that in developing ANN models, that they are data
intensive. Thus a large amount of relevant historical data is needed, as a general rule the
number of training patterns needed at a minimum, is ten times the number of input

parameters.

One common error is to use a data set that is missing a key factor, or containing factors
unrelated to the actual problem at hand (this can lead to major deficiency in the model,
especially if there is an actual correlaton between the unrelated factor and the desired
output). To remedy the first situation of having no historical data collected for a key input, a
suitable surrogate may be used. In the case where there are no historical data collected or a
suitable surrogate, the ANN technique should not be used, as it can lead to models with
erroneous predictions. This is similar to giving a person only half the information in a

question; there is a good chance s/he may come up with the correct or nearly correct answer
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to the question some of the time, but chances are s/he will not come up with the correct
answer all the dme. The second situation of using unrelated factors can be remedied by
having knowledge in the area that is being modelled. To apply the ANN technique, an
understanding of the problem and the factors affecting it, should be based on well
researched information. One other concem in using ANNSs is their ability to extrapolate
beyond that data that they were trained on. It is not known to what extent an ANN model
can extrapolate. Thus, caution should be taken with the predictions that are generated from

input dara that are out of the range the model was trained in.

2.4.2.2 Applications of ANN Modelling

ANN models work best in certain cases, but are not the best method in all cases. For
appropriate applicatons of ANN modelling, the algorithm to solve the problem should be
either unknown, too complex for conventional methods, or expensive to discover. Also, the
problem should be data intensive, as ANNs require a large amount of data. ANNSs are used
in a wide variety of applicatons, such as stock market predictions, sales forecasts, quality
control, cash flow forecasting, managerial decision making, drug screening, plus many other

saentific and engineering applications.

Within the science and engineering realm, ANNs have become a popular modelling method,
where applicable. They have been used successfully in areas such as ecosystem evaluadon,
polvmer idendficaton, chemical characterization, bacteria identification, water resource
management, etc. There has also been some work in the application of ANNs that would be

of interest to a water utlity. This includes modelling of enhanced coagulation (Baxter, et al.



1998), automating water treatment plants (Zhang, et al. 1999), particulate removal (Chai and
Andrews 1998).

ANNSs have also been used for water demand forecasting in various forms. Longer-range
water demand forecasting models were developed for predicting the long-term year to year
forecasts (Zhang and Stanley 1997). Daniell (1991) used ANN modelling for predicting
monthly water demands with great success. There has also been an applicadon to predict
chilled water demand for buildings (Hitde, et al. 1996). Chrommelynk et al. (1992)
developed an ANN model for forecasting daily and hourly water demands with promising

results. However, they used 54 different inputs, which is generally considered impractical.

2.4.2.3 Evolution of ANNs

The development and history of ANNSs is relanvely short. This is due to the fact that the

computers required for the learning process for ANNs have not been available for a long

pedod of ume.

The development of the modern computer can be traced back to Charles Babbage. In
around 1833, Babbage had begun designing Difference and Analytcal Engines, which are
considered to be the early ancestors of the modem day computers. But it wasn’t untl much

later, that the modem type of computers became available to develop artificial neural

network models.
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In 1942, Norbert Weiner and his colleagues were developing what is now dubbed
Cybernetcs. Weiner defined what was later to be known as cybemetics, as the control and
communication in the animal and the machine (Heims 1982). Indicating that biological
mechanisms can be treated from an engineering and mathematical viewpoint. The most
important aspect of Weiner’s concept was that with the idea of viewing biological

mechanisms from an engineering and mathematical perspective was the idea of feedback.

McCulloch and Pitts (1943) published what is believed to be the founding paper in the field
of neural networks. McCulloch and Pitts modeled neurons as simple Binary Threshold
Units (Threshold Logic Units) with fixed thresholds and uniform weights. They also
concluded that any well-defined input-output relation could be implemented in a formal

neural network (McCulloch and Pitts 1943).

In 1945, John von Neumann in his first draft of a report on the EDVAC (Electronic
Discrete Vanable Automatc Computer), made several comparisons between the proposed

circuit elements and animal neurons which further contributed to the advent of ANNS.

During 1949, Donald Hebb suggested a mechanism by which real brains can learn from their
experiences. Hebb descnibed that as the synaptic strength changes; the change in strength
reinforces any correspondence of activity level between the pre-synaptic and post-synaptic
neurons within the brain (Hebb 1949). This is a key element of ANNs in that they can learn
from historical data (experience) in a controlled training environment. In regards to ANNS,

the weight on an input is increased to reflect a correlation between the input and the output

neurons.
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In 1958, Rosenblatt proposed a group of computational abstractions of neurons called
perceptrons. Rosenblatt’s perceptrons were more complex than McCulloch and Pitt’s
neurons, and more importantly, they were capable of learning. Rosenblatt found that there

was proof that a simple training procedure (the perceptron training rule) would converge if a

solution to the problem existed (Anderson and Rosenfeld 1988).

In 1969, the evolution of the ANN suffered a setback when Minsky and Papert published
their book ‘Perceptrons’ (Minsky and Papert 1969). Minsky and Papert showed that there
was an interestung type of problem, which was not linearly separable and that the single layer
perceptron net could not solve, such as the XOR problem. An example of a simple XOR
problem that consists of two inputs and one output can be seen in Table 2.3. They also held
lile hope that a muld-layered net would successfully deal with some of these types of
problems. Minsky and Papert suggested that the previous work on perceptron development
was without scientific value but had proceeded due to the romanticism surrounding the new
idea of a machine leaming. This position became the mainstream opinion and with that
neural networks became an unfashionable research area in the shadows of other Artificial

Intelligence areas. This was the case at least undl the mid-1980s.

Table 2.3 Inputs for XOR problem

Input 1 Input 2 Output
1 1 0
0 0 0
0 1 1
1 0 1
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The next two major breakthroughs occurred in 1982. First, Feldman and Ballard proposed a
computationally sophisticated model of a neuron, characterized in terms of a potential. The
Feldman and Ballard model also incorporated units with multiple input sites and conjunctive
connections (Anderson and Rosenfeld 1988). The second major breakthrough was that
John Hopfield showed that a highly interconnected network of threshold logic units could
be analyzed by considering it to be a physical dynamic system (similar to an atom) possessing
an ‘energy’. The network is then started in some initial random state and goes on to some

stable final state, this is similar to a system falling into a state of minimum energy.

One of the biggest breakthroughs occurred when Rumelhart, Hinton and Williams (1986)
published the first well-known description of a back-propagation learning algorithm. It was
actually first proposed by S.E. Dreyfus (1962). Then P.J. Werbos (1974) proposed a similar
solution to the problem of learning in multilayer networks. Unfortunately, the solutions by
Dreyfus and Werbos remained unknown to the research community and a well-known
solution to the problem did not emerge until the mid-1980s. The solution was made known
to the majority of the neural network community, when Parker (1985), Le Cun (1986), and
Rumelhart, Hinton, and Williams (1986) independently described similar solutions to this
problem. But in the end, it was Rumelhart, Hinton and Williams that reached the largest
audience and popularized the solution of the backpropagation algorithm (Anderson and
Rosenfeld 1988). Since then the backpropagation algorithm has been the most widely used

algorithm for multilayer networks.

Error propagation uses the generalized idea of the delta rule in the back-propagation

algorithm. Consider an ANN with an input layer, an output layer and one hidden layer
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(Figure 2.4). The nerwork is presented with an input that produces an output which then
received by the middle or hidden layer. The output from the middle layer is received by the
output layer where the final output is produced. This final output is then compared to the
desired output. Since both the model ourput and the desired output are known, the
generalized delta rule can be backpropagated to adjust the input weights in the neurons to

minimize the error in the output layer.

2.4.2.4 ANN Learning Process

There are a vadety of learning algorithms available of which the backpropagation algorithm
is one of the most commonly used. The backpropagation algorithm is widely used and is
used in this study, as it tends to learn and generalize well in most cases. As the
backpropagation algorithm is the learning method used in this study, the following text will

focus on the backpropagaton algorithm.

A bref description of how an ANN learmns follows, using a basic three-layer backpropagation
network as an example of the leaming process. The following description is also represented
graphically in Figure 2.4. The input values in the input layer (or the first layer) are weighted
and then transferred to the hidden (second) layer. The neurons in the hidden layer, then
sum up the weighted values passed to them and produce an output value(s). The hidden
layer then in turn passes these values to the output (third) layer. The output laver uses these
values to predict the desired outcome. The predicted values are compared to the known
values and an error value is computed. The output layer then backpropagates the error back

into the hidden processing unit according to the leaming rule being used, such as the
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generalized delta rule. The generalized delta rule modifies the strength of the input
connectons to reduce the squares of the differences between the predicted output value and
the actual output. In the learning process, each individual pattern that is input into the
network and the associated adjustment of the connection weights are considered one
learning event. Dunng the learning process, when each pattern has undergone a leamning
event it is called an epoch. The error backpropagation is repeated untdl the ANN produces

an acceptable minimized error.

2.4.2.5 ANN Model Development

Three steps are involved in the ANN model development process:

1) Source Darta Analysis
2) ANN Model Development
3) Model Evaluaton

2.425.1  Source Data Analysis

There are two major components in the source data analysis. First is the familiarizadon with
the problem. This involves an assessment of what factors are important in the process or
problem that affect the output. Second is ensuring that the ANN modelling technique is
applicable. This also means that the proper (quantity, quality and applicable) data is

available.

24252 ANN Model Development

The next step is the actual development of the models. This step involves the design and

training of a varety of potental models. In the ANN model development step the data are
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generally divided into three data sets; training, testing and production sets. The training set
of data is the data set that the ANN model actually trains on. The testing data set is used to
prevent overtraining the network so that the model will generalize well on new data. During
the learning process, the network is learning from the training set data, but at set intervals
the network evaluates how well it can generalize on the testing set. This prevents the model
from over-learning or memorization, and insures that it learns to generalize on the data. The
last darta set is the production set. The production set is used to evaluate the networks, as it
is an independent data set that the network has not seen during the training process. The
final step is to test and evaluate the models on the production set. The evaluation of the

networks will be discussed 1n the next section.

24253 Evaluatdon Of ANN Models

The evaluation of the models should be carried out in two steps. The first is to test the
models on data that the ANN has not seen during the training process. If the model
performs acceptably, then the second part of the test is to verify the final model on real-time
data. A good indication of whether the ANN has generalized well, is to compare the results
from the training, testing and production sets. They should be similar. If it is found that the
training and/or testing sets result in significantly better results than the production set, there
is a chance that the ANN has over learned or memorized the training data. There is also the
possibility that the production set contains a portion of data that is out of the range in which
the ANN was trained. This is unlikely if the production set was randomly chosen, but is a
distinct possibility if it was chosen manually (such as when one specific year of data is used

for the production set).
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There are two methods of evaluating the models: quantitatively and qualitatively. The
correct solutions and those produced by the network may be compared in a qualitative
manner, such as with a visual comparison of plotted points or in a quantitative manner using
a statistical test, such as the correlation coefficient (Flood and Kartam 1994). It is desirable
to use both of these methods, to insure the best possible model is developed. It is also
beneficial to use a variety of quanttative comparisons. The results of different statistical

tests, test different areas of performance for the model developed.
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3 Methodology

3.1 Data Collection

In using the ANN modelling method, one of the most important steps is obtaining the
proper input and ourput data. Once the proper data are collected, the data then must be

analyzed for any errors or missing data. Any data that appears to be in error then needs to

be verified as such.

