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Abstract 

Pathfinding is a task that is used in many applications from robotics to video games. The 

single-agent case is well-understood, but the multi-agent case is more difficult. To achieve 

cooperative behaviour among a group of agents, the agents need to share information with 

one another. One current approach stores static data about other agents, which is easy to 

maintain and plan with, but the agents may still collide frequently. Another approach stores 

dynamic data about other agents, which is complex to plan with, but allows agents to avoid 

collisions. Instead, we propose the use of a direction map, a shared data structure that 

provides information about how agents have been moving in the world, which is cheaper 

than planning with fully dynamic information and leads to implicit cooperative behaviour 

among the agents. 
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Chapter 1 

Introduction 

Research advancements in areas such as computer hardware and artificial intelligence (AI) 

technology have contributed to the creation of more and more realistic virtual worlds. This 

can be used to create immersive environments for users and it gives rise to applications that 

were not possible in the past. Virtual simulations require that the environment is life-like 

and immersive, and a large part of this is realistic, intelligent behaviour of the AI characters. 

There are many aspects to achieving intelligent behaviour in a character. One important 

component is the ability to plan where the character should move in the virtual world. This 

problem is called pathfinding or path planning, and it is the subject of this thesis. 

Realistic pathfinding is important in many video games, for example. Gamers are always 

looking for better hardware and software, and they want to see believable behaviour in 

visually life-like characters. For example, when two AI characters bump into each other 

in an otherwise empty room, they look unintelligent, which in turn reduces the player's 

enjoyment of the game. 

Another example is military simulation systems, such as Virtual Iraq, which was de­

veloped at the University of Southern California [19]. The goal of this system is to lessen 

post-traumatic stress disorder for veterans who have fought in Iraq. This is done by trig­

gering memories of traumatic experiences as part of their therapy, which is a task that is 

more easily accomplished if the simulation is realistic. 

However, path planning is not only used in virtual worlds. It is also utilized extensively 

in robotics. An example is the Defense Advanced Research Projects Agency (DARPA) 

Grand Challenge, in which fully autonomous vehicles must navigate an environment [11]. 

The first two competitions were held in the desert, where the vehicles only needed to be able 

to follow the road and pass other vehicles, but the 2007 competition was held in an urban 

environment. In the urban challenge, the vehicles needed to obey traffic laws, navigate 

intersections, and interact with other vehicles, both human-driven and autonomous. The 

path planning system is an important part of an autonomous vehicle because it needs to 

navigate its environment intelligently to reach its destination and avoid collisions. 
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Another example of path planning in robotics is the use of robots for search and rescue 

missions, like those used after the World Trade Center disaster on September 11, 2001 [20]. 

The robots were used for tasks such as searching for victims because the robots are small 

and can crawl into narrow spaces where humans cannot go. In addition, they can go places 

tha t are dangerous for hurnans, for example because of fire or because a building is in 

danger of collapsing. Pathfinding is important for search and rescue robots because efficient 

navigation through the rubble may mean tha t more lives can be saved. 

The problem of pathfinding for a single agent has been, well studied. This thesis tackles 

the more difficult problem of multi-agent pathfinding, in which multiple agents need to 

navigate the environment simultaneously. This problem is challenging because agents need 

to take other agents into account in order to avoid collisions and exhibit natural-looking 

behaviour. 

Consider an environment like the one in Figure 1.1 tha t contains narrow passageways. 

Assume tha t there are agents on both sides of the map tha t need to move through the 

corridors in the center to the other side of the map. When the number of agents is small, it 

is relatively easy for the agents to navigate between the two open areas. However, when the 

number of agents increases, the environment becomes more congested. If the agents do not 

pay attention to other agents, a situation like the one in Figure 1.1(a) may occur, which does 

not look intelligent. In this situation, humans are likely to use one of the passageways for 

left-to-right movement, and the other for right-to-left movement, as shown in Figure 1.1(b). 

It is desirable tha t AI characters exhibit behaviour like this as well. 

in 
D 
l _ 

(a) (b) 
Figure 1.1: An example of a scenario in which navigation with large numbers of agents is 
difficult. 

When a group of agents travels in the same environment, collision-free, coordinated 

movement can only occur if the agents have information about other agents. Humans, for 

example, use visual observations of where other people are and where they are going to avoid 

bumping into other people. In addition, they use social constructs such as preferring the 
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right-hand side of a street or sidewalk. Ants, who are nearly blind, avoid imminent collisions 

by using their antennae to sense other ants tha t are near, but they also coordinate their 

movement on a larger scale. Ants leave traces of chemical substances called pheromones 

behind as a way of sharing information about where they have been with the other ants. 

For example, ants will lay a pheromone trail between the nest and a food source, and other 

ants will be a t t racted to this path and follow it. The use of pheromones also causes them 

to form lanes of incoming and outgoing ants, which produces efficient behaviour when the 

ants perform tasks such as gathering food [4]. 

A number of approaches for the multi-agent path planning problem have been developed. 

However, the existing methods are sometimes complicated and they do not always lead to 

realistic-looking behaviour. The agents may collide or take paths tha t do not look natural . 

The method presented in this thesis uses an approach to the multi-agent path planning 

problem tha t is different from currently existing methods. Agents are able to mark the 

map with information, similar to the pheromones left behind by ants. Each agent in the 

environment marks the states it visits with information about the direction in which it was 

moving when it passed through this location. We call the da ta s tructure tha t stores this 

information a direction map. Other agents are encouraged to follow the same paths as agents 

who previously passed by. We will show tha t this causes the agents to form lanes, which 

helps them avoid one another as they move through the environment. 

Ideas tha t are similar to direction maps have been used in the video game industry, but 

they have not been formalized. In addition, the directions are generally hand-drawn rather 

than learned as they are in our approach, and they are used for greedy one-step movement 

rather than for planning an entire path. 

The remainder of this thesis is organized as follows. Chapter 2 discusses related work. 

It provides background information on uninformed and heuristic search. This chapter also 

discusses single- and multi-agent path planning on a map, as well as the use of abstraction 

to speed up search. The chapter finishes with an overview of navigation and ant-based 

approaches. Chapter 3 describes the new approach, path planning with direction maps, in 

detail. It discusses how direction maps are learned and how they are used for planning. 

Furthermore, this chapter describes some variations on the basic approach. Chapter 4 con­

tains experimental results, and shows tha t performance is relatively insensitive to variations 

in the parameters . In addition, the new method is compared to existing multi-agent path 

planning algorithms, and experimental results for variations on the basic approach tha t were 

discussed in Chapter 3 are presented. The last chapter, Chapter 5, consists of conclusions 

and further directions in which this work can be taken. 
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Chapter 2 

Background 

The focus of this thesis is multi-agent pathfiriding, which is a special case of the AI field of 

heuristic search, in which multiple agents perform search at the same time. This chapter 

will provide background information on both informed and uninformed search algorithms, 

as well as pathfinding algorithms, abstraction for search, and multi-agent search. It will 

also discuss ant-inspired algorithms and other non-pathflnding approaches tha t have been 

used for agents traversing a map. 

In artificial intelligence, an agent is defined as any entity tha t perceives its environment 

and can perform actions in this environment. A problem-solving agent wants to take actions 

tha t move it from its current state to some desirable state, or goal state [28]. Examples of 

problems are solving a puzzle, finding a path between two locations, or moving a robot arm 

into the correct position to pick up a ball. 

Consider an agent who is travelling across Europe. Suppose the agent is currently in 

Rome and wants to travel to London by air in as few flights as possible. Figure 2.1 shows a 

simplified map of Europe with a number of European capital cities. A line connecting two 

cities means tha t a flight is available between them, and the number by the edge indicates 

the distance in kilometres. 

The agent 's objective is to find a series of actions that lead from its current state to 

its goal state. In this example, the state of the agent is the city it is in, and the actions 

are flights tha t take the agent from one city to another. A search problem like this can 

be represented as a graph, where each node in the graph represents a s tate, and an edge 

represents an action tha t leads the agent from one state to the next. When the agent 

searches this graph for a solution, or a path between its s tar t and goal states, it generates a 

search tree. This search tree starts with the root node, which is the start ing s tate . Next, the 

agent will expand this node, meaning tha t it generates the successors of the current state. 

In the travel example, expanding a node means finding all the cities tha t are a single flight 

away from the current city. In the search tree, these become the children of the s tate that is 

being expanded. For example, the search tree after expanding Rome in the example above 
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Figure 2.1: A simplified map of Western Europe with distances between cities in kilometres. 
Map of Europe designed by Brian V. Smith and used with permission. Source for distances: 
http: / / www. convertunits. com/distance 

is shown in Figure 2.2(a). When an agent searches for a solution, it repeatedly chooses a 

node to be expanded and checks if it is a goal state. If it is not a goal state, the node is 

expanded and its successors are added to the search tree. The order in which nodes are 

expanded is determined by the search algorithm. 

One problem that can arise when a search tree is being built is that nodes may appear 

more than once because there are multiple paths to the same node, i.e. if there are cycles 

in the graph. To avoid expanding the same node twice, a closed list is often used. The 

closed list is a list of nodes that have previously been expanded, and each time a node is 

generated it is first checked against the nodes already in the closed list. If it has previously 

been expanded, it is not added to the search tree. This increases the efficiency of the search 

algorithm and avoids infinite loops. 

A search algorithm is said to be complete if it will always find a solution if one exists. 

An algorithm is considered optimal if it always finds an optimal solution. In our context, 
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an optimal solution is a pa th tha t has the lowest cost. It is possible tha t there exists more 

than one optimal solution. 

There are two broad categories of search algorithms. The first is uninformed search, 

in which the agent only has access to the information given in the problem definition. 

The second is informed search, where the agent has access to additional problem-specific 

information, such as a heuristic function, as well. These two types of search algorithms are 

discussed in the next sections. 

2.1 Uninformed Search 

In uninformed search, the only information available to the agent is the information that is 

given in the problem. Formally, the problem is defined as the tuple {G = {V,E}, s, T } , 

where G is the search graph composed of the set of nodes V and set of edges E, s is the start 

state, and T is the set of goal states. In other words, the agent only knows the successors 

of each state, the cost of each action, and whether or not each s tate is a goal state. Two 

well-known examples of uninformed search algorithms are breadth-first search and depth-first 

search. 

2.1.1 Breadth-First Search 

In breadth-first search (BFS), the search is done in layers radiat ing from the s tar t state. 

First, the immediate neighbours of the s tar t s tate are expanded, then states tha t are two 

steps away from the s tar t state, and so on until the goal state has been found. 

In the example, the agent is looking for a path between Rome and London tha t takes as 

few flights as possible. Rome will be expanded first, which generates Madrid and Luxem­

bourg (Figure 2.2(a)). Next, the neighbours of Rome are expanded, start ing with Madrid. 

Madrid's successors are Lisbon, Paris, and Rome, but since Rome has already been ex­

panded it is not added to the search tree again. The search tree after this step is shown in 

Figure 2.2(b). The algorithm then expands the other child of Rome, which is Luxembourg, 

as shown in Figure 2.2(c). Again, since Rome has already been expanded it is not added 

to the search tree again. At this point, the immediate successors of the s tar t s tate have all 

been expanded, and the algorithm moves to the next depth layer of the tree. Lisbon is the 

first node at this depth, and expanding it generates only Madrid, which has already been 

expanded. After Lisbon, Paris is expanded, as shown in Figure 2.2(d), and search continues 

in this manner until the goal, London, has been found. 

The algorithm is called breadth-first search because the algorithm finishes its search of 

each level of the search tree before it moves to the next level down. BFS is both optimal and 

complete, and the t ime and space complexities for BFS are 0(bd), where b is the branching 

factor, or the average number of successors of a node, and d is the depth needed to be 
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Lisbon J) Q pa 

(a) (b) 

OTiixemlMnirjj^ 

(c) 

Figure 2.2: A breadth-first search example on the map from Figure 2.1 

searched to find the optimal solution [28]. 

2.1.2 Depth-First Search 

In depth-first search (DFS), the agent always expands the generated state that is farthest 

from the start state next. First, one of the child nodes of the start state is expanded, then 

one of its children, then a child of this node, and so on. 

When there are cycles in the graph, it is possible that DFS gets stuck in an infinite loop. 

Therefore DFS is often done by searching until some pre-defined cutoff depth d, and then 

backtracking and expanding a sibling of the last expanded node. 

In the travel example, the agent will expand Rome first (Figure 2.3(a)), and Madrid 

next (Figure 2.3(b)). These first two steps are the same as for breadth-first search. The 
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next step in DFS is to expand a child of the node that was just expanded. The algorithm 

expands Lisbon, generating Madrid, but since Madrid has already been expanded, it is not 

added to the search tree again. Since this branch of the tree starting at Lisbon has been 

fully explored, the algorithm now expands a sibling of Lisbon, Paris, whose child nodes are 

shown in Figure 2.3(c). Again, Madrid is not added to the search tree again because it has 

already been expanded. Next, we are ready to expand London, which is a goal node. The 

algorithm can either return this path, which is not necessarily optimal, or continue to look 

for other goal nodes. 

C^Luxembourg^) 

(a) (b) 

OLuxembour?) 

London J) QAmsterdanj) CjLuxembourg, 

(c) 

Figure 2.3: A depth-first search example on the map from Figure 2.1 

This algorithm is called depth-first search because it always expands the deepest node 

next. It will fully explore the branches of the tree starting at one child before moving on to 

another subtree. DFS is not optimal; for example, the agent may find a very deep (high-

cost) goal node after expanding the first child of the root node, while a different child of 

the root node also leads to a goal node, possibly of lesser cost. It is not complete if the 

graph contains cycles and duplicates are not checked, since the algorithm may get stuck on 

an infinite branch of the tree. It is also not complete if a cutoff depth d is used, because the 

goal state may be at a depth greater than d. The time complexity for DFS is 0(bd) and its 

space complexity is O(d). 

Iterative deepenening is a technique that can be used with depth-first search. In iterative 

deepening, the algorithm first searches to depth 1, then it re-starts and searches to depth 2, 



then re-starts again and searches to depth 3, and so on until the goal has been found. Korf 

has shown that when the ideas of depth-first search are combined with iterative deepening, 

the algorithm always finds an optimal solution, and has time complexity 0(bd), and space 

complexity 0(d), which makes depth-first iterative deepening asymptotically optimal in 

time, space, and solution cost [17]. 

