
University of Alberta

MULTI-AGENT PATHFINDING WITH DIRECTION MAPS

by

Maaike Renata Jansen

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2008

©

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-47269-9
Our file Notre reference
ISBN: 978-0-494-47269-9

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

•*•

Canada

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Pathfinding is a task that is used in many applications from robotics to video games. The

single-agent case is well-understood, but the multi-agent case is more difficult. To achieve

cooperative behaviour among a group of agents, the agents need to share information with

one another. One current approach stores static data about other agents, which is easy to

maintain and plan with, but the agents may still collide frequently. Another approach stores

dynamic data about other agents, which is complex to plan with, but allows agents to avoid

collisions. Instead, we propose the use of a direction map, a shared data structure that

provides information about how agents have been moving in the world, which is cheaper

than planning with fully dynamic information and leads to implicit cooperative behaviour

among the agents.

Contents

1 I n t r o d u c t i o n 1

2 B a c k g r o u n d 4
2.1 Uninformed Search 6

2.1.1 Breadth-First Search 6
2.1.2 Depth-First Search 7

2.2 Informed Search 9
2.2.1 A* Search 9
2.2.2 Weighted A* 11

2.3 Pathfmding on a Map 11
2.4 Abstraction 12
2.5 Multi-Agent Pathfmding 16
2.6 Navigation 20
2.7 Ant-Based Pathfmding 21
2.8 Summary 22

3 D i r e c t i o n M a p s 23
3.1 Updat ing Direction Vectors 25
3.2 Planning with Direction Maps 29
3.3 Local Direction Maps 30
3.4 Updat ing Surrounding Locations 33
3.5 Abstraction 33
3.6 Using Direction Maps for Greedy Search 37

4 E x p e r i m e n t a l R e s u l t s 38
4.1 Direction Maps 42

4.1.1 General Observations 43
4.1.2 Parameter Variation 44

4.2 Comparing Direction Maps to Other Approaches 47
4.3 Weighted A* 49
4.4 Abstraction 51
4.5 Updat ing Surrounding Locations 53
4.6 Local Direction Map Approaches 54

5 C o n c l u s i o n s a n d Future D irec t ions 59
5.1 Combining Direction Maps with Flocking 60
5.2 Decaying Direction Vectors 60
5.3 Using the Direction Map to Predict Movement of Other Agents 61
5.4 Abstraction 62
5.5 Learning Direction Vectors 62
5.6 Using Direction Maps in Video Games 63
5.7 Conclusion 63

Bib l iography 64

List of Tables

2.1 Table of distances between some European capital cities, in kilometres. Source:
http://www.convertunits.com/distance 9

4.1 DM, varying wmax 44
4.2 DM, varying a 45
4.3 DM, varying visibility radius 46
4.4 DM, varying the number of agents on the map 47
4.5 Comparison of performance of DM, A*, and WHCA* 48
4.6 Comparison of performance of LRA*, DM, with regular A* vs. weighted A* . 50
4.7 DM with A* using abstraction with full refinement 51
4.8 DM with A* using abstraction with partial refinement 53
4.9 Comparison of DM with and without updates to surrounding locations 54
4.10 Comparison of regular DM with local DM window 55
4.11 DM with locally updated copies of DM for each agent, map (b) in Figure 4.2 56
4.12 DM with locally updated copies of DM for each agent, map (d) in Figure 4.2 57

http://www.convertunits.com/distance

List of Figures

1.1 An example of a scenario in which navigation with large numbers of agents
is difficult 2

2.1 A simplified map of Western Europe with distances between cities in kilome
tres. Map of Europe designed by Brian V. Smith and used with permission.
Source for distances: ht tp: / /www.convertuni ts .com/distance 5

2.2 A breadth-first search example on the map from Figure 2.1 7
2.3 A depth-first search example on the map from Figure 2.1 8
2.4 An A* search example 10
2.5 A grid-based map and its graph representation 12
2.6 A pa th refinement example 13
2.7 An example of the cluster abstraction used by HPA*. Figure adapted from [3] 15
2.8 An example of a clique abstraction 16
2.9 Example of a reservation table 18

3.1 A unit circle representation of direction vectors 24
3.2 An example of a map and its direction map 24
3.3 An example of how a DM affects path planning 25
3.4 A neuron. Figure adapted from [28] 26
3.5 Gradient descent learning algorithm for perceptrons. Adapted from [28] 27
3.6 Geometrically, the dot product is the product of the length of b, indicated by

\b\, and the scalar projection of a onto b, indicated by spa 29
3.7 An example of using direction maps with local information only 31
3.8 Using local maps 32
3.9 An example of updat ing surrounding locations 33
3.10 The number of nodes expanded increases as wmax increases 34
3.11 Abstraction example 35
3.12 An example of path planning with abstraction 36
3.13 A possible deadlock scenario 36
3.14 Using a DM for behaviour tha t is similar to steering 37

4.1 An example showing valid moves for agents in different locations 38
4.2 Maps used for experiments 39
4.3 Illustration of map coherence 41
4.4 Map coherence example 42
4.5 Different lanes can be formed on a map 43
4.6 Coherence for DM does not change much as wmax changes 45
4.7 Coherence for DM, for different values of a 46
4.8 Coherence for DM does not change much as the visibility radius changes . . . 47
4.9 Coherence for DM, for different numbers of agents 48
4.10 Coherence for DM, LRA* and WHCA* 49
4.11 Coherence for LRA* and WA*, no DM 50
4.12 Coherence for DM with LRA* and WA* 50
4.13 Lanes formed by WA* 51
4.14 Coherence for DM with abstraction and full path refinement 52
4.15 Coherence for DM with abstraction and partial path refinement 53
4.16 DMs when surrounding locations are not updated (left) and when they are

(right) 54
4.17 Coherence for DM and 3 different values for the learning parameter for sur

rounding locations 55
4.18 Coherence for DM with local DM window 56

http://www.convertunits.com/distance

4.19 Coherence for DM with locally updated copies for each agent, map (b) in
Figure 4.2 57

4.20 Coherence for DM with locally updated copies for each agent, map (d) in
Figure 4.2 58

5.1 An example of a situation where flocking and direction maps could be combined 60
5.2 Example of a situation where DV decaying may be beneficial 61
5.3 Other agents' movement direction is not taken into account during planning . 62

Chapter 1

Introduction

Research advancements in areas such as computer hardware and artificial intelligence (AI)

technology have contributed to the creation of more and more realistic virtual worlds. This

can be used to create immersive environments for users and it gives rise to applications that

were not possible in the past. Virtual simulations require that the environment is life-like

and immersive, and a large part of this is realistic, intelligent behaviour of the AI characters.

There are many aspects to achieving intelligent behaviour in a character. One important

component is the ability to plan where the character should move in the virtual world. This

problem is called pathfinding or path planning, and it is the subject of this thesis.

Realistic pathfinding is important in many video games, for example. Gamers are always

looking for better hardware and software, and they want to see believable behaviour in

visually life-like characters. For example, when two AI characters bump into each other

in an otherwise empty room, they look unintelligent, which in turn reduces the player's

enjoyment of the game.

Another example is military simulation systems, such as Virtual Iraq, which was de

veloped at the University of Southern California [19]. The goal of this system is to lessen

post-traumatic stress disorder for veterans who have fought in Iraq. This is done by trig

gering memories of traumatic experiences as part of their therapy, which is a task that is

more easily accomplished if the simulation is realistic.

However, path planning is not only used in virtual worlds. It is also utilized extensively

in robotics. An example is the Defense Advanced Research Projects Agency (DARPA)

Grand Challenge, in which fully autonomous vehicles must navigate an environment [11].

The first two competitions were held in the desert, where the vehicles only needed to be able

to follow the road and pass other vehicles, but the 2007 competition was held in an urban

environment. In the urban challenge, the vehicles needed to obey traffic laws, navigate

intersections, and interact with other vehicles, both human-driven and autonomous. The

path planning system is an important part of an autonomous vehicle because it needs to

navigate its environment intelligently to reach its destination and avoid collisions.

1

Another example of path planning in robotics is the use of robots for search and rescue

missions, like those used after the World Trade Center disaster on September 11, 2001 [20].

The robots were used for tasks such as searching for victims because the robots are small

and can crawl into narrow spaces where humans cannot go. In addition, they can go places

tha t are dangerous for hurnans, for example because of fire or because a building is in

danger of collapsing. Pathfinding is important for search and rescue robots because efficient

navigation through the rubble may mean tha t more lives can be saved.

The problem of pathfinding for a single agent has been, well studied. This thesis tackles

the more difficult problem of multi-agent pathfinding, in which multiple agents need to

navigate the environment simultaneously. This problem is challenging because agents need

to take other agents into account in order to avoid collisions and exhibit natural-looking

behaviour.

Consider an environment like the one in Figure 1.1 tha t contains narrow passageways.

Assume tha t there are agents on both sides of the map tha t need to move through the

corridors in the center to the other side of the map. When the number of agents is small, it

is relatively easy for the agents to navigate between the two open areas. However, when the

number of agents increases, the environment becomes more congested. If the agents do not

pay attention to other agents, a situation like the one in Figure 1.1(a) may occur, which does

not look intelligent. In this situation, humans are likely to use one of the passageways for

left-to-right movement, and the other for right-to-left movement, as shown in Figure 1.1(b).

It is desirable tha t AI characters exhibit behaviour like this as well.

in
D
l _

(a) (b)
Figure 1.1: An example of a scenario in which navigation with large numbers of agents is
difficult.

When a group of agents travels in the same environment, collision-free, coordinated

movement can only occur if the agents have information about other agents. Humans, for

example, use visual observations of where other people are and where they are going to avoid

bumping into other people. In addition, they use social constructs such as preferring the

2

right-hand side of a street or sidewalk. Ants, who are nearly blind, avoid imminent collisions

by using their antennae to sense other ants tha t are near, but they also coordinate their

movement on a larger scale. Ants leave traces of chemical substances called pheromones

behind as a way of sharing information about where they have been with the other ants.

For example, ants will lay a pheromone trail between the nest and a food source, and other

ants will be a t t racted to this path and follow it. The use of pheromones also causes them

to form lanes of incoming and outgoing ants, which produces efficient behaviour when the

ants perform tasks such as gathering food [4].

A number of approaches for the multi-agent path planning problem have been developed.

However, the existing methods are sometimes complicated and they do not always lead to

realistic-looking behaviour. The agents may collide or take paths tha t do not look natural .

The method presented in this thesis uses an approach to the multi-agent path planning

problem tha t is different from currently existing methods. Agents are able to mark the

map with information, similar to the pheromones left behind by ants. Each agent in the

environment marks the states it visits with information about the direction in which it was

moving when it passed through this location. We call the da ta s tructure tha t stores this

information a direction map. Other agents are encouraged to follow the same paths as agents

who previously passed by. We will show tha t this causes the agents to form lanes, which

helps them avoid one another as they move through the environment.

Ideas tha t are similar to direction maps have been used in the video game industry, but

they have not been formalized. In addition, the directions are generally hand-drawn rather

than learned as they are in our approach, and they are used for greedy one-step movement

rather than for planning an entire path.

The remainder of this thesis is organized as follows. Chapter 2 discusses related work.

It provides background information on uninformed and heuristic search. This chapter also

discusses single- and multi-agent path planning on a map, as well as the use of abstraction

to speed up search. The chapter finishes with an overview of navigation and ant-based

approaches. Chapter 3 describes the new approach, path planning with direction maps, in

detail. It discusses how direction maps are learned and how they are used for planning.

Furthermore, this chapter describes some variations on the basic approach. Chapter 4 con

tains experimental results, and shows tha t performance is relatively insensitive to variations

in the parameters . In addition, the new method is compared to existing multi-agent path

planning algorithms, and experimental results for variations on the basic approach tha t were

discussed in Chapter 3 are presented. The last chapter, Chapter 5, consists of conclusions

and further directions in which this work can be taken.

3

Chapter 2

Background

The focus of this thesis is multi-agent pathfiriding, which is a special case of the AI field of

heuristic search, in which multiple agents perform search at the same time. This chapter

will provide background information on both informed and uninformed search algorithms,

as well as pathfinding algorithms, abstraction for search, and multi-agent search. It will

also discuss ant-inspired algorithms and other non-pathflnding approaches tha t have been

used for agents traversing a map.

In artificial intelligence, an agent is defined as any entity tha t perceives its environment

and can perform actions in this environment. A problem-solving agent wants to take actions

tha t move it from its current state to some desirable state, or goal state [28]. Examples of

problems are solving a puzzle, finding a path between two locations, or moving a robot arm

into the correct position to pick up a ball.

Consider an agent who is travelling across Europe. Suppose the agent is currently in

Rome and wants to travel to London by air in as few flights as possible. Figure 2.1 shows a

simplified map of Europe with a number of European capital cities. A line connecting two

cities means tha t a flight is available between them, and the number by the edge indicates

the distance in kilometres.

The agent 's objective is to find a series of actions that lead from its current state to

its goal state. In this example, the state of the agent is the city it is in, and the actions

are flights tha t take the agent from one city to another. A search problem like this can

be represented as a graph, where each node in the graph represents a s tate, and an edge

represents an action tha t leads the agent from one state to the next. When the agent

searches this graph for a solution, or a path between its s tar t and goal states, it generates a

search tree. This search tree starts with the root node, which is the start ing s tate . Next, the

agent will expand this node, meaning tha t it generates the successors of the current state.

In the travel example, expanding a node means finding all the cities tha t are a single flight

away from the current city. In the search tree, these become the children of the s tate that is

being expanded. For example, the search tree after expanding Rome in the example above

4

Figure 2.1: A simplified map of Western Europe with distances between cities in kilometres.
Map of Europe designed by Brian V. Smith and used with permission. Source for distances:
http: / / www. convertunits. com/distance

is shown in Figure 2.2(a). When an agent searches for a solution, it repeatedly chooses a

node to be expanded and checks if it is a goal state. If it is not a goal state, the node is

expanded and its successors are added to the search tree. The order in which nodes are

expanded is determined by the search algorithm.

One problem that can arise when a search tree is being built is that nodes may appear

more than once because there are multiple paths to the same node, i.e. if there are cycles

in the graph. To avoid expanding the same node twice, a closed list is often used. The

closed list is a list of nodes that have previously been expanded, and each time a node is

generated it is first checked against the nodes already in the closed list. If it has previously

been expanded, it is not added to the search tree. This increases the efficiency of the search

algorithm and avoids infinite loops.

A search algorithm is said to be complete if it will always find a solution if one exists.

An algorithm is considered optimal if it always finds an optimal solution. In our context,

5

an optimal solution is a pa th tha t has the lowest cost. It is possible tha t there exists more

than one optimal solution.

There are two broad categories of search algorithms. The first is uninformed search,

in which the agent only has access to the information given in the problem definition.

The second is informed search, where the agent has access to additional problem-specific

information, such as a heuristic function, as well. These two types of search algorithms are

discussed in the next sections.

2.1 Uninformed Search

In uninformed search, the only information available to the agent is the information that is

given in the problem. Formally, the problem is defined as the tuple {G = {V,E}, s, T } ,

where G is the search graph composed of the set of nodes V and set of edges E, s is the start

state, and T is the set of goal states. In other words, the agent only knows the successors

of each state, the cost of each action, and whether or not each s tate is a goal state. Two

well-known examples of uninformed search algorithms are breadth-first search and depth-first

search.

2.1.1 Breadth-First Search

In breadth-first search (BFS), the search is done in layers radiat ing from the s tar t state.

First, the immediate neighbours of the s tar t s tate are expanded, then states tha t are two

steps away from the s tar t state, and so on until the goal state has been found.

In the example, the agent is looking for a path between Rome and London tha t takes as

few flights as possible. Rome will be expanded first, which generates Madrid and Luxem

bourg (Figure 2.2(a)). Next, the neighbours of Rome are expanded, start ing with Madrid.

Madrid's successors are Lisbon, Paris, and Rome, but since Rome has already been ex

panded it is not added to the search tree again. The search tree after this step is shown in

Figure 2.2(b). The algorithm then expands the other child of Rome, which is Luxembourg,

as shown in Figure 2.2(c). Again, since Rome has already been expanded it is not added

to the search tree again. At this point, the immediate successors of the s tar t s tate have all

been expanded, and the algorithm moves to the next depth layer of the tree. Lisbon is the

first node at this depth, and expanding it generates only Madrid, which has already been

expanded. After Lisbon, Paris is expanded, as shown in Figure 2.2(d), and search continues

in this manner until the goal, London, has been found.

