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Abstract

A biomarker is a feature (e.g., gene expression, SNP, etc.) that is significantly
different between two classes of instances — typically case and control. Knowing
these biomarkers can help us understand a biological condition or identify the
appropriate treatment for a certain disease. Many researchers try to identify
these biomarkers by using univariate hypothesis testing over a labeled dataset
— selecting a feature if it is statistically significantly different. However, such
sets of proposed biomarkers are often not reproducible — subsequent studies
typically fail to identify the same sets; indeed, there is often a very small
overlap between the biomarkers proposed in various pairs of related studies,
exploring the same phenotypes over the same distribution of subjects.

This dissertation first defines the Reproducibility Score for a labeled dataset,
as a measure (in [0,1]) of reproducibility of the results produced by the specified
biomarker discovery process, for this distribution of subjects. We then provide
ways to reliably estimate this score — giving ways to produce an over-bound,
an under-bound and a middle-value approximation for this score for a given
dataset. These specific tools apply to the univariate hypothesis testing on
dichotomous groups. We confirm that these approximations are meaningful by
providing empirical results for many datasets (microarray, RNAseq and SNP),
and show that these predictions match known reproducibility results. Finally,
we explore how changing some of the settings of a biomarker discovery process
(such as p-value threshold, p-value correction method, sample size, etc.) can

affect the results and the Reproducibility Score using real datasets.
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Preface

This dissertation is a collaborative research paper, “Analyzing Biomarker Dis-
covery: Estimating the Reproducibility of Biomarkers” by Amir Forouzandeh,
Alex Rutar, Sunil Kalmady and Russell Greiner.

The “Overbound” and “Underbound” algorithms are based on earlier work
done by Dr. Sunil Kalmady and the “Middle-Value Approximation” is a con-

tinuation on the work done by Alex Rutar.
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Chapter 1

Introduction

Better understanding of a disease will clearly lead to better diagnosis and
treatments. This often begins by finding “biomarkers”, which generally refer
to “a characteristic that is objectively measured and evaluated as an indi-
cator of normal biological processes, pathogenic processes, or pharmacologic
responses to a therapeutic intervention” [52]. These are typically individual
features (e.g., expression values of specific genes [54], [56]) that follow differ-
ent distributions (e.g., have different mean values) in diseased versus healthy
subjects.

Biomedical researchers can sometimes identify these biomarkers based on
their domain knowledge of the disease etiology and/or cellular pathways —
seeking features that are causally related to the disease; perhaps correspond-
ing to the cause of the disease (e.g., phenylketonuria is caused by a single
gene PAH, which codes for hepatic enzyme phenylalanine hydroxylase [7]) or
a symptom of it (e.g., Hemoglobin A1C for monitoring the degree of glucose
metabolism in diabetes [31].) This dissertation, however, focuses on ways to
evaluate and validate the biomarkers discovered from a given labeled dataset
of earlier subjects — think of a matrix whose rows each correspond to a person,
and whose columns each correspond to a feature (e.g., clinical measure, or the
expression value of a gene), with the final column being the label (e.g., case
versus control); see Figure 1.1.1 These “biomarker discovery studies” (aka “as-
sociation studies”?) then try to determine which of the features (columns) are
statistically “different” in case versus control. This often involves first com-
puting some statistics for each feature — e.g., for real-valued entries, running
a t-test based on the mean and variance over the controls and over the cases
— then declaring a feature to be a biomarker if the resulting FDR-corrected

L For notation: We will refer to each of the first » columns of the matrix shown in
Figure 1.1 as a “feature”; these are often called “(independent) variables”. We will refer to
the final column as a “label” — e.g., case versus control — these are often called “dependent
variables”, “groups”, “phenotypes” or “classes”. Finally, we will use “instance” to refer to
each row of that matrix; these are sometimes called “subjects” or “samples”.

2Two standard examples here are the “Genome Wide Association Study” [GWAS], over
a set of SNPs [10]; and the “Gene Signature Study” [8], among many others.
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p-value is below 0.05 [62] — or stated more precisely, whenever we can reject
the null hypothesis that the two means are equal; see terms defined below.

In some situations, the researchers then apply some biological or medical
process to validate these biomarkers — e.g., based on knock-out or amplifica-
tion studies [15], [49]. Similarly, they may match the proposed biomarkers
to existing biological knowledge — perhaps based on earlier knock-out studies.
(Of course, this relies on having such prior knowledge, and knowing that it is
correct.?) Alternatively, other projects instead use the purported biomarkers
in a computational model — perhaps a classifier [1], [21], [60], then apply some
measure on that down-stream model (such as its accuracy), and declare the
biomarkers to be useful if that model scores well. A great many papers, how-
ever, simply publish the list of purported biomarkers, but provide no validation
for this set.* This dissertation addresses this limitation by providing a falsifi-
able (statistical) claim about these biomarkers, which suggests a validation of
these proposed biomarker sets.

While some biomarkers are causally related to the associated label, this is
difficult to obtain (often requiring instrumented studies [40]), but fortunately,
it may be sufficient for the features to be correlated with the phenotype. Here,
an ideal biomarker discovery process would identify all-and-only the features
that are consistently correlated with the associated disease, in that its pres-
ence (or absence or specified minimum concentration or ...) alone supports
that disease. Hence, many researchers would say that a proposed biomarker
is good if it is reproducible — i.e., that the biomarkers found in one study,
would appear in many (ideally, all) future studies that explore this disease.
This has motivated the use of independent test sets to check the validity of
the earlier findings. Unfortunately, many papers report this is not the case —
i.€., that relatively few biomarkers appear across multiple studies. For exam-
ple, while the breast cancer studies by van’t Veer et al. [54] (resp., Wang et
al. [56]) reported signatures with 70 (resp., 76) genes, they had only 3 genes
in common. Others have noticed this: Ein-Dor et al. [18] notes: “Only 17
genes appeared in both the list of 456 genes of Sorlie et al. [50] and the 231
genes of vant Veer et al. [54]; merely 2 genes were shared between the sets of
Sorlie et al. and Ramaswamy et al.[42]. Such disparity is not limited to breast
cancer but characterizes other human disease datasets (Lossos et al. [2]) such
as schizophrenia (Miklos and Maleszka [35])”. We should also note that ob-
serving certain associations in one dataset, does not mean that we would find
the same associations in other independent datasets [36]. In fact, it has been
shown that most promising biomarkers in one dataset will not have as good
results in independent datasets [24], [45].