2.2 Informed Search 

In an informed search, also called heuristic search, the agent has the same information as 

for an uninformed search problem, but it is also given a heuristic function h(n), which is an 

estimate of the cost of a shortest path between any node n and the goal state. A heuristic 

is said to be admissible if it never overestimates the distance to the goal. It is said to be 

consistent if for every state s and every successor s', the estimated cost of the path from 

s to the goal is never more than the estimated cost of the path from s' to the goal plus 

the cost of the action between s and s' [28]. In other words, the difference in the heuristic 

between two adjacent states s and s' can never be more than the cost of the action that 

takes an agent from s to s'. 

An approach to take advantage of this heuristic information is best-first search, in which 

the next state to be expanded is chosen based on an evaluation function f(n), which is an 

estimate of how promising it is to expand this node. The node with the lowest f(n) will be 

chosen for expansion at each step. 

2.2.1 A* Search 

The best known, and most commonly used, heuristic search algorithm is A* [13]. This 

algorithm expands nodes in order of minimal total estimated solution cost, and maintains 

generated nodes in an open list, a queue in which states are sorted by /—cost. Whenever a 

node is expanded, its children are ignored if they have already been expanded, added to the 

open list if they are neither in the open or closed list, and. updated to reflect the cheapest 

Amsterdam 
Berlin 
Dublin 
Lisbon 
London 
Luxembourg 
Madrid 
Oslo 
Paris 
Rome 
Stockholm 
Vienna 

Ams 

-
577 
759 
1864 
359 
302 
1482 
916 
428 
1294 
1128 
936 

Ber 
577 

-
1320 
2315 
934 
592 
1871 
840 
880 
1182 
812 
524 

Dub 
759 
1320 

-
1640 
464 
947 
145] 
1269 
779 
1887 
1633 
1686 

Lis 
1864 
2315 
1640 

-
1585 
1725 
504 
2741 
1454 
1866 
2992 
2302 

Lon 
359 
934 
464 
1585 

-
485 
1264 
1157 
341 
1434 
1436 
1238 

Lux 
302 
592 
947 
1725 
485 

-
1294 
1169 
296 
1000 
1311 
766 

Mad 
1482 
1871 
1451 
504 
1264 
1294 

-
2391 
1054 
1365 
2597 
1812 

Osl 
916 
840 
1269 
2741 
1157 
1109 
2391 

-
1344 
2008 
417 
1354 

Par 
428 
880 
779 
1454 
341 
296 
1054 
1344 

-
1108 
1546 
1038 

Rom 
1294 
1182 
1887 
1866 
1434 
1000 
1365 
2008 
1108 

-
1977 
764 

Sto 
1128 
812 
1633 
2992 
1436 
1311 
2597 
417 
1546 
1977 

-
1244 

Vie 
936 
524 
1686 
2302 
1238 
706 
1812 
1354 
1038 
764 
1244 

-

Table 2.1: Table of distances between some European capital cities, in kilometres. Source: 
http://www.convertunits.com/distance 
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path to this node if they are already in the open list. For a node n, this cost is computed as 

f(n) = g{n) + h(n), 

where g(n) is the cost of an optimal pa th from the start to n, and h(n) is the heuristic cost 

of the path between n and the goal. Therefore, / ( n ) is an estimate of the cost of a cheapest 

path from the s tar t to the goal tha t passes through n. A* search is optimal if the heuristic 

is consistent. 

A heuristic for the travel example is given in Table 2.1. The heuristic used is the straight-

line distance between two cities, which is both admissible and consistent. 

Now, we will assume tha t the agent wants to find a shortest pa th between Rome and 

(a) 

( Mitel rid j 

H = 1365 
h = 1264 
f =2629 

(Amsterdam ) 

g=1302 
h = 35!» 
f = 1(161 

fLu x e ii i bi HI i*tn 

C Paris 

(-=12% 
h = 341 
f = 1637 

) f Vienna 

K=:t76(i 
h == 1238 
f = 3<MI4 

(b) 

(c) 

Figure 2.4: An A* search example 
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London in terms of kilometres flown rather than in terms of the number of flights required. 

Actions now have a cost associated with them, equal to the distance in kilometres between 

the two cities. In the agent's search for a path between Rome and London, Rome is again 

expanded first. The nodes tha t are generated are Madrid and Luxembourg. The g-, h- and 

/ -costs for the child nodes are shown in Figure 2.4(a), where the p-cost is the actual distance 

from Figure 2.1, the h—cost is the heuristic distance from Table 2.1, and the /—cost is the 

sum of the g— and h—costs. Next, the algorithm expands the node with the lowest / -cost , 

which is Luxembourg. This node's children are Rome, Paris, Amsterdam and Vienna, but 

Rome has already been expanded so it is not added to the search tree (Figure 2.4(b)). 

Now the node with the lowest / -cos t is Paris, with / = 1637. Its successors are London, 

Amsterdam, Luxembourg, and Madrid, but Luxembourg has already been expanded, so it 

is not added to the search tree. Amsterdam was already in the search tree, and the g—cost 

of the pa th Rome-Luxembourg-Paris-Amsterdam is 1296+428=1724. This is larger than 

the g - c o s t tha t was previously stored for Amsterdam, so the values for Amsterdam do not 

need to be updated. This is also the case for Madrid: the cost of reaching Madrid via Paris 

is higher than the cost of reaching Madrid directly from Rome, so the values for Madrid do 

not need to be updated. As a result, only London is added to the search tree (Figure 2.4(c)). 

London is now the node with the lowest / -cost , and since this is the goal state, the algorithm 

is finished. 

2 .2 .2 W e i g h t e d A * 

A variant of the basic A* algorithm is the Heuristic Pa th Algorithm (HPA), also called 

weighted A* (WA*), which was proposed by Pohl as a way to find solutions more quickly [23] [24] 

This algorithm uses an evaluation function in which the g— and h—terms are weighted, so 

f(n) = (1 — W) • g(n) + W • h(n), which can be re-written as f(n) = g(n) + w • h(n), where 

W = J ^ J . WA* will produce optimal paths when w < 1, but this is not necessarily the 

case when w > 1. Although the solution may not be optimal for values of w larger than 

1, it can reduce the amount of work done because the search is more greedy and focused. 

Davis et al. showed tha t if w > 1, the solution is at most a factor w larger than the optimal 

solution [5]. 

2.3 Pathfinding on a Map 

Pathfinding on a map is a subclass of search problems, in which an agent navigates from its 

start location to its goal location in some map-based environment. This is used, for example, 

in video games and in robotics. Examples of map environments are 2- and 3-dimensional 

grid-based maps and a map in which obstacles are represented by polygons, defined by line 

segments. 
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(a) Map (b) Graph 

Figure 2.5: A grid-based map and its graph representation 

A map can be represented as a graph. In grid-based maps, each grid cell becomes a node 

in the search graph, and an edge is added between two nodes whenever the agent can move 

directly from one to the other. A small example is shown in Figure 2.5. In Figure 2.5(a), each 

location is either passable (white squares) or an obstacle (black squares), and in Figure 2.5(b) 

circles denote nodes, and lines denote edges in the graph. 

Map graphs have some characteristics that make search challenging. One of them is that 

map graphs often have irregular structures imposed by the obstacles in the map. Because 

of these irregular structures, there are no symmetries that can be exploited as often seen 

in some puzzle problems such as the 15-puzzle or Rubik's cube. In addition, the branching 

factor, i.e. the number of actions available to the agent, is at most 8, which is higher than 

in some other search problems such as sliding tile puzzles. Another challenge is that the 

environment is potentially dynamic, since new obstacles may appear or existing obstacles 

may be removed. Lastly, the start and goal locations can be any state in the environment, 

so we cannot pre-compute start or end moves. 

2.4 Abstraction 

Heuristic search can be very expensive since in the worst case, A* search needs to expand 

every state. Therefore, for large state spaces, A* will run out of memory. To reduce the 

amount of work that needs to be performed, it is possible to use abstraction [15]. During 

abstraction, the original graph G is represented by a smaller graph A that retains the 

essential structure of G, removing details and reducing the size of the search space. This 

process can be repeated by abstracting the the abstract graph A, giving graph A2, and so 

on, until the graph is reduced to a single node. The set of smaller and smaller graphs is 

called an abstraction hierarchy. Assuming we choose a good abstraction, i.e. one that does 

not remove the essential characteristics of the map, a path in the abstract graph can be 

found quickly, since it is smaller than the original graph. This abstract path can be used to 

guide the search on the original graph. 
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Formally, an abstraction is a mapping from a graph G to an abstract graph A. The size 

of the graph is reduced by mapping multiple nodes in G to the same node in A. We say 

that a node n in G that is mapped to node a in A is a pre-image of a, and that a is the 

image of n. Node n is also sometimes called a child node of a, and a the parent node of n. 

An edge exists between two nodes a\ and 0,2 in the abstract graph A whenever there exists 

an action on a child of a\ that takes the agent to a child of 02. 

The first step to finding a solution in the original graph is to find a path in the abstract 

graph, for example using A* search. Next, the abstract path 774772...rife is refined by searching 

for a path that connects the start state, which is a child of iii, to a child C2 of ri2, then a 

path that connects C2 to a child C3 of 77,3, and so on until the goal has been found. A final 

solution is obtained by concatenating the sub-paths between abstract nodes, which is not 

necessarily an optimal solution. 

An example of path refinement is shown in Figure 2.6. The squares on the botton show 

the original states, and the circles at the top of the figure are the abstract nodes. The gray 

lines indicate which states in the original space have been mapped to each abstract node. 

The start and goal states are indicated by S and G, respectively. The solid lines between the 

abstract nodes show the abstract path, and the dashed lines show the refined path. During 

refinement, we first replace the abstract edge between n\ and 712 with a path in the original 

search space. This is done by finding a path between 5" and a child state of 77,2, in this case 

C2- Next, the abstract edge between 77,2 and 713 is refined, by finding a path between C2 and 

a child of 773, in this case C3. The last step is to find a path from C3 to the goal state. 

© (J) Q 

Figure 2.6: A path refinement example 

This process can be generalized for multiple abstract graphs. First, search is done in 

some abstract graph Ak- Next, this path is refined to a path in the abstract graph Ak-i, 

which, in turn, is refined to a path in abstract graph A^-2, and so on until a solution in the 

original graph G is found. We need to choose the appropriate level of abstraction for the 

initial abstract search: one that abstracts away enough detail to reduce the search space, 

but does not abstract away too much because this increases the cost of refinement. 
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The idea of abstraction has been applied to single-agent pathfinding on a map, for exam­

ple in the Hierarchical Pathfinding A* (HPA*) algorithm [3]. The abstraction mechanism 

used by this algorithm does not use a direct mapping from the map graph to the abstract 

graph, but it uses a similar approach in the sense tha t it uses a smaller abstract graph to 

guide search on the map level. 

In HPA*, a grid-based two-dimensional map is divided into square sectors, called clusters, 

of a user-defined size. An example map, divided into 4 clusters of size 10x10, is shown 

in Figure 2.7(a), where the black rectangles represent obstacles and the thick black lines 

indicate sector boundaries. Along each border between two adjacent sectors, an entrance is 

defined for each obstacle-free segment along the border. In the abstract graph, each cluster 

is represented by a group of abstract nodes tha t represent the entrances to tha t cluster. 

For each entrance tha t is at most 5 grid cells wide, a single abstract node is created in the 

center of the entrance. For each entrance tha t is larger than 5 grid cells, two abstract nodes 

at the ends of the entrance are created. In Figure 2.7(a), the entrance nodes are shown 

as grey squares. For example, along the bot tom border of the top-left cluster, there are 

two entrances: one between the border of the map and the obstacle, and one between the 

obstacle and the top-right cluster. The first of these entrances is only three grid cells wide, 

so it is represented by a single abstract node in each of the clusters tha t it is adjacent to. 

The other entrance is wider, and is therefore represented by two abstract nodes in each 

of the adjacent clusters. Abstract edges are added between corresponding entrance nodes 

in adjacent clusters (inter-cluster edges) as well as within clusters whenever there exists a 

path between the two nodes on the map level (intra-cluster edges). The abstract graph 

for the map is shown in Figure 2.7(b). Inter-cluster edges are the short light gray edges 

tha t connect corresponding entrance nodes in adjacent clusters. The intra-cluster edges are 

shown as darker grey lines. 

To speed up refinement, a map-level path is found and stored for each intra-cluster edge 

e. This pa th connects the two entrances tha t are connected by e, and they cannot go outside 

the cluster boundaries. The cost of each intra-cluster edge, which is used during search in 

the abstract graph, is set to be equivalent to the cost of the low-level path . Storing these 

paths simplifies the refinement process because abstract edges can be directly replaced by 

the paths tha t have been stored for them. 

It is possible to build an abstraction hierarchy by adding multiple abstract graphs. For 

HPA* this is done by combining multiple clusters at the previous level into a single higher-

level cluster. The higher-level abstract nodes are the abstract nodes tha t lie on the sector 

boundaries of the previous level. Again, edges are added between corresponding entrance 

nodes of adjacent sectors as well as within sectors. A path at the previous level is stored 

for each of the intra-cluster edges, and the cost of the intra-cluster edge is equivalent to the 
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(b) Abstract graph (a) Map with entrance nodes 

Figure 2.7: An example of the cluster abstraction used by HPA*. Figure adapted from [3] 

cost of the lower-level abstract path. In the example from Figure 2.7, a possible additional 

level of abstraction is to combine the two clusters on the left-hand side of the map into a 

single cluster, as well as the two on the right-hand side. The abstract nodes at this level 

would be the ones along the vertical center line. 

To find a solution to a search problem, the algorithm first performs an A* search on the 

abstract path. Next, the algorithm refines the abstract path by replacing each edge by the 

path tha t was stored for it, giving either a lower-level abstract path or a map-level path. 

The last step performed by the HPA* algorithm is path smoothing, which replaces portions 

of the map-level pa th by straight lines. This process reduces the length of the path. 

Some enhancements to HPA* have been proposed by Jansen and Buro [16]. Their 

paper introduces a faster way to perform path smoothing, proposes a different algorithm to 

compute the costs of intra-cluster edges, and suggests computing and storing edge costs on 

demand rather than pre-computing them. 

It is not always desirable to compute a complete path before executing it, either because 

the agent does not have sufficient time to plan its entire pa th before it has to make a move, or 

because the world is dynamic and computing a full pa th is inefficient because the agent will 

likely need to re-plan before it reaches its goal. The agent can then compute partial paths 

instead, and one way to do this is with Path-Refinement A* (PRA*) [31]. This algorithm 

first builds an abstraction hierarchy of the map, then finds a high-level plan, and refines 

this plan into low-level actions as needed. 

PRA* abstracts cliques, i.e. groups of fully-connected nodes, into single abstract nodes. 