The algorithm is called breadth-first search because the algorithm finishes its search of

each level of the search tree before it moves to the next level down. BFS is both optimal and

complete, and the t ime and space complexities for BFS are 0(bd), where b is the branching

factor, or the average number of successors of a node, and d is the depth needed to be

6

Lisbon J) Q pa

(a) (b)

OTiixemlMnirjj^

(c)

Figure 2.2: A breadth-first search example on the map from Figure 2.1

searched to find the optimal solution [28].

2.1.2 Depth-First Search

In depth-first search (DFS), the agent always expands the generated state that is farthest

from the start state next. First, one of the child nodes of the start state is expanded, then

one of its children, then a child of this node, and so on.

When there are cycles in the graph, it is possible that DFS gets stuck in an infinite loop.

Therefore DFS is often done by searching until some pre-defined cutoff depth d, and then

backtracking and expanding a sibling of the last expanded node.

In the travel example, the agent will expand Rome first (Figure 2.3(a)), and Madrid

next (Figure 2.3(b)). These first two steps are the same as for breadth-first search. The

7

next step in DFS is to expand a child of the node that was just expanded. The algorithm

expands Lisbon, generating Madrid, but since Madrid has already been expanded, it is not

added to the search tree again. Since this branch of the tree starting at Lisbon has been

fully explored, the algorithm now expands a sibling of Lisbon, Paris, whose child nodes are

shown in Figure 2.3(c). Again, Madrid is not added to the search tree again because it has

already been expanded. Next, we are ready to expand London, which is a goal node. The

algorithm can either return this path, which is not necessarily optimal, or continue to look

for other goal nodes.

C^Luxembourg^)

(a) (b)

OLuxembour?)

London J) QAmsterdanj) CjLuxembourg,

(c)

Figure 2.3: A depth-first search example on the map from Figure 2.1

This algorithm is called depth-first search because it always expands the deepest node

next. It will fully explore the branches of the tree starting at one child before moving on to

another subtree. DFS is not optimal; for example, the agent may find a very deep (high-

cost) goal node after expanding the first child of the root node, while a different child of

the root node also leads to a goal node, possibly of lesser cost. It is not complete if the

graph contains cycles and duplicates are not checked, since the algorithm may get stuck on

an infinite branch of the tree. It is also not complete if a cutoff depth d is used, because the

goal state may be at a depth greater than d. The time complexity for DFS is 0(bd) and its

space complexity is O(d).

Iterative deepenening is a technique that can be used with depth-first search. In iterative

deepening, the algorithm first searches to depth 1, then it re-starts and searches to depth 2,

then re-starts again and searches to depth 3, and so on until the goal has been found. Korf

has shown that when the ideas of depth-first search are combined with iterative deepening,

the algorithm always finds an optimal solution, and has time complexity 0(bd), and space

complexity 0(d), which makes depth-first iterative deepening asymptotically optimal in

time, space, and solution cost [17].

2.2 Informed Search

In an informed search, also called heuristic search, the agent has the same information as

for an uninformed search problem, but it is also given a heuristic function h(n), which is an

estimate of the cost of a shortest path between any node n and the goal state. A heuristic

is said to be admissible if it never overestimates the distance to the goal. It is said to be

consistent if for every state s and every successor s', the estimated cost of the path from

s to the goal is never more than the estimated cost of the path from s' to the goal plus

the cost of the action between s and s' [28]. In other words, the difference in the heuristic

between two adjacent states s and s' can never be more than the cost of the action that

takes an agent from s to s'.

An approach to take advantage of this heuristic information is best-first search, in which

the next state to be expanded is chosen based on an evaluation function f(n), which is an

estimate of how promising it is to expand this node. The node with the lowest f(n) will be

chosen for expansion at each step.

2.2.1 A* Search

The best known, and most commonly used, heuristic search algorithm is A* [13]. This

algorithm expands nodes in order of minimal total estimated solution cost, and maintains

generated nodes in an open list, a queue in which states are sorted by /—cost. Whenever a

node is expanded, its children are ignored if they have already been expanded, added to the

open list if they are neither in the open or closed list, and. updated to reflect the cheapest

Amsterdam
Berlin
Dublin
Lisbon
London
Luxembourg
Madrid
Oslo
Paris
Rome
Stockholm
Vienna

Ams

-
577
759
1864
359
302
1482
916
428
1294
1128
936

Ber
577

-
1320
2315
934
592
1871
840
880
1182
812
524

Dub
759
1320

-
1640
464
947
145]
1269
779
1887
1633
1686

Lis
1864
2315
1640

-
1585
1725
504
2741
1454
1866
2992
2302

Lon
359
934
464
1585

-
485
1264
1157
341
1434
1436
1238

Lux
302
592
947
1725
485

-
1294
1169
296
1000
1311
766

Mad
1482
1871
1451
504
1264
1294

-
2391
1054
1365
2597
1812

Osl
916
840
1269
2741
1157
1109
2391

-
1344
2008
417
1354

Par
428
880
779
1454
341
296
1054
1344

-
1108
1546
1038

Rom
1294
1182
1887
1866
1434
1000
1365
2008
1108

-
1977
764

Sto
1128
812
1633
2992
1436
1311
2597
417
1546
1977

-
1244

Vie
936
524
1686
2302
1238
706
1812
1354
1038
764
1244

-

Table 2.1: Table of distances between some European capital cities, in kilometres. Source:
http://www.convertunits.com/distance

9

http://www.convertunits.com/distance

path to this node if they are already in the open list. For a node n, this cost is computed as

f(n) = g{n) + h(n),

where g(n) is the cost of an optimal pa th from the start to n, and h(n) is the heuristic cost

of the path between n and the goal. Therefore, / (n) is an estimate of the cost of a cheapest

path from the s tar t to the goal tha t passes through n. A* search is optimal if the heuristic

is consistent.

A heuristic for the travel example is given in Table 2.1. The heuristic used is the straight-

line distance between two cities, which is both admissible and consistent.

Now, we will assume tha t the agent wants to find a shortest pa th between Rome and

(a)

(Mitel rid j

H = 1365
h = 1264
f =2629

(Amsterdam)

g=1302
h = 35!»
f = 1(161

fLu x e ii i bi HI i*tn

C Paris

(-=12%
h = 341
f = 1637

) f Vienna

K=:t76(i
h == 1238
f = 3<MI4

(b)

(c)

Figure 2.4: An A* search example

10

London in terms of kilometres flown rather than in terms of the number of flights required.

Actions now have a cost associated with them, equal to the distance in kilometres between

the two cities. In the agent's search for a path between Rome and London, Rome is again

expanded first. The nodes tha t are generated are Madrid and Luxembourg. The g-, h- and

/ -costs for the child nodes are shown in Figure 2.4(a), where the p-cost is the actual distance

from Figure 2.1, the h—cost is the heuristic distance from Table 2.1, and the /—cost is the

sum of the g— and h—costs. Next, the algorithm expands the node with the lowest / -cost ,

which is Luxembourg. This node's children are Rome, Paris, Amsterdam and Vienna, but

Rome has already been expanded so it is not added to the search tree (Figure 2.4(b)).

Now the node with the lowest / -cos t is Paris, with / = 1637. Its successors are London,

Amsterdam, Luxembourg, and Madrid, but Luxembourg has already been expanded, so it

is not added to the search tree. Amsterdam was already in the search tree, and the g—cost

of the pa th Rome-Luxembourg-Paris-Amsterdam is 1296+428=1724. This is larger than

the g - c o s t tha t was previously stored for Amsterdam, so the values for Amsterdam do not

need to be updated. This is also the case for Madrid: the cost of reaching Madrid via Paris

is higher than the cost of reaching Madrid directly from Rome, so the values for Madrid do

not need to be updated. As a result, only London is added to the search tree (Figure 2.4(c)).

London is now the node with the lowest / -cost , and since this is the goal state, the algorithm

is finished.

2 .2 .2 W e i g h t e d A *

A variant of the basic A* algorithm is the Heuristic Pa th Algorithm (HPA), also called

weighted A* (WA*), which was proposed by Pohl as a way to find solutions more quickly [23] [24]

This algorithm uses an evaluation function in which the g— and h—terms are weighted, so

f(n) = (1 — W) • g(n) + W • h(n), which can be re-written as f(n) = g(n) + w • h(n), where

W = J ^ J . WA* will produce optimal paths when w < 1, but this is not necessarily the

case when w > 1. Although the solution may not be optimal for values of w larger than

1, it can reduce the amount of work done because the search is more greedy and focused.

Davis et al. showed tha t if w > 1, the solution is at most a factor w larger than the optimal

solution [5].

2.3 Pathfinding on a Map

Pathfinding on a map is a subclass of search problems, in which an agent navigates from its

start location to its goal location in some map-based environment. This is used, for example,

in video games and in robotics. Examples of map environments are 2- and 3-dimensional

grid-based maps and a map in which obstacles are represented by polygons, defined by line

segments.

11

(a) Map (b) Graph

Figure 2.5: A grid-based map and its graph representation

A map can be represented as a graph. In grid-based maps, each grid cell becomes a node

in the search graph, and an edge is added between two nodes whenever the agent can move

directly from one to the other. A small example is shown in Figure 2.5. In Figure 2.5(a), each

location is either passable (white squares) or an obstacle (black squares), and in Figure 2.5(b)

circles denote nodes, and lines denote edges in the graph.

Map graphs have some characteristics that make search challenging. One of them is that

map graphs often have irregular structures imposed by the obstacles in the map. Because

of these irregular structures, there are no symmetries that can be exploited as often seen

in some puzzle problems such as the 15-puzzle or Rubik's cube. In addition, the branching

factor, i.e. the number of actions available to the agent, is at most 8, which is higher than

in some other search problems such as sliding tile puzzles. Another challenge is that the

environment is potentially dynamic, since new obstacles may appear or existing obstacles

may be removed. Lastly, the start and goal locations can be any state in the environment,

so we cannot pre-compute start or end moves.

2.4 Abstraction

Heuristic search can be very expensive since in the worst case, A* search needs to expand

every state. Therefore, for large state spaces, A* will run out of memory. To reduce the

amount of work that needs to be performed, it is possible to use abstraction [15]. During

abstraction, the original graph G is represented by a smaller graph A that retains the

essential structure of G, removing details and reducing the size of the search space. This

process can be repeated by abstracting the the abstract graph A, giving graph A2, and so

on, until the graph is reduced to a single node. The set of smaller and smaller graphs is

called an abstraction hierarchy. Assuming we choose a good abstraction, i.e. one that does

not remove the essential characteristics of the map, a path in the abstract graph can be

found quickly, since it is smaller than the original graph. This abstract path can be used to

guide the search on the original graph.

12

Formally, an abstraction is a mapping from a graph G to an abstract graph A. The size

of the graph is reduced by mapping multiple nodes in G to the same node in A. We say

that a node n in G that is mapped to node a in A is a pre-image of a, and that a is the

image of n. Node n is also sometimes called a child node of a, and a the parent node of n.

An edge exists between two nodes a\ and 0,2 in the abstract graph A whenever there exists

an action on a child of a\ that takes the agent to a child of 02.

The first step to finding a solution in the original graph is to find a path in the abstract

graph, for example using A* search. Next, the abstract path 774772...rife is refined by searching

for a path that connects the start state, which is a child of iii, to a child C2 of ri2, then a

path that connects C2 to a child C3 of 77,3, and so on until the goal has been found. A final

solution is obtained by concatenating the sub-paths between abstract nodes, which is not

necessarily an optimal solution.

An example of path refinement is shown in Figure 2.6. The squares on the botton show

the original states, and the circles at the top of the figure are the abstract nodes. The gray

lines indicate which states in the original space have been mapped to each abstract node.

The start and goal states are indicated by S and G, respectively. The solid lines between the

abstract nodes show the abstract path, and the dashed lines show the refined path. During

refinement, we first replace the abstract edge between n\ and 712 with a path in the original

search space. This is done by finding a path between 5" and a child state of 77,2, in this case

C2- Next, the abstract edge between 77,2 and 713 is refined, by finding a path between C2 and

a child of 773, in this case C3. The last step is to find a path from C3 to the goal state.

© (J) Q

Figure 2.6: A path refinement example

This process can be generalized for multiple abstract graphs. First, search is done in

some abstract graph Ak- Next, this path is refined to a path in the abstract graph Ak-i,

which, in turn, is refined to a path in abstract graph A^-2, and so on until a solution in the

original graph G is found. We need to choose the appropriate level of abstraction for the

initial abstract search: one that abstracts away enough detail to reduce the search space,

but does not abstract away too much because this increases the cost of refinement.

13

The idea of abstraction has been applied to single-agent pathfinding on a map, for exam

ple in the Hierarchical Pathfinding A* (HPA*) algorithm [3]. The abstraction mechanism

used by this algorithm does not use a direct mapping from the map graph to the abstract

graph, but it uses a similar approach in the sense tha t it uses a smaller abstract graph to

guide search on the map level.

In HPA*, a grid-based two-dimensional map is divided into square sectors, called clusters,

of a user-defined size. An example map, divided into 4 clusters of size 10x10, is shown

in Figure 2.7(a), where the black rectangles represent obstacles and the thick black lines

indicate sector boundaries. Along each border between two adjacent sectors, an entrance is

defined for each obstacle-free segment along the border. In the abstract graph, each cluster

is represented by a group of abstract nodes tha t represent the entrances to tha t cluster.

For each entrance tha t is at most 5 grid cells wide, a single abstract node is created in the

center of the entrance. For each entrance tha t is larger than 5 grid cells, two abstract nodes

at the ends of the entrance are created. In Figure 2.7(a), the entrance nodes are shown

as grey squares. For example, along the bot tom border of the top-left cluster, there are

two entrances: one between the border of the map and the obstacle, and one between the

obstacle and the top-right cluster. The first of these entrances is only three grid cells wide,

so it is represented by a single abstract node in each of the clusters tha t it is adjacent to.

The other entrance is wider, and is therefore represented by two abstract nodes in each

of the adjacent clusters. Abstract edges are added between corresponding entrance nodes

in adjacent clusters (inter-cluster edges) as well as within clusters whenever there exists a

path between the two nodes on the map level (intra-cluster edges). The abstract graph

for the map is shown in Figure 2.7(b). Inter-cluster edges are the short light gray edges

tha t connect corresponding entrance nodes in adjacent clusters. The intra-cluster edges are

shown as darker grey lines.

To speed up refinement, a map-level path is found and stored for each intra-cluster edge

e. This pa th connects the two entrances tha t are connected by e, and they cannot go outside

the cluster boundaries. The cost of each intra-cluster edge, which is used during search in

the abstract graph, is set to be equivalent to the cost of the low-level path . Storing these

paths simplifies the refinement process because abstract edges can be directly replaced by

the paths tha t have been stored for them.

It is possible to build an abstraction hierarchy by adding multiple abstract graphs. For

HPA* this is done by combining multiple clusters at the previous level into a single higher-

level cluster. The higher-level abstract nodes are the abstract nodes tha t lie on the sector

boundaries of the previous level. Again, edges are added between corresponding entrance

nodes of adjacent sectors as well as within sectors. A path at the previous level is stored

for each of the intra-cluster edges, and the cost of the intra-cluster edge is equivalent to the

14

z 11

~B~fcr i s i

m H

! • • • • • • • • • « • • • •

f *hfe

/ / / I \ \

(C4
3 * te

^-4

\ I
\ \

T

V

•*,» MM

(b) Abstract graph (a) Map with entrance nodes

Figure 2.7: An example of the cluster abstraction used by HPA*. Figure adapted from [3]

cost of the lower-level abstract path. In the example from Figure 2.7, a possible additional

level of abstraction is to combine the two clusters on the left-hand side of the map into a

single cluster, as well as the two on the right-hand side. The abstract nodes at this level

would be the ones along the vertical center line.

To find a solution to a search problem, the algorithm first performs an A* search on the

abstract path. Next, the algorithm refines the abstract path by replacing each edge by the

path tha t was stored for it, giving either a lower-level abstract path or a map-level path.

The last step performed by the HPA* algorithm is path smoothing, which replaces portions

of the map-level pa th by straight lines. This process reduces the length of the path.

Some enhancements to HPA* have been proposed by Jansen and Buro [16]. Their

paper introduces a faster way to perform path smoothing, proposes a different algorithm to

compute the costs of intra-cluster edges, and suggests computing and storing edge costs on

demand rather than pre-computing them.

It is not always desirable to compute a complete path before executing it, either because

the agent does not have sufficient time to plan its entire pa th before it has to make a move, or

because the world is dynamic and computing a full pa th is inefficient because the agent will

likely need to re-plan before it reaches its goal. The agent can then compute partial paths

instead, and one way to do this is with Path-Refinement A* (PRA*) [31]. This algorithm

first builds an abstraction hierarchy of the map, then finds a high-level plan, and refines

this plan into low-level actions as needed.

