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Abstract

This study aims to develop a new framework to detect, isolate and estimate the magnitude

of additive faults that occur in linear time invariant (LTI) systems. This study starts with

introduction of a new framework to deal with additive step type faults to improve the

shortcomings attributed to detection of time of occurrence of the fault (TOF) in existing

methods. In the next step, a marginalized likelihood ratio based approach is used to

decouple detection and isolation phases from the estimation of fault magnitude. The final

part of this study is dedicated to investigation of more realistic ramp and truncated ramp

type faults.

In chapter 2 an alternative approach to implementation of the generalized likelihood ratio

(GLR) test for detection and isolation of the fault in linear systems is proposed. The

proposed approach offers the following advantages: 1) It overcomes the shortcomings of

the previously suggested methods by accurately detecting the time of occurrence of the

fault; 2) It uses statistical fault detection and confirmation tests to obtain a crude estimate

of time of occurrence of the fault (TOF) and then refines the estimated TOF using an

extended data window and the GLR test; and 3) It avoids performing the isolation in

case the number of data points are too few and hence the number of misclassifications

is significantly reduced.

Chapter 3 presents a fault detection and isolation (FDI) framework based on the

marginalized likelihood ratio (MLR) approach using uniform priors for fault magnitudes

in sensors and actuators. The existing methods in the literature use either flat priors with



infinite support or the Gamma distribution as priors for fault magnitudes. In the current

study, it is assumed that the fault magnitude is a realization of a uniform prior with known

upper and lower limits. The method presented in this study performs detection of time of

occurrence of the fault and isolation of the fault type simultaneously while the estimation of

the fault magnitude is achieved using a generalized likelihood ratio (GLR) based approach.

The third and the final chapter aims to provide a solution for detection and diagnosis of drift

type faults in linear time invariant systems using the generalized likelihood ratio (GLR)

test. The main goal of this study is to deal with more realistic ramp type faults instead of

abrupt jumps. In this regard, several ramp type fault scenarios are considered: pure ramps,

truncated ramps and step-type faults which behave as ramp faults during their inter-sample.

In addition, a modified GLR-based approach that is capable of accurately detecting the time

of occurrence of the fault, is used in this study. The proposed method uses statistical fault

detection and confirmation tests to obtain a crude estimate of time of occurrence of the

fault (TOF) and then refines the estimated TOF using an extended data window and the

GLR test.
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Chapter 1

Introduction

Model based fault detection and diagnosis is one of the methodologies that aims to provide

the supervisory control system with sufficient information to take possible corrective

actions to compensate for the instrumentation and process related faults (Basseville and

Nikiforov, 1993; Gertler, 1998; Narasimhan and Jordache, 2000; Chen and Patton, 1999;

Ding, 2008; Patton et al., 1989). The ultimate goal of such methods is to accurately

detect the time of occurrence of the fault (TOF), identify its root cause and estimate its

magnitude. One of the most comprehensive studies in this area has been proposed by

(Basseville and Nikiforov, 1993) which addresses each of the detection, isolation and

estimation components using different techniques. In recent years, the concept of fault

tolerant control (FTC) and integration of the fault detection and isolation (FDI) module

with controller design has generated significant attention (Zhang and Jiang, 2008; Mhaskar

et al., 2006; Prakash et al., 2005; Deshpande et al., 2009; Mhaskar, 2006). As a general

trend in active fault tolerant control systems, the supervisory control system tries to makes

necessary modifications to the controller and thus mitigate the impact of the fault by

means of the information provided by the FDI module. It is worth noting that in active

fault tolerant control schemes, unlike the passive counterparts, detection of TOF plays a

significant role in the overall performance of the control scheme.

The generalized likelihood ratio (GLR) based fault detection and isolation of dynamic

1
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systems was first addressed in the study by (Willsky and Jones, 1976) in which the concept

of fault signature matrices was introduced to describe the effect of abrupt jumps in the

states on the residuals generated by the Kalman filter. The methodology proposed therein

used a sliding window and banks of Kalman filters to detect occurrence of the fault. The

major drawback behind this approach, which proved to be the main motivation behind

the study by (Narasimhan and Mah, 1988), is being “burdensome” from computational

aspect. The suggested methodology by (Narasimhan and Mah, 1988) used the statistical

time of occurrence detection (TOD) and gross error detection (GED) to detect occurrence

of the fault and estimate its occurrence instant. Their proposed method removed the need

for continuous operation of the fault detection and isolation (FDI) module which in turn

results in significant reduction in computational effort. Nevertheless, using GED and TOD

tests is associated with some inaccuracies in detection of time of occurrence of the fault

(TOF) (Narasimhan and Mah, 1988; Villez et al., 2011). The proposed method by (Prakash

et al., 2002) used similar statistical tests referred to as fault detection test (FDT) and fault

confirmation test (FCT) and the the GLR test to detect and isolate the fault and estimate its

magnitude and in addition made it possible to detect faults that might sequentially occur in

an LTI system. This goal was achieved by maintaining the whiteness of residual through

compensations applied to residuals and the Kalman filter. The same FDI framework

was used in the study by (Prakash et al., 2005) to form a fault tolerant control (FTC)

scheme. However, as stated by (Villez et al., 2011) all the aforementioned FDI approaches

suffer from inaccurate detection of TOF which can lead to biased estimation of the fault

magnitude and even in some cases misclassification of the fault. The method proposed in

the study by (Villez et al., 2011) it is suggested to perform an optimization to find a more

accurate estimation of the TOF in an extended data window but no closed form solution is

presented for the problem.

The main motivation behind the study which is presented in chapter 2 is to provide a FDI
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scheme which is capable of accurately detecting the TOF, isolate the fault and estimate its

magnitude. It will be assumed that faults occur as abrupt jumps in sensor and actuators of an

LTI system. The ultimate goal in this chapter would be providing the GLR test statistic and

the closed form solution for the estimated fault magnitude based on a modified GLR-based

approach. The proposed approach eliminated the need to solve any optimization problem

and hence facilitates the implementation. Moreover, a new strategy would be presented

which upon its adoption the FDI avoids performing the isolation and estimation phases

when a sufficient number of data points is not available. It is worth noting that performing

the isolation and estimation using insufficient data points can lead to biased estimates or

even misclassification in the worst case scenario.

Another alternative approach proposed by (Basseville and Nikiforov, 1993), is weighting

the likelihood ratio with respect to all possible values of the changing parameter. This

concept was further investigated and complemented in the state of the art study by

(Gustafsson, 1996). The concept therein, which is referred to as marginalized likelihood

ratio (MLR), is based on weighting the likelihood ratio by a non-informative prior

distribution and then performing integration in order to marginalize the conditional

probability. By doing so, the fault magnitude would be eliminated from the likelihood

ratio and therefore the double maximization GLR problem could be reduced to a single

maximization over the TOF. However, it should be noted that the method proposed by

(Gustafsson, 1996) does not address occurrence of the fault in sensors and actuators

and only deals with abrupt jumps in states. Moreover, the isolation issue has not been

discussed at all in the study by (Gustafsson, 1996). In another study by (Dos Santos and

Yoneyama, 2011) the MLR approach has been used to detect abrupt jumps in sensors and

actuators using the Gamma distribution as prior. The major drawback associated with

the selection of Gamma distribution as prior can be attributed to the heavy penalization

of low and high magnitude faults which could be deemed totally unrealistic. Motivated



4

to overcome these shortcomings, the study presented in chapter 3 aims to use realistic

uniform priors to derive a new MLR approach which decouples isolation and estimation

phases. Since it is widely known that most process variables are bounded, there arises

a need to define realistic and practical priors which are also coherent with the concept

of principle of indifference.It is worth noting that similar studies have appeared in the

literature addressing change-point detection problem in regression models and time series

(Hinkley, 1969; Kalbfleisch and Sprott, 1970; Lee and Heghinian, 1977; Esterby and El-

Shaarawi, 1981). Nevertheless, most of these studies address the change-point detection in

an offline framework while in the FDI domain it is necessary to find the time of occurrence

of the fault (TOF), isolate the fault and estimate its magnitude online. In other words,

in the online FDI domain one should deal with dynamic systems where the residuals are

generated at each time sample, unlike offline studies mentioned earlier where the whole

data set is not available beforehand.

The third and the final chapter aims to provide a solution for detection and diagnosis of

incipient faults in LTI systems using GLR-based approach. In order to achieve this goal

the new fault signature matrices for ramp and truncated ramp type faults should be first

developed. The main goal of this study is to deal with more realistic ramp type faults

instead of abrupt jumps. In this regard, both ramp and truncated ramp type faults are

considered and the GLR test statistics and the closed form solution for the estimated slope

of the ramp are developed. The most critical phase in derivation of the new FDI scheme is

detection of the time instant in which the ramp occurs and in case of truncated ramp type

faults the time instant at which the fault does the transition to the steady state is also of great

importance. The proposed approach can be further extended to deal with step type faults

due to the fact that the inter-sample behavior between two consecutive time instants cannot

be captured in a discrete system. It is shown that estimation of TOF and the magnitude

of ramp type faults using a limited number of data points can cause serious problems as
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the fault propagates with time even when there exists a small offset between the true and

the estimated slope of the fault. Therefore, in the newly proposed FDI scheme a unified

framework based on the truncated ramp type faults would be developed to deal with ramp,

truncated ramp and step type faults.
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Chapter 2

An Alternative Approach to
Implementation of Generalized
Likelihood Ratio Test for Fault
Detection and Isolation

The material of this chapter has been published in Ind. Eng. Chem. Res., 2013, 52 (35),

pp. 12482− 12489.

2.1 Introduction

Model based fault detection and diagnosis is one of the major approaches that aims

to provide the supervisory control system with sufficient information to take possible

corrective actions to compensate for the instrumentation related faults (Basseville and

Nikiforov, 1993; Gertler, 1998; Narasimhan and Jordache, 1999; Chen and Patton, 1999;

Ding, 2008; Patton et al., 1989). The ultimate goal of such methods is to accurately detect

the time of occurrence of the fault, identify its root cause and estimate its magnitude.

The comprehensive and outstanding study by (Basseville and Nikiforov, 1993) addresses

each of the detection, isolation and estimation components using different techniques. In

9



Sec. 2.1 Introduction 10

recent years, the concept of fault tolerant control and integration of the fault detection

and isolation (FDI) module with controller design has generated significant attention

(Zhang and Jiang, 2008; Mhaskar et al., 2006; Prakash et al., 2005; Deshpande et

al., 2009; Mhaskar, 2006). As a general trend in active fault tolerant control systems, the

supervisory control system tries to makes necessary modifications to the controller and thus

mitigate the impact of the fault by means of the information provided by the FDI module.

A seminal study in this field was first proposed by (Willsky and Jones, 1976) which for

the first time addressed the online FDI issue using the generalized likelihood ratio (GLR)

test. The methodology therein, proposes the computation of signature matrices assuming

occurrence of abrupt jumps in states of a linear system, which could be used to solve the

composite hypotheses testing problem using the GLR approach. The GLR formulation in

thr study by (Willsky and Jones, 1976) tries to find the time of occurrence of the fault using

a sliding window and as stated by (Narasimhan and Mah, 1988) the major drawback of the

methodology proposed by (Willsky and Jones, 1976) is that it is overly “burdensome” from

computational aspects. This is due to the fact that the FDI module solves, in real-time,

the composite hypotheses testing problem in a sliding window to detect and isolate the

faults. This issue proved to be the motivation in the study by (Narasimhan and Mah, 1988)

to develop the fault detection test (FDT) and fault confirmation test (FCT) to detect the

time of occurrence of the fault. However, it should be noted that the common issue in

both methods is the compromise between type I and type II errors which arises from the

thresholds selected for the GLR test or the significance levels of FDT and FCT tests. While

the use of FCT and FDT considerably reduces the computational costs associated with

detecting time of occurrence of the fault, this approach can result in significant inaccuracy

in the estimation of the time of occurrence of the fault. These inaccuracies, in turn, affect

the overall performance of the FDI module.

The FDI scheme suggested by Prakash et al. (Prakash et al., 2002) utilized a combination
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of methodologies proposed in (Willsky and Jones, 1976; Narasimhan and Mah, 1988) to

deal with the additive step-type faults in sensors, actuators and process parameters of an

LTI system. The scheme proposed therein, took advantage of the FDT and FCT tests to

detect time of occurrence of the fault and subsequently, the pre-computed fault signature

matrices and the GLR test were used to isolate the fault and estimate its magnitude. The

compensation scheme suggested in their study for the states alone, was similar to “Direct

State Incrementation” proposed in (Willsky and Jones, 1976) and unlike the approach in

(Narasimhan and Mah, 1988), made it possible to deal with sequential faults. The fault

tolerant control (FTC) scheme proposed by (Prakash et al., 2005) modified the controller

with the help of the data provided by the FDI scheme whilst in the proposed method by

(Prakash et al., 2002) the FDI is not integrated with the controller and it is only used to

provide supervisory information. However, as stated by (Villez et al., 2011), the detection

of time of occurrence of the fault is not properly addressed in the FDI scheme proposed

by (Prakash et al., 2002) and this shortcoming makes the performance of the FDI system

susceptible to misclassifications.

The main aim of the current study is to develop a FDI scheme for LTI systems to deal with

bias type faults which may occur in sensors and actuators separately or consecutively. In

particular, it is desired to refine the methodology proposed by (Prakash et al., 2005; Prakash

et al., 2002) to accurately detect the time of occurrence of a fault, which in turn, is expected

to improve the fault magnitude identification. In this regard a GLR-based approach using

an extended data window is used in this study. In the proposed methodology, detection of

the time of the occurrence of the fault as well as the isolation of the fault type and estimation

of its magnitude would be undertaken by the GLR approach. The proposed approach offers

improvement over FDT and FCT tests by applying GLR test over an extended time window,

which is constructed with the help of FDT and FCT tests and some extra data points from

the historical data. This is a crucial step when FDI is carried out on closed loop systems
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since any error in estimation of time of occurrence of the fault can lead to misclassification

and degradation in the closed loop control performance. The newly proposed FDI scheme

is more likely to capture the complete signature of the fault within the batch of data in

comparison with the results reported by (Prakash et al., 2002; Prakash et al., 2005). The

main contributions of the current study can be summarized as follows:

• Introduction of the concept of an extended data window which is constructed from

the FDT/FCT data window and the historical data points;

• Development of a FDI scheme using GLR test and FDT/FCT tests which can

accurately detect time of occurrence of the fault (TOF) without the need to use the

sliding window. In this scheme the GLR test is used both as a detector and isolator

while the FDT/FCT tests provide a crude estimate of TOF;

• Modification of GLR-based FDI scheme in order to prevent it from misclassifying

the fault when sufficient number of data points are not available;

• Monte Carlo simulations show reduction in the number of false alarms and

misclassifications and improvement in the estimates of the fault magnitudes using

the proposed FDI scheme.

• A closed form solution of the test statistic is proposed for additive faults. In other

words, for linear systems in the presence of additive faults it is not required to

perform cumbersome optimization to gain more accuracy. Moreover, ML-estimate

of the fault magnitude would also have a closed form solution and hence extra

computational costs related to optimization can be avoided.

It is worth mentioning that, the ultimate goal of the proposed FDI scheme is to provide

advisory information to operators so that they can take necessary measures such as re-

calibration of the sensors/actuators. This chapter is organized in five sections. In the
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next section, formulation of change detection problem and a brief review of generalized

likelihood ratio test is presented. The newly proposed FDI scheme is discussed in Section

3. Section 4 is dedicated to evaluation of the proposed methodology by application to a

CSTR benchmark problem followed by concluding remarks in Section 5.

2.2 Definition of The Problem

2.2.1 Model of the System

Consider the following linear system where x ∈ Rn, u ∈ Rm and y ∈ Rr. In this

representation w ∈ Rq and v ∈ Rr are process and measurement noise sequences with

known covariance matrices Q and R which are mutually uncorrelated and the initial state

x(0) follows a Gaussian distribution with known mean and variance. Furthermore, it is

assumed that Φ, C, Γu and Γw are known matrices.

x(k + 1) = Φx(k) + Γuu(k) + Γww(k) (2.1)

y(k) = Cx(k) + v(k) (2.2)

In case of occurrence of bias with magnitude bu,j in the jth actuator at time instant t the

process would evolve for k > t as follows:

x(k + 1) = Φx(k) + Γuu(k) + Γww(k) + bu,jΓueu,jσ(k − t) (2.3)

y(k) = Cx(k) + v(k) (2.4)

where eu,j is a unit vector whose jth element is equal to one and all other elements are zero

and σ(k − t) is a unit step function defined as follows:

σ(k − t) =

{
0 if k < t
1 if k ≥ t

Similarly, in case of occurrence of bias with magnitude by,j in the jth sensor, the

measurement equation would be modified as follows while the state equation remains as



Sec. 2.2 Definition of The Problem 14

shown in Eq. 2.1:

y(k) = Cx(k) + v(k) + by,jey,jσ(k − t) (2.5)

where ey,j is a unit vector whose jth element is equal to one and all other elements are

equal to zero.

2.2.2 Brief Review of GLR

The log-likelihood ratio test assuming occurrence of fault at time instant t with magnitude

bf,j where f ∈ {u, y} and j represent the type and location of fault, respectively, can be

defined as:

T = max
t

max
bf,j

2 log
p(ΛN

1 |t, bf,j)
p(ΛN

1 )
(2.6)

where, t ∈ {1, . . . , N} represents the time instant at which the fault has occurred and

ΛN
1 = {γ1, · · · , γN} denotes the residuals generated by a Kalman filter using the fault-free

model defined in Eqs. 2.1 and 2.2 in the specified window. In this notation the denominator

p(ΛN
1 ) represents the null-hypothesis (fault-free case). It is worth mentioning that the

denominator is independent of TOF and fault magnitude due to the fact that it represents the

residuals under the fault-free condition and therefore the joint maximum likelihood (ML)

estimate of the time of occurrence of the fault (TOF) and fault magnitude, respectively, can

be found as follows:

{b̂f,j, t̂} = argmax
t

max
bf,j

2 log p(ΛN
1 |t, bf,j) (2.7)

This double maximization problem is further simplified by finding the estimated time of

occurrence of the fault t̂ by means of FDT and FCT tests (Prakash et al., 2005; Prakash et

al., 2002; Narasimhan and Mah, 1988). Thus, the problem reduces to a single maximization

over the fault magnitude bf,j . The generalized likelihood ratio (GLR) test is as follows:

TGLR = max
f,j

Tmax
f,j (2.8)
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where

Tmax
f,j = max

bf,j
2 log

p(ΛN
t̂
|bf,j)

p(ΛN
t̂

)
(2.9)

= max
bf,j

Tf,j (2.10)

The likelihood ratio in Eq.2.9 should be maximized for all hypothesized faults and then

the maximum value among all hypothesized faults will determine location and magnitude

of the fault. Note that t̂ is obtained by application of the FDT/FCT tests and therefore the

maximization over TOF (t) is eliminated in Eq.2.9.

The effect of an additive fault on a linear system can be found by modeling the evolution

of the innovation sequence after the occurrence of the fault (Willsky and Jones, 1976).

However, for a nonlinear system this task should be undertaken by a fault mode observer

(Deshpande et al., 2009). The expected value of the innovation sequence at any time k ≥ t

are given as follows(Prakash et al., 2002; Narasimhan and Mah, 1988):

E[γ(k)] = bf,jGf (k; t)gf,j ; k ≥ t (2.11)

where

γ(k) = y(k)−Cx̂(k|k − 1)

Moreover the difference between the true states and the estimated ones (δx̂) and its

expected value can be defined as follows:

δx̂(k) = x̂(k|k)− x(k)

E[δx̂(k)] = bf,jJf (k; t)gf,j ; k ≥ t

where gu,j = Γueu,j and gy,j = ey,j for actuators and sensors, respectively. In this

representation Gf (k; t) is the signature matrix and it depends on time k at which the

innovations are computed and on time t at which the fault has occurred. The signature
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matrices for the sensor and actuator faults are given as follows(Prakash et al., 2002):

Gy(k; t) = I−CΦJy(k − 1; t) (2.12)

Jy(k; t) = ΦJy(k − 1; t) + K(k)Gy(k; t) (2.13)

Gu(k; t) = C−CΦJu(k − 1; t) (2.14)

Ju(k; t) = ΦJu(k − 1; t) + K(k)Gu(k; t)− I (2.15)

The proof of fault signature matrices is omitted here for the sake of brevity nevertheless the

interested reader is referred to Prakash et al. (Prakash et al., 2002) for details. Equations

2.12-2.13 should be initialized by Jy(t − 1; t) = [0]n×r and Gy(t − 1; t) = [0]r×r whilst

Eqs. 2.14-2.15 should be initialized with Ju(t; t) = [0]n×n and Gu(t; t) = [0]r×n due to

one sample time delay after which the fault in the actuator will affect the system dynamics.