An advantage of this is tha t it is possible to get from any child node to any other child 

node of an abstract node in one step, which simplifies the refinement process. The abstract 

15 



node's location is set to be the average location of its children. Additional abstract layers 

can be added using the same process. The abstraction hierarchy is complete when there is 

a single node for each connected component of the original graph. 

An example of this abstraction is shown in Figure 2.8. Figure (a) shows the original 

graph, with two sample cliques indicated by dotted lines. Figure (b) shows one way in 

which the map-graph can be abstracted, again with one sample clique shown. Figure (c) 

shows the second abstract layer of the graph. 

(a) (b) (c) 

Figure 2.8: An example of a clique abstraction 

During path planning, the agent first finds a complete abstract path at some level in 

the hierarchy using A*. This ensures that the agent does not get trapped in a dead end, 

because it has some knowledge of the structure of the entire map. Then at each lower level 

of abstraction, search is restricted to the children of the nodes that make up the abstract 

path, which reduces the cost of search. Partial refinement is done by only finding a map-level 

path for only the first k nodes of the abstract path. 

Abstraction has not only been used for pathfinding in grid-based world. Triangulation 

Reduction A* (TRA*) finds paths in environments with polygonal descriptions [6]. It first 

creates a triangulation of the free space, and then builds a graph from this triangulation. It 

reduces this graph and performs a search on this abstract representation of the map. 

Many other abstractions are possible. An analysis was first done by Holte et al. [15], 

and empirically verified by Sturtevant and Jansen [33], that shows that search effort can be 

reduced most significantly by maximizing the number of children of each abstract node, and 

minimizing the maximum length of a shortest path between any pair of the nodes that are 

abstracted together. 

2.5 Multi-Agent Pathfinding 

In the simplest form of pathfinding, only one agent needs to plan across the map. However, 

in many domains there are multiple agents in the environment. Consider a video game in 

which one of the maps is a market with many people moving around between the different 

stalls. All these agents are traversing the world and they need to perform pathfinding at 

the same time. 

rn 

16 



There are different scenarios for the multi-agent case: adversarial (try to stop other 

agents from reaching their goals), cooperative (agents need to work with other agents to 

get to their goals), and neither adversarial nor cooperative (the agents may benefit from 

coordinating with other agents but it is not required for them to reach their goals). 

A solution for the multi-agent pathflnding problem that minimizes some criterion, for 

example the total pa th length for all agents, can be found by centrally planning for all the 

agents at the same time, but in general this is infeasible. If there are n agents in the map, 

and the branching factor (the number of actions each agent can take at any point) is b, 

there are bn possible combinations of actions for all the agents at each step. For example, 

if each agent has eight actions available to it all all times, and there are 5 agents, there are 

85 = 32768 possible sets of actions. If there are 20 agents, this blows up to 82 0 « 1 x 1018 . 

When this number of combinations is high, search is expensive because whenever a node is 

expanded, many successors are generated. 

If the constraints are relaxed and we do not require a solution tha t minimizes some 

criterion like tota l path cost, search can be done for each agent individually, rather than 

for all agents simultaneously. One way to do this is by using the A* algorithm to plan 

for each agent separately, where each agent either ignores all agents except its immediate 

neighbours, or views them as static obstacles. The agent re-plans whenever it collides with 

another agent. We will refer to this algorithm as Local-Repair A* (LRA*) [29]. In practice, 

this approach does not generate believable behaviour because the agents do not take the 

dynamic aspect of other agents into account and therefore many collisions occur. This is 

undesirable since creating realistic behaviour is important . 

Another approach for multi-agent path planning is to let agents share information about 

their planned paths with other agents [9] [29]. This turns the 2-dimensional search into a 

3-dimensional one, where the third dimension is time. The agents reserve their paths in 

space-time, so tha t no other agent can plan to be at the same location at the same time. 

This idea is illustrated in Figure 2.9. Figure 2.9(a) shows a map with two agents and their 

planned paths. The light grey agent, Agent 1, plans to move to the right, and the dark 

grey agent, Agent 2, plans to move up. Figure 2.9(b) shows a da ta s tructure tha t could be 

used for communication between the agents. In this figure the z-axis is time, and agents 

share where they plan to travel at each point in the future. The bot tom layer of the data 

structure shows where the agents currently are. The next layers show where the agents plan 

to move at future time steps. For example, Agent 1 plans to move from its current location 

to the one to the right of it in the next time step, so these two locations are marked off by 

Agent 1 in the da ta structure. Agent l ' s goal location is Agent 2's s tar t location, but Agent 

1 can see in the shared da ta structure tha t Agent 2 will move out of the way. 

This idea of reservations in a time-space table has been used for managing traffic flow 
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(a) Map (b) Reservation table 

Figure 2.9: Example of a reservation table 

through an intersection [9]. The goal of this traffic management work by Dresner and Stone 

is to plan efficient collision-free paths for cars through intersections. The intersection is split 

up into grid cells, and the reservation table is maintained by an intersection manager. When 

a car approaches the intersection, it sends a message to the intersection manager with the 

expected time it will arrive at the intersection, as well as its expected velocity at the time of 

arrival and the direction in which it wants to leave the intersection. When this new request 

comes in, the intersection manager simulates the car's movement through the intersection, 

and attempts to find a way for this car to make its way through the intersection so that 

there is no conflict with the reservation table {i.e. the new reservation does not occupy any 

space-time slot that has already been claimed). If such a route is found, it sends a message 

of approval back to the car, together with any special instructions. Otherwise, a rejection 

message is sent back and the car will have to slow down and try again later. 

This approach works well in the case where lanes have been predefined and only a small 

portion of the map is shared by agents coming from different directions. For the intersection 

management problem, where such lanes are defined, this approach is very efficient compared 

to traffic lights or stop signs. 

Reservation tables can also be used together with heuristic search for multi-agent pathfind-

ing on a map where each agent has its own start- and goal locations [29]. Three related 

algorithms are introduced by Silver, the first of which is Cooperative A* (CA*). CA* is 

a distributed search algorithm where the individual searches are performed in space-time. 

After performing this search, the agent marks its path in the reservation table, and other 

agents cannot plan to be in the same place at the same time. When an agent is blocked 

because other agents have filled the reservation table entries it needs, the agent has to wait. 

The second algorithm improves the performance of CA* by using a more accurate heuris-
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tic. Hierarchical Cooperative A* (HCA*) first performs a search in an abstract search space 

in which the time dimension and other agents are ignored. This search is in the form of Re­

verse Resumable A* (RRA*), which begins search at the goal node, and searches backwards 

to the agent's location. The closed list is maintained between searches, since it contains a 

perfect heuristic for these nodes if time and other agents are ignored, and it can be used for 

subsequent searches. 

A possible drawback of the HCA* algorithm is that planning cannot be performed in 

real time. However, in some applications, such as video games, real time planning is im­

portant and this can be achieved by an algorithm which is able to interleave planning and 

plan execution. In addition, when an agent uses the HCA* algorithm, it does not exhibit 

cooperative behaviour once the agent has reached its goal. It is preferable that the agent 

can move out of the way of other agents even after is has arrived at its destination. Lastly, 

the previous two algorithms are sensitive to agent ordering, and although it is possible to 

determine a suitable order for the agents, the algorithm is more robust if the order of the 

agents is varied. The last algorithm introduced by Silver, Windowed Hierarchical Coopera­

tive A* (WHCA*), addresses these issues. It does this by windowing the search: each agent 

only searches to some depth, and begins moving. After some fixed time, the search window 

is shifted and the next portion of the path to the goal is computed. When an agent performs 

planning, it does a full search on the abstract level, just like the PRA* algorithm from the 

previous section, to make sure that it is moving in the correct direction. Cooperative search 

is only done within the search window, and time and other agents are ignored beyond it. 

This approach allows agents to interleave planning and execution, the agent who has top 

priority is varied, and agents who have reached their goals can move out of the way of other 

agents since this windowed search can continue after an agent has reached its destination. 

A drawback of reservation-based approaches is that they look for the shortest path 

possible. Sometimes shorter paths look more chaotic, while a slightly longer path is more 

visually pleasing. 

Spatial abstraction ideas from Section 2.4 can be combined with the ideas from 

WHCA* [32]. One possibility is to enhance WHCA* by computing the Reverse A* heuris­

tic on an abstract level rather than on the full space. Another possibility is to combine 

WHCA* with PRA* to form Cooperative Path-Refinement A* (CPRA*) by using WHCA* 

on the map level of the abstration, rather than A*. These improvements reduce memory 

and computation overheads. 

Biased-Cost Pathfinding (BCP) is another multi-agent pathfmding algorithm, which 

was proposed by Geramifard et al. [12]. This algorithm focuses on reducing the number of 

collisions between agents. The approach assumes that agents have different priorities, and 

that lower-priority agents modify their paths when a collisions will occur. The proposed 
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method is to find the collisions tha t will occur after the agents have planned their paths. 

Then for all agents other than the one which has the higest priority, the heuristic for the 

collision location is increased, forcing the lower-priority agents to re-plan. This approach is 

repeated until no collisions can be found, or the amount of t ime allotted for pa th planning 

has elapsed. 

2.6 Navigat ion 

Many approaches exist for generating realistic navigation behaviour, both for animals and 

for humans. These are generally not heuristic search approaches, but rather navigation 

behaviours tha t may use path-following. Path-following is the task of traversing a given 

path. 

Reynolds developed the flocking approach, a distributed model for simulating the move­

ment of groups of animals tha t travel together tha t can be used for path-following [25]. 

An agent of such a group, which is referred to as a bird-oid, or boid, uses only local infor­

mation about the rest of the flock to decide on its movement. The behaviour is governed 

by three desires tha t are combined to produce flocking behaviour: avoiding collisions with 

other boids, moving at the same velocity as nearby flockmates, and staying close to nearby 

boids. Although the idea is fairly simple, it produces realistic behaviour. 

When agents navigate their environment individually rather than as a group, steering 

can be used [26][27]. Reynolds introduces a number of steering behaviours, such as "seek", 

"pursuit" and "obstacle avoidance". These behaviours produce a vector which represents 

a force tha t directs the agent 's movement. This steering force is passed to the locomotion 

controller, which performs the actual movements. One example of a steering behaviour is 

flow field following, in which the agents follow flow vectors in the environment. These flow 

vectors are mappings from locations to directions, and the agents follow the directions indi­

cated by the vectors. Path-following is another example of a steering behaviour. Therefore, 

steering is separate from, but related to, pathfinding, in the sense tha t a pa th found by a 

pathfmding algorithm can be used as a guideline by the steering system. 

Force-based approaches, such as potential field methods, have also been used in robotics. 

An example of this is Arkin's work on robot navigation, which uses potential fields to guide 

the robots [2]. The potential field consists of vectors which a t t rac t the robot towards a 

goal, and repel it from obstacles. This is combined with high-level behaviours to direct the 

robot 's speed and movement direction. 

A similar idea was used for collision avoidance in animation [10]. The system devel­

oped by Egbert and Winkler automatically generates repulsive vector fields around objects. 

Whenever two objects get too close, the repulsive force causes them to move away from one 

another. 
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A force model can also be used for pedestrian motion. This can be done by consider­

ing social forces, which represent the internal motivations of the pedestrian. ITelhing, for 

example, defined a number of social forces that are combined into such a model [14]. Specif­

ically, the forces that are taken into account by this model are a person's desire to reach 

his or her goal quickly, a respulsive force exerted on the pedestrian by other pedestrians or 

obstacles, and attractive forces from certain people or objects. These social forces are quan­

tified, weighted and added to give the pedestrian's "total motivation", which is a vector 

representing the direction and acceleration for the pedestrian's movement. Experimental 

results show that pedestrians using this model will form lanes of people moving in the same 

direction, and that the direction of movement through a narrow doorway alternates. Both 

these behaviours have been observed in real pedestrians. 

Another way to simulate crowds of pedestrians is continuum crowds [34]. In this model, 

pedestrian movement is viewed as a per-particle energy minimization and it combines global 

path planning with local collision avoidance. Like real crowds, the simulated pedestrians 

form lanes of people walking in opposite directions and they can form vortices at crossings. 

2.7 Ant-Based Pathfinding 

Humans and birds are not the only species that are able to move in their environment in a 

cooperative manner. In nature, there are examples of communities of insects that exhibit 

complex group behaviour even though each individual's capabilities are limited. Ants, for 

example, are almost blind but are able to complete tasks that a single ant would not be able 

to perform. 

In the physical world, ants are faced with patrol tasks when collecting food because the 

ants move back and forth between the nest and the food source. This task is accomplished 

efficiently by following pheromone trails left behind by other ants. Research in biology has 

shown that rules for individual ant behaviour lead to group behaviour in which lanes are 

formed so that collisions are minimized and traffic flow is maximized [4]. This is similar to 

what has been observed in pedestrians, as was discussed in Section 2.6. 

A term for this phenomenon, stigmergy, was first introduced by the French biologist 

Pierre Paul Grasse to describe behaviour of termites, but it has later become a term used to 

describe any emergent behaviour that arises from indirect coordination between agents [7]. 

By leaving traces in the environment, groups of agents demonstrate intelligent behaviour 

that the individual agents are incapable of. 

These ideas have been used to solve pathfinding-related problems. An example of work 

which uses this for optimization problems is Ant System [8]. The main idea of this approach 

is that ants leave behind a pheromone trail as they walk, and other ants will choose the path 

with the most pheromone with a high probability. After some time, the ants will follow the 
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shortest path to the goal. 

Pheromone-based approaches have also been used in robotics for tasks such as unmanned 

military aircrafts [21] and to generate complex group behaviours [22]. 

2.8 Summary 

The multi-agent heuristic search algorithms discussed in Section 2.5 do not emphasize 

natural-looking pathfinding behaviour. LRA* completely ignores the dynamic nature of 

other agents by viewing them as static obstacles, which leads to collisions. On the other 

hand, WHCA* stores complete information about other agents' paths, which avoids colli­

sions between agents. However, since this approach attempts to minimize the length of each 

agent's path, paths sometimes look chaotic. 

Instead of storing static data, like LRA*, or fully dynamic data, like WHCA*, we can 

store static information about the dynamics of the world. For example, we can use infor­

mation about the direction in which other agents have moved and use this to guide the 

movement of other agents. This is similar to the pheromones left behind by ants, since 

in both cases agents use information about other agents' travel when they decide how to 

move. It is also similar to flow field following, since agents base their movement on direc­

tions suggested by the map. The next chapter will introduce a multi-agent heuristic search 

technique which uses these ideas. We will also discuss how abstraction can be applied to 

this technique. 
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Chapter 3 

Direction Maps 

When multiple agents move around in an environment, they can only exhibit cooperative 

behaviour if they share information about their movement. Using only a static snapshot of 

information, such as each agent's current location at the time of planning, is not very useful 

since these locations change continuously. For example, there may be someone blocking 

a location ten steps ahead of the agent's current location, but by the t ime the agent gets 

there, the other agent has most likely moved. This poses a problem when the agents use 

Local-Repair A* (LRA*), for instance. Since the agents use static information, they collide 

frequently. 

