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Chapter 1

Introduction

Local search algorithms randomly select a starting point and then make moves according to 

the heuristics they use, in which randomness is typically employed. These algorithms are 

surprisingly effective for various classes of constraint satisfaction problems(CSP), such as 

graph coloring, scheduling and satisfaction problem(SAT). SAT problems have the binary 

domain, {True, false} or {0, 1}, which lets them be in the simplest form of CSP problems. 

In spite of their simple form, SAT problems do play a prominent role in many computer 

science areas. CSP problems including SAT are NP-complete. NP-complete is one of 

the computational complexity classes. In contrast to the class P, which is another one of 

computational complexity classes, NP-complete problems are not expected to be solved 

efficiently by any solver. In the worst-case, local search algorithms still need exponential 

time to solve CSP problems. However, local search algorithms are much more efficient under 

some classes of problems than classic search algorithms that are complete search methods, 

such as backtracking, backmarking and backjumping. Inevitably, local search algorithms 

also have their disadvantages, such as being sensitive to parameters and being unable to 

handle instances with no solution.

Local search became popular in early 90’s and many SAT solvers based on local search 

procedures have been proposed since then, such as GSAT, CSAT, Novelty and R-Novelty. 

These local search solvers are simple but powerful. Some of them can solve hard SAT 

instances with even several thousands of variables, including encoded SAT instances of 

other CSP problems. These instances sometimes cannot be solved in reasonable time by 

-classic SAT solvers based on popular Davis-Putnam procedures. - That-is why people paid 

attention to local search algorithms even though they are only semi-decision procedures that 

only work on satisfiable SAT instances. However, the good performance on large instances

1
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does not mean that local search procedures are better than systematic procedures. Actually, 

no one can really answer whether local search algorithms out-perform systematic search 

algorithms on satisfiable SAT instances or not so far. To date, researchers still do not 

have proper general theoretically tools for the analysis of local search algorithms because 

of their inherent randomness and those existing theoretical analyses are usually limited 

in the practical use. Hence, it is difficult to analyze local search procedures theoretically. 

Therefore, many researchers still analyze local search methods using empirical methods.

In this thesis, we analyze GSAT and WalkSAT local search procedure families using 

empirical methods too. These two families contain two major local search architectures 

in the SAT research area and they can be easily extended and have been confirmed to be 

efficient in experiments. The structure of search spaces and the convergence speed of these 

local search algorithms are two main issues of this thesis. A search space basically represents 

all the possible states and moves of a local search procedure. Our research focuses on the 

coverage of traps and the convergence speed on search spaces. Traps consist of assignments 

that local search procedures should avoid. A local search procedure associated with search 

space graphs containing fewer traps has less chance to get stuck in traps. The convergence 

speed measures how fast an algorithm converges to the sinks. The solutions are a part 

of those sinks. Therefore, a faster convergence speed is desired. On the other hand, the 

convergence speed is directly affected by the average out-degree of states in search spaces. 

We empirically confirmed the correlations among the coverage of traps, the average out- 

degree and algorithm performance through our study.

In Chapter 2, we present the basic concepts of SAT and CSP as well as some systematic 

and local search methods for SAT in detail. The most well-known systematic search proce­

dure, such as the Davis-Putnam procedure(DP) and its variant Davis-Putnam Logemann 

Loveland procedure(DPLL), are introduced, and then GSAT and WalkSAT local search 

procedure families. After that, we introduce the new algorithm from Schuurmans et. al 

[35], SDF, which performed well under their three measurements for the evaluation of local 

search algorithms.

Some related work on the search spaces of local search algorithms are introduced in 

Chapter 3. The early work on escaping plateaus and traps by Selman et. al. and some 

theoretical work on the hardness of instances are introduced first. Then, we explain Clark 

et. al and Schuurmans and Southey’s work in state spaces in detail. After that, we discussed

2
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the work of Prank et. al. on the topology of local search spaces.

In Chapter 4, to give an outline of the performance of local search algorithms, we 

designed experiments for the comparison of local search algorithms’ performance. We com­

pared the performance between local search algorithms and a systematic search algorithm, 

where the performance was measured by actual running time. We also provide the per­

formance comparisons among the local search algorithms as well, where the performance 

was measured by the number of flips. By the comparison, we hope readers gain a concrete 

image on how good or bad those algorithms are.

Finally, we presented our research work on the structure of the search space graphs and 

the convergence speed under some local search algorithms in Chapter 5. In the first half of 

this chapter, we carefully studied the coverage of traps of the search spaces of GSAT and 

WalkSAT families. In the second half, we simulated the searching process on the search 

space graph using stochastic matrices. By comparing the difference of the convergence 

speeds of these algorithms, we can see how the differences among search space graphs 

affects the search performance. We empirically confirm that small values on the coverage 

of traps and the average out-degree lead to a good performance.

3
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Chapter 2

Background

2.1 Satisfiability (SAT) Problem

In the computational complexity area, problems are categorized into many classes. P, NP 

and NP-Complete are three of them. The class P consists of problems that can be solved 

in polynomial time under the input size n, which means that there exists a k such that the 

problems can be solved in time 0 (n k). The class NP consists of those problems that can be 

verified in polynomial time which means that given a certificate of a solution for a problem 

we can verify this certificate in polynomial time under the size of the input. Clearly, the 

class P is a subset of the class NP. If a problem can be proven to be as “hard” as any problem 

in the class NP, this problem is in the class NP-Complete. The NP-Complete problems are 

usually considered as the barrier separating the computational tasks that can be solved in 

realistic time and resources from those that cannot.

The Satisfiability(SAT) problem is the first problem proved to be in the class NP- 

Complete. It holds a central position in the study of computational complexity. A SAT 

instance consists of[5]:

1. A set of variables X  — {x \,X 2 , ■ ■ ■ , xn}, whose domains are {0,1};

2. A set of literals C = {h-,hi ■ ■ ■ ,hn}, each of which is equal to X{ or —im*, where 

i =  1, 2 ,. . . ,  n;

3. A set of clauses C =  (C i, C2 , ■ ■ ■ Cm}, each of which contains a subset of the literal 

set C,

The form of C\ A C2 A • • ■ A Cm is called the Conjunctive Normal Form (CNF). We will 

call a SAT instance /  =  C\ A C2 A ■ • ■ A Cm a CNF formula. All of first order logic formulas

4
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can be translated into CNF since all basic logic connectives have their own equivalent CNF. 

For example, aq -> x% ~^x\ V X2 -

A solution of a SAT instance is an assignment to all variables in the instance such that 

each clause contains at least one literal whose value is 1. The value of a literal lj is 1 

when Xi = 1 if lj =  or %i =  0 if lj =  ->X{. For example: /  =  {C\, C2, C3} is a SAT 

instance where C\ =  {sq, sq,-isq}, C2 =  { -^ i, 3:3, -1X4}, C3 =  {x2, -1X3,2:4}. Then, both 

3q =  0,2:2 =  1,*3 =  0,3:4 =  0 and x\  =  1,3:2 =  1,3:3 =  1,3:4 =  1 are solutions of the 

formula /  = (x\ V 3:2 V -13:4) A (->3:1 V 3:3 V -13:4) A (3:2 V -13:3 V 3:4). Solutions are frequently 

denoted as tuples. For instance, the two solutions mentioned above can also be represented 

as si =  (0, 1, 0, 0) and S2 — (1, 1, 1, 1). The solution space S  of a SAT instance is the set of 

all of the solutions to this SAT instance. The assignment space of a formula /  contains all 

possible 2n assignments for Xi(i =  1,2 , . . . ,  n). If an instance contains n  variables, the size 

of the assignment space is 2” . If a formula’s solution space is not empty, we say that the 

formula is satisfiable; if it is empty, we say it is unsatisfiable.

If each clause in a CNF formula contains exactly k literals, this formula is called a fc-SAT 

formula. For example, /  =  ( i i  V 3 :2 ) A (->3 : 2  V 3 :3 ) A (3 : 4  V 3 :3 ) is a 2-SAT CNF formula. 

fc-SAT problems are a subclass of SAT. When k — 2, this subclass(2-SAT) is in class P; 

when k ^  3, k-SAT is in class NP-Complete. If P  ^  N P ,  then we do not expect any 

efficient algorithm to solve k-SAT(k ^  3) formulas. Therefore, how to solve SAT problems 

with less effort and why SAT problems are hard become important issues.

2.2 Solving SAT problems

SAT is a special case of Constraint Satisfaction Problems(CSP) which is another well-known 

NP-Complete problem. A CSP problem consists of[12] :

1. A set of variables X  =  {oq, 3 :2 , ■ • •, xn}-,

2. A set of domains V  = {D \,D 2 , . . .  , Dn}, each of which is the finite domain of the 

corresponding variable Xi.

3. A set of constraints C =  {C\, C2 , ■ ■ ■, Cm} which restrict the values of variables in X;

A solution of a CSP is an assignment V = (iq,t>2 , • ■ • ,vn) to all variables in X,  which 

satisfies all constraints in C, where Uj is a value in D{ for the variable Xi. SAT is just a

5
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CSP with all domains D\, D 2 , ■ ■ ■, Dn being binary, {0,1} or {false, true}. Therefore, CSP 

solvers can solve SAT problems directly. These solvers may be roughly categorized into two 

classes: complete search algorithms and incomplete or local search algorithms.

Complete search algorithms can search the assignment space completely, by verifying 

every assignment in the assignment space. “Complete” here means to check all possible 

assignments without missing or rechecking. Of course, these algorithms are able to skip 

some redundant assignments which can be proved to be irrelevant in advance. Considering 

that the size of A  increases exponentially with the number of variables, we do not expect 

that complete search algorithms are able to solve instances containing many variables.

Local search algorithms, sometimes called incomplete search algorithms, search the as­

signment space A  heuristically using local information. Usually, this local information 

causes these algorithms to search A  partially or incompletely. Because they cannot rec­

ognize the assignments they have checked such local search algorithms may check some 

assignments repeatedly. Therefore, those local search algorithms can only solve satisfiable 

instances because they can never tell whether there is no solution for a given SAT instance 

or not when they do not find any.

Under some conditions, a local search algorithm may keep searching in some closed 

subsets of the assignment space A  and will never get out of these closed subsets. We say 

that these subsets are traps and the algorithm gets stuck in traps. Besides this, local 

search algorithms may also be sensitive to parameters. A proper parameter may lead to 

significantly better performance. In spite of these defects, however, local search algorithms 

have their advantages, such as, their storage space is usually small and they can solve some 

large size SAT problems efficiently. For example, using some effective heuristics, the most 

efficient complete search procedures can solve up to about 350 variable formulas in about 

one hour in 1992(Buro and Bfining [3]). GSAT can solve problems of the same size 10 

times faster(Selman and Kautz [36]). This does not always hold, though. For example, 

highly structured instances, such as blocks-world planning formulas, can be solved with less 

effort by specialized complete search procedures using the unit propagation technique. The 

unit propagation can recursively remove values in a domain that conflict with the values in 

other domains. Because of the structures contained in those problems, the search space can 

be dramatically reduced by large numbers of unit propagations. However, GSAT does not 

have any mechanism for handling the unit propagation so it can not solve those problems

6
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as efficiently as the specialized complete search algorithms. Although they improved its 

performance with some mechanisms[36], Selman et al. note that they do not claim that 

“GSAT will be able to outperform backtracking search methods on all possible problems”.

Actually they believe some certain highly structured problems can be solved more efficiently 

by exhaustive search approaches and domain specific heuristics.

2.3 Resolution and Davis-Putnam  M ethod

Because variable domains are binary domains in SAT, some search procedures are de­

signed specially for SAT problems. Many of these procedures are based on the Davis- 

Putnam method. We will introduce Davis-Putnam(DP) and Davis-Putnam Logemann 

Loveland(DPLL) procedures in Section 2.3.2 and Section 2.3.3 respectively.

2.3.1 R eso lu tion

Resolution is the technique used by many SAT solvers. DP and DPLL are two of the 

most well-known ones. They use general resolution and unit-resolution respectively, where 

unit-resolution is a special case of general resolution.

The general resolution rule[2]: If Ci £ / ,  Cj £ f ,  where /  is a formula, and ->Xk £ Ci, 

Xk £ Cj, the resolvent is Ci U Cj — {xk, —me*}.

For instance:

It is easy to prove that:

1. t is an assignment s.t. t(Ci) = 1 and t(Cj) = 1 => t(Ci U Cj — {x*, ->£*;}) — 1, where 

t(C) = 1 or 0 means that the value of clause C is 1 or 0 under the assignment t;

2. t is an assignment such that t(Ci U Cj — (m*, —me*}) =  1 =>■ 3t' s.t. t'(Ci) — 1 and

satisfiable if and only if f  is satisfiable.