In addition, it should be noted that the signature matrices are only function of the system

matrices in a linear system.

2.3 Proposed FDI Scheme

2.3.1 Finding the Candidate Data Window for Occurrence of The
Fault

The FDI scheme in this study takes advantage of the statistical FDT and FCT tests to

find the candidate data window in which the fault has occurred. However, due to the

inaccuracies associated with this approach a refining mechanism should be used to find

the most probable TOF. The FDT test is based on a quadratic form of the residuals at

each time instant normalized using the corresponding covariance matrix while the FCT

test is sum of normalized quadratic residuals in a window of data with specific size where

the normalization is performed using the corresponding covariance matrices. Assuming

rejection of FDT test at time instant t1 and data window of size N , the FCT test is defined
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as follows:

ε(N ; t1) =

t1+N∑
k=t1

γT (k)V (k)−1γ(k) (2.16)

which follows a χ2 distribution with r × (N + 1) degrees of freedom assuming the

residuals are zero mean white noise with known covariance matrix. The conventional

approach in GLR is to compute the FCT test for data window [t1, t1 +N ] which is obtained

after rejection of the FDT test at time instant t1(Narasimhan and Mah, 1988; Prakash et

al., 2005; Prakash et al., 2002). Upon its rejection, the likelihood ratio will be computed for

all hypothesized faults in the interval [t1, t1+N ] to isolate and estimate the fault magnitude.

Now let us consider the following two scenarios as depicted in Figure 2.1, in which in the

Figure 2.1: Scenarios leading to inaccurate detection of TOF: Figure 2.1a the estimated
TOF (t̂) precedes the actual TOF (t); Figure 2.1b the estimated TOF (t̂) is after the actual
TOF (t) (Narasimhan and Mah, 1988).

first case the actual TOF is after the rejection of the FDT test while in second scenario the

FDT is rejected after the actual TOF (Narasimhan and Mah, 1988). The second case is

most prevalent if the fault magnitude is very small. So in order to accurately estimate TOF,

we propose to append the original data window [t1, t1 + N ] with M extra samples prior

to rejection of the FDT test at t1 and form a new data window as [t1 −M, t1 + N ]. The

concept of extended data window is depicted in Figure 2.2.
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1k t M  1k t 1k t N 

Figure 2.2: Extended FCT data window

2.3.2 An Alternative Approach to GLR test

The main purpose of this section is to propose a FDI scheme which has the following

properties:

• Fast and easy detection of TOF using the statistical FDT/FCT tests without using any

of sliding window schemes;

• Detecting the most probable TOF considering the scenarios mentioned in the

previous section;

• Avoiding any corrective action/fault compensation when only few number of data

points is available;

In the wake of the modified data window proposed in the previous section the GLR test for

each fault hypothesis assuming occurrence of the fault at time instant t ∈ [t1 −M, t1 +N ]
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is as follows:

TGLR = max
f,j,tf,j

Tmax
f,j,tf,j

(2.17)

where

Tmax
f,j,tf,j

= max
t

max
bf,j

2 log
p(Λt1+N

t1−M |t, bf,j)
p(Λt1+N

t1−M)
(2.18)

= max
t

Tt,f,j (2.19)

it should be noted that:

Tf,j,t = max
bf,j

2 log
p(Λt1+N

t1−M |t, bf,j)
p(Λt1+N

t1−M)

and Λt1+N
t1−M = {γt1−M , . . . , γt1+N}. The likelihood ratio on the right hand side of Eq. 2.18

should be maximized for all t ∈ [t1 −M, t1 + N ] assuming occurrence of a specific fault

type f at location j. Then the same maximization procedure should be repeated for the

other hypothesized faults (all combinations of f and j). Finally, the maximum value of

Tmax
f,j,tf,j

among all hypothesized faults determines t̂, f̂ and ĵ as follows:

{f̂ , ĵ, t̂} = arg max
f,j,tf,j

Tmax
f,j,tf,j

(2.20)

using t̂, f̂ and ĵ, the ML-estimate of fault magnitude can be found as:

b̂f̂ ,ĵ = argmax
bf̂ ,ĵ

2 log p(Λt1+N
t1−M |t̂, bf̂ ,ĵ) (2.21)

Lemma 2.3.1 Assuming occurrence of a single fault type f at location j and at time instant

t ∈ [t1−M, t1 +N ], the estimated fault magnitude and Tf,j,t can be computed as follows:

b̂f,j,t =
gTf,j
∑t1+N

k=t GT
f (k; t)V (k)−1γ(k)

gTf,j
∑t1+N

k=t GT
f (k; t)V (k)−1Gf (k; t)gf,j

(2.22)

Tf,j,t =

(
gTf,j
∑t1+N

k=t GT
f (k; t)V (k)−1γ(k)

)2

gTf,j
∑t1+N

k=t GT
f (k; t)V (k)−1Gf (k; t)gf,j

(2.23)

where Gf (k; t) denotes the fault signature matrix for fault f assuming occurrence of the

fault at time instant t.
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Proof: Recall the joint maximum likelihood estimate of fault magnitude and TOF:

{b̂f,j, t̂} = argmax
t

sup
bf,j

2 log p(Λt1+N
t1−M |t, bf,j) (2.24)

Since we have already assumed that true TOF is t, Eq. 2.24 reduces to:

b̂f,j = argmax
bf,j

2 log p(Λt1+N
t |bf,j) = argmax

bf,j
λf,j

using the definition of the multivariate Gaussian distribution and assuming independence

of the residuals, one can write the following:

λf,j = 2 log

{
ζ exp

{
−1

2

t1+N∑
k=t

(γ(k)−bf,jGf (k; t)gf,j)
TV (k)−1(γ(k)−bf,jGf (k; t)gf,j)

}}
(2.25)

where ζ = 1

(2π)r×(t1+N−t+1)/2
∏t1+N

k=t |V (k)|1/2
and r denotes the dimension of y. The ML-

estimate of bf,j can be found by solving ∂λf,j
∂bf,j

= 0 as follows:

−2gTf,j

t1+N∑
k=t

GT
f (k; t)V (k)−1γ(k) + 2bf,jg

T
f,j

t1+N∑
k=t

{
GT
f (k; t)V (k)−1Gf (k; t)

}
gf,j = 0

⇒ b̂f,j,t =
gTf,j
∑t1+N

k=t GT
f (k; t)V (k)−1γ(k)

gTf,j
∑t1+N

k=t GT
f (k; t)V (k)−1Gf (k; t)gf,j

(2.26)

Note that we have used notation b̂f,j,t and not b̂f,j . This is due to the fact that the estimated

fault magnitude is based on the assumption of occurrence of the fault at time instant t.

Substituting b̂f,j,t into the log-likelihood ratio in the right-hand side (RHS) of Eq.2.18

results in:

Tf,j,t =

(
gTf,j
∑t1+N

k=t GT
f (k; t)V (k)−1γ(k)

)2

gTf,j
∑t1+N

k=t GT
f (k; t)V (k)−1Gf (k; t)gf,j



Sec. 2.3 Proposed FDI Scheme 21

The estimated fault magnitude of the isolated fault can be found by combining Eqs. 2.20

and 2.26 as follows:

b̂f̂ ,ĵ,t̂ =
gT
f̂ ,ĵ

∑t1+N

k=t̂
GT
f̂

(k; t̂)V (k)−1γ(k)

gT
f̂ ,ĵ

∑t1+N

k=t̂
GT
f̂

(k; t̂)V (k)−1Gf̂ (k; t̂)gf̂ ,ĵ
(2.27)

The procedure which leads to estimation of TOF, isolation of the fault and estimation of its

magnitude can be summarized as follows:

1. FDT test is applied at each time instant. Upon rejection of the FDT test, the FCT test

is applied.

2. Upon rejection of FCT test, the extended data window is formed by means of adding

M extra data points prior to the rejection of FDT test, to original FCT data window.

3. The following test statistic is computed for all t ∈ [t1 −M, t1 + N ], for a specific

choice of f and j:

Tf,j,t =

(
gTf,j
∑t1+N

k=t GT
f (k; t)V (k)−1γ(k)

)2

gTf,j
∑t1+N

k=t GT
f (k; t)V (k)−1Gf (k; t)gf,j

4. Tmax
f,j,tf,j

for the chosen f and j can be computed as follows:

Tmax
f,j,tf,j

= max
t

Tf,j,t

5. For all other combinations of f and j, steps 3 and 4 are repeated.

6. The maximum test statistic among all hypothesized faults will determine t̂, f̂ and ĵ

as follows:

{f̂ , ĵ, t̂} = arg max
f,j,tf,j

Tmax
f,j,tf,j

7. The estimated fault magnitude can be found for the isolated fault using t̂, f̂ and ĵ as

follows:

b̂f̂ ,ĵ,t̂ =
gT
f̂ ,ĵ

∑t1+N

k=t̂
GT
f̂

(k; t̂)V (k)−1γ(k)

gT
f̂ ,ĵ

∑t1+N

k=t̂
GT
f̂

(k; t̂)V (k)−1Gf̂ (k; t̂)gf̂ ,ĵ
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8. Compensation is performed and again the FDT test is applied at the next time instant.

It should be noted that unlike the FDI strategy proposed by (Willsky and Jones, 1976),

it is not required that the banks of Kalman filters continuously monitor the residuals for

occurrence of the fault. Moreover, by means of adding the extra samples to the data window

and searching through the extended data window for the most likely time of occurrence of

the fault (TOF), one of the main shortcomings of the proposed approach by (Prakash et

al., 2002) is overcome.

Remark 2.3.1 In order to prevent false alarms and also to accurately estimate the

magnitude of the fault, a minimum size of data window s is required. In other words, if

t̂f̂ ,ĵ > t1 + N − s + 1, then the number of samples may not be enough to obtain a good

estimate of the fault magnitude and hence it seems logical to obtain more data points for

the purpose of estimation. Furthermore if t̂f̂ ,ĵ > t1 +N − s+ 1 and the fault has actually

occurred, since no corrective action is taken by the FDI methodology, the FDT and FCT

tests would be rejected again in the following instants and the fault would be detected in

the next or subsequent window due to the fact that the extended data window enables the

FDI module to look backwards in time. In choosing the minimum size of data window, the

time required for the estimator to converge after a change occurs has to be also considered.

2.3.3 Online Compensation Schemes

The interaction between the proposed FDI scheme and the process is depicted in Figure

2.3.

The compensation equations should be applied in order to make the residuals white after

occurrence of the fault and subsequent detection, isolation and estimation phases. The

online corrections, which lead to the whiteness of the residuals and then enable the FDI to
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detect faults that might occur sequentially, are as follows (Prakash et al., 2002):

yc(k) = y(k)− b̂y,ĵ,t̂ey,ĵ (f̂ = y) (2.28)

mc(k) = m(k) + b̂u,ĵ,t̂eu,ĵ (f̂ = u) (2.29)

x̂c(t1 +N |t1 +N) = x̂(t1 +N |t1 +N)− b̂f̂ ,ĵ,t̂Jf̂ (t1 +N ; t̂)gf̂ ,ĵ (2.30)

where k ∈ [t̂, t1 +N ] and f ∈ {u, y}. In addition, m denotes the controller output (Prakash

et al., 2002). It should be noted that state compensation in Eq. 3.41 is performed only once

and after the isolation and estimation phases are carried out. The main purpose of this

compensation is to provide the Kalman filter with a bias-free estimated state in the next

iteration.

ub

ry

yb

ub̂

yb̂


,f jb

ˆ ˆ,
ˆ
f j
b

ˆ ˆ,
ˆ
f j
t

Figure 2.3: The supervisory scheme based on the modified GLR. The advisory information
will be provided to the operators/ engineers.

2.4 Simulation Case Study

The nonisothermal continuous stirred tank reactor (CSTR) benchmark example by (Marlin,

1995) which has also been used by (Prakash et al., 2005), is used in this work to evaluate the
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performance of the proposed methodology. This plant has two states which are the reactor

concentration (CA) and reactor temperature (T ) which are both measurable. The reactor

feed flow rate (F ) and the coolant flow rate (Fc) are selected to be the manipulated variables

and the feed concentration (CA0) and feed temperature (Tcin) are set as the disturbance

variables. Moreover, it should be noted that all the variables are in deviational form.

x = [CA T ]T ; u = [F Fc]
T

w = [CA0 Tcin]T ; y = [CA T ]T

The stable operating point of the reactor has been used for performing the simulations and

the process was linearized around this operating point. The sampling time was selected as

Tsample = 0.1 min for discretization. The resulting state space matrices are as follows:

Φ =

[
0.1843 −0.0080
73.5080 1.3330

]
, Γu =

[
0.1340 0.0026
−1.7948 −.7335

]

Γw =

[
0.0598 −0.0004
3.9038 0.1208

]
, C =

[
1 0
0 1

]
The steady state values of inlet and the coolant flow rates are Fs = 1 m3/min and

Fcs = 15 m3/min, at this operating point. The MPC weighting matrix, prediction horizon

and control horizon were set to the same values as reported in the study by (Prakash et

al., 2005) and are reproduced below:

Np = 10, Nc = 1, WE =

[
104 0
0 1

]
, WU = [0]

The following constraints were also considered (Prakash et al., 2005):

0 ≤ Fc ≤ 17 m3/min 0 ≤ F ≤ 2 m3/min

All the noise parameters are exactly set to values specified in the simulations performed by

(Prakash et al., 2005), which are summarized in Table 2.1. The performance of the FDI

schemes were tested subject to two different sets of faults. The first set only includes
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single faults and is summarized in Table 2.2 whilst the sequential faults introduced to

the system are included in Table 2.3. In the Monte Carlo simulations (consisting of 100

runs for each case), the performance of the χ2 − GLR approach proposed by (Prakash

et al., 2002) was compared to the proposed approach in this study which from now on is

referred to as χ2 −Modified GLR or in brief χ2 −MGLR method. In the Monte Carlo

simulations, the size of FCT data window was set to 21 (N = 20) while the number of

extra samples appended to the FCT data window to form the extended data window was

selected as M = 21. The parameter ‘s’ which was discussed in Remark 2.3.1, was set to

15.

Remark 2.4.1 It is known that a small number of data points in the data window will result

in poor estimation of fault magnitude as well as more false alarms or even misclassification

of the fault. On the other hand waiting to acquire a large number of data points will result in

significant delay in detection, isolation and estimation of the fault magnitude. In the study

by (Prakash et al., 2002), based on the simulation results, it is suggested that size of FCT

window be chosen approximately half the size required for the Kalman filter to converge

after a fault occurs. Considering this argument, the following criterion is suggested for

selection of parameter ‘s’:

τK ≤ s ≤ WFCT

where WFCT is the size of FCT window and τK is half the size required for Kalman filter

to converge if a fault occurs. In our case we have selected N = 20, s = 15 and M = 21

where M is the number of extra points added to the FCT data window. Moreover, based on

simulation results it was found that τK = 10.

The results of FDI schemes tested subject to the single fault scenarios of Table 2.2

and the sequence of faults shown in Table 2.3, are summarized in Tables 2.4 and 2.5,

respectively. As can be seen, the results show that the χ2 −MGLR method is capable of

estimating the TOF more accurately and with better precision compared to the χ2 − GLR
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Table 2.1: Standard Deviations for Process and Measurement Noise Sequences

Variable σ(SD)
Feed Concentration 0.05 Kmol/m3

Feed Temperature 2.5 deg.K
Reactor Concentration 0.01 Kmol/m3

Reactor Temperature 0.5 deg.K

Table 2.2: Single Fault Scenarios
Fault Type TOF 1 Fault Magnitude
bias in actuator (F ) 100 %10Fs = +0.1
bias in sensor (T ) 100 −3× σT = −1.5
bias in sensor (CA) 100 2× σCA

= +0.02
bias in actuator (Fc) 100 −%10Fcs = −1.5
1 TOF: Time of Occurrence of the Fault

Table 2.3: Sequence of Faults
Fault Type TOF 1 Fault Magnitude
bias in sensor (CA) 100 −3× σCA

= −0.03
bias in actuator (F ) 200 −%15Fs = −0.15
bias in sensor (T ) 300 4× σT = +2
bias in actuator (Fc) 400 %13.3Fcs = +2
1 TOF: Time of Occurrence of the Fault
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Table 2.4: χ2 − GLR and χ2 −MGLR Results Subject to Single Fault Scenarios Based
on 100 Monte Carlo Runs for Each Case

Method TOF 1 Fault ETOF 2 t̂(σt̂) EFM 3 b̂(σb̂) NMC 4

χ2 −GLR t = 100

bF = +0.1 108.29 (5.979) 0.095 (0.014) 20/100
bT = −1.5 107.35 (7.706) -1.562 (0.308) 25/100
bCA

= +0.02 109.53 (8.939) 0.020 (0.003) 6/100
bFs = −1.5 107.81 (5.324) -1.531 (0.218) 5/100

χ2 −MGLR t = 100

bF = +0.1 100.96 (0.559) 0.101 (0.010) 8/100
bT = −1.5 100.97 (3.232) -1.527 (0.186) 6/100
bCA

= +0.02 100 (1.231) 0.020 (0.003) 1/100
bFs = −1.5 101.21 (1.719) -1.510 (0.102) 1/100

1 TOF: Time of Occurrence of the Fault
2 ETOF: Estimated Time of Occurrence of the Fault
3 EFM: Estimated Fault Magnitude
4 NMC: Number of Misclassifications

approach used in (Prakash et al., 2005). The low misclassification rates of the proposed

method show its superior performance in comparison with the χ2 − GLR counterpart.

Moreover, the more accurate estimates of the fault magnitudes with smaller standard

deviations in comparison with χ2 −GLR are clear evidence that precise detection of TOF

which is a key factor in the isolation and estimation phases.

The performance of the FDI was also tested subject to the sequential faults. As can be seen

in Table 2.5, the performance of the χ2 − GLR based FDI is inferior to that of the newly

proposed method due to the fact that it cannot accurately identify the time of occurrence of

the fault. This problem can critically affect the performance of the FTC scheme if the FDI is

integrated with the controller. In order to shed light on the advantages of the χ2 −MGLR

approach consider the sequence of the faults in Table 2.3. In order to shed light on the

advantages of the χ2 −MGLR approach consider the sequence of the faults in Table 2.3.

The performance of the χ2 −MGLR method for a random seed is tabulated in Table 2.6.

As it can be seen in this table, the FDT/FCT tests confirm occurrence of the fault at time

instant t = 87 while we know the true TOF is t = 100. The MGLR method now appends

the extra samples prior to occurrence of the fault to the FDT/FCT data window which is

[87, 107] and forms a new extended data window which would be equal to [66, 107] and

tries to isolate the TOF in this newly formed data window. Applying the GLR test to this
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Table 2.5: FDI Results Subject to Sequence of Faults Based on 100 Monte Carlo Runs for
Each Case

Method TOF 1 Fault ETOF 2 t̂(σt̂) EFM 3 b̂(σb̂) NMC 4

χ2 −GLR

t = 100 bCA
= −0.03 108.02 (5.721) -0.029 (0.003)

23/100
t = 200 bF = −0.15 212.09 (9.522) -0.132 (0.028)
t = 300 bT = 2 300.55 (8.068) 1.896 (0.322)
t = 400 bFc = 2 406.37 (9.873) 2.005 (0.279)

χ2 −MGLR

t = 100 bCA
= −0.03 100.02 (0.33) -0.030 (0.002)

8/100
t = 200 bF = −0.15 201.07 (0.446) -0.150 (0.009)
t = 300 bT = 2 300.19 (1.392) 2.053 (0.313)
t = 400 bFc = 2 401.04 (0.514) 1.999 (0.255)

1 TOF: Time of Occurrence of the Fault
2 ETOF: Estimated Time of Occurrence of the Fault
3 EFM: Estimated Fault Magnitude
4 NMC: Number of Misclassifications

extended data window results in t̂ = 102 and b̂CA
= −0.018 which is obviously biased

due to lack sufficient samples for estimation of the fault magnitude. Moreover, one may

argue that the estimated TOF is also biased. Considering Remark 2.3.1, the MGLR-based

FDI avoids taking action in this data window and waits for the subsequent rejection of

FDT/FCT tests. Therefore, when the FDT/FCT tests are again rejected due the presence

of the fault in the data window [108, 128] the MGLR-based FDI appends the data window

[87, 107] from historical data to the recent FDT/FCT data window and forms the extended

data window [87, 128] and again repeats the application of the GLR test. There are two

main advantages in this approach; first of all since the GLR test is looking for the most

probable TOF in an extended data window then it is more likely for it to capture the correct

fault signature and secondly enough data points are acquired for estimation of TOF and the

fault magnitude. Hence the methodology proposed in this study is totally different from

the χ2 − GLR approach proposed by (Prakash et al., 2005; Prakash et al., 2002) which

assumes t̂ = 87 and proceeds with isolation. However, assuming t̂ = 87 as the estimated

TOF causes misclassification of the fault by the χ2−GLR due to the fact that fault-free data

points in the range [87, 99] cannot be matched with the fault signatures. The true versus

the estimated states for both FDI scenarios is depicted in Figures 2.4 and 2.5, respectively.