PRA* abstracts cliques, i.e. groups of fully-connected nodes, into single abstract nodes.

An advantage of this is tha t it is possible to get from any child node to any other child

node of an abstract node in one step, which simplifies the refinement process. The abstract

15

node's location is set to be the average location of its children. Additional abstract layers

can be added using the same process. The abstraction hierarchy is complete when there is

a single node for each connected component of the original graph.

An example of this abstraction is shown in Figure 2.8. Figure (a) shows the original

graph, with two sample cliques indicated by dotted lines. Figure (b) shows one way in

which the map-graph can be abstracted, again with one sample clique shown. Figure (c)

shows the second abstract layer of the graph.

(a) (b) (c)

Figure 2.8: An example of a clique abstraction

During path planning, the agent first finds a complete abstract path at some level in

the hierarchy using A*. This ensures that the agent does not get trapped in a dead end,

because it has some knowledge of the structure of the entire map. Then at each lower level

of abstraction, search is restricted to the children of the nodes that make up the abstract

path, which reduces the cost of search. Partial refinement is done by only finding a map-level

path for only the first k nodes of the abstract path.

Abstraction has not only been used for pathfinding in grid-based world. Triangulation

Reduction A* (TRA*) finds paths in environments with polygonal descriptions [6]. It first

creates a triangulation of the free space, and then builds a graph from this triangulation. It

reduces this graph and performs a search on this abstract representation of the map.

Many other abstractions are possible. An analysis was first done by Holte et al. [15],

and empirically verified by Sturtevant and Jansen [33], that shows that search effort can be

reduced most significantly by maximizing the number of children of each abstract node, and

minimizing the maximum length of a shortest path between any pair of the nodes that are

abstracted together.

2.5 Multi-Agent Pathfinding

In the simplest form of pathfinding, only one agent needs to plan across the map. However,

in many domains there are multiple agents in the environment. Consider a video game in

which one of the maps is a market with many people moving around between the different

stalls. All these agents are traversing the world and they need to perform pathfinding at

the same time.

rn

16

There are different scenarios for the multi-agent case: adversarial (try to stop other

agents from reaching their goals), cooperative (agents need to work with other agents to

get to their goals), and neither adversarial nor cooperative (the agents may benefit from

coordinating with other agents but it is not required for them to reach their goals).

A solution for the multi-agent pathflnding problem that minimizes some criterion, for

example the total pa th length for all agents, can be found by centrally planning for all the

agents at the same time, but in general this is infeasible. If there are n agents in the map,

and the branching factor (the number of actions each agent can take at any point) is b,

there are bn possible combinations of actions for all the agents at each step. For example,

if each agent has eight actions available to it all all times, and there are 5 agents, there are

85 = 32768 possible sets of actions. If there are 20 agents, this blows up to 82 0 « 1 x 1018 .

When this number of combinations is high, search is expensive because whenever a node is

expanded, many successors are generated.

If the constraints are relaxed and we do not require a solution tha t minimizes some

criterion like tota l path cost, search can be done for each agent individually, rather than

for all agents simultaneously. One way to do this is by using the A* algorithm to plan

for each agent separately, where each agent either ignores all agents except its immediate

neighbours, or views them as static obstacles. The agent re-plans whenever it collides with

another agent. We will refer to this algorithm as Local-Repair A* (LRA*) [29]. In practice,

this approach does not generate believable behaviour because the agents do not take the

dynamic aspect of other agents into account and therefore many collisions occur. This is

undesirable since creating realistic behaviour is important .

Another approach for multi-agent path planning is to let agents share information about

their planned paths with other agents [9] [29]. This turns the 2-dimensional search into a

3-dimensional one, where the third dimension is time. The agents reserve their paths in

space-time, so tha t no other agent can plan to be at the same location at the same time.

This idea is illustrated in Figure 2.9. Figure 2.9(a) shows a map with two agents and their

planned paths. The light grey agent, Agent 1, plans to move to the right, and the dark

grey agent, Agent 2, plans to move up. Figure 2.9(b) shows a da ta s tructure tha t could be

used for communication between the agents. In this figure the z-axis is time, and agents

share where they plan to travel at each point in the future. The bot tom layer of the data

structure shows where the agents currently are. The next layers show where the agents plan

to move at future time steps. For example, Agent 1 plans to move from its current location

to the one to the right of it in the next time step, so these two locations are marked off by

Agent 1 in the da ta structure. Agent l ' s goal location is Agent 2's s tar t location, but Agent

1 can see in the shared da ta structure tha t Agent 2 will move out of the way.

This idea of reservations in a time-space table has been used for managing traffic flow

17

&

A

—©

>

T
im

e

<

/ / / /
/"'/ / jm

/ / /

1

1

1

I

I

I

SjjBg

/

/
/

f

V>
X

(a) Map (b) Reservation table

Figure 2.9: Example of a reservation table

through an intersection [9]. The goal of this traffic management work by Dresner and Stone

is to plan efficient collision-free paths for cars through intersections. The intersection is split

up into grid cells, and the reservation table is maintained by an intersection manager. When

a car approaches the intersection, it sends a message to the intersection manager with the

expected time it will arrive at the intersection, as well as its expected velocity at the time of

arrival and the direction in which it wants to leave the intersection. When this new request

comes in, the intersection manager simulates the car's movement through the intersection,

and attempts to find a way for this car to make its way through the intersection so that

there is no conflict with the reservation table {i.e. the new reservation does not occupy any

space-time slot that has already been claimed). If such a route is found, it sends a message

of approval back to the car, together with any special instructions. Otherwise, a rejection

message is sent back and the car will have to slow down and try again later.

This approach works well in the case where lanes have been predefined and only a small

portion of the map is shared by agents coming from different directions. For the intersection

management problem, where such lanes are defined, this approach is very efficient compared

to traffic lights or stop signs.

Reservation tables can also be used together with heuristic search for multi-agent pathfind-

ing on a map where each agent has its own start- and goal locations [29]. Three related

algorithms are introduced by Silver, the first of which is Cooperative A* (CA*). CA* is

a distributed search algorithm where the individual searches are performed in space-time.

After performing this search, the agent marks its path in the reservation table, and other

agents cannot plan to be in the same place at the same time. When an agent is blocked

because other agents have filled the reservation table entries it needs, the agent has to wait.

The second algorithm improves the performance of CA* by using a more accurate heuris-

18

tic. Hierarchical Cooperative A* (HCA*) first performs a search in an abstract search space

in which the time dimension and other agents are ignored. This search is in the form of Re

verse Resumable A* (RRA*), which begins search at the goal node, and searches backwards

to the agent's location. The closed list is maintained between searches, since it contains a

perfect heuristic for these nodes if time and other agents are ignored, and it can be used for

subsequent searches.

A possible drawback of the HCA* algorithm is that planning cannot be performed in

real time. However, in some applications, such as video games, real time planning is im

portant and this can be achieved by an algorithm which is able to interleave planning and

plan execution. In addition, when an agent uses the HCA* algorithm, it does not exhibit

cooperative behaviour once the agent has reached its goal. It is preferable that the agent

can move out of the way of other agents even after is has arrived at its destination. Lastly,

the previous two algorithms are sensitive to agent ordering, and although it is possible to

determine a suitable order for the agents, the algorithm is more robust if the order of the

agents is varied. The last algorithm introduced by Silver, Windowed Hierarchical Coopera

tive A* (WHCA*), addresses these issues. It does this by windowing the search: each agent

only searches to some depth, and begins moving. After some fixed time, the search window

is shifted and the next portion of the path to the goal is computed. When an agent performs

planning, it does a full search on the abstract level, just like the PRA* algorithm from the

previous section, to make sure that it is moving in the correct direction. Cooperative search

is only done within the search window, and time and other agents are ignored beyond it.

This approach allows agents to interleave planning and execution, the agent who has top

priority is varied, and agents who have reached their goals can move out of the way of other

agents since this windowed search can continue after an agent has reached its destination.

A drawback of reservation-based approaches is that they look for the shortest path

possible. Sometimes shorter paths look more chaotic, while a slightly longer path is more

visually pleasing.

Spatial abstraction ideas from Section 2.4 can be combined with the ideas from

WHCA* [32]. One possibility is to enhance WHCA* by computing the Reverse A* heuris

tic on an abstract level rather than on the full space. Another possibility is to combine

WHCA* with PRA* to form Cooperative Path-Refinement A* (CPRA*) by using WHCA*

on the map level of the abstration, rather than A*. These improvements reduce memory

and computation overheads.

Biased-Cost Pathfinding (BCP) is another multi-agent pathfmding algorithm, which

was proposed by Geramifard et al. [12]. This algorithm focuses on reducing the number of

collisions between agents. The approach assumes that agents have different priorities, and

that lower-priority agents modify their paths when a collisions will occur. The proposed

19

method is to find the collisions tha t will occur after the agents have planned their paths.

Then for all agents other than the one which has the higest priority, the heuristic for the

collision location is increased, forcing the lower-priority agents to re-plan. This approach is

repeated until no collisions can be found, or the amount of t ime allotted for pa th planning

has elapsed.

2.6 Navigat ion

Many approaches exist for generating realistic navigation behaviour, both for animals and

for humans. These are generally not heuristic search approaches, but rather navigation

behaviours tha t may use path-following. Path-following is the task of traversing a given

path.

Reynolds developed the flocking approach, a distributed model for simulating the move

ment of groups of animals tha t travel together tha t can be used for path-following [25].

An agent of such a group, which is referred to as a bird-oid, or boid, uses only local infor

mation about the rest of the flock to decide on its movement. The behaviour is governed

by three desires tha t are combined to produce flocking behaviour: avoiding collisions with

other boids, moving at the same velocity as nearby flockmates, and staying close to nearby

boids. Although the idea is fairly simple, it produces realistic behaviour.

When agents navigate their environment individually rather than as a group, steering

can be used [26][27]. Reynolds introduces a number of steering behaviours, such as "seek",

"pursuit" and "obstacle avoidance". These behaviours produce a vector which represents

a force tha t directs the agent 's movement. This steering force is passed to the locomotion

controller, which performs the actual movements. One example of a steering behaviour is

flow field following, in which the agents follow flow vectors in the environment. These flow

vectors are mappings from locations to directions, and the agents follow the directions indi

cated by the vectors. Path-following is another example of a steering behaviour. Therefore,

steering is separate from, but related to, pathfinding, in the sense tha t a pa th found by a

pathfmding algorithm can be used as a guideline by the steering system.

Force-based approaches, such as potential field methods, have also been used in robotics.

An example of this is Arkin's work on robot navigation, which uses potential fields to guide

the robots [2]. The potential field consists of vectors which a t t rac t the robot towards a

goal, and repel it from obstacles. This is combined with high-level behaviours to direct the

robot 's speed and movement direction.

A similar idea was used for collision avoidance in animation [10]. The system devel

oped by Egbert and Winkler automatically generates repulsive vector fields around objects.

Whenever two objects get too close, the repulsive force causes them to move away from one

another.

20

A force model can also be used for pedestrian motion. This can be done by consider

ing social forces, which represent the internal motivations of the pedestrian. ITelhing, for

example, defined a number of social forces that are combined into such a model [14]. Specif

ically, the forces that are taken into account by this model are a person's desire to reach

his or her goal quickly, a respulsive force exerted on the pedestrian by other pedestrians or

obstacles, and attractive forces from certain people or objects. These social forces are quan

tified, weighted and added to give the pedestrian's "total motivation", which is a vector

representing the direction and acceleration for the pedestrian's movement. Experimental

results show that pedestrians using this model will form lanes of people moving in the same

direction, and that the direction of movement through a narrow doorway alternates. Both

these behaviours have been observed in real pedestrians.

Another way to simulate crowds of pedestrians is continuum crowds [34]. In this model,

pedestrian movement is viewed as a per-particle energy minimization and it combines global

path planning with local collision avoidance. Like real crowds, the simulated pedestrians

form lanes of people walking in opposite directions and they can form vortices at crossings.

2.7 Ant-Based Pathfinding

Humans and birds are not the only species that are able to move in their environment in a

cooperative manner. In nature, there are examples of communities of insects that exhibit

complex group behaviour even though each individual's capabilities are limited. Ants, for

example, are almost blind but are able to complete tasks that a single ant would not be able

to perform.

In the physical world, ants are faced with patrol tasks when collecting food because the

ants move back and forth between the nest and the food source. This task is accomplished

efficiently by following pheromone trails left behind by other ants. Research in biology has

shown that rules for individual ant behaviour lead to group behaviour in which lanes are

formed so that collisions are minimized and traffic flow is maximized [4]. This is similar to

what has been observed in pedestrians, as was discussed in Section 2.6.

A term for this phenomenon, stigmergy, was first introduced by the French biologist

Pierre Paul Grasse to describe behaviour of termites, but it has later become a term used to

describe any emergent behaviour that arises from indirect coordination between agents [7].

By leaving traces in the environment, groups of agents demonstrate intelligent behaviour

that the individual agents are incapable of.

These ideas have been used to solve pathfinding-related problems. An example of work

which uses this for optimization problems is Ant System [8]. The main idea of this approach

is that ants leave behind a pheromone trail as they walk, and other ants will choose the path

with the most pheromone with a high probability. After some time, the ants will follow the

21

shortest path to the goal.

Pheromone-based approaches have also been used in robotics for tasks such as unmanned

military aircrafts [21] and to generate complex group behaviours [22].

2.8 Summary

The multi-agent heuristic search algorithms discussed in Section 2.5 do not emphasize

natural-looking pathfinding behaviour. LRA* completely ignores the dynamic nature of

other agents by viewing them as static obstacles, which leads to collisions. On the other

hand, WHCA* stores complete information about other agents' paths, which avoids colli

sions between agents. However, since this approach attempts to minimize the length of each

agent's path, paths sometimes look chaotic.

Instead of storing static data, like LRA*, or fully dynamic data, like WHCA*, we can

store static information about the dynamics of the world. For example, we can use infor

mation about the direction in which other agents have moved and use this to guide the

movement of other agents. This is similar to the pheromones left behind by ants, since

in both cases agents use information about other agents' travel when they decide how to

move. It is also similar to flow field following, since agents base their movement on direc

tions suggested by the map. The next chapter will introduce a multi-agent heuristic search

technique which uses these ideas. We will also discuss how abstraction can be applied to

this technique.

22

Chapter 3

Direction Maps

When multiple agents move around in an environment, they can only exhibit cooperative

behaviour if they share information about their movement. Using only a static snapshot of

information, such as each agent's current location at the time of planning, is not very useful

since these locations change continuously. For example, there may be someone blocking

a location ten steps ahead of the agent's current location, but by the t ime the agent gets

there, the other agent has most likely moved. This poses a problem when the agents use

Local-Repair A* (LRA*), for instance. Since the agents use static information, they collide

frequently.

Agents which use Windowed Hierarchical Cooperative A* (WHCA*), on the other hand,

use dynamic information about the world, namely the plans of all other agents. Although

agents are able to avoid each other, this approach can have large memory requirements if

there are many agents or if the paths are long. Additional drawbacks are tha t it is expensive

to plan with this dynamic da ta and tha t behaviour can look chaotic because the agents are

trying hard to plan paths tha t are as short as possible.

Instead of storing static information tha t reflects the s tate of the environment at a

fixed t ime t, or storing dynamic information, we can store static information about agent

dynamics, such as information about the movement of agents. The method tha t is proposed

here is to perform heuristic search with a direction map (DM), by weighting edge costs.

For each location in the map, a DM stores a direction vector (DV), which represents the

expected direction in which an agent will pass through this location.

We visualize direction vectors as arrows. For example, if we let the length be at most

one, the x- and y-values range from -1 to 1 and the vectors can be visualized in a unit circle,

as illustrated in Figure 3.1. In this figure, only the DVs for the eight movement directions

are shown, but an infinite number of DVs is possible. For example, a DV of length 1 that

points in the north-east direction would correspond to (-4=, -4= j .

A small map with example DVs is shown in Figure 3.2. In the figure, black squares are

not accesible by the agent. If we assume tha t the length of all shown DVs is 1 and tha t they

23

(-0.71,0.71)

(-1,0)

(0.71,-0.71)

/0.71,0.71)

(1,0)

(0.71,-0.71)

Figure 3.1: A unit circle representation of direction vectors.

always point in one of the eight main directions, the DV in location J34 is (1,0), and the DV

in location C2 is (0,1). A move by an agent can also be represented as a vector, which we

call a movement vector (MV). A movement vector always has length 1, and points in the

direction of the agent's move. For example, if an agent were to move between A3 and A4

in Figure 3.2, the corresponding MV would be (1,0).