Agents which use Windowed Hierarchical Cooperative A* (WHCA*), on the other hand, 

use dynamic information about the world, namely the plans of all other agents. Although 

agents are able to avoid each other, this approach can have large memory requirements if 

there are many agents or if the paths are long. Additional drawbacks are tha t it is expensive 

to plan with this dynamic da ta and tha t behaviour can look chaotic because the agents are 

trying hard to plan paths tha t are as short as possible. 

Instead of storing static information tha t reflects the s tate of the environment at a 

fixed t ime t, or storing dynamic information, we can store static information about agent 

dynamics, such as information about the movement of agents. The method tha t is proposed 

here is to perform heuristic search with a direction map (DM), by weighting edge costs. 

For each location in the map, a DM stores a direction vector (DV), which represents the 

expected direction in which an agent will pass through this location. 

We visualize direction vectors as arrows. For example, if we let the length be at most 

one, the x- and y-values range from -1 to 1 and the vectors can be visualized in a unit circle, 

as illustrated in Figure 3.1. In this figure, only the DVs for the eight movement directions 

are shown, but an infinite number of DVs is possible. For example, a DV of length 1 that 

points in the north-east direction would correspond to (-4=, -4= j . 

A small map with example DVs is shown in Figure 3.2. In the figure, black squares are 

not accesible by the agent. If we assume tha t the length of all shown DVs is 1 and tha t they 
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(-0.71,0.71) 

(-1,0) 

(0.71,-0.71) 

/0.71,0.71) 

(1,0) 

(0.71,-0.71) 

Figure 3.1: A unit circle representation of direction vectors. 

always point in one of the eight main directions, the DV in location J34 is (1,0), and the DV 

in location C2 is (0,1). A move by an agent can also be represented as a vector, which we 

call a movement vector (MV). A movement vector always has length 1, and points in the 

direction of the agent's move. For example, if an agent were to move between A3 and A4 

in Figure 3.2, the corresponding MV would be (1,0). 

B 

C 

D 

— • 

/ 

/ 

• ' 
/ — 

A ^^M 

A ^ ^ H 

/ 

— > 

Figure 3.2: An example of a map and its direction map. 

The DM is updated on-line. Whenever an agent passes through a location /, the DV 

stored for I is updated by adjusting the DV a bit towards the agent's MV. During path 

planning, agents are encouraged to find a path that follows the directions indicated by the 

DM. This is done by weighting the cost of edges in such a way that a path of length d 

that follows the DM is cheaper than a path of length d that does not follow the DM. For 

example, in Figure 3.3, if the agent, indicated by a black circle, were to use A* to find a 

path between its current location D2 and its goal location A2, indicated by G, it would 

plan the path D2 — C2 — B2 — A2. However, the direction vectors point in the opposite 

direction, so when the agent takes the costs induced by the DM into account, it may find 

that the path D2 — C3 — B3 — A2 is cheaper, even though it is slightly longer. 
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Figure 3.3: An example of how a DM affects pa th planning. 

The next section will describe in detail how DVs are updated. Section 3.2 will discuss 

how agents use DMs for planning. The last four sections introduce variations of the basic 

direction map approach, namely increasing the agent's influence on the direction map, local 

DM approaches, abstraction, and using the DM for greedy search. 

3.1 Updating Direction Vectors 

A direction map is a collection of DVs; one for each location on the map. Rather than 

drawing the vectors by hand, as is done for approaches like flow field following (Section 2.6), 

we want to use the agents ' behaviour to build the DM. Building the DM is formulated as a 

learning problem, where at each location the DM at tempts to predict the direction in which 

the next agent will pass through this location based on the MVs of agents tha t have already 

passed through it. Initially, the DVs are set to (0,0), and the DVs are updated every time 

an agent enters or leaves a location /. One way to do this is by setting the DV for / to be 

a recency-weighted average of the old DV and the agent's MV, effectively moving the DV 

partially towards the MV. In particular, if DVX and DVy are the x- and y-components of 

the DV stored at location I and MVX and MVy, the x— and y-components of the agent's 

movement vector, we update the DV for location / as 

DVX <- (1 - a) • DVX + a • MVX 

DVy *- (1 - a ) • DVy + a • MVy, 

where a is a user-defined learning parameter tha t determines how much the DV is shifted 

towards the MV. 

Through minor algebraic manipulation it can be shown tha t there is a theoretical foun­

dation for these simple update rules. They can be obtained by using perceptrons, which are 

very simple neural networks. We will first describe perceptrons in general, and then we will 

show tha t the update rules from above are equivalent to the perceptron update rule. 
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A perceptron, or single-layer feed-forward neural network, is a very simple artificial 

neural network tha t can learn a function [28]. It takes a set of inputs and computes an 

output . Figure 3.4 shows a diagram of a perceptron. The arrows on the left-hand side 

denote the inputs and each, input a; is associated with a weight Wi. These weights are 

learned by the perceptron. Input OQ is fixed at - 1 , and WQ is called a bias weight. 

Figure 3.4: A neuron. Figure adapted from [28]. 

The output of a perceptron, i.e. the result of applying the learned function to a set of 

inputs, is computed as follows. The perceptron computes a linear function of the inputs and 

weights, 
n 

in => Wi • a,i. 
i=0 

It is desirable tha t the perceptron be able to learn non-linear functions, but the above is 

simply a linear function of the inputs. Therefore, a non-linear function g, called an activation 

function, is applied to this result, and the output of the perceptron is 

g(in). 

Some examples of commonly used activation functions are radial basis functions and sigmoid 

functions. 

Before the perceptron can be used, weights need to be learned. Although this is not the 

case in our application, in general the weights are learned during a training phase before the 

perceptron is used to compute outputs . Weights are updated by using a learning algorithm 

tha t is provided with a number of training examples, each consisting of a vector of inputs 

x=xi,...,xn and an output y. The learning algorithm updates the weight for each training 

example, and then repeats this process for the set of training examples until some stopping 

condition is satisfied. An example of such a condition is tha t the total change in the weights 

does not exceed some threshold. 

Pseudocode for the learning algorithm is given in Figure 3.5. Lines 3 through 6 show how 

the weights are updated based on a training example e. In line 3, the algorithm computes 

the linear combination of the inputs and their weights for example e. Line 4 computes 

the difference between y[e], the actual output provided by training example e, and g(in), 

the perceptron's output for the inputs given by e. This is the error in the output of the 
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function Perceptron-Learning(a,examples,network) r e t u r n s a set of weights W 
input examples is a set of examples, each consisting of an input vector •x=x\,...,xn and output y 

network is a perceptron with weights Wj, j=0,...,n, and activation function g 
1 repeat 
2 for each e in examples do 

3 in*-YTj=aW3xi[e\ 
4 Err <— y[e] — g(in) 
5 for j from 0 t o n 
6 Wj <— Wj + a x _Brr x g'(in) x Xj[e] 
7 until some stopping criterion is satisfied 
8 return W 

Figure 3.5: Gradient descent learning algorithm for perceptrons. Adapted from [28] 

perceptron. Lines 5 and 6 update the weights in a way tha t minimizes the sum of squared 

errors, which is a measure of how well the perceptron's output for each set of inputs matches 

the actual outputs given by training examples. Each weight Wj is modified by an amount 

equal to the product of the learning rate a (a parameter to the algorithm), the error in 

the output , the derivative of the activation function g'(in), and the input Xj this weight is 

associated with. A derivation of this update rule can be found in [28]. 

As was mentioned in the beginning of this section, we can use perceptrons to obtain the 

direction vector update rules. In this formulation, we place two perceptrons at each location 

in the map: one for the x— and one for the y—component of the DV. These are very simple 

perceptrons, which have no explicit inputs except a bias term, ao = —1, associated with 

weight Wo. The output of the perceptron is the x— or y—coordinate of the DV, i.e. the 

predicted x— or y—coordinate of the MV of an agent passing through the location. Whenever 

an agent moves into or out of a location, the weights are updated, so there is an implicit 

input to the perceptron indicating tha t an agent is passing through the location. This 

means tha t the learning algorithm from Figure 3.5 is not performed repeatedly over a set 

of training examples before the perceptrons are used. Instead, online learning is performed: 

whenever an agent passes through a location, a training example is generated and lines 3-6 

of the algorithm are perforrned just once for this training example. Learning the DM and 

using it for pa th planning are interleaved. 

Since there are no explicit inputs to the perceptrons, the training examples tha t are 

generated consist only of an output . Since we want the perceptrons to learn a DV, i.e. 

predict the MVs of agents passing through this location, these outputs are the x— and 

y—components of the MV. We will show tha t if we let the activation function be g(x) = —x, 

the update rules for the DV are equivalent to those for the perceptrons. In this case we can 

use a linear activation function since the only input to the perceptron is a bias input tha t 

is fixed at - 1 . Since the updates to the x— and y—coordinates are similar, we will show the 

derivation of the DV update rule only for the perceptron which learns the x—coordinate for 
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a location. 

When the only input to the perceptron is the bias input ao — - 1 with weight Wn, and 

the activation function is set to g(x) = —x, the output of the perceptron is 

glf^Wi. aA = g(W0 • (-1)) = -(W0 • (-1)) = W0. 

Since the perceptron learns DVX, i.e. the output of the perceptron is equal to DVX, we 

have that 

W0 = DVX 

Since there is only one weight, the update rules from lines 5 and 6 of Figure 3.5 can be 

rewritten as 

Wo = Wo + a • Err • g'(in) • xo[e\. 

Here, we can replace Wo by DVX, and xo[e], the input from the training example, by -1 

since it is the bias input. Since g(x) = —x, its derivative is g''(in) = —1. Err is simply 

the difference between the actual output, MVX, and the output of the perceptron, which is 

DVX. Therefore, we have that 

DVX = DVx + a-(MVx-DVx)-(-l)-{-l) = DVx+a-(MVx~DVx) = (l-a)-DVx+a-MVx, 

which is the proposed update rule for the DVs. 

Now that we have shown that the DV update rules that were given at the beginning of 

this section are a form of perceptron update rules, we will show an example of how DVs are 

updated. Consider the map from Figure 3.2 again, let a = 0.5 and assume that all shown 

DVs have length 1. Assume there is an agent in location B2 that moves to B"i, so the MV 

corresponding to this movement is (1,0). First, we update the location the agent has just 

left. The DV for this location was f -4=, 4= ), so we update the x-component as 

DVX = (1 - 0.5) • 4 = + 0.5 • 1 w 0.85, 

V2 

and the y-component as 

1 

so the DV is approximately (0.85,0.35). 

Next, we update the DV for the location the agent has moved into, B3. The DV stored 

for this location is (1,0), and the DV associated with the incoming direction is (1,0). The 

we get 

DVX = 0.5 • 1 + (1 - 0.5) -1 = 1 

and 

DVV = 0.5 • 0 + (1 - 0.5) -0 = 0 

so the resulting DV is (1,0), which is the same as before this update, because the agent 

moves along the direction of the DV. 

DVy = (1 - 0.5) • -j= + 0.5 • 0 « 0.35, 
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3.2 Planning with Direction Maps 

Planning is done using A* search, which was introduced in Section 2.2.1. The goal of using 

a DM during planning is that the agents choose their paths based on the paths that other 

agents have taken before them. Therefore, they are encouraged to pass through each location 

in the direction of the DV. This is done by modifying the cost of actions in the environment. 

Whenever a MV for an edge does not point in the same direction as the DV stored at the 

begin and end locations of the edge, a penalty is added to the cost of that edge. The size 

of the penalty depends on how similar the MV for the edge is to the DVs stored for the 

locations that are adjacent to the edge. The penalty is high when the MV points in the 

exact opposite direction of the DVs, and low when the MV is only slightly different from 

the DVs. 

In most map-based pathiinding applications, the regular edge cost is equivalent to the 

length of the edge: 1 for a cardinal edge, and \/2 for a diagonal one. When a DM is used, 

the additional cost for traversing an edge is based on the dot products between the edge's 

MV and the DVs of the adjacent locations. The dot product was chosen because it is a way 

to measure how similar two vectors are. 

Geometrically, the dot product between two vectors a and b is the product of the length 

of the scalar projection of a onto b, and the length of b [18]. This is illustrated in Figure 3.6. 

If we let b be the MV, which has fixed length 1, and a be the DV associated with one of the 

adjacent locations, we can see that the length of the projection depends on two things: the 

length of vector a and the angle between a and b. The dot product will be negative if the 

angle between the two vectors is greater than 90°, zero if the vectors are orthogonal, and 

positive if the angle is less than 90°. The dot product is smaller for shorter DVs, and larger 

for longer DVs. 

< P 
< > 

Ibl 

Figure 3.6: Geometrically, the dot product is the product of the length of b, indicated by 
|6|, and the scalar projection of a onto b, indicated by spa. 

We compute the penalty induced by the DM by computing a weight for each of the two 

locations adjacent to the edge, say locations a and b, and taking the average. The weight 
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for location a is a value between 0 and 1. It is computed by first taking the dot product 

between the DV for a and the agent's MV. Since DVs and MVa can have length at most 1, 

the dot product will always be a value between -1 and 1. We map these values to 0 and 1 

by simple mathematical operations, giving weight: 

_ (I - (MVX • DVx{a)) + (MVy • DVv(a)y 
Wa~\ 2 

where MVX • DVx(a) + MVy • DVy(a) is the dot product between the MV and DV{a). If 

wa = 0, the DV at a and the MV point in the same direction and are of unit length, and 

when wa = 1, the vectors are unit length and opposite to one another. 

After this weight has been computed for both locations a and b, the edge cost is computed 

as 
f-Wa+Wb 

Ce,DM — Ce + Wmax • I 

where ce is the unweighted cost of traversing edge e, and wmax is a weight parameter, which 

can be seen as the penalty induced by taking an action with a MV that is opposite to the 

DVs at both adjacent locations. For example, in Figure 3.2, the penalty for moving from 

BA to B3 is wmaxi because the MV is exactly opposite the DVs both at B4 and at B3. 

As an example of how a DM is used to compute edge cost, consider the edge between 

locations D\ and D2 in Figure 3.2. The DV stored at location Dl is (-4=, -4=), and the DV 

stored at D2 is (0,1). The MV associated with traversing the edge from Dl to D2 is (1,0). 