3And of course, studies that only replicate what is already known, will not identify novel
biomarkers.

4 This may be because biological validation is not yet implementable, or the technology
is not yet available. Alternatively, the biological validation may be possible but this will be
a major project to be explored in future works.
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Figure 1.1: Data matrix, showing t-test p-values for each (shown) feature for
the GSE 7390 dataset [14], wrt the group label (here “Metastasis” for breast
cancer); the circled features, with p <0.05, are (purported) biomarkers.

There are many possible reasons for this. (1) Each study should consider
the same well-defined “distribution” over instances — e.g., over the same dis-
tribution of ages and genders, etc. If the study is distinguishing case from
control, then the two sub-populations should differ in only this single char-
acteristic, but should otherwise be the same — perhaps pre-treatment women
over sixty years old — and well defined label: whether each of these women
developed breast cancer within 5 years. Unfortunately, matching cases and
controls over all possible covariates is often not achievable.  (2) A second
issue is defining exactly what “reproducible” means — e.g., is it a property of
a specific biomarker, or of a set of biomarkers? In either case, what is the
best objective measure to use? This is especially problematic when dealing
with multifactorial diseases, where the label corresponds to a disjunction over
many sub-diseases. (3) A final important issue is the sample size: many stud-
ies have relatively few instances, which increase the chance of finding both
false negatives and false positives.

Our analysis assumes the researchers have addressed the first “sampling
selection” issue (1), by running carefully designed, well-specified studies. Fur-
ther, we also assume that there is no uncertainty in the labels with respect to



its clinical or biological definition. We will provide a precise measure of repro-
ducibility (2), as well as some specific implementations, and show empirically
how this varies with sample size (3).

This dissertation will focus on the simplest type of biomarkers: single
stand-alone features. Note each feature could be a pre-defined combination
of single features (e.g., the average expression values of the genes associated
with a pre-defined signalling pathway — see gene enrichment [53]°), but we are
not considering learning combinations. We will assume there is a Biomarker
Discovery process, BD( - ), that, given a labeled data matrix of n instances over
a set of r features, identifies a subset of those features, which it returns as a
set of (proposed) biomarkers; see Figure 1.1.5

As noted above, we are not considering approaches that validate proposed
biomarkers based on further (or prior) biological studies, nor on downstream
learned predictors. Instead, we consider computational (not biological) ways
to validate such feature sets — following the intuition that biomarkers should
(at least) be consistent.

In particular we define the Reproducibility Score RS( D, BD ) that quantifies
the “reproducibility” of the set of proposed biomarkers BD( D ), produced by
running BD over the size-n labeled dataset D: wiz.,

the average Jaccard score between these proposed biomarkers BD(
D),

and those produced by running the same BD process over another
size-n dataset drawn from the same distribution.

(1.1)

(We give a formal definition in Section 2.1.)

This dissertation presents a framework that describes the Reproducibility
Score and the challenges of estimating this measure and defines three approx-
imations for RS: an overbound, an underbound and a middle-value form, then
provide empirical tests over many datasets — microarray and RNAseq data
(with real values) and SNP data (discrete values) — and focusing only on t-test
as the main Biomarker Discovery process BD( - ), to confirm the effectiveness
of these approximations. Researchers can use this framework, as a first step,
to estimate the reproducibility of the potential results of their biomarker dis-
covery study. A low RS suggests that these biomarkers might not be accurate
which may mean that the size of the dataset used is too small or the dataset is

5 As a subtle point: these features could be based on information previously learned from
another dataset, or could be re-encodings of the current data, perhaps based on Principle
Component Analysis [27].

6 Note this is a single step. Some more modern GWAStudies involve many phases —
typically using one phase to reduce ~ 10° features to a few thousand based on one dataset,
and then using a second dataset to reduce those features to a sub-subset, etc [46]. Here, our
analysis is relevant to any one of these phases; see Figure 1.1. Many studies regressed out
covariates before finding biomarkers, we assume this has happened and our analysis takes
those regressed out values.



too heterogeneous or perhaps the BD( - ) algorithm used is not suited for this
dataset.

We first close this section by motivating the need for an objective measure
for evaluating the quality of a set of biomarkers (Section 1.1), then provid-
ing a short overview of why it can be difficult to find biomarkers, in general
(Section 1.2) and finally overviewing some earlier studies that discuss the is-
sue of reproducibility in biomarker discovery and/or provide approaches that
could be beneficial when dealing with such problems (Section 1.3). After this,
Chapter 2 first provides a formal description of the problem then explains the
three approximations, and associated algorithms, that we suggest for the Re-
producibility Score, and then describes some of the standard BD( - ) algorithms.
Chapter 3 summarizes our empirical experiments and the datasets used, and
reports the results of the empirical study over many datasets, to show that
our system works effectively — i.e., that our assumptions hold true.

Chapter 4 summarizes some future work and the contributions of this dis-
sertation. The appendices provide auxiliary information: discussion of how
Biomarker Discovery differs from standard (supervised) Machine Learning, and
results from other empirical studies, which explore how the RS varies with the
type of FDR correction used (including “none”), the p-value threshold and the
number of iterations of the approximation algorithms.

