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ABSTRACT This article develops a special decomposition methodology for the traditional optimal power
flow which facilitates optimal integration of stochastic distributed energy resources in power distribution
systems. The resulting distributed optimal power flow algorithm reduces the computational complexity of
the conventional linear programming approach while avoiding the challenges associated with the stochastic
nature of the energy resources and loads. It does so using machine learning algorithms employed for two
crucial tasks. First, two proposed algorithms, Dynamic Distributed Multi-Microgrid and Monte Carlo Tree
Search based Reinforcement Learning, constitute dynamic microgrids of network nodes to confirm the
electric power transaction optimality. Second, the optimal distributed energy resources are obtained by
the proposed deep reinforcement learning method named Multi Leader-Follower Actors under Centralized
Critic. It accelerates conventional linear programming approach by considering a reduced set of resources
and their constraints. The proposed method is demonstrated through a real-time balancing electricity
market constructed over the IEEE 123-bus system and enhanced using price signals based on distribution
locational marginal prices. This application clearly shows the ability of the new approach to effectively
coordinate multiple distribution system entities while maintaining system security constraints.

INDEX TERMS Distributed architecture, distributed optimization, Monte Carlo tree search, multi-agent
deep reinforcement learning, optimal power flow.

I. INTRODUCTION

OPTIMAL power flow (OPF) is an essential tool for
managing energy in electric power systems. It seeks

the least cost operation of a power system by dispatching
generation for given power demand while satisfying the
system constraints. The changing nature of modern power
grids brings new entities into electric power markets. They
include owners of distributed energy resources (DERs), and
even so called prosumers - individual customers equipped
with self-owned DER units. The new market participants
are interested in autonomous maximization of their profits.
Therefore, they can be considered independent entities of
the system [1]. However, a decision made by a single entity
may affect the decisions of the remaining entities that are
physically interconnected in the same system.

As power distribution systems are becoming more and
more dispersed, they may require additional generation
capacity and new line assets to supply the peak demand.
The network participants may need to cooperate with each
other to achieve reliable and effective operation of the
network without changing the system infrastructure. The
incremental dispersion of new network entities will also
affect the electric power markets. In this new scenario,
the interactions between two independent bilateral power
transactions in the network need to be checked and op-
timized using OPF. However, the conventional centralized
OPF method poses a number of problems [2]. To avoid these
issues and provide the power industry with tools to support
highly efficient system operation, distributed optimization
architectures are required. Such architectures can capture
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all physical realities of a dispersed network and alleviate a
centralized optimization agent from tremendous amount of
computing.

A. RELATED WORK

Recent literature presents several approaches to distributed
economic dispatch [3], [4]. They resolve the randomness
of DER units and loads in microgrids through the use of
Markov decision processes (MDPs). Distributed model pre-
dictive control (MPC) for stochastic dispatch optimization
in microgrids have been proposed by several authors [5]–
[7]. They use a local MPC for each entity to implement
receding-horizon optimization. Other authors use a divide-
and-conquer approach [8], [9]. They decompose the central-
ized optimization problem into many smaller optimization
problems executed by local agents. Each agent can exchange
information with its network neighbors. After the informa-
tion is processed, agents adjust production of their DER
units in a distributed manner with limited communication
among the entities.

A common shortcoming of all these approaches to dis-
tributed economic dispatch is that they require prior statisti-
cal information on all DER units and loads. In addition, they
cannot effectively cope with the dynamic nature of power
transactions that occur under varying load and generation
conditions, and at different locations.

Reinforcement learning (RL) is a powerful tool to solve
complex sequential decision-making and control problems.
RL can effectively learn optimal stochastic policies, even in
high-dimensional or dynamic action spaces. It can reach the
goal state in a few steps, with high probability, and without
relying on prior information or complex stochastic model-
ing. These properties make RL a suitable tool to address
the multistate stochastic optimization problems in modern
distribution grids. As a result, RL has been widely used for
energy management and demand response schemes [10].

An approach to distributed optimization in distribution
systems that uses tabular Q-learning is presented in [4]. In
this method, RL only finds a feasible region that contains
DERs that are implicitly considered optimal. However, it
does not find DERs that can contribute to the acceleration
of the optimization process. In addition, tabular Q-learning
does not work well with continuous observations in complex
systems with many DERs. A deep RL has been adopted
for real-time energy management, but only at individual
home level [11]. A cooperative RL approach for distribution
systems has been proposed by Liu et al. [12]. The authors
suggest that each distributed controller exchanges informa-
tion with its neighbours, makes action decision based on
its own state and the neigbourhood states, and performs
so called distributed cooperative mechanism. However, the
system observability is limited to the neighbouring buses,
leading to limited power transactions. In addition, this
approach does nor consider the real-time impact of the line
flow variations due to the power transactions.

To resolve this issue, the capability of distributed OPF
algorithms has to be expanded. In addition, to deal with
complex distribution circuits in stochastic environment, it is
necessary to monitor network states and communicate them
among the network buses. This can be accomplished through
the proposed multi-agent system (MAS) architecture. This
article proposes a multi-agent RL system that allows agent
controllers to adapt to changes in the power distribution
network as a means to maintain system security. The feasible
region in a large system is obtained using Monte Carlo Tree
Search (MCTS) to divide the network into multi microgrids.
It uses RL to navigate from a buyer bus through the entire
network (i.e. beyond the local neighbourhood). It is then
followed by deep RL-based optimization procedure that
finds the most suitable DER units to buy power from, while
reducing the search space compared to the centralized OPF.

The uncertainty of load can substantially affect the system
loss computations and the DER prices in this stochastic
problem [13]. Recently, there have been several probabilistic
approaches proposed to deal with this issue. Zeng et al. [14]
use the regret-matching (RM) technique to analyze and
correct the estimation of humans’ decision-making with
incomplete system information. Its stochastic optimization
is solved using genetic algorithm based Monte Carlo simula-
tion (MCS). Another possibilistic method presents a hybrid
particle swarm optimization/genetic algorithm for PEVs’
load modelling [15]. In this approach, uncertain factors
such as home arrival time, daily travelled distance and
home departure time, are based on approximating given
probability distribution functions (PDFs). Uncertain wind
and solar models are solved using multi-objective interval
optimization [16]. This approach predicts the intervals [17]
of the uncertain wind and solar power generation amounts.

