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ABSTRACT .
| Thé increasing popularity of large virtual-memory
computing systems has provided gﬁe stinulus for new research
in the areas of computer-system performance evaluation and
program behaviour. The focal point of this study involves a
possible technique for improving program perfoglance in
paged-memory sysfems. Atteﬁtion is focused on optimization
of the behaviour of individual programs to eliminate
excessive paging. The purpose of this research is to
investigate whether"or not a reorganization of the
relocatable modules of the prdéram vithin the pages is
indeed a viable procédure. In order to achieve &
restructurinégof the program's pages, information Foncé%ning
the interaction of the program modules is necessary. A$ a ’
result, the experimental work includes monitoring the
béhaviour'of several selected programs as well as examining

the benefits obtained from a page reorganization.
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-CHAPTER 1

- INTRODUCTION

e

1.1 In ggggctlog . ‘Q
The;energence*of large complicated cOmputer syshems in

which several prcblem programs compete for the resources of
the system has led to increased interest in the areas of
computer systems performance evaluatlon and optimization.
The operatlng system has come to assume the responsibility
of nanaglng the job stream presented to the CPU’for
processino and that of mainteining full usage of the
hardware/resources.

xt The de51re to maintain helanced hardvare resource usage
led to the concept of proce551ng several jobs
51multaneou=ly. however, the idea depends on the
ava;lablllty of a balanced workload to utilize all resources
equally. If several jobs atteapt to monopolize a particular
resource then one wlli,eventually hinder the execution of
them all. This study is aimed at reducing the impact of

1ndiv1dual johs on other johs and the operating system,

~

q

i
Speclficall{ a paglng operatfhg system.

s
The natnré of this research is purely exploratory.and

is concerned with the optinlzation of prograns executlng in
a paglng operatlng systen. The proposed schene involves

reordering qr reorganlzlng the relocatable nodnles of a

prograu so th f it is executed more efflclently.

4
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The efficiency of execution is judged to be dependent onlwhe
system overhead required to handle the prbgram.\ In Vo

“.
particular, for paging systems, the goal is.to reduce the

nunber of program interrupts Eaused wher the system must ",
5ring needed data from auxiliary storagé to main memory. It
is the main memory resource which is in great demand in'a |

- heavily loaded paging system and it is desirable to redece
the centention for main storag;.

Sihce'the research is at the stage of inveétigationf it
rust draw knowledge from related areas, including prggraﬁ
behaviour, cptimization teéhniqeee‘and operating systems.

By ggtgpring experimental data from progrehs running in a
:paging system and examining the proposed reorganiration it
is hopeé that the practicality of such a scheme can be
established. Also, from the information collected and the
way in which it was collected, new persPecrives on program
monitoring can be gained. ‘Tﬁe statistics which have been
gathered prcve fe be extremely ueefuliin evaluating
programming technigues for paging systeams. - f
: \
. : , \

. In the'reneinder of this introductory chapter, ,pe
development of computer ‘memory sysrems is explored. The
Lreview concentrates on, the organizatlon of such systems
rather than the partlcular hardware devices. In addltlon,
nethods of address1ng 1nforlation are discussed [A3, Du]

The reviev is presented on the basis of - conplexlty,

sophistlcatlon,vand,for the most part, thonologlcal order.




However, it is difficult to present the exect time line of

events, since the 1mplementat1cn of varlous systems did not
N Y

parallel the soph1$ticat10n of the systems.

4

since the advent of the stored-progran conceﬁ!n‘
introduced by von Neumann:/[V1] and first'implémented'on the

‘Edvac and Edsac computers, a prime consideration in the

A}

development of computér systems has .been the allocation of
storage facilities. In the earliest computer systems, this
problem vas left entirely to thé user.: There existed no

operatlng system and feu utlllty programs so the programmer
was respon51ble for loading and runnlng his own programs

&

from the main console. . xhe entire memory was free to be

-

occupled by the user program' therefore, the only problem

was ensurlng that the program wohld f1t into memory.

- :
U

As the nethods of qtorage allocatlon have developed

-

from the early single-job environment to the present
multiprogrammlng and tlmesharlng systems, the method of
addressing information has also evolved.. ThlS evoldtlon'hés
ybeed im.respect to the.trj;slation of a~program;s name eéage
t(1e. set of names used in. the prdgram to refer to
;1nfornat10n items) to the: conputer's physical address spaoe
.(ie. set og phys:cal address locations 1n the computer'
memory) {R1]. The.early prograas, wrltten 1m nacmlme
language, required all referemces to B3 physical memory

»
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addresses. Thus the association of ' the name space to the

address space was performed by the programmer. The

“developm®nt of the assembler-loader allowed the programmer

e SN

to employ symbclic addresses which were converted to

absolute machine addresses at assembly tinme.

The occurrence of situations in-which 4 program grew
larger than the available memory led to the development of
overlay techniques. The progras is manually divided into
segments such that each is capable of fitting into main

~memory (ié. that memory which is directly addressable by the
processor) . 'As each segment terminates execu£ion (ie. calls
another segment) it i§~536rlayed by its suqcesggilrlhich is
located on some backing stcrage device, and execution
resymes. Usually a blockvof memory, knoyn as a common
region, 1is reserved fo:~siorage of data being transferred
from one program segment to the next. A more general
approach to thilﬁréblel of programs which can be only

" partially contaimed ip main memory is referred to as
“folding" fS1]. The name space of the program must be
‘Tearrahged to fit into the smsaller address space, and
réferénces to inforlation.outside the main memory amust

result in the fetching of the information from some backing

L]

-

storage device. .

%,

Nem
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1.3 Earply Supervisory Systems

It soon became evident thAtAunlass computing systenms

oftered ease ot access their use would never gain
) :
popularity. The solution cﬁosen vas to vrite software to
handle the cumbersome and recurring tasks such as loading
N

programs, handling interrupts, converting codes and even
recognizing errors.. The nucleus of supervisory programs is
usually resident in memory and thus the main expense is the
losg of memory capaé?ty-for thF user program. In this two
level syste:,Aconsistiné of su}ervisory‘programs on one ‘
level and user prograss on~dnother, storége allocation was
still b&sically left to the‘user,.although there were
instances vhere the supervisory programs performed overlays

on command. The programmer was still obliged to segment the

program and insert commands to request the overlays.

o
Multiprograeming was the next step in the desire to

obtain the wmost efficient system for a given hardware
configuration. This concept requires the co-existence of
severai”prograls in wvorking storaée, and utilization of as
much of” the hardvware resources as possible. Since any
system is normally limited by its most overvorked component,
the goal is to balance the worklcad so that all resources

are kept busy but none are overly busy. The development of

the data channel and interrupt facility, which allowed I/O
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transfers and instruction processing to procéed in parallel,

was a step towards total resource utilization. The CPU can
perform useful gork on dne program while another is avaiting
the completion of an I,/0 operation. The problems associated
vith such a system are cgmplexity, resource scheduling and
protection; howvever, the results as meai:Fed by total

throughput can be fprofitable.

¥ith the introduction of the relocation register [K7,
C2] the task of associating the name space to the address
Space was left to the lcader. a symbolic address is
translated not into an absolute memory location but rather
into a displacement from the program'ﬁ origin. The address
at which the program is loaded is placed in the relocation
register, and during execution the actual wmemory address of
any reference is calculated by sumaing the contents of the
relocation register and the relative address. The #volution
of these "a ELiQSi allocation algorithms" (B3] has ;bus
deferred the translation of program references to physical
addresses from program preparation time, to assembly time,

to load tige.

An important consideration-is that qt allocating main
ReROrLy to the prograas-sharing the system. One simple
technique, exemplified by IBM*s 05/360 MFT systenm [iB], is
that ;f partitioning memory angd aliowing only one program
wvithin each partition; The program remsains t,'re until its

completion; howvever, it receives CpU service for only a

hi a



fraction of the elapsed time. CPU service is usually
transferred from one of the resident programs to another,
either after a fixed. timeslice of execution, upon an 1,0

request or an interrupt:

A slight variation of the partitioned;memory Systenm
allowé a user program to be "rglled out" (ie. swapped onto
some backing §§orage device) of its partition when it is
temporarily blocked and a new program to be rolled into that
partition. The roll in/roll out feature would aiso be
applicable to systems where all jobs are assigned
priorities; here, a job with high priority entering the
systee would cause a job in memory with lower priirity to be’

rolled out.

An obvious shortcoming of the {ixed-partition Dnemory
system is that of utilizing the nggéry capacity to its full
extent. The unused memory in each partition must remain
vasted for the life of the program within tﬁé partition.
Thus the logical consequence is to allocate storage to the
program only as required. For exampl;, IBM's 0S/360 MVT
[I4] allocates in blocks of 2K bytes the requested space for
the duration of a job step. Memory is thus occupieqaviih
several jobs of various sizes residing in contiguous
regions. A task can be initiated only if there is
sufficient contiguoqﬁ/gf;rage tc meet the request. The

storagé assignment is made on the basis of the first

available storage area froam the high end of the user amemory



region large pnough to hold the task. If the task is

.
smaller than an available region of processor storage the
unused portion forms a new partition. However, if all
available partitions are too small to accommodate any
incoming task they will remain unused until two neighbouring
partitions become available and are merged. No new task

will be initiated until the merging process creates an

available partition of sQYfficient size.

1.5 virtual Memory Systems

Storagi«devices can usﬁally be ranked according to
their access rate and cost. Since a higher access rate
often implies a higher cost per bit of storage, the devices
vhich can be accessed faster generally have less overall
capacity. As a result; it was never economically feasible
to implement a system with substantially unlimited memory
directly addressable by the processor. Therefore, the use
of an auxiliary memory to hold information until actually
required in main memory by the processor has been employed

with the intention of increasing the effective memory size.

A problem associated with @leSe systems is the
translation of program references into memory addresses. One
so}ution requires that the p;ogramner preplan the &
segmentation of his programs and data areas and then usef
nonautomatic or semiautomatic overlays [P1]. The other

. &
solution ¥nvolves an operating system which decides how



programs and data areas are to be segmen{ed and then
automatically handles all overlays. It is this second
solution which has resulted in the develcpment of virtual-

memory systems [ D1].

In a virtual—mémqry system, programs can be written
with little‘regardffér real-memory limitaéions. The
hardware/softwvare system is then responsible for seé%enting
the program and transferriqg’the'segments between main and
auxiliary memories at the required times. A reference to
some locaticn not within the bcunds of the\currenttsegment
may be resolved in one of two ways. If the segmeng

L

containing.the desired information is in main memory, the
reference is resolved vith a physical address. If howvever
the information is in a segment located in auxiliary memory

then the system must move the segment into main memory and

determine a main memory address for the information.
(3] .

» Virtual-memory systems are usually ismplemented through
a combinaticn of hardware and softvare‘father than just
software, in order to be effective. The segments may be of
fixed or variable length, depending oa. the particular
.implementation. Lcading of segments is performed according
to the dynamic situaticn with respect to the program and
other concurrently operating programs. Automatic
segaentation and folding of programs has been shown to be
'competiiive with programmer plahned overlays [{S1]. The

principle of locality briefly states that in general program
: o
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references within an interval cf time tegx to be within
confined regions rather than scattered randomly over the
name space. As a result, virtual memory systemns are
.empirically justigiable and economically feggible since fhey
offer the memory capacity of a bulk storage device and
access rates approximating that of the main éemory.

The dynamic stérage—allocation scheme associated with
virtuval-memory systems resolves the name space of the
prograi with the address space at execution time, as
segments are brought into main storage. Consequently, a
program can be executed even if it is not entirely contained

in main memcry or if its segments do not reside contiguously

ip main memory.

1.5.1 Addressing

- e . . e ..

The mechanism used to map virtual addresses onto main
memory addresses is basically the same in alljvi:tual mémory
systems. Each user in the system has an orheéed segment °
table containing an entry for each of his segments. An
entry is empty if the associated block‘is not in main

memory. Otherwisé, the entry contains the address in main

storage where the block is located.

All virtual addresses are two dimensional since they

S

specify a éegnent and a displacenment within the segment
The association of a main memory address to a virtual

address is performed via the segment table as shown.gn-
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Figure 1. The segment number is used as an index 1nto the
table. If the block is in main memory then the addtess in
the table entry plus the displacement in the virtual address
deterglines the adqress of the desired information. A blank ;
‘table entry forces the systea to brigg the required segment

into main memory and then update the segment table.