1.1 Motivation for Evaluating Biomarker Sets

To motivate the need for evaluation for association studies, consider first pre-
dictive studies, which use a labeled dataset, like the one shown at the top of
Figure 1.1, to produce a predictive model (perhaps a decision tree, or a linear
classifier) that can be used to classify future instances — here into two classes
(there Y vs N). Of course, in addition to the learned classifier, the researchers
will also compute a meaningful estimate of its quality — i.e., of the accuracy
(or AUROC, or Kappa Score, or ...) of this classifier on an independent held-
out set [57], or the k-fold cross-validation results over the training sample —
perhaps “78 + 2%” accuracy. There are (at least) three obvious things to do
with this evaluation score: (1) Researchers can use this score when comparing
different learning algorithms, seeking the learned classifier that gives the best
average accuracy.” (2) If the score of this best algorithm is low (say only 51%
accuracy on a balanced, binary dataset), the researchers will probably decide
there was not sufficient signal in the data, or the dataset was too small to reveal
it. (3) Finally, if the researchers decide to disseminate that learned classifier
(e.g., in a publication), they will of course announce that estimated score,
along with the learned classifier. Note this can serve as a falsifiability claim:
if future users run that learned model on a dataset, from the same patient
distribution, they should expect to find its accuracy is at least 78 — 1.96x2%.

TOf course, they have to be careful to avoid overfitting; see Witten & Frank [57].
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Observing an accuracy that is much below that score, over a dataset from this
same distribution, strongly suggests that the presented model is wrong.®
By contrast, many association studies report only a set of purported biomark-

ers, but provide no (estimated) score. Given that biomarkers should be repro-
ducible (note the number of meta-reviews that claim that a set of biomark-
ers is problematic if they are not reproduced in subsequent studies [18], [33],
[61]), we propose evaluating a biomarker set with its reproducibility score; see
Equation 1.1. An accurate estimate of this score can help in the three ways
discussed above, for predictive studies:(1) Researchers can compare various dif-
ferent “comparable” BD( - ) algorithms, to see which produces the biomarker
set that is most reproducible. This “comparable” corresponds to standard
practice, where we only consider discovery tools that impose some criterion,
such as the same p-value, or only considering features that exhibit a minimum
fold-change. This automatically means we would not be comparing discovery
tools that use p = 0.05 with others that use p = 1.0.2 (We will see that
FDR-correction, while useful in removing false-positives, can be detrimental
to the goal of producing reproducible biomarkers; similarly, there is no reason
to insist on p <0.05 for the statistic test used.) This could also help answer the
question of whether we should use some other criterion (such as fold-change;
see Section 1.3) as well as p-value, for determining the best set of biomarkers.
Indeed, this type of analysis might help debug a problematic BD( - ) algorithm.
(2) A low RS score, for the best BD(-) algorithm, suggests that few of these
purported biomarkers will be found in another dataset, which argues these
purported biomarkers might not be accurate — which might argue for not us-
ing such a small dataset, etc. (3) Finally, there are many meta-reviews
that note that different studies find different sets of biomarkers and question
whether the techniques used are to blame — e.g., [19], [29], [36]. One way to
address this concern is to require that each published paper include both the
purported set of biomarkers, and also an estimate of its reproducibility score,
RS. The same way a prediction study’s “5 fold cross validation” accuracy tells
the reader how accurate the classification model should be on new data, this
reproducibility score would similarly tell the reader whether to expect another
study, on a similar dataset, will find many of the same biomarkers. A low RS
score suggests that few of these purported biomarkers will appear in another
dataset, which argues they might not be strongly associated with the label
(think “disease”). Reviewers, and other critics, might then argue that these
results might not be meaningful — either because the dataset is too small or
too heterogeneous or the BD( - ) technique used is problematic. Note that we
should view this RS test as necessary for considering a proposed model, but
not sufficient — i.e., it might rule-out a proposed discovery model, but should

80f course, this assumes that the evaluation of the model’s performance is done correctly;
and even then, this claim is only with 95% confidence. It is still suggestive of a problem.

9 A tool that uses p = 1.0 — such as BD¢,1.0,BH, defined below — would return all features
for any dataset, and so necessarily have a Jaccard of 1.0.
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not be enough to rule-in a model.

Despite the tight coupling showing that evaluation goals from Supervised
Machine Learning can apply to our Biomarker Discovery task, there are sev-
eral significant differences between these two tasks. In general, a predictive
model provides some information about an individual — eg, whether she has
some disease. By contrast, an association study identifies features, with the
prediction that they will each exhibit some population difference wrt a dataset
of many individuals. Also, it is relatively easy to evaluate the quality of
a learned predictive model, by running that predictor on a held-out set of
instances. By contrast, there is no direct way to determine if a purported
biomarker is correct. This is why we, instead, look for “consistency” of a set
of biomarker discovery tools. That is, we hope that these discovered feature
sets have low variance. (Note that they can have high-bias — eg, if they all set
p = 1, then each discoverer will return all features; this will have low variance,
but presumably high bias.)

1.2 Why is Biomarker Discovery so difficult?

Above we observed that a set of biomarkers might not be reproducible across
different studies. This might be due to the difficulty of identifying biomarkers
from a small sample. Another challenge is based on the nature of univariate
biomarkers in general: When the target is a complex disease or condition, a
single feature is not sufficient to accurately explain the outcome; indeed there
are situations where a combination of features are important, but each of the
component features, by itself, is completely irrelevant, and so would not qualify
as a biomarker.