We then compute 

wD1 = ^ ^ w 0.1464 

wD2 = = 0.5. 

Thus, if we let wmax — 1, the cost of this edge is 

ce,DM = RegularEdgeCost + Penalty = 1 + 1 • I — — ) « 1.3232. 

3.3 Local Direction Maps 

The direction map approach has so far been described in a way that requires that all agents 

have access to a global data structure. However, the approach can be modified so that the 

agents only use local informsition. Two possible approaches are described here. 

The first approach assumes that there exists a direction map as described above, but 

the agents can only see the DM within some window of size win. One could imagine that 

the DM consists of arrows that are drawn on the ground, and that the agents can only 

see the ground up to some distance, similar to how ants can only sense pheromones within 
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some distance. During planning, the agents only use the DM for locations close around 

them, within that window, and ignore it (i.e. use regular edge costs) beyond the window. 

The resulting path may look like the one shown in Figure 3.7. The circle indicates the 

local radius within which the agent can see the direction map. As a result, the first part of 

the path may look the way it does in the figure. For the rest of the path, the agent uses 

unweighted edge costs to plan its path (i.e. ignores the DM), so on this simple map, the 

planned route will be straight lines to the goal. However, the agent does not follow this path 

all the way to its goal. Instead, it follows this path to the edge of the window, and then 

re-plans with the window shifted so that it is again centered at the agent's current location. 

This process is repeated until the agent reaches its goal. 

Figure 3.7: An example of using direction maps with local information only. 

The second way in which agents can be restricted to use only local information is if each 

agent keeps its own copy of the direction map. A global DM is stored as well, but agents 

only have local access to it. The global DM can again be seen as arrows on the ground that 

an agent can only see within some user-defined radius riocai. 

Whenever an agent makes a move, it updates the DV for its current location in the 

global DM in the same way it is done in the basic DM approach as described in Section 3.1. 

Therefore, the global DM stores up-to-date DVs. However, an agent is only able to access 

the global DM within radius r/oca; of its current location. After every move, the agent 

replaces its own copy of the DVs for locations within this local radius with up-to-date DVs 

from the global DM. Therefore, it has recent information about the DVs for locations near 

the ones it has recently visited, while the DVs for locations it has not visited for some time 

may have changed since the eigent last updated them. When the agent plans its path, it uses 

its own copy of the DM, which may not be up-to-date but allows it to make better informed 

decisions than if it were to ignore the direction map outside its local visibility radius. This 

way, the agent has some knowledge of the direction map without requiring full access to the 

global DM. 
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Figure 3.8: Using local maps. 

Figure 3.8 shows what the DMs for this method look like in practice. The dots in these 

figures are the agents. The first figure shows the global direction map, Figure 3.8(b) shows 

the local copy of the DM for one of the agents, and Figure 3.8(c) shows the DM maintained 

by a different agent. These last two DMs contain less DVs than the global DM since the 

agents have only visited a portion of the map. 

Advantages of this approach are that it can be used when agents only have local access 

to the direction map and that it may be cheaper to plan with only a subset of the DVs. A 

disadvantage is that the cost of storing a DM for each agent may be prohibitively expensive 

in terms of memory requirements. 
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3.4 Updating Surrounding Locations 

Until now, the agents only modified the direction vectors for the locations they passed 

through. It may be beneficial to update locations surrounding the ones the agent passes 

through as well, so that the agent creates a wider directional corridor as it traverses the 

world. 

Whenever an agent makes a move, we update the new location as well as locations within 

some distance from it. For the agent's new location, we update the DVs using a, just as 

described above, and for the other locations, we update the DVs with a different learning 

rate, as, which is a parameter to the algorithm. Because we want the agent's movement to 

have a smaller impact on the DVs of the surrounding locations than on the locations along 

the path, we choose as to be smaller than a. One possibility is to use increasingly smaller 

as for locations that are farther away from the agent's current location. 
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Figure 3.9: An example of updating surrounding locations. 

An example of what this looks like for a single agent is shown in Figure 3.9. Here, the 

agent updates locations it passes through as well as the eight locations directly surrounding 

it. The path the agent has taken is marked by longer DVs than the locations surrounding 

the path, indicating that these DVs are learned using a larger learning parameter a, but the 

surrounding locations are also updated, resulting in a corridor of shorter DVs that surrounds 

the agent's path, reflecting that these have been learned using a smaller learning parameter 

as. 

3.5 Abstraction 

Using direction maps is more expensive than simply using Local-Repair A*. One reason 

for this is that the heuristic only takes the distance to the goal into account, and not the 
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penalties induced by the DM. Therefore, it may lead the agent astray. Another reason is 

that the agent may need to plan around expensive edges, which increases the number of 

node expansions. 

This is illustrated in Figure 3.10. The agent, indicated by a circle, is planning a path to 

its goal, indicated by 'G'. There is only one way to get from the agent's current location to 

the goal, but the DVs, indicated by arrows, are facing opposite to the direction in which the 

agent needs to travel to get to its goal. Assume that the cost of moving to any node in the 

bottom half of the map is just the edge cost. Figure 3.10(a) shows the nodes that will be 

expanded by the agent before it expands the corridor node if wmax = 1. All other immediate 

neighbours will be considered before the corridor node because it is twice as expensive to 

travel to the corridor node as it is to travel to any of the other neighbours. Figure 3.10(b) 

shows which nodes will be considered before the corridor node when wmax = 3. The agent 

will search more nodes in the bottom half of the map first. Therefore, the number of nodes 

expanded increases as wmax increases. 
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Figure 3.10: The number of nodes expanded increases as wmax increases. 

As discussed in Section 2.4, abstraction is an approach that has been succesfully used to 

reduce the amount of work needed to perform pathfinding, while generating paths of good 

quality. 

When abstraction is used, the map is simplified to reduce the size of the search space. A 

rough plan is found in the abstract graph, which is then used as a guideline for the low-level 

path. These ideas can be combined with direction maps in many ways. One approach is to 

divide the map into square sectors, similar to the "way presented by Sturtevant [30]. In each 

sector, an abstract node is created for each connected component within that sector. An 

abstract edge is added between abstract nodes A and B whenever there exists an edge in the 

map graph between some child of A and some child of B. Thus, the abstract graph maintains 

the topology of the underlying map. An example is given in Figure 3.11. Figure 3.11(a) 

shows the underlying map as well as sector boundaries and abstract nodes. Figure 3.11(b) 
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Figure 3.11: Abstraction example. 

shows the abstract graph, including edges. 

Paths are planned by first performing an A* search in the abstract graph, without using 

a DM. Next, this path is refined on the map level, by finding a path between the current 

location and any child of the next abstract node. In this step, the DM is used to guide 

the search. In the approaches from Section 2.4, the agent always finds a path to a specific 

child of the abstract node, but when DMs are used it may be beneficial to search to any 

child of the abstract nodes, except for the last one. This way, the agent can follow the 

DM more closely. In addition, these approaches restrict refinement to the children of the 

abstract nodes, but when the agent takes the DM into account it may be cheaper to follow 

a path outside of the sectors defined by the abstract path. Therefore, we allow the agent 

to find a path that is not restricted to these sectors. This is illustrated in Figure 3.12. The 

agent plans an abstract path through the three sectors marked by thick black lines, but the 

map-level path, indicated by a dashed line, does not lie fully within these sectors. 

After finding an abstract path, the agent can refine the entire path before it starts mov­

ing. However, one of the advantages of using abstraction is that the agent can quickly find 

a high-level path and only do partial refinement, as was done with PRA*, for example [31]. 

Rather than refining the entire abstract path, it only refines the first part of it, and replans 

when it gets to the end of this partial path. In our implementation, the agent plans a path 

to the second next abstract node, and it then cuts this path off after some user-defined 

proportion. 

The amount of work done is reduced because we use the map-level graph and the DM to 

compute a series of short paths between sectors rather than one long path. In addition, this 

approach is suitable for real-time search since partial path planning can be done similar to 

the way it was done in PRA* [31]. 

It is possible that the agents get deadlocked. This may happen, for example, if two 

35 



2 ^ ' 

* 

d3E: 

Figure 3.12: An example of path planning with abstraction. 

agents are standing at the edge of two adjacent abstract sectors, as in Figure 3.13. The 

squares indicate different sectors and the gray circles are abstract nodes. The white agent 

has planned the abstract path A-B-C-D, while the black agent has planned D-C-B-A. The 

black agent's current abstract goal is C, while the white agent's current abstract goal is B. 

On the map level, each agent's goal is to get to any child node of its abstract goal. Now 

imagine that the agents have planned their paths and collide in the location where they are 

in the figure. Since the white agent's current location is the closest child node of the black 

agent's abstract goal, and vice versa, both agents are waiting for the other agent to move off 

its goal and the agents are deadlocked. This situation can be resolved by letting the agents 

skip the next abstract location and path to the next abstract node instead. 

it. 

6 

-tgp— 
. c. 

Figure 3.13: A possible deadlock scenario. 
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3.6 Using Direction Maps for Greedy Search 

In Section 2.6 we discussed steering. One form of steering is flow field following, in which 

agents greedily follow the direction indicated by a flow field. It uses a hand-drawn map 

which looks similar to a DM. In fact, we can use an established DM similar to the way the 

flow fields are used. 

To do this, we first have to build a DM. This can be done, for example, by letting a 

number of agents perform pathfinding on a map. Next, we remove those search agents and 

place greedy agents on the map. A one-step greedy agent will always take the cheapest 

action. When a direction is stored at its current location, it will find the cost of each 

adjacent edge and choose the cheapest one. It will not consider occupied locations and it 

will prefer a location with a DV associated with it to one that does not. If the top two 

choices are very similar in cost, it will take the second best choice with some probability, 

0.25 in our implementation. If no direction vector is stored at the agent's current location, 

it will take a random action. The agent only expands a single node at each time step, so 

this is a cheap way to navigate the world. 

An example is shown in Figure 3.14. The direction map was generated by letting 40 

agents patrol back and forth f 0 times. The DVs surrounding the agent's path are updated 

as well as the ones on the path. After those ten patrols, the DM agents were removed, and 

a greedy agent was added in a random location. If the agent is placed on a grid cell where 

no DV is stored, the agent makes random moves until it encounters the DM. The thick line 

indicates the path the greedy agent follows once it is on the DM. 

Figure 3.14: Using a DM for behaviour that is similar to steering 
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Chapter 4 

Experimental Results 

In Chapter 3, we introduced heuristic search with direction maps as an alternative to the 

existing multi-agent path planning algorithms which were discussed in Section 2.5. In this 

chapter, the different direction map approaches from Chapter 3 will be compared, both to 

each other and to previously developed methods. This chapter contains a representative 

subset of the full set of experiments that were run. 

The experiments were conducted in the Hierarchical Open Graph (HOG) framework [1]. 

For each experiment, a number of agents were placed on a map and asked to perform a 

pathfinding task. The task that is used here is a patrolling task, in which each agent must 

move back and forth between two locations a user-defined number of times. This is a task 

that is common in, for example, real-time strategy games, where characters collect resources 

by walking back and forth between the resource and their home base. Performing this task 

well allows the agents to collect resources more efficiently. If we extend this idea to multiple 

patrol locations, this could be used by robots in an office that deliver mail or coffee to a 

number of different offices. 

The maps used here are 2-dimensional grids with eight directions of movement: four 

Figure 4.1: An example showing valid moves for agents in different locations 
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cardinal directions, and four diagonal ones. This is shown for the agent in cell D4 of 

Figure 4.1, where the arrows indicate valid actions. Each grid cell is either passable or 

blocked, and agents cannot move diagonally between two passable locations if a location 

which is adjacent to both locations is blocked. For example, in Figure 4.1, the agent at 

location Bl cannot make a diagonal move to C2. 

A number of different maps were used for the experiments. Experiments were performed 

on maps of sizes 32x32 and 64x64. The larger maps allowed for experiments with more 

agents, and therefore they give more meaningful results in terms of how well-coordinated 

the agents' movement is. Unless otherwise noted, the results presented in this chapter were 

obtained on the larger maps, shown in Figure 4.2. On the empty map in Figure 4.2(a), each 

agent's patrol locations are chosen randomly from across the map. On maps (b), (c), and 

(d), each agent has one patrol location on the right-hand side of the map and one on the 

left-hand side, and they are restricted to the locations shown in dark grey. Maps (b) and (c) 

were chosen to evaluate the performance when the heuristic is less accurate. In this case, 

the inaccuracy of the heuristic is due to the fact that it leads the agents through the barriers 

(a) (b) 

(c) (d) 

Figure 4.2: Maps used for experiments 
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in the center of the map. In addition, Map (c) allows us to evaluate how well the direction 

map approach performs when the map contains a more con ta ined area with many obstacles 

(i.e. the center of the map) . Map (d) was used to determine how well pathfinding with 

direction maps performs when the agents need to share small passageways, and whether 

the agents are able to avoid congestion at these passageways. The empty map was used to 

evaluate the performance when agents ' patrol locations are not limited to certain portions 

of the map. Due to t ime constraints, experiments were not performed on actual game maps. 

Initially, patrol locations were chosen at random, but in tha t case it is possible tha t an 

agent cannot reach its goal. This happens when the goal is surrounded by other agents ' goals, 

and the other agents have already reached their goals, effectively blocking every possible 

path to the goal. Therefore, we have added the restriction tha t the patrol locations lie on a 

checkerboard pat tern, i.e. t ha t the sum of the x— and ^^coordina tes of any s tar t or goal 

location is always even. 

Most reported results show an average over 50 different runs, where each run consists of a 

different randomly selected set of patrol locations, but some da ta was obtained by averaging 

results of 1000 different runs in order to assert the statistical significance of the data . 

For all experiments, the agents move at the same speed, namely one unit of distance per 

unit of t ime. Although the simulation time is increased in increments, agents ' movement is 

maintained in real-time. Therefore, when an agent makes a move, it will move on the first 

time step after the t ime required to make this move has elapsed. Agents are not slowed 

down because of t ime spent thinking (planning), and thinking time is not included in the 

reported simulation times. The order in which agents plan is determined by the order in 

which they are placed on the map before the experiment begins, and it does not change. For 

all experiments in this chapter, the agents perform 20 patrol loops, where for each patrol 

loop an agent moves from its s tar t location (i.e. its first patrol location) to its second patrol 

location, and back to the start location. The experiment ends when the last agent has 

finished its last patrol loop. 