-

The table look-up techniqué can be costly in terms of

the time spent perkorming the indirect addressing. As a

! result many Systems have incorporated a small associative

memory into the address translation mechanism. These high-
speed, content-addressable registers are used to hold a list
of the most recently accessed segnents and their main ﬁemory
locatlon. Before initiating the table look-up, the virtugl
address is compared with the entries in the associative
memory. If a match on the segment number is found fhen a
main memory address is immediately available wvithout |

requiring an access to the segment table.

\\

“~
1.5.2 Implementations
Virtual memory systems are usually said to ewploy a
segmentation scheme,la raging sdhene, or a combinatic¥ of
: { .
both. Segmentation refers to a system in which the segaents
are of arbitrary length. Faging, on the other hand, makes

use of fixed length blocks called Pages.

N
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1.5.2.1 Segmentation 9

A few modifications to the basic virtual-memory
addressing mechanism are necessary for the implementation of
a segmentation scheme. In addition to the main-memory
address, the segment size and bits to specify accessibility
will be contained in the segment table enEry. The
displacement in the virtual address can then be cQgsked

against the segment length, ensuring that no access will be

made outside the bounds of the segment. &

One of the problems encountered with a segmentation
scheme is the potential inefficient usage of main memory.
At any period in time, memory contains user segments and
empty blocks or h91es.. Aihole is the space which remains
when a segment overlays a larger segmeat or hdle.
Ind1v1dually the holes may not be 51gnlf1cant but
collectively they may typically consunme up;@p 10% o( the
#ﬁga;n'memory~capa01ty {K3]). In order to comﬁat thrﬁ,external
»ftagméntation {p1, R2], memory may be compacted‘penlodlcally

ek

to coalesce the holes into one. : 4

~Segment§tion schemes were implemented on the Rice'
‘University Cbmputer [11; I2], the Burrougﬁs B5000 and
carried on to the B5500 and gpsob‘systems. In the Burrouéhs
machines, prograes are segnegted into’logicaliy distinct
program and data elements’by the compilers.’ The segments

are variable in length up to .a maximum of 1024 words.
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Each'job in the system has a table of its addressab}e
segments as its first segment. Hheﬁ a job receives control
of the CPU the base addresé of this segment is placed iﬂ a
- special register. Thus, a program's segments arewprotected
}from unauthorized access by other programs. Hemof}

compaction is not employéd in theABurroughs scheme, although

adjacent holes are merged.
1.5.2.2 Paging

In a paging systenm thé equal-sized blocks or pages in
. | ‘
the virtual-address space are transferred to and from blocks
of main memory known as page frames. TPe addressing scheme

is identical to the basic virtual-memory addressing model»
shown in Figure 1. The page table entries may containvexéra
bits specifying whether a page may be read, overwritten or
‘both. Associative registers can be as ;aluable in paging

systems as in segmentation systems to reduce costly page

table references, .

Paging systems do not suffer fronm the problem of
external fragmentation. However, a si;uaﬁion known as
internal fragmentation is the result of programsllzing
forced into fixed-length pages [D1, R1]. Fragmentation of -
this typé can occur wvhen a prdgral does.not‘exactly fill an
integrai.ﬁﬁlber of pagés. The eupty space at the end of the
" last page !py‘be wvasted. Even in systems wvhere pages afe

packed with program subroutines, procedure blocks or data
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length 6 Vthe pages. In the MTS systen iuplenented on the
IBM 360{37 the unused space within pages. is recorded in an

avalquﬂg space list. If the user makes dynamic requests

P

for space, the system tries to satisfy the request via the ..

avai;éble space list Eefo;e allocating new pages. Many

studies concerned with reducing internal fragmentation to a

' tolerable level have been conducted to determine the optimal

pagg size [D1, H1].

Al

?i Implenentations'cf paging systems have occurred as
[ v

,eaﬁly as 1961 with the Un1vers1ty of uanchester's Atlas

coi uter. The one-level storage system [F2, K1, K2]
1|p{egented on that machine has clearly played an important

roléyan the development of virtual memory systeams. The

\

fAtlaS\nemory system consisted of a 16K core store linked

<.

vith a’ 96K drum memory through a pagxng nechanlsm. Slnce

the‘machlne mas not nmultiprogrammed, the provision of a
o ‘ . .
virtual memory was merely to increase the address space

availab”e to a program. The mapping mechanism employed 32 .

) : - "&ﬁ\..
registers each of which contained the number of#the page

nthin\ the Fage frano assoc1ated with that register.

An&ther ilplelentatioh of*a’paging'scheie vas on tgt

exper;léntal IBN MU44/44X [au, R1, 01]). In order to study

] .
the e{fedts of varying the page 51ze, the system alloved for

the spebiflcatlon of page size at initiationm. “Also, speczal

f

t!r ) ’ " : ?--"
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instructions were included to indicate the upcoming. need for,
a particular page or thatQa Certain page would no longer be
required‘in main memory. |

. . «»

Control Data's Star-100 and Star-1B [C4] also  employ a
paged virtual memory system. Thevstar-1B is a scaled-down
ver51on ‘of the Star—100 but its memory- mappipg mechanism is
practically the same. The pages‘in the §tark1B contain
either 512 or 8192 6u4-bit words. The page size is
selectable under program control. All pages currently
allotted space in central storage are assigned "assoc1at1ve
vords" in the page table. These‘a55001ative vo;ds contain
the real core address, Page number and user identification
and protection bits. The page ‘table ‘cOnsists of 4 :
associative registets (1g’in the Star-100) plus a table
located in main memcry. If the virtual address cannot be
1resolved within the associative registers, the entries in
the central storage”tabie are-"streamed"»through the
:associative compare hardvare, which is COnpararle to a
single-register associative msemory. The technology of the

CDC machine all7ws table searching to proceed at a rate of

two entries 9very LIO nanoseconds.

\
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S
1.5.2.3 Segmentaticn_and_Paging

It is possible to combine the advantages of both

segmentation and paging by combining the schemes within an

implementation of virtual memoxry [A3, D1]). This addressing‘

scheme is shown in Figure 2. <The virtual address has three
conponents: a displacement, a particular page, and a
specific segment. The segment number is an index into the

segment table to retrieve the address of the required paée

table. A presence bit in the segment table entry 1nd1cates f

vhether the page table is in main memory or if - it mpust be

~fetched from auxiliary storage. The page number in the

- virtual address is an index into the‘page table to obtain

, ! ‘ - \ .
the address of the required page. Agaln a presence b1t\|l:.
51gnals the presence or absence of the page in main memory.
Finally, the displacement and the page address are used to

point to the desired informaticn. v

This addressing'schene couldhpotentially cause three’

memory accesses in order to resolve a slngle reference. The

ﬁh

feasibility of the systenm depends on the use of ass Ciative |

.

reglsters to hold a list of the most recently used pages; in

'partlcular the current page‘from whlch seguentlal

instruction fetches are occurring,
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Particular implementations of this type of virtual
memory system include the Multics system on the GE 645 [02,
R1] and the N®s or CP-67 systems on the IBM 360,67 (A2, 15,
P2, R1]. The Multics System employs dynamic segments
ranging to a maxi&ﬁm size of 256K words. The unit of
allocatgon is the page, which was originally either 64 or
1024 words long. More recently a single page size of 1024
words has been used. The purpcse of two page sizes was to
cut down on internal fragmentation. The IBM 360/67 also
employs a 1024-word page and offers 256-page segments.

Under 24-bit addressing a total of 16 segments is available
(4096 segments with 32;bit-addressing). Segmentation in the
360,67 is not based on the structural,charact;ristics of the
program or data, since independent programs can be placed in
the same segment. The 360,67 employs an array of 9
associative registers, one of which is the ins;ruction
counter. The instruction counter contains a relécated

-w
address «which allows the fetching of instructions without

incurring the overhead of addresg translations. Howe;er, a
branch within the cﬁﬁ{?nt;y eiécu;iﬁg ;age, or an |
instructioh fetch from another padé costS an additional 150
nanoséconds if the page address is recorded in an
associative register. A reféfence_vhich is nét resolved in
the associative_réggsters causes accesses to the segment and
page tables plus 750 nanoseconds spent in calculating the
appropriate table entry addre;ses. -If the requested page is

in main menmory an additional‘lelory cycle is required to.
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fetch the: inf&tma@lcn. otherwlce, execution must be
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iderations

Modern éirtuél—memory systems have reduced the need for
programmer concern of storage management. From the systems
Qieupoin(, wachine resources are allocated only as they are
needed. 1In return, potential resource usage has increased

since the multiprogramming capabilities have been improved.

L,

‘Various problems have arisen in conjunction with the
attempt to make the best possible use of hardware
resourcCes. These prcblems are related to the algorithms
used to decide which page vill enter main menory next, where
the page entering memory will be placed and vhich page will
Lte removed from main memory to provide space for the
incoming page. Eurrent investigations in this field have
also resulted ip the suggestion of bringing pages into main
memory that vill be required shortly but have not yet been
requested. Relatively little .attention has been paid to the
optiuization of programs which opeféfe in a virtual memory
system. Virtual memories, especihlly paging systems, have
introduced nev constraints on Frogram optimality. ' Programs
vhich ran efficiently on earlier systems Ray now incur

extensive system overhead in a paging machine.

Vo

/

™\
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CHAPTER 2

PAGING

2.1 Introduction

Paging systems, as well as other virtual-memory
inpleﬁéhtations, have a certain amount of overhead

N
associated with them. The primary problem in implementing
an effective and feasible paging scheme is the minihization

of overhead brought on by address translation, internal

fragmentation and page swapping.

Address translation mechanisms have been improved with
the addition of hardware in the form of associative
registers to speed up the mapping of virtual addresses onto

main-memory locaticns.

The problem of fragmentation is one which must be
delicately balanced with the ccst of swapping pages between
sain and auxiliary memory. As the pPage size is reduced,
internal fragientation is also reduced since the progran
segments are more likely to occupy entire pages. Also, with
'a smaller page size, a page fetch is less likely'to result
in as amuch iqurnafipn that vill not be referenced being
brought into main memory. Howvever, a program will now
consist of many more pages and, in addition to the increase
in page table size, considetably mcre time may be spent
transferring pages into lign memory. Hatfield [H1)

concludes that the memory referencing pattern of a program

- ‘}:‘ 5‘,1 - Y

L
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is also influential in determining the optimal page size.

Finally, the area which has received the most attention
recently is the management and movement of pages. When an
address translation fails because the required page is not
in main memory, a page fault occurs. At this point, the
page managesent algorithm must locate the desired page in
auxiliary memory and bring it into main storage. 1In the
event that there are no ‘empty page frames, a decision must
be made ;egarding which page should be removed from main
memory. Such a decision is imfortant since it is not
desirable tc remove a page vhich will be required in the

near future.

Thus, it can be said that the effecti;eness of a
particular paging scheme depends not only on the speed of
address translation but on profer memory management as
\fwell. Efficient memory management implies keeping page

frames occupied with active code and data wvhile minimizing

the pnumber of page fetches.

2.2 Paging_Poljcies

The algorithms which together perform memory management
in a paging system are collecfively refefreh to as the
paging policy [A1]. The paging policy is composed of the
following three parts: fetch policy, placement policy and

replacesment policy.



Fetch Policy

The fetch policy of a paging system determines when a
page is to be brought into main memory. Two classes of this
poliéy are "demand paging" and "prepaging™. 1In most cases,
the page fetch is a result of a page fault: this scgeme is
known as a rdemand paging policy. In order to implement
prepaging, in which pages are fetched prior to their actual
need, the system must have infcrmation regarding the
program's referénce pattern. This a priori knowledge cannot
include information which is data-dependent, so these
schemes do not usually have significant predictive power

(D2].
Placement Policy /

The placement policy determines which available page
frame will hold an incoming page. The appropriate tables
nust also.be updated to reflect the actions performed. The
lac§ gf a free page frame teipérarily stalls the action of

the placement algorithm until the replacement algorithm has

been executed.
Replacement Policy

The most important part of the paging policy determines
wvhich pages will be removed from their page frames to make -
. &

main storage available to other pages. QEhrious algorithms

have been considered inciuding random replacement (RAND),



replagpﬁent of the least recently used page (LRU), and
replacement of the page longest in main‘memory (FIFO, first-
in/first-out). The optimal page replacement poliéy (MIN),
proposed by Belady (B1] relies on page-reference informatidn
in crder to replace the page yhich will be referenced
farthest in the future. Denning's working-set algorithnm
[D2] would remove a page which had not been referenced

within a certain period of time.