However, most of these approaches rely on PDFs or MCS
which average a number of simulated scenarios. For in-
stance, MCS selects a DER unit with the highest probability
in most simulated scenarios, but it might not be the right
choice in some other scenarios. Thus, a few scenarios in the
simulated model may impact the optimization result. The
proposed approach uses deep RL that is based on advanced
experiential learning. Although it is a probabilistic method,
it mimics a massive number of actions to understand the
system states. Unlike MCS that just averages simulated
scenarios, deep RL has a powerful and robust architecture; it
uses a regression process based on neural network (NN) to
correlate each scenario with a best action result. Eventually,
this process builds an expert system for every particular
power system model. Therefore, unlike the MCS, deep
RL’s result is not symmetric over the load scenarios. There
are almost as many unique actions strategy as there are
distinctive scenarios.

In practice, operation of power systems relying on ma-
chine learning may be affected by approximation errors
[18]–[20]. This may increase the cumulative operation costs
of the system or even cause damage to the equipment
connected to the circuit. An obvious approach to adapt deep
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RL methods such as DQN to continuous domains is by
simply discretizing the action space. However, this approach
has a critical limitation – the curse of dimensionality: the
number of actions increases exponentially with the number
of degrees of freedom [21]. There are algorithms to deal
with this challenge, such as deep deterministic policy gra-
dient (DDPG) and soft actor-critic (SAC). However, manual
tuning of their hyperparameters may degrade the perfor-
mance. This problem has been tackled by a modified version
of SAC that automates the process of selecting the optimal
hyperparameters [22]. However, this algorithm is still very
demanding, as it sometimes requires up to 10 million envi-
ronmental steps to achieve successful training [23]. In power
complex system environments, such as in multi-microgrid
systems with high penetration of DERs considered here, the
use of the modified SAC is impractical. It is computationally
very expensive, as it requires to train every DER in each
microgrid to large control steps within the DER generation
capacity. Practically, the number of DERs may reach the
order of hundreds in some microgrids. On the other hand,
the use of exact optimization methods in complex distribu-
tion systems with stochastic DER units is often impractical
due to the increase of computational burden associated with
such methods. For example, the use of linear programming
(LP) may not be possible due to a massive number of
control variables and associated conditional statements [24].
Hence, the proposed model presents a hybrid approach that
avoids the drawbacks of both constituents: machine learning
errors and lack of scalability of conventional optimizers.
The proposed system, called Multi Leader-Follower Actors
under Centralized Critic (MLFACC), can fully capture the
environment states and learn from the behavior of network
participants to determine the optimal DERs before they are
sent to LP for power generation optimization.

Recently, the use the alternating direction method of
multipliers (ADMM) algorithm gain popularity. It breaks
complex optimization problems into smaller, distributed
optimization sub-problems that workable with partitioning
of electric power networks. ADMM is widely used for the
transmission systems, because the boundaries of the split
areas are always fixed inside the main network, and their
expansion in the short term is unlikely [25], [26]. In the
last few years, many studies on distributed OPF algorithms
have started to use the ADMM for distribution networks
as well. Similar to the transmission networks, these studies
assume that distribution networks are static and not affected
by changing grid configurations [27]–[29].

However, modern grids usually involve a high number of
DER units and load nodes that are stochastic in nature. As
a result, restricting the power generation and load values
in fixed zones is very challenging and it may lead to a
suboptimality of DER power dispatch. The contribution of
these DERs, including photovoltaic (PV) systems, electric
vehicles (EV), and battery storage systems (BESS), in
new power distribution systems will only increase. They
induce uncertain load and generation power over the net-

work buses, and they cannot be specified in regions with
stationary boundaries inside the network. This is especially
true for EVs that regularly travel between different re-
gions/microgrids. On the other hand, suppose that there
is a substantial load located very close to a boundary
between two neighbouring microgrids. From the economic
perspective, it may be desirable to allow this load to be
supplied from both microgrids; hence, these microgrids are
merged, so that all their DERs can be utilized, depending
on the actual situation of the system in any given moment.

To address the issues described in the previous para-
graph, the network partitioning may need to be dynamic,
allowing real-time adjustments.In other words, some previ-
ously divided regions may need to be merged or reformed.
Therefore, under such dynamic network partitioning, the use
of ADMM technique may encounter significant challenges.
Its convergence rate relies on the choice of a problem-
dependent penalty factor ρ. The structure of this factor is
based on a vector of variables common between the parti-
tioning zones. The common variables are, in turn, chosen
based on the power flow model of a particular network.
The penalty factor also controls power flow mismatches;
active power, reactive power, and the bus voltages that are
used in the optimization problem constraints [30]. From
a dynamic network partitioning perspective, these issues
make the tuning of ρ very difficult and ADMM convergence
cannot be guaranteed. All in all, the use of ADMM with a
conventional partitioning method in distribution networks
with high penetration and stochastic DERs that can not be
restricted in one particular zone, may become impractical.

In this work, a novel, more general distributed algorithm
is proposed to better accommodate the dynamic partitioning
and the stochastic nature of DERs. In this algorithm, the
original non-convex power flow equation for the distribution
network is convexified first, then decomposed into multi-
microgrid sub-problems with a dynamic partitioning ability.
The proposed MCTS-RL and Dynamic Distributed Multi-
Microgrid (DDMM) techniques can change the microgrid
boundaries dynamically in real-time, while tracking the
original network’s power flow computation to guarantee
its security level. Hence, these techniques can play a fun-
damental and crucial role in the subsequent optimization
and operation of multi-microgrid systems integrated with
stochastic DERs.

B. CONTRIBUTIONS
This article is primarily concerned with power distribution
networks with high penetration of DER units. It highlights
the necessity of building a fully distributed OPF for distri-
bution systems that operate in stochastic environments. The
major contributions of this paper are:

1) Addressing the complexity of distribution systems with
high penetration of stochastic DER units through a
newly proposed model called Multi Leader-Follower
Actors under Centralized Critic (MLFACC). This ap-
proach facilitates cooperative interaction between all
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DER units, beyond the local neighbourhood. At the
same time, it maintains system security limits.

2) Resolving the suboptimality problem of distribution
systems with high penetration of stochastic DER units
due to the existence of substantial loads close to the
boundaries between independent microgrids. The pro-
posed combination of Monte Carlo tree search based
reinforcement learning (MCTS-RL) and Dynamic Dis-
tributed Multi-Microgrid (DDMM) algorithms provides
a new, flexible way to dynamically partition the net-
work and make the system optimization and operation
more efficient.