If the clause Cj mentioned above is a unit clause {x>} and Ci contains ->Xfc. The 

resolvent is Cl — {—im*}. We call this process unit-resolution[2].

t ( C j )  =  1.

So if a formula /  is able to be transformed into f  by adding a resolvent, then /  is

7
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2.3.2 D avis-Putnam  Procedure(D P)

Algorithm 1 Davis-Putnam Procedure 
while true do

if There exist empty clauses then  
RETURN Unsatisfiable 

end if
while 3 a variable x which only occurs in one phase(positive(x) or negative(->a;)) do 

Delete all clauses containing the variable x\ 
end while
if There exists no clause then  

RETURN Satisfiable 
end if
if There exists a variable x occurring in both phases (positive and negative) then  

Add all possible resolvents based on the variable x  into the formula 
Delete all clauses containing the variable x 

end if 
end while

Algorithm 1 is the pseudocode of the Davis-Putnam procedure, based on the description 

of the Davis-Putnam procedure in Cook and Mitchell’s paper[5]. It generates a sub-problem 

with one less variable at each step. The termination condition of this procedure is the 

existence of an empty clause or an empty formula(a formula containing no clause) and the 

procedure ends in finite iterations. First, the appearance of an empty clause implies there 

is no solution for the original formula. An empty clause may be produced by a sequence of 

resolution operations. For example: Clauses C\ =  {x i,X 2 }, C2  =  {-laq, aq}, C3  =  {xi, - 1X2 } 

and C4 = {x \,- 'X 2 \  can lead to clauses C13 =  {aq} and C2 4  =  {->aq}, and then C1 3  and 

C2 4  lead to an empty clause {}. Second, The appearance of an empty formula means that 

the formula is satisfiable and a solution for the formula has been found

However, the DP procedure has some disadvantages. The most serious problem is that it 

may generate quadratically more clauses at each step when adding resolvents into the clause 

set. The search process possibly produces too many resolvents to manage sometimes. For 

example, if both x and -ix occur in half of the clauses in a formula, the number of clauses 

will increase quadratically. Another problem is that the clauses may become longer and 

longer. These mean DP may consume a huge storage spaee in a short time.

8
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2.3.3 D avis-Putnam  Logemann Loveland (DPLL)

Davis-Putnam Logemann Loveland(DPLL) is a variation of the basic Davis-Putnam pro­

cedure mentioned in Section 2.3.2. DPLL is a back-tracking depth first search procedure, 

using the unit resolution operation. First, the term of “subsume” [2] is defined, which is 

related to “subset” . C\ subsumes C'2 where C\ and C2 are both clauses, and C\ C C'2 . 

Any assignment that satisfies C\ must also satisfies C'2 . In other words, the solution space 

Sci_ C  S c 2, where C  means that the set of the solution for C\ is included in the set of the 

solutions for C'2 . The pseudocode of DPLL is shown in Algorithm 2[5]

Algorithm  2 DPLL(/)
Apply all possible unit resolutions;
Remove all subsumed clauses; 
if /  is an empty formula then  

RETURN satisfiable 
end if
if /  contains empty clauses then  

RETURN unsatisfiable 
end if
while 3 a variable x which occurs in one phase(only positive or negative) do 

Remove all clauses containing the variable x; 
end while
Select a variable x in / ;  
if DPLL(/ U {m}) =  satisfiable then  

RETURN satisfiable 
end if
RETURN DPLL(/ U {-.i})

Using the unit-resolution, the DPLL requires smaller space than DP since at each step 

unit-resolvents generated are shorter than the original clauses and only one unit clause is 

added into the formula. We may notice that the DPLL(/) is a recursive procedure by 

calling DPLL(/ U {m}) and DPLL( /  U {-xc}). Selecting a variable leads to a smaller sub­

problem: when the unit clause {x} is added into the formula / ,  the assignments with x =  1 

are verified; when the unit clause {->x} is added into the formula / ,  the assignments with 

x — 0 are verified. So we say that the DP procedure uses an “elimination rule” while the 

DPLL procedure uses a_ “splitting rule” . The methods for selecting the variable x  can be 

as simple as selecting the first variable in a randomly ordered variable list but can also be 

sophisticated. Selection heursitics have been widely studied in the past thirty years. Using 

various heuristics on selecting variables we have various DPLL variations. These variations
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of DPLL work fairly well in practice and are “ probably the most widely known and used 

SAT testing method[5]” .

In recent years, many new efficient SAT solvers have been built, such as SATZ, EQSATZ 

and SATO. Most recent progress on the SAT problem can be found at h ttp ://www.satlive.org 

and h ttp ://www.satlib.org.

2.4 Phase transition and Hardness

Many computational complexity analyses are based on the worst-case analysis. In practice, 

average-case analysis may be more practical. In the process of studying random formulas, 

researchers found threshold phenomena, that is, the probability that instances in some 

subclasses of SAT are satisfiable drops from 1 to 0 very quickly in a narrow range under 

the value of the ratio of clauses-to-variables. For the convenience of description, we will 

represent the ratio of clauses-to-variables as the C/V ratio in the following chapters. The 

phase transition is the transition from the phase in which the probability of the instances 

being satisfiable is 1 to the phase in which the probability of the instances being satisfiable 

is 0. The study of phase transitions focuses on the following conjecture,

lim Pr{Random k — S A T  with n variables and m  clauses is satisfiable}
71—»  OO

_  f 1, i f  m /n  < Ck 
\  0, i f  m /n  > Ck

(2 .1)

[16] and on determining the threshold Ck. Random 3-SAT was investigated in Selman et. 

al paper, 1992[29]. The empirical threshold of Random 3-SAT is approximately 4.3

It was noticed that the random 3-SAT instances are easy to solve when the C/V ratio is 

small, say less than 3, and the instances become relatively easy again when the C/V ratio is 

large, say more than 6.5. The hardness peak is at the C/V ratio near 4.3 which is also the 

threshold of the random 3-SAT instances. This pattern is called the easy-hard-easy pattern. 

Although we call it “easy-hard-easy”, the two “easy” regions are not equally easy. Mitchell 

and Levesque’s paper[28] shows that the hardness of the second “easy” region increases 

when the number of variables increases...Intuitively, the first “easy” region exists because it 

is easy to find solutions for instances in this region while the reason for the existence of the 

second “easy” region is that it is relatively easy to prove the unsatisfiability of the instances 

in this region. Beame et. al.[l] give a lower bound of 2fhn/A4+£) for the DP procedure
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proving unsatisfiability for random 3-SAT instances, where A is the C/V ratio, n is the 

number of variables and 0 < e < 1 is a constant. So if the hardness of the second “easy” 

region mainly comes from the hardness of proving unsatisfiability of instances, the hardness 

of this region will increase exponentially when the number of variables increases. On the 

other hand, with a fixed number of variables the hardness becomes easier when the C/V 

ratio increases.

Larrabee and Tsuji [26] found the same pattern using two substantially different algo­

rithms. So people conjectured that this easy-hard-easy pattern will hold for all complete 

search algorithms. The easy-hard-easy pattern and phase transition were not only found in 

random 3-SAT problems, but also in k-SAT(k > 3) problems, which is presented in Mitchell 

and Levesque’s paper[28]. Their experiments indicated that the larger the k the larger Cfk  

is.

2.5 Local Search Algorithm s

A typical local search method starts with an arbitrary complete assignment for a SAT 

instance and tries to improve this complete assignment according to the algorithm’s eval­

uation function. Every iteration, it re-assigns values to one or more variables selected by 

some heuristic methods. We usually call the process of re-assigning value to a variable a 

“flip” because the domain of a variable is {0,1} and re-assigning the value of a variable is 

a “flip” from 1 to 0 or 0 to 1. We set a limit on the number of flips. When a local search 

reaches this limit, it will stop searching or restart another search. See Algorithm 3, which 

is a general framework of local search algorithms. Different algorithms may have different 

optimal values for this limit on the number of flips. Some algorithms converge slowly. These 

algorithms need more flips to converge to solutions. For many local search algorithms, there 

exist subsets of assignments in the assignment space such that once these algorithms visit 

an assignment in these subsets they will never be able to visit any assignment outside the 

subsets. If none of the assignments in the subsets is a solution, these subsets are called 

traps. If a local search algorithm is stuck in a trap, the algorithm will never find a solution 

without a restart. Some algorithms have more traps than others. These algorithms will be 

more affected by restarts. They need to restart more frequently.

In Algorithm 3, there is a function SelectHeuristic(C, T ). It is a heuristic function for 

the variable selections. Various local search algorithms have various implementations of
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Algorithm 3 General Framework of the Local Search SAT Solver
C =  The Set of Clauses; 
for (i = 0; i < M axNumTries; i++) do 

T  = Randomly Generate A Complete Assignment; 
for ( j  =  0; j  < M axN um F lips ; j + + )  do 

if T  satisfies C then  
RETURN T; 

else
v = SelectHeuristic(C, T );
T =  T with the value of v flipped; 

end if 
end for 

end for
RETURN false;

SelectHeuristic(C, T). In the following section, we will introduce some well-know heuristics 

for SelectHeuristic(C, T).

2.5.1 GSAT

Selman et. al. proposed a new local search algorithm named GSAT [39] to solve SAT 

problems. It selects a variable for flipping such that the number of unsatisfied clauses will 

be minimized in each iteration. See Algorithm 4. GSAT is efficient for some relatively 

large instances which is hard to be solved by complete search methods in experiments. For 

example, in 1992, on a PC GSAT could solve randomly generated satisfiable 500-variable 

3-SAT instances that DP cannot solve; GSAT could solve some problems with 140 variables 

within 14 seconds while DP needs 4.7 hours under the same instances[39].

Algorithm 4 GSAT-SelectHeuristic(C, T)
L = cj) /*L  is a variable list*/
Add variables in T  that minimize in the number of unsatisfied clauses into L\ 
v = Randomly pick up one from L\
RETURNv ;

Later, Gent et. al.[17, 18] used “buckets” to select variables to flip in their new version 

of a GSAT solver, which is published at www.satlib.org[32]. In this new version, GSAT 

does not select the variables that minimize the number of unsatisfied clauses. Instead, 

it categorizes all variables into three categories(buckets): 1) the category with value 1 

containing all variables that will reduce the number of unsatisfied variables after flipping;
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2) the category with value 0 containing all variables that will not change the number of 

unsatisfied variables after flipping; 3) the category with value —1 containing all variables 

that will increase the number of unsatisfied clauses. Each iteration, GSAT selects one 

variable from the bucket with highest value to flip. See Algorithm 5. In the user manual 

of the new GSAT version Selman et. al. mentioned that this improvement “leads to about 

a 20 fold speedup for some instances with very large numbers of variables (10,000 or up)” 

when using other auxiliary techniques such as “random walk” and “tabu window” . “Tabu 

window” is a variable list recording the recently visited variables which will usually be 

avoided by the search process.

We will name the former local search procedure basic GSAT and name the latter GSAT.

Algorithm 5 CSAT-SelectHeuristic(C, T)
L\ = {zj| flipping Xi will decrease the number of unsatisfied clauses in /}
Lo — {xjl flipping X{ will not change the number of unsatisfied clauses in /}
L - 1  — {a:j| flipping %i will increase the number of unsatisfied clauses in /}  
if L\ ^  cj) then  

v =  Randomly pick up one from L \ ;
RETURN v; 

end if
i f  L o  ^  (j) then

v — Randomly pick up one from La;
RETURN v- 

end if
if i t£ <f> then

v =  Randomly pick up one from L_i;
RETURN v; 

end if

2 .5 .2  W alkSA T

WalkSAT selects a variable by a two-step procedure. In the first step, it randomly selects 

an unsatisfied clause; in the second step, it selects a variable in this selected clause using 

a heuristic method. Different heuristics provide variations of WalkSAT. Algorithm 6 is a 

framework for the WalkSAT family. If a variable is randomly selected in the second step, 

the algorithm is called Basic WalkS AT[27].

We will introduce three well-know variations-NOvelty, R-Novelty and Tabu in this sec­

tion. They are based on various heuristics on how to select a variable from the selected 

clause. These algorithms were proposed in McAllester et. al[27].
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Algorithm  6 Framework for WalkSAT-SelectHeuristic Procedure 
Framework for WalkSAT-~SelectHeuristic(C, T)
C =  Randomly pick up a clause from C;{The First Step} 
v =  Select a variable from C;{The Second Step}
RETURN v-

Novelty

Novelty selects a variable in the selected clause that will minimize the number of unsatisfi- 

able clauses. However, if the variable selected is the variable that was flipped most recently, 

Novelty selects the second best variable with probability p, which is a parameter; with prob­

ability 1 — p we still choose the best variable. The probability of falling into local minima 

is reduced in this way because the probability of flipping the same variable twice has been 

reduced. The intuition behind Novelty is to avoid flipping the same variable back and forth.