As an example, consider a baby in utero, and note that its health may
be completely uncorrelated with the Rh blood type of its mother, MRh &€
{+, —}, and is also completely uncorrelated with the father’s Rh factor, FRh
— which means neither MRh nor FRh could be a biomarker. However, suppose
finding these blood factors are different MHr#FHr, increases the baby’s risk.
Assuming balanced sampling (with an equal number of MRh=+ and MRh=—,
and similarly for FRh), this means an effective predictive model would need
to include both features, even though neither is a biomarker. We typically
assume that a feature either increases the risk of a disease in all situations,
or always decreases that risk. This in-utero-baby example shows this is not
always the case: We see that MRh=+ can sometimes increase the risk (when
FRh=-), and other times, decrease the risk (when FRh=+). Hence, a simple
linear combination of feature values might not always be appropriate.

While this is an extreme situation — where each feature is completely ir-
relevant by itself — it is relatively common for a disease to be associated with
many minor features; here again, it is possible that none of the features, by
itself, shows sufficient class distinction to qualify as a biomarker. This also
happens when the class is inherently heterogeneous — e.g., “headache” can be
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based on various phenomena, including ischemic stroke, dehydration, migraine,
etc., each with various different factors. This is believed to happen with es-
sentially all complex genetic disorders, especially when underlying pathologies
are not known.

These situations argue that a panel of features can sometimes be more
appropriate than individual features. If the model starts with a pre-defined
combination of a set of features — e.g., a simple average of a specific set of gene
expression values, or the number of heterozygous settings in a specific set of
SNPs — then we can view that combination as a (super-)feature, and let it be
a column in the matrix of Figure 1.1; the analysis described in the dissertation
still apply. Note, however, that here we assume this super-feature construction
is known initially, and in particular, this dissertation is not exploring ways to
find these features — i.e., it is not describing machine learning tools for produc-
ing new super-features. We are also not considering multivariate approaches,
where one feature can implicitly condition on other features simultaneously —
e.g., multiple regression models.

1.3 Related Work

There have been many pairs of studies that have each produced biomarkers for
the same disease or condition, but found little or no overlap between the two
lists of purported biomarkers. Many papers have discussed this issue — some
describing this problem in general [18], [19], [61], and others exploring specific
examples[33], [62]. These papers suggest different causes for the problem,
such as the heterogeneous biological variations in some datasets [18], [61] or
problems in the methods used that may lead to non-reproducible results [22],
48].

In particular, Zhang et al. [61] challenge the claim that the non-reproducibility
problem in microarray studies is due to poor quality of microarray technology,
by showing that inconsistencies occur even between technical replicates of the
same dataset. They also show that heterogeneity in cancer pathology would
further reduce reproducibility.

Ein-Dor et al. [18] also show the inconsistencies between the results of
subsamples of a single dataset, demonstrating that the set of (gene) biomark-
ers discovered is not unique. They explain that there are many genes corre-
lated with the group labels, but the empirical correlations change for different
(sub)samples of instances. These two papers motivate our need for tools that
can effectively bound the reproducibility — such as the ones presented here.

Several projects [19], [22], [48] have attempted to formally analyse this
problem. Ein-Dor et al. [19] describe a method, probably approximately cor-
rect (PAC) sorting, that estimates the minimum number of instances needed
for a desired level of reproducibility. As an example, this worst-case analysis
proves that, to guarantee a 50% overlap between different gene lists for breast
cancer, each dataset needs to include at least several thousand patients. This
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suggests poor repeatability results when using small sample sizes, which is con-
sistent with our results for datasets with smaller sample sizes; see Chapter 3,
especially Figure 2.3.

The goal of the MicroArray Quality Control (MAQC) project [48] was to
address the problems and uncertainties about the microarray technology that
were caused by the observation that different studies (of the same phenotype)
often found very different biomarkers. They suggest that the common ap-
proach of using just t-test p-values (specifically stringent p-values) can lead
to poor reproducibility, which motivated them to consider methods like fold-
change ranking with a non-stringent p cutoff, which they demonstrate leads
to more reproducible gene sets. In a follow-up, Guo et al. [22] found similar
results by using the same procedures for another dataset.

However, Klebanov et al. [30] later show that these MAQC project results
do not prove that using t-tests is necessarily unsuitable — i.e., just because
another method (here fold-change) can generate more reproducible results,
does not mean that it is performing better; as an extreme, the algorithm that
declares every gene is a biomarker, is completely reproducible; see Footnote 9.
They demonstrate these points by using a set of simulation studies (where
they know the “true biomarkers”), and use either t-test or fold-change to
propose potential biomarkers. These studies found that the t-test approach
performed much better than the fold-change, in terms of recall. These results
motivated us to use the t-test approach (rather than fold-change) as our main
BD algorithm — which we use for all of our empirical experiments.



Chapter 2

Materials and Methods

2.1 Formal Description

As suggested by Figure 1.1, a “Biomarker Discovery” algorithm, BD( - ), takes
as input a dataset D of n instances, each described by r features F' = { f1,..., f+}
and labeled with a binary class, and returns a subset of features I’ C F of
purported biomarkers, where each f € F’ shows a class difference. That is,
letting xf be the value of the i** feature of the j* instance, and ¢Y) be the
label of the j instance (which is either Y or N), the set {z/| (%) = Y} of
values of the ¥ feature of the diseased individuals, is significantly different
from the values of that feature over the healthy individuals {z7 |¢(¥) = N}.
We will assume that these {mf }ij values are either all continuous (such as
height, or the expression value of a gene), or all discrete (think gender, or the
genotype of a SNP). (Section 2.2 below will describe several such BD( - )s.)