The goal of these increasingly sophigticated policieg
is to ensure that pages vhich will be required again shortly
are not removed from their page frames. As a result, the
CPU spends less time awaiting the completion of I/0 activity
caused by a page fault and is available for problem progranm

processing.

Another method ‘of reducing the amount oé page tr&ffic
is to maintain a fecord of all page alterations. If a page,
selected to leave its page frame, has not been altered
during its period of resid;nce in nain memory, then it neeg
not be written intc the ad;iliary memory. As long as there

is an exact copy of the page in.the auxiliary storage, the

page frame can be ovérlayed by'the incoming page.
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2.3 Page Replacement Algorjithams

Since the §{las inplémentafion, the majority of paging
systems have employed a demand-fetch policy. The prepaging
concept, which is characterized by the loading of pages into
main memory prior to a request for them, has not met with
much success. The effectiveness of this scheme is limited
by lack, K of knowledge of future page reference activity.
Oppenheimer and Weizer (03] discuss the implementation of a
prepaging algofithm on the RCA Spectra 70,46 TSO0S; however,
the 3-msec-per-page loss encountered for eaﬁh incorrect page
fetch postponed use of more extensive prepaging. The -
plécement policy is merely a Qatter of placing an incoﬁing
page into an available page ffane. As a result, the
replaceament policy has emerged as the most crucial component
in deciding the effectiveness of the overall paging scheme.
It is ugéally the replacement policy which is examined when
the performance of the overall paéing-policy is‘

questionable.

The basic goal of a memory-management scheme is té keep
main memory occupied with fprogranm cﬁde which can be executed
by the procéssor; Unfortunately, in gttenpting to satiéfy.
this goal, the paging policy can c:eate many problems for

the systesn.

One such problem is the inefficient usage of working

memory. If the pages in use contain only a sma11 percentage_
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cf information actually being referenced then the main

memory is certainly not being used to full advantage. Sinée
program code is not executed serially, but rather, consisté N,
of regions which are used often, such as in loops, and X
- regions which may never be used, as error-handling :outinés,
pages may suffer the consequences of poor page-loading
algorithms that allow high-use code to be placed in the same
page as low-use code. Known as dynamic fragméntatisn, this
particular problem can be as harmful as interqal

fragmentaticn but is much more difficult to identify and

control.

Another resource which is subject to misuse is the
central processor. A situation kno;n as “"thrashing®" [ D1,
D3] may occur when too many programs try to keep too many of
their pages in vorking storage at “the same time: one
program'é request for pages may result in pages vital to the
operation of another program being removéd from main
memory. The problem of thrashing is one of main memory
overcommittment which eventually leads to total\system
.degradation as the processor must éontinually spend time
moving pages between main memory and auxiliary storage.

Denning claims that thgereasoné for thrashing are a
lack of nain-nenory‘caﬁacitéiand the lov access rates of the
auxiliary sforage'devices as éonpared to that of main memory
[D3]; Another possible reason is that the‘prpgraus

unfortunaf%ly.reference a great many pages within a short
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span of time because closely related code and data are

spread across several pages.

Many studies have concerned themselves with the
proposal and evaluation of page replacement algorithams (a1,
yasine RAND, FIFO,

p

N and the working

B1, M1]. Most of the evaluation studies

and LRU. The Multics paging algorithm, |
set algorithm are more eiotic replacement policies which
attempt to overcome the inefficiencies of the former
schemes. It is usually the ca;g tha£ the better a |
particular replacement algorithm is, the more difficult it
ié to implenment.

G
5

2.3.7 RAND - Random_ Replacement

The basic assumption of the fandom replacement
algorithm is that a program's references are uniformly
distributed 6ver its entire set of pages. However, it has
been shown that program reference patterns are definitely
not random in nature but tend to be localized for certain
time periods (D2]. The random replacement policf makes its
decision based upon an arbitrary rule rather than
considering the prcgram's paging historg and ié therefore
Classed as being static. Another example of a static
replacement algorithm is ome which cycles through the list
of page frames removing the next page'on.the list wvhen

necessary.
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2.3.2 FIFO =~ First-in/First-out Replacement

Another static repiacemént algorithm is»the FIFO
scheme, which replaces the page that has spent the longest’
time in main memory. This method assumes that programs
execute in a sequential fashion and that the page which has
been in main memory the longest will least likely be
useful. However, the assumfpticn does not accurately model
program behaviou;. In fact, references tend to be scattered

over several pages and a page may be referenced continually

throughout its residence in main memory [C1, F1].

A replacement algorithm (BIFQO, Biased First-in/Fifst-
out) tested on the M44/44X [ B2, B4] introduces a bias into
the FIFO scheme. A particular progranm isAarbitrarily
Aécorded‘special status for a certain intefval of time.
During this interval the FIFO teplacement‘;lgorithm dogs not
ponsider any pages of that program for removal. Early
results indicated that somewhat bettef throughput was |

attained under the BIFO replacement policy.

2.3.3 LRU_- _lLeast Recently Used_ Replacement

The static algorithms BRAND, PIFO and BIFO are very easy
'to implement; however, since they nake nd use of ?ggé
reference history, their efficiency is low. The LRU
 algoriths naturally contains addéd comblexity‘and overhead
since a record of pagevﬁsage must be maintained and

utilized. Because of the amount of overhead, actual
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implementations have merely been approximationg to the LRU

algorithm.

Ah example of such an apﬁro;imation is the replacement
'scheme‘employed by Multics. .Corbato [C3] describes a class
of algorithms vhicﬁ eaploy élkfﬁit shift register for every
real page. Associated with each page is a usage bit which
is set to one by the processor hardware whenever the page is
referegceé apd reset to zero when the page is.cohsidered for
removal by the replacement algorithm. When the replacement

algorithm cogsiders a page fox‘removal, it shifts the
contents of the related shift register one bit position
lovwer, then déposits the usage bit in the4high order n
position. oOnly if the shift register is zero will the page
be removed from working storage. This particgiar.algorithm
.reduces to a FIFO scheqe if.k is zero and app;oaches the LRU

. . 7 ’w?,"\ s ~
« algorithm as k approaches infinity. The thﬁf;s»system

operates with k equal to one. i
' ' ,. ~
Anothe; apprgximation to the LRU algorithm is used by
the IBﬁ 360,67 in placing and replacing information in the
associafive registers {I5)]. Each of the eight registers
contains a validity bit and avfecentfnsage bit. An
associative register is considered to hold valid information p
"dhli_when the validity)bit is set, which occurs when the
. register is loaded. Since all validity and usage bits are
" automatically reset whey the processor swiichééxgrbm one jéb
i . © . .

to another the possibjlity of a program accessing a previous

/

’
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user's page is eliminated. The recent-usage bit is set uhen
the register is loaded and on any su;seguent reference to
the page addressed via that associative register. When a;l
registers confain addresses to actiee pages and a new page
is referenced, its address is pladed in an associative
reéister vhose usage bit is unset. Note that the case 1n
which all’ usage bits are set is avoided by resettlng all
usage bits whenever the setting of any bit would result in
them all being set. The algorithﬁ maintains the most

recently used page addresses in the associative array and in

some sense removes. the least'recently used page addresses.

2.3.4 Working Set Algoritha ,

The problem of reducing page ttaffic has been regarded
as the problem of reﬁoving only those pages which will be
required fartheSt in the future; The LRU anﬂ FIFO
algorithms make -basic assumptions about progran behav1our in
order to estimate thCh pages H111 not be needed in the

1mnedlate future. ‘]5

Dennlng's uorklng-cet algorlthn employs the princzple
of locality. Programs execute within certain regions
fetcbing inst:uctions and data from those areas forfﬁ
significantly longer ;nteryels of time than for the -
iransitions between the regioMs. Also,’programe exhibit a
tendency to.loop through ceriein regions ahd sets of pages

[0ty s



- The working set of a process at time t is defined as
the collection of 'information referenced during the time \\\
interval (t-t',t) [D2]. In terms of paging, the working set
would be the collection of pages referenced within the
specified time interval t'. s t' is reduced, the number of
pages referenced should also decrease. HnQer the assumption
that immediate past page-reference hehavioor is a good
indicator of page-reference behaviour in ‘the near furnre,

.then as t¢ islreduced the predictive povwer should be
increased. 0bv1ously if t' is taken as the length of time

to execute the entlre program then the working set will be

all of the fprogram's pages‘referenced during the run.

/ by

Dennlng clalms that knowledge of the working- set size
lis- suff1c1ent to ensure good memory managelent [DZ] The
program is not initiated unless there are enough page frames
available to holdeite working’set. Knouledge of the

. working-eet size allows the;nemory-mandgement schene to
reserve enough storage for the program's vorking set wltnout

]

dlsturbing the working set of other programs.

\2 3.5 Optipal Reglacenent
T
Zhe optlnal replacement algorlthn, when faced with the

situatlon reguirlng the removal:*of a page.from maln memory,
chooses one which is no longer needed or will not be needed
for the longest'tine; Therefore, a conplete knoiledge of

future page references is essentlal, but this is not



available prior to the program's execution and may also

fluctuate from one run to another. Thé previously mentioned

algorithms try #o guess what the future reference pattern
o

will be, according to fixed rules or estimates based oh past

behaviour. -

The optinaf\algorithms MIN, proposed by Belady (B1],
and OPT, descfibed by mattsof gg al. (M1), are not capable
of being iwmplemented on a real computer system because the
information they require is no$ available. They Ere
proposed in order to serve as a standard against which the

efficiency of realizable algorithms can be compared.

Belady concludes thai’a good replacement algorithm is
one which is a compromise between the siaplicity of the
random-replacemsent algorithm and the complexity of -an
algorithm accumulating page-reference data. The . ' oy

conventional algorithms which arée simulated in Belady's

Study generate two to three times as many replacements as

£
the theoretical minimum, generated by MIN./ & A
3

2.3.6 pdaptive Replagemept'

Recent investigagions have been in the area of adaptive
page-replacement algorithas. EEorington and Irwin [T1, T2]
describe an aigorithn called SIN which actuglly contains
four replacement policies, LRU, LPU (igast frequgntly used),
HRU (most recently used), and MFU (most fregyéntly-used).

only one of vlich is the "active" policy. The active policy



controls page replacement in real main memory while the

others operate on three simulated main memories.

-
»

Each sifiulated memb:y.is actually a record of the pages
that would have been in real main storage had the associated
replacement algofithm been in effect. The contents of the

o
real and iwaginary memories are sonitored by four status
bits attached to each mapping-table entry. One of these is
used to indicate the presence or absence éf that page in
memof}. Also, each algorithm has a counter which records -

the number of page faults encountered as it oversees its

associated memory.

Typically, the pages'present~in each of the memories
¥ill be dfffergn} since each aldbrithe has been resoving the‘
page which it considers to be the best choice. The fault
counters are constantly checked to see whether one of the

.- S )
inactive policies‘is performing significantly better than
the active one. When é nev active policy is initiated, the.
contents of the sisulated mesmories are updated to be the

-

same€e as the contents of the real main memory, and the fault

counters are set tc zerc.

Sisulation experiments with SINM showed that it out-
performed LRU and coampared favourably with the best non-

lookahead algorithes (T1, T2].
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The attempt to reduce paging traffic has been focused
primarily on the replacement algorithm. Although newer
algorithms have come closer to the theoretical optiamunm,
improvements 'have been small, so attention has turned to the
areas of program behaviour, structure and locality of

reference,

\ \



CHAPTER 3
PROGRAN BEHAVIOUR IN A PAGING ENVIRCNMENT
3.1 Intreductiay
Up to this point the discussion has centered on the

implementation of an operating'system capable of handling a
vide variety of jobs efficiently. The intent has also been
to develop a systeﬁ which eliminates the need for the user
to know exactly how his prcgram is.being processed. Paging
systeams were thought tc be the satisfactory product of these

intentions.

However, the performance of a system may be subject to
a marked degradation when executing programs which disregard
the paging mechanism. The determined effort to improve page
replacement algorithms revealed the underlying inportance of

program behaviour on the overall system performance.

Pfogram behaviour, which can be characterized by the
sequence of references made to the program's address space,
has been examined from several viewpoints. The study of
reélacenent algorithas considered references made froam one
page to another as being sufficient to model the program's
behaviour (V2]. Other approaches deal with the individual

instructions or modules of the progran.