In these graphs the FDI module is integrated with the MPC controller and hence any sort
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Table 2.6: The Modified GLR approach performance for a random seed

Estimated TOF by FDT/FCT 87 100 189 201 300 401

Modified GLR FDI Output No Action b̂CA
= −0.029 No Action b̂F = −0.144 b̂T = 1.85 b̂Fc = 2.274

Interval Used for Estimation of b̂ NA [100, 128] NA [201, 230] [300, 318] [401,421]
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Figure 2.4: Estimated states versus true states for the case of combining the MPC controller
with FDI designed based on the χ2 − GLR method. The first fault in the sequence is
misclassified as a result of incorrect assumption of occurrence of the fault at t = 87 and the
subsequent diagnoses by the FDI are prone to error and consequently the grade of the final
product (specified here by concentration) is likely to be unacceptable.

of incorrect classification will have serious consequences for the process control scheme.

It is worth noting that integration of FDI with the controller in this specific case is unlike

the general approach suggested in Figure 2.3 where the FDI information is only used for

monitoring purposes.

The outputs to the final control elements which are equal to controller outputs plus the

corresponding biases are depicted in Figure 2.6 for the proposed FDI scheme subject to the

sequence of faults in Table 2.3. It should be noted that the constraints may be violated prior

to the isolation of the fault, estimation of the fault magnitude and its compensation.
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Figure 2.5: Estimated states versus true states for the case of combining the MPC controller
with FDI designed based on the χ2 − MGLR method. In this case the sensor bias is
correctly detected, classified and the compensation applied mitigates the effect of the fault.
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Figure 2.6: Controller outputs plus the corresponding biases for the proposed FDI scheme
subject to sequence of faults
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2.5 Concluding Remarks

Motivated by the shortcomings of the methods proposed in (Narasimhan and Mah, 1988;

Prakash et al., 2002; Prakash et al., 2005), in this study a new FDI scheme has been

proposed based on the GLR test and use of statistical FDT and FCT tests proposed by

Narasimhan and Mah (Narasimhan and Mah, 1988). The modified GLR-based method

overcomes the shortcomings related to the methodology proposed by (Prakash et al., 2002)

in detecting the time of occurrence of the fault using a modified GLR approach. The

proposed method simultaneously performs the detection of TOF, isolation of the fault and

estimation of its magnitude.

The new methodology removes the need for continuous operation of banks of Kalman

filters over a sliding window as proposed by (Willsky and Jones, 1976) by taking advantage

of the FDT and FCT tests. The χ2−MGLR method then tries to refine the estimated TOF

by FDT and FCT tests using an extended data window. The method presented in this study

is then complemented by a strategy which prevents the FDI from taking any action when

sufficient number of data points are not available for estimation of fault magnitude. The

method was tested subject to extensive Monte Carlo simulations on a benchmark reactor

problem and the results reveal that it outperforms the FDI scheme presented in the study

by (Prakash et al., 2005).
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Chapter 3

A Unified Framework for Fault
Detection and Isolation of Sensor and
Actuator Biases in Linear Time
Invariant Systems using Marginalized
Likelihood Ratio Test with Uniform
Priors

The material of this chapter has been published in Journal of Process Control 23 (2013),

pp. 1350− 1361.

Shorter forms of this work have also been presented in IFAC SAFEPROCESS (2012) and

IEEE CDC (2012).

3.1 Introduction

Model based fault detection and diagnosis is one of the research areas which has attracted

significant attention in recent years and aims to provide the supervisory control system

with sufficient information to take possible corrective actions to compensate for the

instrumentation related faults (Basseville and Nikiforov, 1993; Gertler, 1998; Narasimhan

34
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and Jordache, 2000; Chen and Patton, 1999; Ding, 2008; Patton et al., 1989). The critical

task of fault detection and isolation (FDI) modules is to accurately detect the time of

occurrence of the fault, identify its root cause and estimate its magnitude. Detection,

isolation and estimation of fault magnitude techniques have been thoroughly addressed

in the comprehensive study by (Basseville and Nikiforov, 1993). In recent years, the

concept of fault tolerant control which integrates the FDI with controller design has also

generated significant attention (Zhang and Jiang, 2008; Mhaskar et al., 2006; Prakash

et al., 2005; Deshpande et al., 2009; Mhaskar, 2006). As a general trend in active

fault tolerant control systems, the supervisory control system tries to make necessary

modifications/compensations to the controller and thus mitigate the impact of the fault by

means of the information provided by the FDI module.

A seminal study in this field was first proposed by (Willsky and Jones, 1976) which

addressed online detection and isolation of abrupt jumps using a generalized likelihood

ratio (GLR)-based approach. The methodology therein, introduces the concept of fault

signature matrices, which could be used to solve the composite hypotheses testing problem

using the GLR approach. As stated by (Narasimhan and Mah, 1988) the major drawback

of the methodology proposed in the study by (Willsky and Jones, 1976) is that it is overly

“burdensome” from computational aspects. This is due to the fact that the FDI module

solves, in real-time, the composite hypotheses testing problem in a sliding window to detect

and isolate the faults. This issue proved to be the main motivation behind introduction of

the fault detection test (FDT) and fault confirmation test (FCT) to estimate the time of

occurrence of the fault in the study by (Narasimhan and Mah, 1988)1. However, there is

always a compromise between type I and type II errors in both methods which arises from

the thresholds selected for the GLR test or the significance levels of FDT and FCT tests. It

1The FDT test is based on a quadratic form of the residuals at each time instant normalized using the
corresponding covariance matrix while the FCT test is the sum of FDT tests in a window of data with specific
size. It is worth noting that in the study by (Narasimhan and Mah, 1988), FDT and FCT tests are referred to
as “time of occurrence detection (TOD)” and “gross error detection (GED)” tests, respectively.



Sec. 3.1 Introduction 36

is worth noting that the use of FDT and FCT tests can result in significant inaccuracies in

estimation of the time of occurrence of the fault. These inaccuracies, in turn, degrade the

overall performance of the FDI module.

In the study by (Prakash et al., 2002) an online FDI scheme is suggested, based on

a combination of methodologies proposed in the studies by (Willsky and Jones, 1976;

Narasimhan and Mah, 1988), to deal with the additive step-type faults in sensors, actuators

and process parameters of LTI systems. The scheme proposed therein, used the FDT and

FCT tests to detect TOF and subsequently, the GLR test were used to isolate the fault

and estimate its magnitude using the fault signature matrices. The compensation scheme

suggested in their study made it possible to deal with sequential faults. This compensation

strategy for the states alone, was similar to “Direct State Incrementation” proposed by

(Willsky and Jones, 1976). While in the study by (Prakash et al., 2002) the FDI is used

to provide supervisory information, the fault tolerant control (FTC) scheme proposed by

(Prakash et al., 2005) modified the controller using the information provided by the FDI

scheme. However, as stated by (Villez et al., 2011), the detection of time of occurrence of

the fault is not properly addressed in the FDI scheme proposed by (Prakash et al., 2002)

and this shortcoming makes the performance of the system susceptible to misclassifications

by the FDI module.

As explained in the study by (Wald, 1947; Basseville and Nikiforov, 1993), an alternative

solution to the GLR algorithm is weighting the likelihood ratio with respect to the all

possible values of the changing parameter. The concept of weighted likelihood ratio

and assuming the fault magnitude to be random variable has resulted in emergence of a

new generation of change detection algorithms known as the marginalized likelihood ratio

(MLR) tests. The MLR-based fault detection method proposed by (Gustafsson, 1996) is a

state of the art approach to detect abrupt changes in a dynamic system and incorporates

prior knowledge about the faults. It can be shown that GLR test is a specific case of
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MLR test and their test statistics are directly related to each other in the asymptotic case

(Gustafsson, 1996).

In most cases due to lack of enough prior knowledge of the fault, the distribution of fault

magnitude is considered to be noninformative. The main purpose of the marginalized

likelihood ratio approach is to detect the occurrence of abrupt jumps in the states while

removing the need for having an estimate for the fault magnitude. The two filter

implementation of MLR suggested by (Gustafsson, 1996) incorporates a forward-backward

filtering method to detect abrupt jumps in the states. However, it should be noted that the

methodology proposed by (Gustafsson, 1996) does not address the isolation of faults in

sensors and actuators.

It is worth mentioning that similar studies have appeared in the literature addressing

change-point detection problem in regression models and time series. In the study by

(Hinkley, 1969) in a two-phase linear regression model the maximum likelihood estimator

of the change-point is derived. In the study by (Kalbfleisch and Sprott, 1970) the marginal

likelihood is used for eliminating the nuisance parameters in order to make inference about

the desired parameters of a model. The detection of change-point and estimation of its

magnitude is also addressed by (Lee and Heghinian, 1977) using a normally distributed

prior for additive fault. In another study by (Esterby and El-Shaarawi, 1981) the relative

marginal likelihood function is calculated for change point in a sequence of (n1 + n2)

independent ordered pairs of observations for which the relationships between variables

can be represented by a segmented polynomial regression model. Nevertheless, most of

these studies address the change-point detection in an offline framework while in the FDI

domain it is necessary to find the time of occurrence of the fault (TOF), isolate the fault

and estimate its magnitude online. In other words, in the online FDI domain one should

deal with dynamic systems where the residuals are generated at each time sample, unlike

offline studies mentioned earlier where the whole data set is not available beforehand.
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A preliminary investigation of fault isolation using MLR and uniform priors was

proposed in the study by (Kiasi et al., n.d.). In a similar approach,(Dos Santos and

Yoneyama, 2011) have proposed a FDI scheme which decouples the isolation and

estimation phases by means of marginalization of the likelihood function of the residuals

using the Gamma distribution function as the prior. However, as stated by (Dos Santos

and Yoneyama, 2011) this choice of prior penalizes low and high magnitude faults, in

other words this choice of a prior implicitly and unrealistically assumes that both low and

high magnitude faults rarely occur in the system. In addition, one should note that since

the Gamma distribution is one-sided, identical positive and negative faults occurring at the

same location should be treated as separate faults. Apparently, this will increase the number

of hypothesized faults.

It should be noted that as per the principle of indifference (Keynes, 2004), a realistic

choice of prior would be the one which assigns equal probability to all fault magnitudes.

Isolation of the fault by MLR as well as the fact that most process variables vary within

certain limits in the normal operating conditions, motivates one to look for alternative

approaches towards online implementation of MLR within a FDI framework.

The main aim of the current study is to develop a FDI scheme for LTI systems to deal

with bias type faults which may occur in sensors and actuators separately or consecutively.

In particular, it is desired to develop a method to accurately detect the time of occurrence

of a fault, which, in turn, is expected to improve the fault magnitude identification. In

this regard a MLR-based approach using a uniform prior is proposed in this study. In

the proposed methodology, detection of the time of the occurrence of the fault as well as

isolation of the fault type and its location would be undertaken by the MLR approach. The

remaining task which is the estimation of the isolated fault magnitude would be performed

via a GLR-based approach. The proposed approach offers improvement over FDT and

FCT tests by applying MLR test over a time window, which is constructed with the help of
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FDT and FCT tests. This is a crucial step when FDI is carried out on closed loop systems

since any error in estimation of time of occurrence of the fault can lead to misclassification

and degradation in the closed loop control performance. The newly proposed FDI scheme

is more likely to capture the complete signature of the fault within the batch of data in

comparison with the studies by (Prakash et al., 2002; Deshpande et al., 2009). The main

contributions of the current study can be summarized as follows:

• Introduction of the concept of realistic and bounded uniform priors for sensors and

actuators that is unlike conventionally used priors in the literature such as flat or

Gamma distributed priors. The proposed prior is the same for all hypothesized faults.

• Development of a new FDI scheme using MLR and uniform priors for fault

magnitudes in which the isolation and fault magnitude estimation phases are

decoupled. In this scheme the MLR is used both as a detector and isolator based

on the assumption of uniform priors for fault magnitudes.

• Monte Carlo simulations show reduction in the number of false alarms and

misclassifications and improvement in the estimates of the fault magnitudes using

the proposed FDI scheme.

It is worth mentioning that, the ultimate goal of the proposed FDI scheme is to provide

advisory information to operators so that they can take necessary measures such as re-

calibration of the sensors/actuators.

This chapter is organized in five sections. In the next section, the modified model of the

system/faults and the concept of uniform priors are presented. The newly proposed FDI

scheme is discussed in Section 3. Section 4 discusses solution of the proposed FDI scheme

and section 5 is dedicated to evaluation of the proposed methodology by application to a

CSTR benchmark problem followed by concluding remarks in Section 6.
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3.2 Definition of The Problem

Consider the following linear system where x ∈ Rn, u ∈ Rm and y ∈ Rr. In this

representation w ∈ Rq and v ∈ Rr are process and measurement noise sequences with

known covariance matrices Q and R which are mutually uncorrelated and the initial state

x(0) follows a Gaussian distribution with known mean and variance. Furthermore, it is

assumed that Φ, C, Γu and Γw are known matrices.

x(k + 1) = Φx(k) + Γuu(k) + Γww(k) (3.1)

y(k) = Cx(k) + v(k) (3.2)

It is further assumed that the state space model in Eqs.(3.1-3.2) is derived by linearizing

the nonlinear model around the desired operating point

(xss1 , · · · , xssn , uss1 , · · · , ussm) with known parameters.

3.2.1 Modified Model of The System and the Fault Models

To simplify the development of fault diagnosis scheme, in this work, it is desired to work

with scaled input and output variables. Let us assume that the calibration range for the

ith sensor is (ymini , ymaxi ). Similarly, one can consider (uminj , umaxj ) to be the flow range

corresponding to the (0%, 100%) valve opening for the jth actuator. It is worth mentioning

that the lower limit for the valve is set to uminj and not zero as the valve may not be

necessarily shut off completely (for safety reasons as in the case of cooling water to an

exothermic reactor). Subsequent to switching to the deviation variables, the ranges can be

modified as (ymini − yssi , y
max
i − yssi ) and (umini − ussi , u

max
i − ussi ) for transmitters and

actuators, respectively. Note that the fact that the steady steady operating point may not

be necessarily located in the middle of the original ranges leads to asymmetric intervals

around zero after deducting the steady state value. The following change of variables can
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be used to generate symmetric intervals around zero:

y
′

i = yi −
ymaxi + ymini − 2yssi

2
= yi − µyi , 1 ≤ i ≤ r

u
′

j = uj −
umaxj + uminj − 2ussj

2
= uj − µuj , 1 ≤ j ≤ m

after applying the change of variables the corresponding state space representation can be

written as:

x(k + 1) = Φx(k) + Γuu
′(k) + Γww(k) + Γuµ

u (3.3)

y′(k) = Cx(k) + v(k)− µy (3.4)

where y′ ∈ (−∆yi
2
, ∆yi

2
) and u′ ∈ (−∆uj

2

∆uj
2

). In this representation ∆yi and ∆uj are

defined as:

∆yi = ymaxi − ymini , ∆uj = umaxj − uminj

In addition, diagonal µu and µy matrices are defined as follows:

µu =

 µu1 . . . 0
... . . . ...
0 . . . µum

 , µy =

 µy1 . . . 0
... . . . ...
0 . . . µyr


As can be seen in Eqs.(3.3-3.4), two constant terms will be added to state and measurement

equations to center the transmitter and actuator ranges around zero. Subsequent to centering

the input/output ranges, normalization of state space equations can be performed using the

following equations:

x(k + 1) = Φx(k) + ΓuΞuu
N + Γww(k) + Γuµ

u (3.5)

yN(k) = Ξ−1
y Cx(k) + Ξ−1

y v(k)− Ξ−1
y µy (3.6)

where uN = Ξ−1
u u′ and yN = Ξ−1

y y′ and diagonal normalization matrices Ξu and Ξy are

defined as follows:

Ξu =


∆u1

2
. . . 0

... . . . ...
0 . . . ∆um

2

 , Ξy =


∆y1

2
. . . 0

... . . . ...
0 . . . ∆yr

2
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It is worth mentioning that the evolution of state variable is not affected by means of this

transformation. However, all the input/outpt variables would be normalized in the range

[−1,+1].

Remark 3.2.1 The advantages of using normalized state space model will be further

clarified in section 3.3.2 where a prior distribution is assigned to each fault. A normalized

model enables us to assign identical uniform priors to all sensors and actuators and

therefore all the faults can be treated the same from the prior distribution point of view. The

fact that sensors may have different calibration ranges and similarly control valves may

have different flow ranges for [0%, 100%] opening, leads to nonidentical uniform priors

for hypothesized faults. However, by means of normalizing and centering the state space

model, one can reshape the problem so that not only are the prior distributions identical

and symmetric but also the test statistics can be easily compared for all hypothesized faults

without any worries about the effect of different priors. This procedure lends a great

practical utilitarian value to the proposed FDI scheme.

In the fault free case the Kalman filter can be used to obtain the optimal state estimates of

the state variables as follows:

x̂(k|k − 1) = Φx̂(k − 1|k − 1) + ΓuΞum
N(k) + Γuµ

u (3.7)

x̂(k|k) = x̂(k|k − 1) + K(k)γ(k) (3.8)

γ(k) = yN(k)− {Ξ−1
y Cx̂(k|k − 1)− Ξ−1

y µy} (3.9)

where mN(k) denotes the controller output and K(k) represents the Kalman gain matrix.

Note that this notation distinguishes between the manipulated variable uN(k) and the

controller output mN(k) where in the fault-free case uN(k) = mN(k). The Kalman gain

matrix can be calculated from the following set of equations:

V(k) = Ξ−1
y CP(k|k − 1)CTΞ−1

y + Ξ−1
y RΞ−1

y (3.10)
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K(k) = P(k|k − 1)CTΞ−1
y V(k)−1 (3.11)

P(k|k) = (I−K(k)Ξ−1
y C)P(k|k − 1) (3.12)

P(k|k − 1) = ΦP(k − 1|k − 1)ΦT + ΓwQΓTw (3.13)

In case of occurrence of bias with normalized magnitude bu,j in the jth actuator at time

instant t the process would evolve for k > t as follows:

x(k + 1) = Φx(k) + ΓuΞum
N(k) + Γww(k) + Γuµ

u

+ΓuΞubu,jeu,jσ(k − t) (3.14)

yN(k) = Ξ−1
y Cx(k) + Ξ−1

y v(k)− Ξ−1
y µy (3.15)

where eu,j is a unit vector whose jth element is equal to one and all other elements are zero

and σ(k− t) is a unit step function which is equal to 1 if k ≥ t and equal to zero otherwise.

Similarly, in case of occurrence of bias with normalized magnitude by,j in the jth sensor,

the measurement equation would be modified as follows while the state equation remains

as shown in Eq.(3.5):

yN(k) = Ξ−1
y Cx(k) + Ξ−1

y v(k)− Ξ−1
y µy + by,jey,jσ(k − t) (3.16)

where eyj is a unit vector whose jth element is equal to one and all other elements are

equal to zero. Moreover, it is worth mentioning that the bias values bf,j (f ∈ {u, y})in

Eqs.(3.14,3.16) are also normalized using matrices Ξ−1
u and Ξ−1

y .

3.2.2 Justification of Uniform Priors

In many practical situations, it is more appropriate to assume that all possible fault

magnitudes have equal probability by invoking the principle of indifference (Keynes,

2004). Although it is not justified to limit the maximum amount of bias in a sensor, in

practice if the maximum amount of bias plus the true value of measured variable exceeds

the alarm limits then the safety instrumentation system will be activated and shuts down
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the process. It is also well known that if the measured value is beyond the calibration

range then the transmitter will show “Out of Range”. Similarly, manipulated variables are

bounded due to actuator constraints, for example a valve can only open from 0% to 100%.

Moreover, the transmitters are always calibrated for a certain range dictated by the process

requirements.