3.1.1 Water Demand Data

The water demand data were collected by EPCOR Water Services, using a PLC-PC based
SCADA system. The water demand data is measured and collected every 15 minutes. The
water demand is calculated by taking water produced in the 15-minute time frame and
pumped into the distribution system minus the change in the storage in the distribudon
system. The volume of water in storage is measured every 15-minutes at each reservoir and
sent into the SCADA system. The errors associated with the water demand measurements

are 2.5% for 250 ML/day and 5% for a S00ML/day as measured by using a draw down test.

3.1.2 Meteorological Data

The meteorological data were obtained from Environment Canada. Environment Canada
verifies the data before they are released in electronic form. Monthly summaries of the
meteorological data are sent out at the end of every month. Weather forecasts can be
obtained daily through text or phone recordings. It is also possible to get on-line real time

weather data and forecast data.
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3.2 Data Selection

Twenty-seven months of data were collected. These included daily water demand,
minimum, mean and maximum air temperature, rainfall, sunshine hours, and an houtly water
demand input. In the collection of data, there is always the potential for errors in the data
collected. They can either be equipment or human type collection errors. In the data
collected for this project, the only errors apparent were due to equipment type errors. There
were no human type errors apparent in the data. This is mainly due to the fact that all the
data were collected through on-line data collection systems, such as the EPCOR Water
Services SCADA system. Any errors in the data collection process were apparent as the
SCADA system recorded them with “??? ”. Only one other type of error was found where
the recorded water demand remained constant throughout the entire day. All erroneous data

were removed from the data set.

3.3 Model Development

In developing the models for the both the daily water demand and the demand for the
following 11 days, there are many different factors that can be adjusted to optimize the
model. These include the inputs used, type of architecture, activation function, number of
neurons, the ratio of training : testing: production that is used to divide the data, scaling

function, learning rate, momentum, weight updates and the type of pattern selection that is

used.
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3.3.1 Input Selection

After the data are collected and selected, each possible input was analyzed to determine the

relationship of the input to the water demand and its feasibility to be incorporated into the

water demand model.

3.3.1.1 Meteorological Data

The meteorological conditions are considered to play a very important role in daily water
demand. This is evident by the previous work carried out in forecasung water demand,

information provided by operators, and the source data analysis that follows.

3.3.1.1.1  Temperature

The relatonships berween the minimum, mean and maximum temperature, with respect to
the daily water demand, was very similar. Over the range of available data an exponential
reladonship between the daily water demand and the temperature is found in Figure 3.1.
Whether it is best to use the maximum, mean, minimum or a combination of these
temperatures for the day can not be determined at this point. In the past the maximum
temperature has been included in many of the models developed for water demand
forecasting, so it was used as an input into the model initially until, a later stage, where it can

be determined which is the optimum temperature input or combination of inputs.
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Figure 3.1 Comparison of Daily Water Demand vs. Temperature

3.3.1.1.2 Sunshine Hours

Sunshine hours are defined as the number of hours of "bright" sunshine, unhindered by fog
or cloud cover. The number of sunshine hours has been used in the past to model water
demand, but faces one major problem when used in forecasting water demand. Although
sunshine hours can be measured, it is difficult to predict the number of sunshine hours in
any given day. This is quite different to the temperature, which can be predicted generally
within a few degrees. This factor was not used initially in the development of the model, but
will be tested for its significance at a later stage to determine if, in the future, a surrogate
measurement should be collected to be used in future model development. The most likely

surrogate measurement would be using a cloudiness index of sorts, as weather forecasts



include the cloudiness in descriptive terms already (i.e. clear, scattered clouds, mainly cloudy

etc.).

3.3.1.1.3  Rainfall

The relatdonship between the rainfall data and the water demand is less evident, as during the
winter months there is little or no rainfall. This then gives the general impression that when
little or no rainfall occurs that the water demand is low. In reality the daily water demand in
the non-summer months tends to have little variaton and is generally lower than in the
summer months. The opposite is generally true in the summer months, with less rainfall, the
water demand tends to increase. The contrast between the summer and winter rainfall vs.
daily water demand can be seen by comparing Figure 3.2 through Figure 3.7. Regardless of
the relationship, the rainfall is also considered to be an important factor that influences the
water demand. While rainfall is considered important, the duration since the last rainfall also
has to be considered. The short term and long term rainfall plays an important role in
determining the water demand, thus both must be included. A previous day rainfall (mm), a
previous 5 days of rainfall (mm) and the previous 30 days of rainfall (mm) inputs were
included in the model to reflect both the short and long term impact that rainfall has on
water demand. While the short term inputs are to reflect the recent precipitation events, the
long term input of 30 days may be taking into account an excessive period of time. To
confirm that the 30-day period should be used as the long-term rainfall input, a 15-day and
45-day input will be tested against the 30-day input. It should be noted that the probability
of precipitation (POP) was to be included as an input into the model and most likely should

be. Environment Canada does not collect the probability of precipitation data and EPCOR
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Water Services has only a partial record. Probability of precipitation data should be collected

in the furure to be included into future water demand models.
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Figure 3.2 Daily Water Demand vs. Daily Rainfall (Summer)
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Figure 3.4 Daily Water Demand vs. Five Day Rainfall (Summer)
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Figure 3.5 Daily Water Demand vs. Five Day Rainfall (Winter)
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Figure 3.7 Daily Water Demand vs. Thirty Day Rainfall (Summer)

3.3.1.2 Human Behavioral Data

In predicting water demand, we must look at the different sources that create the water
demand. The water demand is typically broken down into industrial, commercial and
residential use. The water demand is dependent on these different uses. Each of these
different sectors varies in their use of water in quantity and tme. To account for these
differences, a couple of different index inputs are used to discern the relationship for the

seasonal vanation and the weekend/weekday variation.

3.3.1.2.1  Seasonal Varatdons
The daily water demand was plotted as a function of the date, in Figure 3.8. The main

feature evident in this figure is that the water demand is generally higher and more variable
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in the summer than in the winter. The winter months are generally characterized as having
low water demand with little variation. This is mainly due to the different activities that the
general public partakes in. Thus, this type of human behavior is still weather-driven. The
seasonal variations not only affect the water demand for the entire day, but also affect the
profile of the 24-hour demand period. Thus a season index was included as an input into
the model initally, but two separate models will be tested, one for each ‘season’, to
determine if these are a better predictor than the single model. The “seasons’ were broken in
up into a May 1 — September 30 summer season and an October 1 — April 30 non-summer
season. This reflects the higher demand that occurs during the summer season compared to

the non-summer season as reflected in Figure 3.8.
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Figure 3.8 Daily Water Demand Vs. Date



3.3.1.22  Weekly Vanadons

Throughout the week, the water demand varies depending upon the day of the week. More
specifically the water demand vares between weekdays and weekend/holidays both in
quanaty for the entre day and the profile of use for the 24-hour demand period. This

weekend/weekday index is included as an input in the initial model development.

3.3.1.2.3 Reterence Indicator

A reference indicator is used to give the model a general estimate of the water demand for
the day. Either of two different references can be used. The first is the previous day’s water
demand. The previous day’s water demand generally gives a good indication of the current
day’s water demand. The problem with using this as a reference is that it does not give a
good reference point when the water demand changes dramatically from one day to the next.
The other possible reference is to use the water demand for the preceding hour that the
water forecast is being developed for. Since EPCOR Water Services develop their water
demand forecast at 10:30 am, the water demand from 09:00 am to 10:00 am can be used as
an indication or reference of the water demand for the rest of the day. The 9:00 to 10:00
water demand was used as an input initially, but was later tested to see if it is necessary. The

previous day’s water demand was also tested to see if it was a better reference point to use as

an input.

3.3.2 Architecture Selection

Initially the data were divided into a basic training : testing : production ratio, such that no

one set contains significantly more data than the others do. The model was then trained
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using the training and testing sets on each type of architecture using the default settings.
Each model was then applied to the production set and the results were compared to see

which architectures were suitable for development.

3.3.3 Scaling Function

The scaling function was simply chosen by training the model and varying the scaling
function used on the inputs for each run. The scaling function that achieves the best results

and met the needs of the problem was then chosen.

3.3.4 Activation Function

The model is then run while changing the activation function for each run. The results of
using the different activaton functions are then compared. The actvation function that

vields the best result is then used.

3.3.5 Number of Neurons

The number of neurons in each hidden layer can be adjusted to further improve the water
demand model’s performance. In a simple 3-layer backpropagation network, finding the
optimum number of neurons is relatively easy as it contains only one hidden layer. In
finding the optimum number of neurons for other architectures where 2 or more hidden
layers exist, the task become more daunting, as the number of neurons in the first hidden
layer affects the optimal number of neurons in the second and vice versa. The number of

neurons in each hidden layer is not independent of each other. Thus, finding the optimal
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number of neurons can not be done by simply finding the optimal number of neurons in
one layer and then the next. Here the optimum number of neurons should be found in

conjuncuon with each other and not separately.

3.3.6 Pattern Selection

In the training process of backpropagation problems there are two different ways to present
the data to the model. The data can either be presented randomly where the next patten is
chosen at random, or rotationally where the next pattern is chosen sequentdially. To evaluate
which type of pattern selecion was best, each method was tried and the better result of the
two was chosen. It was expected that the random pattern selection would yield the better
result of the two as it is generally recommended for training sets that contin cyclical data

that contain seasonal vanadons.

3.3.7 Learning Rate and Momentum

The learning rate and momentum control how the weights are adjusted during the ANN
training process. Since both the learning rate and momentum are not mutually exclusive in
the optimization process, the optimum combination of the two is obtained using a surface

plot of the results.
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4 Results

4.1 Daily Water Demand Model

4.1.1 Architecture Selection

To determine the architecture that is suitable for the daily water demand model, the daily
water demand model was trained and tested on each architecture that is supported by the
NeuroShell 2 software. The results of the architecture selection can be seen in Table 4.1.
After the model was tested on each architecture the best possible architectures for the
problem were determined to be the 4 layer backpropagation networks (Figure 4.1), as well as,
the Ward net with 3 hidden slabs (Figure 4.2) and the Ward net with 2 hidden slabs and a
jump connection (Figure 4.3). It is important to realize when assessing the architecture, or
any other parameter, that more than one-selection criterion is needed. Different statistical
tests, test different areas of performance for the models being developed. In using the mean
absolute error, it is possible to determine which architecture gives the better predictions on
average, but it does not give information regarding the general fit of the model. It also does
not take into account whether the model is capable of hitting peaks and valleys of the water
demand. The square of the Pearson’s Product Moment Correlation Coefficient r* value is a
measurement of the linear association between two variables. The equation for the Pearson
Product Moment Correlation Coefficient can be found in Equation 4.1. It compares the
accuracy of the model to the accuracy of a benchmark model where the prediction is just the
mean of all of the samples. Where r* has a value between 0 and 1, with 0 being the value
obtained if the average value of the output parameter was used for prediction. A perfect fit

would have a r* value of 1, and very good fit model would have a value close to 1. The
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models with the architectures that were chosen to be developed further also predicted the
water demand within 10% of the actual demand at all times on the production set. None of

the other model architectures where able to accomplish this.

