
A Reconfigurable VR Tool for Spatial Navigation

by

Daniel Torres

Technical Report TR03-11
April, 2003

DEPARTMENT OF COMPUTING SCIENCE
University of Alberta

Edmonton, Alberta, Canada



A Reconfigurable VR Tool for Spatial Navigation

Daniel Torres Guizar
Department of Computing Science

University of Alberta
dtorres@cs.ualberta.ca

April, 2003

Abstract

Biological systems for spatial navigation provide fine-tuned mechanisms
for orientation and complex navigational behavior. Experimentation in hu-
man beings is aimed to discover perceptual cues utilized to perform navi-
gation in Virtual Reality environments. Such environments are required to
have special characteristics to allow the measurement of brain activity and
behavior in real time, and to provide flexibility for creating scenarios with
perceptual stimuli of high quality. This paper describes a reconfigurable VR
tool and a markup language created for this purpose. The capabilities and
features of the architecture are detailed and the possibility of extending the
system to other experimental domains is discussed.

Key words: Virtual Reality environments, Spatial Navigation, Human Re-
sponse, Electroencephalographic analysis.

1 Introduction

The problem of navigation is not trivial. Many researchers in the area of
Robotics and Computer Vision have devoted their time to the creation of bet-
ter, faster and more reliable navigation systems for robots. A short glance at
the literature will convince the reader of the complexity of this problem. Yet
we, as humans, have no problem finding our way through the 3D world we
live in. For us, navigation is almost a subconscious task. The brain manages
to orchestrate our movements in a completely transparent way.

Many questions arise from this inherently natural ability. How do we
find our way home when going back from work? How do we learn a new
route when going to some place for the first time? How do we recognize a
particular place in the city among other similar ones? How do we manage

1



to find our office in the apparently endless corridors of a business facility?
Still, we know our perception can be tricked and even we get lost sometimes.
Theseus himself would have been hopeless inside the Minotaur labyrinth had
not Ariadne presented him with a thread to mark the way out. More concise
questions can be formulated: What makes it easy for humans to navigate a
3D environment? What makes it difficult? What are the perceptualcuesused
by the human brain to perform this task?

A mazeis an excellent testbed to address these questions. A virtual maze
can be designed to explicitly test certain navigation abilities of the human
user inside a controlled environment. Features like wall color and texture,
topological structure and pattern, noise and navigation aids can be strategi-
cally placed and varied to analyze the behavioral response. At the same time,
different recordings like the user’s navigation pattern, time to find the exit
and committed errors, (such as reaching a dead-end corridor on a previously
walked section) can provide information about the processes that take place
in our natural navigation system.

For this purpose a reconfigurable Virtual Reality tool named MANDALA,
and its markup authoring language, was created. This paper describes the ar-
chitecture, features and overall characteristics of this system. MANDALA
was also designed with a second goal in mind: in many research projects re-
lated to psychology, biology, sociology and other areas not directly related to
computing science, there is the need for conducting experiments in VR envi-
ronments. This often presents a problem since the researcher has two options;
either to adapt an existing VR system to their specific needs or build anad
hocsolution. In both cases significant effort must be spent performing tasks
not related to the research. MANDALA comes here as a general-purpose VR
tool with a simple authoring language that requires no additional knowledge
of 3D programming, allowing the user to create very complex environments
that integrate seamlessly with other modules specific to the research itself.

The paper is divided as follows: A general overview of the spatial nav-
igation experiment is described in order to illustrate the requirements of the
system. The architecture of MANDALA is then shown and a more detailed
description of its elements and features will be provided. Some illustrative
examples are shown along with their code. The general dynamics of a typical
navigation experiment from the point of view of the tool is also described.
Finally the current state of the MANDALA project and future work are pre-
sented.

2



2 The Spatial Navigation Experiment

A very quick overview of the Spatial Navigation experiment is described
here. As this is not the place to discuss the mentioned project, only informa-
tion relevant to the design of the virtual domain will be discussed.