3) The proposed MLFACC algorithm accelerates the lin-
ear programming optimization method by reducing the
number of arithmetic operators and their conditional
statements. In effect, this simplifies the optimization
problem by reducing the massive number of DERs,
which may reach the order of hundreds in some real-
world distribution networks.

II. POWER FLOW LINEARIZATION
In large distribution networks with high penetration of
intermittent DER units (such as photovoltaic and wind
generators), the power flow computational burden becomes
substantial. In addition to the impact of scale, OPF needs
to be checked more frequently due to the dynamic be-
haviour of DER units. However, the OPF in AC systems
is a nonlinear, non-convex problem [31]. Therefore, finding
feasible solutions for such problems is a very difficult task.
A common approach is DC OPF approximation that leads
to a convex optimization problem which can be solved
quickly. However, its use for practical large distribution
networks with a high system R/X ratio negatively affects
the accuracy of OPF computations.

Yang et al. [32] illustrate the impact of several approxi-
mations used in the linearization process on branch power
flows. They start from the well known polar AC power flow
model

Pi =
N∑
j=1

GijViVj cos θij +
N∑
j=1

BijViVj sin θij (1)

Qi = −
N∑
j=1

BijViVj cos θij +
N∑
j=1

GijViVj sin θij (2)

where N is the bus number, and Gij and Bij are the
conductance and susceptance of the line. There are three
main approximations [32] of the expression for branch
power flow GijVi(Vi − Vjcosθij) ≈

a) 0, b) Gij(V 2
i − V 2

j ), c) Gij(Vi − Vj).

Based on voltage computation results [32], the third
approximation (c) provides the best accuracy. Using this

simplification, the linearized models of the active and re-
active power injections at bus i are [33]

Pi =
N∑

j=1,j 6=i

kij2
xij

(δi − δj) +
kij1
xij

(Vi − Vj), (3)

Qi =
N∑

j=1,j 6=i

−kij1
xij

(δi − δj) +
kij2
xij

(Vi − Vj), (4)

where

kij1 =
rijxij
r2
ij + x2

ij

, kij2 =
x2
ij

r2
ij + x2

ij

. (5)

To solve equations (3) and (4), the node voltages have to
be obtained first[

P ′

Q′

]
−
[
Bc2
−Bc1

]
δ1 −

[
Bc1
−Bc1

]
V1 =

[
B′2 B′1
B′1 B′2

] [
δ′

V ′

]
, (6)

where P ′, Q′, δ′, and V ′ are vectors of real power injec-
tion, reactive power injection, voltage angle, and voltage
magnitude, respectively. Matrices Bc1, Bc2, B′1 and B′2 can
be found in [33].

In a large scale power system, losses can be quite signif-
icant and their impact on the OPF and locational marginal
price (LMP) cannot be ignored [33]. The flow losses for
line l can be determined as follows [4], [34]

Ploss,l =
P 2

flow +Q2
flow

V 2
l

rl, Qloss,l =
P 2

flow +Q2
flow

V 2
l

xl, (7)

where Pflow and Qflow are the real and reactive power flow,
respectively. The loss factor is defined as a linear sensitivity
of the total system losses to the real power injections at
each bus with connected DER, i.e. LF = ∂Ploss,l/∂P

DER.
Substituting (7) for Ploss,l, one gets

LF =

(
2Pflow

∂Pflow

∂PDER
+ 2Qflow

∂Qflow

∂PDER

)
rl
V 2
l

. (8)

Assuming that the reactive power is constant during DER
power transactions, its derivative is zero and thus the second
term can be excluded from formula (8), reducing it to

LF = 2Pflow
∂Pflow

∂PDER · rl. (9)

III. DESCRIPTION OF THE ALGORITHM
A. MONTE CARLO TREE SEARCH BASED
REINFORCEMENT LEARNING
RL and game theory can be used to develop optimization
strategies for stochastic games. If considered a stochastic
game, the problem of integrating intermittent, weather-
dependent DERs on the grid can benefit from the develop-
ments in these areas. In conventional strategies, description
of the system must be programmed in advance with suffi-
cient prior knowledge. However, in a dynamic environment
with stochastic behavior, the system itself changes over time

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3075247, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 1. Proposed MCTS-RL algorithm.

making the optimization problem very hard to solve. In such
situations, the optimization strategy can be developed by an
agent through a learning process, without being explicitly
programmed.

In a power system with high penetration of DERs, let S be
a finite or infinite set of environment states. Each state s ∈ S
is a vector that refers to the current status of a DER unit in
the search space. An agent may take an action a ∈ A from
a set of all possible actions A. The transition probability p
determines the likelihood of the agent traversing from state
s to s′ under the joint action of all agents. In response to
action a taken and state s traversed, the agent will receive
an immediate local reward r(s, a, s′) [35]. Eventually, the
learning objective of the agent is to maximize the discounted
cumulative reward at each time step as follows

R(t) = r(t+ 1) + γr(t+ 2) + γ2r(t+ 3) + . . . , (10)

where γ ∈ [0, 1] is a discount factor expressing the effect
of the current decision on the long-term reward. A small
value of γ means that rewards in the near future are more
important.

Applied to power systems, feasible regions with suitable
energy resources can be identified using Monte Carlo tree
search-based Reinforcement Learning (MCTS-RL) [36].
This search algorithm provides the proposed approach with
the ability to navigate through the power network and
gradually build experience.

The regions feasible for power transactions with optimal
power transfer trajectories to the DERs are determined using
the diffusion strategies illustrated in Figure 1. Each bus
in a power network is modeled as a node in the MCTS
graph [37]. Each edge stores a set of parameters: the state-
action pair (s, a) and the visit count N(s, a). A learned
strategy is represented by a Q-value function that maps each
state-action pair to a value estimating goodness of the action
in the next state s′. The Q-value function is obtained as

follows

Q(st, at)←

Q(st, at) + α
[
rt+1 + γQ(st+1, at+1)−Q(st, at)

]
, (11)

where α is the learning rate which controls the extent of the
value function update.