R-Novelty

R-Novelty is a variation of Novelty. It is different from Novelty only when the best variable 

in the selected clause is the the most recently flipped variable. R-Novelty uses an objective 

function to assign a value to the best and second-best variables. This objective function 

should influence the choice between the best and the second best variables. In the source 

code of R-Novelty solver from Selman et. al., this objective function returns the change in 

the number of satisfied clauses when flipping a variable. This value is denoted as w(w >  1). 

A variable is selected in the selected clauses according to the following four cases, where p 

is a preset parameter for the solver[27]:

1. If p < 0.5 and w > 1, select the best variable.

2. If p < 0.5 and w = 1, with a probability of 2p, select the second-best variable; 

otherwise, select the best one.

3. If p > 0.5 and w = 1, select the second-best variable.

4. If p > 0.5 and w  > 1, with a probability 2{p — 0.5) pick the second-best variable, 

otherwise select the best one.

We can see that a deterministic loop may happen. So R-Novelty will randomly select a 

variable in the clause to flip in every 100 iterations to break deterministic loops.
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Tabu

Tabu means the basic WalkSAT +  tabu technique in this paper. A Tabu records the 

variables flipped in the last m  iterations. It chooses the best of variables in unsatisfied 

clauses not in the last tabu record. If all of the variables in all of the unsatisfied clauses are 

in the recorded iterations, Tabu simply ignores the recorder.

2.5 .3  S m ooth ed  D escen t and F lo o d (S D F )

Dale Schuurmans and Finnegan Southey[34] proposed a new algorithm named SDF(Smoothed 

Descent and Flood) in 2000 after studying the facts that affect the performance of local 

search algorithms. As we mentioned before, local search algorithms select variables accord­

ing to their evaluation function. The WalkSAT and GSAT families’ evaluation functions 

count the number of unsatisfied clauses. SDF instead attempts to maximize the number 

of satisfied clauses and tries to increase the number of satisfied clauses that are satisfied 

by more literals. For this purpose it uses an objective function to count the number of 

variables satisfying each clause. Under an assignment t for a SAT instance containing m  

clauses it gives the weight

W ( t) =  5 ]  / ( number o f  Xi that satisfies the clause c)
C

where
i

/(/ )  =  ] > > * -
i=i

for I > 0, in which k is the number of the variables in the clause, and

/ ( 0) =  0

for 1 = 0. This function /  favors an assignment that makes clauses containing more literals 

being true. Intuitively, SDF is more deterministic than the GSAT family and the WalkSAT 

family. If a SAT instance has m  clauses, the GSAT family and the Novelty family have 

at most to different values to weight each variable in the search process. Under the same 

instance, SDF usually has many more values to weight each variable. So fewer ties will 

happen in the search process.. Therefore, SDF selects from a smaller set of variables, which 

means that it has a stronger bias on the selection of variables.
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The second strategy introduced is their re-weighting strategy to escape local maxima. 

SDF assigns a weight w(c) to each clause c.

w ( t )  =  J 2  w(c)f  (number of  Xj in the clause c)
C

is used as the new objective function considering the weights of clauses. Once the assignment 

is a local maximum SDF will use its re-weighting strategy to reassign w(c) to escape the 

maxima. First, the re-weighting strategy multiplicatively re-weights the unsatisfied clauses 

and normalizes the weights such that the largest difference in W  (t) value will be less than 

or equal to an assigned value S. By increasing the weight of the unsatisfied clauses, it 

creates a new greedy search direction. Re-weighting is not a new technique to escape 

maxima or minima, however, researchers used additive updates for re-weighting[36] before. 

By multiplicative re-weight, SDF can more swiftly change the weight of clauses such that 

it can escape the maxima more rapidly. For the details of the multiplicative re-weight 

procedure, please check Schuurmans and Southey’s paper [35]. Secondly, use the re-weight 

function

W(c) =  (1 -  p) WsaUsfied +  pw(c)

to re-weight the satisfied clauses, where wsatisfied is the mean of the weight of satisfied 

clauses and 0 < p < 1 is a parameter. The re-weight procedure flattens the weights of the 

satisfied clauses by shrinking towards their common mean wsatisfied- 1° this way, it prevents 

the weights of the satisfied clauses being so small that the clauses are falsified gratuitously.

SDF performs much better than the WalkSAT and GSAT families according to the 

measurement of the number of flips, although the total running time may be larger. SDF 

provides a good new approach to avoid local minima and plateaus. Algorithm 7 is the 

pseudo-code of SDF [34].

Algorithm 7 SDF(/, p)
1: Flip variable V{ which maximized the objective function

w(t )  = • £  w(c) f  (number of  Xi in the clause c;)
C

2: If the current t is ...a. locaLmaximuin,. call re-weight .jpTOcedme_.re-wei^ht(Sf_p.)',.
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2.5 .4  A u to m a ted  D iscovery  o f V ariable S e lection  H euristics

The local search algorithms presented above have a uniform framework(Algorithm 3). The 

differences among them are the strategies on how to select a variable to flip. GSAT was 

developed in 1991, while Novelty was not proposed until 1997.

Some researchers began to work on automated discovery of variable selection heuristics. 

Alex Fukunaga proposed a possible method in 2002 [15]. He considers randomly selecting 

variables, random walk, tracing ages of variables (the number of flips since a variable was 

last flipped), and so on, as atomic operations for variable selections. An automated heuristic 

generator generates the probabilities of choosing each atomic operation. Each step, only 

one atomic operation will be used to select variables. In other words, the generator deploys 

several atomic operations but only one of them is used at each step. Which atomic operation 

will be used depends on its probability. This is equivalent to combining those well-know 

heuristic methods with different weights. By changing the weight or probability of each 

atomic operation, the automated heuristic generator can produce many combinations. After 

experiments on more than 1000 combinations, Fukunaga found that some combinations 

perform as well as some existing heuristics, such as GSAT and Novelty.

In this chapter, we presented some basic concepts and well-know algorithms in SAT 

research. Two major approaches for solving SAT problems are introduced in Section 2.3 

and Section 2.5 respectively. We have also introduced their advantages and disadvantages 

briefly. In the following chapters, we will concentrate on these local search algorithms and 

their properties.
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Chapter 3

Previous Work On Search Space 
And Traps in Search Spaces

Researchers have proposed many local search techniques for SAT to escape local minima. 

However, most of them concentrate on the performance of the algorithms and did not spend 

much effort on the structures of SAT problem and the search space of the algorithms. The 

structure of the problem and the structure of the algorithms’ search space can tell us more 

about which mechanisms really make the algorithms work. With a clear understanding of 

the structure in problems and the search space, we can make better improvements for the 

algorithms. We will introduce some techniques to escape the local minima in Section 3.1, 

which were proposed in early 90’s and are still widely used today. We will introduce the 

research on the structure of the local search algorithms in the other sections.

3.1 Strategies for Escaping Traps in Local Search Procedures

In 1991 Selman et. al. proposed a new algorithm named GSAT, which shares some im­

portant features of Simulated Annealing[23], another well-known local search algorithm 

based on simulating physical annealing process. Instead of using the heuristics with bias 

on a descending variable called “temperature”, GSAT is based on the heuristics with bias 

on the number of satisfied clauses. However, Selman et. al find that it cannot perform 

well on highly structured problems, for example the encoding of the blocks-world planning 

problem[24], Actually, the same problem has been found with many other randomized local 

search type procedures, such as simulated annealing(Johnson et. al. 1991}[23]. Selman and 

Kautz confirmed this problem in their paper(Selman and Kautz 1993)[36]. They proposed 

extensions to solve this in the same paper[36] as well.
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At that time, people concentrated on the hardness of instances themselves. Through 

analyzing the hardness of the formulas, researchers provided lower bounds and upper bounds 

for CSAT and GSAT[21]. However, the theoretical results of the bounds usually come with 

some restrictions. For example, some bounds are related to SAT instances in &-CNF-d form, 

where d means that any variable in the fc-CNF formula appears at most d times[21]. If there 

is no restriction, Hirsch[20] has proved that CSAT and GSAT need the expected time at 

least 2", where n is the number of variables in a formula. In other words, they might 

be no better than a trivial algorithm that checks all states(2n states) in the assignment 

space. From the discussion in this paper and in Selman et. al. paper[39], we can see how 

some structures in the formula “mislead” the local search processes of CSAT and GSAT. 

A structure can be some clauses. These clauses may lead the search process to a trap 

sometimes, or to a longer path to solutions. Hence, for local search algorithms, structures 

contained in some problems might be considered as the reason why they are hard for local 

search procedures. These structures are not categorized or defined in a formal way. Because 

the SAT problem is an NP-Complete problem, nobody expects that these structures can 

be categorized into a finite number of categories such that efficient heuristic methods can 

be designed specially for each category. So people pursue general heuristics to escape from 

the local minima and large plateaus caused by those unknown structures. A plateau for a 

procedure consists of the assignments that are considered as good as one another according 

to the evaluation function of this procedure and each of these assignments has at least one 

neighbor that is also in this plateau. Two assignments are neighbors if one assignment can 

be changed to the other in one iteration. For hill-climbing greedy algorithms, a plateau 

consists of the assignments on the same level and each of them has at least one neighbor in 

this plateau. A huge plateau makes the local search process got stuck inside since all vertices 

inside are as “good” as each other. Selman and Kautz proposed three general strategies, 

called Adding Weight, Averaging in Previous Near solutions and Random Walk for GSAT, 

to escape traps and plateaus [36].

Adding Weight increases the weight of each unsatisfied clause by K  at the end of each 

try, where K  is a parameter. A try refers to the iterations between two restarts. In 

search processes, the weight for each variable is the sum of the weights of the unsatisfied 

clauses under the assignment after flipping this variable. The second strategy considers the 

assignment at the end of the previous try  by using the bitwise average of the last assignment
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Ti and the last assignment Tj_i in the try before the last try, where the bitwise average of 

two assignments is an assignment which keeps the values of the variables that are identical 

in both assignments and randomly assigns value to the remaining variables. To and T\ come 

from the first two tries without bitwise operations. These two strategies can be considered 

as restarting strategies. The third strategy, Random Walk, randomly picks up a variable in 

an unsatisfied clause and flips its value with probability p and follows the standard GSAT 

procedure with probability 1 — p, where the probability p is a preset parameter.

In fact, these three strategies provide general techniques to escape local minima. But are 

they necessary for many other local search algorithms besides GSAT? Why does the random 

walk work? To answer these questions, we should have a clear understanding on the search 

mechanisms. We believe that the properties of the search space of local algorithms could 

help us understand these algorithms more deeply. After all, performance of algorithms is 

only the result of these mechanisms. Researchers have done some valuable work on the 

search spaces. We will introduce some of them in following sections.

3.2 Search Space Structures of Local Search Algorithm s and 
SAT problem

To further understand the mechanisms that make local searches work, people may need 

to study the local search algorithms’ search space directly as well as the structure of SAT 

problems. Search spaces are the space that a local search procedure really “walks” in. The 

properties of the search space can tell us more about the local search algorithms.

3.2.1 S ta te  Space

States(assignments) together with some relations construct a search space. Clark and Frank 

et. al.[4] proposed the correlation between the number of solutions and the hardness of 

SAT instances. This correlation is robust across problem classes as well as types of local 

search procedures, such as GSAT and GCSP. GCSP is a similar procedure to GSAT for 

CSP[4], For local search algorithms, the hardness was found to reach the peak at thresh­

olds. Researchers also found that although the number of solutions decreases beyond phase 

transition thresholds, the cost of local search procedures still decrease. Parkes[30] tried to 

explain the former phenomenon — why they are hard at the threshold through studying 

backbones. For satisfiable SAT instances, the backbone consists of variables forced to take
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a particular truth value in all solutions. A large backbone that appears at the threshold 

might affect the performance of local search algorithms because, on the threshold, it is diffi­

cult for local search algorithms to identify this backbone, which means that the algorithms 

spend too much time to flip back and forth. Also, Singer et. al.[40] tried to reveal why 

the hardness decays beyond the threshold by studying the backbone again. They found 

the large backbone in the region beyond the threshold is easier to find than that on the 

threshold, which means a hill-climbing algorithm might more easily identify the backbone, 

such that the values of the variables are more quickly determined.