B

C

D

— •

/

/

• '
/ —

A ^^M

A ^ ^ H

/

— >

Figure 3.2: An example of a map and its direction map.

The DM is updated on-line. Whenever an agent passes through a location /, the DV

stored for I is updated by adjusting the DV a bit towards the agent's MV. During path

planning, agents are encouraged to find a path that follows the directions indicated by the

DM. This is done by weighting the cost of edges in such a way that a path of length d

that follows the DM is cheaper than a path of length d that does not follow the DM. For

example, in Figure 3.3, if the agent, indicated by a black circle, were to use A* to find a

path between its current location D2 and its goal location A2, indicated by G, it would

plan the path D2 — C2 — B2 — A2. However, the direction vectors point in the opposite

direction, so when the agent takes the costs induced by the DM into account, it may find

that the path D2 — C3 — B3 — A2 is cheaper, even though it is slightly longer.

24

1
I
I
I

G

i
I

•

!

t
t
t

1
t
t
A

1 2 3 4

Figure 3.3: An example of how a DM affects pa th planning.

The next section will describe in detail how DVs are updated. Section 3.2 will discuss

how agents use DMs for planning. The last four sections introduce variations of the basic

direction map approach, namely increasing the agent's influence on the direction map, local

DM approaches, abstraction, and using the DM for greedy search.

3.1 Updating Direction Vectors

A direction map is a collection of DVs; one for each location on the map. Rather than

drawing the vectors by hand, as is done for approaches like flow field following (Section 2.6),

we want to use the agents ' behaviour to build the DM. Building the DM is formulated as a

learning problem, where at each location the DM at tempts to predict the direction in which

the next agent will pass through this location based on the MVs of agents tha t have already

passed through it. Initially, the DVs are set to (0,0), and the DVs are updated every time

an agent enters or leaves a location /. One way to do this is by setting the DV for / to be

a recency-weighted average of the old DV and the agent's MV, effectively moving the DV

partially towards the MV. In particular, if DVX and DVy are the x- and y-components of

the DV stored at location I and MVX and MVy, the x— and y-components of the agent's

movement vector, we update the DV for location / as

DVX <- (1 - a) • DVX + a • MVX

DVy *- (1 - a) • DVy + a • MVy,

where a is a user-defined learning parameter tha t determines how much the DV is shifted

towards the MV.

Through minor algebraic manipulation it can be shown tha t there is a theoretical foun

dation for these simple update rules. They can be obtained by using perceptrons, which are

very simple neural networks. We will first describe perceptrons in general, and then we will

show tha t the update rules from above are equivalent to the perceptron update rule.

25

A perceptron, or single-layer feed-forward neural network, is a very simple artificial

neural network tha t can learn a function [28]. It takes a set of inputs and computes an

output . Figure 3.4 shows a diagram of a perceptron. The arrows on the left-hand side

denote the inputs and each, input a; is associated with a weight Wi. These weights are

learned by the perceptron. Input OQ is fixed at - 1 , and WQ is called a bias weight.

Figure 3.4: A neuron. Figure adapted from [28].

The output of a perceptron, i.e. the result of applying the learned function to a set of

inputs, is computed as follows. The perceptron computes a linear function of the inputs and

weights,
n

in => Wi • a,i.
i=0

It is desirable tha t the perceptron be able to learn non-linear functions, but the above is

simply a linear function of the inputs. Therefore, a non-linear function g, called an activation

function, is applied to this result, and the output of the perceptron is

g(in).

Some examples of commonly used activation functions are radial basis functions and sigmoid

functions.

Before the perceptron can be used, weights need to be learned. Although this is not the

case in our application, in general the weights are learned during a training phase before the

perceptron is used to compute outputs . Weights are updated by using a learning algorithm

tha t is provided with a number of training examples, each consisting of a vector of inputs

x=xi,...,xn and an output y. The learning algorithm updates the weight for each training

example, and then repeats this process for the set of training examples until some stopping

condition is satisfied. An example of such a condition is tha t the total change in the weights

does not exceed some threshold.

Pseudocode for the learning algorithm is given in Figure 3.5. Lines 3 through 6 show how

the weights are updated based on a training example e. In line 3, the algorithm computes

the linear combination of the inputs and their weights for example e. Line 4 computes

the difference between y[e], the actual output provided by training example e, and g(in),

the perceptron's output for the inputs given by e. This is the error in the output of the

26

function Perceptron-Learning(a,examples,network) r e t u r n s a set of weights W
input examples is a set of examples, each consisting of an input vector •x=x\,...,xn and output y

network is a perceptron with weights Wj, j=0,...,n, and activation function g
1 repeat
2 for each e in examples do

3 in*-YTj=aW3xi[e\
4 Err <— y[e] — g(in)
5 for j from 0 t o n
6 Wj <— Wj + a x _Brr x g'(in) x Xj[e]
7 until some stopping criterion is satisfied
8 return W

Figure 3.5: Gradient descent learning algorithm for perceptrons. Adapted from [28]

perceptron. Lines 5 and 6 update the weights in a way tha t minimizes the sum of squared

errors, which is a measure of how well the perceptron's output for each set of inputs matches

the actual outputs given by training examples. Each weight Wj is modified by an amount

equal to the product of the learning rate a (a parameter to the algorithm), the error in

the output , the derivative of the activation function g'(in), and the input Xj this weight is

associated with. A derivation of this update rule can be found in [28].

As was mentioned in the beginning of this section, we can use perceptrons to obtain the

direction vector update rules. In this formulation, we place two perceptrons at each location

in the map: one for the x— and one for the y—component of the DV. These are very simple

perceptrons, which have no explicit inputs except a bias term, ao = —1, associated with

weight Wo. The output of the perceptron is the x— or y—coordinate of the DV, i.e. the

predicted x— or y—coordinate of the MV of an agent passing through the location. Whenever

an agent moves into or out of a location, the weights are updated, so there is an implicit

input to the perceptron indicating tha t an agent is passing through the location. This

means tha t the learning algorithm from Figure 3.5 is not performed repeatedly over a set

of training examples before the perceptrons are used. Instead, online learning is performed:

whenever an agent passes through a location, a training example is generated and lines 3-6

of the algorithm are perforrned just once for this training example. Learning the DM and

using it for pa th planning are interleaved.

Since there are no explicit inputs to the perceptrons, the training examples tha t are

generated consist only of an output . Since we want the perceptrons to learn a DV, i.e.

predict the MVs of agents passing through this location, these outputs are the x— and

y—components of the MV. We will show tha t if we let the activation function be g(x) = —x,

the update rules for the DV are equivalent to those for the perceptrons. In this case we can

use a linear activation function since the only input to the perceptron is a bias input tha t

is fixed at - 1 . Since the updates to the x— and y—coordinates are similar, we will show the

derivation of the DV update rule only for the perceptron which learns the x—coordinate for

27

a location.

When the only input to the perceptron is the bias input ao — - 1 with weight Wn, and

the activation function is set to g(x) = —x, the output of the perceptron is

glf^Wi. aA = g(W0 • (-1)) = -(W0 • (-1)) = W0.

Since the perceptron learns DVX, i.e. the output of the perceptron is equal to DVX, we

have that

W0 = DVX

Since there is only one weight, the update rules from lines 5 and 6 of Figure 3.5 can be

rewritten as

Wo = Wo + a • Err • g'(in) • xo[e\.

Here, we can replace Wo by DVX, and xo[e], the input from the training example, by -1

since it is the bias input. Since g(x) = —x, its derivative is g''(in) = —1. Err is simply

the difference between the actual output, MVX, and the output of the perceptron, which is

DVX. Therefore, we have that

DVX = DVx + a-(MVx-DVx)-(-l)-{-l) = DVx+a-(MVx~DVx) = (l-a)-DVx+a-MVx,

which is the proposed update rule for the DVs.

Now that we have shown that the DV update rules that were given at the beginning of

this section are a form of perceptron update rules, we will show an example of how DVs are

updated. Consider the map from Figure 3.2 again, let a = 0.5 and assume that all shown

DVs have length 1. Assume there is an agent in location B2 that moves to B"i, so the MV

corresponding to this movement is (1,0). First, we update the location the agent has just

left. The DV for this location was f -4=, 4=), so we update the x-component as

DVX = (1 - 0.5) • 4 = + 0.5 • 1 w 0.85,

V2

and the y-component as

1

so the DV is approximately (0.85,0.35).

Next, we update the DV for the location the agent has moved into, B3. The DV stored

for this location is (1,0), and the DV associated with the incoming direction is (1,0). The

we get

DVX = 0.5 • 1 + (1 - 0.5) -1 = 1

and

DVV = 0.5 • 0 + (1 - 0.5) -0 = 0

so the resulting DV is (1,0), which is the same as before this update, because the agent

moves along the direction of the DV.

DVy = (1 - 0.5) • -j= + 0.5 • 0 « 0.35,

28

3.2 Planning with Direction Maps

Planning is done using A* search, which was introduced in Section 2.2.1. The goal of using

a DM during planning is that the agents choose their paths based on the paths that other

agents have taken before them. Therefore, they are encouraged to pass through each location

in the direction of the DV. This is done by modifying the cost of actions in the environment.

Whenever a MV for an edge does not point in the same direction as the DV stored at the

begin and end locations of the edge, a penalty is added to the cost of that edge. The size

of the penalty depends on how similar the MV for the edge is to the DVs stored for the

locations that are adjacent to the edge. The penalty is high when the MV points in the

exact opposite direction of the DVs, and low when the MV is only slightly different from

the DVs.

In most map-based pathiinding applications, the regular edge cost is equivalent to the

length of the edge: 1 for a cardinal edge, and \/2 for a diagonal one. When a DM is used,

the additional cost for traversing an edge is based on the dot products between the edge's

MV and the DVs of the adjacent locations. The dot product was chosen because it is a way

to measure how similar two vectors are.

Geometrically, the dot product between two vectors a and b is the product of the length

of the scalar projection of a onto b, and the length of b [18]. This is illustrated in Figure 3.6.

If we let b be the MV, which has fixed length 1, and a be the DV associated with one of the

adjacent locations, we can see that the length of the projection depends on two things: the

length of vector a and the angle between a and b. The dot product will be negative if the

angle between the two vectors is greater than 90°, zero if the vectors are orthogonal, and

positive if the angle is less than 90°. The dot product is smaller for shorter DVs, and larger

for longer DVs.

< P
< >

Ibl

Figure 3.6: Geometrically, the dot product is the product of the length of b, indicated by
|6|, and the scalar projection of a onto b, indicated by spa.

We compute the penalty induced by the DM by computing a weight for each of the two

locations adjacent to the edge, say locations a and b, and taking the average. The weight

29

for location a is a value between 0 and 1. It is computed by first taking the dot product

between the DV for a and the agent's MV. Since DVs and MVa can have length at most 1,

the dot product will always be a value between -1 and 1. We map these values to 0 and 1

by simple mathematical operations, giving weight:

_ (I - (MVX • DVx{a)) + (MVy • DVv(a)y
Wa~\ 2

where MVX • DVx(a) + MVy • DVy(a) is the dot product between the MV and DV{a). If

wa = 0, the DV at a and the MV point in the same direction and are of unit length, and

when wa = 1, the vectors are unit length and opposite to one another.

After this weight has been computed for both locations a and b, the edge cost is computed

as
f-Wa+Wb

Ce,DM — Ce + Wmax • I

where ce is the unweighted cost of traversing edge e, and wmax is a weight parameter, which

can be seen as the penalty induced by taking an action with a MV that is opposite to the

DVs at both adjacent locations. For example, in Figure 3.2, the penalty for moving from

BA to B3 is wmaxi because the MV is exactly opposite the DVs both at B4 and at B3.

As an example of how a DM is used to compute edge cost, consider the edge between

locations D\ and D2 in Figure 3.2. The DV stored at location Dl is (-4=, -4=), and the DV

stored at D2 is (0,1). The MV associated with traversing the edge from Dl to D2 is (1,0).

We then compute

wD1 = ^ ^ w 0.1464

wD2 = = 0.5.

Thus, if we let wmax — 1, the cost of this edge is

ce,DM = RegularEdgeCost + Penalty = 1 + 1 • I — —) « 1.3232.

3.3 Local Direction Maps

The direction map approach has so far been described in a way that requires that all agents

have access to a global data structure. However, the approach can be modified so that the

agents only use local informsition. Two possible approaches are described here.

The first approach assumes that there exists a direction map as described above, but

the agents can only see the DM within some window of size win. One could imagine that

the DM consists of arrows that are drawn on the ground, and that the agents can only

see the ground up to some distance, similar to how ants can only sense pheromones within

30

some distance. During planning, the agents only use the DM for locations close around

them, within that window, and ignore it (i.e. use regular edge costs) beyond the window.

The resulting path may look like the one shown in Figure 3.7. The circle indicates the

local radius within which the agent can see the direction map. As a result, the first part of

the path may look the way it does in the figure. For the rest of the path, the agent uses

unweighted edge costs to plan its path (i.e. ignores the DM), so on this simple map, the

planned route will be straight lines to the goal. However, the agent does not follow this path

all the way to its goal. Instead, it follows this path to the edge of the window, and then

re-plans with the window shifted so that it is again centered at the agent's current location.

This process is repeated until the agent reaches its goal.

Figure 3.7: An example of using direction maps with local information only.

The second way in which agents can be restricted to use only local information is if each

agent keeps its own copy of the direction map. A global DM is stored as well, but agents

only have local access to it. The global DM can again be seen as arrows on the ground that

an agent can only see within some user-defined radius riocai.

Whenever an agent makes a move, it updates the DV for its current location in the

global DM in the same way it is done in the basic DM approach as described in Section 3.1.

Therefore, the global DM stores up-to-date DVs. However, an agent is only able to access

the global DM within radius r/oca; of its current location. After every move, the agent

replaces its own copy of the DVs for locations within this local radius with up-to-date DVs

from the global DM. Therefore, it has recent information about the DVs for locations near

the ones it has recently visited, while the DVs for locations it has not visited for some time

may have changed since the eigent last updated them. When the agent plans its path, it uses

its own copy of the DM, which may not be up-to-date but allows it to make better informed

decisions than if it were to ignore the direction map outside its local visibility radius. This

way, the agent has some knowledge of the direction map without requiring full access to the

global DM.

31

:"

•
•i.

,.

V?

s
X

/>

/
</
/
f r
.1

</
s

\
|

i/

•(

J
•

/

</
i /

*
*>
^
/
+

"
^
i

/^
/ v
^ V

Iff
1™ "
/• r

/

K -

- / ' •
V

\
i

4

. t r
4

r
\

\
\ s*

^
^ «
I C J

/ l i t 71
{'
/ •

/I
f
t -

/,,
; ,

• 1 . .
4 •
v .
i
i

71 V

'I (
'
>
r r

I

<-
^
*

s
f-^

^
-̂

-> -

*
*.
f

\
T
d
/

/
4
4

i
.1.
i

\.
t

" t
>»
1

, |.
'

1 ,

" T
i
i

• J

• i
~ i

>
\ r

N.
\
8
N
4
'
4
4

-.

\.
\ s.
N
I
J!

J

1
\

\
S ,

\
">,
\
\
/
i
i
i

\L

\
•s*

*
\
\
\

\ \

/
•v

1
\

s.

\
t

* • .

•^

\
\,
•\
^
/
V
+
\

\
^
\
\
\
\

.1
N
t '

"\
\
*.

-
N.

\
M

'
•>•

.1.

\
.1
\
i
i

s

S

/•
S

\
I

*
>/

*--
/

/*-
\S t /

S'Z*

• I B ,
/
/ /
i

! / ,

r

. \
4

4

\
\

J

T

t~

'cc

\
*-.
H t

' l i v | S
{
/ •

/
-* J

/>
i

1
\
I
1

*-
\
v

'—

\
-

1
11

/
^
^
\
t \
«-

s.

-.
J

"\
/
i n
T

\
^
\ r
\

r
r
V

* • .

Ŵ
i

9

G

J

1

\
\
\
T

\

N

V

(̂ i
i
i

•-

•
?

\
• \

t

1 t
i

i

\
«v

•t

(a) (b)

1
M

i
i

•s

•
/»
/

• / i

t t f T
T

\ ^ ^ f-, t

•̂ | •* 1
{'
/
/ !
**
i

\ ,
\ .
1 .
4 •
i

T _,

1 K

^M
-k.
it
Pi a T
T
S
t T
T

T
/
1" ?