Table 4.1 Architecture Selections Results

Architecrure r Mean Absolute Error
(ML/day)

3 Laver Backpropagation 0.8949 8.037
4 Layer Backpropagation 0.8952 7.994
5 Layer Backpropagation 0.8927 8.059
Recurrent Net With Input Layer Feedback 0.8852 10.488
Recurrent Net With Hidden Layer Feedback 0.7793 13.930
Recurrent Net With Output Layer Feedback 0.7713 14.462
Ward Net 2 Hidden Slabs 0.8879 8.158
Ward Net 3 Hidden Slabs 0.8949 7.925
Ward Net 2 Hidden Slabs With Jump Connection 0.8980 7.841

3 Layer Backpropagation With Jump Connections 0.8700 8.886
+ Layer Backpropagation With Jump Connections 0.8726 8.812
5 Layer Backpropagation With Jump Connections 0.8687 8.994

Slabl | ——pp | Slab2 | ——p | Slab3 | — . | Slab4

Input 1* Hidden 2™ Hidden Output
Layer Layer Layer Layer

Figure 4.1 Four Layer Backpropagation Architecture
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Figure 4.2 Ward Network with 3 Hidden Slabs
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Figure 4.3 Ward Network 2 Hidden Slabs with a Jump Connection
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Equation 4.1

e nXY - X)XY)
VnEZX - X)} nSy -1y’

r = Pearson Product Moment Correlation Coefficient

n = numbered of paired observations
X = vanable A
Y = vanable B

4.1.2 Input Selection

[nitally the models where trained using as inputs the maximum temperature, previous day
rainfall, previous 5 days of rainfall, previous 30 days of minfall, season index,
weekend/weekday index and a reference indicator. These inputs into the model were used
initially as they were deemed to be significant or their function was deemed necessary. As
with the selection of possible architectures, the inputs can be further analyzed to determine
their significance. Other inputs can also be included to see if they produce a better overall

model. Also inputs can be removed or replaced by similar inputs to see if there are any

Improvements.

4.1.2.1 Temperature Input Selection

[nitially, the maximum temperature was used as the initial input, as it has been shown to be
an important parameter in other water demand forecasting models. At this stage the
temperature input into the model was varied to see if a different input or combination of
temperature inputs yielded 2 more robust model. Using the mean and minimum in place of

the maximum input caused the model to be slightly less accurate. However, by using the
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minimum and maximum inputs in combination, the model tended to yield a slightly better

result, as can be seen in Table 4.2. Thus the minimum and maximum daily temperatures

were used for the subsequent model development.

Table 4.2 Temperature Input Selection Results

Architecrure Temperature Input r Mean Absolute Error
(ML/day)
minimum/maximum 0.8953 7.993
4 Laver minimum 0.8869 8.253
Backpropagaton mean 0.8889 8.196
maximum 0.8952 7.994
minimum/maximum 0.8964 7.901
Ward Net 3 Hidden  minimum 0.8894 8.112
Slabs mean 0.8947 7.928
maximum 0.8949 7.925
Ward Net 2 Hidden = minimum/maximum 0.8978 7.777
Slabs With Jump minimum 0.8942 7.964
Connection mean 0.8980 7.847
maximum 0.8980 7.841

4.1.2.2 Sunshine Hours Input Resulits

The use of sunshine hours in the model is limited by the fact that sunshine hours are not

readily forecasted. Here, the actual sunshine hours are used as an input to see if there is an

improvement in the model. If the model shows improvement, then there is the possibility to

include a surrogate measure such as the cloud cover index as weather forecasts include cloud

cover 1n descriptive terms.

A cdoud cover index would be tred here, but the weather

forecasts are not archived by Eavironment Canada, only the actual weather for the day.

Using the sunshine hours in the model leads to some improvement in the water demand

prediction of all the models as is shown in Table 4.3. It is recommended that the cloud

conditons be recorded for future water demand models.
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Table 4.3 Sunshine Hours Input Selection

Architecture Sunshine Hours r Mean Absolute Error
(ML /day)

4 Layer without 0.8953 7.993
Backpropagation with 0.8983 7.911

Ward Net 3 Hidden  without 0.8964 7.901

Slabs with 0.9031 7.542

Ward Net 2 Hidden  without 0.8978 7777

Slabs With Jump  with 0.9034 7.608
Connection

4.1.2.3 Rainfall Input Selection

Through inital work it was found that the previous day’s rainfall, the previous 5 day rainfall
and the previous 30 day rainfall were significant inputs, as they represent the short and long
term precipitation conditions. The 30-day mainfall was replaced with a 15 and a 45-day
rainfall input. This was to check that the 30-day rainfall is the most representative long-term
rainfall input with regards to water demand. In analyzing the results, it can be seen in Table
4.4 that varying the long-term rainfall input did not to a large extent change the ANN
ualizing the 4-layer backpropagation network. The 15 and 45 days of previous rainfall
inputs improved the ANN that incorporates the Ward network with 3 hidden slabs over
using the 30 days of previous rainfall input. Using the Ward network with two hidden slabs
and a jump connection, the 15 days of previous rainfall input yielded the worst result while
the model using the 45 days of previous rainfall had the best results as measured by the r*
and the mean absolute error. Inclusion of the 45 days of previous rainfall improved the
ANN model overall but it also increased the maximum error of prediction beyond 10%.
While it is important to have as accurate a model on average, it is also important to minimize
the maximum error. With the conflicting and negligible difference seen in Table 4.4, the

significance of the long-term rainfall effect comes into question. To test the importance of
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the long term rainfall input, it was removed leaving the previous day rainfall and the previous
5 days of rainfall as the only rainfall inputs. In Table 4.4, it can be seen that the removal of
the long term rainfall input has little effect on the model, in fact it causes a slight
improvement when using the 4 layer backpropagation network. Therefore the long-term

rainfall input was removed from the subsequent modeling.

Table 4.4 Long Term Rainfall Input Selection

Architecture Long Term Input 1:z Mean Absolute Error
Previous Rainfall (ML/day)
no long term input 0.9013 7.717
4 Layer 15 days 0.8942 7.983
Backpropagation 30 days 0.8953 7.993
45 days 0.8933 7.999
no long term input 0.9018 7.642
Ward Net 3 Hidden 15 days 0.8978 7.715
Slabs 30 days 0.8964 7.901
45 days 0.9024 7.645
Ward Net 2 Hidden  no long term input 0.8996 7.693
Slabs With Jump 15 days 0.8957 7.893
Connection 30 days 0.8978 7.777
45 days 0.9036 7.647

As mentoned in Section 3.3.1.1.3, the probability of precipitation should be considered as a
possible input, but the data are not available. Instead of using the probability of
precipitation, the actual rainfall for the day was used to see if it led to an overall
improvement in the model. The other option was to use an input indicating whether or not
rainfall occurred on the current day. Neither one of these options led to an improvement in
the model, thus at this stage it appeared that the probability of precipitation would not make

any significant improvement in the daily water model. It still can not be totally dismissed, as
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without acrually using the probability of precipitation, the true significance of this input can

not be known.

4.1.2.4 Reference Indicator Input Selection

A reference indicator gives a general indication of the water demand for that day. The need
for a reference indicator in the daily water demand forecast model was investigated. In
studying the possible reference indicators it was found that by using a simple linear
relationship between the daily water demand and the reference indicator of the water
demand from 9:00 to 10:00 am, or the previous day’s water demand, an adequate
approximation could be found. By using a linear relationship, obtained with previous day’s
water demand, the relationship can be used to predict the current day’s water demand with a
r* of 0.7532 and a mean absolute error of 11.709 ML/day. Using the same linear
relationship, but using the water demand from 9:00 to 10:00 am instead of the previous day’s
water demand an r* of 0.7608 and a mean absolute error of 12.554 ML /day are obtained.
Thus it is unclear at this time as to which reference indicator produces the best result. What
is known is that the reference indicator is needed. If using the reference indicator alone, it is
possible to obtain on average, a better water demand prediction for the current day then
when using no reference indicator in the neural network models. It can be seen in Table 4.5
that the reference indicator is a very important input into the model. In comparing the
results of using the different reference indicators and no reference indicator it can be seen
that reference indicators led to an improvement in the modeling process. It also can be seen
that using the 9:00 to 10:00 am water demand as the reference indicator yielded better results

than using the previous day’s water demand. One explanation is that using the previous
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day’s water demand leads to less accurate water demand predictions on Saturday, when a
weekday water demand would be used to predict a weekend demand and vice versa for
Monday. In using the water demand from 9:00 to 10:00 am of the current day for the daily
water demand forecast, the refetence indicator being used is from the same day, as the one
being predicted. Thus, it should be more accurate in that it does not contain the error of
using a weekday reference indicator for a weekend demand and vice versa. This
weekend/weekday error from using the previous day’s water demand as an input would also
be present in using a simple linear relationship between the previous day’s water demand to

forecast the present day water demand.

Table 4.5 Determination of the Reference Indicator Input

Architecture Reference Indicator r Mean Absolute Error
(ML/day)
4 Layer no indicator 0.6725 12.491
Backpropagation previous day’s water demand 0.7997 9.901
9:00 to 10:00 water demand 0.9013 7.717
Ward Net 3 Hidden no indicator 0.6588 12.679
Slabs previous day’s water demand 0.8050 10.061
9:00 to 10:00 water demand 0.9018 7.642
Ward Net 2 Hidden  no indicator 0.6657 12.589
Slabs With Jump previous day’s water demand 0.8008 10.339
Connection 9:00 to 10:00 water demand 0.8996 7.693

4.1.3 Activation Selection

A vadety of activation functions where tried in the hidden layers. After trying a variety of
combinations of activation functions it was found that the tanh15 function in the first and
second hidden layers of the 4-Layer backpropagation network yielded the best results, the
rest of the results for the other 2 architecture types can be found in Table 4.6. Ward

networks are designed to have different slabs with different activation functions. This gives
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them the benefit of having the data presented in two different forms to detect different
features in the data. What is interesting is that the Ward net with 2 hidden slabs and a jump
connection yielded the best result when both the slabs had gaussian activation functions.
This is contrary to the main design purpose of the Ward nets. The most likely explanation
for this is that the gaussian activation function is designed more for the mid-range data while
the gaussian complement is for the high and low range data. With more mid-range data
presented than the extreme low and high range data the model may actually improve its mid-
range prediction and decrease its performance at the low and high end of the data, but
overall the performance would be better. Whether the decrease in prediction accuracy on
the high and low data range was actually occurring was investigated. It was found that the
model with both gaussian activation functions had the lowest maximum error associated
with it and the distribution of error was very similar to that when using the other activaton
functons. Thus, the effect of the model increasing its performance due to the concentration
of mid-range data is not the case, and is just the result that the model improved slighty at

the high, mid and low range of the data.