The research mentioned in this section focuses on the states but does not consider 

the movements among the states. It does not provide the understanding of the dynamic 

information when the local search algorithms move in the search spaces. In the remaining 

sections, we will introduce how people study the movement of local search algorithms in 

state spaces. The movements and the states together can be considered as the search space 

of local algorithms. With further understanding of the dynamic information, researchers 

can know more details about local search mechanisms.

3.2 .2  M easurem en ts o f  L ocal Search P rocess P erform ance

Schuurmans and Southey proposed three measurements of local search algorithms’ perfor- 

mance[34]. The first one is the depth of local search, which measures the number of un­

satisfied clauses in the search process. The “depth” here is different from the depth of the 

complete search algorithms. Usually, the depth of complete search trees means how many 

variables are not instantiated. The depth of local search algorithms usually indicates how 

many unsatisfied clauses remain. If the depth is zero, the problem has been solved. So for 

the measurement of the depth, a small value is desired.

The second measurement is the mobility, which measures how rapidly a local search 

moves in the search space. They measure the mobility by counting the number of variables 

that are assigned different values in two assignments being k iterations apart in the search 

sequence. The number of the variables assigned different values is called the Hamming 

distance. We will give a formal definition for “Hamming distance” in Chapter 5. For 

complete search algorithms, we hope.the search algorithms can verify more assignments in. 

a period of time. For the same consideration, the mobility intuitively indicates how fast 

local search algorithms search through the space. So a large value of mobility is desired.

The last measurement is coverage, which measures how systematically a local search
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explores the entire search space. It is a measurement that considers the completeness of 

local searches. A local search algorithm that is more “complete” is expected to have a better 

performance so a high coverage rate is desired. The coverage is measured by estimating the 

size of the largest unexplored area in the search space and the speed of the reduction of 

this size. This unexplored size is estimated using the maximal Hamming distance between 

any checked assignment and its nearest unchecked assignment. The coverage rate is (n — 

max size of uneplored area)/search steps.

Schuurmans and Southey empirically investigated the necessity of these three measure­

ments. They show that poor performance under any one of these three measurement leads 

to poor problem solving performance, using a large number of experiments. Although 

whether good depth, mobility and coverage rate will ensure a good problem solving perfor­

mance still needs more evidence, these three measurements provide a good understanding 

of local search performance. They may guide us to make better searching heuristics. In 

fact, Schuurmans and Southey built a new solver-SDF based on their theory. We have 

introduced SDF in Section 2.5.3. Schuurmans and Southey showed that SDF has the best 

performance measured by the number of flips and the best performance under any of those 

three measurements as well. It empirically confirms the necessity of the measurements by 

measuring the number of flips, although the performance of SDF measured by the actual 

running time sometimes is even worse than the other well-known local search procedures, 

such as Novelty, Novelty-i- and DLM. Novelty +  is Novelty with the random walk technique. 

The SDF’s running time problem reminds us that if we pursue good performance under 

all those three measurements, the program may spend too much time for the selection of 

“better” variables for flipping and “better” assignments for restarting. Searching smarter 

may cost more time than simpler searching heuristics do. We noticed that Schuurmans 

and Southey empirically studied the search space of local search algorithms by simulating 

the search process and sampling. By tracking how the local search processes visit assign­

ments in the whole assignment space, they investigated the properties of those local search 

algorithms’ search spaces as well.

3.2 .3  Local Search T op ology

Frank et. al proposed an assignment sampling method for studying the assignment spaces[14]. 

They used GSAT to locate an assignment at the level that they need at first. Two assign­

ments are at the same level if they satisfy the same number of clauses. Then, using this
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assignment as the starting point, they explore the assignment space with Breath-First search 

and collect those assignments at the same level where the starting point was located.

Frank et. al. categorized an assignment space into several categories-plateau, bench, 

minima, contour. In the assignment space, two assignments are connected if their hamming 

distance is 1. A plateau is a maximal connected region of an assignment space, in which 

all assignments are at the same level. The level of this plateau is the number of unsatisfied 

clauses under the assignments in this plateau. If a plateau P\ has assignments adjacent 

to another plateau P2 at lower level, plateau P\ is a bench and, in Pi, those assignments 

adjacent to P2 are exits of plateau P\. If a plateau contains no exit, this plateau is called 

a minimum. If all assignments in a plateau are exits, this plateau is a contour. Frank 

et. al. investigated the proportion of minima, the size of the minima, the proportion of 

benches, the proportion of exits to the bench size and the distribution of the size of benches 

and minima in both satisfiable and unsatisfiable problems. They also investigated these 

structures under various subclasses of 3-SAT problems, such as Random 3-SAT problems 

and Cluster 3-SAT problems. They found “conclusive evidence of the existence of local 

minima in assignment spaces, and show that they become more prevalent as the number 

of unsatisfied clauses becomes close to 0.” [14] Their work provides a good basis for how to 

schedule restarting and random walk in local search procedure or the determination of the 

size of tabu list. On the other hand, their work also gives a way to identify the parts that 

are worth investigating.

The sampling method Frank et. al. used is good for even larger size instances, since the 

minima and benches themselves are relatively small compared with the entire search space. 

In this paper they used instances with 100 variables whose assignment spaces contains 2100 

assignments. By GSAT and Breath-First search, they can investigate the plateaus at any 

levels. However, the algorithms like WalkSAT, Novely and R-Novelty may not benefit much 

from this method because these algorithms do not follow the gradient strictly. Also, Frank 

et. al. may need to study the assignment space with various classes of SAT problems 

besides 3-SAT, such as encoded Graph Coloring instances, encoded Latin Square instances 

and planning problems.

All of these works indicate that studying the structure of search spaces might be a  

prospective direction to further understand how algorithms work. Currently, little work 

has been done on the search space of a particular local search algorithm. The search space

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of each of Novelty/Novelty+, R-Novelty/R-Novelty+, Basic WalkSAT, GSAT and CSAT 

should have its own special properties. We will compare the search spaces of these local 

search algorithms in Chapter 5. To study the search space of local search algorithms, we 

also used brute-force search on small size search spaces in this thesis. We hope that we 

can reveal some basic properties of local search algorithms’ search spaces such that we can 

know their search mechanisms better. We hope our work could help to make a clearer 

understanding of the local search mechanisms.
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Chapter 4

Performance Comparisons

We have introduced some local search algorithms in previous sections. To show a more 

concrete image of these algorithms we will discuss their performances on various problems 

in this chapter. In Section 4.1 we will show some comparisons between local search algo­

rithms and a systematic search algorithm, SATO[41], which is based on unit-resolution. 

Since what we are concentrating on is the local search algorithms and what we intend to 

show is an outline on the differences of the performance between local search algorithms 

and systematic search algorithms, we use only one complete search algorithm, SATO, in 

this thesis. The performance comparisons between local search algorithms and systematic 

search algorithms are measured by actual running time. Although the performance mea­

sured by running time will vary in various computation environments, it can still give us a 

rough view of the differences among these algorithms. In Section 4.2, we will present the 

comparisons among local search algorithms. The performances in this section are measured 

by the number of flips. A flip is to change the value of a variable from 0 to 1 or from 1 to 0. If 

a local search algorithm can not successfully solve an instance in limited number of restarts, 

we will consider this instance is unsolvable for the local search algorithm, although theoret­

ically all satisfiable instances can be solved eventually if we allow an unlimited number of 

restarts. Given the fact that NP-Complete problems cannot be solved efficiently or,say, not 

all instances in NP-Complete class can be solved in polynomial time if N P  P , we do not 

expect that all instances can be solved in reasonable time by systematic search algorithms 

or local search algorithms. Also, how many flips should be executed in each try and how 

to set randomness parameters in search procedures are still big issues. For example, in 

Novelty, the optimal probability of flipping the second best variable in a selected clause can 

only be determined by experiments and experience. With different classes of instances the
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optimal value for the parameters may be different. But this is not what we are concerned 

with. Instead, we just want to give an outline on how good they are. So we used only the 

default setting or the recommended setting. All solvers come from SATLIB.ORG[32].

4.1 Comparisons of Local Search and System atic Search Al­
gorithms

In this section, we present the comparisons among local search algorithms and a systematic 

search algorithm, SATO. SATO is an efficient implementation of the Davis-Putnam method 

developed by Hantao Zhang[41], University of Iowa. Note that local search algorithms may 

not solve all instances in a limited number of ties. Considering that, in this scenario, the 

performance on unsolved instances completely depends on the number of tries and number 

of flips in each try, we only measure the performance with medians of the total numbers of 

flips used. Therefore, if the number of solved instances is less than 50% of the number of 

all instances, the corresponding point will be absent in our figures. Hence, we provided the 

success rate of solving instances as another measurement of performance as well.

4.1 .1  Local Search and S y stem a tic  Search w ith  R an d om ly  G enerated  In­
stances

In this section, we test Novelty, Novelty+, R-Novelty, R-Novelty-f- and SATO’s perfor­

mances measured by actual running time on the instances of Uniform Random-3-SAT, 

which are downloaded from SATLIB.ORG[32]. Uniform Random-3-SAT is a subclass of 

SAT problems, which are 3-CNF formulas randomly generated in the following way[32]: 

given the requirement for n variables and m  clauses, 1) produce the m  clauses, each of 

which draws 3 literals randomly from the all 2n possible literals (ro variables and their n 

negations) and each literal is selected with the same probability of 1/2n; 2)reject clauses 

containing multiple copies of the same literal or those being tautological. By adjusting 

n  and m, we may generate instances with various ratios and number of variables. The 

instances tested in this section are instances with the C/V ratio being around 4.30 which 

is the threshold of Uniform Random-3-SAT. Since local search algorithms can only solve 

satisfiable instances, only the “uf” series at SATLIB.ORG[32] are used, which are proved to 

be satisfiable instances by some complete search solvers (“uuf” series at this site are proved 

to be unsatisfiable instances).
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Figure 4.1: Performance of Systematic Search and Local Search On Uniform Random 3-SAT 
Satisfiable Instances

In the figure 4.1, the Y  axis represents the median of running time under these SAT 

instances. The X  axis represents the number of variables in formulas. The ratio of these 

instances are fixed at 4.30, except that the ratio of the instances with 250 variables is 4.26 

that is less that the others. Let’s have a look at their performances in Figure 4.1

It is obvious that local search algorithms out-perform SATO in this test. We may notice 

that the local search algorithms’ running times increase quite slowly, compared with SATO. 

SATO’s performance curve has a relatively sharper uphill after the point 175 on the X  axis. 

Their running times drop at 250 on the X  axis. This might be caused by the C/V ratio at 

this point(4.26) being slightly smaller than the C/V ratio of the others(4.3).

4.1 .2  Local Search and S y stem a tic  Search w ith  In stan ces E ncoded  from  
O ther P rob lem s

The Graph Coloring problem is a well-known NP complete problem: Given a graph G =  

(V,E)  and a color set C , in which V  =  {iq, ^2 , . . .  ,vn} is the set of vertices, E  is the set 

of edges and C = {ci, C2 , . . . ,  Ck} is a set of k colors, find a coloring /  : V —>■ C such that 

a pair of vertices that are connected by the same edge cannot share the same color. The 

decision variant of the coloring problem is to decide whether there exists a coloring for a
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particular number of colors. The answer is “Yes” or “No”. The optimization variant of the 

coloring problem is to find a coloring with a minimum number of colors. An optimization 

problem can be solved using series of decision problem inquires, so people usually focus on 

the decision problem[32].

Given a graph G =  (V, E), we encode the fc-colorable decision problem in this way[32]: 

1) Vui £ V, Vi is represented by the k variables x q , x q , . . . ,  xik, where aq, being true 

represents that Vi is colored with the 1-th color; Ve/, =  (v, ,  v j )  £ E, these k clauses are 

added- Xj,h}, where h £ C, and these clauses guarantee that no two adjacent

vertices will be colored with the same color; 2) to guarantee that every vertex will be colored, 

for Vi £ V,i — 1 , 2 ,n, the clause, {xqCl, xqC2 , . . . , xqCn} is added into the formula; 3) to 

guarantee that each vertex will be colored only once, for Vu* £ V, these (2 ) = k x (k — l)/2 

clauses are added -  {{-ir,iCp, : 1 ^  P < q ^  k}. Therefore, if an encoded SAT

instance is satisfiable, the original graph is £>colorable as the encoding process guarantees 

that each vertex is colored once and only once and no adjacent vertices are colored with 

the same color.