The intention of the Spatial Navigation experiment is to discover how
people find their way through a virtual environment, what are the perceptual
cues they rely on, and what makes it easy or difficult to find the goal. To
answer this questions a group of volunteers are asked to navigate a Virtual
Reality maze that presents carefully designedstimuli, while simple behav-
ioral measures like the time they take to complete each maze and the number
of errors are recorded. Electroencephalographic activity is measured as the
subject walks through the maze . Theta wave activation [4] indicate places
where navigation has become difficult.

The whole simulation is automatic and different mazes are created, pre-
sented and evaluated in real time. At the end of the experiment a history of
the simulation must remain for analysis. Given this scenario, the maze do-
main must be able to do the following:

1. Allow the construction of virtual environments in a simple way, so that
there is not need of working with complicated data for the setup of
the maze. At the same time the system must let the designer construct
libraries of maze segments so that the maze can be built by joining
together previously defined sections.

2. Present the user with a simple, clean and realistic interface that behaves
in a believable way, using a variety of input devices like the keyboard
or joystick.

3. Offer a flexible authoring and scripting language so that mazes can be
made interactive and different events may be triggered in the appropri-
ate situations.

4. Provide means for automating the use of external hardware devices
like the electroencephalographic reader when certain events inside the
virtual world are triggered.

5. Keep a log of interesting events and track the navigation of the user for
offline analysis

6. Allow real time communication with external agents so that other ex-
pert systems can react to the events of the maze, review the navigation
of the user and evaluate his performance, design new mazes on-the-
go and present them to the user without suspending execution of the
simulation.

7. Work with conventional computer monitors as well as with specialized
VR hardware like stereo displays and the CAVE system.

3



With this in mind the available options are greatly reduced. Languages
like VRML did not provide all the required flexibility with the expected per-
formance, and adapting some existing graphic engine would have implied
additional time to understand and restructure (when possible) other architec-
tures that are frequently unfinished and unsupported. Buying a supported
product would have implied additional economic resources and would still
have to be adapted to the requirements of the experiment. Given that this
was not the only project in need of a similar system, and that the require-
ments were very specific, the idea of developing a proprietary engine was
decided.

3 MANDALA: A Virtual Reality tool

The name of the engine will be explained a bit later in this paper. First it is
necessary to present the two main objectives of the MANDALA project:

1. To create a flexible markup language that will:

• Allow the definition of virtual worlds while encapsulating all com-
plex 3D details so that people without prior experience in com-
puting science or Virtual Reality would be able to design and put
their own scenarios to work

• Allow the definition and inclusion of libraries for simplifying the
process of constructing the virtual environment.

• Allow straightforward scripting for defining interactivity.

• Allow communication routines so that attached devices can be
controlled from within the maze without the need of implement-
ing other modules.

• Provide all required resources to build simple worlds, without re-
straining the possibility of building more complex scenes.

• Although inspired by the requirements of the Spatial Navigation
experiment, be completely domain-independent so that it can be
seamlessly imported into different domains.

2. To provide an architecture (and its implementation) that:

• Is compatible with the MANDALA Markup Language (MML)
definition and implements all of its features

• Provides all the advantages and essential characteristics of a mod-
ern graphic engine

• Immediately works with conventional and advanced VR hardware
like stereo displays

• Allows concurrent operation and communication with other spe-
cialized agents

4



3.1 Overview of the MANDALA Architecture

The MANDALA general architecture is composed of five layers and two ex-
ternal managers. At the very bottom we have theWorld Definition, which
contains one or more simple text files written in MML specifying the ob-
jects, structure and interactivity of the virtual world. These files may also
contain links to various multimedia resources like sounds, textures and ge-
ometric models in different 3D formats1. Next we have an interface that
reads, parses and validates the world definition file(s) and integrates them
into theMANDALA Objects, a series of specialized data structures that actu-
ally load external multimedia elements, organize the virtual world resources
and keep and optimize the information for quick access from theReal time
agents. In this layer a collection of agents that handle the realtime logistics of
the world is found. Aspects like collision detection, script execution, avatar
movement, navigation logging and other dynamic tasks are performed. This
layer also administrates information circulating to and from two important
external managers, one dedicated to administrateinput and output devices,
and another that keeps several kinds of communication channels open with
remote agents.