For any search done on the map graph, with or without a DM, the octile heuristic is 

used. The octile distance, h0, between two locations l\ and 12 is the length of a shortest 

path between the two locations on a empty 8-connected map. Formally, 

h0(ll,l2) = V2 • min(\llx — 12X\, \lly — I2y\) + \\llx — 12X\ — \lly — I2y\\, 

where the x— and y— subscripts indicate the x— and y~coordinates of a location, respec­

tively. This heuristic is similar to the Manhat tan distance, or l\ norm, except tha t has been 

adapted to include diagonal moves as well as cardinal moves. 

In the case of abstraction, straight-line distance between two abstract node locations is 

used as a heuristic in the abstract level. 
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The visibility radius is one of the parameters for the A* and Weighted A* algorithms. 

It specifies the distance within which an agent can see other agents when it plans. 

We evaluate performance based on a number of metrics: 1) the average number of nodes 

expanded by the search algorithm per agent per loop, which is an indication of the amount 

of work done, 2) total simulation time, which is the time that elapses between when the first 

agent starts moving and when the last agent finishes its simulation, 3) the average distance 

an agent travels in one patrol and 4) the average number of failed moves, or the number of 

collisions, per agent, per loop. 

One of the goals of direction maps is to create believable behaviour. Although in some 

applications this is not important, this is desirable in certain types of application where 

human-like behaviour is required. An example of this is simulations or crowds of non-player 

characters in video games with realistic graphics. The metrics discussed in the previous 

paragraph do not give an indication of how well an algorithm performs in this sense. The 

visual fidelity of the simulations is difficult to quantify, but we attempt to do this with a 

new metric, which we call map coherence. This is meant as a way to express how uniformly 

agents move in the map. To illustrate this, Figure 4.3 shows two DMs. The left figure shows 

an example of a map in which the arrows do not follow each other coherently, i. e. we cannot 

trace a clear path through the map by following the DVs. The map coherence in this case 

would be low. The direction map on the right, on the other hand, shows very distinct paths 

and clear flow. Therefore, it has higher coherence. 
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Figure 4.3: Illustration of map coherence 

Map coherence is computed as follows: for each location Vi in the map where a DV is 

stored, we find the movement vector that is closest to the DV of v\, i.e. the one that make 

the smallest angle with it. We then find the adjacent location V2 that lies in the direction of 

this movement vector. We create a new vector by taking the average x- and y-coordinates 

of the DVs for V\ and V2 and compute its magnitude. The map coherence is the average of 
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these values over all locations where a DV is stored. 

Since the length of the DVs can be at most 1, map coherence lies between 0 and 1. Very 

low coherence is not found in practice because as an agent moves through the world, the 

MVs that make up its path are often coherent. During our experiments, the coherence was 

never lower than 0.25 and never higher than 0.95. Therefore, the scale on coherence graphs 

will range from 0.25 to 0.95. 
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Figure 4.4: Map coherence example 

Consider the map in Figure 4.4 for an example of how coherence is computed. For 

simplicity, we assume that all DVs are of unit length. First, we look at the DV for location 

C2 as an example. This DV is (0,1) and it points towards B2, which has DV (0,1) associated 

with it. Averaging the x— and y—coordinates of these two DVs gives (0,1), which has 

magnitude 1. Therefore, the magnitude term for location C2 is 1. Since these two DVs 

point in the same direction this term is high. 

As another example, we look at location C3, with DV ( — 1,0). Its DV points to location 

C2, which has the DV (0,1) associated with it. Averaging the x— and y-components gives 

the DV (-0.5,0.5), which has magnitude - ^ ~ 0.71. 

To find the map coherence, we would do this for all locations and compute the average 

value. 

4.1 Direction Maps 

We will first evaluate the pathfinding performance when direction maps are used. Some 

general observations about the behaviour of direction map-based path planning will be 

discussed first, followed by an overview of how the parameters affect the performance of 

DMs. 
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4.1.1 General Observations 

Although the behaviour of the agents is chaotic at first, lanes are quickly formed as the 

direction map is updated. In map (c) in Figure 4.2, for example, each of the narrow corridors 

in the center is soon designated as a left-to-right passageway or a right-to-left passageway. 

This ensures that the agents can move quickly and collision-free from one side of the map 

to the other. 

The lanes that are established are not always the most efficient routes because the DM 

sometimes initially gets set this way. This happens, for example, when agents who initially 

defined the lane had to move out of the way of other agents. Although the direction map 

continues to change throughout the experiment, the agents sometimes choose a path and 

follow it for the remainder of the simulation. 

Another observation is that a different set of start and goal locations can give rise to 

different lanes being formed even on the same map. For example, on map (b) in Figure 4.2, 

the agents sometimes cross over above the obstacle in the middle of the map, as illustrated 

for a smaller map in Figure 4.5(a), and sometimes they do not, as in Figure 4.5(b). When 

the agents cross over, a bottleneck is created, but since the agents form lanes, the behaviour 

is more coherent than when no DM is used. 
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Figure 4.5: Different lanes can be formed on a map 

We measured the number of nodes expanded, distance, and number of collisions for each 

patrol loop individually. The first loop often gives poor performance - both for direction 

maps and for previously existing approaches - because the agents are likely to collide in 

the middle of the map, especially on maps (b), (c), and (d) in Figure 4.2. The last loop of 

a simulation often shows optimistic numbers because once some of the agents finish their 

simulations, the task is easier for the remaining agents. Therefore, the tables below will 

report averages that do not include the first and last patrol loop. 
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4.1.2 Parameter Variation 

The basic direction map approach requires the setting of some parameters . The first set of 

experiments will analyze how the performance of the algorithm changes as these parameters 

change. 

First, we will vary wmax, the penalty added to the edge cost if the direction vector is 

opposite to the movement vector. The da ta in Table 4.1 shows the performance of the DM 

as wmax changes between 2 and 20. The da ta reported here is for map (b) in Figure 4.2, 

with 100 agents. The visibility radius is 5 and a is set to 0.5, but the results are similar for 

other values of these parameters. Throughout this chapter, the settings for each table were 

also used for the corresponding coherence figure. 

Table 4.1 shows tha t as wmax increases, the number of nodes expanded increases as well. 

The reason for this is tha t if the weight is higher, the agent will need to expand more nodes 

to find paths around high-cost edges, as was explained in Section 3.5. The simulation time 

and distance do not change much as wmax is varied, but the number of collisions decreases 

as wmax increases, because agents are more likely to follow the DM since not following it is 

more expensive when wmax is higher. 

Figure 4.6 shows how the coherence changes as wmax increases. Since the results for the 

different values are so close together, only a subset of the weights reported in Table 4.1 is 

shown. However, the general trend is the same for all values from the table. The coherence 

is not very sensitive to a change in wmax, but the trend is slightly increasing as wmax 

increases. This is because the agents are more likely to follow the DM when wmax is higher, 

but once the penalty is high enough an increase in wmax no longer affects the coherence of 

their paths. 

Next, we will determine what happens as a, the learning rate for the perceptrons, 

changes. Table 4.2 shows an example of how some metrics change as a is varied between 0.1 

and 0.9. This experiment was run on map (b) in Figure 4.2, with 100 agents and visibility 

radius 5. The weight for the DM, wmax, was set to 10, an intermediate value from the pre­

vious experiment, since the nodes expanded increases as wmax increases, and the number of 

collisions decreases as wmax increases. 

Wmax 
# Nodes expanded 
Simulation t ime 
D i s t a n c e 
# Collisions 
wrtiax 
# Nodes expanded 
Simulation t ime 
Distance 
# Collisions 

2 

5698.95 
4645.05 

146.52 
12.28 

12 

5467.24 
4686.18 

151.81 
7.81 

4 

5211.16 
4581.51 

145.70 
9.31 

14 

5736.57 
4725.24 

153.58 
7.93 

6 

5267.53 
4626.45 

147.50 
8.65 

16 

5793.98 
4742.61 

154.56 
7.74 

8 

5347.89 
4638.99 

148.9 
8.25 

18 

5790.29 
4752.84 

155.37 
7.59 

10 

5438.95 
4644.99 

150.45 
8.08 

20 

5959.03 
4788.18 

156.21 
7.61 

Table 4.1: DM, varying w., 
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Figure 4.6: Coherence for DM does not change much as wmax changes 

a 
Nodes 
Sim. t ime 
Distance 
Collisions 

0.1 
5807.23 
4613.43 

149.80 
8.55 

0.2 
5289.14 
4607.61 

149.62 
7.89 

0.3 
5306.76 
4610.13 

149.57 
7.87 

0.4 
5357.70 
4644.69 

150.25 
7.92 

0.5 
5458.28 
4646.73 

150.65 
8.10 

0.6 
5597.21 
4682.67 

151.19 
8.17 

0.7 
5492.70 
4674.42 

151.06 
8.02 

0.8 
5582.98 
4701.45 

151.56 
8.25 

0.9 
5550.96 
4712.70 

151.84 
8.23 

Table 4.2: DM, varying a 

Changing the learning rate does not seem to have a strong effect on these metrics, other 

than that a value of 0.1 performs poorly. As the table shows, there is a slight increasing 

trend in time and the distance travelled. The number of nodes expanded and the number of 

collisions oscillates, but with the exception of a = 0.1 it only varies within a few percentage 

points. 

Figure 4.7 shows the map coherence for each of the values for a. The figure shows that 

the coherence increases quickly for lower values of a, but after a = 0.5 the graph levels off 

at approximately the same coherence. The difference is that it takes the DM longer to learn 

with lower values of a. 

Next, we will analyze the behaviour as the visibility radius r changes. For this experi­

ment, the radius is varied between 2 and 10, and the results are shown in Table 4.3. The 

data is shown for two maps since the behaviour of maps (b) and (c) is different from maps 

(a) and (d). The reason for this is that the heuristic is more accurate on maps (a) and (d) 

than it is for maps (b) and (c). For these experiments, wmax is set to 10, and the map 

contains 100 agents. We set a = 0.5 since Figure 4.7 shows that the coherence increases as 

a increases from 0.1 to 0.5, but it does not increase much as a increases beyond 0.5. 

Both the time taken to finish the simulation and the distance travelled by the agents 

increases for maps (b) and (c), because the agents plan paths around other agents, but it 

does not change much for maps (a) and (d). The reason for this is that the heuristic does not 
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Figure 4.7: Coherence for DM, for different values of a 

Map (a) 
Radius 
Nodes 
Sim. t ime 
Distance 
Collisions 

2 
1510.93 
4118.37 

83.98 
1.39 

3 
1473.74 
4132.29 

83.52 
1.26 

4 
1474.49 
4089.12 

83.45 
1.23 

5 
1470.37 
4093.98 

83.34 
1.20 

6 
1460.98 
4065.33 

83.22 
1.19 

7 
1464.68 
4083.30 

83.18 
1.19 

8 
1456.17 
4063.08 

83.16 
1.17 

9 
1475.43 
4099.56 

83.17 
1.16 

10 
1480.58 
4049.64 

83.08 
1.15 

Map (c) 
Radius 
Nodes 
Sim. t ime 
Distance 
Collisions 

2 
2377.06 
4085.55 

120.59 
4.49 

3 
3182.47 
4231.47 

126.52 
5.80 

4 
3599.1 

4327.41 
129.50 

6.20 

5 
4001.19 
4382.55 

131.60 
6.59 

6 
4426.97 
4449.12 

133.97 
6.99 

7 
4755.75 
4478.97 

135.62 
7.21 

8 
5236.31 
4539.24 

137.34 
7.53 

9 
5768.61 
4564.11 

139.13 
7.85 

10 
6226.42 
4618.35 

139.82 
8.03 

Table 4.3: DM, varying visibility radius 

lead the agents astray on those last two maps. The average number of nodes expanded per 

agent per loop is usually not affected much, but in the case of map (c) the number of nodes 

expanded increases, because the center area sometimes gets very congested. The average 

number of collisions per agent, per loop decreases for most maps as the radius increases. 

This is to be expected since the agents can see other agents from farther away. However, 

the number of collisions increases for map (c) in Figure 4.2. This, too, is caused by the fact 

that the area in the middle of that map gets very congested. On this map, being able to see 

more of the other agents does not help because the agent does not know whether the other 

agents are moving towards it or away from it. 

Figure 4.8 shows that the coherence is not affected much by a change in visibility radius. 

The only exception is tha t radius 2 performs better for the first par t of the simulation, 

because the agent does not move out of the way of other agents who may be moving in the 

same direction. 

Next, we will evaluate how the performance changes as the number of agents on the map 

increases. Table 4.4 shows the results for 20 to 160 agents, on Map (d) in Figure 4.2, with 

Wmax = 2, visibility radius 5, and a = 0.5. As we would expect, the performance gets worse 

46 

O 0.55 ; 

oj 
0.45-

0.4 - ; ' 

0.35 f"' 

0.3 r 

= 0.8 
= 0.7 
= 0.6 
= 0.5 
= 0.4 
= 0.3 
= 0.2 



r=2 
r=3 " 
r=4 

r=5 
r-6 -

---r=7 

r=8 " 
r=9 

| — r= 101 

1000 1500 2000 2500 3000 3500 4000 4500 5000 
Time (s) 

Figure 4.8: Coherence for DM does not change much as the visibility radius changes 

as the number of agents increases. The number of failed moves increases because there are 

more other agents to collide with. As a result, agents need to re-plan more often, which 

increases the average number of nodes expanded. The distance and time increase because 

the agents need to take longer paths to avoid other agents. These results are consistent 

across the different maps. 

# agents 
Nodes expanded 
Simulation t ime 
Distance 
Collisions 

20 
649.66 

3522.51 
110.88 

0.37 

40 
831.45 

3657.75 
110.85 

0.69 

60 
969.90 

3760.86 
111.67 

1.03 

80 
1120.92 
3782.79 

112.43 
1.36 

100 
1213.41 
3840.93 

112.93 
1.74 

120 
1327.25 
3924.36 

113.03 
2.14 

140 
1480.54 

3977.4 
114.07 

2.65 

160 
1622.55 
4039.86 

114.62 
3.23 

Table 4.4: DM, varying the number of agents on the map 

Figure 4.9 shows how the coherence changes as the number of agents increases. The 

coherence decreases as the number of agents increases because agents need to take more 

other agents into account, which will make movement less coherent. 

4.2 Comparing Direction Maps to Other Approaches 

Now we have some idea of how the parameter settings affect the performance of the DM 

approach, we will compare it to two other multi-agent pathfinding approaches: Local-Repair 

A* (LRA*) and Windowed Hierarchical Cooperative A* (WHCA*). These were discussed 

in Section 2.5. 