-*
- 5

/
\
^ -a

/>
^ i .

\ t
• ^

i
s

^
^
*,
\
N
J
1
4

SI

\ T
\ i
fs
V
4

1

\
^
\
^ T
1
\

^
V

Nv

I
,j

/

\.
I r\
\
3
\

a •\
\

(c)

Figure 3.8: Using local maps.

Figure 3.8 shows what the DMs for this method look like in practice. The dots in these

figures are the agents. The first figure shows the global direction map, Figure 3.8(b) shows

the local copy of the DM for one of the agents, and Figure 3.8(c) shows the DM maintained

by a different agent. These last two DMs contain less DVs than the global DM since the

agents have only visited a portion of the map.

Advantages of this approach are that it can be used when agents only have local access

to the direction map and that it may be cheaper to plan with only a subset of the DVs. A

disadvantage is that the cost of storing a DM for each agent may be prohibitively expensive

in terms of memory requirements.

32

3.4 Updating Surrounding Locations

Until now, the agents only modified the direction vectors for the locations they passed

through. It may be beneficial to update locations surrounding the ones the agent passes

through as well, so that the agent creates a wider directional corridor as it traverses the

world.

Whenever an agent makes a move, we update the new location as well as locations within

some distance from it. For the agent's new location, we update the DVs using a, just as

described above, and for the other locations, we update the DVs with a different learning

rate, as, which is a parameter to the algorithm. Because we want the agent's movement to

have a smaller impact on the DVs of the surrounding locations than on the locations along

the path, we choose as to be smaller than a. One possibility is to use increasingly smaller

as for locations that are farther away from the agent's current location.

.*
/"

'
/•
-

/
/•
*

7

/•
'

7

/
/

' r
j

T

/»
^

-t
f
/
'
'

.

-« -.

l
-- 1

.

~
\
^

^
\

-

^
\ •1

•
•
1
j, 1

i

1
4
4
4
4

4

4

i

i

Figure 3.9: An example of updating surrounding locations.

An example of what this looks like for a single agent is shown in Figure 3.9. Here, the

agent updates locations it passes through as well as the eight locations directly surrounding

it. The path the agent has taken is marked by longer DVs than the locations surrounding

the path, indicating that these DVs are learned using a larger learning parameter a, but the

surrounding locations are also updated, resulting in a corridor of shorter DVs that surrounds

the agent's path, reflecting that these have been learned using a smaller learning parameter

as.

3.5 Abstraction

Using direction maps is more expensive than simply using Local-Repair A*. One reason

for this is that the heuristic only takes the distance to the goal into account, and not the

33

penalties induced by the DM. Therefore, it may lead the agent astray. Another reason is

that the agent may need to plan around expensive edges, which increases the number of

node expansions.

This is illustrated in Figure 3.10. The agent, indicated by a circle, is planning a path to

its goal, indicated by 'G'. There is only one way to get from the agent's current location to

the goal, but the DVs, indicated by arrows, are facing opposite to the direction in which the

agent needs to travel to get to its goal. Assume that the cost of moving to any node in the

bottom half of the map is just the edge cost. Figure 3.10(a) shows the nodes that will be

expanded by the agent before it expands the corridor node if wmax = 1. All other immediate

neighbours will be considered before the corridor node because it is twice as expensive to

travel to the corridor node as it is to travel to any of the other neighbours. Figure 3.10(b)

shows which nodes will be considered before the corridor node when wmax = 3. The agent

will search more nodes in the bottom half of the map first. Therefore, the number of nodes

expanded increases as wmax increases.

-»

-»

- •

- *
->

- •

\
->
— * •

\
\

— * •

\
\

\

\

\
\

\
I
1

/

/

/

/
/

/

/

/
4—

/
4 -

4 -

4r-

4 -

4—

4 -

4 -

4—

— •

- •

- •

->

- •

-»•

\
->

->

\
\
-*

\
\

\

\

\
\

I
I
I

/

/

/

/
/

/

/

/
<-

/
<*-

<-

+-

4 -

4 -

4 -

*-

4 -

(a) Wmax = 1 (b) wmax = 3

Figure 3.10: The number of nodes expanded increases as wmax increases.

As discussed in Section 2.4, abstraction is an approach that has been succesfully used to

reduce the amount of work needed to perform pathfinding, while generating paths of good

quality.

When abstraction is used, the map is simplified to reduce the size of the search space. A

rough plan is found in the abstract graph, which is then used as a guideline for the low-level

path. These ideas can be combined with direction maps in many ways. One approach is to

divide the map into square sectors, similar to the "way presented by Sturtevant [30]. In each

sector, an abstract node is created for each connected component within that sector. An

abstract edge is added between abstract nodes A and B whenever there exists an edge in the

map graph between some child of A and some child of B. Thus, the abstract graph maintains

the topology of the underlying map. An example is given in Figure 3.11. Figure 3.11(a)

shows the underlying map as well as sector boundaries and abstract nodes. Figure 3.11(b)

34

Sffi

ITTTTTTTTT: 7
(a) (b)

Figure 3.11: Abstraction example.

shows the abstract graph, including edges.

Paths are planned by first performing an A* search in the abstract graph, without using

a DM. Next, this path is refined on the map level, by finding a path between the current

location and any child of the next abstract node. In this step, the DM is used to guide

the search. In the approaches from Section 2.4, the agent always finds a path to a specific

child of the abstract node, but when DMs are used it may be beneficial to search to any

child of the abstract nodes, except for the last one. This way, the agent can follow the

DM more closely. In addition, these approaches restrict refinement to the children of the

abstract nodes, but when the agent takes the DM into account it may be cheaper to follow

a path outside of the sectors defined by the abstract path. Therefore, we allow the agent

to find a path that is not restricted to these sectors. This is illustrated in Figure 3.12. The

agent plans an abstract path through the three sectors marked by thick black lines, but the

map-level path, indicated by a dashed line, does not lie fully within these sectors.

After finding an abstract path, the agent can refine the entire path before it starts mov

ing. However, one of the advantages of using abstraction is that the agent can quickly find

a high-level path and only do partial refinement, as was done with PRA*, for example [31].

Rather than refining the entire abstract path, it only refines the first part of it, and replans

when it gets to the end of this partial path. In our implementation, the agent plans a path

to the second next abstract node, and it then cuts this path off after some user-defined

proportion.

The amount of work done is reduced because we use the map-level graph and the DM to

compute a series of short paths between sectors rather than one long path. In addition, this

approach is suitable for real-time search since partial path planning can be done similar to

the way it was done in PRA* [31].

It is possible that the agents get deadlocked. This may happen, for example, if two

35

2 ^ '

*

d3E:

Figure 3.12: An example of path planning with abstraction.

agents are standing at the edge of two adjacent abstract sectors, as in Figure 3.13. The

squares indicate different sectors and the gray circles are abstract nodes. The white agent

has planned the abstract path A-B-C-D, while the black agent has planned D-C-B-A. The

black agent's current abstract goal is C, while the white agent's current abstract goal is B.

On the map level, each agent's goal is to get to any child node of its abstract goal. Now

imagine that the agents have planned their paths and collide in the location where they are

in the figure. Since the white agent's current location is the closest child node of the black

agent's abstract goal, and vice versa, both agents are waiting for the other agent to move off

its goal and the agents are deadlocked. This situation can be resolved by letting the agents

skip the next abstract location and path to the next abstract node instead.

it.

6

-tgp—
. c.

Figure 3.13: A possible deadlock scenario.

36

3.6 Using Direction Maps for Greedy Search

In Section 2.6 we discussed steering. One form of steering is flow field following, in which

agents greedily follow the direction indicated by a flow field. It uses a hand-drawn map

which looks similar to a DM. In fact, we can use an established DM similar to the way the

flow fields are used.

To do this, we first have to build a DM. This can be done, for example, by letting a

number of agents perform pathfinding on a map. Next, we remove those search agents and

place greedy agents on the map. A one-step greedy agent will always take the cheapest

action. When a direction is stored at its current location, it will find the cost of each

adjacent edge and choose the cheapest one. It will not consider occupied locations and it

will prefer a location with a DV associated with it to one that does not. If the top two

choices are very similar in cost, it will take the second best choice with some probability,

0.25 in our implementation. If no direction vector is stored at the agent's current location,

it will take a random action. The agent only expands a single node at each time step, so

this is a cheap way to navigate the world.

An example is shown in Figure 3.14. The direction map was generated by letting 40

agents patrol back and forth f 0 times. The DVs surrounding the agent's path are updated

as well as the ones on the path. After those ten patrols, the DM agents were removed, and

a greedy agent was added in a random location. If the agent is placed on a grid cell where

no DV is stored, the agent makes random moves until it encounters the DM. The thick line

indicates the path the greedy agent follows once it is on the DM.

Figure 3.14: Using a DM for behaviour that is similar to steering

37

Chapter 4

Experimental Results

In Chapter 3, we introduced heuristic search with direction maps as an alternative to the

existing multi-agent path planning algorithms which were discussed in Section 2.5. In this

chapter, the different direction map approaches from Chapter 3 will be compared, both to

each other and to previously developed methods. This chapter contains a representative

subset of the full set of experiments that were run.

The experiments were conducted in the Hierarchical Open Graph (HOG) framework [1].

For each experiment, a number of agents were placed on a map and asked to perform a

pathfinding task. The task that is used here is a patrolling task, in which each agent must

move back and forth between two locations a user-defined number of times. This is a task

that is common in, for example, real-time strategy games, where characters collect resources

by walking back and forth between the resource and their home base. Performing this task

well allows the agents to collect resources more efficiently. If we extend this idea to multiple

patrol locations, this could be used by robots in an office that deliver mail or coffee to a

number of different offices.

The maps used here are 2-dimensional grids with eight directions of movement: four

Figure 4.1: An example showing valid moves for agents in different locations

38

cardinal directions, and four diagonal ones. This is shown for the agent in cell D4 of

Figure 4.1, where the arrows indicate valid actions. Each grid cell is either passable or

blocked, and agents cannot move diagonally between two passable locations if a location

which is adjacent to both locations is blocked. For example, in Figure 4.1, the agent at

location Bl cannot make a diagonal move to C2.

A number of different maps were used for the experiments. Experiments were performed

on maps of sizes 32x32 and 64x64. The larger maps allowed for experiments with more

agents, and therefore they give more meaningful results in terms of how well-coordinated

the agents' movement is. Unless otherwise noted, the results presented in this chapter were

obtained on the larger maps, shown in Figure 4.2. On the empty map in Figure 4.2(a), each

agent's patrol locations are chosen randomly from across the map. On maps (b), (c), and

(d), each agent has one patrol location on the right-hand side of the map and one on the

left-hand side, and they are restricted to the locations shown in dark grey. Maps (b) and (c)

were chosen to evaluate the performance when the heuristic is less accurate. In this case,

the inaccuracy of the heuristic is due to the fact that it leads the agents through the barriers

(a) (b)

(c) (d)

Figure 4.2: Maps used for experiments

39

in the center of the map. In addition, Map (c) allows us to evaluate how well the direction

map approach performs when the map contains a more con ta ined area with many obstacles

(i.e. the center of the map) . Map (d) was used to determine how well pathfinding with

direction maps performs when the agents need to share small passageways, and whether

the agents are able to avoid congestion at these passageways. The empty map was used to

evaluate the performance when agents ' patrol locations are not limited to certain portions

of the map. Due to t ime constraints, experiments were not performed on actual game maps.

Initially, patrol locations were chosen at random, but in tha t case it is possible tha t an

agent cannot reach its goal. This happens when the goal is surrounded by other agents ' goals,

and the other agents have already reached their goals, effectively blocking every possible

path to the goal. Therefore, we have added the restriction tha t the patrol locations lie on a

checkerboard pat tern, i.e. t ha t the sum of the x— and ^^coordina tes of any s tar t or goal

location is always even.

Most reported results show an average over 50 different runs, where each run consists of a

different randomly selected set of patrol locations, but some da ta was obtained by averaging

results of 1000 different runs in order to assert the statistical significance of the data .

For all experiments, the agents move at the same speed, namely one unit of distance per

unit of t ime. Although the simulation time is increased in increments, agents ' movement is

maintained in real-time. Therefore, when an agent makes a move, it will move on the first

time step after the t ime required to make this move has elapsed. Agents are not slowed

down because of t ime spent thinking (planning), and thinking time is not included in the

reported simulation times. The order in which agents plan is determined by the order in

which they are placed on the map before the experiment begins, and it does not change. For

all experiments in this chapter, the agents perform 20 patrol loops, where for each patrol

loop an agent moves from its s tar t location (i.e. its first patrol location) to its second patrol

location, and back to the start location. The experiment ends when the last agent has

finished its last patrol loop.

For any search done on the map graph, with or without a DM, the octile heuristic is

used. The octile distance, h0, between two locations l\ and 12 is the length of a shortest

path between the two locations on a empty 8-connected map. Formally,

h0(ll,l2) = V2 • min(\llx — 12X\, \lly — I2y\) + \\llx — 12X\ — \lly — I2y\\,

where the x— and y— subscripts indicate the x— and y~coordinates of a location, respec

tively. This heuristic is similar to the Manhat tan distance, or l\ norm, except tha t has been

adapted to include diagonal moves as well as cardinal moves.

In the case of abstraction, straight-line distance between two abstract node locations is

used as a heuristic in the abstract level.

40

The visibility radius is one of the parameters for the A* and Weighted A* algorithms.

It specifies the distance within which an agent can see other agents when it plans.

We evaluate performance based on a number of metrics: 1) the average number of nodes

expanded by the search algorithm per agent per loop, which is an indication of the amount

of work done, 2) total simulation time, which is the time that elapses between when the first

agent starts moving and when the last agent finishes its simulation, 3) the average distance

an agent travels in one patrol and 4) the average number of failed moves, or the number of

collisions, per agent, per loop.

One of the goals of direction maps is to create believable behaviour. Although in some

applications this is not important, this is desirable in certain types of application where

human-like behaviour is required. An example of this is simulations or crowds of non-player

characters in video games with realistic graphics. The metrics discussed in the previous

paragraph do not give an indication of how well an algorithm performs in this sense. The

visual fidelity of the simulations is difficult to quantify, but we attempt to do this with a

new metric, which we call map coherence. This is meant as a way to express how uniformly

agents move in the map. To illustrate this, Figure 4.3 shows two DMs. The left figure shows

an example of a map in which the arrows do not follow each other coherently, i. e. we cannot

trace a clear path through the map by following the DVs. The map coherence in this case

would be low. The direction map on the right, on the other hand, shows very distinct paths

and clear flow. Therefore, it has higher coherence.

'*''
\ .

/
V. \

r-...
/'
\

\

\

\

I
X
\

: - - - •

\
\

T'

\

f-
/

"'"y

\

N
\ .

~s
N

\
-V \

f \

\ ,

• • (•

. - • - " • " >

'A

">

\ j

">J

y
V

f--
S>
—i

?;-"

"^
1 •--,

!-.'"'

S
/

T
?
^

y
.

V

^

i
fc-"
—~

^ - • • s

/
Mr

y
.1.
•V

^

\ "

- ;
---;

^>;

"*'"'

• /
c—

\
- i

,---;

--)

N
71

S»

K
T
:f
•r
'-.

L.—

71

--*,
_ i

,7\

, • - ' 3

T
t
7

- 7 T

T
t
T
\

\

t
• • >

\
f--..

T
t
i

f
/ •

t
1 .-fv

\

\

T
r
/

/

/ •

*ft.

^
i
7 .̂

\

^

—»

-H.

• *

/*
/»

T
t
t
\
f-~

N
_ - }

•S

-*
"""31

s*

•i

f

c—

\

\

~}

•)

N
I
i
i

si
fcf"

-V
\

N
\

'

i
I
• /

£

\

\

\

\

I
i'
1

/
/

2

•

\

\

•V

i

.i
I
l

\
<-

i

4,
>/
/

i
i

')>

1
(a) Low coherence (b) High coherence

Figure 4.3: Illustration of map coherence

Map coherence is computed as follows: for each location Vi in the map where a DV is

stored, we find the movement vector that is closest to the DV of v\, i.e. the one that make

the smallest angle with it. We then find the adjacent location V2 that lies in the direction of

this movement vector. We create a new vector by taking the average x- and y-coordinates

of the DVs for V\ and V2 and compute its magnitude. The map coherence is the average of

41

these values over all locations where a DV is stored.