Figure 3.1: Alarm thresholds defined for a specific process variable

The boundedness of process variables can be further clarified using the concept of alarm

thresholds depicted in Fig.3.1. It is also known that the calibration range should always

encompass the “High/ High High” and “Low/ Low Low” alarm limits and as mentioned

earlier the safety systems, for most critical variables, will not allow the operation to be

continued upon violation of the “High High (HH)” and “Low Low (LL)” thresholds. Such

thresholds are designed to automatically shut down the process and in this case there is no

point in performing fault detection and diagnosis. This study is concerned with detection
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and isolation of soft faults such as biases in actuators and sensors which will not cause shut

down of the process.

It is worth noting that when the valve is fully open at 100%, the possible bias size will

be in the interval [−100%, 0%] and similarly when the valve is fully closed the possible

bias size will be [0%, 100%]. However since we are assuming the system is subject to

occurrence of the fault, and we do not know what the actual size of valve opening is, we

consider an approximate prior which can handle all the possible cases. Consequently the

union of two worst cases i.e. [−100%, 0%] and [0%, 100%] is considered which results in

[−100%, 100%]. A similar reasoning can be used for describing the choice of prior for all

sensors.

3.3 Proposed FDI Scheme

It should be noted that this study is concerned with detection and diagnosis of additive

step-type biases in sensors and actuators. In this regard, the following assumptions should

be considered:

• Multiple faults occur sequentially in time but not simultaneously.

• In case of occurrence of bias, the controller corrective action will not cause the

process variables to violate the shut down limits.

• Occurrence of additive faults in actuators and sensors do not lead to instability of the

closed loop system.

It is worth mentioning that in reality the additive faults often appear to have a ramp type

characteristic and such faults are not discussed in this study. Although such faults are

beyond the scope of this work, an extension to the method proposed in this study could

consider ramp type faults instead of the step-type biases.
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3.3.1 Finding the Candidate Data Window for Occurrence of The
Fault

The FDI scheme in this study takes advantage of the statistical FDT and FCT tests to

find the candidate data window in which the fault has occurred. However, due to the

inaccuracies associated with this approach a refining mechanism should be used to find the

most probable time of occurrence of the fault (TOF). The FDT and FCT tests are defined

as follows:

FDT: ε(k) = γT (k)V −1(k)γ(k) (3.17)

FCT: ε(N ; t1) =

t1+N∑
k=t1

γT (k)V −1(k)γ(k) (3.18)

which in the fault-free case follows a central χ2 distribution with r × (N + 1) degrees of

freedom assuming the residuals are zero mean white noise with known covariance matrices.

In the GLR approach used in (Prakash et al., 2002; Prakash et al., 2005) the FCT test is

computed for data window [t1, t1 + N ] which is obtained after rejection of the FDT test at

time instant t1. Upon its rejection, the likelihood ratio will be computed for all hypothesized

faults in the interval [t1, t1 + N ] to isolate and estimate the fault magnitude. Now let us

consider the following two scenarios as depicted in Fig.3.2, in which in the first case the

actual TOF is after the rejection of the FDT test while in second scenario the FDT is rejected

after the actual TOF (Narasimhan and Mah, 1988). The second case is most prevalent if the

fault magnitude is very small. So in order to accurately estimate the time of occurrence of

the fault we propose to append the original data window [t1, t1 +N ] with M extra samples

prior to rejection of the FDT test at t1 and form a new data window as [t1 −M, t1 + N ].

The concept of extended data window is depicted in Fig.3.3.

3.3.2 Formulation of the Change Detection Problem using MLR

When a fault occurs, if it is desired to estimate the magnitude of the fault, then one of the

prime concerns is accurate estimation of the TOF. Let us assume that a fault is suspected
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t̂ t Nt̂

Nt̂t t̂

Figure 3.2: Scenarios leading to inaccurate detection of TOF: Figure 3.2a the estimated
TOF (t̂) precedes the actual TOF (t); Figure 3.2b the estimated TOF (t̂) is after the actual
TOF (t) (Narasimhan and Mah, 1988).

1k t M  1k t 1k t N 

Figure 3.3: Extended FCT data window
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to have occurred at some instant t such that t belongs to [t1 −M, t1 +N ]. In contrast with

GLR, MLR provides maximum likelihood estimate of the TOF using marginalization of

the likelihood function. The main idea in MLR is to assume that the fault magnitude bf,j

is a random variable with a certain prior distribution and then perform integration over all

possible values of bf,j to accurately estimate the TOF. The maximum likelihood estimate

of the time tf,j2, of occurrence of each hypothesized fault using the marginalization of the

likelihood function is defined as follows (Gustafsson, 1996):

p(Λt1+N
t1−M |tf,j) =

∫
p(Λt1+N

t1−M |tf,j, bf,j)p(bf,j)dbf,j (3.19)

=

tf,j−1∏
i=t1−M

p(γi)

∫ t1+N∏
i=tf,j

p(γi|tf,j, bf,j)p(bf,j)dbf,j (3.20)

⇒ t̂f,j = arg max
tf,j

p(Λt1+N
t1−M |tf,j) (3.21)

In this notation Λt1+N
t1−M = {γt1−M , · · · , γt1+N} are the residuals generated by a Kalman

filter assuming fault free model whilst p(Λt1+N
t1−M |tf,j, bf,j) is the likelihood function

assuming occurrence of fault f at time instant t with magnitude bf,j at location j. In this

study we assume that the fault magnitude is a realization of a uniform random variable

whose domain is known from a priori knowledge of the sensor and actuator faults, defined

as:

p(bf,j) =

{
1

bmax
f,j −b

min
f,j

bminf,j ≤ bf,j ≤ bmaxf,j

0 elsewehere

Since the normalized representation of the state space equations is used in this study, the

prior distribution can be modified accordingly. It should be noted that the input/output

variables are all normalized in the range [−1, 1] and consequently all possible values of the

bias will be within the range [−2, 2]. Using this fact the modified uniform prior can be

defined as:

p(bf,j) =

{
1
4

−2 ≤ bf,j ≤ 2
0 elsewehere (3.22)

2Time instant at which fault type type f has occurred at location j, e.g. ty,1 and tu,2 read as TOF at sensor
#1 (y,1) and actuator #2 (u,2), respectively.
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Another interpretation of this approach as stated by (Wald, 1947) and also section 2.4.1 of

the book by (Basseville and Nikiforov, 1993), is weighting the likelihood ratio with respect

to all possible values of the changing parameter and then marginalizing it to eliminate

the changing parameter. The weighting function can be dF (bf,j) where F (bf,j) is the

cumulative distribution function of a probability measure. Therefore, assuming a uniform

prior for fault magnitude and independence of the residuals at each time instant, maximum

likelihood (ML) estimate of TOF using marginalization of the the likelihood function

assuming occurrence of fault f at location j can be found as:

t̂f,j = arg max
tf,j

tf,j∈[t1,t1+N ]

1

4

tf,j−1∏
i=t1−M

p(γi)

∫ +2

−2

t1+N∏
i=tf,j

p(γi|tf,j, bf,j)dbf,j (3.23)

3.3.3 Detection of TOF and Isolation Issue

Using the concept of extended data window, one can estimate the TOF and determine the

fault type and its position by maximizing the marginalized likelihood ratio as follows:

(f̂ , ĵ, t̂f̂ ,ĵ) = arg max
f,j,tf,j

tf,j∈[t1−M,t1+N ]

{ 1
4

∫ +2

−2

∏t1+N
i=tf,j

p(γi|tf,j, bf,j)dbf,j∏t1+N
i=tf,j

p(γi)

}
(3.24)

= arg max
f,j,tf,j

tf,j∈[t1−M,t1+N ]

TMLR
f,j,tf,j

(3.25)

where tf,j represents the TOF for a specific fault hypothesis assuming occurrence of fault

type f at position j. Before presenting the closed form solution of the MLR test, the effect

of the additive fault on the innovation sequence should be clearly shown using the concept

of fault signature matrices as stated in the following lemma:

Lemma 3.3.1 Consider the linear system described in Eqs.(3.5-3.6). Upon occurrence of

step-type additive fault in the jth sensor at time instant t, the effect of fault on the innovation
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sequence can be computed using the following recurrence equations:

Gy(k; t) = I− Ξ−1
y CΦJy(k − 1; t) (3.26)

Jy(k; t) = ΦJy(k − 1; t) + K(k)Gy(k; t) (3.27)

similarly, if the fault occurs in the jth actuator, the recurrence equations would be as

follows:

Gu(k; t) = Ξ−1
y C− Ξ−1

y CΦJu(k − 1; t) (3.28)

Ju(k; t) = ΦJu(k − 1; t) + K(k)Gu(k; t)− I (3.29)

where

E[γ(k)] = bf,jGf (k; t)gf,j ; k ≥ t

E[δx̂(k)] = bf,jJf (k; t)gf,j ; k ≥ t

in the above equations f ∈ u,y and gu,j = ΓuΞueu,j and gy,j = ey,j for actuators and

sensors, respectively.

Proof: See section 3.7.

It is worth noting that in case of occurrence of a fault the multiple hypothesis testing

problem will have the following form:

Λ
tf,j+N
tf,j

= Λ
tf,j+N
tf,j

+

{bf,jGf (tf,j; tf,j)gf,j, bf,jGf (tf,j + 1; tf,j)gf,j, · · · , bf,jGf (tf,j +N ; tf,j)gf,j}

where Λ
tf,j+N
tf,j

= {γtf,j , γtf,j+1, · · · , γtf,j+N} is the set of residuals assuming occurrence of

the fault at time instant tf,j and Gf is the fault signature matrix for fault f . Moreover,

realization of the fault magnitude is denoted by bf,j . In this notation Λ
tf,j+N
tf,j

=

{γ
tf,j
, γ

tf,j+1
, · · · , γ

tf,j+N
} is the set of fault free residuals in the same data window i.e.

[tf,j, tf,j +N ].
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It is worth mentioning that the elements of the fault free set (Λtf,j+N
tf,j

) are Gaussian and

uncorrelated with zero mean and known covariance matrices which can be computed using

the Kalman filter. Moreover, in this study it is assumed that the residuals at time instant i

are independent of residuals at time instant j (with i 6= j).

3.4 Solution of the Proposed FDI Scheme

3.4.1 Finding a Refined Estimate of TOF using MLR and uniform
priors

The next step is to derive a MLR-based test statistic for a specific fault hypothesis using

the fault signature matrices and a uniform prior which could be used for finding the most

likely TOF for that specific fault in the data window provided by FDT and FCT tests.

Theorem 3.4.1 For a linear system with a uniform prior distribution of the fault magnitude

as in (3.22) and with fault signature matrices available as in (3.26-3.29) for sensors and

actuators, the following conditions apply: upon occurrence of a single fault at sampling

instant tf,j (t1 −M ≤ tf,j ≤ t1 + N ), the test statistic TMLR
f,j,tf,j

for marginalized likelihood

ratio defined in (3.24) can be computed using the following equation:

TMLR
f,j,tf,j

=
exp(

β2
tf,j

2ηtf,j
)

4

√
π

2ηtf,j

(
erf
{√ηtf,j

2
[2−

βtf,j
ηtf,j

]
}

−erf
{√ηtf,j

2
[−2−

βtf,j
ηtf,j

]
})

(3.30)

where

βtf,j , gTf,j

t1+N∑
k=tf,j

GT
f (k; tf,j)V (k)−1γ(k)

ηtf,j , gTf,j

t1+N∑
k=tf,j

GT
f (k; tf,j)V (k)−1Gf (k; tf,j)gf,j
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Proof:

TMLR
f,j,tf,j

=

1
4

∫ +2

−2

p(Λt1+N
t1−M |tf,j, bf,j)dbf,j

p(Λt1+N
t1−M)

Since the residuals would follow a normal Gaussian distribution (γ ∈ Rr), the above

equation can be written as follows:

TMLR
f,j,tf,j

= exp
{
− 1

2

t−1∑
k=t1−M

γT (k)V (k)−1γ(k)
}1

4
×

∫ +2

−2

exp
{
− 1

2

∑t1+N
k=tf,j

γTf,j(k)V (k)−1γf,j(k)
}
dbf,j

exp
{
− 1

2

∑t1+N
k=t1−M γT (k)V (k)−1γ(k)

} (3.31)

where γf,j(k) = γ(k)− bf,jGf (k; tf,j)gf,j . One can rearrange (3.31) as follows:

TMLR
f,j,tf,j

=

1
4

∫ +2

−2

exp
{
− 1

2

∑t1+N
k=tf,j

γTf,j(k)V (k)−1γf,j(k)
}
dbf,j

exp
{
− 1

2

∑t1+N
k=tf,j

γT (k)V (k)−1γ(k)
} (3.32)

defining TMLR
f,j,tf,j

≡ Θ
Ω

, the numerator of (3.32) can be written as follows:

Θ =
1

4

∫ +2

−2

exp
{
− 1

2

t1+N∑
k=tf,j

[
γT (k)V (k)−1γ(k)

−2bf,jg
T
f,jG

T
f (k; tf,j)V (k)−1γ(k)

+b2
f,jg

T
f,jG

T
f (k; tf,j)V (k)−1Gf (k; tf,j)gf,j

]}
dbf,j (3.33)

similarly, the denominator can be written as:

Ω = exp(−1

2
α) = exp{−1

2

t1+N∑
k=tf,j

γT (k)V (k)−1γ(k)} (3.34)

Note that from here onwards for convenience of notation and avoiding unnecessary

complexity, the subscript tf,j would be omitted from βtf,j and ηtf,j and they would be

shown as β and η, respectively. Using β, η and α, Eq.(3.33) can be rewritten as follows:

Θ =
1

4

∫ +2

−2

exp
{
− 1

2

[
α− 2βbf,j + ηb2

f,j

]}
dbf,j

=
exp(−α

2
+ β2

2η
)

4

∫ +2

−2

exp
{
− η

2

[
bf,j −

β

η

]2}
dbf,j (3.35)
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noting that
∫ +X

−X e−c(x−a)2dx =
√

π
4c

{
erf
(√

c(+X − a)
)
− erf

(√
c(−X − a)

)}
where

c > 0, and after some algebraic manipulations it can be shown that:

Θ =
exp(−α

2
+ β2

2η
)

4

√
π

2η

{
erf
{√η

2
[+2− β

η
]
}
− erf

{√η

2
[−2− β

η
]
}}

(3.36)

using this result and substituting in (3.32) yields Eq.(3.30).

As mentioned earlier, Theorem 3.4.1 is only concerned with deriving the MLR test statistic

for a single fault hypothesis and the solution for the composite hypothesis testing problem

can be stated as:

(f̂ , ĵ, t̂f̂ ,ĵ) = arg max
f,j,tf,j

TMLR
f,j,tf,j

(3.37)

The hierarchial procedure used in the proposed MLR-based FDI for isolation of the fault

and estimation of its magnitude is depicted in Fig.3.4.

Remark 3.4.1 Theorem 3.4.1 only addresses the marginalization when the uniform

distribution is selected as the prior. Nevertheless, other alternative priors such as flat prior

and Gamma distribution can also be used for this purpose. The most general case which is

the non-informative flat prior is discussed in (Gustafsson, 1996) and is implemented using

a forward-backward filtering method. Use of the Gamma distribution as prior is addressed

in (Dos Santos and Yoneyama, 2011). However as mentioned earlier, it is hard to justify

the use of Gamma prior for fault magnitude as it heavily penalizes low and high magnitude

faults.

3.4.2 Estimation of the Fault Magnitude

The remaining task of FDI module, which is the estimation of fault magnitude, can be

undertaken by a least squares based approach as follows:

b̂f̂ ,ĵ = arg min
bf̂ ,ĵ

s.t. −2≤bf̂ ,ĵ≤+2

t1+N∑
k=t̂f̂ ,ĵ

γT
f̂ ,ĵ

(k)V (k)−1γf̂ ,ĵ(k) (3.38)

where γf̂ ,ĵ(k) = γ(k)− bf̂ ,ĵGf̂ (k; t̂f̂ ,ĵ)gf̂ ,ĵ .
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Figure 3.4: Detection of time of occurrence of the fault and its isolation by MLR/ estimation
of its magnitude by least squares (LS)
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3.4.3 Online Compensation Schemes

The flowchart for online implementation of the proposed FDI scheme is depicted in

Fig.(3.5).The interaction between the proposed FDI scheme and the process is depicted in

Fig.(3.6). The compensation equations which should be applied to make the residuals white

after occurrence of the fault and subsequent detection, isolation and estimation phases

which enables the FDI to detect faults that might occur sequentially are as follows (Prakash

et al., 2002):

yc(k) = y(k)− b̂ŷ,ĵeŷ,ĵ (3.39)

mN
c (k) = mN(k) + b̂û,ĵeû,ĵ (3.40)

x̂c(k|k) = x̂c(k|k)− b̂f̂ ,ĵJf̂ (k; t̂f̂ ,ĵ)gf̂ ,ĵ (3.41)

where k ∈ [t̂f̂ ,ĵ, t1 +N ] and f ∈ {u, y}.

Remark 3.4.2 In order to prevent false alarms and also to accurately estimate the

magnitude of the fault, a minimum size of data window s is required. In other words, if

t̂f̂ ,ĵ > t1 + N − s + 1, then the number of samples may not be enough to obtain a good

estimate of the fault magnitude and hence it seems logical to obtain more data points for

the purpose of estimation. Furthermore if t̂f̂ ,ĵ > t1 +N − s+ 1 and the fault has actually

occurred, since no corrective action is taken by the FDI methodology, the FDT and FCT

tests would be rejected again in the following instants and the fault would be detected in

the next or subsequent window due to the fact that the extended data window enables the

FDI module to look backwards in time. In choosing the minimum size of data window, the

time required for the estimator to converge after a change occurs has to be also considered.

Remark 3.4.3 Let us first consider Eq.(3.35). After dividing Eq.(3.32) by Eq.(3.34), we

will have the following test statistic:

TMLR
f,j,tf,j

= exp(
β2

2η
)× 1

4

∫ +2

−2

exp{−η
2

[bf,j −
β

η
]2}dbf,j = Γ×Υ (3.42)
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Figure 3.5: Flowchart for the MLR based online FDI scheme where MLR is used as an
isolator
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Figure 3.6: The supervisory scheme based on the MLR. The advisory information will be
provided to the operators/ engineers.

where Γ = exp(β
2

2η
) and Υ = 1

4

∫ +2

−2
exp{η

2
[bf,j−β

η
]2}dbf,j . The first term (Γ) is independent

of the choice of the prior distribution while the second term (Υ) is obviously affected by

the prior. In the presence of high magnitude faults near the low and high limits of the

prior distribution (i.e. −2 and +2), one may argue that the contribution from the Υ term

is not completely considered in the test statistic due to the truncation of prior distribution

at −2 and +2. One possible solution for such cases is extension of the prior distribution.

However, modification of the prior distribution based on the a posteriori observation does

not constitute a proper Bayesian approach particularly when no recursive computations

of fault magnitude are incurred. It should be noted that such high magnitude faults rarely

occur in practice, for example it would be unlikely to see an actuator bias which transforms

a 0% valve opening signal to 100%.
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Table 3.1: Normalization ranges

Sensor Meas. Range Actuator Flow Range
CA [−0.1,+0.1] F [−1, 1]
T [−25, 25] Fc [−15, 15]

3.5 Simulation Case Study

The nonisothermal continuous stirred tank reactor (CSTR) benchmark example by (Marlin,

1995) which has also been used by (Prakash et al., 2005), is used in this work to evaluate the

performance of the proposed methodology. This plant has two states which are the reactor

concentration (CA) and reactor temperature (T ) which are both measurable. The reactor

feed flow rate (F ) and the coolant flow rate (Fc) are selected to be the manipulated variables

and the feed concentration (CA0) and feed temperature (Tcin) are set as the disturbance

variables. Moreover, it should be noted that all the variables are in deviational form.

x = [CA T ]T ; u = [F Fc]
T

w = [CA0 Tcin]T ; y = [CA T ]T

The state space model can be normalized with respect to the ranges specified in Table 3.1.

However, it should be noted that all the fault tables and also the simulation results are

reported in this section in non-normalized form for easier interpretation and comparison.