For example, given a graph G =  (V,E) and C = {0 1 , 0 2 , 0 3 }, where V — {vi,V2 ,vs} 

and E  =  {(^i, ^2 ), (^1 5 ^3 )? (^2 , ^3 )}? we will have the set of variables {^1 1 ,^ 1 2 ,^ 1 3 ,^ 2 1 , 

^2 2 , ^2 3 ,^ 3 1 ,^ 3 2 , ^3 3 }, where wq- represents the color Cj for the vertex Vi, the set of clauses 

{ - U l n ,  -U I2 1 } , { - '^ 1 2 ,  ~ '^ 2 2 } , {~ r*h3 , ~ >^23}, { - ^ 1 1 ,  ~ ’U3 i } ,  { - U q 2 , ~ |W3 2 } , { “ 'U 1 3 ,-1W33 } , { ~ '^ 2 1 ,

~'U3 1 }, {—1̂ 2 2 , -'^3 2 }, {“’̂ 2 3 , _1'y3 3}, ensuring that a pair of vertices at the ends of the same 

edge can not share the same color, the set of clauses, {vn,  ui2, rq3}, {u2i, 1 1 2 2 , ^2 3 }, {^3 1 ,^ 3 2 , 

U3 3 }, ensuring that each vertex will be colored, and the set of clauses, {->nn, - 1W1 2 }, { -« ii, 

^13}, {~’Vl2, -,«13}, {—‘̂ 21 j ^ 2 2 }, {-^21, ~^23}, {_,V22, - |l>23}, {“'Uai, -iU32}, {-,U31, - 1U3 2 }, 

{-1V3 2 , " ^ 3 3  }.

Let’s have a look at Figure 4.2. We used 3-colorable flat[13] graphs in this comparison, 

which are downloaded from SATLIB.ORG[32]. Since 3-colorable flat graph encoded SAT 

instances usually are hard, we increase the number of flips in one try quadratically with the 

increasing of the number of variables. That is, we flip n 2 times in each try, where n is the 

number of variables. Unlike the performances on Uniform Random-3-SAT instances, the 

best local search algorithms, Novelty and Novelty-)-, and SATO’s performance are very close 

to one another when the number of vertices is smaller than 400. After that, the runtime 

of SATO has a big jump. It took about a month for SATO to solve all of the instances
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with 425 to 500 vertices. R-Novelty and R-Novelty+ stop working when the number of 

vertices is larger than 275. Figure 4.3 shows the success rate of R-Novelty/R-Novelty+ and 

Novelty/Novelty+. We do not show CSAT and Basic WalkSAT because they both stop 

working on very small instances.

When the number of vertices is not large, say less than 400 vertices, on these instances we 

cannot tell whether local search algorithms definitely out-perform SATO. SATO performs 

well under these instances because a complete search may take advantage of some structures 

inside, such as symmetry, to do further pruning irrelevant assignments. When the size of 

instances (the number of vertices) is large, say, bigger than 425, the unit propagation does 

not work either. Given the fact that local search algorithms cannot prove a formula being 

satisfiable or not, a complete search solver might be a better choice when the instances are 

relatively small.

4.2 Comparisons of Local Search Algorithm s

In this section, we compare the performances of Novelty, Novelty-1-, R-Novelty, R-Novelty+, 

CSAT and Basic WalkSAT. The performances are measured by the number of flips to solve 

an instance. Again, we use the medians of the numbers of flips as the points in the figures. 

Besides the performance graphs, we plot the success rate graphs as well. If the success rate 

is less than 50%, the corresponding point will not be drawn on the figures. CSAT and Basic 

WalkSAT stop working on small instances again. In this case the figures in this experiment 

will not include them.

4.2.1 Local Search A lgorith m s on U niform  R and om  3-SA T In stan ces

Figure 4.4 compares the selected local search algorithms’ performances on Uniform Random 

3-SAT satisfiable instances used in last section. We may notice that the performances of 

Novelty and Novelty+ are very close to each other. CSAT’s performance is worse than 

that of Novelty, Novelty-1-, R-Novelty and R-Novelty+. Basic WalkSAT can only solve 26% 

of the instances with 100 variables and then the success rate drops to 0%. So we do not 

include Basic WalkSAT in the performance figure.
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4.2 .2  L ocal Search w ith  FLAT G raph C oloring E ncoded  Instances

We use exactly the same instances used in Section 4.1. CSAT and Basic WalkSAT can 

hardly do anything with this group of instances. In Figure 4.7, R-Novelty’s and R-Novelty+ 

success rate drops to less than 40% soon after 275 on X  axis, while Novelty/Novelty +  can 

still solve about 60% of the instances even when there are 775 vertices in instances.

Satisfiable Rat Graph with 100 Vertices to 800 Vertices
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Figure 4.6: Performance of Local Search Algorithms On Flat Graph with 100 to 800 vertices

In Section 4.1 and Section 4.2 we discussed the performances of local search algorithms 

and a systematic search algorithm-SATO. The sizes of instance vary. Basic WalkSAT and 

CSAT do not work well in our experiments. In the experiments with FLAT graph instances, 

Novelty and Novelty +  out-perform R-Novelty and R-Novelty+. R-Novelty and R-Novelty+ 

are Novelty and Novelty +  respectively with a different selection bias on the best and second 

best variable in a selected clause. We can tell the heuristics for local search is sensitive to 

such variation.

4.3 The Correlation of Hardness w ith the C /V  Ratio

In previous sections, we used instances with various number of variables. In this section, we 

will show the effect of the C/V ratio on the performances of local search algorithms. That 

is, when the number of variables is fixed, how does the C/V ratio affect the performance?

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Success Rate of Local Search Algorithms

<DCOcc
V)
Vi05oo
m o.4

0.2

Rnovelty —
Novelty ....

Rnovelty+ — 
Novelty+

100 200 300 400 500 600 700 800
Number of Vertices

Figure 4.7: Success Rate On Flat Graphs with 100 to 800 vertices (Same as Figure 4.3) 

4.3.1 R andom  H id den  S o lu tion  3-SA T  In stan ces

Random hidden solution 3-SAT instances are used in this section. We generate a random 

hidden solution instance in this way: 1) Randomly generate tru th  assignments to each 

variable first. 2) Generate clauses by randomly picking up 3 literals in all possible 2n 

literals (n variables and their negations) but only keep the clauses that are satisfied by 

the tru th  assignment generated in 1). 3) Repeat 2) until we have the number of clauses 

desired. In this way, it is guaranteed that there exists at least one solution for the generated 

instances.

Figure 4.8 shows us the experimental results. The X  axis represents the C/V ratio value 

and the Y  axis represents the number of flips. It indicates that CSAT, Novelty, Novelty-f, R- 

Novelty and R-Novelty+ show a weak easy-hard-easy pattern on these satisfiable instances. 

Basic WalkSAT cannot solve instances with a high C/V ratio. Let’s have a look at the 

success rate of Basic WalkSAT. In Figure 4.9, in which the Y  axis represents the success 

rate, we find that the success rate of Basic WalkSAT has a sharp drop starting at 3.5 on 

the X  axis. After that, the success rate of Basic WalkSAT is 0. On the other hand, all 

of the other four local search algorithms-Novelty, Novelty+, R-Novelty and R-Novelty-I— 

can solve all of the hidden solution 3-SAT instances so their success rates are always 100%.
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CSAT shows a much better performance than Basic WalkSAT’s. Actually, on random 

hidden solution 3-SAT instances, CSAT’s performance is quite close to Novelty/Novely+’s 

and R-Novelty/R-Novelty+’s performances.

Hidden Solution Instances 300var with cN ratio 2 to 8
30000

Rnovelty — »
Novelty ...

Rnovelty+ — v- 
Novelty+ —  

CSAT — *•25000

20000

e/3
Q_

5jj 15000
E
c

10000

5000
/ Vr / v \  ,* \ / V m

2 3 5 6 7 84
c/v ratio

Figure 4.8: Hidden Solution 3-SAT Instances

4 .3 .2  E ncoded  H id den  Solu tion  3-C olorab le G raph Instances

In this section, we use SAT instances encoded from random hidden solution 3-colorable 

graph instances instead since Flat can only be solved well by Novelty/Novelty-)- in previous 

experiments. The hidden solution 3-colorable graph instances are generated in this way: 1) 

Use hidden solution graph generater provided by Dr. Culberson[8] to generate the graphs, 

whose probability of existence of an edge vary from 0.01 to 0.08. The hidden solution here 

means that we generate a coloring and a set of vertices first, then generate edges with a 

probability p(the probability of existence of this edge) and only keep the edges that do 

not connect two vertices colored the same color. 2) Use an encoding tool[8] to encode the 

hidden solution graphs into SAT instances in the way introduced in the previous section.

Figure 4.10 shows the local search algorithms performances. It is measured by the 

number of flips. The X  axis represents the probability of existence of edges and the Y  

axis represents the number of flips. Again, Basic WalkSAT does not work well on these
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Figure 4.9: Successful Solving Rate on Hidden Solution 3-SAT Instances

instances, and Novelty/ Novelty +  and R-Novelty/R-Novelty-t- follow the easy-hard-easy pat­

tern. Basically, CSAT still follows the easy-hard-easy pattern. But its performance is worse 

than Novelty/Novelty+  and R-Novelty/R-Novelty-t-. In the Figure 4.12, where the Y  axis 

represents the success rate of the algorithms, we find that CSAT’s success rate shows a 

“U” shape curve. In the interval, which is the hard region for other algorithms, CSAT’s 

success rate is close to zero. That is, this region is too hard for CSAT. Basic WalkSAT’s 

success rate drops suddenly at the point close to the point where CSAT drops. But Basic 

WalkSAT’s success rate never rises again. It seems that it might not really tell where are 

easy regions.

To give a picture of how the systematic search algorithms perform on the hidden so­

lution 3-colorable graph instances, we compared the local search algorithms’ and SATO’s 

performances in Figure 4.11. As mentioned in previous sections, SATO’s performance is 

close to or better than the local search algorithms’ when the instances are relatively small. 

As there are only 200 vertices in these instances, we can see that the performance of SATO 

is close to some of the local search algorithms.
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Hidden Solution Graph Coloring Instances 200 Vertices
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4.4 Conclusion

In this chapter, we compared the performance of some local search algorithms and SATO, 

a complete search algorithm. We have seen that local search procedures perform quite well, 

especially Novelty/Novelty+. Under the relatively small instances, SATO can perform as 

well as local search algorithms. But under large instances, SATO performs much worse than 

Novelty/Novelty +  in our experiments. In Section 4.3, we find that local search algorithms 

also follow the easy-hard-easy pattern when the C/V ratio increases. Basic WalkSAT is 

weak under all types of instances used in this chapter. It stops working even under small 

size instances with the high C/V ratio which are easy for the other local search algorithms.

The performance evaluation of local search algorithms is a complicated issue. We still 

have a lot to do on this. But we have provided an outline of the differences of these 

algorithms’ performance. We note that, generally, Novelty/Novelty +  is better than the 

others, RNovelty is better than CSAT, CSAT is better than GSAT and Basic WalkSAT and 

WalkSAT is the worst one, under the default and recommended settings in our experiments.
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Figure 4.12: Performance for Hidden Solution Graph instances Measured by Number of 
Flips

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5

Search Space Graph

5.1 Definitions

For the convenience of the future discussion, we are going to give some definitions in this 

section:

D efinition 5.1.1 Hamming Distance is H(A, B ) =  X)aUi Mafc> ^k)i where A — (ai, 0 2 , • • ■, 

an) and B  =  ,bn) are two vectors. The function h(a^,6fc) =  1, when a/t ^  b

otherwise, h(ak, bk) =  0. It measures the differences between two vectors.

D efinition 5.1.2 Directed Hyper  C«6e(D H C) with n variables is a directed graph 

DHC, i =  {V, jE), where V = {u : v =  ( x i ,  X2 , • • ■, xn),Xi G {0,1}, i =  1 , 2 , . . . ,  n}, i.e. all 

binary vectors of length n, is the set of all the vertices in G, and E  — {{vi, Vj) where vi, Vj G 

V  and H(vi,Vj) =  1} is the set of all the edges in G.

Suppose the algorithm A  is a local search algorithm for SAT. Given a formula /  and an 

assignment f, if there is a possibility of t being transferred to another assignment t' after 

one or multiple variables are flipped within one step by A, we denote it as A(f,  t ) 1= t ' . 

Usually, given an assignment t, a certain local search algorithm A  and a formula / ,  there 

may exist different t'. Hence, A(f ,  t) t= is a one-to-multiple relation.