Since the length of the DVs can be at most 1, map coherence lies between 0 and 1. Very

low coherence is not found in practice because as an agent moves through the world, the

MVs that make up its path are often coherent. During our experiments, the coherence was

never lower than 0.25 and never higher than 0.95. Therefore, the scale on coherence graphs

will range from 0.25 to 0.95.

A

B

C

D

/

A

A

\

•

A

t
<

•

t
<

T

/

T

-<

/

Figure 4.4: Map coherence example

Consider the map in Figure 4.4 for an example of how coherence is computed. For

simplicity, we assume that all DVs are of unit length. First, we look at the DV for location

C2 as an example. This DV is (0,1) and it points towards B2, which has DV (0,1) associated

with it. Averaging the x— and y—coordinates of these two DVs gives (0,1), which has

magnitude 1. Therefore, the magnitude term for location C2 is 1. Since these two DVs

point in the same direction this term is high.

As another example, we look at location C3, with DV (— 1,0). Its DV points to location

C2, which has the DV (0,1) associated with it. Averaging the x— and y-components gives

the DV (-0.5,0.5), which has magnitude - ^ ~ 0.71.

To find the map coherence, we would do this for all locations and compute the average

value.

4.1 Direction Maps

We will first evaluate the pathfinding performance when direction maps are used. Some

general observations about the behaviour of direction map-based path planning will be

discussed first, followed by an overview of how the parameters affect the performance of

DMs.

42

4.1.1 General Observations

Although the behaviour of the agents is chaotic at first, lanes are quickly formed as the

direction map is updated. In map (c) in Figure 4.2, for example, each of the narrow corridors

in the center is soon designated as a left-to-right passageway or a right-to-left passageway.

This ensures that the agents can move quickly and collision-free from one side of the map

to the other.

The lanes that are established are not always the most efficient routes because the DM

sometimes initially gets set this way. This happens, for example, when agents who initially

defined the lane had to move out of the way of other agents. Although the direction map

continues to change throughout the experiment, the agents sometimes choose a path and

follow it for the remainder of the simulation.

Another observation is that a different set of start and goal locations can give rise to

different lanes being formed even on the same map. For example, on map (b) in Figure 4.2,

the agents sometimes cross over above the obstacle in the middle of the map, as illustrated

for a smaller map in Figure 4.5(a), and sometimes they do not, as in Figure 4.5(b). When

the agents cross over, a bottleneck is created, but since the agents form lanes, the behaviour

is more coherent than when no DM is used.

\J.

1]

,/ /
•

i

. 4
l

J

i /

< 1 (t
f

i

\
\ I

•

' J
1

•
/ / ,(,: \, ^ \
\

/ 4
L 7

/ / i V

•/I
•/'
•i i

/ '/'
I i
[}
\\

/"'

* y
s •/
4 \

/ /
i
' r
ii \

,
• \
^1 ~,

~> T.

>•

s

I
1^

' / / I

V
\ \

\ *-

/ S

/
< • 1

s -! ̂

T

1
1 /

/ y /

1 V

-1

-k

f

1—1

,/ / / / {

,\
> r

*

-*
-> ^ /
w

'f
p.

~* •

-*

/ s
-* s
7

I I
I

t \ * ?

> ,' f
t
?
~f

r

t
I
t >

?
i

f .* T

^•^

*«. •s

-

T T

• ^

\

>

^
:

r

N
s

"» ^

\ v

^
sV
A

v

• f

N

7
c

!?

/ -

\

*

*

i

•

<?

t I

',

-

1

/ / L

t \ *'

-

1
f
f
}

t

-
I'M

'

--
£

7 T
7 r
Z \ r T

^
u. _̂

:
K«\

t

;' r /

1 t H-
t J
I \ T i

|i' \
^ '~.
- V -

K llil

1; t
I-
t
f
X

>

f

| *t
V

?
• —

\"

/' /' i
1

$ 1
t

$
/' t t \ \ f ^

5
(~, :-v„

/ }

i
t
\
}

f

,1

/

e-
£

. ^7
7 S
^ 7
/ A

j V
4 Z
Z '
'• S
' ~L
-A
' £

Z I
c I / T
'' 2
** H
- j

>~. *•

f - f-.

— 'Z

» . - • —

^ _; —
" • ' J »

it-* S -

/ - -

— --n-
m m

-; --; " i -

*-s '

11
1'

i
/ Z^K *̂ ̂ H .
-- f ̂ H*

-^ —
• ^

- - J

-> ---
V

^

\

' •

* \
\ f

J

i
I

1

\ i
\ \ • -

(• -

(-••

N.
v

*
\ \ \ N
N
• v

1
T

' [X

\ •-~ -

-\ • \ ,

^ \ \ \ \ V

\ i -

•

i -

--t .

±

-:.. (-.
1

-» \| N

s
\ l

\, V I

^
r-

--<
F ~

~

'= \ \ ̂ \ \ \ V,

\, \,
J

^ ----~. k
r~

..

\ \ - N

Si

'. \.
•V

J l S

i~-

V-

-• -

• -

V
V

\ \

\ \,
1 J

,/ -

s

\ - • s

L

'
^
^ ^ /
-0
V
K̂
S

V ,

\ •

'. ^
s
'̂ \ 1 .

f 1
t l

-̂;-̂ :
!̂-;-

j .

, \ N

N ^

>> , V
•

•

-?--,/,/

(a) (b)

Figure 4.5: Different lanes can be formed on a map

We measured the number of nodes expanded, distance, and number of collisions for each

patrol loop individually. The first loop often gives poor performance - both for direction

maps and for previously existing approaches - because the agents are likely to collide in

the middle of the map, especially on maps (b), (c), and (d) in Figure 4.2. The last loop of

a simulation often shows optimistic numbers because once some of the agents finish their

simulations, the task is easier for the remaining agents. Therefore, the tables below will

report averages that do not include the first and last patrol loop.

43

4.1.2 Parameter Variation

The basic direction map approach requires the setting of some parameters . The first set of

experiments will analyze how the performance of the algorithm changes as these parameters

change.

First, we will vary wmax, the penalty added to the edge cost if the direction vector is

opposite to the movement vector. The da ta in Table 4.1 shows the performance of the DM

as wmax changes between 2 and 20. The da ta reported here is for map (b) in Figure 4.2,

with 100 agents. The visibility radius is 5 and a is set to 0.5, but the results are similar for

other values of these parameters. Throughout this chapter, the settings for each table were

also used for the corresponding coherence figure.

Table 4.1 shows tha t as wmax increases, the number of nodes expanded increases as well.

The reason for this is tha t if the weight is higher, the agent will need to expand more nodes

to find paths around high-cost edges, as was explained in Section 3.5. The simulation time

and distance do not change much as wmax is varied, but the number of collisions decreases

as wmax increases, because agents are more likely to follow the DM since not following it is

more expensive when wmax is higher.

Figure 4.6 shows how the coherence changes as wmax increases. Since the results for the

different values are so close together, only a subset of the weights reported in Table 4.1 is

shown. However, the general trend is the same for all values from the table. The coherence

is not very sensitive to a change in wmax, but the trend is slightly increasing as wmax

increases. This is because the agents are more likely to follow the DM when wmax is higher,

but once the penalty is high enough an increase in wmax no longer affects the coherence of

their paths.

Next, we will determine what happens as a, the learning rate for the perceptrons,

changes. Table 4.2 shows an example of how some metrics change as a is varied between 0.1

and 0.9. This experiment was run on map (b) in Figure 4.2, with 100 agents and visibility

radius 5. The weight for the DM, wmax, was set to 10, an intermediate value from the pre

vious experiment, since the nodes expanded increases as wmax increases, and the number of

collisions decreases as wmax increases.

Wmax
Nodes expanded
Simulation t ime
D i s t a n c e
Collisions
wrtiax
Nodes expanded
Simulation t ime
Distance
Collisions

2

5698.95
4645.05

146.52
12.28

12

5467.24
4686.18

151.81
7.81

4

5211.16
4581.51

145.70
9.31

14

5736.57
4725.24

153.58
7.93

6

5267.53
4626.45

147.50
8.65

16

5793.98
4742.61

154.56
7.74

8

5347.89
4638.99

148.9
8.25

18

5790.29
4752.84

155.37
7.59

10

5438.95
4644.99

150.45
8.08

20

5959.03
4788.18

156.21
7.61

Table 4.1: DM, varying w.,

44

w
—- max

w

w
max

W

w
max

max

=20

=16

=12

=8

=4

=2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
Time (s)

Figure 4.6: Coherence for DM does not change much as wmax changes

a
Nodes
Sim. t ime
Distance
Collisions

0.1
5807.23
4613.43

149.80
8.55

0.2
5289.14
4607.61

149.62
7.89

0.3
5306.76
4610.13

149.57
7.87

0.4
5357.70
4644.69

150.25
7.92

0.5
5458.28
4646.73

150.65
8.10

0.6
5597.21
4682.67

151.19
8.17

0.7
5492.70
4674.42

151.06
8.02

0.8
5582.98
4701.45

151.56
8.25

0.9
5550.96
4712.70

151.84
8.23

Table 4.2: DM, varying a

Changing the learning rate does not seem to have a strong effect on these metrics, other

than that a value of 0.1 performs poorly. As the table shows, there is a slight increasing

trend in time and the distance travelled. The number of nodes expanded and the number of

collisions oscillates, but with the exception of a = 0.1 it only varies within a few percentage

points.

Figure 4.7 shows the map coherence for each of the values for a. The figure shows that

the coherence increases quickly for lower values of a, but after a = 0.5 the graph levels off

at approximately the same coherence. The difference is that it takes the DM longer to learn

with lower values of a.

Next, we will analyze the behaviour as the visibility radius r changes. For this experi

ment, the radius is varied between 2 and 10, and the results are shown in Table 4.3. The

data is shown for two maps since the behaviour of maps (b) and (c) is different from maps

(a) and (d). The reason for this is that the heuristic is more accurate on maps (a) and (d)

than it is for maps (b) and (c). For these experiments, wmax is set to 10, and the map

contains 100 agents. We set a = 0.5 since Figure 4.7 shows that the coherence increases as

a increases from 0.1 to 0.5, but it does not increase much as a increases beyond 0.5.

Both the time taken to finish the simulation and the distance travelled by the agents

increases for maps (b) and (c), because the agents plan paths around other agents, but it

does not change much for maps (a) and (d). The reason for this is that the heuristic does not

0.9

0.85

0.8

0.75

0.7

g 0.65
a>
a> 0.6
sz

8 0.55

0.5

0.45

0.4

0.35

0.3

45

0.951-

0.9-

0.85

0.8

0.75

0.7

8 0.65 r'

;l 1 1 1 1 1 1 1 1 1 1 1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
Time (s)

Figure 4.7: Coherence for DM, for different values of a

Map (a)
Radius
Nodes
Sim. t ime
Distance
Collisions

2
1510.93
4118.37

83.98
1.39

3
1473.74
4132.29

83.52
1.26

4
1474.49
4089.12

83.45
1.23

5
1470.37
4093.98

83.34
1.20

6
1460.98
4065.33

83.22
1.19

7
1464.68
4083.30

83.18
1.19

8
1456.17
4063.08

83.16
1.17

9
1475.43
4099.56

83.17
1.16

10
1480.58
4049.64

83.08
1.15

Map (c)
Radius
Nodes
Sim. t ime
Distance
Collisions

2
2377.06
4085.55

120.59
4.49

3
3182.47
4231.47

126.52
5.80

4
3599.1

4327.41
129.50

6.20

5
4001.19
4382.55

131.60
6.59

6
4426.97
4449.12

133.97
6.99

7
4755.75
4478.97

135.62
7.21

8
5236.31
4539.24

137.34
7.53

9
5768.61
4564.11

139.13
7.85

10
6226.42
4618.35

139.82
8.03

Table 4.3: DM, varying visibility radius

lead the agents astray on those last two maps. The average number of nodes expanded per

agent per loop is usually not affected much, but in the case of map (c) the number of nodes

expanded increases, because the center area sometimes gets very congested. The average

number of collisions per agent, per loop decreases for most maps as the radius increases.

This is to be expected since the agents can see other agents from farther away. However,

the number of collisions increases for map (c) in Figure 4.2. This, too, is caused by the fact

that the area in the middle of that map gets very congested. On this map, being able to see

more of the other agents does not help because the agent does not know whether the other

agents are moving towards it or away from it.

Figure 4.8 shows that the coherence is not affected much by a change in visibility radius.

The only exception is tha t radius 2 performs better for the first par t of the simulation,

because the agent does not move out of the way of other agents who may be moving in the

same direction.

Next, we will evaluate how the performance changes as the number of agents on the map

increases. Table 4.4 shows the results for 20 to 160 agents, on Map (d) in Figure 4.2, with

Wmax = 2, visibility radius 5, and a = 0.5. As we would expect, the performance gets worse

46

O 0.55 ;

oj
0.45-

0.4 - ; '

0.35 f"'

0.3 r

= 0.8
= 0.7
= 0.6
= 0.5
= 0.4
= 0.3
= 0.2

r=2
r=3 "
r=4

r=5
r-6 -

---r=7

r=8 "
r=9

| — r= 101

1000 1500 2000 2500 3000 3500 4000 4500 5000
Time (s)

Figure 4.8: Coherence for DM does not change much as the visibility radius changes

as the number of agents increases. The number of failed moves increases because there are

more other agents to collide with. As a result, agents need to re-plan more often, which

increases the average number of nodes expanded. The distance and time increase because

the agents need to take longer paths to avoid other agents. These results are consistent

across the different maps.

agents
Nodes expanded
Simulation t ime
Distance
Collisions

20
649.66

3522.51
110.88

0.37

40
831.45

3657.75
110.85

0.69

60
969.90

3760.86
111.67

1.03

80
1120.92
3782.79

112.43
1.36

100
1213.41
3840.93

112.93
1.74

120
1327.25
3924.36

113.03
2.14

140
1480.54

3977.4
114.07

2.65

160
1622.55
4039.86

114.62
3.23

Table 4.4: DM, varying the number of agents on the map

Figure 4.9 shows how the coherence changes as the number of agents increases. The

coherence decreases as the number of agents increases because agents need to take more

other agents into account, which will make movement less coherent.

4.2 Comparing Direction Maps to Other Approaches

Now we have some idea of how the parameter settings affect the performance of the DM

approach, we will compare it to two other multi-agent pathfinding approaches: Local-Repair

A* (LRA*) and Windowed Hierarchical Cooperative A* (WHCA*). These were discussed

in Section 2.5.

Table 4.5 compares the performance of LRA*, DM, and WHCA* on map (c) for 100

agents. The DM uses wmax = 10, and WHCA* uses window size 16. The perceptron

learning rate is a = 0.5. The visibility radius for DM and LRA* set to 5. The results are

similar for the other maps.

0.95

0.9

0.85

0.8-

0.75

0.7

g 0.65
c
i 0.6
•s

O 0.55

0.5

0.45

0.4

0.35

0.3

0.25

47

4500

Figure 4.9: Coherence for DM, for different numbers of agents

The table shows that the number of nodes expanded is smallest for LRA* and highest

for WHCA*. We expect WHCA* to expand the most nodes because it performs a search

both in time and in space. We expect the DM method to expand more nodes than LRA*

because it uses modified edge weights which require it to search around more. The time and

distance are smallest for WHCA*, and largest for LRA*. WHCA* tries hard to be optimal,

so it finds shorter paths and takes less simulation time than either the DM or LRA*. The

paths are longer and more time is used by LRA* than by the DM, because agents have to

revise their plans every time they collide, which happens significantly more often for LRA*

agents. The number of collisions is highest for LRA*, which does not take the paths of other

agents into account, and lowest for WHCA*, which plans around the paths of other agents

within the window.

Figure 4.10 shows the coherence for these three approaches. The coherence is lowest

for WHCA*, because it tries hard to be optimal and therefore sometimes plans convoluted

paths. The coherence is highest for the DM because the agents take the movement of other

agents into consideration when they plan. Near the end of the simulation, the coherence

for LRA* increases. This happens when some of the agents have finished their simulations.

The remaining agents can plan straighter paths because they do not need to move around

other agents, and this increases the coherence.

^ Nodes expanded
Simulation t ime
Distance
Collisions

DM
4604.71
4389.77

132.25
6.90

LRA*
2184.32
4996.44

139.18
19.60

WHCA*
5980.71

120.92
3508.32

3.00

Table 4.5: Comparison of performance of DM, A*, and WHCA*

48

0.95

0.9

0.85

0.8

0.75

0.7

8 0.65
c
® ..
S 0.
o

O 0.55

0.5

0.45

0.4

0.35

0.3

0.25

-20
- " 4 0

60
-80

- - -100
120

-140
160

2000 2500
Time (s)

DM
LRA*

---WHCA'I

b _ 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
Time (s)

Figure 4.10: Coherence for DM, LRA* and WHCA*

4.3 Weighted A*

Table 4.5 showed that the DM approach expands a lot of nodes compared to LRA*, and

one way to reduce this is by using Weighted A* (WA*) instead of A*, both in the DM case

and in the case of Local-Repair A*. Weighted A* was discussed at the end of Section 2.2.1.