Table 4.5 compares the performance of LRA*, DM, and WHCA* on map (c) for 100 

agents. The DM uses wmax = 10, and WHCA* uses window size 16. The perceptron 

learning rate is a = 0.5. The visibility radius for DM and LRA* set to 5. The results are 

similar for the other maps. 
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Figure 4.9: Coherence for DM, for different numbers of agents 

The table shows that the number of nodes expanded is smallest for LRA* and highest 

for WHCA*. We expect WHCA* to expand the most nodes because it performs a search 

both in time and in space. We expect the DM method to expand more nodes than LRA* 

because it uses modified edge weights which require it to search around more. The time and 

distance are smallest for WHCA*, and largest for LRA*. WHCA* tries hard to be optimal, 

so it finds shorter paths and takes less simulation time than either the DM or LRA*. The 

paths are longer and more time is used by LRA* than by the DM, because agents have to 

revise their plans every time they collide, which happens significantly more often for LRA* 

agents. The number of collisions is highest for LRA*, which does not take the paths of other 

agents into account, and lowest for WHCA*, which plans around the paths of other agents 

within the window. 

Figure 4.10 shows the coherence for these three approaches. The coherence is lowest 

for WHCA*, because it tries hard to be optimal and therefore sometimes plans convoluted 

paths. The coherence is highest for the DM because the agents take the movement of other 

agents into consideration when they plan. Near the end of the simulation, the coherence 

for LRA* increases. This happens when some of the agents have finished their simulations. 

The remaining agents can plan straighter paths because they do not need to move around 

other agents, and this increases the coherence. 

^ Nodes expanded 
Simulation t ime 
Distance 
# Collisions 

DM 
4604.71 
4389.77 

132.25 
6.90 

LRA* 
2184.32 
4996.44 

139.18 
19.60 

WHCA* 
5980.71 

120.92 
3508.32 

3.00 

Table 4.5: Comparison of performance of DM, A*, and WHCA* 
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Figure 4.10: Coherence for DM, LRA* and WHCA* 

4.3 Weighted A* 

Table 4.5 showed that the DM approach expands a lot of nodes compared to LRA*, and 

one way to reduce this is by using Weighted A* (WA*) instead of A*, both in the DM case 

and in the case of Local-Repair A*. Weighted A* was discussed at the end of Section 2.2.1. 

Table 4.6 shows how the results change when Weighted A* is used, both with and without 

using a DM, as well as what happens when the A* weight is varied from 2 to 4 to 6. The 

results shown here are for map (c) in Figure 4.2, with visibility radius 5 and a, = 0.5. The 

DM used wmax = 10. 

Notice that using weighted A* does reduce the number of nodes expanded; especially for 

the DM. In fact, the DM now expands less nodes than LRA*. This is because the search 

has more of a depth-first aspect, so the algorithm will expand nodes with higher g-cost than 

regular A* would. Since the weighted edges make the heuristic less accurate, this performs 

better for the DM method. 

When LRA* is used, the other metrics only change within a few percentage points for 

the different A* weights. In the case of the DM, however, time, distance and the number 

of collisions increase as the A* weight increases. The number of collisions increases as the 

A* weight increases because the g-cost portion of the evaluation function now has a smaller 

effect on the total /-cost of a node, so the DM influences the agent's decision less. As the 

number of collisions increases, the agent has to re-plan more often, which is the reason for 

the increase in distance and time. 

Figures 4.11 and 4.12 show the coherence for these two approaches. Although the dif­

ferences are small, the coherence is higher when WA* is used, and it increases as the weight 

increases. The reason for this is that when agents plan using weighted A*, they plan to 
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# Nodes expanded 
Time 
Distance 
# Collisions 

# Nodes expanded 
Time 
Distance 
# Collisions 

LRA* 
2187.73 
4993.83 

140.00 
19.92 

DM 
3913.05 
4389.77 

131.26 
6.44 

WA*(2) 
1821.72 
5046.06 

141.95 
19.37 

WA*(2) 
1353.95 
4384.22 

130.92 
6.71 

WA*(4) 
1737.93 
5228.79 

142.20 
17.48 

WA*(4) 
1415.57 
4559.52 

136.90 
10.81 

WA*(6) 
1621.30 
5292.24 

142.40 
16.14 

WA*(6) 
1546.99 
4724.59 

139.85 
13.18 

Table 4.6: Comparison of performance of LRA*, DM, with regular A* vs. weighted A* 
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Figure 4.11: Coherence for LRA* and WA*, no DM 

reach the large obstacles in the middle quickly, then move along the side of the obstacle for 

until it reaches the corridor that connects the two sides of the map, and then plans a path 

straight to its goal. This forms lanes like the ones shown in Figure 4.13. When Weighted A* 
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Figure 4.12: Coherence for DM with LRA* and WA* 
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Sector size 
# Nodes expanded 
Time 
Distance 
# Collisions 

4 

4125.68 
5028.03 

149.60 
13.40 

8 

2882.29 
4970.64 

142.84 
10.78 

12 

2752.92 
4747.80 

136.30 
7.57 

16 

4231.32 
5240.94 

142.00 
10.43 

Table 4.7: DM with A* using abstraction with full refinement 

is not used, agents moving towards the center generally do not stay as close to the obstacles, 

so there is less clear lane forming, resulting in lower coherence. 

Figure 4.13: Lanes formed by WA* 

4.4 Abstraction 

Another approach that has been used to reduce the amount of work done during search is 

abstraction, which was first discussed in Section 2.4 and later applied to DMs in Section 3.5. 

Abstraction is also useful because it allows the agent to find a high-level path and refine 

the path bit by bit, which reduces the amount of work done per time step and can be used 

when real-time performance is required. 

Two sets of experiments are presented here. First, we will show results for complete 

refinement, and then for the partial refinement case. In complete refinement, the agent first 

finds a solution in the abstract graph and then refines the entire path before executing. 

Table 4.7 shows these results for four different sector sizes. The experiment was performed 

on map (c) in Figure 4.2, with 100 agents, r — 5, wmax = 10, a = 0.5, and regular A*. 

The table shows that the performance is best when sectors of size 12 are used. This is 

not the case for all of the maps, but it is generally true that the number of nodes expanded 

decreases first and then increases. When the sectors are too small, the abstract path is less 

general and the abstract search is more expensive. On the other hand, when the sector size 
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is too large, the abstract search is easy, but refining is more expensive because the abstract 

nodes lie farther away from each other. 

When we compare the performance to the DM without abstraction, we see that the 

nodes expanded are reduced only when the right sector size is chosen. In the worst case, 

abstraction performs roughly the same amount of work as the DM without abstraction does. 

The other metrics are worse when abstraction is used, because agents use the abstract 

path as a guide, which restricts the agent during planning, compared to when abstraction 

is not used. 
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Figure 4.14: Coherence for DM with abstraction and full path refinement 

Figure 4.14 shows how the map coherence changes as the sector size increases. The 

coherence is lower when abstraction is used, again because the abstract path restricts the 

agent during the refinement step. The coherence increases as the sector size increases because 

the agent is less restricted during refinement. 

In Section 3.5 we also described how abstraction can be used for partial pathfinding. 

After an abstract path is found, only part of it is refined. A path is planned not to the 

next abstract node, but the one after it, and this path is cut off after some portion of the 

resulting partial path. Here, the partial paths are cut off after 60%, and the experiment 

was performed on the same map and with the same parameters as the full refinement case 

above. 

Table 4.8 shows the results for abstraction with partial refinement, including how the 

metrics change as the sector size changes. The performance is better than with full-

refinement abstraction, because the agents only plan short paths at a time. The number of 

nodes expanded is not increased because the abstract search is fast. 

The best performance is again found when the sector size used by the abstraction is 12, 

or in general, some intermediate value, for the same reason as in the full refinement case. 
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Sector size 
# Nodes expanded 
Time 
Distance 
# Collisions 

4 
2431.62 
4741.80 

140.69 
8.85 

8 
2078.51 
4580.88 

135.66 
7.81 

12 
2729.98 
4537.38 

132.05 
7.15 

16 
2795.56 
4491.18 

131.77 
7.18 

Table 4.8: DM with A* using abstraction with partial refinement 

Figure 4.15 shows the coherence for abstraction with partial pa th refinement. The result 

is very similar to what was shown in Figure 4.14, and for the same reasons. The coherence is 

highest when abstraction is not used, but the coherence increases as the sector size increases 

because the agents are less restricted during planning. 
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Figure 4.15: Coherence for DM with abstraction and partial pa th refinement 

4.5 Updating Surrounding Locations 

In Section 3.4 we suggested updat ing the DVs for the locations tha t surround the agent's 

current location as a way to increase coherence. Visually, the DM is more coherent when 

surrounding locations are updated. This is shown in Figure 4.16. Although the left-hand 

figure also shows clear lane formation, the right-hand DM contains wider, more obvious 

lanes. 

Table 4.9 shows the metrics for updating surrounding locations as the update parameter 

for the surrounding locations is varied. The da ta shown is for map (d) in Figure 4.2, with 

100 agents, wmax = 10, r == 5, and a = 0.5. In addition to an agent's current location, 

we update DVs for the eight surrounding locations. The number of nodes expanded, time 

taken, and distance travelled all are higher than they are for the regular DM, and they 

increase as the surround parameter as is increased. This is because a larger portion of the 

map now contains DVs, which the agents need to take into account during planning. The 

DM 
Abs(16) 

- - -Abs(12) ~ 
••• Abs(8) 

- - -Abs(4) 
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number of collisions is slightly greater when the surrounding locations are updated, because 

where the wider lanes cross, there is a larger area of contention, and more collisions occur. 

Figure 4.17 shows how coherence changes as the update parameter for the surrounding 

locations is varied, and how it compares to the coherence of the regular DM approach. The 

coherence is higher than with the regular DM, and increases as as increases. 

4.6 Local Direction Map Approaches 

Next, we evaluate the performance of two approaches in which the agents only have local 

access to the DM. These approaches were described in Section 3.3. 

First, we will look at the results when we allow each agent to only see the DM within 

some radius. The agent plans a path, using the DM only within that radius, and it cuts 

off the planned path at the edge of the window. Table 4.10 shows the data for the regular 

DM approach and compares it with three different values of the local radius. The numbers 

shown here are for map (d) in Figure 4.2, with 100 agents, for wmax = 10, radius 5, and 

a = 0.5. The local DM radius, win, is set to either 3, 5, or 7. 

Compared to the regular direction map approach, this method expands a similar number 

of nodes for smaller window sizes, and less for larger window sizes, because the agent only 
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Figure 4.16: DMs when surrounding locations are not updated (left) and when they arc 
(right) 

# Nodes expanded 
Time 
Distance 
# Collisions 

D M 

2164.46 
4144.92 

122.31 
2.06 

as = 0.3 
2946.99 
4254.30 

122.84 
2.59 

a., = 0.5 
3264.93 
4448.04 

124.32 
2.54 

a,, = 0.7 
3337.71 
4540.86 

126.22 
2.58 

Table 4.9: Comparison of DM with and without updates to surrounding locations 
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Figure 4.17: Coherence for DM and 3 different values for the learning parameter for sur­
rounding locations 

takes the DM into account within a small radius. However, if the radius is very small, the 

agent may have to re-plan many times before it reaches its goal, so the number of nodes 

expanded is not minimized at the lowest value of the DM visibility radius. The time taken 

by the agent and the distance travelled is slightly larger than with the regular DM, because 

the agent does not have global knowledge of the DM. As a result, the agent may plan a 

different path than it would if it had global knowledge of the DM. As the agent can see 

more of the DM around it, i.e. if the radius is larger, the time and distance are reduced as 

well, for the same reason. The number of collisions is lower, because the agent only plans 

its path until the edge of the DM window. It only moves a few steps each time before it 

re-plans. The number of collisions increases as the window size increases because the agent 

takes more steps before re-planning, so other agents are more likely to have moved in the 

agent's way. 

Figure 4.18 shows the coherence for each of the window sizes. The coherence when a DM 

window is used is lower, but increases as the window size increases. This is, again, because 

the agent does not have a global view of the DM and the path it chooses may be following 

the DM only in a local sense. 

Next, we look at the case where each agent maintains its own copy of the DM and 

updates it locally. Tables 4.11 and 4.12 show the results for different local update radii. 

# Nodes expanded 
Time 
Distance 
# Collisions 

DM 
2164.46 
4144.92 

122.31 
2.06 

win = 3 
2205.27 
5462.62 

158.88 
1.59 

win — 5 
1316.56 
4789.50 

150.48 
1.89 

win — 7 
988.46 

4625.64 
142.50 

1.97 

Table 4.10: Comparison of regular DM with local DM window 
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Figure 4.18: Coherence for DM with local DM window 

The experiment was performed with 100 agents, r = 5, wmax = 10 and a = 0.5. Data is 

presented for two maps: maps (b) and (d) in Figure 4.2, because the results are different 

for maps in which the heuristic is less accurate (maps (b) and (c)) than for the other two 

maps (maps (a) and (d)). 

First, we look at the results for map (b), presented in Table 4.11. The results on map 

(c) are similar. The number of collisions is significantly higher when the local approach is 

used. This is because the agent does not have up-to-date global knowledge of the DM, and 

therefore it may not follow the DM for its entire path. The increase in collisions forces the 

agent to re-plan more often, which increases the number of nodes expanded. 

Figure 4.19 shows the coherence for map (b) when the agents maintain their own copies 

of the DM. The coherence is lower than when the regular DM approach is used, because 

the agents do not follow the DM as closely as when they use the global DM. Therefore, 

movement is less coherent, leading to a reduction in map coherence. 

Next, we will look at the results on map (d). The results for map (a) are similar. 

Maps (a) and (d) contain more open space, and they do not contain large, central areas 

of congestion like maps (b) and (c) do. Therefore, the DM does not aid the agents much 

in terms of reducing the number of collisions. As a result, when the agents maintain their 

own copies of the map, possibly containing DVs tha t are no longer accurate, this does not 

# Nodes expanded 
Time 
Distance 
# Collisions 

DM 
5438.95 
4644.99 

150.45 
8.08 

""local = 3 
5986.98 
4780.38 

145.39 
16.34 

riocal = 5 
5995.10 
4761.36 

145.47 
16.20 

'"local = 7 
6007.02 
4762.47 

145.42 
16.15 

Table 4.11: DM with locally updated copies of DM for each agent, map (b) in Figure 4.2 
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Figure 4.19: Coherence for DM with locally updated copies for each agent, map (b) in 
Figure 4.2 

hurt the performance. This is shown in Table 4.12. The number of collisions is similar to 

when the regular DM is used, but the number of nodes expanded is reduced. The reason for 

this is that the agent's copy of the DM reflects the state of the DM when the agent passed 

through each location. Therefore, the DVs will point roughly in the direction of the agent's 

path. Therefore, the costs of the edges the agent wants to travel are not much higher than 

regular edge costs, so the heuristic is fairly good in this case. This reduces the number of 

nodes expanded. In addition, since the agent does not take the global DM into account, it is 

able to follow a straighter, more direct, path to its goal, which reduces the distance covered 

as well as the simulation time. 