The next joint action is selected by the ε-greedy policy

a =

{
maxQ(s, a) with probability 1− ε
random a ∈ A with probability ε (12)

where ε ∈ [0, 1] is the exploration rate used to balance the
exploration and exploitation policies during the process of
learning the Q value function. This way, the state tree is
randomly built up and the experience accumulated in each
state is updated by random sampling and stored in the node
states by a back propagation process.

The diffusion strategy is also used to develop the par-
titioning method for the distribution network. It identifies
buses within zones that are electrically cohesive in terms of
electrical distance [27], [38]. The electrical distance theory
intends to avoid paths with high impedance that result in
large phase angle changes in the power flow network model.
From a power transaction perspective, large phase angle
changes lead to the increase of transaction leakage between
buses or even between zones. In addition, MCTS-RL also
considers the bus importance through their output power and
demand. Since the reward function plays an important role
in guiding the algorithm for the desired behavior, the reward
function is designed through the system’s power centroids
– load or generation buses that are substantial compared to
other regional buses in the network. Power centroids can be
represented as [39]

Pc = Pj/Zij , (13)

where Pc is the power centroid and Pj is the power
generation or demand of the bus j under the MCTS-RL
search space. Zij is the impedance between that bus and the
root node i of the tree. This is the first stage of microgrid
reformation, also called microgrid initiation.

Since bus demands change in real-time and across loca-
tions, substantial demand may occur at buses that are located
close to the coupling links between the neighboring micro-
grids. In such cases, a microgrid that has terminal buses
with heavy demand may draw power from its internal DERs
that cause power losses higher than if it were connected to
DERs from the neighboring microgrid. Hence, it may be
better to use the DERs of both microgrids to guarantee an
effective optimization result. Therefore, the second stage of
the MCTS-RL algorithm is designed to check and monitor
the dynamic load importance in a microgrid. This load is
also called a load centroid, expressed as

Lc =
∑

j∈ΩMG

PL,j/PL,max (14)
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FIGURE 2. An illustrative example of microgrids’ coupling-decoupling.

where Lc is the load centroid and PL is the power demand of
the inspected bus in microgrid ΩMG with maximum demand
PL,max. In addition, the algorithm checks the power balance
in the generated microgrid: the nominal output power of all
DER units should be equal to or higher than the microgrid
demand. DDMM algorithm receives all these updates and
keeps tracking the newly generated microgrids to guarantee
a legitimate power flow computation. Further details about
the algorithm are provided in the next section.

B. DYNAMIC DISTRIBUTED MULTI-MICROGRID (DDMM)
Figure 2 shows two tie-lines that provide coupling be-
tween three neighbouring microgrids. To establish a flex-
ible, generic dynamic decoupling for these microgrids, two
conditions must be satisfied: (i) there must be a virtual
decoupling method implemented, and (ii) the system must
be authorized to activate and deactivate virtual decoupling
for any line across the entire circuit to form or merge
microgrids. To decouple a tie line within the circuit, the
power injection and power flow have to be reformulated as
follows:

1) Power injection decoupling: In DDMM memory,
boundary bus (A) at the first microgrid is flagged as
a PQ-type, whereas boundary bus (B) in the second
microgrid is flagged as PV-type. Otherwise, these two
microgrids are coupled. Similarly for the other neigh-
bouring microgrids [40]–[42].

2) Power flow decoupling: equations of the linearized
active (3) and reactive (4) power flows rely mainly
on two independent variables: the voltage magnitude
V ′ and voltage angle δ′. When the examined buses
are located at the microgrid boundary, the voltage
magnitude and voltage angle are called the boundary
variables. Examination of the boundary variables is
very important to prevent any violation that may jeopar-
dize the system security, such as drawing an excessive
power by one of the neighbouring microgrids from the
other. Thus, the information on any changes to the
boundary variables has to be provided to the DDMM
algorithm.

Each microgrid agent first attempts to optimize the DER
generation levels within its microgrid boundary. However,
communicating through the DDMM, each microgrid also
tracks its impact to the entirecircuit. This way, microgrid
agents can update the estimates and, accordingly, they can
change their optimization policies to maintain the required
security level of the circuit. Eventually, the DDMM algo-
rithm can be used to control the interaction between the
neighbouring microgrids. The interactions of the micro-
grids are terminated when they reach an agreement on the
amounts and prices of power supplied by their DERs. This
agreement is known as consensus dynamics [43].

To enhance the learning capability in terms of DER
optimization in complex power systems, the described so
far; agent-based algorithm can be expanded to multiagent
case through the proposed MLFACC method. A theoretical
framework of this method is introduced in the next section.

C. MULTI LEADER-FOLLOWER ACTORS UNDER
CENTRALIZED CRITIC

The proposed MLFACC algorithm relies on deep reinforce-
ment learning using the Advantage Actor Critic (A2C)
algorithm [44]–[46]. A2C is the best fit for the proposed
distributed optimization algorithm. Three actor networks
train decentralized policies in a multi-agent framework, and
share information using a centralized critic network. The
main idea of using a critic network is to learn a centralized
policy with an attention mechanism. In complex multi-agent
environments, the attention mechanism has shown effective
and scalable learning [47]. The intuition behind this idea
is that the centralized critic can dynamically evaluate each
agent’s action; eventually, it sends attention to the agents to
adjust their actions according to the environment need.

Another crucial approach to obtain the optimal variables
of interest to accelerate the LP method is the leader-follower
policy. The idea of the leader-follower game policy is
inspired by Stackelberg game model [48]. In order to take an
optimal action, it is necessary that a leader fully understand
the environment and not only learns from its own actions
but also the follower’s actions. Typically, the leader acts
first, then announces its action. At this point, the game rule
allows the followers to make their decisions. In the proposed
method, the roles of the players in the game change: if the
number of agents is more than two, every follower agent
can be a leader to the next agent. However, the first agent is
always a leader, and the last agent is always a follower. Also,
it is worth noting that the follower’s action is estimated as a
function of the leader’s actions since the goal’s reservation
of the previous leader is already made. Thus, in this game,
the leader uses a competitive policy, while the follower is
expected to use a cooperative policy.