The stable operating point of the reactor has been used for performing the simulations and

the process was linearized around this operating point. The sampling time was selected as

Tsample = 0.1 min for discretization. The resulting state space matrices are as follows:

Φ =

[
0.1843 −0.0080
73.5080 1.3330

]
, Γu =

[
0.1340 0.0026
−1.7948 −0.7335

]
Γw =

[
0.0598 −0.0004
3.9038 0.1208

]
, C =

[
1 0
0 1

]
The steady state values of inlet and the coolant flow rates are Fs = 1 m3/min and

Fcs = 15 m3/min, at this operating point. The MPC weighting matrix, prediction horizon
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Table 3.2: Structure of FDI schemes
Method Detection of TOF Isolation of fault Estimation of fault magnitude
χ2 −GLR FDT/FCT test GLR test GLR test

χ2 −MLR− LS FDT/FCT and MLR test MLR test Least Squares (LS)/GLR

and control horizon were set to the same values as reported in the study by (Prakash et

al., 2005) and are reproduced below:

Np = 10, Nc = 1, WE =

[
104 0
0 1

]
, WU = [0]

The following constraints were also considered:

0 ≤ F ≤ 2 m3/min 0 ≤ Fc ≤ 30 m3/min

All the noise parameters are exactly set to values specified by (Prakash et al., 2005), which

are summarized in Table 3.3. The performance of the FDI schemes were tested subject to

two different sets of faults. The first set only includes single faults and is summarized in

Table 3.4 whilst the sequential faults introduced to the system are included in Table 3.5.

In the Monte Carlo simulations (consisting of 100 runs for each case), the performance of

the χ2 −GLR approach proposed by (Prakash et al., 2002) was compared to the proposed

approach in this study which from now on is referred to as χ2 −MLR− LS method. The

structures of these FDI schemes are compared in Table 3.2.

In the Monte Carlo simulations, the size of FCT data window was set to 21 (N = 20) while

the number of extra samples appended to the FCT data window to form the extended data

window was selected as M = 21. The parameter ‘s’ which was discussed in Remark 3.4.2,

was set to 15.

The results of FDI schemes tested subject to the single fault scenarios of Table 3.4 and the

sequence of faults shown in Table 3.5, are summarized in Tables 3.6 and 3.7, respectively.

As can be seen, the results show that the newly proposed method is able to more effectively

estimate TOF compared to the χ2 − GLR approach used by (Prakash et al., 2002).

The low misclassification rates of the proposed method show its superior performance in
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Table 3.3: Standard Deviations for Process and Measurement Noise Sequences

Variable σ(SD)
Feed Concentration 0.05 Kmol/m3

Feed Temperature 2.5 deg.K
Reactor Concentration 0.01 Kmol/m3

Reactor Temperature 0.5 deg.K

Table 3.4: Single Fault Scenarios
Fault Type TOF 1 Fault Magnitude
bias in actuator (F ) 100 %10Fs = +0.1
bias in actuator (F ) 100 %12.5Fs = +0.125
bias in sensor (T ) 100 3× σT = −1.5
bias in sensor (T ) 100 3.5× σT = −1.75
bias in sensor (CA) 100 2× σCA

= +0.02
bias in actuator (Fc) 100 %10Fcs = −1.5
1 TOF: Time of Occurrence of the Fault

Table 3.5: Sequence of Faults
Fault Type TOF 1 Fault Magnitude
bias in sensor (CA) 100 −3× σCA

= −0.03
bias in actuator (F ) 200 −15%Fs = −0.15
bias in sensor (T ) 300 4× σT = +2
bias in actuator (Fc) 400 13.3%Fcs = +2
1 TOF: Time of Occurrence of the Fault
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Table 3.6: χ2 − GLR and χ2 −MLR − LS results based on 100 Monte Carlo runs for
each case

Method TOF 1 Fault ETOF 2 t̂(σt̂) EFM 3 b̂(σb̂) NMC 4

χ2 −GLR t = 100

bF = +0.1 108.71 (6.406) 0.097 (0.015) 19/100
bF = +0.125 107.33 (3.369) 0.109 (0.022) 12/100
bT = −1.5 107.89 (7.967) -1.574 (0.219) 26/100
bT = −1.75 107.7 (7.772) -1.705 (0.281) 18/100
bCA

= +0.02 108.27 (9.139) 0.020 (0.003) 4/100
bFc = −1.5 108.11 (6.529) -1.471 (0.229) 6/100

χ2 −MLR− LS t = 100

bF = +0.1 101.32 (1.483) 0.103 (0.008) 15/100
bF = +0.125 101 (0.670) 0.123 (0.008) 5/100
bT = −1.5 101.26 (5.301) -1.548 (0.174) 4/100
bT = −1.75 100.28 (1.944) -1.791 (0.204) 1/100
bCA

= +0.02 100 (1.840) 0.020 (0.002) 1/100
bFc = −1.5 101.15 (1.855) -1.510 (0.161) 1/100

1 TOF: Time of Occurrence of the Fault
2 ETOF: Estimated Time of Occurrence of the Fault
3 EFM: Estimated Fault Magnitude
4 NMC: Number of Misclassifications

comparison with the χ2 −GLR counterpart. Moreover, the more accurate estimates of the

fault magnitudes with smaller standard deviations in comparison with χ2 −GLR are clear

evidence that precise detection of TOF plays a critical role in the isolation and estimation

phases.

Another important issue which should be taken into consideration is the performance of the

FDI subject to the sequential faults. As can be seen in Table 3.7, the performance of the

χ2 − GLR based FDI is inferior to that of the newly proposed method due to the fact that

it cannot accurately identify the time of occurrence of the fault. This problem can critically

affect the performance of the FTC scheme if the FDI is integrated with the controller.

In order to show the complexities involved in integration of the FDI with the controller,

in the next step we compensate the controller with the information provided by the FDI.

The performance of the FDI system in estimation of states subject to the sequence of faults

shown in Table 3.5, is depicted in Figs. (3.7-3.8) for a specific random seed. It should

be noted that in the generation of these graphs, unlike the procedure used in the Monte

Carlo simulations, the controller was integrated with the information provided by the FDI

module. As can be seen in Fig.(3.7), the misclassification of fault in the concentration
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Table 3.7: FDI results subject to fault sequences based on 100 Monte Carlo runs for each
case

Method TOF 1 Fault ETOF 2 t̂(σt̂) EFM 3 b̂(σb̂) NMC 4

χ2 −GLR

t = 100 bCA
= −0.03 107.15 (4.936) -0.029 (0.002)

26/100
t = 200 bF = −0.15 211.1 (9.636) -0.122 (0.035)
t = 300 bT = 2 299.75 (8.841) 1.794 (0.354)
t = 400 bFc = 2 406.87 (9.993) 2.006 (0.329)

χ2 −MLR− LS

t = 100 bCA
= −0.03 100.15 (0.808) -0.029 (0.002)

5/100
t = 200 bF = −0.15 200.99 (0.559) -0.151 (0.011)
t = 300 bT = 2 300.18 (1.211) 2.048 (0.311)
t = 400 bFc = 2 401.06 (0.776) 1.964 (0.230)

1 TOF: Time of Occurrence of the Fault
2 ETOF: Estimated Time of Occurrence of the Fault
3 EFM: Estimated Fault Magnitude
4 NMC: Number of Misclassifications

sensor (CA) as bias the inlet flow actuator (F ) by χ2 − GLR based FDI, results in biased

estimation of the states while the χ2 − MLR − LS scheme is able to isolate this fault

correctly. The major problem in this case is that after the misclassification of the fault at

t = 100 and the relevant compensation, the residuals would become fairly white3 from

statistical point of view and consequently the FDI assumes that the process is operating

under healthy conditions. However in reality this isolation flaw has indeed caused deviation

of the state estimates from the true states. The scenario which leads to misclassification is

as follows; at t = 86, the FDT test is rejected and the occurrence of the fault is confirmed

via FCT test at t = 106. The χ2 − GLR approach assumes, t̂ = 100 to be the time of

occurrence of the fault and performs the isolation. Consequently, due to lack of enough

fault signature in the interval [86, 106], the fault in the concentration sensor (CA) was

incorrectly isolated as a fault in inlet flow actuator (F ). It is important to remember that the

controller believes the sensors and interprets the bias fault as a disturbance and therefore

takes the necessary corrective action. In this way the fault propagates to the temperature.

On the other hand, in χ2−MLR−LS scheme, after detection of the fault at t = 86 and its
3Residuals appear white since the fault is considered as a disturbance and its effect is mitigated by the

controller action. The ‘whiteness’ of the residual in this case is an indication that the controller performance
is excellent. So unless the fault is detected precisely and acted upon quickly, it can get construed as a step
disturbance and this effect can be compensated by a well-tuned controller.
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Figure 3.7: Estimated states versus the true states in case of coupling the MPC controller
with FDI designed based on the χ2 − GLR method. Due to the incorrect isolation at
t = 100, the subsequent diagnoses by the FDI are prone to error and consequently the grade
of the final product (specified here by concentration) is likely to be unacceptable. In this
strategy unlike the supervisory scheme depicted in Fig.(3.6) the FDI module is integrated
with the controller.
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Figure 3.8: Estimated states versus the true states in case of coupling the MPC controller
with FDI designed based on the χ2 − MLR − LS method. In this strategy unlike the
supervisory scheme depicted in Fig.(3.6) the FDI module is integrated with the controller.
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confirmation at t = 106, the MLR test is used to find the most probable time of occurrence

of the fault. The MLR test specifies t̂ = 102 to be the most likely time of occurrence of

the fault. However, since the number of samples which are available for estimation of the

fault magnitude is equal to 5 samples (and obviously smaller than s = 15), the FDI does

not take any corrective action and as described before, the isolation and compensation is

carried out in the next FCT window. Using the extended FCT window of [86, 127], MLR

then estimates t̂ = 100.

3.6 Concluding Remarks

In this study a new FDI scheme has been proposed based on the MLR test and use of

realistic uniform priors for fault magnitudes to address detection of time of occurrence of

the fault, isolation of the fault and estimation of its magnitude. The proposed methods

overcome the shortcomings related to the methodology proposed by (Prakash et al., 2002)

in detecting the time of occurrence of the fault using a MLR-based approach. The proposed

method simultaneously performs the detection of time of occurrence and isolation of the

fault and the estimation of fault magnitude is undertaken by a least squares approach. The

superior performance of the proposed method compared to the FDI schemes proposed in

(Prakash et al., 2002; Prakash et al., 2005) can be mainly attributed to accurate detection

of time of occurrence of the fault.

In the proposed scheme, statistical FDT and FCT tests are used as the early stage

announcers of the time of occurrence of the fault. The method was tested subject to

extensive Monte Carlo simulations on a benchmark reactor problem and the results reveal

that it outperforms the FDI scheme presented in (Prakash et al., 2002; Prakash et al., 2005).
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3.7 Appendix 1: fault signature matrices

First let us consider the case where bias has occurred in sensor j in time instant t. In this

case the system evolves for k ≥ t as:

x(k + 1) = Φx(k) + ΓuΞum
N(k) + Γww(k) + Γuµ

u

yN(k) = Ξ−1
y Cx(k) + Ξ−1

y v(k)− Ξ−1
y µy + by,jey,j

Defining δx̂(k) = x̂(k|k)− x(k) and using Kalman filter equations (3.8-3.9) yields:

δx̂(k) = [I−K(k)Ξ−1
y C][Φδx̂(k − 1)− Γww(k − 1)]

+K(k)[by,jey,j + Ξ−1
y v(k)] (3.43)

on the other hand one can rewrite residuals in Eq.(3.9) as:

γ(k) = Ξ−1
y C[−Φδx̂(k − 1) + Γww(k − 1)]

+Ξ−1
y v(k) + by,jey,j (3.44)

taking expected value from Eqs.(3.43-3.44) results in:

E[δx̂(k)] = [I−K(k)Ξ−1
y C]ΦE[δx̂(k − 1)]

+by,jK(k)ey,j (3.45)

E[γ(k)] = −Ξ−1
y CΦE[δx̂(k − 1)] + by,jey,j (3.46)

Now let us define the linear dependence of E[δx̂(k)] on the fault using the following

relation:

E[δx̂(k)] = by,jJy(k; t)ey,j

where by,j is the normalized fault magnitude. Similarly, one can define the expected value

of linear dependence of the residuals on the fault using the following:

E[γ(k)] = by,jGy(k; t)ey,j
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using the above definitions and also substituting Eq.(3.46) and in Eq.(3.45) yields:

Jy(k; t) = ΦJy(k − 1; t) + K(k)Gy(k; t) (3.47)

Gy(k; t) = I− Ξ−1
y CΦJy(k − 1; t) (3.48)

In case of occurrence of bias in actuator in actuator j at time instant t, for k ≥ t the state

space model can be represented as:

x(k + 1) = Φx(k) + ΓuΞum
N(k) + bu,jΓuΞueu,j

+Γww(k) + Γuµ
u

yN(k) = Ξ−1
y Cx(k) + Ξ−1

y v(k)− Ξ−1
y µy

using a similar approach to the sensor faults, one can find the followings:

δx̂(k) = [I−K(k)Ξ−1
y C][Φδx̂(k − 1)− Γww(k − 1)]

+K(k)[bu,jΞ
−1
y CΓuΞueu,j + Ξ−1

y v(k)]

−bu,jΓuΞueu,j (3.49)

γ(k) = Ξ−1
y C[bu,jΓuΞueu,j + Γww(k − 1)]

−Ξ−1
y CΦδx̂(k − 1) + Ξ−1

y v(k) (3.50)

taking expected value from Eqs.(3.49-3.50) yields:

E[δx̂(k)] = [I−K(k)Ξ−1
y C]ΦE[δx̂(k − 1)]

+bu,jK(k)Ξ−1
y CΓuΞueu,j − bu,jΓuΞueu,j

(3.51)

E[γ(k)] = −Ξ−1
y CΦE[δx̂(k − 1)] + bu,jΞ

−1
y CΓuΞueu,j

(3.52)

Now let us define the followings:

E[δx̂(k)] = bu,jJu(k; t)ΓuΞueu,j
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E[γ(k)] = bu,jGu(k; t)ΓuΞueu,j

using the above definitions and also substituting Eq.(3.52) and in Eq.(3.51) yields:

Ju(k; t) = ΦJu(k − 1; t) + K(k)Gu(k; t)− I (3.53)

Gu(k; t) = Ξ−1
y C− Ξ−1

y CΦJu(k − 1; t) (3.54)

Regarding initialization of the recursive fault signature equations note that since any type

of fault in the sensors immediately affects the residuals then one can deduce that:

Gy(tf,j − 1; tf,j) = [0]r×r & Jy(tf,j − 1; tf,j) = [0]n×r

where tf,j is the TOF. On the other hand any change in the manipulated variables will

take at least one sample time delay to affect the residuals due to the discretization and

consequently we have:

Gu(tf,j; tf,j) = [0]r×n & Ju(tf,j; tf,j) = [0]n×n

3.8 Appendix 2: Relationship between thresholds of GLR
and MLR tests

The proposed method in this study does not utilize GLR and MLR test statistic thresholds

for detection and isolation of the fault and instead it takes advantage of statistical FDT

and FCT tests as early announcers of fault occurrence. Other studies in the literature have

also taken advantage of statistical FDT/FCT tests for detection of the fault instead of using

thresholds for GLR test (Narasimhan and Mah, 1988; Prakash et al., 2005; Prakash et

al., 2002). Please note that in the following proof we assume the observability condition

is satisfied i.e. the number of faults present does not exceed the number independent

measurements. Moreover, it is assumed that the residuals at time instant i are independent

of residuals at time instant j (with i 6= j).
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As stated in the study by (Willsky and Jones, 1974), the residuals in case of occurrence

of the fault in the sensors can be expressed as4:

γ(k) = Gy(k; t)b̄y + γ′(k) (3.55)

where b̄y = [by1, by2, · · · , byr]T represents the vector of faults in the sensors and γ′ is a

zero mean white noise sequence with covariance matrix V (k) and represents the the actual

residuals if a fault does not occur. Similarly one can develop the same equation for the fault

in the actuators as follows:

γ(k) = Gu(k; t)ΓuΞub̄u + γ′(k)

where b̄u = [bu1, bu2, · · · , bum]T represents the vector of faults in the actuators. Here we

solve the problem for sensors however, the same approach can be used to address the faults

in the actuators. Using Eq.(3.55) and assuming occurrence of the fault at time instant t, the

following least squares problem can be formed:
γ(k)

γ(k + 1)

...
γ(k +N)

 =


Gy(k; t)

Gy(k + 1; t)

...
Gy(k +N ; t)



by1

by2
...
byr

+


γ′(k)

γ′(k + 1)

...
γ′(k +N)

 (3.56)

Equation (3.56) can be written as:

Y = Xb̄y + e (3.57)

where

Y =


γ(k)

γ(k + 1)

...
γ(k +N)

 X =


Gy(k; t)

Gy(k + 1; t)

...
Gy(k +N ; t)

 e =


γ′(k)

γ′(k + 1)

...
γ′(k +N)


4The notation used in the study by (Willsky and Jones, 1974) is changed to adapt to the notation of the

current study.
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Let pb(Y,X) be the joint pdf of Y and X. The likelihood ratio can be written as:

lb̄y/0(Y,X) = 2log
pb̄y

(Y,X)

p0(Y,X)

= −1

2
(Y −Xb̄y)

TΩ−1(Y −Xb̄y) +
1

2
YTΩ−1Y (3.58)

where the block diagonal matrix Ω can be defined using the covariance matrices as follows:

Ω =


V (k)−1 0 · · · 0

0 V (k + 1)−1 0
...

... 0
. . . 0

0 · · · 0 V (k +N)−1


The GLR test assuming occurrence of the fault at time instant t can be defined as:

TGLR
t = max

b̄y

lb̄y/0(Y,X)

As seen in Eq.(3.58), the GLR test coincides with the generalized weighted least squares

problem and therefore the estimated fault magnitude can be found as:

ˆ̄by = (XTΩ−1X)−1(XTΩ−1Y)

substituting this estimated fault magnitude into the GLR test one can one find:

TGLR
t = (XTΩ−1Y)T (XTΩ−1X)−1(XTΩ−1Y) (3.59)

One can perform thin5 QR decomposition of Ω−1/2X as follows:

Ω−
1
2X = QR; QQT = I

Recall that Ω is a positive definite matrix and V (k) = Ξ−1
y CP(k|k−1)CTΞ−1

y +Ξ−1
y RΞ−1

y .

Using QR decomposition, one can rewrite GLR test statistic as follows 6:

TGLR
t = (YTΩ−1/2QR)(RTQTQR)−1(RTQTΩ−1/2Y)

= YTΩ−1/2QQTΩ−1/2Y

= YTΩ−1Y (3.60)
5G. H. Golub, C. F. Van Loan, Matrix computations, Johns Hopkins University Press, 1996.
6Note that XT Ω−1X = RTR and since we already know that XT Ω−1X is invertible then it follows that

RTR is also full-rank. Moreover since a matrix cannot gain rank by multiplication it follows that the square
R is also full rank.
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Substituting Eq.(3.57) into Eq.(3.60) results in:

TGLR
t = (Xb̄y + e)TΩ−1(Xb̄y + e) (3.61)

In the fault-free case (under null-hypothesis):

TGLR
t = eTΩ−1e

Recalling that:

e =


γ′(k)

γ′(k + 1)

...
γ′(k +N)


One can deduce that the GLR test statistic under the null-hypothesis follows the χ2

distribution with r× (N + 1) degrees of freedom where r is the dimension of measurement

variable y. Moreover, using the properties of the quadratic form one can find that:

E[eTΩ−1e] = tr[Ω−1E[eeT ]] + E[eT ]Ω−1E[e]

= tr[Ω−1Ω] + 0

= (N + 1)× r

Again using the properties of the quadratic form, in the faulty case one can write the

following:

E[YTΩ−1Y] = tr[Ω−1E[(Y −Xb̄y)(Y −Xb̄y)
T ]] + E[Y]TΩ−1E[Y]

= tr[Ω−1Ω] + (Xb̄y)
TΩ−1(Xb̄y)

= (N + 1)× r + b̄TyX
TΩ−1Xb̄y (3.62)

Note that Ω ∈ R{r×(N+1)}×{r×(N+1)}. In faulty case the test statistic follows a χ2

distribution with the same degrees of freedom and the non-central parameter can be

calculated as:

λ = E[TGLR
t ]− {(N + 1)× r} = b̄TyX

TΩ−1Xb̄y
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It is worth mentioning that:

XTΩ−1X =
t+N∑
k=t

GT
y (k; t)V (k)−1G(k; t)

Regarding the MLR test statistic, in the study by (Gustafsson, 1996) it is shown that the

GLR and MLR statistics are related as follows 7:

lN(k) = lN(k, ν̂(k))− log(det RN(k)) + Cprior(k) (3.63)

where RN(k) is the notation used by (Gustafsson, 1996) for representing the following:

η =
t+N∑
k=t

GT
y (k; t)V (k)−1GT

y (k; t)

As stated by Gustafsson (Gustafsson, 1996) “In fact, the likelihood ratios are

asymptotically equivalent except for a constant...”, considering this, one can deduce that

the MLR tests statistic follows the same distribution and the constant only affects selection

of the threshold.