It is the contention of this thesis that prograsms

behaviour can best be examined through a study of the

35



interaction between program modules. These modules can be .
exemplified by FORTRAN subroutines, ALGOL procedures or
ASSEMBLER cont;olvgections and will be referred ég as
"sectors". The réordering of these relocatable entities has
beep demoqstrated to affect the program's locality of
reference and consequently the program's behaviour [ C5,

Hz]. If program references Are made within a éonfined
locality, such as a page, for a period of time then there is

less likelihood of causing as many page exceptions.

Thus, if program behaviour can be determined by the
knowledge of how the modules interact, then an improved
pagination can be proposed. The term pagination refers to
the assignment of code and data to pages wi£hin the virtual
merory. The optimal pagination has the.characteristic that

the minimal number of transfers between pages will occur.

3.2 Representation of Program_ Structure

The structure and behaviour of programs has often been
represented by directed graphs {R3, K5, V3]. The program
sectors are reéresented by nodes in the graph. The
transfers or references between sectors are described by the
arcs betveen the nodes. An illustration of this

representation is shown in PFigure 3.
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Figure 3:“wraphicdl Representation ot Program Strutture

The program graph can itself be represented by a
connectivity matrix. The matrix elements can be one of two
types depending on whether a Boolean or a probabilistic

program model is under consideration.

’ :
The Boolean model, as examined by Ramamoorthy [R3],

Vver Hoef [V3) and Lowe (L1, L2] assigns a 1 to element
c(i,j) of the connectivity matrix C if there is a directed
arc from node i to j. This represents a nonzero probabili&y
that sector i will transfer control to (or reference a data
item in) sector j. The program graph in Figure 3 is shown
in Boolean connectivity form in Pigure 4. The references
from node i to node i have not been considered; thus, the
elements on the main diagonal of the matrices are

represented by zeroes.
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An extensioﬁ of the Boolean model assigns a weight to
each of the directed arcs [R3, K5]. The weights represent
the probability of a branch or reference from the sector
being executed to another sector. This';odel depicts a
program as a finite Markov cﬁain. As a result, the
connectivity matrix is modified ﬁé take the transition
probabilities inmto acéount. The matrix element c(i,j) now
corresponds to the aré'ueigh£ from node i to j. By

assigning weights to the arcs in Figure 3 the transition

probability matrix in Figure 5 could be derived.

Ramamoorthy [ R3] determines sets of nodes which are

. strongly connected (ie. there exists a path from each node
to every other node iﬁﬁthe set) and yhich-would best be
brought into main memory at the same time. The technique
actually being explcred was that of fetching the next set of

strongly connected sectors pricr to a request being issued.

Ver Héef (V3] presents an algoritha fq; allocating
'seétors to pages wvhile minimizing the number of possible
~inter-pége references. The model employed is strictly
Boolean; hduever, the fitting of variahleQSized éectors into

‘pages of a fixed size imposes an additional constraint.

Kernighan [K5] employs a directed graph with
probabilities assigned to the arcs in order to develop an
algdrithnAto optimally partiticn the graph. The nodes of

" the graph have values attached Corresponding to the size of
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An exfension of the Boolean model assigns a weight to
each of the directed arcs [R3, K5)]. The weights répresent
the probability of a branch or reference from the sector
being executed to another sector. This model depicts a
program as a finite Markov chain. As a result, the
connecti&ity matrix is modified to take the transition
préﬁabilities into account. The matrix element Cc(i,3) now
corresponds to the arc weight from node i to §. By
assigning weights to the arcé in FPigure 3 the tfansition

probability matrix in Figure 5 could be derived.

Ramamoorthy [ R3] determines sets of nodes which are
strongly connected (ie. there exists a path froﬁ each pqde
to every other node in the set) and which would best be
brought intoc main memory at the‘same time. The technique
actually being explcred was that of fetching the next set of

strongly connected sectors pricr to a request being issued.

4
Ver Hoef [V3] presents an aléorithm for allocating
sectors to pagés while minimizing the number of possible
inter-page references. The model employed is strictly
Boolean; however, the fitting of variable-sized sectors into

pages of a fixed size imposes an additional constraint.

Kernighan [K5] employs a directed graph with
probabiljties assigned to the arcs in order to develop an
algoritha to{bptinally partiticn the graph. The nodes of

the graph have values attached corresponding to the size of
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the associated sector. The problem is to partition this
directed graph such that the number of transitions across
the partitions is minimized and the sum of the sector sizes

!
/

vithin the partiticn does not exceed a fixed value. Since

the graph is assumed to be ordered, the task iF merely to

S
insert the page boundaries. L

Hatfield and Gerald\[ﬂZ] employ a "nearness" matrix,
which is analogous to the matrix of transition
probabilities. The entries are counts of actual inter-
sector references obtained during a particular execution of
the program. A change in the crder of the sectors causegA
the nearness matrix to be modified through a reordering of
its rows and columns. Corresponding to the load ordering
that groups together sectors which interact often is a
nearness matrix whose large entries cluster about the main
diagonal. The approach used in thé study was to minimize

the number of inter-pagé references by packing the pages

with the sectors which reference each other often.

3.3 Gaugihg_Proqram Eeggjlggg

The initial problem with any of thé previously
:éntioned techniques for reducing page exceptions is.tgat of?
obtaining sufficient information to characterize the
program's Behaviour; Kuehner and Randeil [K6] suggest‘
‘possible classes of information that may be useful in

déternining a program's reference activity.
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fhese include:
(1) frequency of references to sectors
(2) sequence of references to sectors
(3) frequency of references to pages
(4) sequencé of references to pages
The latter two are not at a level 16w enough to disclose the
behaviour of sectors within a fage. Whaf is really desired

is the frequency of referen€e§§from each sector to each
\.‘ ‘

other. . Y
"

- g‘f

. A

There have been several suggestions on how to obtain
the connect%vity matrices. First, fhe programmer ébuld nake
an educatgﬂpguess abouﬁ his program's behaviour. Second,
the compiler could gather data about possible inter-sector
references. Finally, the most comprehensive technique
involves monitoring the program during the course of its

execution.

The first two methods are able to provide the
information nécessary to construc£ only the Boolean
connectivity matrix. Programmer estimation of the number Qf
inter-sector refﬁipnces may be unreliable. On the other
hand, the conpilef-cannot predict reférence frequencies or

branching probabilities due ta inhérent data dependencies.

Even execution-time collectlon of program-hehavlour
statlstlcs is subject to the criticism that data-dependent

structures prevent any generalizations about sector

~



interaction. The only way to counter such a criticism is to
dembnstrape the effectliveness of the reorganization of

program sectors over a range of data.

Three studies have shown that the reorganizatibn of a
program's paée contents on the basis of run-time statistics
can indeed Le bemeficial. The experiments, described by
"Comeau [C5], Peters [Pj], and Hatfield and Gerald [H2], are
significantly different in the uéy program-behaviour dataA‘

was collected.

The first attempt at rearramnging page contents, in .
order to‘cluster'sectors which reference each other
frequently, was perfo;med by Ccmedu [C5]). As §uch, it was a
priui%ive approach to the problen, Thé statistics gathefed
on the Cahbridge Honitor*Sy;tem included a history of page
reguesfs, pagé removals, instruct;on-counter contentsg at. the
time of each page denénd, and a list of all pages im main

| .memory iﬁmédiately fclloﬁing a page demand. The memory map
also indicated which pages had been referenced since the

' previous page demand.

i

\
S

The experiment involf;d assenbl;ng and'running'a‘
program.uhose sectbrs,were arranged according to four
‘ gifferent poiicies. ‘The run in.which the programmer decided
| ,ihe ldad ordering resulted in fewer page'fau;ts than either
:random oflalphabetic ordéring. However, vhen presented with .

.

/the collected‘paging‘data, the programmer was able to
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reorder the subroutines within ‘three runs, resultlng in an

Al

additional‘%gg reductlon in the number of page transfers.
The experimental system described by Peters [P3)] for

. / . ) ) .
collecting and analyzing data from actual program execution

consists of several components., A modi%ied compiler

‘dissects the test program into sectors and determines the

Boolean connectivity matrix by inspeoting each instruction.
| o .

 and noting wvhether or not it can result in a branch to

- ‘ !
another instructicn sectcr or a reference to a data sector.

At these points in theé, code a call to a data‘COllection

T, A

routine is inserted. Thas, vhen the program is \tun, a
. v A >

3

\
produced. The reduction of\this execution 'story into a
transition matrix is the respbns1b11h¢y of ano set of
programs. Finally, a set of algorlthms\whlch vary in their

\
degree of sophlst1cation perforn\page packlng, utilizing the

)
data gathered Q§> '

Unfortunately, although very thorough, tee monitoring

L

\
approach is very costly to the Foint of\being completely

-infeasible. This is due to the overhead 1ncurred at each

inter-sector reference or‘HBanch. A large amount of CPU -
p .

time must also be spent analy21ng the data collected

_ Therefore, it vas concluded that the method eléloyed is not

suited as a practlcal dev1ce for program reorgahlzatlon hut@

nevertheless served 1ts purpose as an 1nvest1gative tool.
. . N

\
\

i
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The approach employed by'ﬁ&tfield and Gerald [H2] to
collect branching and reference data requires a full trace
of the program. This tco is a very expensive procedure,
because of the intergretive execution of the peegram. -
Similarly,‘the‘reduction of the trace into a "nearhess"
‘matrix is a computationally expensive task. An additional

{
refinement in their approach is the use of a graphical

- display. of code usage. After prelimrnary reorganization of
the page contents, the program's use of storage can be
monitored through an on-line display and additional

modifications made to improve the reference behaviour,

In a study of‘computer performance evaluation, Hinder
[¥w1] describes a trace progranm deveioped‘to monitor each
instruction execution and address reference by some subject
progran. The expense involved in‘runniug>such a trace vas
balanged by the nunber ofoapplications in which the data/
could be employed. The 1ibrary of address;trace tapes wvas

used to drive "cache systeu" 51uulators ;o aid in paging

studies, to evaluate various processors- andéﬁ}so to provide

b
i {

¥

progran statistics such as instruction frequenc ' program

Jlengths, buffer 51zes, successful branches, etc.
' ' * ’ B : fi&

The research spawned by the collection of the trace
data included a prelininary study of program behaviour via

A

;',' an activity profile and a map cf page usage. although the
~‘-———”fisif_3£§grxs vere not directed in the area of program .
) behaviour, Winder acknovledges "3 great potential for using

\\g\ ) . ‘ ) ‘ TN



these tools to enhance commonly used programs".

3.4 dopitoring Program_gxecution

In the pfevious secticn, various techniques used in
othe; studies to determine program behaviour were
described. The very nature of this research places
limitations on the regources which can be used to g&uge a
‘progrAl's sector reference pattern. Since the static
reorqganization which is being investigated can hopefully be
performed automatically, it is impé}ative that both the
program monitoring and page reorganization be executed with

”

no external intervention.

On the basis of results frcam previbus studies of
program reorganization [K2, P3), it is concluded that in
practice the technigque cannot be applied to gll programs.

: 2

{
Therefore, the reorganization is proposed for large heavily

used systeas such as compilers, loaders, text editors, etc.

The emfhasis is placed on the reoréanizatiou ;f object
code as opposed tq tecoaiénding a rewrite of the source
lapguage code. Consequently, theaoniy infornation‘reQuired
to determine€e a program's reference pattern is its object
code ;nd a load map indica;ing the location,ef eaéh sectog
in virtual semory. From within this franewoék a suitable

program monitor to gather experimental data was sought.
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Unfortunately, the executicn history of a working program is
not readily obtainable. The facilities for providing such

/
feedback are just at the stage of being isplemented in

hardware and softvare Systenms.

»

Ingalls [17 ] wmentions several software systems which
have been built to provide execution-time "profiles". These
profiles merely reveal the frequency of execution of
individual instructions (or statements in the source |
language code). The same system is also described by Knuth
(K4 ). Although the idea is simple, and apparently easily
implementable, it dces not provide adequate information for
the purposes of iﬁié”study:- A record of instruction or;

sector usage cannot replace an accurate record of the

references between sectors.

The monitor system of Peters [(P3], described in the
previous section, vas also rejected since it is forced to
.manipulate the source code. Such a system is clumsy and

vasteful, because massive amounts of extraneous code must be

added to the original prcgraa.