As noted in Equation 1.1, the Reproducibility Score RS( D, BD ) quantifies
the “reproducibility” of the set of proposed biomarkers BD( D ), produced by
running BD over the size-n labeled dataset D. Here, we assume that the values
of each feature 27, for each label ¢, are generated independently from a fixed
distribution (i.e., “iid”) p;.(-) = p(zW | £€Y) = ¢). Note these are just the
marginals; we do not assume that the various features are independent from
one another, — i.e., this does not necessarily correspond to Naive Bayes [57].
We will view p(-) = {pj.(-) };c as the set of these 2 x r different distributions,
and let p™(-) be the distribution for drawing n instances, iid, from this set of
distributions. Then

RS*(p(-),n, BD(:)) = Ep p e J(BDD), BD(D”))] (2.1)
where the Jaccard score of two sets
|A N B
J(A, B = — 2.2
(4.8) = G (2.2

is the ratio of the intersection to the union of these sets — hence J( A, B)
ranges from 0 to 1, and is 1 iff A = B, and is 0 iff these sets are disjoint.
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(Appendix A.3 discusses another measure that is sometimes used to measure
the reproducibility of a set of biomarkers.)

Of course, we do not know p(-), and so we use the empirical distribution,
based on the dataset D — call it pp(-) — to produce:

RS(D,Bp(-)) = RS*(po(-), |D|, BD(-)) (2.3)

which measure the reproducibility of the biomarker set BD(D). N.b., this
Reproducibility Score deals with the set of biomarkers that is produced by the
BD( -) function, and not any single specific biomarkers.

Of course, Equation 2.3 suggests the obvious bootstrap sampling algorithm
[17]. Empirically, however, we found that it did not perform well — motivating
the algorithms described in Section 2.3.

2.2 Biomarker Discovery Algorithms: BD( )

The previous sections discussed how to evaluate the result of applying some
biomarker discovery algorithm BD( - ) on a labeled dataset, and provided some
approximations here. This section describes some of the standard biomarker
discovery algorithms.

Initially there are two types of datasets, depending on whether its feature
values (the xﬁ mentioned above) are continuous or discrete. However, for
datasets with categorical values — SNPs in our analysis — we use a simple
preprocessing step, which precedes all the BD( - ) algorithms described here, to
convert each categorical value to a real number, allowing us to view each such
dataset as one with continuous values. In particular, we convert each SNP
feature, which ranges over the values { AA, Ab, bb }, to the real-values { 0,
1, 2 }, corresponding to the number of minor alleles (“b”) in the genotype.

Here we assume that the real values of each feature (column) follow a
normal distribution, which might be different for the different classes, and
so we use a t-test (independent two-sample t-test) for all of our empirical
experiments:

Xy — Xn
S \ar T ax
(2.4)

- \/<ny—1)5§/+(m—1>5§v'

ny—l—nN—Q

where ny and ny are the sample sizes of instances with label Y and label N,
respectively, with empirical means Xy and Xy and empirical variances 5% and
3.

Notice the biomarker discovery process is basically performing one statis-
tical test for each of a large number of features — often tens-of-thousands,

11



or more! This has motivated many researchers to seek ways to reduce the
chance of false discoveries — often by using some FDR (False Discovery Rate)
correction. Our studies focus on the Benjamini/Hochberg approach [5].

We refer to the resulting tool as BDy .05 51 (+), where the ¢ in the subscript
refers to the 2-sided t-test, the 0.05 for the p-value used, and BH to the Ben-
jamini/Hochberg correction. This notation makes it easy to consider many
variants — e.g., adjusting the p-value used for the statistical test, whether it is
applying another multiple testing correction, or none, etc.

2.3 Algorithms that Approximate the Repro-
ducibility Score

As we have the dataset D with n labeled instances, we can directly compute
BD( D ). To compute RS( D, BD(-)), we need to produce one (or more)
similar datasets D’, each with n instances drawn from the same (implicit)
distribution pp(-) that generated D, but which is presumably disjoint from
D. While we do not have such D"’s, and so cannot directly compute the
Reproducibility Score, we can compute an overbound, an underbound and a
middle-value estimate of RS( D, BD(-)).

2.3.1 Overbound

The ORS(D,BD(-),k) procedure produces (an estimate of) an overbound
of RS( D, BD(-)), by making it easier for a feature to be selected to be in
both purported biomarker sets. ORS first defines a size-2n dataset DD that
contains two copies of each instance in D, of course with the same label both
times. It then randomly “partitions” DD into two size-n datasets D1 and D2,
balanced by label.! Tt then runs BD( - ) on each, to produce two biomarker sets,
then computes the Jaccard score for this pair of biomarker sets: J( BD(D1),
BD(D2)). As we expect D1 to overlap with D2, it is relatively likely that any
D1-biomarker will also be a D2-biomarker (more likely than if D1 was disjoint
from D2), which means we expect the associated Jaccard score to be higher.
This follows from the observation that, as two datasets have more common
elements, we expect the number of biomarkers common to two datasets, to
increase — 1.e.,

if Ay, Az, By, By ~ p*(-) and
|A1 N A2 is larger than |B1 N B2|,
then we expect [BD(A1) N BD(A2)| will be larger than |[BD(B1) N BD(B2)|

(2.5)

I This “partitioning” is wrt the list of elements, which can include duplicates. Also, this
process actually keeps the datasets “balanced”, in terms of labels — this requires partitioning
DD into DDt and DD, where DDV are the cases and DD~ the controls. We then form
D17 by randomly drawing 1/2 of DD*, and D1~ by randomly drawing 1/2 of DD, then
forming D1 = D17 U D1™. See Figure 2.1.
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Figure 2.1: Diagram showing the process of generating pairs of subsets for a
dataset D and then computing the ORS(D,BD(-), k).

ceteris paribus. Our ORS( D, BD( - ), k) algorithm actually computes k dataset-
pairs {[D1,, D2,|},=1.k, whose list-union is DD (i.e., D1, + D2, = DD for
each 7), and returns the average

ORS(D,BD(-), k) = iJ(BD(DlT), BD(D2,)) . (2.6)

| =

It is easy to relate this approach to RS* (Equation 2.1), as each D1, and
D2, are drawn from pp(-). They are not quite bootstrap samples as this
approach means each instance will occur exactly twice in the (list)union of
D1, + D2,, while in a standard bootstrap sample, an instance might occur
many times in each individual drawn sample.?