The main question that arises in this algorithm is how
agents learn from each other the optimal policies and get
higher rewards. The simplest form of policy gradient method
is REINFORCE which represents gradient as [35], [49]
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g = Es0:∞,a0:∞ [
T∑
t=0

Rt∇θ log πθ(at, st))]. (15)

Policy πθ is trained by following the gradient that relies
on a critic network, which estimates the value function.
In particular, Rt is replaced by any expression equivalent
to Q(st, at) − b(st), where b(st) is a baseline designed
to reduce the variance. Common options are to substitute
v(st) for b(st), and to replace Rt by the temporal difference
(TD) error rt+1 + γv(st+1) − v̂(st) [49]. Term v̂(st) is
the predicted or approximated value of value network. It is
computed by a multi-layer NN, with a vector of connection
weights in all layers θ. The target value rt+1 + γv(st+1) is
obtained from the immediate reward rt+1 and the discounted
estimated value of next state γv(st+1). To estimate the
error between the approximated value and the target value,
stochastic gradient descent (SGD) is used. The approximate
value function v(s, θ) is a differentiable function of θ for
all s ∈ S [35], [50]. If an agent performs an action, it
is based on the states mapped through the critic network.
These states are always changing by the actions of the agent
itself as well as the other agents. In other words, all agents
should take optimal policies by their action probabilities
as in (∇ log πθ(at, st)) in order to increase the return in
the critic network in (rt+1 + γv(st+1, wt+1)) of the same
equation. To represent this, (16) can be formulated as the
following by basing on the previous equations:

∇θJEπθ ←
∇ log πθ(a

E
t , s
E
t )(rt+1 + γv(st+1, wt+1)− v̂(st, wt)),

(16)

where index E refers to a particular agent under policy
estimation. To reduce the variance of value functions, the
advantage function is estimated by the TD-error:

A = rt+1 + γv(st+1)− v̂(st). (17)

Since agents seek their own, unique goals, each agent has its
own loss gradient (∇θJEπθ) that is sent to the critic network
to allow estimation of the policy probabilities advantage
(Ât). Substituting (17) in (16), the final expression can be
represented as:

∇θJEπθ ← ∇θ log πθ(a
E
t , s
E
t )Ât. (18)

This way, the central critic can teach the agents based on
the experience of the other agents and the state updates of
the system. To update the parameters of the policy network
θ a gradient descent of the SGD rule is used:

θt+1 ← θt + α∇θJEπθ, (19)

where α is the learning rate for the actor network, and the
gradient ∇θJEπθ is the gradient calculated by (18). Similarly
for updating the parameters of the critic network:

wt+1 ← wt + βδv̂(s,w). (20)

To prevent the follower agents from seeking the
same leader’s policy trajectories, a tracing constraint
(∇θ log πθ(a

L
t , s
L
t )) is added to (18), as

∇θJEπθ ← ∇θ log πθ(a
E
t , s
E
t )Ât−

µ
[

max
(
∇θ log πθ(a

L
t , s
L
t ),Ψ

)]
, (21)

where L is the index of all agent policies in a leader position,
and µ is a lagrangian multiplayer. This constraint forces the
follower agent that intends to choose the best goal to be right
inferior to the leader’s goal. However, this constraint may
result in inefficient policies by the follower agents and slow
learning. Since the leader plans its strategy to propel the
followers to take actions in its favour, it may pick a trivial
trajectory; consequently, the followers are constrained to
choose other trajectories with even less importance. Hence,
to relax this constraint at the beginning of the learning
process, a relaxation factor (Ψ) is used. This factor is also
an action probability that allows the followers to break the
tracing constrained to a particular limit; once the leader finds
a proper trajectory that leads to obtain a better DER price,
the relaxation factor vanishes. At this point, just the first
term of the maximization operator is valid. This mechanism
enables the proposed algorithm to identify the best group of
DERs in a descending order, and without overlap.

The reward function originates from the DER units that
have the minimal active power flow losses. Based on their
locations, their engagement may reduce the active power
flow losses in a distribution network. Therefore, the reward
function is formulated as

R = min
∑
i∈Ωk

fi(C
losses
i ), (22)

where Ωk refers to the feasible region that is generated by
MCTS, and index i the index of DER units. The agent
states include all conditions required to make an appropriate
decision, including all relevant power system constraints.
More details about the system constraints are provided in
the next section which illustrates the optimization of the
DER engagement using RL-based Linear Programming. The
pseudocode is presented in Algorithm 1.

To explain the operation of the MLFACC algorithm,
assume that penetration of DERs, and especially EVs, is
30%. To model this demand, it can be considered a load
centroid uniquely randomly distributed across all scenarios
of a stochastic game. Further, it is assumed that each load
centroid correspond to 150% of a particular bus-load in a
microgrid. Through its learning policy, MLFACC attempts
to identify DERs with the lowest power generation prices.
The price differentiation of the DER power generation units
is inversely proportional to their power losses. However,
uncertainty of load locations can substantially affect the
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Algorithm 1: MLFACC algorithm
Initialize actors’ weights; (θ1, ..., θN ), θ ∈ Rn
Initialize critic weight; (w), w ∈ Rm
Initialize step size parameters: α > 0, β > 0.
for t = 1 to max episode length do

done = False
while not done do

for agents i = 1 to N do
Choose action at+1 based on probability:
log πθ(at, st)
Receive observation (st+1, st, rt+1, done)

end for
Compute the TD error:;
δ ← (rt+1 + γv̂(st+1, wt+1)− v̂(st, wt));
Compute the loss gradient for each agent by
eq. (21);

Update policy parameters for the actor
networks:
θt+1 ← θt + α∇θJEπθ
Update policy parameters for the critic
network:
wt+1 ← wt + βδv̂(s,w)

end while
end for

computation of system losses and, consequently, the prices
of DER units.

The proposed MLFACC algorithm plays this stochastic
game, represented by an interactive environment between
the random load centroids and stochastic behavior of the
DERs. Specifically, MLFACC uses the power flow calcu-
lated from the network model to find the optimal DER can-
didates with the lowest power losses that do not violate any
grid constraints (such as voltage limits and line congestion).
To determine the best candidates, the DER selection trials
are simulated by the actor-network actions of the algorithm.
Although it is a probabilistic method, the selected DER
are not symmetrically distributed over the load scenarios.
Unlike Monte-Carlo and other probabilistic methods that
are based on averaging the data, the DNN of the actor-
critic network in the MLFACC architecture is based on a
non-linear regression analysis. In other words, the DNN
performs a correlation process between the outputs (labels)
and the input data (load scenarios). Hence, virtually every
load scenario receives a unique result.