Table 4.6 shows how the results change when Weighted A* is used, both with and without

using a DM, as well as what happens when the A* weight is varied from 2 to 4 to 6. The

results shown here are for map (c) in Figure 4.2, with visibility radius 5 and a, = 0.5. The

DM used wmax = 10.

Notice that using weighted A* does reduce the number of nodes expanded; especially for

the DM. In fact, the DM now expands less nodes than LRA*. This is because the search

has more of a depth-first aspect, so the algorithm will expand nodes with higher g-cost than

regular A* would. Since the weighted edges make the heuristic less accurate, this performs

better for the DM method.

When LRA* is used, the other metrics only change within a few percentage points for

the different A* weights. In the case of the DM, however, time, distance and the number

of collisions increase as the A* weight increases. The number of collisions increases as the

A* weight increases because the g-cost portion of the evaluation function now has a smaller

effect on the total /-cost of a node, so the DM influences the agent's decision less. As the

number of collisions increases, the agent has to re-plan more often, which is the reason for

the increase in distance and time.

Figures 4.11 and 4.12 show the coherence for these two approaches. Although the dif

ferences are small, the coherence is higher when WA* is used, and it increases as the weight

increases. The reason for this is that when agents plan using weighted A*, they plan to

49

Nodes expanded
Time
Distance
Collisions

Nodes expanded
Time
Distance
Collisions

LRA*
2187.73
4993.83

140.00
19.92

DM
3913.05
4389.77

131.26
6.44

WA*(2)
1821.72
5046.06

141.95
19.37

WA*(2)
1353.95
4384.22

130.92
6.71

WA*(4)
1737.93
5228.79

142.20
17.48

WA*(4)
1415.57
4559.52

136.90
10.81

WA*(6)
1621.30
5292.24

142.40
16.14

WA*(6)
1546.99
4724.59

139.85
13.18

Table 4.6: Comparison of performance of LRA*, DM, with regular A* vs. weighted A*

0.9

0.85

0.1

0.75

0.7

g 0.65

& 0.6
.C

0 0.55

0.5

0.45

0.4

0.35

0.3

0.25

WA-(6)
WA*(4)

- - -WA*(2)
LRA"

3000 4000
Time (s)

Figure 4.11: Coherence for LRA* and WA*, no DM

reach the large obstacles in the middle quickly, then move along the side of the obstacle for

until it reaches the corridor that connects the two sides of the map, and then plans a path

straight to its goal. This forms lanes like the ones shown in Figure 4.13. When Weighted A*

0.95

0.

0.85

0.8

0.75

0.7

8 0.65
c

S 0.6

O 0.55

0.5

0.45

0.4

0.35

0.3

0.25

DM, WA*(6)
DM, WA*(4)

- - - D M , WA*(2)
DM, A*

3000
Time (s)

5000

Figure 4.12: Coherence for DM with LRA* and WA*

50

Sector size
Nodes expanded
Time
Distance
Collisions

4

4125.68
5028.03

149.60
13.40

8

2882.29
4970.64

142.84
10.78

12

2752.92
4747.80

136.30
7.57

16

4231.32
5240.94

142.00
10.43

Table 4.7: DM with A* using abstraction with full refinement

is not used, agents moving towards the center generally do not stay as close to the obstacles,

so there is less clear lane forming, resulting in lower coherence.

Figure 4.13: Lanes formed by WA*

4.4 Abstraction

Another approach that has been used to reduce the amount of work done during search is

abstraction, which was first discussed in Section 2.4 and later applied to DMs in Section 3.5.

Abstraction is also useful because it allows the agent to find a high-level path and refine

the path bit by bit, which reduces the amount of work done per time step and can be used

when real-time performance is required.

Two sets of experiments are presented here. First, we will show results for complete

refinement, and then for the partial refinement case. In complete refinement, the agent first

finds a solution in the abstract graph and then refines the entire path before executing.

Table 4.7 shows these results for four different sector sizes. The experiment was performed

on map (c) in Figure 4.2, with 100 agents, r — 5, wmax = 10, a = 0.5, and regular A*.

The table shows that the performance is best when sectors of size 12 are used. This is

not the case for all of the maps, but it is generally true that the number of nodes expanded

decreases first and then increases. When the sectors are too small, the abstract path is less

general and the abstract search is more expensive. On the other hand, when the sector size

51

is too large, the abstract search is easy, but refining is more expensive because the abstract

nodes lie farther away from each other.

When we compare the performance to the DM without abstraction, we see that the

nodes expanded are reduced only when the right sector size is chosen. In the worst case,

abstraction performs roughly the same amount of work as the DM without abstraction does.

The other metrics are worse when abstraction is used, because agents use the abstract

path as a guide, which restricts the agent during planning, compared to when abstraction

is not used.

0.95

0.9

0.85

0.

0.75

0.7

g 0.65

to 0.6

%
O 0.55

0.5

0.45

0.4

0.35

0.3

0.25

w?

- D M
Abs(16)

-Abs(12)
-Abs(8)

AbS(4)

3000 4000
Time (s)

Figure 4.14: Coherence for DM with abstraction and full path refinement

Figure 4.14 shows how the map coherence changes as the sector size increases. The

coherence is lower when abstraction is used, again because the abstract path restricts the

agent during the refinement step. The coherence increases as the sector size increases because

the agent is less restricted during refinement.

In Section 3.5 we also described how abstraction can be used for partial pathfinding.

After an abstract path is found, only part of it is refined. A path is planned not to the

next abstract node, but the one after it, and this path is cut off after some portion of the

resulting partial path. Here, the partial paths are cut off after 60%, and the experiment

was performed on the same map and with the same parameters as the full refinement case

above.

Table 4.8 shows the results for abstraction with partial refinement, including how the

metrics change as the sector size changes. The performance is better than with full-

refinement abstraction, because the agents only plan short paths at a time. The number of

nodes expanded is not increased because the abstract search is fast.

The best performance is again found when the sector size used by the abstraction is 12,

or in general, some intermediate value, for the same reason as in the full refinement case.

52

Sector size
Nodes expanded
Time
Distance
Collisions

4
2431.62
4741.80

140.69
8.85

8
2078.51
4580.88

135.66
7.81

12
2729.98
4537.38

132.05
7.15

16
2795.56
4491.18

131.77
7.18

Table 4.8: DM with A* using abstraction with partial refinement

Figure 4.15 shows the coherence for abstraction with partial pa th refinement. The result

is very similar to what was shown in Figure 4.14, and for the same reasons. The coherence is

highest when abstraction is not used, but the coherence increases as the sector size increases

because the agents are less restricted during planning.

0.95i-

0.9-

0.85-

0.8-

0.75:

0.7 J

8 0.65-

S 0.6-

O 0.55-

0.5-

0.45-

0.4-

0.35-

0.3-

0 1000 2000 3000 4000 ~ 5000 6000
Time (s)

Figure 4.15: Coherence for DM with abstraction and partial pa th refinement

4.5 Updating Surrounding Locations

In Section 3.4 we suggested updat ing the DVs for the locations tha t surround the agent's

current location as a way to increase coherence. Visually, the DM is more coherent when

surrounding locations are updated. This is shown in Figure 4.16. Although the left-hand

figure also shows clear lane formation, the right-hand DM contains wider, more obvious

lanes.

Table 4.9 shows the metrics for updating surrounding locations as the update parameter

for the surrounding locations is varied. The da ta shown is for map (d) in Figure 4.2, with

100 agents, wmax = 10, r == 5, and a = 0.5. In addition to an agent's current location,

we update DVs for the eight surrounding locations. The number of nodes expanded, time

taken, and distance travelled all are higher than they are for the regular DM, and they

increase as the surround parameter as is increased. This is because a larger portion of the

map now contains DVs, which the agents need to take into account during planning. The

DM
Abs(16)

- - -Abs(12) ~
••• Abs(8)

- - -Abs(4)

53

number of collisions is slightly greater when the surrounding locations are updated, because

where the wider lanes cross, there is a larger area of contention, and more collisions occur.

Figure 4.17 shows how coherence changes as the update parameter for the surrounding

locations is varied, and how it compares to the coherence of the regular DM approach. The

coherence is higher than with the regular DM, and increases as as increases.

4.6 Local Direction Map Approaches

Next, we evaluate the performance of two approaches in which the agents only have local

access to the DM. These approaches were described in Section 3.3.

First, we will look at the results when we allow each agent to only see the DM within

some radius. The agent plans a path, using the DM only within that radius, and it cuts

off the planned path at the edge of the window. Table 4.10 shows the data for the regular

DM approach and compares it with three different values of the local radius. The numbers

shown here are for map (d) in Figure 4.2, with 100 agents, for wmax = 10, radius 5, and

a = 0.5. The local DM radius, win, is set to either 3, 5, or 7.

Compared to the regular direction map approach, this method expands a similar number

of nodes for smaller window sizes, and less for larger window sizes, because the agent only

L

,/,
•/ ! ,
r
t T

\ "
« • . <-

^ v

'/«.
7 r

.
•

I \.
\v

/
- < ' v
- t ' l

/
' / V
•V

•/
i
\
\

,\
- i N
\ i \

Si
/.(
' J

('
/
i
4
4

\
\

N I

\ V,

'

* >s

/
/
I
{
\
\
--*

>
V

1

1

x'

/
I

l i
s\

-* _-5

-,
— -i

- }

^
-

r
1
^

V

i /

/
\'
/
i

-»
/ 7
x
s<
s

»
«-*
^

/
i

V

,/ s

S

u/
*
/
/ 7
J*
J*

s>

./> S*
7y

.%

-

/• A

J

V

S

<--i r '

S
S
V

/
/
t
t T
S
s
s
T
f

'

si

^
•~~ f
I * '

(-"
f
\S

f -

/
/
/'
1

;
t / i

st

~*
*~ tr~

-

'
/•

'
\
^
^
•^

*
•-

f

'1
'
f
f

I
•i

i

-• , - Y

Si ,

-< <
i s
• S

/ ,"
* \ - 5 -

-.(^

'

-
- <-
V *-
i - -

.*_
--)-

I- -

f^<

(-.*,
• •' B • • >
''•'' • ' ;•' '•-'• "•• '•
v H i •
/H-•

*,
-*~

r

}, V

}
'\
>
f -

(

\
^

*-<v

^
-
»
\, i
1

'
t
^
r .

».
^

-^
->
z

^ -x

'
-•

\: \,
\

<~
^
^ S-.

^
v
\
^

+»

••

*:
>
\
\̂
V
V
\,
\ l

^ I

*~
'-.
^
\
'\
\
<-.
^.
-

M

'
'

• -

%
\f \
X

V

\
\
\
«.
'-r

* •

&

\
\
\
\
\ N
\.
i .

\
\
(̂ f-^

tf'

<<* v
k-

<S

•̂
\
N

\ N-
\
\
• ^

7 -

*/
t -

vf

•*
\
\ N
\
' ^ J

v-v
«--
*--<r

IS

<~
<--
-

•-
\ N
\
\
\
y
-1 y
/
• /

•i

4

* 1

• -

\

\
'

-I
4

*-
/
\
\ v-

->.
^
>, .1,

|
,|
i
*

-

• *

\
V
1,
I

J
•t

^
\ 1

'
-

* s.

>
•I
f

t

f
r !•

(a) (b)

Figure 4.16: DMs when surrounding locations are not updated (left) and when they arc
(right)

Nodes expanded
Time
Distance
Collisions

D M

2164.46
4144.92

122.31
2.06

as = 0.3
2946.99
4254.30

122.84
2.59

a., = 0.5
3264.93
4448.04

124.32
2.54

a,, = 0.7
3337.71
4540.86

126.22
2.58

Table 4.9: Comparison of DM with and without updates to surrounding locations

\
\
C:

\

T i

/

v
/
>
f
rf
•

l

\
T
\ I 'v
<^

• .

/ •

j\

*s
' /<
t /
' -

V /

-{
'V
. N

/ /
/ V -
/-.,
f.,y
\\<
-/<.
/ l l •
v<
V' t ..s

/ . s

- z,'-X / /
•A

V • ?,
• / K ,
7 / 1 / f .

'tj,
-J /.
' / S t

i t:Z:
{ * •

- V /*— IS

v ^ s
•2'

N ' X *

^' V
> V t (
i-L.

V / "
;V
, /
'"
- r " Z 1

V V
'«•*
/
•\
•1 V

\
\
\
<

'1' . i

7̂ >
< ' v
/ • ^

?!-
V ^

-i-

/
--i'v
-i -

"s ^
K. >(.

~ '
^^H7

'^^H
^^^^B1

.• ;1H •

, \ ^
i-^^i
^ . - \
\^~a * \ \ \

- l i -a
f t •••
\ t*
\t--*
I V t •"" ~
t1"^ h-

i ^ ^ ^
^
, f ' -'<"

. i i ^ ^
\ , / \
/ 1 \

: ^

^
i'> \ j
\ / > \
\ N 1

NN
NN

" 1* '
F s \ T
r" t
*- " X
\ \ 'f
X J \ 7

\ \
/^^
\ / tN"
t_L-,i

N|

t
^
^
^
^

^

N
\N
• ^ •-

^
^
\/ ,
1
i
t - v

yf"
4

N

N - i

\
\
\
N

j
]

'\
-\
4

N

\
'

\
• /

\
! i—

\
/
\

\
J

-
•I-

\

54

0.95

0.9

0.85

0.8

0.75

0.7

g 0.65
c

5 0.6

S 0.55

0.5

0.45

0.4

0.35

0.3

0.25

Figure 4.17: Coherence for DM and 3 different values for the learning parameter for sur
rounding locations

takes the DM into account within a small radius. However, if the radius is very small, the

agent may have to re-plan many times before it reaches its goal, so the number of nodes

expanded is not minimized at the lowest value of the DM visibility radius. The time taken

by the agent and the distance travelled is slightly larger than with the regular DM, because

the agent does not have global knowledge of the DM. As a result, the agent may plan a

different path than it would if it had global knowledge of the DM. As the agent can see

more of the DM around it, i.e. if the radius is larger, the time and distance are reduced as

well, for the same reason. The number of collisions is lower, because the agent only plans

its path until the edge of the DM window. It only moves a few steps each time before it

re-plans. The number of collisions increases as the window size increases because the agent

takes more steps before re-planning, so other agents are more likely to have moved in the

agent's way.

Figure 4.18 shows the coherence for each of the window sizes. The coherence when a DM

window is used is lower, but increases as the window size increases. This is, again, because

the agent does not have a global view of the DM and the path it chooses may be following

the DM only in a local sense.

Next, we look at the case where each agent maintains its own copy of the DM and

updates it locally. Tables 4.11 and 4.12 show the results for different local update radii.

Nodes expanded
Time
Distance
Collisions

DM
2164.46
4144.92

122.31
2.06

win = 3
2205.27
5462.62

158.88
1.59

win — 5
1316.56
4789.50

150.48
1.89

win — 7
988.46

4625.64
142.50

1.97

Table 4.10: Comparison of regular DM with local DM window

55

2000 2500 3000
Time(S)

3500 4000 4500 5000 5500

0.95

0.9

0.85

0.8

0.75

0.7

g 0.65

0)
$ 0.6
.c

S 0.55

0.5

0.45

0.4

0.35

0.3

0.25
0 1000 2000 3000 4000 5000 6000

Time (s)

Figure 4.18: Coherence for DM with local DM window

The experiment was performed with 100 agents, r = 5, wmax = 10 and a = 0.5. Data is

presented for two maps: maps (b) and (d) in Figure 4.2, because the results are different

for maps in which the heuristic is less accurate (maps (b) and (c)) than for the other two

maps (maps (a) and (d)).

First, we look at the results for map (b), presented in Table 4.11. The results on map

(c) are similar. The number of collisions is significantly higher when the local approach is

used. This is because the agent does not have up-to-date global knowledge of the DM, and

therefore it may not follow the DM for its entire path. The increase in collisions forces the

agent to re-plan more often, which increases the number of nodes expanded.

Figure 4.19 shows the coherence for map (b) when the agents maintain their own copies

of the DM. The coherence is lower than when the regular DM approach is used, because

the agents do not follow the DM as closely as when they use the global DM. Therefore,

movement is less coherent, leading to a reduction in map coherence.