Table 4.6 Activation Function Selection

Architecture Activaton Function r Mean Absolute Error
1* Hidden Layer | 2™ Hidden Layer (ML /day)
4 Layer tanh15 - tanh15 0.9056 7.570
Backpropagation
Ward Net 3 Hidden tanh15 —
Slabs gaussian — 0.9053 7.593
sine —
Ward Net 2 Hidden gaussmn e
Slabs With Jump 0.9040 7.636
Connection gaussian —>
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4.1.4 Neuron Selection

A grid system was used to determine the optimum number of neurons needed in the hidden
layer to achieve optimum results. The grid system for the 4-layer Backpropagation network
was from 6 to 16 neurons in each hidden layer and were adjusted in one neuron increments.
The surface plots of the results (Figure 4.4 and Figure 4.5) show that there are three different
areas of interest that yield the best results. Closer examination of the data shows that, the
model using 8 neurons in both the first and second hidden layers yielded the best result with

an r* of 0.9081 and a mean absolute error of 7.431 ML/ day (2.29% error).

The r* and mean absolute error of the Ward network with 3 hidden slabs were set-up in a
grid system similar to the 4-layer backpropagation network. All 3 slabs are considered to be
one hidden layer as they receive their input from the input layer and their output is fed
directly into the output layer (Figure 4.2). There was one change as there are 3 hidden slabs
in this architectural set-up. An equal number of neurons were used in the first and second
hidden layers while a different number of neurons were used in the third hidden slab. The
resulting grid runs are represented graphically by surface plots in Figure 4.6 and Figure 4.7.
These results show that the highest r* values occur when there are 8 neurons in both the
second and third slabs and the 7 neurons in the fourth slab. Using these values for the
number of neurons the model obtained a r* of 0.9069 and a mean absolute error of 7.493

ML/day (2.31% error).

The grid system for the Ward network with two hidden slabs and a jump connection was set
up with from 9 to 15 neurons in each hidden slab and the number of neurons was adjusted

in one neuron increments. The surface plots from the resulting grid system revealed that the

-60 -



optimal number of neurons was 12 neurons for each of slabs in the hidden layer (see Figure

4.8 and Figure 4.9). This configuration resulted in a ¢’ value of 0.9040 and a mean absolute

value of 7.636 ML/day (2.36% error).
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4.1.5 Learning Rate and Momentum Selection

The learning rate and momentum both determine the weight adjustment in the training
process. To determine the optimum learning rate and momentum, a grid system was again

used and the surface plot of this grid was used to graphically represent the results.

The initial grid was setup with the learning rate and momentum increasing from 0.1 to 0.9 in
0.2 increments. After the initial grid system was completed and analyzed, the area that
showed the best results was then rerun using a 0.1 increment for both the learning rate and
momentum terms. The resulting surface plots for each architecture can be found in Figure
4.10 to Figure 4.15. In Table 4.7 the optimal values for the learning rate and momentum for

each architecture can be found along with their results.

Table 4.7 Optimum Learning Rate and Momentum

Architecture Learning Momentum 'S Mean Absolute Error
Rate (ML./day)

4 Laver 0.4 0.2 0.9113 7.336

Backpropagadon

Ward Net 3 Hidden 0.1 0.1 0.9069 7.493

Slabs

Ward Net 2 Hidden

Slabs With Jump 0.4 0.1 0.9062 7.576

Connecton
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4.1.6 Pattern Selection

In determining the type of pattern selection that best suits this problem each pattern
selecion was run and the pattern selection that yielded the best result was used. It can be
seen that in Table 4.8 that random pattemn selection produced the better result statistically
for all three different architectures as the models are more robust. This further reinforces
the idea that random pattern selection should be used in problems that are cyclical such as

those that contain seasonal variations and/or complicated problems with numerical outputs.

Table 4.8 Pattern Selection

Architecture Pattern Selection r Mean Absolute Error
(ML/day)

4 Layer random 0.9113 7.336
Backpropagatdon rotational 0.8977 7.984

Ward Net 3 Hidden random 0.9069 7.493

Slabs rotational 0.8955 7.968

Ward Net 2 Hidden  random 0.9062 7.576

Slabs With Jump rotational 0.8722 8.877
Connecton

4.1.7 Scaling Function

In selecting the scale function to use for each model, both linear and non-linear functions
were tested. The linear functions out-performed the non-linear functions in their ability to
correctly forecast the daily water demand (Table 4.9). The non-linear scaling functons
squeeze together the high and low values of the original data range. This helps to minimize
the effect of oudiers, but also minimizes the importance of the extreme conditions. The
non-linear functions in this case would minimize the importance of the extreme events,
which are of the utmost importance in predicting daily water demand. This could be one

possible explanation why the linear scaling functions achieve better results than the non-
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linear scaling functions. Within the linear scaling functions the data were scaled using <<-

1,1>> and <<0,1>>. The <<>> brackets denote that any new data that is larger or smaller

than the minimum and maximum values that the model was trained on, will not be clipped

and the model will have to extrapolate. In the daily water demand problem, any new inputs

into the model that would be outside of the range the model was trained on, would not be

very far out of the range with the possible exception of the rainfall data. The temperature

values in the data set had 2 minimum and maximum temperature of -28.5°C and 33.6°C

respectively. Thus, the model will most likely have to only extrapolate a few degrees outside

of what is was trained on. The best results were obtained using the linear <<-1,1>> scaling

functon.

Table 4.9 Scaling Function Selection

Architecture Scaling Function r Mean Absolute Error
(ML /day)
linear <<-1,1>> 0.9113 7.336
4 Layer linear <<0,1>> 0.9010 7.808
Backpropagation logistic (0, 1) 0.8892 8.156
tanh (-1, 1) 0.8670 8.385
linear <<-1,1>> 0.9069 7.493
Ward Net 3 Hidden  linear <<0,1>> 0.8959 8.040
Slabs logisdc (0, 1) 0.8767 8.305
tanh (-1, 1) 0.8510 8.924
Ward Net 2 Hidden  linear <<-1,1>> 0.9062 7.576
Slabs With Jump linear <<0,1>> 0.9003 7.875
Connection logistic (0, 1) 0.8793 8.297
tanh (-1, 1) 0.8440 8.976

-70 -



4.1.8 Final Daily Model Selection

In determining the final model for use in forecasting the daily water demand, each model
was evaluated using its average prediction performance, performance on peak demand days
and input to output generalization. Using these steps gives a more thorough analysis of each

model than just using the average prediction performance to determine the models perform.

4.1.8.1 Average Prediction Performance

The average performance of the model quantifies how well the model predicts on average;
this is what the model selection so far has been based on. The selection process also only
considers the production data set, which is the independent data set that the model was not
trained and tested on during the learning process. In Table 4.10, the models’ performance
on the training, testing and production sets of data, as well as on all the data combined from
those three sets, is shown. A properly trained model will have similar errors on each data
set. The main reason for this comparison is to ensure that the model has learned from the
data, and not memorized them. If memorization of the data has occurred, the training set
data and possibly the testing set will have a significantly higher r* and lower mean absolute
error than the independent production set. As can be seen in Table 4.10, the models have
similar statistics on the different data sets, with the production set values being slightly better
than those of the training and testing sets. This indicates that the models have not
memorized the data, and might indicate that the production set data contained fewer
extreme or difficult to predict events than the other two data sets. The main points are that

the models did not memorize the data sets and their performance on overall is good.
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Table 4.10 Average Performance Indication

Architecture Data Set r Mean Absolute Error
(ML /day)
All Data 0.8911 8.201
4 Layer Training Set 0.8895 8.763
Backpropagation Testing Set 0.8834 8.313
Production Set 0.9113 7.336
All Data 0.8876 8.391
Ward Net 3 Hidden  Training Set 0.8863 8.907
Slabs Testing Set 0.8786 8.599
Production Set 0.9069 7.493
Ward Net 2 Hidden  All Data 0.8891 8.441
Slabs With Jump Training Set 0.8845 8.905
Connection Testing Set 0.8853 8.686
Production Set 0.9062 7.576

4.1.8.2 Peak Demand Performance

The average performance of the models is an important measure to gauge their ability to
predict daily water demand, but is not the only item to be considered. One major
consideration is the model’s ability to predict the water demand during peak periods, as this
is of major importance to a water utility. [t is also important to see how the errors in the

model’s predictions are distributed with respect to the level of water demand.

[n examining the error in the daily water demand prediction, it can be seen that the error in
prediction generally increases as the daily water demand increases (Figure 4.16 to Figure
4.18). It can be seen in Figure 4.16 to Figure 4.18 that the error in prediction is smaller in
the 290 — 320 ML/day range. This can be explained by the water demand in the winter
months (which fall into this range), being generally not as variable as during the summer
months, during which higher and more variable demands occur. With the water demand

having less variability in this period, there are more data available for training and testing the
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model in this range. In conjunction with having more data in this particular water demand
range because of the low variability in water demand during the October-April period, the
lower variability also leads to improved leaming for that specific range of data and smaller
errors, as the water demand does not change drastically. Conversely, the error associated
with the higher water demand tends to be larger. This is because the data for the model’s
training, testing and verification are spread out over a larger range. The one major fault of
the 4-layer backpropagation and Ward net with 3 hidden slabs models is that their residuals
have an apparent trend present up to approximately the 320 ML/day water demand. This
trend is not present for demands greater than 320 ML/day. This trend indicates that the
models may have some inadequacies. The most likely cause is that the inputs being used in
the models are either too few or that an extra input is needed for lower water demands,
where the trend is present. It was investigated whether splitting up the data into two sets
using the season index and developing two separate models, one for each season would lead
to an improved model. The best combination of the models led to an increase in the
average water demand error by 0.96 ML/day or 0.3% and a r* that was reduced by 0.04.
Thus, it did not improve the predictive ability by having two separate data sets based on the

season instead of a season index, and did not remove the trend that was present from 290

ML /day to the 320 ML/day.
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Figure 4.16 Daily Water Demand Error vs. Daily Water Demand for the 4-Layer
Backpropagation Network Model (Production Set Data)
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Figure 4.17 Daily Water Demand Error vs. Daily Water Demand for the Ward Net
with 3 Hidden Slabs Model (Production Set Data)
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Figure 4.18 Daily Water Demand Error Vs Daily Water Demand for the Ward Net
with 2 Hidden Slabs and a Jump Connection Model (Production Set
Data)

In choosing a water demand model, an important component is the ability for the model to
predict peak water demands. Peak water demands are of importance as this is the period
where a high water demand can actually exceed the water production of a water udlity. By
forecasting the high demand in advance, water can be stockpiled in the reservoirs to offset
any deficits that may occur. Also, with the foresight of a higher demand, the utility is able to
produce and pump the extra forecasted water demand at times of lower power costs. It is
also of importance to have a longer term forecast for this case as well; this will be discussed
later. In analyzing the results of the final three models, the residual plots of all the data were
used. The residual plots used were the percent error (ie. [predicted-actual] /actualx100) vs.