To ensure a successful correlation process when analyzing
system states, the sample efficiency has to be considered
through the actor-networks of the MLFACC algorithm. This
can be achieved using the advantage function (18) which
also contributes to reducing the variance. Learning is initi-
ated using an exploration policy that uses random actions
to perform preliminary examination of the system state.
In addition, the actor-networks under the policy gradient

method also perform a number of deterministic exploitation
actions. In this step, each new action works along an existing
action with the aim to perform behaviors that yield better
results. At every epoch, the actor-networks collect news
experience that is sent to the critic network. The critic-
network continuously updates its weights, attempting to find
the correlation between the input data and the targets. This
process continues until the network converges to the final
result.

The strength of this approach becomes clear when ap-
plied to real-world distribution networks with hundreds of
DERs. In such cases, optimization of DERs dispatch using
conventional methods becomes very challenging. Using the
MLFACC approach that employs deep RL, the stochastic
game results in selecting a small number of DERs as
the best candidates for the subsequent LP optimization.
Nevertheless, if a substantial load centroid is located close to
the coupling line connecting two neighbouring microgrids,
the stochastic problem turns into a deterministic one, and
the use of the MLFACC is no longer needed to find the
best DERs for these bus locations.

D. DEEP RL-BASED LINEAR PROGRAMMING
A power distribution network can be modeled by a directed
tree graph T (ΩMG,ΩL) ⊆ (N,L). The nodes of the graph
ΩMG, a subset of all network buses N , are linked by a set of
distribution lines ΩL, a subset of all network lines L. Node 0
is the starting point of the tree search, referred to as the root
node j. In general, the root node can represent either a buyer
or a seller of energy. Under the scenario considered in this
study, the root node is specified as a buyer looking for the
best seller(s). The remaining nodes are referred to as branch
nodes. Each pair of adjacent branch nodes is connected by a
branch line l ∈ ΩL. All nodes (except the leaf nodes) in this
tree are parent nodes since they have a set of child nodes
Ci linked by the branch lines. In addition, the child nodes
may have connected DER units. i is the index of all buses
that link to load bus j. Each line in L has an impedance
zi = ri + xi. Power injection from node i to node j is
calculated using equation (3).

It is worth noting that there are many factors that sig-
nificantly impact deep RL accuracy. These factors include
the number of DERs, random variables such as the random
load centroid, the non-linearity of the system, the number
of system constraints, the resolution of time-series that may
involve massive generation and/or demand variations during
the day, and finally the circuit size. These factors leverage
the relatively more complex relationships in the data of the
system states and DERs’ generation amounts for deep RL
training. To reduce this complexity, the optimization of the
DER power generation amount within each microgrid is
eliminated from the deep RL decision task and, instead, it
is determined deterministically. Therefore, to minimize the
cost of DER generation dispatch under system constraints,
we propose a new distributed OPF algorithm based on
deep learning called Deep Reinforcement Learning-based
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Linear Programming (DRL-LP). In this model, an optimal
power generation that is determined by LP is accelerated by
selecting the optimal DERs through MLFACC, determined
within each microgrid by MCTS-RL and DDMM. Chazelle
and Matousek [24] have analysed and estimated the com-
putational complexity that describes the amount of time it
takes to run LP by counting the number of input variables
x and g(x) constraints as follows

O(x)7x(log x)xg(x), (23)

where O(.) denotes the time complexity. Thus, the behavior
of the LP complexity can be reduced by reducing the size
of the input.

Based on the linearized power flow model described
in section II, the DRL-LP problem can be formulated as
follows

min
∑

x∈MLFACCMG

fx(CPx ), (24)

g(x) =

 Pi − dj =
∑

i∈ΩMG

P flow
ij + P loss

ij , (25)

θref = 0, (26)

h(x) =



PDER 6 PDER 6 PDER∀DER ∈ ΩMG,(27)

P flow
ij 6 P flow

ij 6 P flow
ij ∀lij ∈ ΩMG, (28)

P loss
ij 6 P loss

ij 6 P loss
ij ∀lij ∈ ΩMG, (29)

V i 6 Vi 6 V i ∀x ∈ ΩMG, (30)
ζij 6 φ ∀lij ∈ ΩMG, (31)

In this optimization problem, CPi is the optimal DER
that is determined by MLFACC. It belongs to a node in
the tree graph ΩMG delineated by MCTS as a feasible
subset of the original network. The objective function aims
to minimize the generation cost at node i, and implicitly
minimizes the losses P loss

ij of the line connecting nodes i
and j. Functions g(x) and h(x) express, respectively, the
equality and inequality constraints. The nodal balance power
flow is restricted by constraint (25), where dj is the power
demand, while equation (26) holds the reference bus voltage
angle at zero. Inequalities (27)–(29) express the upper and
lower bounds of the power output of DER units, the power
flows in the branches, and the power losses in the branches,
respectively. The coupling constraint between the microgrid
ΩMG and its neighbors is denoted φ. Based on the concept
of electric distance, φ represents the threshold value of ζ of
the line impedance between the load bus j and the cross-
border buses separating microgrid from its neighbors. It can
be considered a means to specify the borders of a feasi-
ble space of the DOPF problem among multiple regions.
However, the network constraints must still be observed and
communicated among microgrids. DDMM can efficiently
manage the information for multi-microgrid systems. From
the implementation perspective, all information is sent to the
DDMM during the distributed optimizer instantiations and
load bus solutions of the OPF subproblems. The DDMM
reconciles system state information for multiple microgrids.

IV. REAL-TIME BALANCING ELECTRICITY MARKET
To illustrate application of the proposed DOPF method
using DRL-LP, we construct a distribution electricity market
framework to facilitate the effective integration of DERs
into the electricity system. A central role in this framework
is assumed by the distribution system operator (DSO) who
facilitates DERs integration and delivers location services.
It also provides real-time power balancing through dispatch
of stochastic DERs and bidding of flexible loads.

The algorithm for balancing the electricity market is exe-
cuted every minute to accommodate (near) real-time power
imbalances. Distribution locational marginal price (DLMP)
differs from location to location due to the limits of the node
voltage, line capacity, and network losses. This facilitates
the mitigation of over/under voltage and line congestion,
and compensation of location-dependent network losses.