Figure 1: The components of the MANDALA Architecture

TheExternal Devicesmanager reads input from the physical navigation
controls utilized by the user to walk through the maze, this abstraction makes
it possible to adapt the application to work with simple or advanced input
devices without having to change other systems. Output features managed
in this section include communication with hardware devices controlled by
the Realtime Agents. TheRemote Agentsmanager abstracts cooperation and
communication with other research-specific agents that not necessarily reside
on the same computer. Numerous external agents can be interacting with the
MANDALA environment at the same time, sending and receiving messages
to supervise the experiment in many forms. This abstraction provides the

1The format of external models is not restringed by MML, but the interpreters in the third layer

5



architecture with great flexibility for implementing domain-specific modules
without having to modify the MANDALA architecture. Finally, theRender-
ing layer maintains and updates a graphical representation of the state of the
virtual world. It is in this layer where some particular graphic library must
be used to show the information contained in the MANDALA Objects as
it is affected by the Realtime Agents, the External Devices and the Remote
Agents.

Each layer is now reviewed in more detail.

3.2 The MANDALA Markup Language

It is in this section where the name of the system will make sense. First let
us analyze the structure of a MANDALA file. As mentioned before, all in-
formation pertinent to the creation of a virtual world resides in simple text
files, just like in html, and all multimedia elements like textures, sprite im-
ages, sounds and mesh files are included as external elements. The structure
of every MANDALA file is shown in Figure 2.

Figure 2: Structure of a MANDALA file

The two main parts of any MANDALA file are:

1. The Definition Section: Here all the building blocks required to assem-
ble our world will be defined. All materials, meshes, multimedia ele-
ments, included libraries, basic and predefined structures are declared.
Picture it as the box where all the pieces of a puzzle are waiting for you
to take and put into place.

2. The Construction Section: In this section we take the building block
defined in the Definition Section and actually do something with them.
This is the place where the puzzle pieces are assembled to create the
world itself. It contains two important elements:

• The world topology: Think of it as a map that describes how
pieces are to be arranged in order to construct the virtual world.

6



• Scripts: Very simple pieces of code that indicate actions to take
when certain events happen somewhere in our virtual world.

Let us take a deeper look at the philosophy behind each of these sections.

3.2.1 Definition Section

The basic construction element for a MANDALA virtual world is a plain
unitary cube. Imagine an invisible cube in space, an abstract box that occu-
pies an area and waits for other things to be placed inside. One can place
anything in these boxes and, as they are abstract elements, only what is put
inside will actuallyexist. In the MANDALA language this is known as acell.

Once a cell is defined many instances of it can be put together to form a
bigger space. As the cell itself was only defined once, the elements it con-
tains are also declared once. In other words, the cell as anobject is defined
andinstancesof it are connected on the construction section to assemble the
virtual world.

Figure 3: Using one cell to build a simple corridor

Many things can be put inside a cell. Two basic elements are a floor and
a ceiling. Additionally one can put walls, furniture and objects designed in
some 3D modeling program, sprites and billboards (2D images that always
face the camera, giving the illusion of being 3D). In order to do that it is
necessary to define how can textures be included in the file. The object used
for this purpose is called apanel. A panel is a link to an external image

7



that will be used as ”wallpaper” for any surface in the world, be it a wall, a
ceiling or a floor. Like the cells, once a panel is defined its instances can be
used anywhere. In Figure 3 a simple cell is created by specifying a panel to
use as the floor. Then, four instances of the same cell are concatenated to
create a corridor. The definition of the panel and the cell would look like this
in MML:

<!-- Defining the panel -->
<panel id=’tiles’ tex=’someImage.bmp’/>

<!-- Defining the cell -->
<cell id=’simpleCell’ floor=’tiles’> </cell>

The definition of a panel requires at least a unique id and the name of the
external file. Additionally one can specify uv coordinates and RGBA values.
As for the cell, an id is also required, and the floor and ceiling correspond to
the id’s of the desired panels. Note that the cell is actuallyemptyas the floor
and the ceiling are definition parameters, but not contained objects.Walls, in
the other hand, are to be contained because they can be put anywhere inside
the cell. Let us analyze a cell with a single wall as shown in Figure 4.