D efinition 5.1.3 SPn(A, / )  =  (V, E) is a directed graph, where A is a local search al­

gorithm and /  is a formula on n  variables, in which V  =  { v  : v  — (xi, X2 , ■ • ■, x n), 

Xi G {0,1}, i =  1, 2, . . .  , n} is the vertices set and E  =  {e : e =  (nj, Vj),  Uj, Vj G V  s.t. 

A(f,  Vi) h Vj}  is the edge set. SPn(A: f )  is called the Search Space Graph(SSG) for the 

local search algorithm A under the formula f  on n variables.
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Note that the real search space of a local search algorithm A  is not always a unit 

weighted directed graph as it defined in the Definition 5.1.3. For example, given a local 

search algorithm A, a formula /  and an assignment t, if both A ( f , t )  t= t[ and A(f,  t) 1= t '2 

exist, the probability of either occurring may not be the same. If we say A(f,  t) h t' 

with the probability p which will be denoted as A(f,  t)\=pt', the edge e = (t, t') should be 

given weight p that represents the probability of the existence of e is p. We may denote 

the weighted search space graph by W SP n(A, / ) .  SPn(A, / )  defined above is actually a 

simplified version of W S P n(A, / ) .  Besides the search space graph and weighted search 

space graph, there exist another type of search space. The algorithms such as Novelty, 

R-Novelty and Tabu search the state space according to their search histories. Hence, 

their real search spaces are dynamic. We say their search spaces are dynamic search space 

graphs. The latter two types of graphs are much more complicated than SPn(A, / )  and it 

is not possible to calculate the precise probability of each edge in the dynamic search space 

graph. Fortunately, since SPn(A, / )  keeps the topology of the other two types of graph, it 

provides plenty of information for the study of the structure of the search spaces and the 

local search mechanism behind them. The search space graphs’ structures and the local 

search mechanism are what this thesis concerns, so we will limit our research to SPn( A , f ) 

in the thesis. The SSG discussed in this section will be SPn(A, f )  if no special declaration. 

Note that the percentage of vertices in traps in SPn(A, f )  is actually a lower bound for 

the percentage of vertices in real traps considering that there are some extra edges which 

may not exist in a history dependent local search algorithm. For example, in many cases 

the best variable in a selected clause is not a recently flipped one so Novelty does not even 

consider the second best variable in search such that the edge that represents the second 

best one does not exist in this search process at all.

D efinition 5.1.4 S A m denotes the set of local search algorithms that flip m  and only m  

variables each time. We denote S A i  as SA.  We use W to represent the family of WalkSAT 

and Q to represent the family of GSAT. Note that W, Q E SA.

D efinition 5.1.5 SPn(A)={SPn(A, f )  : f  is any CNF formula with n variables} is the 

set of all search space graphs of A  under CNF formulas on n  variables, where A E S A m- 

SPn(A)={SPn(A) : A  E A  and A  C <SAm} is a set of SPn(A).
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If graph G' is a subgraph of graph G, it will be denoted as G' <j G. If G' cannot be equal 

to G, it will be denoted as G' <1 G.

5.2 Basic Properties of Search Space Graphs

Prom the definitions above, we easily get to know two basic properties of search space graphs: 

VA 6 SAm, SPn(A, f )  < DHCnm and \/A E SA, SPn(A, / )  < DHCn. Therefore, the search 

space graphs of WalkSAT and GSAT with n variables are subgraphs of DHCn. Prom 

now On, We use B a s i c ,  W N o v e l t y ,  ^ ^ N  o v e l ty + ,  W ^ R —N o v e l t y , W R —N o v e l t y  ■+, A ^ ta b u ,  G g S A T ,  

G R W a l k  and G c s a t  to represent the stochastic algorithms: WalkSAT, Novelty, Novelty+, 

R-Novelty, R-Novelty+, Tabu/WalkSAT, GSAT, GSAT with the random walk strategy and 

CSAT respectively. Novelty+ and R-Novelty+ are Novelty and R-Novelty with random walk 

techniques. Furthermore, it is easy to conclude following properties:

V / o n n  variables,

1. w , g  c  SA-,

2. \ / G e S P n( W J ) , G < D H C n]

3. V G £ S P n { G , f ) , G < D H C n -,

4. SPn(WNovelty, f )  = SPn(WR—N o v e l ty  j f ) < S P n(WBasic, f )

5. SPniGcSAT, f )  <1 SPn(GCSAT,f)  < SPn(GRWalk, f )

5.3 Structures in SSG

In this section we will concentrate on structures of SSGs of G g s a t , G c s a t , W i B a s i c  and 

W O w e l t y  The real search space of G g s a t  and G c s a t  are SSG, the real search space of 

Wsasic is weighted search space graph(WSSG) and the real search space of WN o v e l ty  is 

dynamic weighted search space graph(DWSSG) depending on search histories, therefore, 

we have included all the three types of graphs in our study. Since the SSGs of Novelty 

and R-Novelty are the same under the same first order formula, we will only discuss the 

SSG of Novelty in this chapter. To understand the effects of considering the second best 

variable in Novelty and RNovelty, we studied the SSG of Novelty without the option to 

select the second best variable as well. We called this modified Novelty Only Best. The 

study concentrates on the coverage of the traps in SSGs, the average out-degree of SSGs and
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the coverage of the parts which can reach both traps and solutions in SSG. The coverage 

of a part means the percentage of vertices in this part. So the coverage of traps in an SSG 

should be measured by the percentage of vertices in traps. Hence, a smaller value for the 

coverage of traps indicates that more vertices can reach solutions in SSG through some 

paths on SSGs and the corresponding algorithm has less chances to get stuck in traps. A 

trap in an SSG is a subgraph from which there is no path to a solution.

Intuitively, the smaller the average out-degree of an SSG, the faster the convergence 

speed to solutions is because, in most cases, the solutions are only a tiny portion compared 

to the entire SSG and more options for each assignment will “confuse” a search process 

such that it will have more chances to be led away from a correct “direction” to solutions . 

We will empirically confirm this later. However, a small average out-degree will yield more 

vertices that are not able to reach solutions. So there might be an optimal value for the 

out-degree to make less traps with less edges.

By the description above, the entire search space can be divided into four parts: the 

solutions, the traps, the parts that can reach both traps and solutions through some paths 

and the parts that can reach solutions but no trap. We will call the parts that can reach 

both traps and solutions the intermediate parts and the last type of parts the promising 

parts. See Figure 5.1, in which the black area represents the traps, the gray part represents 

the intermediate part, the light gray grided square represents the solutions and the white 

part represents the promising part. The arrows among the parts represent the directions of 

the edges between two parts.

To locate these parts in SSGs, we explore reversed SSGs using Depth First Search(DFS), 

where a reversed SSG keeps all vertices in the corresponding original SSG but reversed all 

edges in it. We start DFS from the solutions in reversed SSGs. The vertices that are not 

visited must be in traps. To find the intermediate parts, we use a second DFS starting from 

the vertices in traps that have been found in the first turn. The visited vertices in this turn 

are in the intermediate parts. The remaining non-solution vertices are in the promising 

parts.

Although DFS is a polynomial time algorithm, the number of vertices in graphs increases 

exponentially. Therefore, its computational complexity is f2(2n), where n is the number of 

variables. In our experiments we only considered small size instances with 10 to 18 variables 

because these instances are the ones that we can handle in reasonable time. All the instances
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1 ■ Promising Part 
(Parts that can reach 

only solutions.)

InUiimedicitc Part

Solutions

Figure 5.1: Four Parts of an Search Space Graph
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tested in the following experiment are random hidden solution 3-SAT instances. Some SSGs 

under 6 variables are provided in Appendix A.

GSAT

Intermediate Parts — ■— 
Average Out-degree

Traps —
14

0.8

0.6 o>
<DO)to

■a
Coverage of Intermediate PartsCD

>OO O)
0.4

Coverage of Traps

0.2

H i A
- s e t s  - stets

A A__

I I I
82 4 5 6 73

C N  Ratio

Figure 5.2: The coverage of Traps and Intermediate Parts and The Average Degree in 
G g s a t s SSGs with 15 variables

In Figure 5.2, the left Y  axis measures the percentage of the vertices in two parts, traps 

and intermediate parts, the right Y  axis measures the average out-degree of SSGs and the 

X  axis represents the C/V ratio. The three axes measure the same three measurements 

respectively in the following figures. In this figure, the coverage of traps begins to increase 

from a certain point in interval 3.2-3.5 on X  axis (C/V ratio) and it stops increasing when 

this C/V ratio is approximately 6. The coverage of the intermediate part shows a small 

peak. It decreases after the value of the C/V ratio is larger than 6, which means more 

vertices are in the promising part.

We notice that, the average out-degree of S P \ ^ { G g s a t ,  f )  decreases slowly, while the
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C/V ratio increases. The reason why the out-degree decreases is that G g s a t  probably has 

less options with a larger C/V ratio. Gas AT always selects a variable from the variables 

that can maximize the number of satisfied clauses. We denote the number of variables that 

can maximize the number of satisfied clauses as k, the number of variables as n and the 

number of clauses as m. Given any assignment t, flipping variable Vi, G g s a t { I ,  The 

assignment t\ may satisfy 0 to m  clauses. We denote the number of satisfied clauses by t\ 

as li. Then 0 ^  /,• ^  m. For variables v , V { 2, . . .  v*., if =  li2 =  ■ • • =  lij are the maximum 

in ?i, I2 , ■ • -; In-, G g s a t  has to randomly pick up one from these variables to break the ties. 

Clearly, the out-degree of the vertex representing assignment t is j  in this case. With a 

larger m, there are less variables that have the same I value because I has more possible 

values now. So G g s a t  will have less ties with a larger m. When n is fixed, a larger C/V 

ratio means a greater m. This is why the average out-degree decreases when the C/V ratio 

increases.

We can see that at least 40% of vertices are in the promising part. Considering that 

there may be around 20% of the vertices in traps, the promising part in Ggsat is not 

small at all. This partially supports the idea that the heuristic of always choosing the best 

variable provides a good guidance to solutions. Furthermore, the coverage of traps is up to 

almost 20%. Thus, Ggsat  bas up to 20% chance of selecting a vertex as a starting point 

in a trap directly on SP\^{Gg s a t , /)■ It indicates that how to select a starting point for 

Ggsat  is important.

Figure 5.3 shows the changes of the coverage of traps in SPu{Gg sa t , / ) ( n =  10,11,

. . . ,  18) while the number of variables increases and the C/V ratio is fixed at 6 where 6 is a 

stable point for the coverage of traps. We see that the average out-degree is stable, which 

can also be explained by the reason why the average out-degree decreases when the C/V 

ratio increases. Considering that m  increases 6 times faster than n, the effects brought by 

the increase of n can be counteracted by the increase of m. We also see that the coverage of 

traps decreases. The decrease of the coverage of traps indicates that Ggsat may need less 

number of restarting under larger size instances. Of course, we need further experiments 

under large size instances to support this point.

CSAT

Compared with Gg s a t , CS AT (Gc s a t ) has more freedom to select variables. We expect 

that SP i$(Gc s a t , f )  has a smaller coverage of traps and larger average out-degree. Figure
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Figure 5.3: The Coverage of Traps and The Average Degree with the Number of Variables 
Changing in Gg s a t 's SSGs
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5.4 is a graph showing the structures of SP\^{Gc s a t , /)■

Intermediate Parts — ■—  
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Figure 5.4: The Coverage of Traps and Intermediate Parts and The Average Degree in 
CSAT’s SSGs

Compared with G g s a t , the coverage of G c s a t  traps is much smaller, say, 2.2% at 

most. At the same time, its intermediate part is larger than G g s a t  s- The differences are 

caused by more edges being added into G c s a t ■ Because SPn{GcsAT, f )  <! S P u ( G c s a t , / ) ,  

so SPn(GcsAT,f)  is SPn(GGSAT,f)  with extra edges. In other words, E q s a t  Q  E C S a t , 

where E q s a t  and E C s a t  are the sets of edges of SPn{GGSAT,f)  and SPn(GCSAT, f) ,  

respectively. On SPn{GosAT, f ) ,  1) if an edge from a vertex v in a trap to a vertex u in 

another part is added, all vertices that can reach v will belong to the intermediate parts 

or promising parts; 2) if an edge from a vertex v in the promising parts to a vertex u in 

the intermediate parts or traps is added , all vertices in the promising parts that can reach 

v will belong to the intermediate parts. In both cases, the coverage of intermediate parts 

increases and in the first case, the coverage of traps reduces. Compared with G g s a t , the 

average out-degree of G c s a t  is almost doubled, which indicates that the number of edges
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are doubled. From the analysis above, we know that the coverage of traps will be smaller 

and the coverage of intermediate parts of S P u ( G c s a t ,  f )  will be larger than S P u ( G g s a t ,  f )  

in most cases.