Executidn monitoring was eventually performed by a
"software systes sisilar to the cne described by Winder
tH1]. The generation of a complete address trace proviées
the ultimate description of the ptogrél's reference‘

activity. Winder was in the advantageous position of being

able to use the RCM Series 70 cosputer, vhich has special

L4



hardvare features facilitating the development of a program
monitor. It was reported that acnitoring of a progranm
required 20 to 30 times as much execution time as a run of
the program itself. 1In éontrast, another monitor written
tor the time§haring system (TSOS) on the RCA computer could
require 200 times as much executior time for compute~bound

jobs. "ty

Fér experimentation purposes, software monitors have
béen considered; *hcvever, for practical purposes scme fora
"of hardvare or microprcgrammed amonitor might be better
suited to the task! Jasik [J1] discusses a hardvare monitor :j
for the CDC 6000 computer which gathers a profile of a
pfogram's execution. The basis of the monitor is a
peripheral processcr which is Frogrammed to read and record
the program address register of the CPO program being
observed. The repcrt reveals an underlying capability of a
hardware monitor to gather statistics on a prograa‘'s
execution without actually éffeéting the job. Reports on
the Burroughs B1700 (W2, W3] describe a profile-statistics-
gathering mechanism which can te used in any language
interpreter on the system. As well, the microprograaming
capabilities of the machine may allow dynamic measurement of

sof tvare "events" specified by the user.

Demand for high fperformance program monitors will come
'

from tvo main sources. First, programsmers vishing to

improve source céde,vill tequife feedback revealing which



parts of their program are being executed unnecessarily
often or have never been tested. Second, those interested
in improving the performance of programs in paging systems
via a reorganization of the object code (sectors) will also

require execution time statistics.

For the purpose of gathering experimental program
réference statistics, two software monitors were considered
and ultimately one was used. The first one examined
produces an interrupt-driven trace of all transfers of
control between sectors. Prior to execution of the subject
program the monitor system inserts a trap at each location
vhich can result in a branch tc another sector. As the
program is executed under control of the monitor, each trap
is recorded as a transfer between tv§ specified sectors.
The obvious problem with this system is that it fails to
recognize data references as a cause of inter-sector
‘references. Even though the full significance of external
data references was nct apparent, this monitor was not
considered further. Any nodification to markedly improve
the capabilities of the interrupt-driven monitor was deemed

. iapractical.

It wvas decided that the lﬂ’t reliable approach to
obtaining the complete sector reference string was from a
f&li address-trace cf the program. The monitor inplenentéd
controls the progran;é executicn by interpreting each

instruction. The softwvare package [#2] was originally used
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to tally the usage of individual machine instructions within
the subject progranm; however, with several modifications, a
trace of each location referénced vithin the program's name
space was also collected. Wwhen the trace is analyzed in
conjunction with the load map cf the program, a matrix of

inter-sector references can be built.

At this point it may be interesting to mention
information obtained which is relative to the original
concern about the significance of data references. In the
following chapter, détailed statistics on instruction types
used by monitored programs will be presented; hovever, at
this point brief mention will be nmade of- general program
Charaqteristics. As program code is executed, references to

i

main storage occur as a result of either instruction or data
fetches. Naturally, if the prcgram can maintain its data in
vorking registers then fewer memcry references will be \
|

required. The experimental results would lead one to \
\

believgdthat ASSEMBLER-written programs control regggter \

\
N
N

usage better than programs of a higher level language such \
as ALGOL. The reference-to-instruction ratio for ASSEMBLER \\
programs is 1.45:1.0, indicating that .on the average the
execution of anm instruction necessitates one memory cycle

for the instruction ifself and .45 cycles for data.

Therefore data references can have a severe imbact on the

nuaber of‘inter-sector referénces.cccutring within a

program. Any propcsed prograe lonitor-ghould gather data-
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reference statistics in order to be valid.

Programs run under the monitor experienced a decrease
of execution speed on the order of 50 to 100 times.
Programs which had é higher proportion of memory-referencing
instructions suffered the most, because of extra address
calculations by the monitor. Obviously, this type of
monitor cannot be expected to be suitable for large, long
running programs due to .the cost involved. However, despite
its shortcomings, the monitor performed its task of

okttaining. experimental results.



CHAPTER 4

RESTRUCTURING PAGE CONTENTS

4.1 Introduction

!

After solving the initial problems of collecting
program behaviour data and reducing it to an analyzable
form, there still remains the task of proposing a
reorganization of the page contents. The ease with wpich
the code can be reordered is highly dependent upqn"the
method used to perform the original pagination. When
appropriaté assumptions are made or restrictions imposed on
the loading method, there may yet be a major computational

procedure involved in determining the optimal organization

of the code.

Comparable to the case of replacement algorithms in

. which the optimal scheme is computationallf intractable,
several éub-optimal but implementable techniques have been
devised. 1In the following sections an analytical‘épproach
to the prbblem and several experimental algoritilms are
explor%Q, ip addition to a brief discu;sion of loading

techniques,

4.2 Assignment of Program Code_to_Pages

There are two basic ways that program code may be
assigned to pages ip a virtvalw-memory system. The first

loader algorithnm siuply fills cne page at a tinme,

¢ 51
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disregarding aﬁy lcéical or.physical divisions in the code.
This amounts to diviéing the program into N-word segments,
where N is the page length. Thus, the only page which can
suffer internal fragmentation is the last. The alternative
algorithm takes into account that certain sections of code
aré movable, that is, the operation of the program is
independent of the locatio; of these sections of code., The
loader*'s task is to place thése modules into pages. &
simple loader will probably use a "first-fitn algorithe to
determine where the next sector will be placed. TIm ather
vérds, the sector will ke located in the first page which
has enough avajlable space to accommodate it. This second
type of loader, which will be the one considered heregfter,
is known as a "sector loader”, and attempts to 1mprove
Paging perfcrmance and can be upgraded so that it Facks

sectors into pages according to a particular policy.

It is of course assumed that all discussions gf program
object modules refer to code which has not been processed by
a linkage editor. Therefore, the object modules will be
Composed of relocatable sectors of code which have not had

their external references resolved.

'Use of a iinkage editbr pcses a very interesting
problem in paging™systeas. The 6bvious advantages are a
saving in processing time by the loader and a nlnlmizatlon
of the number of pages requlred by the loaded progran.

Potential disadvantages arising from the use of a linkage
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editor are poor utilization of the dynamic loader facilities
offered by paging systemsf and poor placement of code within
pages. Qhe critical exaﬁple of bad code placement occurs
vhen a loop within a sector is placed across a page
boundary. From the view of this study, the use of a linkage.
editor would hinder the attempts fo reduce p:;ing traffic

caused by inter-sector references.

4.2.1:Pagination_to Reduce Internal Fragmentation

A scheme could be devised wvhereby the sector loadet,
rather than'simply performing a "first-fit" al%pcation,
performs a page assignment which minimizes intérnal
fragﬁentation and thus sinimizes fhe total number of pages
required to hold the program. Since programs in paging
systems tend to occupy a mininul(number of page frames
during execution, this may be a worthwhile type of ¢
optimization for small or medium-sized proérams. Hopefully,
the reduction in the number of pages occupied by such a
program would allow the majority of its pages to remain in

‘main memory. !

4.2.2'Paginatigg,gc Reduce_Inter-Page Referencing

Page-packing schemes designed with the goal of reducing
inter-page references have been attacked as being attempts
to tune the progranm to fhe~operating syster, rather ?han

tuning the operating systeam itself (K6]. In most cases.

though, the selective placement of program sectors within

3,

X



pPages in order to reduce the number of page exceptions is
intended for large, heavily used programs which indeed might

be considered- part of the operating systean.

If it is assumed, as Kernighan did [K5]), that the order
of program sectors must not be changed, the problem becomes
that of partitioning the program. The partitioning is done
sucn/that inter-partition references are minimizea subject
tn Qhe constraint that a partition length does not exceed

the fixed page size.

Kernighan shows that the algorithm for compuiing the
optimal partitioning requires execution time which in most
cases grows linearly with the number of sectors under
consideration. Hdwever, this algoritham is likely to cause
an increase jin internal fragmentation since the page packing
may be very loose. The constraint of not allovwing sectors
tn be reordered is particularly undesirable when the sectors
are indeed movable. It is this constraint which reduces the
computational complexity involned in performing a total
reorganization of sector allocation within pages.

-

If program segments can be reordered, then one can
consider collecting.sectors vhich communicafe frequently
.into a -common ﬁage. As mentionedwpreviously; the component
‘uhich decides how the sectors uill be clustered is the
Booledn-connectivity or transition-probability matrix in

conjunction with an organizing algorithm. The Boolean
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matrix is considerabiy easier to obtain since most compilers
and assemblers produce a list of references which are 1/
external to each program sector. Hh;le not as easy to
obtain, the transition probablilty matrix gives a Letter

idea of how a set cf progranm sectors interact. ‘

/
Assuming that either a Boolean orﬂprébabilistic matrix
ofvinter—sector referencing has been obtained, a:major
conputational problem arises in calculating the %ptimal
assignment of sectors to pages. The problém can be related
to the field of discrete optimization.and may réguire ah
extremely costly integer-programming sélution. Several
approaches to this problenm :311 be examined in the following

~

sections of this chapter.

4.3 optimal Sector Placement
+ .

The problem is that of reducing or minimizing the total

number of 1nter -page references which ulll occur during a

program's eﬁecution by packing pages with the sectors whlch

L4

reference each other the most. Throughout the following 3
discussion it will be aésuned that the sector size is always -
less than fhe page size. Data“segtors may be expected to ‘
Span several pages on occasion. In fact, if a sector is
larger than a page then the sections zhich must exist in'
differepf'péges could actually be considerednaS'different

. s f
sectors.’ : . ,
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the worst case of sector packing, which occurs

56

The problem can be stated in the following way:

Let: s(j) be ghe size of sector j, j=1,2,...,N
p(;),be the set of~page§ of size p, i=1,2,4..,M
T= {t(i,])} indicate in which page edch sector
is placed,
t@i,J)=1 if P(i) contains sector j
tki,j)=0 if p(1) doés not contain sector j

B = {b(k,j)} be the Boolean connectivity matrix,

b(k,j)=1 if sector k references or graﬁches
to sector j

b(k,j)=0 otheryise

{c(k,j)} be the transition probability matrix

-C =
such that C(k,j) indicates experimental

prqhab}{ities of sector k referencing sector

P obiained by mohitoring the program

According to the asSumptiqn'that-s(j)SP, for all j, in

uhep'only one

sector is assigned to each Page, M equals N. 5
T

Under thé‘following constraints:

1. For each pagé, the sum of the sizes of the

sectors %F.the'pagé aust be less than the

page size. . . y

* 2. Each sector is placed in only one page.

el no sector duplication



wvhich can be expressed mathematically as:

N

Z._t(i;j)*s(j) < F, for all i,
3=1 |

|
=

5 t(i.4) = 1, for all 75,

vhere the symbol "*" indicates multiplication. One possible

i

objective function to be minimized under the Boolean
approach is D(B), corresponding to the total number of.

points in the program which can cause a page exception:
Y ' .
_N__N_ B
D(B) = 2__ 2__ 2 _[t(i,J)-t(d,k) J2*b(J.k) /2.
i=1 J=1 k=1 .

A

For the transition probability case, the funcfion to be
winimized is D(C), which represents the total number of page

v \
gxceptionsathat will’occurowhen the program is executed.