Figure 4: Two different placements of a wall. Axis and origin shown on left cell

Walls are defined by two 3D coordinates, the lower-left (p1) and the
upper-right (p2) corners. The wall of left cell in Figure 4 would have the pair
p1(0, 0, 1) andp2(1, 1, 1) (remember that we are working with unitary cells)
while the wall on the right cell would be approximatelyp1(0, 0, 0.75), p2(0.25, 1, 1).
Following this method vertical walls can be positionedanywherein the cell.
The MML definition of the left cell will look like this:

<!-- cell with one wall -->
<cell id=’oneWall’ floor=’tiles’>

<wall panel=’tiles’ p1=’0,0,1’ p2=’1,1,1’/>
</cell>

The wall entry needs a panel to decorate it and both 3D coordinates. A
cell can hold as many walls as necessary. There are more optional param-
eters like visibility set to default values. During the simulation walls cause
automatic collision response, so if a mesh object is put in the cell, collision

8



can be simplified by putting invisible walls around it.

3.2.2 Construction Section

Cells declared in the Definition section will be used to actuallyconstructa
maze. We have already seen in Figure 3 how a single cell can allow the
creation of a whole corridor. It is now necessary to explain how cells are
put together. Again, a simple method was considered. In order to create a
maze we use the metaphor of thewatchman. Imagine a watchman standing
at the center of the first cell and deciding where to put the next one, he clearly
has four options:north, south, eastandwest. Let us say that he places the
next cell west of the current celland he now walks to it. He is left with
three options since the previous cell remains east. The next cell is placed and
he moves again. The watchman can place cells in all available directions at
each point and walk to the newly placed cells to put more until the world is
finished. To illustrate this concept look at figure 5.

Figure 5: Two cells building a simple ’T’ segment for the maze

Assuming we defined cells ’a’ and ’b’, the MML code to construct the
’T’ maze segment is straightforward. Beginning in the dot-marked cell:

<!-- a simple T-like maze segment -->
<root cell=’a’>

<north cell=’b’>
<east cell=’a’></east>
<west cell=’a’></west>

</north>
</root>

It is important to note that the ’a’ cells placed east and west areautomat-
ically rotatedso that walls fall in correct place. Notice also that the nesting
capabilities of the markup language allows simplicity when designing the
maze. This metaphor also relates to known online text games, where at a
given point one might choose to look around and objects standing at the four
cardinal points are described. Now imagine that it is desired to reference our
’T’ object as if it was asingle entity, in fact, in MML this is called asector
and can be declared with a unique id at the definition section. It will look
like this:

9



<!-- assuming cells ’a’ and ’b’ exist -->
<!-- this is our simple ’T’ sector -->
<sector id=’simpleT’>

<draw cell=’a’ direction=’root’>
<draw cell=’b’ direction=’north’>

<draw cell=’a’ direction=’east’>
<endpoint tag=’east’/>

</draw>
<draw cell=’a’ direction=’west’>

<endpoint tag=’west’/>
</draw>

</draw>
</draw>

</sector>

Notice the endpoint tag. It tells MANDALA where to insert new cells or
sectors when indicated to place them with respect to our ’T’. Using just sim-
ple T sectors it is possible to define bigger sectors and reach very high levels
of complexity while maintaining simplicity of design. The complete MML
file to generate themandala-like2 maze shown in Figure 7 is listed in Figure
6. Sectors provide a way for defining complete areas in the virtual world, one
can create a sector containing a house and then put several houses to form a
street with ease. It is possible to concatenate any number and combination
of sectors and cells to create an adequate virtual world.In the navigation ex-
periment, special building sets are contained in files to be included in the
maze definition file. Including them and putting them together is completely
trivial.