the actual water demand (Figure 4.19 to Figure 4.21). It can be seen that at all times each

model is able to predict within 12% of the actual water demands. The distribution of the
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percent error can be found in Table 4.11. The general breakdown of the models
performances on average is approximately that 90% of the time the models are able to
predict within 5% of the actual demand, 99% of the time within 10% of the actual water
demand and at all imes within 12% of the actual demand. These results refer to using these
models on the data from the specific time frame in which the models were trained, tested
and verified. This does not mean that these models will always be capable of predicting
within 12%, as new extreme or unique events may atise, or changes in the water use may
occur over time. This can lead to potentially larger errors in the prediction of the models.
The latter of the two problems can be remedied by retraining the model once a year, so as to
include the latest trends in water use. While nothing can be done in the extreme or unique
cases that may give rise to larger prediction errors, these new cases should be used in the
annual retraining, to expand the domain of the models. In cases where new inputs are
outside of the domain the model was trained on, the prediction can be flagged, to warn
operators that the prediction may contain larger errors as the inputs are outside or

approaching the domain limits of the models.
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Figure 4.19 Daily Water Demand %Error vs. Daily Water Demand for the 4-Layer
Backpropagation Network Model
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Figure 4.20 Daily Water Demand %Ertror vs. Daily Water Demand for the Ward Net
with 3 Hidden Slabs Model
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Figure 4.21 Daily Water Demand %Error vs. Daily Water Demand for the Ward Net
with 2 Hidden Slabs and a Jump Connection Model

Table 4.11 Distribution of Percent Error for Daily Water Demand

Network Data Set Percentage error

0-5 % 5-10% 10-15%
4 Layer Production 214 (90.7%) 21 (8.9%) 1 (0.4%)
Backpropagation Pattern 700 (88.8%) 79 (10.0%) 9 (1.1%)
Nerwork
Ward Net with 3 Production 212 (89.8%) 24 (10.2%) 0 (0.0%)
Hidden Slabs Pattern 693 (87.9%) 88 (11.1%) 7 (0.9%)
Ward Net with 2
Hidden Slabs and a Production 218 (92.4%) 18 (7.6%) 0 (0.0%)
Jump Connection Pattern 698 (88.6%) 85 (10.8%) 5 (0.6%)

*may not add up to 100% due to rounding

4.1.8.3 Input to Output Generalization

When examining the models, one area of focus should be the input to output generalization.

Studying the effect that each input has on the output is done to confirm that the model has
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learned the relationship between the input to the output as expected. For example, from the
current literature with respect to water demand and from the utilities past experience, it is
expected that the water demand should increase as the maximum temperature increases.
When the relationship between the maximum temperature and the predicted daily water
demand is plotted, there are two possible outcomes. First, the relationship between the daily
water demand and the maximum daily temperature is as hypothesized. This then lends
credibility to the past ideas on the relationship between the input and output. It also
reinforces that the model has most likely learned the relationship between the input and

output correctly (at least close to the correct generalization).

The second possibility is that the reladonship between the input and output is not
hypothesized based on past expetience and the current literature on the subject. This then
either indicates that the model has failed to learn the generalized relationship between the
input and output or that the current literature and past experience may not be entirely

correct.

4.1.83.1  Relationship of Temperature to Daily Water Demand

From the literature on the subject, the indication is that the daily water demand increases as
the daily temperature increases (Shvartser, et al. 1993, Tamada, et al 1993, Hall and
Maidment 1990, Hitte, et al. 1996). The water udlity also indicated that the relationship
between the daily temperature and the daily water demand should follow this type of
relationship with the temperature increasing in significance as the temperature increases.
Thus an exponential relationship would be expected over the range of the data, as indicated

when the actual daily water demand is plotted against the maximum daily temperature
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(Figure 4.22). When examining the plots of the model relationship between the maximum
daily temperature and the daily water demand found in Figure 4.22, it is found that the input-
output relationship berween the maximum daily temperature and the daily water demand is
also an exponential relationship over the range of the data. The general model and actual
relatonship differ during periods of higher demand that occurs after 10°C. This occurs as
the data for the model relationship were generated holding all the inputs constant with the
exception of the minimum and maximum temperature. The minimum temperature was
increased with the maximum temperature keeping a 10°C seperation between them. This
was to more closely represent the real life situation that the models will be operating in. This
was done to prevent the maximum temperature from being less than the minimum

temperature, as this can not happen by the simple definition of minimum and maximum. It

would also prevent unlikely scenerios where the minimum temperature would be -20°C and

the maximum temperature would be 20°C, as this is unrealistic in Edmonton, Alberta. Thus,
the relationship actually reflects the effect the minimum and maximum temperature has on
the daily water demand. The other inputs that were used to generate the model output
represent a summer weekday, no rain in the previous five days and a 10:00 am daily demand
of 400 ML/day. In examining Figure 4.22, the model and actual daily water demand
relationship with the maximum temperature, it should be noted that the other inputs affect
the actual demand water demand. During periods of low water demand such as during the
winter months there is little fluctuation in the actual water demand. During the summer
period when water demand fluctuates and is higher that the generaliztion doesn’t necessary
hold true. This is because it is the combination of the individual inputs, as well as, their

interactions that determine the daily water demand and are more pronounced during the
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summer months. This is where using ANNSs are beneficial, as they learn the effect of each

individual input, as well as, the interactions between the inputs.
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Figure 4.22 Actual and Model Relationship between Maximum Daily Temperature
and Daily Water Demand

With holding the minimum and maximum temperature 10°C apart the effect that each

individual temperature has on predicting the daily water demand is not apparent, only the
overall effect that the temperature has. To differentiate between the effect that the
minimum and maximum temperatures have on the daily water demand the minimum
temperature was held constant at three different minimum temperatures while the maximum
temperature was adjusted. It can be seen in Figure 4.23 that the lower the minimum
temperature, the lower the daily water demand. In Figure 4.24 it can be seen that the greater

the maximum temperature the greater the daily water demand.

-81-



336

332

328

W
N
H

320

Daily Water Demand (ML/day)

316

A
A = .-
s o " e
A - ®_
A - L
A g L
e — S '
= 4
® ‘
5 10 15 20 25

Maximum Temperature (C)

Minimum
Temperature
e0
e5
a10

30

Figure 4.23 Minimum Temperature Effect With Respect to Maximum Temperature

W W W
N NN
N A O

320

w
-
o

Daily Water Demand (ML/day)
ord
o

w
pre
H

for Daily Water Demand Model
A
a A Maximum
A Temperature
A L 3
A ] e5C
A a
A [ 2 10C
" o 15C
A
[ . . ® *- o
)
o ®
-12 -10 -8 -6 4 -2 0 2 4 6
Minimum Temperature (C)

Figure 4.24 Maximum Temperature Effect With Respect to Minimum Temperature
for Daily Water Demand Model

-82.



41832  Relationship of Previous Day Rainfall to Daily Water Demand

The previous day rainfall input relationship with the daily water demand as indicated by
recent literature on the subject indicated that the water demand should drop as the rainfall
increases (Fleming 1994, Shvartser, et al. 1993, Tamada, et al. 1993, Fildes, et al. 1997). The

water utility also indicated that this is the general case but depended on the other factors as

well.

In Figure 4.25 it can be seen that there is a slight trend in that as the previous day rainfall
increases the water demand decreases. It is also important to note in examining the data that
only 3 of the data points that are less than 300 ML/day belong to the category of summer
season and no previous day rainfall. Almost all of the remaining data that had a daily water
demand less than 300 ML/day occurred in the winter season. The model generalization of
the effect that the previous day’s rainfall has on the daily water demand is found in Figure
4.26. It can be seen that the 4-layer backpropagation network and the Ward network with 3
hidden slabs produce similar generalization in regards to the daily water demand and
previous day rainfall. Both models predicted a decrease in the daily water demand as the
previous day rainfall increases. The daily water demand decreases, levels off, and then
actually increases as the previous rainfall increases. This decrease and then the leveling off
were expected. The slight increase after was not, and is due to the few data points that were
available to train the models on. The Ward network with 2 hidden slabs and a jump
connection model predicted that daily water demand decreases slightly and then increases as
the previous day rainfall increases. Again, the inital decrease is as expected, the increase is
not. The increase in daily water demand is contrary to the current literature, the water

udlites past experience, and the other 2 models that were trained using two other types of
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architecture. The most probable explanation is that the Ward network with 2 hidden slabs
and a jump connection incorrectly leamed to generalize the relationship between the
previous day rainfall and the daily water demand. The model generated data were obtained
by inputting the other factors to represent a2 summer weekday with a minimum temperature
of 10°C, a maximum temperature of 20°C, a 10:00 am daily demand of 420 ML/day. The
rainfall in the previous 5 days was set equal to the previous day rainfall. This is simply saying

that there was no rainfall in the previous 2-5 days.

Daily Water Demand (ML/day)

0.0 10.0 20.0 30.0 40.0 50.0 60.0
Previous Day Rainfall (mm)

Figure 4.25 Actual Previous Day Rainfall vs. Daily Water Demand
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Figure 4.26 Model Generalization between Previous Day Rainfall and Daily Water
Demand

4.1.8.3.3  Relationship of Previous 5-day Rainfall to Daily Water Demand

As mentioned in the previous section the previous rainfall is an important factor in the daily
water demand. The importance of the previous rainfall is not only from the previous day,
which acts as a short-term rainfall input, but also the importance of a longer-term rainfall.
The previous 5-day rainfall is used for a mid to long-term rainfall input into the model as
significant rainfall in this time period affects the daily water demand even if there is no
rainfall the previous day. This is demonstrated in Figure 4.27. Similarly to the previous day
rainfall, the cluster of data points that are around the 0-mm rainfall and under 300 ML/ day
are from the winter season. A 15-day, 30-day or 45-day longer-term rainfall input as
discussed earlier was found to produce no improved performance. The general trend for the
summer months is that the higher daily water demand occurs when there is litle or no rain

in the previous five days and decreases as the 5-day rainfall increases, as expected. In Figure
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4.28 it can be seen that all three models developed have learned the generalization between
the daily water demand similarly. The generalization is also similar to the relationship in
Figure 4.27. It is important to remember that the model generated output data used for
Figure 4.28 were produced by holding all the other inputs constant. The actual daily water
demand in Figure 4.27 has all the inputs changing, as it is using the actual data for each day,
so an exact fit is not expected, but the general trend is to be. The model generated data were
obtained by inputting the other factors to represent a2 summer weekday with a minimum
temperature of 10°C, a2 maximum temperature of 20°C, no rain in the previous day and a

10:00 am daily demand of 420 ML/day.
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Figure 4.27 Actual Previous 5 Day Rainfall vs. Daily Water Demand
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Figure 4.28 Model Generalization between Previous 5-Day Rainfall and Daily Water
Demand

+.1.8.34  10:00 AM Water Demand to Daily Water Demand Reladonship

The importance of using a reference indicator or past water use trends has been identdfied in
predicting water demand (Ormmsbee and Lansey 1994, Hall and Maidment 1990, Hittle, et al.
1996, Jain and Ormsbee 1993, Fildes, et al. 1997). The correlation between the 10 a.m. water
demand and the daily water demand is expected in the sense that the 10 a.m. demand makes
up part of the daily demand. In Figure 4.30, it is interesting to note that the relationship of
the 10 a.m. water demand to the daily water demand is the most pronounced in the middle
of the water demand range and tapers off at the high and low ends of the water demand.
The leveling of the water demand coincides with the minimum and maximum water demand
that the water utility experiences. This indicates that the ANN models have learned that
even with new increasingly lower or higher 10 a.m. demands, the overall water demand has a

minimum or maximum value that it will reach. This is to say that that there is a general
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minimum water requirement (approximately 225 ML /day) that the water utility customers
require each and everyday. It also indicates that there is a maximum water demand
(approximately 500 ML/day) that will generally not be exceeded, it will only approach this
value. The minimum and maximum values will change as the number of customers, use of

water-efficient appliances, and the climate change over time.