;,-., vy

p ’

B r
N -_R

—— -

K .
D(C) = > _[t(i,J)-t(i,k) J2*c(].k)/2.
k=1

L \A]

>
=1 j:]

I3 : ‘
The above approach requires a solution for the T matrix

0

vhich implies solvini for N2 variables. Since‘each t(i,J)

can be either 0 or 1, enumeration of ‘all 2%*N2 possibilities

(** - exponentiatiocn), subject to the stated constraints, is

definitely beyond the range of computational practicality

for realisticivalueS‘pf_N, typically gngater'thaﬂ 10.
L , ’ “‘ ) ’

LR
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The number of possibilities can be SLgnlficantly reduced if
the following apgroach is taken. |

Consider the tramsiticn probability model. L

Since all terms in the summation are non-negative,

. "9
. B -E.
Min (D(C)} = u1n{> _'._ [t(l-j) -t 4, k)]"'*C(J k) /2}
i=1 3= o
N N N ‘
=2__Min2__ 2 _[t(,3)-t(i,k) J2*c(3,K)/2)
i=1 <1 k=1 |

N

//ﬁgbls 1s'equivalent tc filling ons page at a time

hile mlnimiZing the number of out-of-page

references at each step:

In other wvwords, the secohd approach solves for T, one
rov.at a time. An upper bound on the number of combinations
of zeros and ones for the t(i,j);g can be ohtained by
considering the case wheré only one sector will be assigned
to a page.i‘Solving for t(1,3j) wiil reqguire a possible 2**&
enumerations. Since one sectér will have then been assigned
to page 1, it can be onitted ‘from fur;;Er consxderatlon. |
SOIV1ng for t(2 j) will require a p0551ble 2**(N-1)

" enumerations. Again another sector’can be disregarded.
Proceéding in this manner, the’tctal nunber of enumerations
would be | | | |

2eENe2%% (n"-”1)+...+21'+2°' = 20k (Ne1) <1, _—

The "Backtrack Half Interval“ algorlthm (BHI),

Sy

descrlbed by Peters (P3], is another version to produce .
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Optimnlisnctor'orQOrinq based on the trans@tion-prébability
matLix. This apprcach again involves 4 Search tor an
integer assignment solution. Using the frevious notation,
the approach can be &escribed as follows:
Let a(1), i=1,2,...,N be a function such that a (i)
is the number of the pA@e containing sector 1.
Tho C mgtrix is Assumed to be symmetric;
therefore, only th;se PL?ments é(i,j) where i<
need be considered. 1he;ﬁD(C), which is a

neld

function of th jpﬁitigulb: packing, is:-

- g

D(C) =3~ 3 _c(i,J)*(1-DEL{a(i).a(]) ]}
i=1 9=1 .

vhere DEL{i1,J) is 1 if i=9 and 0 othervise.
The object is to ainimize D (C) subject to the
.ccnstreint

i

W 2__8(i)*DEL(a(i),k] € P, for all k.
' i=1 )

Since there are N possible pages in which a sector ray
be placed, each a(i) has N possitle values, disfegarding the
constraints. Therefore, there are Nesy possible
artangements which may require evaluation. The BHI
afgorith- vas 1lp1eleuteé using b&:}ttack and half-interval

techniques described thoroughly by Peters.
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4.0 Heuristic Sector Placemept Aldgorithps

i Db i il e e i, S i el S

Due to the apparent impracticality of solving the
sector loading problea by an analytical’approach, heuristic
methods have been suggested as an alternative (H2, P3). The
heuristic afproaches may not be optiméi; nevertheless, they
afford a potential improvement in paging ﬁerformance which
merits investigation. Of the many heuris.ti‘ algorithms
which can be devised, the one which will most efficiently
determine an optimal or near-optimal load orderfng is

sought.

The "Unit Merge" algorithe (P3j is an example of a
method "that cannct guaraﬁteé an optimal sector loading. The
algorithm proceeds as follows: .
| 1. From transition probability matrix C,

determine max c¢ (k,J). X

2. If s(k)+s(j) > B, then go to S.

3. s(k) <=- s(k)+s.(9)
c(k,q) <-- c(k,q)*+c(3.q), for all q
€(g9.k) <-- c(qg.k)*c(g,]), for all g

“ e 4. s(d) <=0 .

c(jeq) <-- 0, for all q
c(q,3) <-- 0, for all g

5. It for every c(k,j) > 0, s(k)+s(j) > P, then

o further serges are made solely to reduce the

number of pages required; otherwise go to 1.



Fxperiments conducted with the Boolean, Backtrack Half
Interval, and Unit Merge packing algorithams have shown the
heuristic appr;ach to be the only practical one [P3]. The
Boolean and jacktrack Half Interval techniques each consumed
3 hours of GE-635'CPU time befcre beipg terminated without
results, while the Unit Merge glgorithm required 2 minutes
of execution time to determine a lcad ordering for the saﬁe
small subject program. While Unit Merge may not provide the
best.loading scheme, it does increase the number of
references within the same page and thus reduces inter-page

referencing.

Hatfield's apgroach is that of reorganizing the C
matrix into sub-matrices so that the large elements cluster
about the main diagonal, corresponding to pages [H2]. The
problem is another which does not lend itself to an
efficient procedure for producing the optimal ordering of
rows and columns. Once again it is heuristic methods which

are actually isplemented.

Eigenvalue*rnalysis is suggested as a technique which
can be used to identify the sector clusters. The technique
has also been used in the field of Information Retrieval to
cluster documents cr terss {S2). 1In each eigenvector of the
C matrix there tends to be a grcup of elements with large
values in cceparison with the rest. A page is filled with
the sectors correéponding to the largest elements of the

eigen&ector. A figure of merit can be computed for each



62
assignment by Comparing the sunm of the eigeniector values
for the sectors in the page with the corresponding sum for
the sectors outside the page. The assignment with the
highest figure of merit s used and the rows and calumns of "

A

C for the 'assigned sectors are deleted.

‘In the research reported by Peters [P3], the Boolean
model wvas also considered. Based on the work of Lowe (L1,
L2], Ramamoorthy [ R3], and Ver Hoef (vV3], the "Boolean
Packing Algoritha" first attempts to identify the cyclic
structures within the program and spen pack the sectors
comprising a loop into a common page. Neighbouring loops*

and the sectors linking them are also dpsigned to the sanme
t\

page, should their size permit it.

Looping structures are detected by raising the Boolean
connectivity matrix to successive povers. 1In B**N, element
b(i,]J) is one if there is a path through N arcs between
nodes i and j of the directed graph for th prograe. Also,

node 1 is in a loof of length N if b(i,i) of B**N is one.

Once the loops have been identified, the ones which are,
less than a page in length can essentially be merged to form
a nev sector. The next step is to coalesce linearly
connected sectors and then comsolidate partially filled

pages to reduce internal fragmentation.

Obviously, the Boolean modelis very closely related to

the fransition probability model in that the elements which
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Y

are one -in the connectivity matrix are replaced with

probabilities. Intuitively the extra information provided

by the probabilistic nmodel should permit an algorithm for

better page packing. As Lowve mentions [L2]), a comparison of

-

the Boolean and probabiligtic methods, including potential
performance improvement and complexity of implementation is
A

an area of investigation which deserves attention; however,

it is not within the scope of this particular study.

4.5 Practicality of Page Restructuring

An importapt consideration in developing an autcmatic
sector°packihg'£echniqué is that of ensuring the
practicality of_the system. Obviously, the cost of
performind the repacking must not exceed the efpected
savings in the long run. This criterion places a limitation
& the type of prograas vhich should be optimized as well as

‘ : .

the type of restructuring algorithams which could be

implemented.

Analytic soluticns to varicus memory-allocation
~prohlems of reasonable magnitude have often been avoided
beczgse of their prohibitive gfst. Garey, et al. even
rejegt this approach for the relatively simplg’problém of
deternininé the minimum number of pages required to hold a
set of sectors [G1]. Sim;larly, investigations pf the more
complex problen of packing pages to minimize the inter-page

references have alsc avoided analytical solutions (B2, P3].



Efforts have been directed at finding a suitable
heuristic solution, implying the determination of a set of
rules which, when applied to the problem, gives a valid

@tgiolution that is reasonably optimal. Heuristic:.methods,
vhen properly designed, are qQuick and give sub-optimal
results within acceptable boun\ds of the fully optimal. It
has\been noted that heuristic 'sector-reordering techniques
can reduce thg numnker of page é;CeptiOnS in the order of
tvo-to-one to teﬁ-tﬁ-one [ﬁ2]. The improvemedt is due to

\ : '
* the reduced inter- page referencinq\and mdre compact working
sets. It is noted that the effecti;eness of the technique

is reduced when the average gector $ize exceeds half the

page size.



CHAPTER 5

ASSESSHENT OF STATIC PROGRAM REOGANIZATION

i A e ot i A o

- In this chapter an attempt will bé made to establish

the effect of a static program reorganization in ferms of a
reduction in potential paging activity. A study of this
nature could in fact centre on any of three éreas which
influence a program's working-set dynamics and consequently
paging activity. These three areas are:

1. Internal fragmentatién

2. -Density of reterence

3. Locality of reference

¥ 4

The argument for minimizing internal fragmentétion is a
tvo-fold 6he. In addition to the obvious objective of
minimizing space allocatgd to the program, it is desirable
to maximize the productivity of each page loaded, by
fetchigg potentially useful information rather than.regions

of wasted space.

Density of reference refers to the amount of allocated
.storage which is &ctually used during the course of program
execution and could conceivably be measured as. the number of
unique locations referenced in a pagelduring a specified
interval of time, ?he concern is with regard to how much‘of
the information in the page is really needed...Once again,

"the purpose of any reorganizaticn based on density of

65
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reference would be to maximize the use of each page loaded
by ensuring that the entire page contains needed

information.

Locality of reference is associated with the proximity
of locations whose ccntents are referenced close togéther in
time. A program wvhich exhibits a high degree of
localization in memory referencing should have considerably
less paging activity than a program which scatters its

references over mahy pages.

.Since this study is principally concerned with
reorganization of a frogram's fpages at the sector or module
level, it may show favcurable results regarding density and
locality of reference. A reordering at this level cannot
" improve behaviour Hitﬂin the modules since this is a problem
associated with design and source~language codigg. By
placing sectors which interact,é great deal in the same
page, the deﬁsity of féference as well as the locality of
reference for that page may be improved markedly. 1In
stipulating a pagination requiring specific modules to be in
the same page, one may cbhserve an increase in the internal
fragmentation and consegquently tctal number of pages
allocated to the pkogtam. However, the inportant.
considerétion is to reduge real memory requiremgnts and CPU
overhead, even at the exrense of occupying additional ‘

-

virtual menmory.
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5.2 ﬂonitdr‘gesu;;§

The progfam monitor which was briefly described in the
preceding chapter existed in two forms. Originally the%
behaviour of the program under observation was recorded as a
string of memory addresses tagged és being either the result
of an instruction fetch or a data r‘eference1 With this
. monitor #®he following problems were noted.

q‘§1. Costly to run due to large number of I/0
': requests. s ,
2. Analysis of data could be as expensive as
| collection of data, because of I/0 events.
3. Large files of address-reference strings must
be maintéined.
The advantage of collecting and maintaining a large data
base of program-reference strings is that, subsequengly, a
great many stafisfics can be derived.
| A decision was made to collect igfornation on the
behaviour of several prograné ih a fot; similar to the
transition prbbability métrix. Therefore, thé analysis of
the address referencé strings was incorporafed within the
w ,

p;bgram monitor. In this way, the overall expense of

collection plus anaiysiS‘was reduced.

1

While the monitor interprets and simulates the

d

‘executibn of the test program's instructions it fills a

Ry
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buffer with the memory addresses being referenced.

With the use of the load map the analysis stage reduces the
string of address references into a matrix of sector
interactions. Since the addresééé are tagged if they
correspond to instruction fetcﬁgs, it is possible to
determine if the occurrence of an add;gss externél to the
current sector is the result of a daﬁzireference or a
transfer of control betueen‘sectors. While the matrix does
not ‘differentiate data references fronm transfers, a

cumulative tally of these statistics is maintained and made

available at termination. .

The following example illustrates how the monitor
constructs the reference matrix and collects additionalv
informatian regarding brancﬁing and referencing between
sectors. Consider a prograa uith‘two sectors, A and B. The
following notation will be employed.

a' - instruction fetch from location within A
bt - insfruction fetéh from locétioq witbip B
a - data reference to location withiﬂ A

b - data reference to location within B

The following reference string would result in the

.

generation ¢f the matrix i:ovn in Figure 6.

, a"aa'abb'bh'bab'a}a'x

L2
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AR B
A 4 2
B 3T 4

Figure 6: Inter-Sector Reference. Matrix

The monitor also provides the following information

frop the reference string.

Instructions executed: 6 /
Total references: 13

Intra-sector data refe;ences: 3
Sectof'transfers: 2

inter-sector data references: 3

Three programs thought to be good candidates for
reorganization.because of their size and running"
characteristics were chosen for monitoring. Eachjptogram

R was monitofed several times with varying input data. 2

brief desbriptionﬂcf the programs is given below.