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE maze SYSTEM "mandala.dtd">
<mandala>

<!-- the definition section -->
<definition>

<!--- include some files with all the cell -->
<!--- declarations -->
<include file=’myCells.xml’/>

</definition>

<!-- the construction section -->
<construction>

<root cell=’a’>
<!-- instead of direction tag, we use putsector -->

<putsector sector=’lotsOfT’ direction=’north’></putsector>
<putsector sector=’lotsOfT’ direction=’south’></putsector>

</root>
</construction>

</mandala>

Figure 6: The code to produce maze in figure 7

2The reason whyMANDALAwas chosen as the name for the system must be clearer now.

10



Figure 7: A more complex maze made by repeating patterns

3.2.3 Scripting

Loading a file like the one shown in Figure 6 will immediately put us in-
side the 3D maze (wonderfully decorated by our chosen textures) and let us
navigate through it, but since this is a domain for investigation and the maze
must be interactive, a scripting system was implemented. The chosen ap-
proach was, once again, very simple. It is easily shown with a couple of
examples. Suppose we wanted to set some flag to TRUE if the user goes
through a certain cell. Later we want to play a sound if the user successfully
set the mentioned flag by the time he reached the exit cell. As every cell or
sector put in the maze is an instance of the original, it is necessary to identify
some special places where something is to happen. This is done by assigning
a labelwhen placing them in the maze:

...
<!-- assume this is the cell where some -->
<!-- flag goes on -->
<north cell=’crime_scene’ as=’checkpoint’>
...
</north>
...
<!-- assume this is our exit -->
<north cell=’misterius_door’ as=’exit’>
...

Normally theas tag would not be needed. Now it is put to exactly refer-
ence these two places. We write two instructions after the topology creation
of the maze:

<!-- set some flag to 1 when we enter the cell -->
<action id=’action1’ at=’checkpoint’ event=’avatar_enter’>

11



<execute function=’setVariable’ params=’flag,1’/>
</action>

<!-- check the flag and play some sound -->
<action id=’action2’ at=’exit’ event=’avatar_enter’>

<condition>
<require param=’flag’ value=’1’/>

</condition>
<execute function=’soundStart’ params=’finale’/>

</action>

The first action executes at the cell with labelcheckpointwhen the avatar
(that is, the user) leaves that place, creating a variable calledflag with value
equal to 1. The second action triggers when the user enters the ’exit’ cell.
If there exists the flag value and its value equals TRUE, then a sound with
id=’finale’ will start playing (sounds are created in a similar way than pan-
els, by specifying a file and some unique id in the definition section). The
conditiontag tests for several premises required for executing the list of ac-
tions. More complicated structures involving AND’s and OR’s can be also
declared. Finally,avatar enterandavatar leaveare events that tell when the
actions are to be triggered. Table 1 shows some of the available events and
functions of the MANDALA system.

Event Description
m start the system is initialized
m end the system terminates
avatarenter the avatar enters a place
avatarleave the avatar leaves a a place
avatarwalk the avatar moves inside a place
mouseleftClick left button of mouse pressed
mouserightClick right button of mouse pressed
joystick button(n) nth joystick button pressed

Function Parameter Description
setStartPoint cellId sets start point
setEndPoint none sets end point
setVariable name,value creates a variable
incVariable name,delta modifies a variable
soundStart id starts playing a sound
soundStop id stops playing a sound
setFog n,f,r,g,b sets fog effects
setVelocity cells/sec changes avatar’s velocity
exit none terminates the maze

Table 1: Some events and actions in MANDALA.