When comparing Figure 4.29 and Figure 4.30, it can be seen that the model trend is similar
to the actual trend in the range of normal water demands. The only major difference is that
of the slope. The actual plot of the data reveals an almost one to one correspondence
between the 10:00 AM water demand and the daily water demand. The model generated
data used to show the relatonship that the model has learned between the 10:00 AM water
demand and the daily water demand has a slope of less than one. The difference is due to
the fact that the actual 10:00 AM demand is influenced by all the other inputs being used in
the daily water demand as well. Thus the 10:00 AM water demand already has the major
factors that affect the water demand built into it. In using only the 10:00 AM water demand
to predict the daily water demand, it will give a rough prediction of the daily water demand.
The model generated data in Figure 4.30 was generated by holding the minimum
temperature at 10°C, maximum temperature at 20° and no rain in the previous 5-days on a
summer weekeday. The resulting generalizaton between the 10:00 AM water demand and
the daily water demand, does not give us the effect that the 10:00 AM demand has on the
daily demand alone, even though all the other inputs are held constant. The 10:00 AM water
demand is inherenty linked to the other factors. By using the other factors in training the

models, it allows the models to weight the importance of each of the other inputs
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independently, instead of grouping them together as when only the 10:00 AM water demand

is used.
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Figure 4.29 Actual 10:00 AM Water Demand Vs. Daily Water Demand
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Figure 4.30 Model Generalization between 10:00 AM Water Demand and Daily Water
Demand

4.1.8.3.5  Relatonship of Weekend/Holiday and Weekday to Daily Water Demand

In forecasting water demand, one of the major contributing factor is human behavior. The
activities of the customers have a major influence on the water demand. Thus, when
examining the data and literature for the types of factors that affect the daily water demand,
one factor that was found was the difference between weekend/holiday and weekday water
demand use, both in quantity and the time of use throughout the day. The weekend and
holiday water use is similar in quantity and time of use thus they were grouped together. It
was found that, during the weekday period, the daily water demand was higher on average
than it was for the weekend/holiday period as seen in Figure 4.31. The data from the model
used to generate Figure 4.32, also show that the models predict that difference when

presented with the weekend/holiday and the weekday scenarios.

-90-



T

Daily Water Demand (ML/day)
s g 8 8
o (=] o o

250.0
40.0 -30.0 -200 -10.0 00 10.0 20.0 30.0 400

Maximum Temperature (C)

"o weekend/holiday s weekday
—— weekend/holiday trendline ==—=weekday trendline

Daily Water Demand
(ML/day)

-30 -20 -10 0 10 20 30 40 50
Maximum Temperature (C)

—eo— weekday (4 back) —a— weekday (Ward 3 slabs)
weekday (Ward 2 slabs/jump) —=— weekend/holiday (4 back)
—»— weekend/holiday (Ward 3 slabs) —e—weekend/holiday (Ward 2 slabs/jump):

Figure 4.32 Comparison of Weekday and Weekend/Holiday Daily Water Demand
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4.1.83.6 Summer and Winter Daily Water Demand Relationship

The acuvities of the water utlity customers have a major influence on the water demand.
With Edmonton, Alberta having a varying climate, were it is not uncommon to have
temperatures drop below -30°C in the winter and to reach +30°C during the summer. This
drastic change in temperature leads to different activities that the residents partake in, leading
to a change in water usage. The ANN models indicate that the historical data presented to it
have a trend that the water demand is slightly less during the October-April period than the
May-September period at higher temperature, and litle or no difference at lower
temperatures as seen in Figure 4.34. This may be due to the fact that there is little overlap in
the type of weather conditions that are similar between the two time periods. As during the
October-April period there is generally litde or no rainfall and cooler temperatures as
compared to the May-September period. When comparing the data it has to be taken into
account that the model has not been trained on data in that range and is extrapolating. As
an example, for the May-September period no data were present that represented a
maximum temperature of -15°C for the day thus the model is extrapolating outside of its
domain to obtain the results displayed in Figure 4.34. The area of most interest is the data
with the maximum temperature between 10°C and 20°C, as this is where the overlap of
similar climate is going to occur between the two-season index. In between the maximum
temperature of 10°C and the 20°C, it can be seen that the water demand is slightly higher for
the May-September period. This is also apparent where the actual data are used in Figure

4.33, as the trend lines start to diverge between the 10°C and 20°C maximum temperature.

.92



500.0
450.0
400.0
350.0
300.0

250.0
<400 -30.0 -200 -100 00 100 20.0 30.0 40.0

Maximum Temperature (C)

Daily Water Demand
(ML/day)

e October - April (Winter) e May - September (Summer)
Trendline October - April e Trendline May- September
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4.1.9 Final Daily Water Demand Model

The final daily water model selected was a combination of the 4-layer backpropagation and
the Ward net with 3 hidden slabs. The Ward net with 2 hidden slabs and a jump connection
was excluded because the model input to output generalization for the previous day rainfall
was contrary to what was expected from the literature and from the trend of the actual data.
The combined model is simply the average of the two model predictions. The combined
model has an r* of 0.911, mean absolute error of 7.35 ML/ day (2.27% error), maximum
absolute error of 28.53 ML/day (8.81% error), predicted within 5% of the actual water
demand 90.7% of the ume and within 10% of the actual water demand 100% of the time on
the production set data. The combined model also follows the general trend of the data and

predicts the peak demand as can be seen in Figure 4.35.
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4.2 Twelve Day Water Demand Forecast Model

The 12-day water demand forecast model is used to predict the water demand for each day
from day 2 through day 12. It has similar inputs to the daily water demand with the
exception that the previous day water demand is used as an input instead of the 10 A.M.
water demand. Both of the aforementioned inputs are similar to each other, as they are
reference indicators used in the model forecasts. With almost all the model inputs and data
the same, as well as the output, with the one exception, the problem is virtually identical to
the daily water demand forecast. Thus the same architecture, number of neurons, activation

funcdons, etc. were used as the daily water demand for the 2-12 day model.

4.2.1 Final 2-12 Day Model Selection.

The 2-12 day model results are based on using the actual inputs for the data even though for
real-ime use, some of the inputs are obtained from forecasts. Thus on January 1%, the
January 12* meteorological data were used as the inputs to predict the day 12 water demand.
In real-time operation this would not be the case, as only the weather forecasts or 30-year

average values will be available.

4.2.1.1 Average Prediction Performance 2-12 Day Model

As can be seen in Table 4.12 that the models have similar results on the different data sets,
with the production set ¢* values only slightly lower than those of the training and testing
sets. The different data sets having similar r* values indicate that the models have not
memorized the data. The main points are that the models did not memorize the data sets

and their performance on average are good with a mean absolute error of roughly 10
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ML/day (3% error). With the water utility experiencing water demands that averaged 331
ML/day, the ANN models produced an average etror of less than 3%, which is within the

error of the flow meters.

Table 4.12 Average Performance Indication

Architecture Data Set r Mean Absolute Error
(ML./day)
All Data 0.8330 9.86
4 Layer Training Set 0.8429 9.48
Backpropagation Testing Set 0.8384 10.20
Production Set 0.8112 10.01
All Data 0.8315 9.69
Ward Net 3 Hidden  Training Set 0.8340 9.49
Slabs Testing Set 0.8467 9.91
Production Set 0.8091 9.73
Ward Net 2 Hidden  All Data 0.8547 9.23
Slabs With Jump Training Set 0.8872 8.32
Connection Testing Set 0.8421 10.01
Production Set 0.8188 9.66

4.2.1.2 Peak Demand Performance

[n analyzing the results of the final three models, the residual plots of all the data were used.
The residual plots used were the % error (i.e. [predicted-actual]/actualx100) vs. the actual
water demand (Figure 4.36 to Figure 4.38). It can be seen that at all times each model is able
to predict within 17% of the actual water demands. The distribution of the % error can be
found in Table 4.13. The general breakdown of the models performances on average are
approximately that 83% of the time the models are able to predict within 5% of the actual
demand, 97% of the time within 10% of the actual water demand, 99.9% of the time within
15% of the actual water demand and at all times within 17% of the actual demand. That is

when using these models on the data from the specific time frame in which the models were
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trained, tested and verified on. As discussed in the Daily Water Demand results, this does
not mean that these models will always be capable of predicting within 17%. Thus, the
models should be retrained once a year, to include the latest trends and any new extreme
conditions in the water demand. In the same way as the daily water demand predictions are
to be flagged when new inputs are outside of the domain that the model was trained on, the

same should be done for the 2-12 day forecast models.
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Figure 4.36 Daily Water Demand %Error vs. Daily Water Demand for the 4-Layer
Backpropagation Network Model for 2-12 Day Model
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Figure 4.37 Daily Water Demand %Error vs. Daily Water Demand for the Ward Net
with 3 Hidden Slabs Model for 2-12 Day Model
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Figure 4.38 Daily Water Demand %Etrror vs. Daily Water Demand for the Ward Net
with 2 Hidden Slabs and a Jump Connection Model for 2-12 Day Model
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Table 4.13 Distribution of Percent Error for Daily Water Demand 2-12 Day Model

Network Data Set Percentage error

0-5 % 5-10% 10-15% 15%<
4 Layer Production 192 (81.4%) 38 (16.1%) 6 (2.5%) 0 (0%)
Backpropaganon Pattern 649 (82.3%) 116 (14.7%) 22(2.8%) 1 (0.1%)
Network
Ward Net with 3 Producuon 196 (83.1%) 31 (13.1%) 9 (3.8%) 0 (0%)
Hidden Slabs Pattern 654 (83.0%) 112 (14.2%) 21 (2.7%) 1 (0.1%)
Ward Net with 2
Hidden Slabs anda  Production 199 (84.3%) 26 (11.0%) 11 (4.7%) 0 (0%)
Jump Connection Pattern 666 (84.5%) 100 (12.7%) 21 (2.7%) 1 (0.1%)

*may not add up to 100% due to rounding

4.2.1.3 Input to Output Generalization

The input to output generalizaton was studied to investigate the relationship between the
inputs and the output. Studying the effect that each input has on the output is done to
confirm that the model has learned the relatonship between the input to the output as we
had expected from the past literature and operator experience. The results will either give us
the relagonship we expected or an unexpected outcome. With the relationship being as
what one generally expected, the ANN model has most likely learned the general
reladonship between the input and the output. If the relatonship is unexpected, this can be
either due to the fact the model has incorrectly learned the input to output relationship, or it

can give us new insight to the input to output relationship.