2Some quick observations: (1) We expect 25% of the instances to be duplicated in any
given dataset. This is the minimum amount of resampling required to produce size-2n
dataset DD. (2) In general, we expect the number of biomarkers common to two datasets,
to increase as this pair of datasets includes the same instances more number of times — which
would happen in bootstrap sampling. (Note that we also tried that approach, but found its
associated scores to be too generous — they were higher than our current overbound scores,
ORS, for all datasets.) This is why we are instead using our “doubling approach”, as it
produces values that are smaller, but still remains an overbound, as desired.
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Figure 2.2: Diagram showing the process of generating pairs of subsets for a
dataset D and then computing the URS(D,BD(-), k).

2.3.2 Underbound

The URS(D,BD(-),k) procedure produces (an estimate of) an underbound
of RS( D, BD(-)), by making it harder for a feature to be selected to be in
both purported biomarker sets. First, observe that as n increases, we expect
the statistical estimates to be more accurate, and in particular, statistical
tests for differences between the two classes will be correct more often. Hence,
a statistical test will better identify the “true” biomarkers F* from an n-
element dataset D™ versus from an n/2-element dataset D™/?). Now consider
two n-element datasets D1™ and D20, and also two n/2-element datasets
E10/2) and E2"/2). As BD(D1™) and BD(D2™) are each closer to F* than
BD(E1™?) and BD(E2™/?)), we expect BD(D1™) and BD(D2™) to be closer
to each other, than BD(E1(™?) and BD(E2(™?)), which means we expect J(
BD(D1™), BD(D2™)) to be larger than J( BD(E1/?), BD(E2W2)) — i.e.,
we expect RS*(p(-), n, BD(-)) to be larger than RS*(p(-), n/2, BD(-)).
(Figure 2.3 shows this idea in general: given that

RS*(p(-), s, BD(-)) ~ EW[J(BD(D1®), BD(D2®))] (2.7)

we see that the RS* score increases with the size s of the dataset — i.e.,

if Al,AQ g pSA(~), Bl, BQ ~ pSB(') and
sA = |Al| = |A2| is larger than sB = |B1| = |B2|,
then we expect [BD(A1) N BD(A2)| will be larger than |[BD(B1) N BD(B2)|

(2.8)

Our URS(D,BD(-), k) algorithm first partitions D into two disjoint n/2-
instance subsets, E1 and E2, with balanced labels. It then computes J(
BD(F1), BD(E2)) which, by the argument above, should be an underbound
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Reproducibility Scores for different subset sizes
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Figure 2.3:  For each of the 5 datasets D , each point shows the average (&
sd) Jaccard E®[J(BD(D1®), BD(D2)))] over k = 20 pairs [D1(), D20)]
of disjoint size-s subsets of D, shown as a fraction of n, which is the size of
the original dataset. Note the x-axis can only go to n/2, and we are using the
standard BDy 0.05, 51 -

on RS(D, BD(-)). It actually does this partitioning % times, producing k
different { [F'l,, E2,]},-1., dataset pairs (each pair being disjoint, and each
dataset of size n/2) and returns the average; see Figure 2.2.

URS(D,BD(-), k) =

| =

zk:J(BD(Elr), BD(E2,)) . (2.9)

2.3.3 Middle-Value Approximation

Recall our goal is estimating the overlap between the biomarkers of two size-n
datasets; one reason why URS is an underbound is that it uses only size-n/2
datasets. This motivates us to extend URS to deal with size-n datasets. This
leads us to the middle-value which is very similar to the underbound URS,
as it also first partitions D into two disjoint, balanced subsets, E'1 and E2.
Here, however, it “extends” each subset: That is, if D contained 100 instances,
then E'1 and E2 would each have 50 instances. The MRS routine, however,
essentially uses the 100-instance ED1, which has the same empirical variance
and empirical mean as E1 but double the sample-size, and ED2 which has
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the same empirical variance and mean as E2 and double the sample-size.® As
with URS, we consider k different partitions, etc. Hence,

k
MRS(D,BD(-), k) = ZJ(BD(EDL), BD(ED2,)) . (2.10)

El

As MRS uses datasets that are twice as large as the ones used by URS, we
anticipate MRS(D,BD(-),k)> URS(D,BD(-),k) (see Equation 2.8), and as
MRS’s pair of datasets are disjoint, while ORS’s pair (typically) are not, we
anticipate that MRS(D,BD(-),k) < ORS(D,BD(-),k) (see Equation 2.5).

3 If BD is using a t-test (Equation 2.4) — such as BD; .05 5x — then that test would
basically involve simply doubling the values of ny and ny, so ny + ny =100 rather than
50.
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Chapter 3

Empirical Study over Various
Datasets and Results

3.1 Empirical Study

There are now many publicly-available datasets that have been used in associ-
ation studies. Here, we use them to (1) Better understand what Jaccard scores
are typical, for a range of standard BD( - ) algorithms; (2) Determine whether
our predictions match the results of earlier meta-analyses; and (3) Determine
if our approximations are meaningful — i.e., if (for large values of k):

URS(D,BD(-),k) < RS(D, BD(")) (3.1)
OoRS(D,BD(-),k) > RS(D, BD(-)) (3.2)
MRS(D,BD(-),k) ~ RS(D, BD(:)) (3.3)

The next section will explicitly discuss (1) and (2). It is trickier to deal with
(3): Given only a single dataset D of size-n, we cannot compute, nor even es-
timate, the true value of RS(D, BD(-)). However, we can estimate RS(D™/?),
BD(-)), where D("?) is a size-n/2 subset of D. In fact, URS(D, BD(-), k) is
a meaningful estimate of RS(D"™? BD(-)); below we will use

RS(D™? BD(-),k) = URS(D,BD(-),k) (3.4)