# Nodes expanded 
Time 
Distance 
# Collisions 

DM 
2164.46 
4144.92 

122.31 
2.06 

riacal = 3 
1015.05 
3799.22 

110.09 
2.30 

Tlocal = 5 
1013.67 
3766.50 

109.90 
2.18 

Tlocal = 7 
1020.02 
3779.70 

109.98 
2.13 

Table 4.12: DM with locally updated copies of DM for each agent, map (d) in Figure 4.2 

Figure 4.20 shows the map coherence when each agent maintains its own copy of the DM, 

on map (d) in Figure 4.2. The coherence is higher when individual DMs are maintained, 

because the agent's path leads the agent more directly to the goal, as was explained in the 

previous paragraph. 

--
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Figure 4.20: Coherence for DM with locally updated copies for each agent, map (d) in 
Figure 4.2 
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Chapter 5 

Conclusions and Future 
Directions 

In Chapter 3 we have presented a new approach for multi-agent pa th planning. Rather than 

taking into account static delta about the current location of other agents or fully dynamic 

data about the paths tha t other agents have planned, we use static da ta about the dynamics 

of the world during planning. 

The approach is based on direction maps, a shared da ta structure which stores a direction 

vector for each location tha t has been visited. A direction vector for grid cell a is a prediction 

of the direction in which an agent will pass through a, and it is learned from the directions 

in which agents have previously passed through this same location. 

During planning, the agents use the direction map to guide them. They are encouraged 

to follow the direction vector through a modification of the movement cost, which leads to 

emergent behaviour such as lane forming. The result is highly coherent behaviour, with 

very few collisions compared to Local-Repair A*. 

In Chapter 4 we showed tha t the basic direction map approach leads to fewer collisions 

than Local-Repair A*, while expanding less nodes than Windowed Hierarchical Cooperative 

A*. 

We also introduced a new metric, map coherence, which is an indication of how coherently 

agents move across the map, based on the direction map. Map coherence is higher when 

direction maps are used than when the agents use LRA* or WHCA*. 

Chapter 4 also showed tha t the number of nodes expanded can be reduced by using 

Weighted A*(WA*) rather than regular A* during search with direction maps. Using WA* 

increases the number of collisions but it is still significantly lower than when Local-Repair 

A* is used. 

Direction maps can also be combined with abstraction and partial refinement, which 

reduces the amount of work done and makes the approach suitable for use in real-time 

environments. 
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In addition, we showed that agents can update more than just their current location 

to generate wider lanes, and that it is possible to use direction maps even when only local 

information is available to the agents. 

Although some extensions to the basic DM approach were discussed in this thesis, there 

are many research directions which have not yet been explored. 

5.1 Combining Direction Maps with Flocking 

As was mentioned in Section 2.6, pathfinding and flocking or steering techniques are com­

plementary in a sense. If a group of agents needs to move towards a specific goal, flocking 

techniques require a path to guide the group in the right direction, and the flock could use 

a direction map for this. As an example, consider the scenario from Chapter 1 again, shown 

in Figure 5.1. Assume that a group of agents needs to move back and forth between the left-

and right-hand side of the map. An efficient way to do this is to move left-to-right through 

one of the corridors in the center, and use the other one for right-to-left movement, which is 

not done by default by flocking approaches. The DM could help guide the flock through the 

correct corridor, while the flocking mechanism would ensure that the agents pass through 

the corridors without colliding. 

X 
• 

Figure 5.1: An example of a situation where flocking and direction maps could be combined 

5.2 Decaying Direction Vectors 

In the experiments from Chapter 4, the patrol locations for the agents remained the same 

throughout the experiment, but in some scenarios they might change. For example, in 

an RTS game the agents may have exhausted a particular resource and they may start 

patrolling between the home base and a different resource. We want the DM to be able to 

adapt to such changes, but so far no experiments have been done to investigate how the 

DM behaves when patrol locations change. 
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The environment may change for other reasons too, for example because the world is 

dynamic. Perhaps an obstacle appears somewhere on the map, in which case we want the 

DM to change and lead the agents around the obstacle. Since the agents are forced to re-

plan after colliding with the obstacle, it is likely that the DM will be changed appropriately. 

On the other hand, it is possible that a new corridor opens up, perhaps because a door 

that was previously closed is now open. This could create a shortcut, but the agents may 

not take this shorter path since the direction map is telling them to take a different route. 

One possible solution for this is to decay the direction vectors over time. This is somewhat 

similar to the diffusion of ant pheromones. 

There may be other benefits from decaying direction vectors. In Section 4.1.1 we men­

tioned that the agents sometimes take routes that are suboptimal because of the way the 

direction map initially gets set. For example, consider the situation in Figure 5.2, where the 

solid black lines indicate the lanes the agents use. In addition, there is a middle lane, indi­

cated by a dotted line, which runs from right-to-left but is not used by any agents. Perhaps 

if the direction vectors were decayed over time, the agents that are currently following the 

top arrow would create a right-to-left lane where the dotted arrow is. This could reduce the 

distance travelled by the agents. 

ITI 
Figure 5.2: Example of a situation where DV decaying may be beneficial 

5.3 Using the Direction Map to Predict Movement of 
Other Agents 

In the current implementation, the agents plan around other agents within their visibility 

radius without taking into account the direction in which this other agent is moving. This 

can sometimes lead to odd-looking behaviour, for example as shown in Figure 5.3. Here, 

the white agent wants to follow the arrows around. If its visibility radius is large enough, 

it will detect the black agent when it plans its path. It then plans a path around the black 
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agent's current position, as is shown in Figure 5.3(b), even though the black agent is most 

likely moving in the same direction. 
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Figure 5.3: Other agents' movement direction is not taken into account during planning 

A way to improve the behaviour of the agents would be to take into account the direction 

map when considering other agents. For example, we could only view other agents as 

obstacles when they are either directly beside the agent who is currently planning, or if the 

agent is likely to move towards the agent if it follows the direction map. 

5.4 Abstraction 

The way in which abstraction was combined with the direction map, as described in Sec­

tion 3.5, is not the only way this can be done. The method that was implemented is to 

perform a regular A* search in the abstract graph, and then refine using the DM on the map 

level. Instead, we could store DVs for the abstract nodes, which would indicate a general 

direction for the sector. If the sector size is small, we may want to refine the abstract path 

without considering the map DM, but if the sector size is larger it may be useful to use the 

DM on the map level as well. 

5.5 Learning Direction Vectors 

The DVs have only been learned using the perceptron update rule. Other approaches could 

be used for this; perhaps a reinforcement learning method where the rewards have some 

relation to the length of the path taken and the number of collisions. This way, it may 

be possible to learn a more efficient direction map, but the direction vectors could not be 

updated after each step anymore since learning would need to be done on a per-loop basis. 
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5.6 Using Direction Maps in Video Games 

In the current state, this approach may not be suitable for use in commercial video games, 

but there are some modifications which can be made. Two ideas are discussed here: loading 

a pre-built DM, and DMs for maps that are not grid-based. 

For the first while, as the DM is learned, the number of collisions is higher than later in 

the simulation. This initial behaviour may not be acceptable for use in a commercial game, 

but it is easy to run the simulation off-line, and load a fully learned DM within a game. 

This way, the agents will be able to move coherently without having to learn the DM first. 

Another reason why this approach as it is currently implemented may not work in video 

games is that it is designed for a grid-based map in which each agent occupies a cell. In 

practice, not all environments are grids, and not all grids are as fine as the ones used here. 

The direction map approach can be modified to work with different types of maps by defining 

a grid of appropriate coarseness on the map. For example, a direction vector could be stored 

for a entire corridor or for a doorway. In addition, we could just store DVs for parts of the 

map where collisions are more likely; crowded areas or narrow passageways are examples of 

this. 

5.7 Conclusion 

Although the idea of direction maps is fairly simple, it leads to lane formation and coher­

ent movement. In addition, modifications can be made to the basic approach to suit the 

requirements for a particular application. For example, in Chapter 4 we showed that higher 

coherence can be achieved by updating the DVs for locations surrounding an agent's path, 

and that Weighted A* or abstraction can be used to reduce the number of nodes expanded. 

Overall, using direction maps is a promising technique for multi-agent pathfinding. 

63 



Bibliography 

[1] h t tp : / /www.cs .ua lber ta .ca / nathanst /hog.html . 

[2] R. Arkin. Motor schema based navigation for a mobile robot: An approach to pro­

gramming by behavior. In Institute of Electrical and Electronics Engineers (IEEE) In­

ternational Conference on Robotics and Automation, volume 4, pages 264-271, March 

1987. 

[3] A. Botea, M. Miiller, and J. Schaeffer. Near optimal hierarchical path-finding. Journal 

of Game Development, l ( l ) : 7 -28 , 2004. 

[4] I. Couzin and N. Franks. Self-organized lane formation and optimized traffic flow in 

army ants. Proceedings of the Royal Society of London, Series B, 270(1511):139-146, 

January 2003. 

[5] H. Davis, A. Bramanti-Gregor, and J. Wang. The advantages of using depth and 

breadth components in heuristic search. Methodologies for Intelligent Systems 3, pages 

19-28, 1989. 

[6] D. Demyen and M. Buro. Efficient triangulation-based pathfinding. In The Twenty-

First National Conference on Artificial Intelligence (AAAI-06), pages 942-947. AAAI 

Press, 2006. 

[7] M. Dorigo, E. Bonabeau, and G. Theraulaz. Ant algorithms and stigmergy. Future 

Generation Comp. Syst, 16(8):851-871, 2000. 

[8] M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: Optimization by a colony 

of cooperating agents. Institute of Electrical and Electronics Engineers (IEEE) Trans­

actions on Systems, Man, and Cybernetics Part B: Cybernetics, 26(1):29-41, 1996. 

[9] K. Dresner and P. Stone. A multiagent approach to autonomous intersection manage­

ment. Journal of Artificial Intelligence Research, 31:591-656, March 2008. 

[10] P. Egber t and S. Winkler. Collision-free object movement using vector fields. Institute 

of Electrical and Electronics Engineers (IEEE) Computer Graphics and Applications, 

16(4):18-24, 1996 1996. 

64 

http://www.cs.ualberta.ca/


[11] J. Fulton and J. Pransky. DARPA grand challenge - a pioneering event for autonomous 

robotic ground vehicles. Industrial Robot: An International Journal, 31(5):414-422, 

2004. 

[12] A. Geramifard, P. Chubak, and V. Bulitko. Biased cost pathfmding. In Artificial 

Intelligence and Interactive Digital Entertainment, pages 112-114, 2006. 

[13] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination of 

minimum cost paths. Institute of Electrical and Electronics Engineers (IEEE) Trans­

actions on Systems Science and Cybernetics, 4(2):100-107, 1968. 

[14] D. Helbing and P. Molnar. Social force model for pedestrian dynamics. Physical Review 

E, 51:4282-4286, 1995. 

[15] R. Holte, T. Mkadmi, R. Zimmer, and A. MacDonald. Speeding up problem solving by 

abstraction: A graph oriented approach. Artificial Intelligence, 85(1-2):321-361, 1996. 

[16] R. Jansen and M. Buro. HPA* enhancements. In Artificial Intelligence and Interactive 

Digital Entertainment, pages 84-87. The AAAI Press, 2007. 

[17] R. Korf. Depth-first iterative deepening: An optimal admissible tree search. Artificial 

Intelligence, 27:97-109, 1985. 

[18] D. Lay. Linear Algebra and its Applications, chapter 6. Addison Wesley, third edition, 

2003. 

[19] E. Losh. The palace of memory: Virtual tourism and tours of duty in tactical iraqi and 

virtual iraq. In CyberGames '06: Proceedings of the 2006 International Conference on 

Game Research and Development, pages 77-86. Murdoch University, 2006. 

[20] R. Murphy. Trial by fire: Activities of the rescue robots at the world trade center from 

1121 September 2001. Institute of Electrical and Electronics Engineers (IEEE) Robotics 

and Automation Magazine, 11(3):50-61, September 2004. 

[21] H. Parunak, M. Purcell, and R. O'Connel. Digital pheromones for autonomous coordi­

nation of swarming UAV's. In Proceedings of First American Institute of Aeronautics 

and Astronautics (AIAA) Unmanned Aerospace Vehicles, Systems, Technologies, and 

Operations Conference, 2002. 

[22] D. Payton, R. Estkowski, and M. Howard. Compound behaviors in pheromone robotics. 

Robotics and Autonomous Systems, 44(3-4):229-240, 2003. 

[23] I. Pohl. First results on the effect of error in heuristic search. Machine Intelligence, 

5:219-236, 1970. 

65 



[24] I. Pohl. Heuristic search viewed as path rinding in a graph. Artificial Intelligence, 

1:193-204, 1970. 

[25] C. Reynolds. Flocks, herds, and schools: A distributed behavioral model. Computer 

Graphics, 21(4):25-34, 1987. 

[26] C. Reynolds. Steering behaviors for autonomous characters. In Game Developers Con­

ference, 1999. 

[27] C. Reynolds. Interaction with groups of autonomous characters. In Game Developers 

Conference, 2000. 

[28] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 

Englewood Cliffs, NJ, 2002. 

[29] D. Silver. Cooperative pathfinding. In Artificial Intelligence and Interactive Digital 

Entertainment, pages 117-122, 2005. 

[30] N. Sturtevant. Memory-efficient abstractions for pathfinding. In Artificial Intelligence 

and Interactive Digital Entertainment, pages 31-36, 2007. 

[31] N. Sturtevant and M. Buro. Part ia l pathfinding using map abstraction and refinement. 

In AAAI, pages 1392-1397, 2005. 

[32] N. Sturtevant and M. Buro. Improving collaborative pathfinding using map abstraction. 

In Artificial Intelligence and Interactive Digital Entertainment, pages 80-85, 2006. 

[33] N. Sturtevant and R. Jansen. An analysis of map-based abstraction and refinement. In 

Symposium on Abstraction, Reformulation, and Approximation, pages 344-358, 2007. 

[34] A. Treuille, S. Cooper, and Z. Popovic. Continuum crowds. In Special Interest Group 

on GRAPHics and Interactive Techniques (SIGGRAPH) '06: ACM SIGGRAPH 2006 

Papers, pages 1160-1168, New York, NY, USA, 2006. ACM. 

66 