Program 1. ASSEMBLER - Information Retrieval Application
Program 2. ~ ASSEMBLER - FORTRAN G Comfpiler ' L

Pfogram 3. ALGOLW - Chess Flaying Progran

~ . \



The various runs of a program are denoted by the
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program number followed by an alphabetlc character, eg. 1a,

1b, 2a. 1In Table 1 1nfo&mation on the instructions used by

the monitored programs is given.

instructions executed,

frequency, and usage of register-only instructions:

ROGRAM

1a
1b

2a
2b
2c
24
2e

3a
3b
3c

1179888,

w

#INSTRS

e

22750
53122

154193
435876
478229
579298

750461
759815
1887033

#REFS

33903
80190

1}
223044
627077
6687720
833302

1655916

1198706
1211747
3009286

1.45
“1.44
1.44
1.44
1.44

1.60
1.59
1.59

e
=}
t3)
(7]

|

(=20,

0.
0

.
£~

53.5

54.1
54.0

54.2
54.5 °

39.4

39.7

39.7

#INSTRS - number of instructions executed
#REFS - npumber of memory references ‘
REFS/INSTR - average number of references per instruction
XREG - percentage of 1nstruct1ons referenc1ng\reg1sters

o

nly

e
[g2}
]
b=
\-
'3}

fe]

[PV VY) I
S w l
)

25.4
27.1
27.0
27.0
26.7

16.7

17.0
16.7

ABRANCHES - percentage of instructions resultlng in
transfer of control ’

o

These statistics illustrate the inherent differences in .

|

Table 1: Program Instruction Types

object code produced for the various programs.

The ALGOLH

Included aré the nember of

number of references made, branching

&

'progran,hds a markedly larger reference-%’ﬁlnstructlon ratio

" than the ASSEHBLER programs.

Also, the percentage of

o



‘ t
instructions which cause bg:;;;;s or which use only

registers is much less in the higher-level language progran,

indicating that data fetches may be more critical than

transfers of contrcl in producing inter-sector references.
¢

The data gathered and interpreted in Table 2 shows the

significance of data references.

'

PROGRAM RZINT. DATA REFS STRANSFERS  %EXT. DAT

=23 a2 A_REFS
a b 10.2 S 2.2 20.4
1b 12.0 1.0 20.8
2a 4.9 6.7 26.0
2b 5.4 7.3 25.1
2c" 5.4 7.3 25.1
24 5.5 6.9 25.0
2e 5.3 7.3 25.2
3a 2.8 2.7 34.6
) 3b 3.1 2.6 34,2
3c 2.7 2.8 34.6

ZINT. DATA REFS - percentage of references which involve
a data fetch from a location within
the currently executing sector
XTRANSFERS - percentage of references which involve a
transfer from one sector to another
%EXT. DATA REFS - percentage of references which involve
a data fetch from a location external
' /} to the currently executing sector
LU

Table 2: Proéran Reference Characteristics

o L . e R .
. L Al R } R .
) \r . ! -

L] I |

S From these examples one can observe that inter~sector
referencing including transfers and data fetches may account

for as many as 36% of all references. In the'woggxfcase one
, e

would find that all inter-¥ector references cause pége*
faults. Of course this can be further complicated by

s
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matrix for te% program 1a.

‘afford only pinor additional 1nprovement ‘ ;

N
|

—/ -‘
o o

sectors which cross page boundaries. The-only sectors which

cross a page€ bcundary are those that are larger than a

page.
VAN
An example of the reference matrix produced by the

monitor is listed in the Appendix. It is the reference

@

In ordér to gain an appreciation for the reduction in
porential page faults that one might expect from a program
reorganization based on inter-septor reference patterns, the
results of the‘mohitored'programs were analyzed to obtéin“
severai;importanr statistics.

First, observing the.load£§g algorithm for the MTS

¢

system on ‘the IBM 360/67, all inter-sector references vhlch

could result in a fage fault were Ebllled Then, for

comparison, the page contents were reorganized according to-

i

‘ the Unit Mefge algorifhm‘described by Peters [P3] and again
Q%he possible. page faults were calculated. This algorithm

vas used since 1t ‘was ant1c1pated that the reorganlzatlon

would approxlmate the ofrtimal crderlng.‘ The transition
matrices were/observed to be very sparse and contained sets
of'elementsvuhlch are many orders of magnltude greater thani

.

the rest. Therefore, the Optllal algorlthm would p0351b1y

)



In Table 3 below, the totn} nuaber 91 intefr-sector
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references as well as the percentages which might cause paqe

faults according to the MTS and Unit Merge loading

techniques are presented.

-

s* ° RIMPROVENENT

PROGRAN $EXT. REFS  ZFAULT REAULT INPROVEMENT
1a 7686 85.0 53.7 ~36.8
1b 17468 91.5 72.5 20.8
2a 72910 85 .7 51.6 39.8
2b 202972 85.5 56.8 33.6
2C 222¢82 85.0 57.2 32.7
2d ) 265665 82.2 57.1 - 30.6
2e \ 550538 96 .8 57. 3 Y ug.7
3a 446923 99 .6 98. 2 1.a'
3b 446735 99 .8 98.5 1.3
3c ) 1122673 99 . p 97.8 1.6
* $EXT. RFEFS - number of reterences to locations e;!ernal
to the current sector '
AFAULTS - percentage of external reference§ which may

¢ cause a page fault bgcause the two sectors

\ are in separate fpages

XFAULTS* - identical to RFAULTS except that the fpages
are considered tc¢ be reorganized according to
the UNIT MERGE a%qorithn .

RIMNPROVEMENT - improvement in terms of yreduction in

potential page faults atforded ty
‘ . reorganization i

Table 3: Potential Page Faults

- o
Several interesting features cf the prograass which wvere

monitored can be seen in the light of the statistics shown
) ] } ’
in Table 3. First, the reordering was deteramined on the

basis of the Uhit Merge algoﬁithl ‘being applied to one of

*

the transition satrices for a particular prograa. The

. L

various runs of each prcgfal used different data in order to

-
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gauge the tluctuation in behaviour. However, the
realignment calculated from one run provided a comparable
imprcvement for all runs of the program. Introducing
different data to the program did not drastically affect the
program's behaviour; thcugh it resulted in new modules bei}g
referenced vhile others were nc longer utiliz¥d. the
interaction between program sectors was not chaﬁged

significantly.
o

Program 1 exhibits a higher degree of data dependency
than the rest. The results in Table 3 were based cn a page
loading suggested by the transition matrix for run la. If
the page contents are specified by the Unit Merge algofithm

applied to run 1b then the results are as follows.

PROGRAN #EXT. REFS  AFPAULTS AFAULTS*  AIBNPROVEMENT
1a 7686 §5.0 81.4 4.2
1b . 17468 91.5 68.9 24.7

Table U: Potential Page Paults fo? Program 1
Reorganized According to Run 1b

The FOETRAN G compiler showed a consistant improvement

ranging froa 30% tc 40% apd once again variations in the

Y

input data causedilinqr d}ffecences in the suggested

’ v, BE oi‘v,"; *
reorganization.. A variety of ‘ssall FORTRAN programs was

: . . g
compiled in order to trace as many of the compiler =odules

\
as possible. Included were several programs with syntactic

errors wvhich insured that error routines would be executed.
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The ALGQLH progtam showed practically no improvement
alt hough the%e seemed to be great potential since Y9%X of the
inter-sector references could conceivably cause a page
fault. The reason for the lack of improvement was
attributed to two characteristics of the program. First,
there vere several highly used sectors too large to be
packed with their associated sectors. Secondly, the dynamic
acquisition and.release of storage, ,commcn to ALGOL
programs, results in many references to sectors which do not
exist at load tinme and cannot be reorganized. Further
examination of the data tor programs 1 and 3 was Heeméq

necessary to confirm the above suspicions.

The ¢oncept of a "super-page™ was introduced to
determine the significance of the large sectors in the
overail reorganization. A super-page of size n=2,3,... can
be interpreted as either a page of size n*4096 bytes vérsus

»

th standard 4096 bytes or an association between an n~-tuple
o£ pages such that whenever one is in main memory then the
others will be too. Reorganization of program 1 was done,
for super-pages of size 2 and 3 and for program 2 with sizes

2, 3, 4,iand 5. The results are shown in Table S.

i ]



76

PROGEAM AFAULTS
IS 1 2 3 4 5
T1a 85.0 53.7 42.0 35.9
1b 91. 8 72.5 56.4 48.8
3a 99.6 98.2 97.7 97.5 96.9 94.9
3b 99.8 98. 5 97. 4 97.2 96.7 94.9
3¢, 99 _4 97.8 97.3 - 97,7 96.7 94 .6

“Table 5: Potential Page Faults,
Considering Super Pages

The additional improvement for program 1 provided by
the super-page is not as significant as the original
reorganizational improvement. In the case of program 3 the
only noticeabie improvenment occdrs at super-page size 5,
which corresponds to the existence of a very heavily used
sector just larJer than 4 standard pages. However, even
maintaining a wminimum set of S pages in main storage at all

times affords only a 5% improvement.

Several of the programs mcnitored undertook the
’

management of'stotage needs by acquiring and freeing @aemory
dynamically (CETHMAIN and FREEMAIN commands).. These regions
Cannot be manipulated at load time since they appear and
disappéar diring the course of execution. Nevertheless, the
data fetches to these regious‘can be significant in terms of
causing pége faults. 1In order\£o gain an appreciation‘for
the inportancé of da;a fetches td'fhese regions, the monitor
data vas apalyzed once again. Table 6 shows the same type

Of statistics as Table 3; however, references to regions

acquired dynamically by the prcgram have been removed.
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PROGRAM  $#EXT. REFS  XFAULTS  XFAULTS*  RIHPROVEMENT
1a 7084 83.8 49.8 40.6
1b 15951 90.7 69.8 23.0
3a 49931 96 .1 "‘§3.7 12.8
3b \ 49966 98.5 86.9 1.8
3c 130583 94 .6 81.1 14.2

Table 6: Potential Page Faults,
Ignoring Dynasically Acquired Regions
While program 1 dces not demonstrate a marked

improvement when its dynamic regions are not tracéd, program
3 appears to be lipited by its data tetches to program-
acquired storage areas. Finally, if the data used to obtain
the st;tistics in Table 6 is apalyzed under the super-page
concept, then a new set of results is available and is shown

in Table 7.

PROGRAM \ XEAULTS .
nIs 1 2 3¢ 4 5
1a 83.8 49.8 37.0 30.4 ’
1b 90.7 69.8 52.3 43.9
3a 96. 1 83.7  79.4 77.8 72.8 54,2
3b 981 5 86.9 6.6 75.1 70. 3 S54. 1

3c 94.6 81.1 76.8 75.6 71.3 53.2

Table 7: Potoztial Page Faults,
' Ignoting Dynasically ‘Acquired Regions,
Considering Super Paggs

. In the final analysis it can be said that any

reorganizational ilprévenent in the page ﬁaulting rate for
. ’ - : . *
program 3 is dependent on the size and use charactefistics‘
\ | :
of the sectors as vell as dynamic acquisition of memory.

- 5
Ed
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5.4 Interpretation of Program Reorganization Statistics

As the results indicate, it is difficult to generalize
on the expected performance iaptovement due to program
reorganization, since individual programs vary greatly in
their behaviour and reference patterns. Even in cases where
a reasonable 10 to 20 percent reduction in potent1a1 page
faults is achieved, the actual reduction in number of page
faults is subject to variation. 1If a SO-page program can
execute with all its pages- in real memory, then no real\
performance improvesent will be evident. At‘aa? opposité
extreme, if. only one page can be maiatained in coréBBt a
time and the program can execute with a single page frame,
then the real improvement is identical to the potential
improvement in page fault activity.’

An interesting facet of the results on’poténtial paging
reduction is taé drastic effect_thaf dynamic program storage
requests can have on overall imp;ovement, These results
vouid indicate that the ability to acquire and release
remory space during execution is a hindrancé in
accomplishing the gdal of this thesis. The original reascon
for allowing this feature wvas to’}imit main memory msage by.

a program until space is actually needed. Hovever, thg

_paging mechanlsn has assumed this tole. Since virtual-\ys

memory occupation charges should be negllglble in comparison

vith real-memory charges, the use of dynasmic virtual-menory

]
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allocation might wvell be replaced with pre-loading
specification of all virtual-memory requirements. In doing

' so, a reorganization of the program would include these o
previously transient regions and pertormance improvements in
terms of reduction in page faults might be achieved. An
undesirable conseqhence may result: a need for a greater
number of page frames at ény time.

The best interpretation of the results presented in

q

this study is that there is significant fotential for

5

improving the performance of large and often-run systems
programs which were originally written to run in other than

paging systems.

s,
'n

Thg determinaticn of the real performance improvement
is left to those studies concerned with‘monitoriné éctual
péging activity, yi‘étu?y of that nature, however, would in
fact be involved with vélié&ting the principleg df locai;ﬁy
and density of rggerence. In this thesis, these prinqipi;s
have been assumed tc be correct and thué, the suggested.f
reorganizations shculd result in more efficient running

characteristics [H2].



CHAPTER 6.