The main goal of the DSO is to maximize its economic
benefits while providing the amount of power required by
the balancing electricity market. The individual entities of
the distribution system respond to specific price signals
derived from the following DLMP equation

DLMPi = λp0 + λp0 ·
N∑
i=1

∂P flow
i

∂PDER
i

+ λp0 ·
N∑
i=1

∂P loss
i

∂PDER
i

+

+ λp0 ·
N∑
i=1

∂Vi
∂PDER

i

(32)

where λP0 is the active power exchange or the reference
price. This is a known parameter that can be adjusted
by the DSO. The three sum terms

∑N
i=1 ∂P

flow
i /∂PDER

i ,∑N
i=1 ∂P

loss
i /∂PDER

i , and
∑N
i=1 ∂Vi/∂P

DER
i are the total

line flow factor, total system losses factor, and voltage
deviation factor, respectively. All three factors are calculated
with respect to DER power injection, PDER

i , from the
constraint equations (28), (29), and (30). DLMP works as a
price coordinator to ensure that any power imbalance in the
system can be fully offset and objectives of all participating
entities can be optimized simultaneously. This coordinated
operation model is designed to include all required objective
functions and system constraints.

V. RESULTS AND DISCUSSION
To demonstrate the proposed DRL-LP algorithm, the mod-
ified IEEE 123-bus test system [51] is considered as a case
study. To examine the leverage provided by the RL agents
in the distributed optimization subproblems, a search tree is
progressively built using MCTS-RL. This tree is a randomly
biased sequence of actions applied by an RL agent to a given
series of states until a predefined coupling constraint φ is
reached. This way, the feasible region suitable for power
transactions is obtained based on the concept of electric
distance. The MCTS-RL process instantiates six microgrids
as shown in Figure. 3. Suppose that the stochastic load
centroids are randomly distributed over the system buses
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with a penetration of 30% of the entire microgrid buses,
and the value of each load centroid is 150% of a particular
bus load in a microgrid. In this simulation, it is considered
that all buses in the microgrid have DERs with a limit of
100 kW each. The algorithm determines the optimal DER
candidates that have the lowest power losses and maintain
the grid limits, voltage limit and line congestion, in a
particular microgrid. Consequently, the number of variables
and their conditional statements is reduced to accelerate the
LP optimization process.

To illustrate the learning simulation of obtaining a proper
number of optimal DERs by the MLFACC algorithm, first
microgrid is chosen, which is labeled as MG1 in Figure 3.
For simplicity, three agents are used in this illustration to ob-
tain the three best DERs in each microgrid. Figure 4, shows
that most agents converged after about 5900 episodes. The
following subsections extensively analyze the optimization
process in three cases: (A) normal system operation, (B) a
system with dynamic microgirds, and (C) a system with line
congestion.

MG1

MG2

MG3

MG4

MG5

MG6

FIGURE 3. The modified IEEE 123-bus distribution with 6-microgrids

FIGURE 4. The learning simulation of the MLFACC for region A buses.

A. NORMAL SYSTEM OPERATION
The MLFACC algorithm has already been trained under the
random distribution of load centroids. To test the optimiza-
tion process through the algorithm, and for simplicity, a
single dynamic real-time load centroid is chosen in each
microgrid of the modified 123-bus system, at the following
buses: 9, 23, 43, 58, 76, and 108, for the microgrids, 1,
2, 3, 4, 5, and 6, respectively. The load data has been ex-
tracted from a residential community in Edmonton, Alberta,
Canada, and scaled to the transformer level. This load is
considered an extra load to be balanced by the generation
of the main feeder of the circuit and the DER units in each
microgrid. Loads of the remaining buses of the circuit are
based on the original static load data. Each microgrid oper-
ates independently and is responsible for its DERs when no
merging process is exerted by the DDMM algorithm. Real-
time optimization of the DERs’ generations are shown in the
Figure 5. The optimization is performed on a 1-minute basis,
for instance: the MLFACC algorithm obtains the best DERs
of the first microgrid on buses 12, 15, and 17, as shown
in Figure 5.a. It can be seen that, when DER12 (at bus 12)
reaches its limit (100kW), the algorithm switches to DER15.
In notation DER#i, index i refers to the microgrid number.
The optimization process relies mainly on the variation of
DER benefits stemming from the reduction of the active
power flow losses within the circuit. Based on their location,
the power the DERs generate usually flows in the direction
opposite to the main power stream of the feeder. This causes
a reduction of the total losses of the feeder power flow. The
variation of losses also causes considerable differences of
DLMP, especially when the DER generation levels approach
their maximum energy export capacity. More details about
the DLMP pricing are provided in the third case (system
with line congestion), to include the microgrids’ merging
and line congestion impact on the system pricing. The
proposed algorithm (including all its components) executes
in approximately 5 seconds to determine 1 minute of real-
time optimized power generation. However, the deep RL-LP
algorithm uses the experience of MLFACC obtained through
training involving 10,000 games in about 84 hours required
for one-time of training.

B. SYSTEM WITH DYNAMIC MICROGIRDS
In the previous case, the MLFACC algorithm was provided
plenty of training time and samples to play the stochastic
game and pick the most efficient and secure DER units for
each microgrid. However, when the load centroids are close
to the coupling lines between neighbouring microgrids,
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FIGURE 5. The real-time optimization of the DER generations in the microgrids (1-6), referred to in the figures (a-f), respectively.

0 8 16 24

time(h)

0

50

100

150

k
W

DER31
2

DER30
2

DER34
2

DER51
3 -> 2

DER52
3 -> 2

(a)

0 8 16 24

time(h)

0

50

100

150

k
W

DER51
3

DER50
3

DER49
3

(b)

0 8 16 24

time(h)

0

50

100

150

k
W

DER95
5

DER93
5

DER96
5

DER114
6 -> 5

DER115
6 -> 5

(c)

0 8 16 24

time(h)

0

50

100

150

k
W

DER114
6

DER115
6

DER113
6

(d)

FIGURE 6. The real-time optimization of the DER generations in the dynamic microgrids 2,3,5, and 6, referred to in the figures (a-c), respectively.
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these microgrids are merged. Due to the fact that most
partitioning algorithms result in only a few coupling lines
between the newly generated microgrids, the optimization
problem can be turned into a deterministic problem. Hence,
it is easy to determine the best DERs over the microgrids
surrounding the coupling lines.