We will then compare this RS(D™?2, BD(-), k) against URS(D"/?),
BD(-), k), ORS(D™? BD(-), k) and MRS(D™? BD(-), k), to see whether
the relations of Equation 3.1, 3.2 and 3.3 all hold, wrt various size-n/2 subsets,
D®/2)

We can in fact do this for any size-s subset D®) of D where s < n/2. Here,
we need a set of pairs of disjoint label-balanced subsets D', D” C D where
|D'| = |D"| = s and D'N D" = {}. For a fixed dataset D, and specified
number k£ € Z, we can then plot these fitg( D®) BD(-), k) values along with
ORS(D® BD(-),k), URS(D®, BD(-),k), and MRS(D® BD(-), k) as a
function of s, to see their behaviour; see Figure 3.1.
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Figure 3.1: Showing how the approximations relate to one another, and scale
with the size s of the dataset. Here we are using subsets of the Metabric
dataset, with n=1654. We observed the same behavior for all datasets, i.e.,
ORS > RS ~MRS > URS, as the subset size s increases.

We explored our approximations over 25 different datasets, consisting of
16 microarray datasets and 2 RNAseq datasets with continuous data (see Ta-
ble 3.1). This first set includes 4 of the gene expression datasets discussed
in the Zou et al. [62] meta-analysis — each describing metastatic versus non-
metastatic breast primary cancer subjects' — to see if our method is consistent
with their empirical results. We also included 11 other relatively-small gene
expression datasets (from 19 to 187 instances), focusing on human studies that
had a binary class label from the GEO repository. To explore how our tools
scale with size, we also included 3 other relatively large datasets, with 532
to 1654 instances. As these were survival datasets, we set the binary label
based on the median survival time (removing any instance who was censored
before that median time). In addition to these 441143 = 18 gene expression
datasets (with real-valued entries), we also include 7 SNP datasets (from 39
to 164 instances), with discrete values, also selected from human studies with
binary class labels; see Table 3.3.

1 We were not able to replicate the results reported for the 5" dataset using our
BD algorithm, and so had to exclude that data.
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Reproducibility Scores for the 4 datasets and k= 100
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Figure 3.2:  Under-bound and over-bound for the 4 datasets and also the
true Jaccard score for each pair — 3 numbers for each dataset, shown by black
circles.

3.2 Results

We run our suite of methods over 25 different datasets, including 16 microarray
datasets and 2 RNAseq datasets, whose feature-values {zz } were real numbers
(recall each xi is the expression value of the i-th gene for the j-th subject;
we logo-transformed the values from the RNAseq datasets), and 7 were SNP
datasets, with categorical entries — i.e., each xf € {0, 1, 2} is the number
of minor alleles in the genotype for the i-th SNP for the j-th subject; see
Tables 3.1 and 3.3. Here, we use the the standard BD; 5 gu(-) biomarker
discovery algorithm.

First, we analyzed the 4 datasets mentioned in the Zou et al. [62] meta-
analysis (see the first 4 rows of Table 3.1) and computed the { URS( D, BD¢,0.05.5#, 50),
MRS( D, BD; 0.05.81,50), ORS(D,BDg055m,50) } values for each dataset D,
as well as the actual Jaccard score for biomarkers for each pair of datasets.
The results, in Figure 3.2, show that the Jaccard score for each pair is well
within the bounds computes by our approximations, for each of the datasets
in that pair — that is, the results for 4 x 3 = 12 ordered-pairs of datasets are
consistent with our predictions.?

We also analyzed the other 14 continuous datasets D, and computed the

2 We first verified that our BD¢,0.05,51 algorithm found the same biomarkers, as our PO
scores (Equation A.l in Appendix A.3) matched the ones they published. We can easily
compute the PO scores from the Jaccard scores and numbers of biomarkers.
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Table 3.1: Results for the microarray datasets when using all the instances.
The first 4 entries are from the Zou et al. [62] meta-study. Reproducibility

Scores are shown in the form of mean 4 standard deviation.

Name %Elstin(;is #features | #biomarkers || URS % MRS % oRS %
ajority %

GSE2034% [56] 286 (67%) 13245 277 0=+o 8.69 + 2.4 12.6 + 419
GSE11121* [47] 200 (86%) 13245 492 0.09 + o2 10 + 252 13.4 + 5.89
GsET390* [14], 38] | 198 (82%) 13245 18 0z+o 4.8 + 0.9 5.15 £ 281
GSE1456* [39] 159 (78%) 13245 443 0+o 10.09 + 232 | 13.6 + 6.4
Metabric [12] 1654 (57%) 24368 3675 18.5 + 386 | 26.64 + 232 | 39.8 + 356
BRCA [13] 552 (95%) 18320 2 0+o 2.21 + 127 2.5 +21
KIPAN [13] 532 (81%) 18271 2782 12.3 401 | 24.33 408 | 34.2 £ 474
GDS2771 [23], [51] 187 (52%) 22215 1807 0.32 £ o064 | 22.5 £7.75 31.68 + 047
GDS2545 [11], [59] 171 (563%) 12558 4291 34.0 + 400 | D4.1 + 346 54.58 + 031
GDS968 [44] 171 (53%) 9748 2506 47.5 395 | 62.3 £ 32 63.25 + o076
GDS2546 [11], [59] 167 (54%) 12553 2965 30.8 +482 | 49.4 + 248 49.0 + 055
GDS2547 [11], [59] 164 (54%) 12579 1810 23.7 £ 586 | 43.4 +3.37 42.66 + 0.70
GDS4431 [3] 146 (53%) 54613 140 0+o 7.51 +366 | 18.85 +0.34
GDS5218 [43] 110 (56%) 54675 10700 24.0 500 | 45.0 + 3.7 46.06 + 0.29
GDS3966 [58] 83 (63%) 22274 6554 31.7T xam | 53.7 £372 | 53.66 +o0.27
GDS4185 [4], [28] 67 (58%) 22283 6 0+o 7.08 +6.43 11.29 + 083
GDS2737 [9] 37 (57%) 54675 4 0xo 3.27 + 22 10.58 + o5
GDS4719 [20] 19 (53%) 54675 1 0+o 4.63 + 146 7.02 £ o071