12



3.2.4 Creating more complex worlds

Until now It has been shown how maze-like worlds are created, but complex
and thematically rich worlds can also be generated. Consider the space sta-
tion pictured in Figure 8. The geometry was modeled using a commercial
modeler and then included and placed as easily as a texture. The code looks
like this:

...
<!-- include the model -->
<xmesh id=’spaceStation’ file=’3dmodel.dat’/>
...
<!-- we just place it in some cell -->
<cell id=’model’>

<mesh ref=’spaceStation’ pos=’0.5,0.0,0.5’/>
</cell>

A mesh placed inside the cell needs only one 3D position according to
the cell’s unitary size. Rotation and scale can also be specified. To create and
navigate this scenario we define the cell that contains the model and an ’a’
type cell like the one in Figure 5 with both walls are invisible. Now we have
a pathway to walk through the bridge of the space station. Note that if we
assign a mesh to the cell definition, an instance of such mesh will be put for
each instance of the cell. This leaves the creation of virtual worlds limited
only to the imagination of the designer.

Figure 8: A more interesting MANDALA virtual world

13



Figure 9: Top Layout of cells over the 3D model shown in Figure 8 to allow nav-
igation over desired areas. The black cell is the one containing the model (which
size is in fact not limited by the cell). The end cells contain a structure of invisible
walls to prevent the user from walking away.

3.3 The MANDALA objects

When the MANDALA application starts, some virtual world file is read and
parsed3 into theMANDALA Objects, a group of data structures that hold the
necessary information for conducting the simulation. This reads all the defi-
nitions and instructions in the MML file and loads into memory all external
dependences like graphics and 3D models. It also generates geometry for
supporting the environment and its cells. Many resources like textures and
meshes are optimized by keeping just one instance in memory and using it
whenever required. At the end of the process the realtime agents find in this
layer all the required information to work. The transition from the MML file
to the MANDALA Objects is shown in Figure 10.

Each type of data object is stored in a specialized structure that facilitates
the work of agents in the upper layers. Collision geometry, for example, is
kept on a dynamic plane shifting BSP[2].

3The parsing is implemented with Xerces-derived objects. Xerces is part of theApache XML
Project[1]

14



Figure 10: Process of data generation for the use of RealTime engine

3.4 RealTime Agents: Bringing the simulation to life

The fourth layer of the architecture holds a group of dedicated agents that
work with the data maintained in the third layer for various dynamic pur-
poses. This control center is where the real mechanics of the engine take
place and where the environment is set in motion. Several agents sometimes
work with common information but each one is completely independent of
the others. Some examples of these agents are:

• Avatar agent: moves the user across the world, reads input from the
external control devices (Like mouse or keyboard) and updates the po-
sition of the avatar. Controls factors like pace speed and camera set-
tings.

• Collision Detection agent: reviews the position of moving objects at
each time frame and calculates collisions. Sends update messages to
agents controlling moving objects to rectify position when a collision
is detected (avoiding objects to trespass walls, for example).

• Navigation agent: this entity is like an invisible character observing
everything that happens in the simulation. It is mainly designed to
take notes and produce certain reports with data collected from each
experiment.

• Actions agent: constantly monitors events in the maze. Should a doc-

15



umented event trigger some action (specified in the MML file), this
agent produces a message, reviews the action and takes pertinent mea-
sures.

• Message agent: performs callbacks for certain messages and distributes
information across other modules.

• Remote communications agent: establishes and maintains connections
with remote agents so that interaction between MANDALA and other
domain-specific agents can take place.

• Rendering agent: provides an interface with the fifth layer of the archi-
tecture, orchestrates and optimizes the rendering process. This agent
is, nevertheless, independent from the chosen graphic environment and
library.

This architecture allows the complete replacement or addition of agents
without altering other elements. Consequentially, it allows scalability and
enhancement of functionality with no added pain.

3.5 Rendering the World

It was mentioned before that the rendering agent directs the process of show-
ing the virtual environment to the user, but remained abstracted from any
graphic library or environment. A convenient analogy is that of a construc-
tion worker driving some heavy machinery or tools (the agent is able to op-
erate different kinds of construction tools without necessarily understanding
their inner functionality). It is here where such tools reside and are utilized.
The fifth layer of the architecture provides means for 3D graphical represen-
tation and is strongly based on some particular graphic library. One of the
greatest advantages is that exporting the whole architecture to a different op-
erating system or environment is just a matter of substituting this layer.