Average Out-degree 
Traps

0.8

«
§ -  0.6 O)
H *o

Average Out-degree
o>

©

8 04

0.2
Coverage of Traps

15 16 17 1811 12 13 1410
Number of Variables

Figure 5.5: The Coverage of Traps and The Average Degree with the Number of Variables 
Changing in CSAT’s SSGs

Figure 5.5 is the graph for the coverage of traps when the number of variables increases 

and the C/V ratio is fixed at 5. The average out-degree increases in a linear scale and 

the rate of traps decreases also in a linear scale. We guess that the coverage of the traps 

converges to a constant eventually when the number of variables is large enough.

Basic WalkSAT

Although researchers guess that WalkSAT(W#asjc) is probabilistic approximate complete(PAC), 

there is no formal proof for that. That an algorithms is PAC indicates that the probability 

of one vertex being checked is larger than zero. Culberson et. al.[7] proved that WBasic for 

2-SAT is PAC, however, whether WBasic for k-SAT(k > 3) is PAC or not is unknown.
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The Structure of SSGs(15var)~Basic WalkSAT
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Figure 5.6: The Coverage of Traps and Intermediate Parts and The Average Degree with 
Various C/V Ratios in Basic WalkSAT’s SSGs(15 Variables)
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In our experiments(Figure 5.6), unlike S P i $ ( G g s a t , f )  and S P i $ ( G c s a t , f) i  no trap 

was found in SP\${WBasic / )  • In other words, every vertex is on a path to at least one 

solution in SPi^W sasic  / )  in our experiments. This result further supports that WBasic is 

PAC. We see that the average out-degree is about 14 when the value of the C/V ratio is 8 , 

which indicates almost all variables are selectable on average. In this case, WBasic behaves 

more like random selections. The bias only comes from the frequency of the appearance of 

each variable. This bias is too weak to work well.

As the coverage of traps for WBasic is always 0% in our experiments, we do not discuss 

the tendency of the change of the coverage of traps further.

Novelty

Intermediate Part — ■—  
Average Out-degree ---as--- 

Traps — x—
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3 4 5 6 82 7
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Figure 5.7: The Coverage of Traps and Intermediate Parts and The Average Degree with 
Various C/V ratios in Novelty’s SSGs(15 Variables)

The experimental results of Wpfoveity (Figure 5.7) looks similar to that of WBasic except 

that the coverage of traps for WNovelty is slightly larger than zero and its average out-degree
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is smaller. We show the rescaled graph below(Figure 5.8). Compared with SPi$(G csat, / ) , 

SPi${Wnoveity, / )  has much smaller coverage of traps and intermediate parts. From the 

rescaled graph, we can tell that the coverage of traps trends to decrease when the C/V 

ratio increases. However, unlike Wsasic, a few of SP\^{W N o v e l t y , ./) contain some very small 

traps, although in most cases the coverage of traps in SP\^{WNovelty, / )  is 0. We say 

that the coverage of traps for SP\<o(WN o v e l t y ,  f )  is as small as that of SP\^(WBasic, / )  but 

SP\h{WN o v e l t y ,  / )  has smaller average out-degree, on the other hand. The smaller coverage 

of traps means that it is not easy for W N o v e i t y  to get stuck in traps compared with G gsa t 

and G c sa t ; the smaller average out-degree indicates that WNoveity has a stronger bias 

than WBasic and this stronger bias leads to a faster convergence speed to solutions. We 

will empirically confirm the latter point later. This is partially the reason why WNoveity 

performs better than WBasic, G q sa t  and G csat-

0.0001
Traps

8e-05

CLOSH
>-05

oa)o>to<D>o
o 4e-05

2e-05

2 3 4 5 6 7 8

C/V Ratio

Figure 5.8: The Coverage of Traps in Novelty’s SSGs(Rescaled) Under 15 Variables

Because Novelty’s traps are very small and the percentage of instances containing traps 

is very small too, the information based on average case is not really helpful. We further 

analyzed Novelty. This time we generate 5000 instances for each C/V ratio.

In Figure 5.9, X  axis represents the ratio of instances and Y  axis represents the number 

of instances containing traps. Clearly, there is an obvious peak at 3.4 on X  axis. However,
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Scatterplot of Number of Instances Vs. Ratio

Ratio

Figure 5.9: Scatter Plot of the number of Novelty SSGs Containing Traps. (It counts the 
number of instances containing traps at each C/V ratio)

Frequency Histrogram of Variable N Jnstances
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Figure 5.10: Frequency Histrogram of Number of Instances Containing Traps for Novelty
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Side-by-side boxplot of variable tmp^size for each ratio
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Figure 5.11: Side-by-Side Boxplot of the number of Novelty SSGs Containing Traps. (The 
trap size is measured by the number of vertices. The top and bottom of a box represent 
75% and 25% of the number of vertices in traps respectively. The bar inside a box is the 
median.)

Matrix plot of ratio, avejoutD and trapjsize in log scale
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Figure 5.12: Relations between the Size of Traps, the Average Out-degree and the C/V 
ratio for Novelty
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none of the instances at the C/V ratio being greater than 6 . 6  contains any traps. We plot 

a frequency histrogram of the number of the instances containing traps(Figure 5.10). It is 

skewed to the right. Most ratios have less than 5 instances with traps in 5000 instances. 

We used the boxplot to analyze the size of Novelty’s traps(Figure 5.11). The line in middle 

of each box is the median value of the size of traps at each C/V ration. The top and 

the bottom of each box represent the 75% and 25% of the number of vertices in traps at 

each C/V ratio. The star points out of those boxes are outliers according to the statistical 

analysis. Since their sizes are too large compared with others, it has been considered as 

occasional incidents. However, these exceptions may be the interesting parts that need 

further investigation. Moreover, we can see that the values of the medians are stable.

To study the correlations among the size of traps, the average out-degree and the C/V 

ratio, we ploted Figure 5.12, which is a matrix plot of those three measurements with a 

logarithmic scale. In the plot of “ratio” x “log_outD”, which use C/V ratio and average 

out-degree as Y  and X  axes respectively, we see that there is a linear relationship between 

these two measurements on the logarithmic scale, but the relationships of the other two 

pairs are almost random. So we conjecture that the average out-degree does not affect the 

size of traps in Novelty.

Only Best

We may notice that the probability of Wpfoveity selecting the best variable and the probabil­

ity of it selecting the second best variable are quite different. Although the exact probability 

of selecting either variable is unknown since it depends on search histories, we can roughly 

estimate that the probability of selecting the second best variable is much smaller. So we 

repeat experiments on the graph with only the edges that represent the best variables in 

each unsatisfied clause. We call the corresponding algorithm Only Best{WoniyBest), which 

only selects the best variable in the selected unsatisfied clause. Let’s have a look at Figure 

5.13. There is an obvious peak for both the coverage of traps and the coverage of intermedi­

ate parts at around 4 on the C/V ratio. Considering that the average out-degrees increase 

monotonically, the phenomenon is interesting, because it confirms that the size of traps is 

not or not only related to the average out-degrees. We guess that formulas might also affect 

the structure of SSGs through affecting the distribution of edges in SSG. Figure 5.14 shows 

the change tendency of the average out-degree and the coverage of traps when the number 

of variables increases. It is similar to CSAT.
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Figure 5.13: The Coverage of Traps and Intermediate Parts and The Average Degree in 
Only Best’s SSGs
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Figure 5.14: The Coverage of Traps and The Average Degree with the Number of Variables 
Changing in Only Best’s SSGs(The C/V ratio—4)
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5.4 Convergence Speed

Each local search algorithm’s SSG has its own properties which make it different from the 

others. The coverage of traps and average out-degree are two of the features affecting 

performance. If an SSG contains a relatively larger coverage of traps, these traps will affect 

the corresponding algorithm’s performance. In this scenario, restarting and random walk 

will be essential for the algorithm because it needs these two strategies to escape traps. 

G g s a t  is this type of algorithm. If an SSG contains tiny trap areas, restarting and random 

walk may not be the best strategies because there is no guarantee that the new start point 

will be better than the current assignment if the current assignment is not in any trap. Note 

that no traps does not indicate a good performance. For example, WBasic does not work 

very well. A lot of edges avoid constructing traps but too many edges may lead to a low 

convergence speed to solutions. In this scenario, the average out-degree may be the main 

factor affecting performance through affecting the convergence speed to solutions. W N o v e i ty  

and W r ~ N ovelty  are this type of algorithm. In this section, we discuss some experiments on 

convergence speed of G g s a t , CSAT, Novelty(R-Novelty) and Basic WalkSAT.

We use a Markov chain model to simulate transfers between vertices, where “transfer” 

means that if there is an arc from vertex v \  to vertex V2 j the search process can walk from 

v\ to V2 by flipping a selected variable, which is represented A( f ,  tVl)\=tV2 where A is a local 

search algorithm. If a vertex v  has k out-arcs to v \ , V 2 , ■ ■ ■ Vk respectively, the probability 

of a transfer from v to Vi is l / k  which is represented by A( f ,  tv)\=ijktVi. In other words, 

we assume A  transfers with a uniform distribution on each edge. We can use a stochastic 

matrix P  to represent the transfers among vertices.

We give weights to each vertex and denote them as a =  ( w i , W 2 , . . . ,  w n ), where the 

weights represent the probability of the search process checking this vertex. Since we assume 

that there is no bias at the selection of starting points, we initially set a =  (1 , 1 , . . . ,  1 ). 

Therefore, a' =  a x p  can be considered as a vector of the probability of the search process 

stopping at a vertex at first iteration, where the probabilities have been represented as 

weights. The sum of the z-th column in ai =  a x p  is the weight of the z-th vertex after 

one iteration. So the second iteration can be simulated by 0 2  =  ai x p  = a x p 2. By 

induction an = a x pn. This is a simple infinite markov chain model. So there exists a q 

such that a(Pt — P t+1) — E (t > q), where I? is a matrix in which any element e satisfies 

—5 < e <  5(5 is a small positive constant). In our SSG model, the weights should converge
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to both solution vertices and traps. Therefore, using the number of iterations as time 

tags, we can measure the convergence speed by the number of vertices whose weights are 

larger than a small positive constant e. We use e here because the weights on non-solution 

and non-trap vertices that is on any cycle will not be zero when we find the q such that 

a{Pl — P t+1) — E (t > q). But their weights should be very small such that we can ignore 

them. In this experiment, e is set to 0.00001. If the weight of a vertex is less than e, we 

consider the probability of stopping at this node being zero after q iterations. We must 

clarify that an algorithm’s convergence speed here is the convergence speed on its SSG as 

we defined previously.

Figure 5.15 shows the simulation of convergence process under formulas on 6  variables 

with the C/V ratio being 3.5. The X  axis represents the number of iterations and the Y  

axis represents the number of vertices whose value is larger than e. G g s a t  and G c s a t ' s  

convergence speeds are the fastest. The next fastest one is WoniyBest■ Its convergence speed 

is very close to G g s a t  and G c s a t ■ W ^oveityS convergence speed is second slowest one. 

They all follow the same pattern—starting with a steep drop and then followed by a long 

flat curve. Wsasic s is the worst one. Its curve does not have a steep drop. The number 

of vertices with value being larger than e drops smoothly. We notice that WBasic does 

not really converge to the solutions even after 1024 iterations, while the others converge to 

almost the same number of vertices.

Let’s have a look at Figure 5.16, which shows the simulation of the convergence processes 

on instances on 10 variables with the C/V ratio being 6 . Their convergence speeds still follow 

the same order as in Figure 5.15. But W]^oveity s curves are smoother than that in Figure 

5.15, which indicates that Wj^oveity converges slower under these instances. As for Wsasic, 

it does not converge. G g s a t ,  G c s a t  and WoniyBest still show a deep drop on the number 

of vertices whose weights are greater than e.

To further understand how their convergence speeds are effected, Figure 5.19 through 

Figure 5.21 compare these local search algorithms’ convergence speeds on instances with 

various C/V ratios. In Figure 5.19, we find that the change of Wjvoueity’s convergence speed 

becomes slower, or say, the curve becomes less steep when the C/V ratio increases. On 

the other hand, Wsasic s convergence speed is greatly affected by the C/V ratio (see Figure 

5.20). There is an obvious plateau before Wsasic begins to converge. This plateau extends 

when the C/V ratio increases. When the ratio is equal to 8 , it does not converge at all in the
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Figure 5.15: Simulation of Convergence Speed on 3-SAT instances with 10 Variables and 
C/V ratio value being 3.5
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Figure 5.16: Simulation of Convergence Speed on 3-SAT instances with 10 Variables and 
C/V ratio value being 6

first 1024 iterations. Figure 5.17, Figure 5.18 and Figure 5.21 show that the convergence 

speeds of G g s a t ,  G c s a t  and WoniyBest are not greatly affected by the C/V ratio. All of 

their convergence speeds are quite stable, compared with WNoveity and WBasic- We also 

notice that G g s a t  converges very fast such that the number of the vertices whose weight 

is larger than e has reduced to less than 400 at the first 2 iterations. It is less than half of 

G c s a t  s  at the same point.