In addition to the information regarding the load centroids
provided in the previous case, it is assumed that there is
another load centroid at bus 19 of microgrid 2. This load
centroid is labeled as (Lc2−3

) as it is located at the coupling
line between microgrids 2 and 3. Since Lc2−3 is real-time
load, if it reaches a high load value, it is identified as a load
centroid and the two microgrids are merged. Otherwise, they
are split, as this load is considered a normal load affiliated
with microgrid 2. For simplicity, if the value Lc2−3

≥ 1,
it is considered a load centroid. Figures 6.a and 6.b show
the merge/split process in real-time for the microgrids 2
and 3, respectively. When they work independently, the
best DERs are 31, 30, and 34 for microgrid 2, and 51,
50, and 49 for microgrid 3. When they are merged into
a single microgrid, the new best DERs are 51, 52, and 49
(calculated deterministically). The power optimization of the
merging process is shown in the second microgrid result, at
the following time periods: 5.00–13.20, and 22.30–23.30.
On the other hand, for the same time periods, microgrid
3 produces no output power to represent the the fact that
the microgrid is merged with microgrid 2. In addition,
the original values of DER calculated by the MLFACC
of each microgrid are still considered in the optimization
problem due to the presence of the original load centroids
at buses 9 and 23. However, some DERs (such as 49
and 51) are common for both cases (merge/split). Similar
situation is observed when considering another load centroid
Lc4−5−6 at bus 68, which is a terminal of two coupling
lines between the microgrids 4, 5 and 6. Note that, when
the DERs are selected deterministically during the merging
process, they are just from microgrids 5 and 6: 114, 95,
and 96. Moreover, the load centroid Lc4−5−6 is located in
microgrid 5. Since there is no participation from microgrid
4, only microgrids 5 and 6 are considered in the merging
process. The optimization result of the microgrids 5 and 6
are shown in Figures 6.c and 6.d, respectively. In the same
figures, when the microgrids split and work independently,
the selected DERs are 95, 93, and 96 for microgrid 5, and
114, 115, and 113 for microgrid 6.

C. SYSTEM WITH LINE CONGESTION
Typically, when demand is concentrated on a few DERs,
the corresponding segments of distribution lines can become
overloaded. To mitigate the occurrence of overloaded lines
due to DER generation, agents in each microgrid have to
track their impact on system security limits. This way, the
MLFACC algorithm is capable of maintaining microgrid
security limits under a stochastic load environment.

The DDMM algorithm also helps preventing any limit vi-
olations across the coupling lines and the network in general
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FIGURE 7. The real-time optimization of the DER generations in the dynamic
microgrids 2 and 3 under line congestion, referred to in the figures a and b,
respectively.

by sharing this information among microgrids. Therefore,
the risk of congestion that would threaten the coupling
lines is very low. Thus, it is assumed that the flow limit
of a selected coupling line is reduced in comparison to its
original value. The line connecting buses 120–36 and the
coupling between microgrids 2 and 3 are chosen for the
contingency study so that the microgrid merging process in
demonstrated as well. The flow limit of this coupling line,
Cl2−3

, is reduced from 755 kW to 740 kW.
When the load of microgrid 3 increases such that the

flow on line l2−3 exceeds 740 kW, the flow congestion
occurs at this line. Typically, the amount of generation of the
DERs that compromise network security is reduced. Instead,
another DER that does not influence the system security,
while offering an acceptable price, is called. In such case,
DER unit 51 in microgrid 3 keeps its power generation
even when the load centroid reduces to zero as shown in
Figure 7a. This DER unit attempts to compensate for the
resultant power reduction in microgrid 3 due to the new
flow limit.

The primary goal of this step is to change the system flow
to prevent congestion, while providing energy to the load at
an acceptable price. However, this leads to a step change of
price (Figure 8). The price change to avoid 1 kW of line
congestion is called congestion DLMP. Similarly, the change
to avoid line losses is called losses DLMP. The daily values
of congestion and losses DLMP in microgrid 2 are 7.58
¢ and -125.62 ¢, respectively. In microgrid 3, these values
are 7.94 ¢ and 0.12 ¢, respectively. The negative sign of the
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second microgrid’s losses indicates a reduction of losses due
to DER generation. Conversely, the positive sign of losses
DLMP for microgrid 3 indicates a decline in counterbalance
of power flow losses’ in the direction between the main
feeder and the DERs; this due to the reduction in the main
feeder power generation. The DLMP values for these two
microgrids are also shown in Figure 8. Finally, the total cost
of generation in these microgrids for this case is shown in
Figure 9.
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FIGURE 9. The total generation costs for both regions A and B.

VI. CONCLUSIONS AND FUTURE WORK
This article introduces a novel approach in distributed OPF
for distribution systems with high penetration of DERs.
Using modern methods of artificial intelligence, the pro-
posed approach facilitates OPF calculation while reducing
its computational burden. The proposed method is based
on an effective combination of Monte Carlo tree search-
based reinforcement learning (MCTS-RL) and the dynamic
distributed multi-microgrid (DDMM) algorithm. Through
the dynamic network partitioning and navigation steps of
a diffusion strategy, they generate adaptable microgrid con-
figurations with a set of optimal paths to the most suitable
generation and load nodes.

The proposed deep learning-based actor-critic approach
(MLFACC) mitigates the challenges associated with the
stochasticity of DERs while addressing the problem of di-
mensionality faced by conventional optimization techniques.
Only the selected DERs are then considered by the optimizer
applied to the linearized problem, thus guaranteeing con-
vergence. The multiagent nature of the proposed approach

allows a direct application of DOPF in systems with multiple
interacting entities.

The presented simulation results clearly demonstrate the
effectiveness of the proposed method to solve the distributed
economic dispatch problem while maintaining the system
security limits.

The IEEE 123-bus system considered in this study ex-
periences only minor voltage control issues. The losses
are also relatively low as they are proportional to the
network size. Nevertheless, the obtained results confirm
that the proposed model can successfully consider dynamic
microgrid configurations and provide an effective power
market solution without jeopardizing system security. In
addition, the proposed methodology is suitable for large and
complex networks that can accommodate various DER types
such as PV systems, EVs, and BESS that induce uncertain
load and generation patterns [52]–[54] . A good example to
illustrate this approach is an EV system model that has high
complexity due to stochastic transportation patterns. There-
fore, in future work, the authors will consider the EV system
model in more detail, to show the potential applicability of
the proposed approach to distributed optimization of such
complex systems.
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