Next, we will look at the results on map (d). The results for map (a) are similar.

Maps (a) and (d) contain more open space, and they do not contain large, central areas

of congestion like maps (b) and (c) do. Therefore, the DM does not aid the agents much

in terms of reducing the number of collisions. As a result, when the agents maintain their

own copies of the map, possibly containing DVs tha t are no longer accurate, this does not

Nodes expanded
Time
Distance
Collisions

DM
5438.95
4644.99

150.45
8.08

""local = 3
5986.98
4780.38

145.39
16.34

riocal = 5
5995.10
4761.36

145.47
16.20

'"local = 7
6007.02
4762.47

145.42
16.15

Table 4.11: DM with locally updated copies of DM for each agent, map (b) in Figure 4.2

56

- DM
- win = 7
-win = 5

win = 3
i

0.95-

0.9-

0.85-

0.8-

0.751

0.7-"

g 0.65-

S 0.6-

•s

O 0.55 -

0.5-

0.45-

0.4-

0.35-

0.3-

0 25' > 1 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time (s)

Figure 4.19: Coherence for DM with locally updated copies for each agent, map (b) in
Figure 4.2

hurt the performance. This is shown in Table 4.12. The number of collisions is similar to

when the regular DM is used, but the number of nodes expanded is reduced. The reason for

this is that the agent's copy of the DM reflects the state of the DM when the agent passed

through each location. Therefore, the DVs will point roughly in the direction of the agent's

path. Therefore, the costs of the edges the agent wants to travel are not much higher than

regular edge costs, so the heuristic is fairly good in this case. This reduces the number of

nodes expanded. In addition, since the agent does not take the global DM into account, it is

able to follow a straighter, more direct, path to its goal, which reduces the distance covered

as well as the simulation time.

Nodes expanded
Time
Distance
Collisions

DM
2164.46
4144.92

122.31
2.06

riacal = 3
1015.05
3799.22

110.09
2.30

Tlocal = 5
1013.67
3766.50

109.90
2.18

Tlocal = 7
1020.02
3779.70

109.98
2.13

Table 4.12: DM with locally updated copies of DM for each agent, map (d) in Figure 4.2

Figure 4.20 shows the map coherence when each agent maintains its own copy of the DM,

on map (d) in Figure 4.2. The coherence is higher when individual DMs are maintained,

because the agent's path leads the agent more directly to the goal, as was explained in the

previous paragraph.

--

DM

local

local

local

= 7

= 5

- 3

57

0.95

0.

0.85

0.

0.75

0.7

g 0.65
0
S 0.6

%
O 0.55

0.5

0.45

0.4

0.35

0.3

0.25

" local ~

" local ~

" local ~

DM

2500 3000
Time (s)

Figure 4.20: Coherence for DM with locally updated copies for each agent, map (d) in
Figure 4.2

58

Chapter 5

Conclusions and Future
Directions

In Chapter 3 we have presented a new approach for multi-agent pa th planning. Rather than

taking into account static delta about the current location of other agents or fully dynamic

data about the paths tha t other agents have planned, we use static da ta about the dynamics

of the world during planning.

The approach is based on direction maps, a shared da ta structure which stores a direction

vector for each location tha t has been visited. A direction vector for grid cell a is a prediction

of the direction in which an agent will pass through a, and it is learned from the directions

in which agents have previously passed through this same location.

During planning, the agents use the direction map to guide them. They are encouraged

to follow the direction vector through a modification of the movement cost, which leads to

emergent behaviour such as lane forming. The result is highly coherent behaviour, with

very few collisions compared to Local-Repair A*.

In Chapter 4 we showed tha t the basic direction map approach leads to fewer collisions

than Local-Repair A*, while expanding less nodes than Windowed Hierarchical Cooperative

A*.

We also introduced a new metric, map coherence, which is an indication of how coherently

agents move across the map, based on the direction map. Map coherence is higher when

direction maps are used than when the agents use LRA* or WHCA*.

Chapter 4 also showed tha t the number of nodes expanded can be reduced by using

Weighted A*(WA*) rather than regular A* during search with direction maps. Using WA*

increases the number of collisions but it is still significantly lower than when Local-Repair

A* is used.

Direction maps can also be combined with abstraction and partial refinement, which

reduces the amount of work done and makes the approach suitable for use in real-time

environments.

59

In addition, we showed that agents can update more than just their current location

to generate wider lanes, and that it is possible to use direction maps even when only local

information is available to the agents.

Although some extensions to the basic DM approach were discussed in this thesis, there

are many research directions which have not yet been explored.

5.1 Combining Direction Maps with Flocking

As was mentioned in Section 2.6, pathfinding and flocking or steering techniques are com

plementary in a sense. If a group of agents needs to move towards a specific goal, flocking

techniques require a path to guide the group in the right direction, and the flock could use

a direction map for this. As an example, consider the scenario from Chapter 1 again, shown

in Figure 5.1. Assume that a group of agents needs to move back and forth between the left-

and right-hand side of the map. An efficient way to do this is to move left-to-right through

one of the corridors in the center, and use the other one for right-to-left movement, which is

not done by default by flocking approaches. The DM could help guide the flock through the

correct corridor, while the flocking mechanism would ensure that the agents pass through

the corridors without colliding.

X
•

Figure 5.1: An example of a situation where flocking and direction maps could be combined

5.2 Decaying Direction Vectors

In the experiments from Chapter 4, the patrol locations for the agents remained the same

throughout the experiment, but in some scenarios they might change. For example, in

an RTS game the agents may have exhausted a particular resource and they may start

patrolling between the home base and a different resource. We want the DM to be able to

adapt to such changes, but so far no experiments have been done to investigate how the

DM behaves when patrol locations change.

60

The environment may change for other reasons too, for example because the world is

dynamic. Perhaps an obstacle appears somewhere on the map, in which case we want the

DM to change and lead the agents around the obstacle. Since the agents are forced to re-

plan after colliding with the obstacle, it is likely that the DM will be changed appropriately.

On the other hand, it is possible that a new corridor opens up, perhaps because a door

that was previously closed is now open. This could create a shortcut, but the agents may

not take this shorter path since the direction map is telling them to take a different route.

One possible solution for this is to decay the direction vectors over time. This is somewhat

similar to the diffusion of ant pheromones.

There may be other benefits from decaying direction vectors. In Section 4.1.1 we men

tioned that the agents sometimes take routes that are suboptimal because of the way the

direction map initially gets set. For example, consider the situation in Figure 5.2, where the

solid black lines indicate the lanes the agents use. In addition, there is a middle lane, indi

cated by a dotted line, which runs from right-to-left but is not used by any agents. Perhaps

if the direction vectors were decayed over time, the agents that are currently following the

top arrow would create a right-to-left lane where the dotted arrow is. This could reduce the

distance travelled by the agents.

ITI
Figure 5.2: Example of a situation where DV decaying may be beneficial

5.3 Using the Direction Map to Predict Movement of
Other Agents

In the current implementation, the agents plan around other agents within their visibility

radius without taking into account the direction in which this other agent is moving. This

can sometimes lead to odd-looking behaviour, for example as shown in Figure 5.3. Here,

the white agent wants to follow the arrows around. If its visibility radius is large enough,

it will detect the black agent when it plans its path. It then plans a path around the black

61

agent's current position, as is shown in Figure 5.3(b), even though the black agent is most

likely moving in the same direction.

^ - » ->
/ / ^

t A
A 4

t l
<J
tt

.

>
1

~)

t t
t \ < -
\ \ < -

-»
->

<r-

<-

\
\

I
I
I
I
I
1
J
<r-

\

4
I
I
I
I
I
I
J
iS

,*

/

t
t
i a
t
t
t
\

->

/

* t J
t
t
t
\
\

->
—»

<-
<-

->
-»

<-
<-

\
\

I
I
I
I
I
4
J
<—

\

4
;
i
i
i
4
4
/
^

^ * -

/ " /

t J
t '
t /
<l
tS
t c
* R

\ *

» - »
* -»•

k
.

.

i

\ < -

->

-*•

«^

« -

\
\

;

4
^
^

4
4
/
<r-

\

I
I
I
I
I
I
1
/
b<

(a) (b) (c)

Figure 5.3: Other agents' movement direction is not taken into account during planning

A way to improve the behaviour of the agents would be to take into account the direction

map when considering other agents. For example, we could only view other agents as

obstacles when they are either directly beside the agent who is currently planning, or if the

agent is likely to move towards the agent if it follows the direction map.

5.4 Abstraction

The way in which abstraction was combined with the direction map, as described in Sec

tion 3.5, is not the only way this can be done. The method that was implemented is to

perform a regular A* search in the abstract graph, and then refine using the DM on the map

level. Instead, we could store DVs for the abstract nodes, which would indicate a general

direction for the sector. If the sector size is small, we may want to refine the abstract path

without considering the map DM, but if the sector size is larger it may be useful to use the

DM on the map level as well.

5.5 Learning Direction Vectors

The DVs have only been learned using the perceptron update rule. Other approaches could

be used for this; perhaps a reinforcement learning method where the rewards have some

relation to the length of the path taken and the number of collisions. This way, it may

be possible to learn a more efficient direction map, but the direction vectors could not be

updated after each step anymore since learning would need to be done on a per-loop basis.

62

5.6 Using Direction Maps in Video Games

In the current state, this approach may not be suitable for use in commercial video games,

but there are some modifications which can be made. Two ideas are discussed here: loading

a pre-built DM, and DMs for maps that are not grid-based.

For the first while, as the DM is learned, the number of collisions is higher than later in

the simulation. This initial behaviour may not be acceptable for use in a commercial game,

but it is easy to run the simulation off-line, and load a fully learned DM within a game.

This way, the agents will be able to move coherently without having to learn the DM first.

Another reason why this approach as it is currently implemented may not work in video

games is that it is designed for a grid-based map in which each agent occupies a cell. In

practice, not all environments are grids, and not all grids are as fine as the ones used here.

The direction map approach can be modified to work with different types of maps by defining

a grid of appropriate coarseness on the map. For example, a direction vector could be stored

for a entire corridor or for a doorway. In addition, we could just store DVs for parts of the

map where collisions are more likely; crowded areas or narrow passageways are examples of

this.

5.7 Conclusion

Although the idea of direction maps is fairly simple, it leads to lane formation and coher

ent movement. In addition, modifications can be made to the basic approach to suit the

requirements for a particular application. For example, in Chapter 4 we showed that higher

coherence can be achieved by updating the DVs for locations surrounding an agent's path,

and that Weighted A* or abstraction can be used to reduce the number of nodes expanded.

Overall, using direction maps is a promising technique for multi-agent pathfinding.

63

Bibliography

[1] h t tp : / /www.cs .ua lber ta .ca / nathanst /hog.html .

[2] R. Arkin. Motor schema based navigation for a mobile robot: An approach to pro

gramming by behavior. In Institute of Electrical and Electronics Engineers (IEEE) In

ternational Conference on Robotics and Automation, volume 4, pages 264-271, March

1987.

[3] A. Botea, M. Miiller, and J. Schaeffer. Near optimal hierarchical path-finding. Journal

of Game Development, l (l) : 7 -28 , 2004.

[4] I. Couzin and N. Franks. Self-organized lane formation and optimized traffic flow in

army ants. Proceedings of the Royal Society of London, Series B, 270(1511):139-146,

January 2003.

[5] H. Davis, A. Bramanti-Gregor, and J. Wang. The advantages of using depth and

breadth components in heuristic search. Methodologies for Intelligent Systems 3, pages

19-28, 1989.

[6] D. Demyen and M. Buro. Efficient triangulation-based pathfinding. In The Twenty-

First National Conference on Artificial Intelligence (AAAI-06), pages 942-947. AAAI

Press, 2006.

[7] M. Dorigo, E. Bonabeau, and G. Theraulaz. Ant algorithms and stigmergy. Future

Generation Comp. Syst, 16(8):851-871, 2000.

[8] M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: Optimization by a colony

of cooperating agents. Institute of Electrical and Electronics Engineers (IEEE) Trans

actions on Systems, Man, and Cybernetics Part B: Cybernetics, 26(1):29-41, 1996.

[9] K. Dresner and P. Stone. A multiagent approach to autonomous intersection manage

ment. Journal of Artificial Intelligence Research, 31:591-656, March 2008.

[10] P. Egber t and S. Winkler. Collision-free object movement using vector fields. Institute

of Electrical and Electronics Engineers (IEEE) Computer Graphics and Applications,

16(4):18-24, 1996 1996.

64

http://www.cs.ualberta.ca/

[11] J. Fulton and J. Pransky. DARPA grand challenge - a pioneering event for autonomous

robotic ground vehicles. Industrial Robot: An International Journal, 31(5):414-422,

2004.

[12] A. Geramifard, P. Chubak, and V. Bulitko. Biased cost pathfmding. In Artificial

Intelligence and Interactive Digital Entertainment, pages 112-114, 2006.

[13] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination of

minimum cost paths. Institute of Electrical and Electronics Engineers (IEEE) Trans

actions on Systems Science and Cybernetics, 4(2):100-107, 1968.

[14] D. Helbing and P. Molnar. Social force model for pedestrian dynamics. Physical Review

E, 51:4282-4286, 1995.

[15] R. Holte, T. Mkadmi, R. Zimmer, and A. MacDonald. Speeding up problem solving by

abstraction: A graph oriented approach. Artificial Intelligence, 85(1-2):321-361, 1996.

[16] R. Jansen and M. Buro. HPA* enhancements. In Artificial Intelligence and Interactive

Digital Entertainment, pages 84-87. The AAAI Press, 2007.

[17] R. Korf. Depth-first iterative deepening: An optimal admissible tree search. Artificial

Intelligence, 27:97-109, 1985.

[18] D. Lay. Linear Algebra and its Applications, chapter 6. Addison Wesley, third edition,

2003.

[19] E. Losh. The palace of memory: Virtual tourism and tours of duty in tactical iraqi and

virtual iraq. In CyberGames '06: Proceedings of the 2006 International Conference on

Game Research and Development, pages 77-86. Murdoch University, 2006.

[20] R. Murphy. Trial by fire: Activities of the rescue robots at the world trade center from

1121 September 2001. Institute of Electrical and Electronics Engineers (IEEE) Robotics

and Automation Magazine, 11(3):50-61, September 2004.

[21] H. Parunak, M. Purcell, and R. O'Connel. Digital pheromones for autonomous coordi

nation of swarming UAV's. In Proceedings of First American Institute of Aeronautics

and Astronautics (AIAA) Unmanned Aerospace Vehicles, Systems, Technologies, and

Operations Conference, 2002.

[22] D. Payton, R. Estkowski, and M. Howard. Compound behaviors in pheromone robotics.

Robotics and Autonomous Systems, 44(3-4):229-240, 2003.

[23] I. Pohl. First results on the effect of error in heuristic search. Machine Intelligence,

5:219-236, 1970.

65

[24] I. Pohl. Heuristic search viewed as path rinding in a graph. Artificial Intelligence,

1:193-204, 1970.

[25] C. Reynolds. Flocks, herds, and schools: A distributed behavioral model. Computer

Graphics, 21(4):25-34, 1987.

[26] C. Reynolds. Steering behaviors for autonomous characters. In Game Developers Con

ference, 1999.

[27] C. Reynolds. Interaction with groups of autonomous characters. In Game Developers

Conference, 2000.

[28] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,

Englewood Cliffs, NJ, 2002.

[29] D. Silver. Cooperative pathfinding. In Artificial Intelligence and Interactive Digital

Entertainment, pages 117-122, 2005.

[30] N. Sturtevant. Memory-efficient abstractions for pathfinding. In Artificial Intelligence

and Interactive Digital Entertainment, pages 31-36, 2007.

[31] N. Sturtevant and M. Buro. Part ia l pathfinding using map abstraction and refinement.

In AAAI, pages 1392-1397, 2005.

[32] N. Sturtevant and M. Buro. Improving collaborative pathfinding using map abstraction.

In Artificial Intelligence and Interactive Digital Entertainment, pages 80-85, 2006.

[33] N. Sturtevant and R. Jansen. An analysis of map-based abstraction and refinement. In

Symposium on Abstraction, Reformulation, and Approximation, pages 344-358, 2007.

[34] A. Treuille, S. Cooper, and Z. Popovic. Continuum crowds. In Special Interest Group

on GRAPHics and Interactive Techniques (SIGGRAPH) '06: ACM SIGGRAPH 2006

Papers, pages 1160-1168, New York, NY, USA, 2006. ACM.

66