A similar reasoning for the GLR test in the univariate case is presented by (Zhang and

Basseville, 2003).

3.9 Appendix 3: Uncorrelatedness of residuals

The multiple hypothesis testing problem can be stated as (Willsky and Jones, 1976) 8:

Λ
tf,j+N
tf,j

= Λ
tf,j+N
tf,j

+

{bf,jGf (tf,j; tf,j)gf,j, bf,jGf (tf,j + 1; tf,j)gf,j, · · · , bf,jGf (tf,j +N ; tf,j)gf,j}
7Please refer to Theorem 5 in Appendix C of (Gustafsson, 1996)
8In the study by(Willsky and Jones, 1976) the notation is slightly different and the residuals are expressed

as:

γ(k) = G(k; θ)ν + γ1(k)

where γ1 is a zero mean white noise sequence with known covariance and it represents the “actual
measurements residual if a jump does not occur”
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where Λ
tf,j+N
tf,j

= {γtf,j , γtf,j+1, · · · , γtf,j+N} is the set of residuals assuming occurrence

of the fault at time instant tf,j and Gf is the fault signature matrix for fault f which

can be pre-computed offline using the system matrices and the steady state Kalman filter

equations. Moreover, the realization of a the fault magnitude is denoted by bf,j . In this

notation Λ
tf,j+N
tf,j

= {γ
tf,j
, γ

tf,j+1
, · · · , γ

tf,j+N
} is the set of fault free residuals in the same

data window i.e. [tf,j, tf,j +N ].

It is worth mentioning that the elements of the fault free set (Λtf,j+N
tf,j

) are Gaussian and

uncorrelated with zero mean and known covariance matrices which can be computed using

the Kalman filter. Now let us compute the covariance matrix for two elements of the the

faulty set Λ
tf,j+N
tf,j

:

E
[
(γk − E[γk])(γk+m − E[γk+m])T

]

= E
[
(γk − bf,jGf (k; tf,j))(γk+m − bf,jGf (k +m; tf,j))

T
]

= E
[
(γ

k
+ bf,jGf (k; tf,j)− bf,jGf (k; tf,j))(γk+m

+ bf,jGf (k +m; tf,j)

− bf,jGf (k +m; tf,j))
T
]

= E[γ
k
γT
k+m

] = [0]r×r

In other words, occurrence of the bias type fault does not lead to any change in the

correlation between the residuals. In the above notation k ∈ {tf,j, tf,j + N − 1} and

1 ≤ m ≤ N . Moreover, γk and γ
k

denote the faulty and fault-free residuals, respectively.

Next we examine the correlation between the residuals before and after occurrence of the

fault. In this case it is assumed that k − n < tf,j:

E
[
(γ

k−n − E[γ
k−n])(γk+m − E[γk+m])T

]
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= E
[
(γ

k−n])(γk+m − bf,jGf (k +m; tf,j))
T
]

= E
[
(γ

k−n])(γ
k+m

+ bf,jGf (k +m; tf,j)− bf,jGf (k +m; tf,j))
T
]

= E
[
γ
k−nγ

T

k+m

]
= [0]r×r

It is worth mentioning that a similar reasoning about the uncorrelatedness of residuals is

stated in the study by (Dos Santos and Yoneyama, 2011).

However, it is widely known that uncorrelatedness does not necessarily imply

independence, the assumption about independence of the residuals is included in section

3.3.3 of manuscript.
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Chapter 4

Detection and Diagnosis of Incipient
Faults in Sensors using a Modified
GLR-based Approach

The material of this chapter has been submitted.

Shorter form of this work have also been submitted to IFAC WC (2014).

4.1 Introduction

Model based fault detection and diagnosis has received significant attention from

researchers in recent years and aims to provide the supervisory control system with

sufficient information to take possible corrective actions to compensate for instrumentation

related faults (Basseville and Nikiforov, 1993; Gertler, 1998; Narasimhan and Jordache,

2000; Chen and Patton, 1999; Ding, 2008; Patton et al., 1989). The ultimate goal of such

methods is to accurately detect the time of occurrence of the fault, identify its location

and estimate its magnitude. More recently, the concept of fault tolerant control and

integration of the fault detection and isolation (FDI) module with controller design has

been widely studied in the literature (Zhang and Jiang, 2008; Mhaskar et al., 2006; Prakash

et al., 2005; Deshpande et al., 2009; Mhaskar, 2006). The general approach in active fault

77
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tolerant control systems is to modify the controller according to the supervisory information

provided by the FDI module in order to mitigate the impact of the fault on the system

performance.

The study proposed by (Willsky and Jones, 1976) for the first time addressed the online

fault detection and isolation (FDI) issue using the generalized likelihood ratio (GLR) test

framework. The methodology therein, tries to find the time of occurrence of the fault (TOF)

using a sliding window assuming occurrence of abrupt jumps in states of a linear system.

In the study by (Narasimhan and Mah, 1988) the statistical time of occurrence detection

(TOD) and gross error detection (GED) tests were used to overcome the “burdensome”

computational aspects of the sliding window approach in the study by (Willsky and

Jones, 1976). The FDI scheme suggested by Prakash et al. (Prakash et al., 2002) was based

on a combination of methodologies proposed by (Willsky and Jones, 1976; Narasimhan

and Mah, 1988) to deal with the additive step-type faults in sensors, actuators and process

parameters of an LTI system. The methodology proposed in (Prakash et al., 2002) took

advantage of the fault detection (FDT) and fault confirmation (FCT) tests to detect time of

occurrence of the fault and subsequently, the pre-computed fault signature matrices and the

GLR test were used to isolate the fault and estimate its magnitude. Unlike the approach

in (Narasimhan and Mah, 1988), the proposed method in (Prakash et al., 2002) made it

possible to deal with sequential faults. The fault tolerant control (FTC) scheme proposed

by Prakash et al. (Prakash et al., 2005) made necessary modifications to controller as per

information provided by the FDI module whilst in the study by (Prakash et al., 2002) the

FDI is only used to provide supervisory information. As stated by (Villez et al., 2011), the

major shortcoming in the FDI scheme proposed by (Prakash et al., 2002) is that detection

of time of occurrence of the fault is not addressed properly and this can have adverse effects

on the performance of the system when the FDI is integrated with the controller.

In a recent study by (Kiasi et al., 2013b) this shortcoming is overcome by means of using
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an extended data window and a modified GLR approach which refines the crude TOF

estimate provided by the FDT and FCT test. This alternative approach was shown to have

a superior performance compared to the FDI method proposed by (Prakash et al., 2002)

in terms of accurate detection of of TOF and estimation of fault magnitude. This superior

performance could be mainly attributed to the precise detection of TOF. In another study

by (Kiasi et al., 2013a) the marginalized likelihood ratio (MLR) approach using uniform

priors is utilized to decouple the detection and isolation phases from estimation of the fault

magnitude which was also shown to outperform the FDI scheme suggested by (Prakash et

al., 2002).

However, the major shortcoming in the aforementioned studies is that they only consider

abrupt jumps in the form of step type faults which is not realistic especially in the context

of process faults. As it is widely known, most of process faults gradually evolve and in

most cases they follow a ramp type pattern before reaching some steady state. The main

motivation behind this study is to detect and isolate realistic ramp type faults and truncated

ramp type faults which are more common in process industry. The main challenge in

dealing with such faults can be attributed to the fact that with a certain data window, one

should consider possibility of occurrence of either pure ramp type fault or a combination

of step and ramp type faults. For the latter case, in addition to estimation the TOF, the

time instant at which the fault reaches steady state should also be estimated. Moreover,

the relevant fault signature matrices need to be developed for both cases. The main

contributions of the current study can be summarized as follows:

• Developing fault signature matrices for pure ramp type and truncated ramp type

faults;

• Computation of estimated fault magnitude and GLR test statistic for both ramp and

truncated ramp type faults;

• Accurate estimation of TOF using a modified GLR-based approach and the concept



Sec. 4.2 Definition of The Problem 80

of extended data window;

• Development of closed form solutions for fault isolation, estimation of TOF and fault

magnitude without the need to solve an optimization problem;

• Introduction of a new FDI framework which is capable of dealing with ramp,

truncated ramp and step type faults at the same time;

• Reducing the misclassification rate by means of avoiding isolation and estimation

when sufficient number of data points are not available

It is worth mentioning that, the ultimate goal of the proposed FDI scheme is to provide

advisory information to operators so that they can take necessary measures such as re-

calibration of sensors/actuators.

This chapter is organized in five sections. In the next section, formulation of change

detection problem using generalized likelihood ratio test is presented. The newly proposed

FDI scheme is discussed in Section 3. Section 4 discusses solution of the proposed FDI

scheme and section 5 is dedicated to evaluation of the proposed methodology by application

to a CSTR benchmark problem followed by concluding remarks in Section 6.

4.2 Definition of The Problem

4.2.1 Model of the system

Consider the following linear system where x ∈ Rn, u ∈ Rm and y ∈ Rr. In this

representation w ∈ Rq and v ∈ Rr are process and measurement noise sequences with

known covariance matrices Q and R which are mutually uncorrelated and the initial state

x(0) follows a Gaussian distribution with known mean and variance. Furthermore, it is

assumed that Φ, C, Γu and Γw are known matrices.

x(k) = Φx(k − 1) + Γuu(k − 1) + Γww(k − 1) (4.1)
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y(k) = Cx(k) + v(k) (4.2)

t

t 't





( ')m t t

Figure 4.1: Drift Type Faults

In case of occurrence of a ramp type additive fault with slope mu,j as depicted in

Fig. 4.1.a , where mu,j = tan(α) in the jth actuator at time instant t the process would

evolve for k > t as follows:

x(k) = Φx(k − 1) + Γuu(k − 1) + Γww(k − 1)

+Γumu,j × (k − t− 1)eu,jσ(k − t) (4.3)

y(k) = Cx(k) + v(k) (4.4)

where eu,j is a unit vector whose jth element is equal to one and all other elements are zero

and σ(k − t) is a unit step function defined as follows:

σ(k − t) =

{
0 if k < t
1 if k ≥ t
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Similarly, in case of occurrence of a ramp type additive fault with slope my,j , where

my,j = tan(α) in the jth sensor, the measurement equation would be modified as follows

while the state equation remains as shown in Eq.(4.1):

y(k) = Cx(k) + v(k) +my,j × (k − t)ey,jσ(k − t) (4.5)

where ey,j is a unit vector whose jth element is equal to one and all other elements are

equal to zero. It is worth noting that the slope, my,j , of the ramp type fault can be defined

as follows:

my,j =
by,j(k)− by,j(k − 1)

Ts

where Ts is the sampling rate. In case of occurrence of a truncated ramp type fault in mu,j

as depicted in Fig. 4.1.b , where mu,j = tan(α) in the jth actuator at time instant t the

process would evolve for k > t as follows:

x(k) = Φx(k − 1) + Γuu(k − 1) + Γww(k − 1)

+mu,j × (k − t− 1)Γueu,jσ(k − t)

−mu,j × (k − t′ − 1)Γueu,jσ(k − t′) (4.6)

y(k) = Cx(k) + v(k) (4.7)

Similarly, in case of occurrence of a truncated ramp type additive fault with slope my,j ,

where my,j = tan(α) in the jth sensor, the measurement equation would be modified as

follows while the state equation remains as shown in Eq.(4.1):

y(k) = Cx(k) + v(k) +my,j × (k − t)ey,jσ(k − t′)−my,jey,j × (k − t′)σ(k − t) (4.8)

4.2.2 Fault Signature Matrices of an Additive Ramp Type Fault

In this section the fault signature matrix for a ramp type fault in a sensor is developed. A

similar approach can be used to compute the ramp type fault signature in an actuator.
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Lemma 4.2.1 In case of occurrence of a ramp type bias in the jth sensor at time instant t.

The fault signature matrices can be found as follows:

Jy(k; t) =
k − t− 1

k − t
ΦJy(k − 1; t) + K(k)Gy(k; t) (4.9)

Gy(k; t) = I− k − 1− t
k − t

CΦJy(k − 1; t) (4.10)

Proof: Let us consider Eqs.4.1 and 4.5 which describe the evolution of the system after

occurrence of the fault. Defining δx̂ = x̂(k|k)−x(k) and using the Kalman filter equations

yields:

δx̂(k) =
[
I−K(k)C

][
Φδx̂(k − 1)− Γww(k − 1)

]
+K(k)

[
v(k) +my,j × (k − t)ey,j

]
(4.11)

The corresponding residuals can be expressed as:

γ(k) = −CΦδx̂(k − 1) + v(k) + Γww(k − 1) +my,j(k − t)ey,j (4.12)

Taking expected value of both sides of Eqs.4.11 and 4.12 yields:

E[δx̂(k)] = [I−KC]ΦE[δx̂(k − 1)] +my,j × (k − t)K(k)ey,j (4.13)

E[γ(k)] = −CΦE[δx̂(k − 1)] +my,j × (k − t) (4.14)

Now let us define the followings:

E[δx̂(k)] = my,j × (k − t)Jy(k; t)ey,j

E[γ(k)] = my,j × (k − t)Gy(k; t)ey,j

using the above definitions and Eqs.4.13 and 4.14 and after some algebraic manipulations,

the following recursive equations can be developed:

Jy(k; t) =
k − t− 1

k − t
ΦJy(k − 1; t) + K(k)Gy(k; t) (4.15)

Gy(k; t) = I− k − 1− t
k − t

CΦJy(k − 1; t) (4.16)
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It is worth mentioning that the recursive Eqs.4.9 and 4.10 should be initialized with

Jy(t; t) = [0]n×r and Gy(t; t) = [0]r×r. This is due to the fact that at time instant t the

fault magnitude is zero. The fault signature matrices for ramp type faults in actuators are

similarly developed and the details are given in 4.6.

4.3 Proposed FDI Scheme

4.3.1 GLR approach

The log-likelihood ratio test assuming occurrence of ramp-type fault at time instant t with

slope mf,j where f ∈ {u, y} and j represent the type and location of fault, respectively,

can be defined as:

T = max
t

max
mf,j

2 log
p(ΛN

1 |t,mf,j)

p(ΛN
1 )

(4.17)

where, t ∈ [1, N ] represents the time of occurrence of the fault (TOF) and ΛN
1 =

{γ1, . . . , γN} denotes the residuals generated by a fault-free Kalman filter using Eqs. 4.1

and 4.2 in a specified window. In this notation the denominator p(ΛN
1 ) represents the null-

hypothesis (fault-free case). Moreover, the denominator is independent of TOF and the

fault magnitude as it represents the residuals under fault-free condition and therefore the

joint maximum likelihood (ML) estimate of the time of occurrence of the fault (TOF) and

fault magnitude, can be written as follows:

{m̂f,j, t̂} = argmax
t

max
mf,j

2 log p(ΛN
1 |t,mf,j) (4.18)

This double maximization can be reduced to a single maximization problem by finding the

estimated time of occurrence of the fault t̂ by means of FDT and FCT tests (Prakash et

al., 2005; Prakash et al., 2002; Narasimhan and Mah, 1988). In this case the generalized

likelihood ratio (GLR) test is as follows:

TGLR = max
f,j

Tmax
f,j (4.19)
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where

Tmax
f,j = max

mf,j
2 log

p(ΛN
t̂
|mf,j)

p(ΛN
t̂

)
(4.20)

= max
mf,j

Tf,j (4.21)

It should be noted that this study is mainly concerned with detection and diagnosis of

additive ramp and truncated ramp faults that occur sequentially in sensors and actuators.

In this regard, it is assumed that multiple faults occur sequentially in time but not

simultaneously and in case of occurrence of a fault, the controller corrective action will

not cause the process variables to violate the process safety or alarm shut down limits.

Moreover, in this study it is assumed that occurrence of additive faults in actuators and

sensors do not lead to instability of the closed loop system.

4.3.2 Finding the candidate data window for occurrence of the fault

This study adopts the approach used in (Kiasi et al., 2013b; Kiasi et al., 2013a) for

constructing a candidate data window. In this approach the FDI takes advantage of the

statistical FDT and FCT tests to find the initial data window in which the fault has occurred.

However, as mentioned by Villez et al. (Villez et al., 2011) detection of TOF using FDT

and FCT tests is associated with inaccuracy and hence in this study a refining mechanism is

required to estimate the most probable TOF. The FDT test is based on a the quadratic form

of the residuals at each time instant normalized using the corresponding covariance matrix

while the FCT test is a sum of FDT tests in a specific data window. Assuming rejection of

FDT test at time instant t1 and data window of size N + 1, the FCT test be defined defined

as:

ε(N ; t1) =

t1+N∑
k=t1

γT (k)V (k)−1γ(k) (4.22)

which follows a χ2 distribution with r×(N+1) degrees of freedom assuming the residuals

are zero mean white noise with known covariance matrix.

In the GLR approach proposed by Prakash et al. (Prakash et al., 2002; Deshpande et
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al., 2009) it is suggested to compute the FCT test for data window [t1, t1 + N ] which is

obtained after rejection of the FDT test at time instant t1. Upon rejection of FCT test, it

is assumed that t1 is the TOF and subsequently the likelihood ratio is computed for all

hypothesized faults in the interval [t1, t1 +N ] to isolate and estimate the fault magnitude.

t̂ t Nt̂

Nt̂t t̂

Figure 4.2: Scenarios leading to inaccurate detection of TOF: Fig. (4.2a) the estimated
TOF (t̂) precedes the actual TOF (t); Fig. (4.2b) the estimated TOF (t̂) is after the actual
TOF (t) (Narasimhan and Mah, 1988).

Now let us consider the following two scenarios as depicted in Figure 4.2, in which

for the first case the actual TOF is after the rejection of the FDT test while in the second

scenario the FDT is rejected after the actual TOF (Narasimhan and Mah, 1988). In order

to accurately estimate the time of occurrence of the fault we propose to append the original

data window [t1, t1 + N ] with M extra samples prior to rejection of the FDT test at t1 and

form a new data window as [t1 −M, t1 + N ]. The concept of extended data window is

depicted in Figure 4.3.
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1k t M  1k t 1k t N 

Figure 4.3: Extended FCT data window

4.3.3 GLR test for a ramp type fault

In the wake of the proposed extended data window and assuming occurrence of a ramp-

type fault type f (f ∈ {u, y}) at time instant t ∈ [t1 −M, t1 + N ], the GLR test can be

defined as follows:

TGLR = max
f,j,tf,j

Tmax
f,j,tf,j

(4.23)

where

Tmax
f,j,tf,j

= max
t

max
mf,j

2 log
p(Λt1+N

t1−M |t,mf,j)

p(Λt1+N
t1−M)

(4.24)

= max
t

Tf,t,j (4.25)

it is worth noting that:

Tf,j,t = max
mf,j

2 log
p(Λt1+N

t1−M |t,mf,j)

p(Λt1+N
t1−M)

and Λt1+N
t1−M = {γt1−M , . . . , γt1+N}. The likelihood ratio on the right hand side of Eq. 4.24

should be maximized for all t ∈ [t1 −M, t1 + N ] assuming occurrence of a specific fault
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type f at location j. Then the same maximization procedure should be repeated for the

other hypothesized faults (all combinations of f and j). Finally, the maximum value of

Tmax
f,j,tf,j

among all hypothesized faults determines t̂, f̂ and ĵ as follows:

{f̂ , ĵ, t̂} = arg max
f,j,tf,j

Tmax
f,j,tf,j

(4.26)

using t̂, f̂ and ĵ, the ML-estimate of fault magnitude can be found as:

m̂f̂ ,ĵ = argmax
mf̂ ,ĵ

2 log p(Λt1+N
t1−M |t̂, bf̂ ,ĵ) (4.27)

4.3.4 Estimation of ramp type fault magnitude in a sensor

Lemma 4.3.1 Assuming occurrence of a single ramp type fault in a sensor at location j

and at time instant t ∈ [t1 −M, t1 + N ], the estimated fault magnitude and Ty,j,t can be

computed as follows:

m̂y,j,t =

∑t1+N
k=t+1

{
(k − t)eTy,jGT

y (k; t)V (k)−1γ(k)
}∑t1+N

k=t+1

{
(k − t)2eTy,jG

T
y (k; t)V (k)−1Gy(k; t)ey,j

} (4.28)

Ty,j,t =

(∑t1+N
k=t+1

{
(k − t)eTy,jGT

y (k; t)V (k)−1γ(k)
})2

∑t1+N
k=t+1

{
(k − t)2eTy,jG

T
y (k; t)V (k)−1Gy(k; t)ey,j

} (4.29)

where Gy(k; t) denotes the fault signature matrix for a ramp type fault assuming

occurrence of the fault at time instant t.