+.2.1.3.1 Relauonship of Temperature to Dailv Water Demand

From the literature on the subject and the water utlity’s past experience, the indication is
that the daily water demand increases as the daily temperature increases. The input to

output generalization for the 2-12 day model should be same as the daily water demand
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model. Thus an exponental reladonship would be expected as indicated when the actual
daily water demand is plotted against the maximum daily temperature (Figure 4.22).
Examining the plots of the model relationship between the maximum daily temperature and
the daily water demand (Figure 4.39) it is found that the input-output relatonship between
the maximum daily temperature and the daily water demand is as was expected for the 4-
layer backpropagation network and the Ward network with 3 hidden slabs. The Ward
network with 2 hidden slabs and a jump connecdon follows the same trend as the other two
models, but has a local maximum at -15°C. Comparing, the Ward network with 2 hidden
slabs and a jump connection temperature to water demand relationship to the actual water
demand to temperature relatonship shown in Figure 4.22, the local maxima at -15°C is not
present. With the increase in water demand not present in the actual data, and the fact that

the other models developed do not experience this peak, this model has most likely not

learned the generalization between the temperature and the water demand.

The data for Figure 4.39 were generated using the three models mentdoned previously.
When generating the output data all other inputs were held constant with the exception of
the minimum temperature. The minimum temperature was increased with the maximum
temperature with a 10°C seperation between them. This was to more closely represent the
actual situation that the models will be operating in. This was done to prevent the maximum
temperature from being less than the minimum temperature, as this can not happen by the

simple definiton of minimum and maximum. It would also prevent unlikely scenerios
where the minimum temperature would be -20°C and the maximum temperature would be

20°C, as this is unrealisic. Thus, the realtonship actually reflects the effect the minimum
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and maximum temperature has on the daily water demand. The other inputs that were used
to generate the model data represent a summer weekday with no rain in the previous five
days and a previous day water demand of 320 ML/day. When examining the actual daily
water demand relationship with the maximum temperature in Figure 4.22 it should be noted

that the other inputs affect the actual demand but a general relationship is still seen.

Since a constant difference in the minimum and maximum temperature of 10°C was
maintained, the effect that each individual temperature has on predicting the daily water
demand is not apparent. To differentiate between the effect that the minimum and
maximum temperatures have on the daily water demand the minimum temperature was held
constant at three different minimum temperatures while the maximum temperature was
adjusted. It can be seen in Figure 4.40 that with a lower minimum temperature, there is a
slightly lower daily water demand. In Figure 4.41, it can be seen that the greater the
maximum temperature the greater the daily water demand. For every 5°C increase in

temperature there is a corresponding increase in the daily water demand of 7.5 ML/day.
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+.2.1.3.2  Reladonship of Previous Day Rainfall to Daily Water Demand
The relatonship between the previous day rainfall with the daily water demand as indicated
by recent literature and the water udility, indicates that the water demand should drop as the

rainfall increases in general, but is dependent on the other input interactions as well.

The model relationship of the previous day rainfall and the daily water demand is found in
Figure 4.42. It can be seen that the 4-layer backpropagation network and the Ward network
with 3 hidden slabs produce similar generalization in regards to the daily water demand and
previous day rainfall. The daily water demand decreases with both models as the previous
day rainfall increases. The Ward network with 2 hidden slabs and a jump connection model
daily water increases as the previous day rainfall increases, which is contrary to the historical

data, the current literature, and the other models developed. The most probable explanation
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is that the Ward network with 2 hidden slabs and a jump connection incorrectly learned to
generalize the relatonship between the previous day rainfall and the daily water demand.
The model generated data was done by inputting the other factors to represent a summer
weekday with a minimum temperature of 10°C, a maximum temperature of 20°C, and the
previous day water demand of 320 ML/day. The rainfall in the previous 5 days was set equal

to the previous day rainfall, this is simply saying that there was no rainfall in the previous 2-5

days.
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Figure 4.42 Model Generalization between Previous Day Rainfall and Daily Water
Demand for 2-12 Day Model

42133 Relatonship of Previous 5-day Rainfall to Daily Water Demand

[t can be seen in Figure 4.27, that previous 5-day rainfall is important as substandal rainfall in
this tdme period effects the daily water demand. The general trend for the summer months
is that when there is little or no rain in the previous five days, the higher the daily water

demand is and decreases as the 5-day rainfall increases. In Figure 4.43 it can be seen that all
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three models developed, indicate that higher previous 5-day rainfall leads to lower daily
water demands, but to varying degrees. The Ward network with 3 hidden slabs puts less
significance on the importance of the previous 5 day rainfall input than the 4 layer
backpropagation network. However, the Ward network with 3 hidden slabs puts more
significance on the previous day rainfall than the 4 layer backpropagation network model
does, thus both models have learnt the significance that rainfall has on the water demand,
but differs on when the rainfall occurs. The Ward network with 2 hidden slabs and a jump
connection has a slight increase 2nd than a decrease in the water demand as the previous 5-
day rainfall increases. The model generated data was done by inputting the other factors to

represent a summer weekday with 2 minimum temperature of 10°C, 2 maximum temperature

of 20°C, no rain in the previous day and a previous day water demand of 320 ML/day.
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Figure 4.43 Model Generalization between Previous 5-Day Rainfall and Daily Water
Demand for 2-12 Day Model
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42134 Relationship of Previous Day Water Demand to Daily Water Demand

The correlation between the previous day water demand and the daily water demand is
expected in the same sense that the 10 a.m. water demand was used in the daily water
demand model. When comparing Figure 4.44 and Figure 4.45, it can be seen that the model
trend is similar to the trend that is seen in the historical data. The model generated data in
Figure 4.45 was generated by holding the minimum temperature at 10°C, maximum

temperature at 20° and no rain in the previous 5-days on a summer weekday.
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Figure 4.44 Actual Previous Day Water Demand Vs. Daily Water Demand
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Figure 4.45 Model Generalization between Previous Day Water Demand and Daily
Water Demand for 2-12 Day Model

42135 Weekend/Holiday and Weekday Daily Water Demand Relationship

Human behavior needs to be taken into account when forecasting the water demand. One
of these factors that were found was the difference between weekend/holiday and weekday
water demand use, both in quandty and the time of use throughout the day. It was found
that during the weekday that the daily water demand was higher on average than it was for
the weekend/holiday period, as seen in Figure 4.31. The data generated from the model
used for Figure 4.46, also show that the 2-12 day models predict that difference when
presented with the weekend/holiday and the weekday scenarios. The Ward network with 2
hidden slabs and a jump connection is the only deviation from this. On the weekend it
predicts the weekend water use similar to the other two models above 5°C, but the weekend

predictions are similar to the weekday prediction below 5°C.
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Figure 4.46 Comparison of Weekday and Weekend/Holiday 2-12 Day Water Demand

4.2.1.3.6  Summer and Winter Daily Water Demand Relatonship

The ANN models indicate that the historical data have a trend in that the water demand is
about 10 ML/day or 3% less during the October-April period than the May-September
pedod under similar conditions as seen in Figure 4.47. This is slightly contradictory to the
results obtained in the daily water demand model, where at higher temperatures there was
about a 5 ML/day difference in water demand between the two seasons and at lower
temperatures there were no difference. The difference is that the 10 AM water demand
mput in the daily water demand model has a greater weight than the day before water
demand in the 2-12 day model. The use of the 10 am demand acts as a better reference
indicator than the day before water demand, as it is part of the water demand for the day,
and reflects the conditions and trends in the water use for that day. The day before water

demand in general acts in a similar way, but is further away from the actual forecast in time.
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This spanal difference then allows time for events to occur that would alter the water
demand for the forecasting period. Thus, the day before water demand in the 2-12 day
model is not weighted as heavily as an input parameter. With the day before water demand
having less of a weighting, one or more of the other inputs would have to increase in their

weighting to offset that difference.
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Figure 4.47 Comparison of May-September and October-April Daily Water Demand
for 2- 12 Day Model

4.2.2 Final 2-12 Day Water Demand Model

The final 2-12 day water model selected was a combination of the 4-layer backpropagation
and the Ward net with 3 hidden slabs. The Ward net with 2 hidden slabs and a jump
connection was excluded in that the model input to output generalization for the maximum

temperature, previous day rainfall and weekday/weekend were contrary to what was
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expected from the literature, as well as, the trend from the actual data. The combined model
is the average of the 4-layer backpropagation model and the Ward network with 3 hidden
slabs predictions. The combined model has a r* of 0.8448, mean absolute error of 9.96
ML/day (3.07% error), maximum absolute error of 47.50 ML./day (14.66% error) on the
production set data. It also predicted within 5% of the actual water demand 82.2% of the
rime, within 10% of the actual water demand 96.6% of the time, and at all umes within
12.4% of the on the production set data. The combined model also follows the general
trend of the data and hits the peak demand as can be seen in Figure 4.48. The results in
Figure 4.48 are based on using the actual temperature and rainfall inputs, as opposed to
using the forecasted temperature and 30 year average values. The results for day 2-12 will
decline as the weather forecasts are not as accurate the further it is predicted into the future,
and as the model gets to day 6 it will be only using 30-year average values for the
meteorological inputs. In using the 30-year average values the water demand forecast
follows the general trend of the water demand as seen in Figure 4.49. The model can not
predict the peaks in the water demand after day 5, as the inputs are average values only, and
not the extreme events that are associated with the peaks in water demand. To examine the
ability of the 2-12 day model, a real time simulation was run for the July of 98, which had an
average demand of 376 ML/day. A summer month was used in the real uame simulaton as
this is where the most variability in water demand is seen and thus is the most difficult to
predict. Thus the results for the one summer month will be worse than if one full year is
used, as during the winter months where there is little variability the model results will
improve. The results of the real time simulation are outlined in Table 4.14. It can be seen
that it goes from a r* of 0.66 with an average error of 21.5 ML/day (5.72% error) on day 2 to

a r’ of 0.09 and average etror of 40.4 ML/day (10.74%) by day 12.
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Figure 4.49 Day 12 Prediction Using 30-Year Average Inputs
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Table 4.14 Real Time Simulation Results for July, 1998

Day 4 average mean absolute Percent Error
error (ML /day)
1 0.87 125 33
2 0.66 21.5 5.7
3 0.54 26.3 7.0
4 0.46 28.6 7.6
5 0.32 335 8.9
6 0.22 35.0 9.3
7 0.18 35.2 9.4
8 0.16 35.9 9.5
9 0.13 374 9.9
10 0.12 38.5 10.2
11 0.11 39.4 10.5
12 0.09 40.4 10.7