CONCLUSIONS

.Briefly summarizinﬁ, it was the intent of this research
to explore fhe idea of improving softvare performancé in
Paging systems by first determining program behaviour and
then reordanizing the log%cal modules uit(in pages so as to
opp;mize execution. The teorganizatibnal scheme might
result in iﬁproveneht of programs originally urittéh for a

b *

different type of operating System. Also, the method is

»
equally applicable to large systems whose modules are

brogrammed bty many individuals.

A

Basically the exafcted benefit from such a
reorganization is a reduction of the number of page faults
. i ]
and program interrupts experienced during exé?utibn,,which

can be interpreted a; an improvement in the program's

5}ocality‘of feference. Therefore, once the program receives .
coﬂtrol of the CPU it should be able to execute for longer
perioaslof time before beiné interrupted by thé need fqr a
page not currently in m;in»memcry. In a?@ition}'the'entire

Sfstem should experience a gain in totalfthroughput because

less 'overhead in servicing page requests is reaﬁ‘%ed.
B o ‘1
Certain progfaus have a' much greater potential for
N . _ o ,
improvement than others. Reduction ’'in potential page faults

as high as 40% '‘can be expected in some iﬁstances while‘a

mea?inprovenent may occur for other progradi,
. ‘ S 8 &

ST 80 .
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The swall improvement can be attributed to varioué
characteristiFs of the programs. The most obvious is that
the program already has a very high degree of locality in
its referencing pattern, or the secférs of the program may
not be of sufficiently small size to allow an effective
reorganization. Also, the program may be utilizing
techniques which prevent a significant reorganizational
imprévément, such as controiling‘theirloun'storage
acquisition.

Programs which acquire and release storage djnamically
cannot be totally opt1mlzed since some regions of st;}ag;
are not static. One suggestion is to maintain a'list of the
available space in the progtam's Fages ang try to allocate
dynamic‘rggdons in thé samhe page as the sector which issued

the storage request. "{_
¥ . LB
\ " 2 '}

Another point of note is that execution of a program
which has been processed by a linkage editor may not be as'

efficient as that cf the program in unlinked form. Using a

-cdnventional linkagé'editoE, page frames would be loaded

‘with seguéntial prcgram code regardless of any logical

divisions. Thus,_the likelihood of a loop within a sector
. . T, Ve :
crossing a page boundary is increased. A conflict now

arises between the advautages ang disadvantages of using a

A ‘e

s&andard linkage ed1tor. The advantage is ‘.Ster progr?p

loqdlng since most external refqrences have been resolved

”,

vhen the proggam is processed by-a linkage editor.

EAan
5
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The implication 1s that a specialized 1inkage editor for
paging systems 1S required. 1Its task wéuld be to load pages
with program modules whjle resolving external references;
howéver, it would also attémpt to prevent a module from
crossing a page boundary. Efficient loading vould‘minimize

the amount of wasted sbace at the end of pages, and it is

poésible that program generated data areas could be
allocated to theéSe regions. ™A linkage editor of this typel

could also be fed inforgation from,automatic;pfogram
‘ Y
monitors and thuS perform the page loading on the basis of
. R |
module interaction. / ’
’ )

[

Even thougb there jg sufficient indication to uarrani

development of a2 prograp monitor and reorganization éystem,
. .

there are still technical problems which must,be ovér¢o¢e

before implementing such a scheme. The algorjthms and

/\
programs, used in tbls experimental " study afeot considered
to be useful ip a Fractical sense. Therefore, a ~lﬁ

sufficiently sopbisticaﬁﬁd }rogram monitor must first. be

4

developed.
| : //
K . ' A%

Any monltorlng tha{ 1s*peer§med nust enconpass'

/

.numerous Tuns of the prograh to lﬂprove the chances that any

_inherent data dePEndenC1es aré dlScovered. Improvlng the
v
execution for the entire range of data mhl;h the progran

might receive, rather than just for oné partlcular type of

input, is the ultimate copcern.
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The resu;ts‘in this study concur with the finqings 6f
Hatfield [H2] in that 1arge, modularly-desigﬁed programs
;uch as the FORTRAN G compiler do not aiter their bebaviour
significantly when the dat; is_changed, oT thét changes in
data result in sectcrs specific to the particular data
vagiatidn being referenced. For example, if a syntax error
is intfoduced into 5ﬁprdgram that previdusly compiled; one
might‘find that thé nodules of the compiler wvhich generate
object code aré how not referenced. Therefore, changing the
data usually results in a different set cf iodules belng
accessed. It is vital that the progfeq be tested gitﬁ many
data variations, in order to observe all sectors in
execution. It will be inferesting'to see if any wgrk in the

area of dynamlc determinitifon cf prég{§m locality is more

éuccessful than the static approach.
‘ -

(' AIn addition to developing an efficifné and easy-to-use
monitor, a good‘réorgahizatiqn algqrithm-qusf be produced.
Following the failure to q4 velop an algéfithm for the
optimal reorganization, a  suboptimal heuristic solution with
~less than a specified error tolerance, is needed. Acquiring
zthe data necessary to verify real performance improvements® .
may necessitate the developnentﬂéf a "page f;uit"‘mOﬁitof-to
record tﬁe number of prograam interriipts caused ﬁy szissing-“
page éxceptipn. The regults would have to be gafhéfed in
‘yarEOQS syqtén enViroﬂnents sinée'thé pagé-fault'rate‘is a-

,function of the nusber of Fages. which can be maintained in

-

U
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/

main Aemory and this, in turn, is dependent on the’

- .

v
L
i
l

Another experiment wh1ch could be\perfqrmed to
determine the effectlveness of the reorganization involves

calculation of working-set sizes. Hopefully, such a schenme

]

would reduce.significantly the number of pages nithia the
uorklhg sets of the program. If thls goal is attained,

systems employ1ng a Working-set page replacement algor1thm

’r

might be imgroved, since the wcrking sets will be nore

Cleariy and compacrly defined.

-~

The type of reorganizational algorithms which have been
hehtioned in this study are based-on the particular model of
program behaviour developed in Chapter 3. ‘Unfortunately,

the problem which is being studied cannot be solved easily

by such a rigorous mathematical model, 51nce it requlres the

)

m1n1m1zat10n of some function. Future wvork in thls area

should examine the fpossibility of ineorpcrating'time-series

'

analysis of the memory reference string. It may well be

that a repacklng of program sectors according to the number

A

of inter-< sector references is not the best crlterlon and - may

L] 14 -
not reduce actual- page faults, even 1f there is. szgnlflcant

13

. reduction in potential page faults. ‘ © -

:, . " : ) ’ ! . < ! ! . 4
If»programs doy in fact, maipntain a set o& pages'in

maln storage durlng executlon, then two sectors tQat are in

&

separate pages but whlch reference each other a great deal

I A «

G A . »
< .« . - .

l"\ | :

‘\‘
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vithin a short time interval may well 1ncur very llttle
paging overhead, 51nce their frequent contemporary use Hlll
stop them from being prlme candldates‘for removal from main
memory. However, two sectors which reference each other"
intermittently during the course - of execution may be causing
a page fault on each reference if they are in separate pages
that are‘not in main memory at the same time. _Therefore,
much more intensive research on page-residence tinee and

worklng eet sizes is a prerequisite to the development of -

more effective reorganizational algorithms,
) : N o

The feasibility of a page-repacking system is closely
: : _ )
related to the types of programs to which it is applied. It

is recognized that the determination” of program behaviour
and subsequent page reorganization can beAexpen§iVe;

therefore, the system must be applied selectively. Prime

[}

candidates for pcssible reorganlzatlon 1nclude large,

AN
N
.heaoiiy used programs such as compllers, assemblers, text

editors, etc.; paged port;ons_of the operating system,

especially the modules which are reentrant; large real-time
! i : .

: . L : . . , .

applications whose sectors have widely differing frequencies

o | C C o ., . '
of use; systems which havgrbeen divided into components that |

arggprogrammed:by different pecple. Also, interactive rime-

)

sharing systems require efficient organization of the

software supporting the 5ystem in order to mlnlmlze response

]
<

- the\monltor system should be capable of decxdlng vhether or
. \ . . \
\ J ', \~ o o - - ‘ '

délays. Not\\ll of these programs are good candldates and
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not a program is eligible for reorganization.
/ .

There are several factors leading to increased
.popularity and use of paging %}stems which will in turn

necessitate softwaré either designed §bécifically for, gr

-

modified to perform efficiently in, these systenms. Qne"

factor is IBH'e annognced‘main stream‘systemsysuppOrt, which

includes the operating systenm OS/VS (Virtual Storaoe).
,Anotper factor that enhanceé.the idee of pége reoréanizatipo

according: to module interaction is the emphasis being plécgd

A . -
on "structured" programming, which can only increase the - ¥

nusber of major systems designed and.progrﬁmmed‘in moduYar
/ . o \ v '

form. Since in these apd other systems there are usuolly
Pt o A . . . -
several programmer®, working on $éparate sectors of the
) ) .. | o . . .
«program, beliaviour of the total program is even more clouded

-and can probably be.best determiped by some‘korm of

. ' L .' o ’ ‘ ;" '

wonitor. - ' o

. | “ ’/)

there are algeady-indicaticns thét the concepts / .
;o

discussed in thls thesxs are beginning tc take practlcal
= S / /

hy"} An IBM Installa‘tion Newsletter [[I6] cgpgzs t17‘ idea
, i RS o
of tuding 1nd1vidualaprograms in order to-;v ‘the/r .

L

— N

torage - Release 2). It 1s suggested that procé7mm1ng
. e .

practlces con51dered godﬂ for MVT are no longer cceptabie

-for’ the pag@ng "operating sys;em. The linka‘e edl!?r for vs2

L]
|

, has ‘been. extended‘to allow the progrannmer to specify the

P

order in whlch the CSECTS (sectcrs) are to be 1oaded.

. . '
T .: >

e oo . . e



(

-, : .

. } 1
Also, the programmeér fan dictate whether or not a CSECT is

to hegfh on a page Uoundarf. R § )

.It is concluded tﬁpt the frogram reorqganization schenme
dbnéidered in this study can indeed be worthwhile provided
that efficient monitor and reorganizational algofithms can
be designed. The technique wi&l bg a valuable tool in
paging systems; however, without )Ze implementation of¥
inexpensive algorithms to perfcrm the reorganization, the

concept may not prcgress beyond the manual reorganizq}ion

suggested by Comeau [CSj. ’
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“ rhe follouing‘tabl€; ﬁhich was referenced in Chapter 5,
provides an illustrafion‘of‘the type of reference matrix
. iy .

which was gathered by the monitor proyram. The matrix shown

’

here is forirupn "a" foprogram 1. The columns of the matrix

extend over-the following four rages, An individual

numerical element, c(i,Jj), indibates the number of -

references made in sector "jw as a direct ‘result of
Instructions executed in sector ®iw,

L
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<SYMTAB>
SISMAIN
FMTCMD
DISKLOCN
SISIO
FINDCAT
DEFNAME
AVE
COMPUTE
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PRINT
SELECTF
LOOP

ALLOCATE

INTERUPT .

PACKNUM
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FIXNOM
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OPEN

CLOSE

~
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FI‘ND'CAT CEFNAME AVE COMPUTE SELTERM COU PRINT

o O o

o o o o

ATTNTRE . 0 - 0 0 0 .0 0 0
<SYNTAB>: 0 0 0 0 - Y
SISHAIN | 0 1 o . 0 7 1 0
FHTCHD 0 o Yo 0o . 0 ™ 0
?stnoci_ o 0 0 A&b o 0
sisto [ 0 0 0 0 0 0 0
FINDCAT 162 . 12 0 0 0 0 0
DEFNAHE4LL'(2 176 8 0 o . 6 -0
AVE o S1 713 1T 0 - 0
COMPUTE . 0 0 0 u586 152 0 0
\\sﬁLmERﬁ e 0 0 912 9901 911 0
cov 0 1 0 166 153 . 2928 - 0.
CPRINET 0 0 0 256 0 0 1329
| SELECTF ~ » 0 0 0 0 0 0 6
LOOP. 10 RN 0 4
ALLOCATE 0 o o o - 0 0o 0
" rwreropr | 0 }6 0 0 0 0
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 sus L o o 0 o o
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CLOSE }féf F 2.0 0 .0 - o 0
| scamwun 0) 1 0 0 0 0 -
;fkaispxz‘ ; ;§§~ 0 0 o0 - o 0
- USERGET. - ffﬁ . 0w23€3 0 e . 0. o
o Y IR | |
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