Proof: Recall the joint maximum likelihood (ML) estimate of the ramp slope and TOF:

{m̂y,j, t̂} = arg max
my,j ,t

2 log p(Λt1+N
t1−M |my,j, t) (4.30)

Assuming t to be the true TOF, the joint ML-estimate reduces to:

m̂y,j = arg max
my,j

2 log p(Λt1+N
t |my,j) = arg max

my,j

λy,j (4.31)

invoking the definition of multivariate normal distribution and assuming independence of

residuals yields:

λy,j = 2 log

{
ζ exp{−1

2

t1+N∑
k=t

γ′T (k)V (k)−1γ′(k)

}
(4.32)
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where

γ′(k) = γ(k)−my,j × (k − t)Gy(k; t)ey,j

In the above equation ζ = 1

(2π)r×(t1+N−t+1)/2
∏t1+N

k=t |V (k)|1/2
and r denotes the dimension of

y.

λy,j = 2 log(ζ) + 2my,j

t1+N∑
k=t

{(k − t)eTy,jGT
y (k; t)V (k)−1γ(k)}

−m2
y,j

t1+N∑
k=t

{(k − t)2eTy,jG
T
y (k; t)V (k)−1Gy(k; t)ey,j}

The ML-estimate of mf,j can be found by solving the following equation:

∂λy,j
∂my,j

= 0

⇒ m̂y,j,t =

∑t1+N
k=t+1

{
(k − t)eTy,jGT

y (k; t)V (k)−1γ(k)
}∑t1+N

k=t+1

{
(k − t)2eTy,jG

T
y (k; t)V (k)−1Gy(k; t)ey,j

} (4.33)

Note that the lower limit of the summation is t + 1 and not t. This is due the fact that

Gy(t; t) = [0]r×r. It is worth mentioning that m̂y,j,t is used to represent the estimated

slope and not m̂y,j . This is mainly due to the fact that the ML-estimate of the ramp slope

is obtained based on the assumption of occurrence of the fault at time instant t. The log-

likelihood ratio on the right-hand side (RHS) of Eq. 4.24 can be written as:

T = 2 log
exp{−1

2

∑t1+N
k=t+1 γ

′(k)TV (k)−1γ′(k)}
exp{−1

2

∑t1+N
k=t+1 γ(k)TV (k)−1γ(k)}

(4.34)

substituting m̂y,j into log-likelihood ratio in Eq.(4.34) yields:

Ty,j,t =

(∑t1+N
k=t+1

{
(k − t)eTy,jGT

y (k; t)V (k)−1γ(k)
})2

∑t1+N
k=t+1

{
(k − t)2eTy,jG

T
y (k; t)V (k)−1Gy(k; t)ey,j

} (4.35)

A similar approach can be used to find the estimated slope and Tu,j,t in case of occurrence

of a ramp type fault in an actuator. This topic is addressed in 4.7.
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Based on the concept of the extended data window four different scenarios can be

considered as follows:

1. Occurrence of a ramp type fault where t1 −M ≤ t < t1 +N

2. Occurrence of a truncated ramp type fault where t1 −M ≤ t < t′ < t1 + N and

t′ − t > 1

3. Occurrence of a truncated ramp type fault where t1 −M ≤ t < t′ < t1 + N and

t′ − t = 1

4. Occurrence of a truncated ramp type fault where t1 ≤ t < t1 +N and t′ ≥ t1 +N

t

t 't





( ' )m t t

1t 1t N

1t 1t N

Figure 4.4: Fault scenarios a and b

Fault scenarios a and b are depicted in Fig.4.4 while scenarios c and d are shown in Fig.4.5.

Apparently, the main challenge is to deal with the third and fourth cases. The third scenario



Sec. 4.3 Proposed FDI Scheme 91

t 't



( ' )m t t

1t 1t N

t ' 1t t 



1t 1t N

( ')m t t

Figure 4.5: Fault scenarios c and d

in fact represents a step-type bias rather than a truncated ramp. this is mainly due to the

fact that in a discrete system, the inter-sample behavior is ignored. Finally, the last case is

also likely to occur as the size of extended data window is usually selected with respect to

the dynamics of the system and in some cases the dynamics of the fault may not be known

beforehand. Therefore, a specific fault might develop very slowly and reach steady state

after a long time. In such cases, the concept of truncated ramp can be used again in a more

general sense. In other words, the FDI scheme isolates the ramp type fault within the first

data window and eventually when the fault reaches steady state the next detection will be

performed in another data window.

Remark 4.3.1 Detection, isolation and estimation of ramp type faults is likely to be non-

trivial due to the fact that it might be difficult to obtain an accurate estimate of the ramp

slope using some limited data points in the data window. Moreover, as the fault evolves
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through time even a small bias in estimation of the fault magnitude would eventually result

in large deviations in the residuals. Considering the limited size of extended data window

it would be in some cases difficult to go backwards and correct the errors and hence an

alternative solution should be sought. In this study, in order to avoid such critical issues,

all faults would be treated as truncated-ramps. This approach has several benefits. First of

all, a unified framework is developed to detect ramp and truncated ramp faults. Secondly,

in case the fault evolves beyond the data window, the FDI module would have another

chance to estimate the slope in the subsequent data windows. It should be noted that a

pure ramp type fault within a data window can be modeled using a truncated ramp whose

t′ occurs at the last point of the data window i.e. t1 +N .

4.3.5 Fault signature matrices for a truncated ramp type fault in a
sensor

By invoking the superposition principle in linear systems, the fault signature matrices for

a truncated ramp type fault in jth can be expressed as sum of positive and negative ramps

occurring at consecutive time instants t and t′. Based on this argument the expected values

of γ(k) and δx̂ in case of occurrence of a truncated ramp type fault, can be defined as

follows:

E[δx̂] = my,j × (k − t)Jy(k; t)ey,j

−my,j × (k − t′)Jy(k; t′)ey,jσ(k − t′) (4.36)

E[γ(k)] = mf,j(k − t)Gy(k − t)ey,jσ(k − t)

−my,j × (k − t′)Gy(k; t′)ey,jσ(k − t′) (4.37)

Fault signature matrices for a truncated ramp fault in jth actuator are developed in 4.8.
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4.3.6 Estimation of truncated ramp type fault magnitude in a sensor

Theorem 4.3.1 Assuming occurrence of a truncated ramp type fault depicted in Fig.

(4.1.b) in a sensor at location j and at time instant t ∈ [t1 −M, t1 + N ] and t′ to be the

time instant at which the fault reaches its steady state value (t1 −M ≤ t ≤ t′ ≤ t1 + N ),

the estimated fault magnitude and Ty,j,t,t′ can be computed as follows:

m̂y,j,t,t′ =
Ωy,j(k, t, t

′)

Υy,j(k, t, t′)
(4.38)

Ty,j,t,t′ =

[
Ωy,j(k, t, t

′)
]2

Υy,j(k, t, t′)
(4.39)

where

Ωy,j(k, t, t
′) ,

t1+N∑
k=t+1

{[
(k − t)Gy(k; t)ey,j − (k − t′)Gy(k; t′)ey,jσ(k − t′)

]T
V (k)−1γ(k)

}

Υy,j(k, t, t
′) ,

t1+N∑
k=t+1

{[
(k − t)Gy(k; t)ey,j − (k − t′)Gy(k; t′)ef,jσ(k − t′)

]T
V (k)−1

×
[
(k − t)Gy(k; t)ey,j − (k − t′)Gy(k; t′)ey,jσ(k − t′)

]}

Proof: Similar to ramp type faults discussed earlier, it is assumed that the data window of

residuals Λt1+N
t1−M = {γt1−M , · · · , γt1+N} is available. The ML-estimate of the ramp slope

can be defined as:

{m̂y,j, t̂, t̂′} = 2 log arg max
my,j ,t,t

′
p(Λt1+N

t1−M |mf,j, t, t
′) (4.40)
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assuming occurrence of the fault at time instant t and reaching the steady state at time

instant t′ as shown in Fig.(4.1.b) where t1 ≤ t < t′ < t1 + N , the above equation can be

rewritten as:

m̂y,j,t,t′ = arg max
my,j

2 log p(Λt1+N
t+1 |my,j) = arg max

my,j

λy,j (4.41)

It is worth mentioning that the notation m̂y,j,t,t′ is used for the estimated fault slope instead

of m̂y,j . The main reason behind using this notation is that the estimated slope is based

on the assumption of occurrence of the fault at time instant t and reaching steady state at

instant t′. Note that the residuals would be considered in a sequence starting at t + 1 and

not t. This is due to the fact that the fault affects the system starting at t + 1 or in other

words Gy(t; t) = [0]r×r. The log-likelihood function can be defined as Eq.(4.32) and in

this case we have:

γ′(k) = γ(k)−my,j(k − t)Gy(k; t)ey,j

+my,j(k − t′)Gy(k; t′)ey,jσ(k − t′)

It is straightforward to find:

λy,j = 2 log(ζ)−
t1+N∑
k=t+1

{
γT (k)V (k)−1γ(k)

+m2
y,j(k − t)2eTy,jG

T
y (k; t)V (k)−1Gy(k; t)ey,j

+m2
y,j(k − t′)2gTy,jG

T
y (k; t′)V (k)−1Gy(k; t′)ey,jσ(k − t′)

−2m2
y,j(k − t)(k − t′)eTy,jGT

y (k; t)V (k)−1Gy(k; t′)ey,jσ(k − t′)

−2my,j(k − t)ey,jGT
y (k; t)V (k)−1γ(k)

+2my,j(k − t′)ey,jGT
y (k; t′)V (k)−1γ(k)σ(k − t′)

}
(4.42)

solving ∂λy,j
∂my,j

= 0 yields:

m̂y,j,t,t′ =
Ωy,j(k, t, t

′)

Υy,j(k, t, t′)
(4.43)

where

Ωy,j(k, t, t
′) ,
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t1+N∑
k=t+1

{[
(k − t)Gy(k; t)ey,j − (k − t′)Gy(k; t′)ey,jσ(k − t′)

]T
V (k)−1γ(k)

}

Υy,j(k, t, t
′) ,

t1+N∑
k=t+1

{[
(k − t)Gy(k; t)ey,j − (k − t′)Gy(k; t′)ef,jσ(k − t′)

]T
V (k)−1

×
[
(k − t)Gy(k; t)ey,j − (k − t′)Gy(k; t′)ey,jσ(k − t′)

]}
Assuming the log-likelihood ratio in Eq.(4.34) and substituting m̂y,j,t,t′ into this equation

results in:

Ty,j,t,t′ =

[
Ωy,j(k, t, t

′)
]2

Υy,j(k, t, t′)
(4.44)

A similar approach can be used to find the estimated fault magnitude and Tu,j,t,t′ for a

truncated ramp fault in an actuator. This topic is discussed in 4.9.

4.3.7 Formulation of the FDI using GLR test and truncated ramp type
faults

Let us assume occurrence of a truncated ramp fault type f (f ∈ {u, y}) as depicted

in Fig.(4.1). In addition, it is assumed that the extended data window of residuals

Λt1+N
t1−M = {γt1−M , · · · , γt1+N} is available. The GLR test for detection of the TOF, isolation

of fault type, its location and estimation of the slope of the truncated ramp type fault can

be defined as follows:

TGLR = max
f,j,tf,j ,t

′
f,j

T max
f,j,tf,j ,t

′
f,j

(4.45)

where

T max
f,j,tf,j ,t

′
f,j

= max
t

max
t′

max
mf,j

2 log
p(Λt1+N

t1−M |t, t
′,mf,j)

p(Λt1+N
t1−M)

(4.46)

= max
t

max
t′

Tf,j,t,t′ (4.47)
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where

Tf,j,t,t′ = max
mf,j

2 log
p(Λt1+N

t1−M |t, t
′,mf,j)

p(Λt1+N
t1−M)

The log-likelihood ratio on the right hand side of Eq.(4.46) should be maximized for

all (t, t′) ∈ [t1 − M, t1 + N ] where t ≤ t′, assuming occurrence of a specific fault

type f at location j. Then the same maximization procedure should be repeated for the

other hypothesized faults (all combinations of f and j). Finally, the maximum value of

T max
f,j,tf,j ,t

′
f,j

among all hypothesized faults determines t̂, t̂′, f̂ and ĵ as follows:

{f̂ , ĵ, t̂, t̂′} = arg max
f,j,tf,j ,t

′
f,j

T max
f,j,tf,j ,t

′
f,j

(4.48)

The procedure which leads to estimation of TOF, isolation of the fault and estimation of its

magnitude can be summarized as follows. This procedure is discussed for the more general

case where faults may be present in both sensors and actuators.

1. FDT test is applied at each time instant. Upon rejection of the FDT test, the FCT test

is applied.

2. Upon rejection of FCT test, the extended data window is formed by means of adding

M extra data points prior to the rejection of FDT test to the original FCT data

window.

3. Tf,j,t,t′ is computed for all t ∈ [t1 −M, t1 +N ], for a specific choice of f and j:

Tf,j,t,t′ =

[
Ωf,j(k, t, t

′)
]2

Υf,j(k, t, t′)

where f ∈ {u, y} and Tf,j,t,t′ can be computed as per Eqs.(4.44) and (4.79) for

sensors and actuators, respectively.

4. T max
f,j,tf,j ,t

′
f,j

for the chosen f and j can be computed as follows:

T max
f,j,tf,j ,t

′
f,j

= max
t

max
t′

max
mf,j

Tf,j,t,t′
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5. For all other combinations of f and j, steps 3 and 4 are repeated.

6. The maximum test statistic among all hypothesized faults will determine t̂, t̂′ f̂ and

ĵ as follows:

{f̂ , ĵ, t̂, t̂′} = arg max
f,j,tf,j ,t

′
f,j

T max
f,j,tf,j ,t

′
f,j

7. The estimated fault magnitude can be found for the isolated fault using t̂, t̂′, f̂ and ĵ

as follows:

m̂f̂ ,ĵ,t̂,t̂′ =
Ωf,j(k, t̂, t̂′)

Υf,j(k, t̂, t̂′)

Equations 4.43 and 4.78 should be used for sensors and actuators, respectively.

8. Compensation is performed and again the FDT test is applied at the next time instant.
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The compensation mentioned in item 8 is as follows:

yc(k) = y(k)− m̂y,ĵ × (t̂′ − t̂)ey,ĵ (f̂ = y) (4.49)

mc(k) = m(k) + m̂u,ĵ × (t̂′ − t̂)eu,ĵ (f̂ = u) (4.50)

x̂c(t1 +N |t1 +N) = x̂(t1 +N |t1 +N)

−m̂y,ĵ,t̂,t̂′ × (t1 +N − t̂)Jy(t1 +N ; t̂)ey,ĵ

+m̂y,ĵ,t̂,t̂′ × (t1 +N − t̂′)Jy(t1 +N ; t̂′)ey,ĵ (f̂ = y)

(4.51)

x̂c(t1 +N |t1 +N) = x̂(t1 +N |t1 +N)

−m̂u,ĵ,t̂,t̂′ × (t1 +N − t̂− 1)Ju(t1 +N ; t̂)gu,ĵ

+m̂u,ĵ,t̂,t̂′ × (t1 +N − t̂′ − 1)Ju(t1 +N ; t̂′)gu,ĵ (f̂ = u)

(4.52)

γc(k) = γ(k)− m̂y,ĵ,t̂,t̂′ × (k − t̂)Gy(k; t̂)ey,ĵσ(k − t)

+m̂y,ĵ,t̂,t̂′ × (k − t̂′)Gy(k; t̂′)ey,ĵσ(k − t′) (f̂ = y) (4.53)

γc(k) = γ(k)− m̂u,ĵ,t̂,t̂′ × (k − t̂− 1)Gu(k; t̂)gu,ĵσ(k − t− 1)

+m̂u,ĵ,t̂,t̂′ × (k − t̂′ − 1)Gu(k; t̂′)gu,ĵσ(k − t′ − 1) (f̂ = u)

(4.54)

where k ∈ [t̂, t1 +N ]. In addition, m denotes the controller output (Prakash et al., 2002). It

should be noted that state compensation in Eq.(4.51) is performed only once and after the

isolation and estimation phases are carried out. The main purpose of this compensation is to

provide the Kalman filter with a bias-free estimated state in the next iteration. Moreover, it

is necessary to compensate the residuals using Eqs.(4.53) and (4.54) for faults in sensor and

actuators, respectively. The main reason for compensation of the residuals is that in case

the fault is still existent after the current data window, in the next extended data window

the FDI would look backwards into the residuals. Since the FDI has already identified and
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isolated the fault in the current data window, the compensation of residual would avoid any

mistake by the FDI when it look backwards in time. An example of such case can be a ramp

type fault which is affecting the system during several consecutive FCT data windows.

Remark 4.3.2 In order to prevent false alarms and also to accurately estimate the

magnitude of the fault, a minimum size of data window ‘s’ is required. In other words,

if t̂ > t1 + N − s + 1, then the number of samples may not be enough to obtain a good

estimate of the fault magnitude and hence it seems logical to obtain more data points for

the purpose of estimation. Furthermore if t̂ > t1 + N − s + 1 and the fault has actually

occurred, since no corrective action is taken by the FDI, the FDT and FCT tests would be

rejected again in the following instants and the fault would be detected in the subsequent

window. In choosing the minimum size of data window, the time required for the estimator

to converge after a change occurs has to be also considered. Note that this constraint is

applied to t and not t′. The criteria for selecting parameter ‘s’ is omitted in this study

for the sake of brevity and the interested reader is referred to (Kiasi et al., 2013b; Kiasi et

al., 2013a) for details.

4.4 Simulation Case Study

The following LTI system was used to test the performance of the proposed FDI scheme

subject to ramp type faults:

x(k) = Φx(k − 1) + Γuu(k − 1) + Γww(k − 1)

y(k) = Cx(k) + v(k)

where

Φ =

[
0.1843 −0.0080
73.5080 1.3330

]
, Γu =

[
0.1340 0.0026
−1.7948 −0.7335

]
Γw =

[
0.0598 −0.0004
3.9038 0.1208

]
, C =

[
1 0
0 1

]
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Table 4.1: Standard Deviations for Process and Measurement Noise Sequences

Variable σ(SD)
w1 0.05
w2 2.5
y1 0.01
y2 0.5

Table 4.2: Sequence of Faults
Fault Type TOF Fault Magnitude
Ramp in y1 t = 100, t′ = 110 my1 = tan(α1) = −0.01
Ramp in y2 t = 200, t′ = 210 my2 = tan(α2) = 1
Step in y2 t = 300, t′ = 301 my2 = tan(α3) = −2.5
Ramp in y1 t = 400, t′ = 440 my1 = tan(α4) = 0.005

TOF: Time of Occurrence of the Fault

Moreover xss = [0.265, 393.95]T and uss = [1, 15]T . The MPC weighting matrix,

prediction horizon and control horizon were set to following values:

Np = 10, Nc = 1, WE =

[
104 0
0 1

]
, WU = [0]

The noise parameters were set to the values in Table 4.1.

In order to evaluate the performance of the proposed FDI scheme, the benchmark system

was tested subject to the sequential faults tabulated in Table 4.2. The results for 100 Monte

Carlo runs are shown in Table 4.4. As seen in this table, the proposed FDI scheme is

capable of detection TOF and the time instant at which the fault reaches steady state (t′)

fairly accurately. In addition, the results reveal that the proposed method is able to estimate

the fault slope precisely. However, it is worth nothing that since the last fault persists for a

period of time which is longer than the specified data window, the suggested FDI method

tries to isolate and estimate this fault in two subsequent windows. This approach enables

the FDI to deal with ramps which might affect the process gradually for a long period of

time by means of dividing them into several segments where in each segment the FDI treats

the fault as a truncated ramp.

It is worth noting that in the current study the FDI module is not integrated with the
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Table 4.3: FDI results subject to fault sequences based on 100 Monte Carlo runs for each
case

TOF 1 Fault ETOF 2 t̂(σt̂) t̂′(σt̂′) EFM 3 m̂(σm̂) NMC 4

t = 100, t′ = 110 my1 = −0.01 t = 101.2 (0.447) t′ = 110.8 (0.836) −0.0104 (0.0011)

10/100
t = 200, t′ = 210 my2 = 1 t = 201 (0.010) t′ = 210.6 (0.547) 1.0552 (0.0597)
t = 300, t′ = 301 my2 = −2.5 t = 300.8 (0.425) t′ = 302.2 (0.425) −2.5161 (0.2540)

t = 400, t′ = 440 my1 = 0.005
t = 401.6 (0.894) t′ = 423.8 (3.033) 0.0051 (0.0005)
t = 425.4 (2.792) t′ = 439.2 (1.095) 0.0052 (0.0006)

1 TOF: Time of Occurrence of the Fault
2 ETOF: Estimated Time of Occurrence of the Fault
3 EFM: Estimated Fault Magnitude
4 NMC: Number of Misclassifications

Table 4.4: FDI results for a specific random seed. Note that indices 1 and 2 correspond to
sensor #1 and #2, respectively.