4.3 Hourly Water Demand

To model the hourly water demand a different approach was used. Since the water demand
throughout the day is similar in its distribution to that of any other day, dimensionless
(normalized) demand curves were used. The dimensionless demand curves were developed
by dividing each hourly demand by the average of the daily demand for the specific curve
being developed. As the water use pattern differs from weekday to weekend/holiday, seen
in Figure 4.50, separate normalized demand curves where developed for weekdays and
weekend/holidays. With the differences in water demand, different dimensionless demand
curves were also developed to account for the slight difference in shape that was associated
with the change in the water demand. This is demonstrated in Figure 4.51 to Figure 4.54. It
can be seen that the major differences in the normalized demand curves occur at the two
peaks in the water demand. At the first peak, which occurs at approximately at 10 am during
the weekend/holiday curves and 7:00 am for the weekday curves, the lower the water
demand the higher the resulting peak is on the normalized curves. Conversely the second

peak, which occurs between 6:00 - 9:00 PM, the higher the daily water demand the higher
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the peak on normalized demand curve. Also with the second peak, the time that the peak
occurs at also depends on the water demand. With low water demands the peak occurs

around 6:00 PM, as the daily water demand increases, the time the peak occurs at increases

up to a maximum of 9:00 PM.
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With the different dimensionless demand curves developed for the different seasons, day of
the week and the daily water demand, their accuracy needed to be tested. They were tested
by superimposing the appropriate normalized curve on each water demand in the data set
and then comparing it to the actual water demand for that hour and conditon. In Table
+.15, it can be seen that the normalized demand curves predictions on average have an error
of 0.03 or 3% with a standard deviation of 0.03 and a r* 0.96. The curves had a very high
maximum error of 53%. To better understand the distribution of the hourly demand errors,
the error was broken down into what percentage of the hourly prediction falls within
different ranges of error in Table 4.16. Using the normalized demand curves to predict the
hourly water demand, they predict within 10% of the hourly water demand 95% of the time

and within 30% of the actual hourly demand over 99.9% of the time.

Table 4.15 Statistical Error Analysis of Dimensionless Demand Curves

average minimum maximum standard r
error error error deviation
Dimensionless 0.03 0.00 0.53 0.03 0.96
Demand
Water Demand
11.34 0.00 181.04 11.17 0.96
(ML /day)
Table 4.16 Error Distribution for Hourly Demand Predictions
Percent Error in Hourly Prediction
<5% 5-10% 10-15% 15-20% 20-30% >30%
Distdbution of | . ., | oo 333% | 079% | 031% | 0.08%
Errors

-117 -




S Applications

The final models can be used to predict the hourly, daily and 2-12 day water demands.
Using these models as opposed to relying on operator experience is beneficial in a variety of
ways. First, the models developed free up the operators, as they are no longer needed to
develop the water demand forecast. Second, the operator developed water demand forecast
is based on the operator’s past experences, while some operators may have the experience
and expertise to develop an accurate forecast, others do not. Thus by using the ANN
models and the normalized demand curves the accuracy and error associated with the
forecasts are known, where as it varies with each operator. Third, by moving to a formalized
water demand forecast, an accurate forecast isn’t reliant on any one person having the ability
to develop the forecast. When an experienced operator leaves the water treatment plant and
3 new operator is hired, the experence is lost and the ability to develop an accurate operator

water demand forecast is compromised.

The primary use of a water demand forecast is to determine the amount of water production
the utility needs to meet the demands of its customers. The daily demand forecast allows the
water udlity to ensure that the flow (production) rate through the plant is able to meet the
demands for that day. The production rate is not solely set on the daily demand itself, it also
needs to take into account other factors such as the reservoir levels, and the expected longer
term demand. If the reservoir levels are low, the production level is adjusted so that it meets
the daily demand, plus refills the reservoirs if the water treatment plant’s capacity allows.
The longer-term demand also needs to be considered. If the water treatment plant is coming
mto a predicted period of high water demand, it is able to increase production and fill the
reservoirs so that it is able meet the high demands and avert a possible water shortage.
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Being proactive in predicting the higher demands allows a smaller increase in producdon to
be spread out over a longer period of time. This is to ensure that the water treatment plant’s
finished water quality remains as high as possible while still meeting the demands of its
customers. The other major benefit of having the 12-day forecast is that it allows the water
udlity to evaluate any possible shortcomings in their ability to supply water, while scheduling
maintenance that affects the plants treatment capacity. When planning scheduled
maintenance and a possible water shortage is foreseen, the maintenance would be delayed to

a later date when a lower demand is expected, providing the maintenance can be delayed.

The hourly water demand gives a more in-depth look at the water demand. It allows the
udlity to identify the water use closer to the instantaneous use of its customers. The hourly
demand forecast can be used to aid in minimizing the cost of pumping the water to the
reservoirs in the distribution system. This is essentally done by filling the reservoirs at night
during periods of low demand and low energy costs. The idea is simple, but where it
becomes more complex is that the reservoir space is limited, both at the water treatment
plant and off-site throughout the distribution system. Using the hourly water demand
forecast allows the utility to maximize the quantity of water that is pumped to the off-site
reservolrs during periods of low electrical costs. During periods of high electrical costs, the
quanaty of water being pumped from the water treatment site can be teduced to a level such
that the water is being drawn from the reservoirs and is only augmented from the water
treatment plant’s on-site storage. The hourly water demand forecast determines the amount
of water that needs to be augmented, such that the levels within the reservoirs are not drawn
down below a safe level This is to ensure that there is sufficient water available in case of an

emergency and for fire protection.
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The NeuralShell 2 software supports dynamic link library (DLL) file types. This allows
ANN models to be executed not only within the NeuralShell 2 software, but in programs
watten in Visual Basic, Access Basic, Pascal, C, Excel, plus a few other languages. The
models can be used manually to fully automated for forecasting the water demands. The
operator, to obtain the resulting water demand output can input the inputs manually into the
models. The inputs also could be input automatically via a SCADA system, with the water
demand output being fed back into the SCADA system to be input into a pump schedule,

the water production schedule or any other system where it may be of use.
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6 Conclusions and Recommendations

6.1 Conclusions

The purpose of this study was to develop artificial neural network models for forecasting the
daily water demand for up to 12 days in advance for EPCOR Water Services in Edmonton,
Alberta. In conjunction to the daily water demand a method was needed to breakdown the
daily water demand in to its hourly demand. Both the daily and 2-12 day models were
developed using historical data, and verifying them on a previously unseen data set. Both
models developed were able to predict the water demand with a high degree of accuracy.
The model characteristics are outlined in Table 6.1 and the input parameters are summarized
in Table 6.2. The daily water demand out performed the 2-12 day model in its ability to
predict the water demand as the further into the future one must peer, the larger the error in
the predicton. The hourly water demand predictions were for the most part highly accurate
as well, with only a few predictions that were significanty off. Even though the odd hourly
prediction was off, the method used to develop the hourly prediction was such that the

cumulative 24-hour prediction would not be.

Table 6.1 Daily and Twelve Day Water Demand Model Characteristics

Network Learning | Momentum | Neurons Scaling Activation | Pattern
Architecture rate Function Selection Selection
4-Layer 0.4 0.2 8:8 linear tanh15 random
Backpropagation <<-1,1>> | tanhl5
Ward Net 3 0.1 0.1 8 linear tanh15 random
Hidden Slabs 8 <<-1,1>> gaussian

7 sine
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Table 6.2 Classification of input parameters

Daily Input Parameter

12 Day Input Parameter

Parameter type

Minimum daily temperature
Maximum daily temperature
Previous day’s rainfall
Previous 5-day’s of rainfall
Weekday/weekday index
Season index

Water demand at 10:00 am*

Minimum daily temperature
Maximum daily temperature
Previous day’s rainfall
Previous 5-day’s of rainfall
Weekday/weekday index
Season index

Previous day’s water demand

Meteorological
Meteorological
Meteorological
Meteorological
Human behavioral
Human behavioral

Reference indicator

*The water utility forecasts their water demand at 10:30 am

6.1.1 Daily Model

The final daily water model selected was the average prediction of the 4-layer
backpropagation and the Ward net with 3 hidden slabs. The Ward net with 2 hidden slabs
and a jump connection was excluded as the model input to output generalization for the
previous day rainfall was contrary to the trend of the actual data and what is expected from
the literature. The combined model has a r* of 0.911, mean absolute error of 7.35 ML/day
(2.27% error), maximum absolute error of 28.53 ML/ day (8.81% error) on the production

set data. The combined model also follows the general trend of the data and predicts the

peak demands.
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6.1.2 Two to Twelve Day Model

The final 2-12 day water model selected was the average prediction of the 4-layer
backpropagation and the Ward net with 3 hidden slabs. The Ward net with 2 hidden slabs
and a jump connection was excluded in that the model input to output generalization for the
maximum temperature, previous day rainfall and weekday/weekend were contrary to the
trend from the actual data and what was expected from the literature. The combined model
has a r* of 0.8448, mean absolute error of 9.96 ML/day (3.07% error), maximum absolute
error of 47.50 ML/day (14.66% error) on the production set data using the actual values as
the inputs as opposed to the weather forecast and 30-year average values. The combined
model also follows the general trend of the data and hits the peak demands. In using the 30-
year average values, the water demand forecast follows the general trend of the water
demand, but does not predict the peak demands. The real time simulation resuited in the
combined model capable of an ¢* of 0.66 with an average error of 21.5 ML/day (5.72%

error) on day 2 to an r* of 0.09 and average error of 40.4 ML/ day (10.74% error) by day 12.

6.1.3 Hourly Water Demand

The normalized demand curves predictions have an average error of 0.03 or 3% with a
standard deviation of 0.03 and a r* 0.96 in predicting the hourly demand. The hourly
demand had a very high maximum error of 53%. Using the normalized demand curves to
predict the hourly water demand, they predict within 10% of the hourly water demand 95%

of the ume and within 30% of the actual hourly demand over 99.9% of the time.
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6.2 Recommendations

The collection of historical data should be continued. The models should be retrained
periodically. The models need to be retrained periodically so that any changes in water usage
by the customers is learned and also to account for growth. The data collection should also
be expanded to include other possible inputs that are not currently collected or periodically
collected. Data recommended to be collected are the probability of precipitation and a
sunshine hours surrogate input. The probability of precipitation is periodically recorded, but
a more extensive database, which includes probability of precipitation, is needed. Even
though the sunshine hours input is available, a forecast for this input is not available. A
surrogate input could be collected in its place, such as cloud cover. Instead of collecting
cloud cover information a system could also be developed to approximate the number of
sunshine hours from the forecasted cloud cover. As this system does not need to predict the
suashine hours exactly, a ball park figure input to distinguish between clear, partially cloudy,
mainly cloudy and over cast conditions may suffice. Developing a cloud cover to sunshine
hour system is preferable to collecting cloud cover data as it could be implemented

immediately as opposed to the time needed to collect the cloud cover data.
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