It is also here where different rendering methods reside. Currently simple-
monitor rendering and stereo rendering are supported. In stereo rendering the
screen is divided in two sections (usually left and right), each one showing
the scene with an interocular difference of approximately 6 cm. Specialized
hardware take these images and mix them to present the user with the illusion
of a real 3D image.

4 A simple Navigation Test

This section describes a typical Spatial Navigation test using the MANDALA
system and other research-specific software and hardware elements. The
general structure of the experiment is shown in Figure 11. It is necessary
to mention once again that specific details on this research are not mentioned

16



here, only those directly related to the functionality of MANDALA are con-
sidered.

Figure 11: Structure of a typical setup for the Spatial Navigation experiment

The volunteer sits in front of a stereo display with an electroencephalo-
graphic (EEG) cap. When the experiment begins, all operations are auto-
mated. An agent specialized in this research opens a communication channel
with MANDALA and orders the selection of an initial maze for the user.
From now on this specialized external agent will be simply referred as the
agent and unless otherwise noted all operations are performed by MAN-
DALA. The required maze is loaded and the user can begin the navigation,
his behavior been monitored and recorded at all times. When the user reaches
the exit a notification is sent to the agent, which reads and appraises the nav-
igation log. Based on certain rules and the user’s performance a new maze
can be selected from a collection or created inrealtime, the old maze is ter-
minated and the new one is loaded and presented to the user, who continues
navigation. During this cycle certain portions of the maze activate or deac-
tivate the EEG recorder and measurements from the user are kept for future
analysis.

This experimental cycle (the user navigates the maze, MANDALA keeps
a record, communicates with the agent and controls the EEG machine, the
agent evaluates the user and creates/selects a new maze) repeats until certain
end criteria are met, then the last maze is unloaded and MANDALA is in-
structed to close. The spatial navigation files for the current volunteer are

17



ready for analysis.

5 Using MANDALA in other Domains

It has been described how MANDALA is used to produce results for the Spa-
tial Navigation research. The elements that are particular of MANDALA for
this research are the set of instructions contained in the MML file, the design
of the virtual world consisting on a series of carefully constructed mazes, and
the functionality of the external agent.

It is with relatively small effort that MANDALA can be adapted to other
research domains. The specific functionality of the domain can be encapsu-
lated on the external agents that communicate with MANDALA and analyze
information of interest or remotely control internal operations. In other cases,
MANDALA can be immediately applied as a simple solution for virtual re-
ality navigation (in applications where the user must walk across industrial
or residential facilities, for example) taking advantage of the encapsulation
of complex VR and 3D concepts made by MML, allowing designers not
familiarized with such terms to creatively design and present interactive en-
vironments. Other applications include the integration of agents or modules
of MANDALA in bigger or more complex implementations.

6 Future Work

A version of MANDALA that can be run on high-end CAVE Virtual Re-
ality systems is being developed. In addition, a better and more abstracted
implementation is being constructed, since the current version still overlaps
some elements across layers. The complete MANDALA project is also to be
used on research involving human-virtual characters interaction, so several
pertinent adaptations will be done to support more realistic and sophisticated
rendering, along with enhancements to the input agents so that information
from magnetic sensors, cameras and other non-conventional input devices
can be utilized.

References

[1] The Apache XML Project,xml.apache.org

[2] Stan M.Dynamic Plane Shifting BSP TraversalGraphics Interface pro-
ceedings. 2000

[3] David M. Physics for Game Developers. O’Reilly, 2002

18



[4] Kahana MJ, Sekuler R, and others.Human Theta Oscillations Ex-
hibit Task Dependence During Virtual Maze Navigation. Nature 1999
399:781-784

[5] Howard, I.P., and Rogers, B.J.Binocular Vision and Stereopsis. New
York: Oxford University Press, 1995.

[6] David H. Eberly,3D Game Engine Design. Morgan Kaufman, 1999 v

19