FDT/FCT Rejected 85 106 191 212 296 402 423
t̂

NA
101

NA
202 301 402 423

t̂′ 110 211 302 421 442
Fault Index 1 2 2 1 1

m̂ -0.010486 1.0652 -2.3536 0.0053589 0.0052515

controller and the FDI information is only used as an advisory tool. The estimated fault

magnitude versus time is plotted in Fig.4.6 for 100 Monte Carlo runs. This concept is

depicted in Fig. 4.7. As seen in this figure, the FDI tries to keep the residual white and

by doing so would be capable of detecting sequential faults that might occur in the system.

However, in order to shed more light on the crucial task of the FDI module in an FTC

framework, the FDI was integrated with the controller for a random seed and the results

are tabulated in Table 4.4. In addition, true states versus the estimated ones are shown

in Fig.4.8. As seen in Table 4.4, by invoking the concept discussed in Remark 4.3.2 the

FDI avoids taking any action at times instants 85 and 191 which are both confirmed by

FDT/FCT tests as the TOF. Moreover, the proposed method obtains a refined estimate of

TOF and consequently an accurate estimate of fault magnitude.
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Figure 4.6: Estimated fault evolution based on 100 Monte Carlo runs. In this figure the
results from all runs are plotted while excluding the misclassifications.
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Figure 4.7: The supervisory scheme based on the GLR. The advisory information will be
provided to the operators/ engineers.
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Figure 4.8: True versus estimated states in case of integration of controller with the FDI
module where system is subject to sequential faults listed in Table 4.2.

4.5 Concluding Remarks

In this study a new FDI scheme has been proposed based on the GLR test and use of

statistical FDT and FCT tests to address detection of time of occurrence, isolation and

estimation of the magnitude of more realistic ramp type faults faults. The proposed methods

overcome the shortcomings related to the methodology proposed by (Prakash et al., 2002)

in detecting the time of occurrence of the fault and its limited application to step type

faults. In the proposed scheme, statistical FDT and FCT tests are used as the early stage

announcers of the time of occurrence of the fault. The suggested scheme is flexible in

dealing with ramp, truncated ramp and step type faults and can handle all of them using

the same framework. In this study, the fault signature matrices for ramp type faults are

developed and a closed form solution is provided to estimate the slope of the ramp and

truncated ramp fault.
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4.6 Appendix 1: Fault Signature Matrices

Lemma 4.6.1 In case of occurrence of a ramp type bias in the jth actuator at time instant

t. The fault signature matrices can be found as follows:

Ju(k; t) = (
k − t− 2

k − t− 1
)ΦJu(k − 1; t) + K(k)Gu(k; t)− I (4.55)

Gu(k; t) = C− (
k − t− 2

k − t− 1
)CΦJu(k − 1; t) (4.56)

Proof: Let us consider Eqs.(4.3-4.4) which describe the evolution of the system after

occurrence of the fault. Defining δx̂ = x̂(k|k)−x(k) and using the Kalman filter equations

yields:

δx̂(k) =
[
I−K(k)C

][
Φδx̂(k − 1)− Γww(k − 1)

]
+K(k)

[
mu,j × (k − t− 1)CΓueu,j + v(k)

]
−mu,j × (k − t− 1)Γueu,j (4.57)

using the definition of the residuals one can write:

γ(k) = −Cδx̂(k − 1) + CΓww(k − 1) +mu,j × (k − t− 1)CΓueu,j + v(k) (4.58)

Taking expected value from both sides of Eqs.4.57 and 4.58 results in the followings:

E[δx̂(k)] =
[
I−K(k)C

]
ΦE[δx̂(k − 1)]

+mu,j × (k − t− 1)K(k)CΓueu,j

−mu,j × (k − t− 1)Γueu,j (4.59)

E[γ(k)] = −CE[δx̂(k − 1)] +mu,j × (k − t− 1)ΓuCeu,j (4.60)

Now let us define the followings:

E[δx̂(k)] = mu,j × (k − t− 1)Ju(k; t)Γueu,j

E[γ(k)] = mu,j × (k − t− 1)Gu(k; t)Γueu,j
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Note that the fault would affect the system dynamics after one sample time delay due to

the discretization and this fact is considered in the above definitions. Using the above

definitions and Eqs.4.59 and 4.60 and after some algebraic manipulations, one can find the

followings:

Ju(k; t) = (
k − t− 2

k − t− 1
)ΦJu(k − 1; t) + K(k)Gu(k; t)− I (4.61)

Gu(k; t) = C− (
k − t− 2

k − t− 1
)CΦJu(k − 1; t) (4.62)

It is worth mentioning that the recursive Eqs.4.55 and 4.56 should be initialized with

Ju(t + 1; t) = [0]n×n and Gu(t + 1; t) = [0]r×n. In order to determine the initialization

matrices two facts should be considered; first, the fact that at time instant t the fault

magnitude is zero and secondly, one inherent sample time delay due to the discretization.

4.7 Appendix 2: Ramp Type Faults in Actuators

Lemma 4.7.1 Assuming occurrence of a single ramp type fault in an actuator at location

j and at time instant t ∈ [t1 −M, t1 +N ], the estimated fault magnitude and Tu,j,t can be

computed as follows:

m̂u,j,t =

∑t1+N
k=t+2

{
(k − t− 1)gTu,jG

T
u (k; t)V (k)−1γ(k)

}∑t1+N
k=t+2

{
(k − t− 1)2gTu,jG

T
u (k; t)V (k)−1Gu(k; t)gu,j

} (4.63)

Tu,j,t =

(∑t1+N
k=t+2

{
(k − t− 1)gTu,jG

T
u (k; t)V (k)−1γ(k)

})2

∑t1+N
k=t+2

{
(k − t− 1)2gTu,jG

T
u (k; t)V (k)−1Gu(k; t)gu,j

} (4.64)

where Gy(k; t) denotes the fault signature matrix for a ramp type fault assuming

occurrence of the fault at time instant t and gu,j = Γueu,j .

Proof: Recall the joint maximum likelihood (ML) estimate of the ramp slope and TOF:

{m̂u,j, t̂} = arg max
mu,j ,t

2 log p(Λt1+N
t1−M |mu,j, t) (4.65)
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Assuming t to be the true TOF, the joint ML-estimate reduces to:

m̂u,j = arg max
mu,j

2 log p(Λt1+N
t |mu,j) = arg max

mu,j

λu,j (4.66)

invoking the definition of multivariate normal distribution and assuming independence of

residuals yields:

λu,j = 2 log

{
ζ exp{−1

2

t1+N∑
k=t

γ′T (k)V (k)−1γ′(k)

}
(4.67)

where

γ′(k) = γ(k)−mu,j × (k − t− 1)Gu(k; t)gu,j

In the above equation ζ = 1

(2π)r×(t1+N−t+1)/2
∏t1+N

k=t |V (k)|1/2
and r denotes the dimension of

y.

λu,j = 2 log(ζ) + 2mu,j

t1+N∑
k=t

{(k − t− 1)gTu,jG
T
u (k; t)V (k)−1γ(k)}

−m2
u,j

t1+N∑
k=t

{(k − t− 1)2gTu,jG
T
u (k; t)V (k)−1Gu(k; t)gu,j}

The ML-estimate of mu,j can be found by solving the following equation:

∂λu,j
∂mu,j

= 0

⇒ m̂u,j,t =

∑t1+N
k=t+2

{
(k − t− 1)gTu,jG

T
u (k; t)V (k)−1γ(k)

}∑t1+N
k=t+2

{
(k − t− 1)2gTu,jG

T
u (k; t)V (k)−1Gu(k; t)gu,j

} (4.68)

Note that the lower limit of the summation is t + 2 and not t. This is due the fact that

Gu(t + 1; t) = [0]r×n. It is worth mentioning that m̂u,j,t is used to represent the estimated

slope and not m̂u,j . This is mainly due to the fact that the ML-estimate of the ramp slope

is obtained based on the assumption of occurrence of the fault at time instant t. The log-

likelihood ratio on the right-hand side (RHS) of Eq. 4.24 can be written as:

T = 2 log
exp{−1

2

∑t1+N
k=t+1 γ

′(k)TV (k)−1γ′(k)}
exp{−1

2

∑t1+N
k=t+1 γ(k)TV (k)−1γ(k)}

(4.69)
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substituting m̂f,j into log-likelihood ratio in Eq.(4.69) yields:

Tu,j,t =

(∑t1+N
k=t+2

{
(k − t− 1)gTu,jG

T
u (k; t)V (k)−1γ(k)

})2

∑t1+N
k=t+2

{
(k − t− 1)2gTu,jG

T
u (k; t)V (k)−1Gu(k; t)gu,j

} (4.70)

4.8 Fault Signature Matrices for Truncated Ramp Fault
in an Actuator

The fault signature matrices for a truncated ramp fault in jth actuator can be expressed as

sum of positive and negative ramps occurring at consecutive time instants t and t′. Based

on this argument the expected values of γ(k) and δx̂ in case of occurrence of a truncated

ramp type fault, can be defined as follows:

E[δx̂(k)] = mu,j × (k − 1− t)Ju(k; t)gu,jσ(k − t)

−mu,j × (k − 1− t′)Ju(k; t′)gu,jσ(k − t′) (4.71)

E[γ(k)] = mu,j × (k − 1− t)Gu(k; t)gu,jσ(k − t)

−mu,j × (k − 1− t′)Gu(k; t′)gu,jσ(k − t′) (4.72)

where gu,j = Γueu,j .

4.9 Truncated Ramp Type Faults in an Actuator

Theorem 4.9.1 Assuming occurrence of a truncated ramp type fault depicted in Fig.

(4.1.b) in an actuator at location j and at time instant t ∈ [t1−M, t1 +N ] and t′ to be the

time instant at which the fault reaches its steady state value (t1 −M ≤ t ≤ t′ ≤ t1 + N ),

the estimated fault magnitude and Tu,j,t,t′ can be computed as follows:

m̂u,j,t,t′ =
Ωu,j(k, t, t

′)

Υu,j(k, t, t′)
(4.73)

Tu,j,t,t′ =

[
Ωu,j(k, t, t

′)
]2

Υu,j(k, t, t′)
(4.74)
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where

Ωu,j(k, t, t
′) ,

t1+N∑
k=t+2

{[
(k − t− 1)Gu(k; t)gu,j − (k − t′ − 1)Gu(k; t′)gu,jσ(k − t′ − 1)

]T
V (k)−1

× γ(k)

}

and

Υu,j(k, t, t
′) ,

t1+N∑
k=t+2

{[
(k − t− 1)Gu(k; t)gu,j − (k − t′)Gu(k; t′)gu,jσ(k − t′ − 1)

]T
V (k)−1

×
[
(k − t− 1)Gu(k; t)gu,j − (k − t′)Gu(k; t′)gu,jσ(k − t′ − 1)

]}

Proof: Similar to ramp type faults discussed earlier, it is assumed that the data window of

residuals Λt1+N
t1−M = {γt1−M , · · · , γt1+N} is available. The ML-estimate of the ramp slope

can be defined as:

{m̂u,j, t̂, t̂′} = 2 log arg max
mu,j ,t,t

′
p(Λt1+N

t1−M |mu,j, t, t
′) (4.75)

assuming occurrence of the fault at time instant t and reaching the steady state at time

instant t′ as shown in Fig.(4.1.b) where t1 ≤ t < t′ < t1 + N , the above equation can be

rewritten as:

m̂u,j = arg max
mu,j

2 log p(Λt1+N
t+2 |mu,j) = arg max

mu,j

λu,j (4.76)

Note that the residuals would be considered in a sequence starting at t + 1 and not t.

This is due to the fact that the fault affects the system starting at t + 2 or in other words
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Gu(t + 1; t) = [0]r×n. The log-likelihood function can be defined as Eq.(4.32) and in this

case we have:

γ′(k) = γ(k)−mu,j(k − t− 1)Gu(k; t)gu,j

+my,j(k − t′ − 1)Gu(k; t′)gu,jσ(k − t′ − 1)

It is straightforward to find:

λu,j = 2 log(ζ)−
t1+N∑
k=t+2

{
γT (k)V (k)−1γ(k)

+m2
u,j(k − t− 1)2gTu,jG

T
u (k; t)V (k)−1Gu(k; t)gu,j

+m2
u,j(k − t′)2gTu,jG

T
u (k; t′)V (k)−1Gu(k; t′)gu,jσ(k − t′ − 1)

−2m2
u,j(k − t− 1)(k − t′ − 1)gTu,jG

T
u (k; t)V (k)−1Gu(k; t′)gu,jσ(k − t′ − 1)

−2mu,j(k − t− 1)gu,jG
T
u (k; t)V (k)−1γ(k)

−2mu,j(k − t′ − 1)gu,jG
T
u (k; t′)V (k)−1γ(k)σ(k − t′ − 1)

}
(4.77)

solving ∂λu,j
∂mu,j

= 0 yields:

m̂u,j,t,t′ =
Ωu,j,t,t′(k, t)

Υu,j,t,t′(k, t)
(4.78)

where

Ωu,j(k, t, t
′) ,

t1+N∑
k=t+2

{[
(k − t− 1)Gu(k; t)gu,j − (k − t′ − 1)Gu(k; t′)gu,jσ(k − t′ − 1)

]T
V (k)−1

× γ(k)

}

and

Υu,j(k, t, t
′) ,
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t1+N∑
k=t+2

{[
(k − t− 1)Gu(k; t)gu,j − (k − t′)Gu(k; t′)gu,jσ(k − t′ − 1)

]T
V (k)−1

×
[
(k − t− 1)Gu(k; t)gu,j − (k − t′)Gu(k; t′)gu,jσ(k − t′ − 1)

]}

Assuming the log-likelihood ratio in Eq.(4.34) and substituting m̂u,j,t,t′ into this equation

results in:

Tu,j,t,t′ =

[
Ωu,j(k, t, t

′)
]2

Υu,j(k, t, t′)
(4.79)
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Chapter 5

Conclusions

The main goal of this study is to propose an FDI scheme which is capable of accurately

detection time of occurrence of the fault (TOF), isolate the fault type and estimate its

magnitude in LTI systems. The abnormalities addressed in this study are assumed to

be additive faults which may occur in sensors or actuators in the form of abrupt jumps

or incipient faults. The existing methodologies in the literature are either burdensome

from computational point of view (Willsky and Jones, 1976; Gustafsson, 1996) or fail

to accurately detect TOF (Prakash et al., 2005; Prakash et al., 2002). Moreover in the

study by (Gustafsson, 1996) isolation of the fault and estimation of its magnitude is not

addressed at all. It is worth noting that the FDI scheme proposed by (Villez et al., 2011)

improves the accuracy of TOF but yet it fails to provide a closed form solution for the GLR

based test statistic and the estimated fault magnitude. In another study by (Dos Santos

and Yoneyama, 2011), it is suggested to decouple isolation and estimation phases using an

MLR-based approach. However, the unrealistic Gamma priors are used to marginalize the

fault magnitude which in no way could be justified but mathematical convenience.

In the above studies, the major focus is to detect, isolate and estimate the magnitude of

step type faults and there arises a need to provide an FDI scheme which is also capable of

dealing with more realistic incipient faults.

113
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5.1 Main Contributions of Chapter 1

Motivated by the shortcomings of the methods proposed in (Narasimhan and Mah, 1988;

Prakash et al., 2005; Prakash et al., 2002), in chapter 2 a new FDI scheme has been

proposed based on the GLR test and use of statistical FDT and FCT tests proposed

by (Narasimhan and Mah, 1988). The modified GLR-based method overcomes the

shortcomings related to the methodology proposed in the study by (Prakash et al., 2002) in

detecting the time of occurrence of the fault using a modified GLR approach. The proposed

method simultaneously performs the detection of TOF, isolation of the fault and estimation

of its magnitude. The new methodology removes the need for continuous operation of

banks of Kalman filters over a sliding window as proposed by (Willsky and Jones, 1976) by

taking advantage of the FDT and FCT tests. The χ2 −MGLR method then tries to refine

the estimated TOF by FDT and FCT tests using an extended data window. The method

presented in this study is then complemented by a strategy which prevents the FDI from

taking any action when sufficient number of data points are not available for estimation

of fault magnitude. The method was tested subject to extensive Monte Carlo simulations

on a benchmark reactor problem and the results reveal that it outperforms the FDI scheme

presented in the study by (Prakash et al., 2005).

5.2 Main Contributions of Chapter 2

In chapter 3 a new FDI scheme has been proposed based on the MLR test and use of

realistic uniform priors for fault magnitudes to address detection of time of occurrence of

the fault, isolation of the fault and estimation of its magnitude. The MLR-based approach

proposed by (Gustafsson, 1996) deals with detection the abrupt jumps in the states using flat

non-informative priors and does not address the isolation of the fault and estimation of its

magnitude in sensors and actuators. In another study by (Dos Santos and Yoneyama, 2011)
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uses the unrealistic Gamma priors for fault magnitudes which heavily penalizes the low

and high fault magnitudes. The proposed approach in chapter 3 is based on uniform

priors which arise from the concept of bounded process priors and in addition is capable

of isolation and estimation of fault magnitude which might occur in both sensors and

actuators. The proposed methods overcome the shortcomings related to the methodology

proposed by (Prakash et al., 2002) in detecting the time of occurrence of the fault using a

MLR-based approach. The proposed method simultaneously performs the detection of time

of occurrence and isolation of the fault and the estimation of fault magnitude is undertaken

by a least squares approach. The superior performance of the proposed method compared

to the FDI schemes proposed in (Prakash et al., 2002; Prakash et al., 2005) can be mainly

attributed to accurate detection of time of occurrence of the fault.

5.3 Main Contributions of Chapter 3

In the proposed scheme of chapter 4, statistical FDT and FCT tests are used as the early

stage announcers of the time of occurrence of the fault. The method was tested subject to

extensive Monte Carlo simulations on a benchmark reactor problem and the results reveal

that it outperforms the FDI scheme presented in (Prakash et al., 2005; Prakash et al., 2002).

In this study a new FDI scheme has been proposed based on the GLR test and use of

statistical FDT and FCT tests to address detection of time of occurrence, isolation and

estimation of the magnitude of more realistic ramp type faults faults. The proposed methods

overcome the shortcomings related to the methodology proposed by (Prakash et al., 2002)

in detecting the time of occurrence of the fault and its limited application to step type

faults. In the proposed scheme, statistical FDT and FCT tests are used as the early stage

announcers of the time of occurrence of the fault. The suggested scheme is flexible in

dealing with ramp, truncated ramp and step type faults and can handle all of them using
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the same framework. In this study, the fault signature matrices for ramp type faults are

developed and a closed form solution is provided to estimate the slope of the ramp and

truncated ramp fault. The method was evaluated via extensive Monte Carlo simulations on

a benchmark reactor problem and the results reveal that it can effectively detect, isolate and

estimate the ramp type faults.

5.4 Suggestions for Future Work

This study can be further improved by incorporating the following suggestions:

1. Extending the concept of MLR to multiple simultaneous fault that might occur in a

system. In this study it was assumed that single faults might occur sequentially but

not simultaneously and by relaxing this assumption, there arises a need to develop a

new MLR-based FDI. Moreover, the fault signature matrices should be modified to

take into account the evolution of states and the residuals when the system is subject

to multiple simultaneous faults.

2. Developing an FDI strategy to deal with additive faults when the system is also

subject to unknown inputs. In this case, the typical Kalman filter cannot be used and

hence an alternative unknown input observer (UIO) should be used. Nonetheless,

the main challenge would be developing the new fault signature matrices and the

GLR test statistic. Another improvement to be considered could be replacing the

GLR-approach with an MLR-based counterpart.

3. In chapter 4 it is assumed that the faults occur exactly at sampling instants and not in

between. This assumption can be relaxed by considering the possibility of occurrence

of the fault at inter-sample instants. These faults could be modeled as sum of a step

jump and a ramp type fault occurring simultaneously and despite the fact that one
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can use the fault signature matrices which are already developed, computation of the

GLR test statistic and estimation of the fault magnitudes would be very challenging.
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