In contrast to the other three algorithms, Gg sa t 's convergence speed increases when 

the C/V ratio increases. The larger the C/V ratio, the faster the convergence speed. Recall 

that only G g s a t ' s average out-degree decrease when the C/V ratio increases(Figure 5.2). 

So for G g s a t ,  the change of the convergence speed has the same tendency of the change of 

the average out-degree. On the other hand, for the other three algorithms, the change on the 

convergence speeds also have the same tendency as their changes on the average out-degree. 

WBasic has such a large average out-degree at the high C/V ratio that it does not converge 

in first 1024 iteration. WNoveity has a larger average out-degree than G g s a t  and G c s a t  

and WNoveity has slower convergence speed than them but it has a faster convergence speed 

than WBasic because of a smaller average out-degree than WBasic- All of these empirically
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Figure 5.17: Simulation of G g s a t ’s  Convergence Speed on 3-SAT instances with 10 Vari­
ables and various C/V ratios

supports that the average out-degree greatly affect the convergence speed and the smaller 

the average out-degree, the faster the convergence speed.

5.5 Conclusion

In this chapter, we empirically studied SSGs of G g s a t , G c s a t , W B a s i c , W '/v o u e tty  a n d  

W o n i y B e s t  under hidden solution 3-SAT instances. Through the analysis of the coverage 

of traps and intermediate parts, we find that each algorithm’s SSG has its own features. 

W N o v e l t y  shows that it has tiny traps and a good convergence speed. Since the probability 

of flipping the second best variable is small, the real convergence speed of W ^oveity is 

between the speed of WNoveity and the speed of WoniyBest on SSG. In Chapter 4, we have 

shown that Wwovely usually out-performs the others. It partially supports that both a 

small coverage of traps and a faster convergence speed are necessary for good performance. 

Generally, G c s a t  also out-performs G g s a t ■ In this chapter, we see that G c s a t  has an 

obvious smaller coverage of traps and a comparable convergence speed to G g s a t -  On the 

other hand, W B a s i c  has no trap, but its convergence speed is too slow such that it has the 

worst performance in Chapter 4. We empirically confirmed the necessity of both the small
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Figure 5.18: Simulation of CSAT’s Convergence Speed on 3-SAT instances with 10 Variables 
and various C/V ratios
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Figure 5.19: Simulation of Novelty’s Convergence Speed on 3-SAT instances with 10 Vari­
ables and various C/V ratios
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Figure 5.20: Simulation of Basic WalkSAT’s Convergence Speed on 3-SAT instances with 
10 Variables and various C/V ratios
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Figure 5.21: Simulation of Only Best’s Convergence Speed on 3-SAT instances with 10 
Variables and various C/V ratios
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coverage of traps and the fast convergence speed for good performance.

However, what determines the coverage of traps and the convergence speed? Assume 

we have a graph G with traps T  = {t\ ,  t̂ -, ■ ■ ■, tp} where ti, i = 1,2, . . .  ,p  are traps. If extra 

edges from ti to any other part are added, some vertices in traps will be in intermediate 

parts or the promising parts. However, if an edge whose two ends are in the same part 

is added, it will not change the coverage of any part. If an edge from a promising part 

to a trap or an intermediate part is added, it only increases the size of the intermediate 

part. We do not think this kind of edge will help for a better performance since it only 

increases chances to traps. Any edge from an intermediate part to any other part will not 

change the coverage of any part since it has edges to all the other parts already. By the 

simple analysis above, we know that, theoretically speaking, a greater average out-degree 

does not necessarily mean a smaller coverage of traps. However, note that any edge added 

will not cause a larger coverage of traps, so when the average out-degree increases much, 

there is a greater probability of constructing an SSG with smaller coverage of traps. On the 

other hand, we have also noticed that the tendency of the change on the coverage of traps 

is not the same as the tendency of the change on the average out-degree when the C/V 

ratio increases because the average out-degree usually increases or decreases monotonicly 

but the coverage of traps does not show a monotonic increase or decrease. In the analysis 

in the previous sections for W N 0v e u y  and W o n lyB es t>  we have found these two factors are 

not strongly related. So the average out-degree is not the only factor that affects the the 

coverage of traps. We conjecture that the hardness of SAT instances affects the structure of 

SSG as well through affecting the distribution of edges. We still need further experiments 

to confirm this, though. On the other hand, our experiments also show that the average 

out-degree is strongly related to the convergence speed. The smaller the average out-degree, 

the faster the convergence speed.

So we guess that a key point for designing a good algorithm is to pursue a proper average 

out-degree that can lead to a relatively small coverage traps and a good convergence speed. 

This might be able to explain why the automated heuristics generator by Alex Fukunaga 

[15] works well, as we mentioned in Chapter 2. He succeed in finding new heuristics by 

deploying multiple heuristic methods with a probability for each of them. In this way, he 

mixed the search space graphs of various local search procedures. We guess that his method 

adjusted the distribution of edges and the average out-degree of an SSG such that it leads
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to good values for both factors.

All these experiments are based on small size instances. However, we guess that the 

tendency of the change of the coverage of traps and the average out-degree might hold 

but they might converge to some constants under large size random hidden solution 3-SAT 

instances. Since the convergence speed are most likely affected by the average out-degree, we 

conjecture that the tendency of the convergence speed would keep under large size random 

hidden solution 3-SAT instances as well.
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Chapter 6

Conclusion

Some local search procedures work efficiently on SAT problems under some sub-classes of 

SAT problems, as we have seen in Chapter 4. Novelty can even solve 3-colorable FLAT 

graph instances with up to 775 vertices in graphs that are 2325 variables in SAT formulas. 

The search mechanism behind this efficiency is still not clearly understood. In this thesis, 

we tried to analyze them more deeply by exploring the search spaces of those local search 

algorithms under small size instances, say, instances on 10 to 18 variables. We have pre­

sented how the coverage of traps and the coverage of intermediate parts change when the 

number of variables or the C/V ratio increases. The different coverage of the traps among 

various algorithms shows that an algorithm having more possible moves or bigger average 

out-degree in each step has a smaller coverage of traps, although the change tendencies of 

the coverage of traps for each algorithm are not the same. An algorithm like GSAT that 

has few choices at each step has a larger coverage of traps. It easily gets stuck in traps, 

although it converges pretty fast. However, this does not mean that more choices the better 

performance. Basic WalkSAT does not have any traps in our experiments. But we can see 

that it converges quite slowly when the C/V ratio of 3-SAT instances is big, say larger than 

6 . Novelty/R-Novelty are ones that have the best balance between the coverage of traps 

and the convergence speed. Here, we assume that a perfect local search algorithm lets its 

search space graphs contain no traps. Reducing any edge in this perfect search space will 

cause traps and ~  ° j ) 2  should be minimized, in which a* is the out-degree of the i-th

vertex. We have empirically confirmed that an algorithm being good at both the coverage 

of traps and the convergence speed will lead to good performance. We also guess that the 

SAT instances affect the coverage of traps as well through affecting the distribution of edges 

in graph since not all edges added into a graph can lead to a smaller coverage traps..
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So far, all our analyses on the coverage of traps and the convergence speed are done 

under small size SAT instances. We need further experiments to analyze the tendency of 

the change of the coverage of each part in search spaces under larger size instances. We may 

explore large instances search spaces traps by the sampling method. First, track the search 

process of a local search algorithm without random-walk and restarting. Once we find an 

assignment that has been visited many times, this assignment is probably in a trap. Second, 

to find the possible trap, explore the search space using breath first search or depth first 

search on the search space graph starting from this assignment. If there is a trap containing 

this assignment, this trap has no edge out. But if the trap is huge, it is difficult to identify 

it since we do not know when to stop. If the assignment is not in a trap, the search will 

take a long time. As a trade-off, we can set an upper limit on the number of assignments 

for this search since a complete search is not realistic in this scenario. However, we will 

not be able to find any trap that contains more nodes than the limit. We need statistical 

theory tools for the analysis of the result because the analysis is not easy when a local 

search algorithm searches all states with some biases such that the traps found are not on 

a uniform distribution in the whole state space.

We had mentioned that SAT instances might affect the distribution of edges in SSG 

as well. We can analyze the distribution of edges in SSG under various classes of SAT 

instances using statistical methods.

In the process of exploring the search space graphs, we have accumulated some expe­

rience on constructing small size traps. We can estimate possible traps by gathering and 

analyzing the pattern of traps in small size instances. Avoiding visiting assignments in 

traps, a local search algorithm with smaller average out-degree can be improved. This kind 

of algorithm may benefit from faster convergence speed but suffer less from traps. This 

might be another interesting future research direction.
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A ppendix A  

Trap Exam ples

Figure A.2 and Figure A.5 show a example for each of Novelty and GSAT. Table A.l and 

Table A.2 are the formulas of these two examples respectively.

{ x i  V ->£3 V x q } {-1£2  V - i£ 4 V ->£6} { £ 2  V ~ '£3 V - i £ 6 } { ~ 1£ 2 V - i £ 3 V £ 6 }

{x2 v  - i £ 3  V ->2:5} { - i £ 3 V - .£ 5  V £ 6 } { - i£ 4 V £ 5  V £ 6 } { £ 2  V £5  V -1£6 }

{ —i£Cl V -1X5 V x$} { £ 2 V - i £ 5 V £ 6} { £ 3  V £ 4  V £ 5 } {-<£1 V £3  V £ 4 }

{ - 1X 2  V -12:4 V £ 5 } { £ l  V £3  V ->£4} { —'£1 V ~ ' X 2  V ~ '£ 4 } { —>£2 V - < X 3  V '£ 5 }
{->£3 V - i£ 4 V £ 5 } { - i £ l  V £3  V ~ '£ 4 } { £ 1  V  —'£5 V £ 6 } {-■£1 V -1£2 V  - i £ 3}

{ x 2 V - | £ 4 V ~>X5 } { —i£ l V £ 5 ” ' V £ 6 } { £ 2  V ->£3 V -> £4} { - i £ l  V - i£ 3 V '£ 4 }

{ - .£ 2  V ^ £ 5  V —i£ 6 } { £ 1  V - |£ 2  V £ 4 } { - ■ £ 3  V - i £ 4 V  £ 6 } { - i £ l  V ~ ' X 2 V £ 5 }

{ - i £ l  V £2  V - i£ 4 } {-> £2 V £3  V ->£4} {-< £1 V £ 2  V £ 3 } {£ 2  V £ 4 V - i £ 6 }

{£ 1  V £ 2  v  ->£3} {-■£2 V X 3  V £ 5 } { £ 1  V £ 4  V £ 5 } { £ 4  V - i£ 2  V '£ 4 }

Table A.l: An Instance Containing A Trap For GSAT

{ - i £ l  V £ 2  V “ >£6} { £ 2 V —'£5 V £ 6 } {-> £2  V £ 5  V - i £ 6 } {£X V - i £ 5  V - i£ 6 }

i£ 2 V “ i£ 3 V £ 4 } {~ i£ 2  V ->£4 V - i £ 6 } {~>£X V £ 2 V X q } {£ 3  V - i £ 4 V - ‘X q }

{-i£ '2  V - i £ 4  V -> £5} {->£1 V - i £ 2 V £ 5 } {-i£X  V - i£2  V -> £4} {~ 1£ 2 V -<£3 V £ 5 }

{ ~ i£ l  V - i£ 2  V -'Xz} {-> £2 V '£3 V ~i£ 6 } {-■ £2 V £ 4  V £ 5 } {£ x  V £ 3  V £ 4 }

{ £ l  V £ 2 V £ 5 } { - i £ l  V £2  V £ 4 } {£X V - .£ 2  V £ 3 }

Table A.2: An Instance Containing A Trap For Novelty
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Figure A.l: An example of GSAT’s Search Space Graph
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Figure A.4: An example of Only Best’s Search Space Graph Under the Same Instance in 
Figure A.5
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Figure A.5: An example of Basic WalkSAT’s Search Space Graph Under the Same Instance 
in Figure A.5
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