ORS, URS and MRS values when using k£ = 50 repetitions; see Figure 3.3[left].
We see that the overbound ORS is consistently larger than the middle-value
approximation MRS, which in turn is larger than the underbound URS —
i.e., ORS >MRS > URS - as desired, Equations 3.1-3.3. Figure 3.3[right]
plots the corresponding values for the D(™?) datasets, that use only 1/2 of
the dataset, using the same BD(-) algorithm and k& = 50. It als/o\plots the

érg( D2 BD(-), k) values for the datasets. Here, we see ORS > RS ~MRS > URS,

as desired.

Finally, similar to that experiment over the 18 continuous datasets, we ex-
amined the 7 discrete datasets and produced the reproducibility scores. Fig-
ure 3.4[left] shows the scores for each of the 7 SNP datasets, demonstrating
that ORS > MRS > URS holds for the discrete cases as well. Figure 3.4[right]
shows the scores for D(™/?) datasets, when using only 1/2 of the dataset and
again we can see that oORS > RS ~MRS > URS, holds for all cases.

Appendix A provides the results of many additional empirical studies,
showing how the reproduciblity scores change based on which (if any) FDR
correction is used, the specific p-value used for the t-test, the number of draws
k used by the various approximations, and the size of the dataset n.
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Table 3.2:  Results for the microarray datasets when using half of the in-
stances. Reproducibility Scores and average number of biomarkers are shown
in the form of mean + standard deviation.

GSE2034* | 41.05 + 1448 0+o 0+o 4.58 420 | 6.39 £ 472
GSE11121* | 181.8 + 265.5 0xo 0.09 £o02 | 6.47 +a7a | 9.48 £ 767
GSE7390* | 1.38 +3.01 0=+o 0=+o 1.67 + 1.06 1.84 £ 21
GSE1456* | 58.38 + 138.11 0=+o 0=xo 4.05 £3912 | 4.5 £ 44
Metabric 1301.9 + s04.80 1.97 £386 | 18.5 +386 | 13.6 £379 | 21.6 £ 7.3
BRCA 36.75 + 17115 0=xo 0=xo 1.6 £ 216 2.6 + 42

KIPAN 694.48 + 398.88 0.88 +2 12.3 £491 | 11.63 + 403 | 19.3 £ 833
GDS2771 | 457.17 + se3.64 0.09 £ o062 | 0.32 064 | 19.03 £ 062 | 7.23 + 548
GDS2545 | 2051.58 + a9a.77 6.38 + 733 | 34.0 +4.00 | 38.51 £o066 | 38.1 +5.02
GDS968 1593.67 + 17335 26.0 £ 587 | 47.5 £395 | 51.3 £ 079 | 48.6 £ 521
GDS2546 | 1266.61 + 354.72 5.01 £715 | 30.8 482 | 34.97 +o065 | 33.5 +63
GDS2547 | 648.55 + 255.00 1.82 £ 424 | 23.7 £586 | 27.61 o075 | 27.3 + 663
GDS4431 | 43.35 + 284.56 0=+o 0=xo 14.31 £ 041 | 2.55 + 382
GDS5218 | 4207.29 =+ 1580.79 7.96 + 408 | 24.0 £5.00 | 30.70 £ 038 | 31.5 615
GDS3966 | 2976.15 + si1.02 10.6 £ 783 | 31.7 471 | 36.77 £o054 | 37.9 £6.4a

GDS4185 2.92 + 40.20 0+o 0+o 8.95 + 0.79 0.701 +3.11
GDS2737 | 0.79 + 7.3 0+o 0+o 6.13 + 0.63 1.73 + 2.82
GDS4719 0-36 + 1.88 0 + 0 0 + 0 7.99 + 1.18 2.8 + 5.31

Table 3.3:  Results for the SNP datasets when using all of the instances.
Reproducibility Scores are shown in the form of mean + standard deviation.

GSE15826 164 (54%) 909549 0 0+o 2.03 £ 006 | 2.5 + o058
GSE25103 [41] 122 (92%) 908512 325 0.27 + 014 | 1.53 +0.08 3.94 + 222
asE2s104 [32], [41] | 122 (92%) 909547 326 0.27 £ 014 | 1.45 £ 0.03 3.94 + 2.0
GSE18333 [34] 82 (54%) 909606 0 0+o 0+o 0+o
GSE15096 [37] 69 (58%) 909457 106482 5.37 £20 | 24.83 £435 | 33.4 528
GSE15097 [37] 68 (59%) 909456 108224 4.9 + 209 23.59 £ 261 | 34.2 £ 5.64
GSE13429 [55] 39 (79%) 262314 1267 1.66 + o044 | 9.18 + 051 21.4 + 376
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Table 3.4:

Results for the SNP datasets when using half of the instances.

Reproducibility Scores and average number of biomarkers are shown in the

form of mean & standard deviation.

A —~
Name . URS % | RS % PRS % | ORS %
#biomarkers
GSE15826 | 1.21 + s5.41 0xo 2.03 £o006 | 1.2 + 047 1.21 + o070
GSE25103 | 309.61 + 7s.24 0.13 £ 011 | 0.27 £ 014 | 1.36 £ 012 | 6.63 < 6.79
GSE25104 | 309.93 + 78.14 0.13 £ 011 | 0.27 £ 014 | 1.60 £ 007 | 6.64 + 6.5
GSE18333 | 0.01 + o1 0=xo 0=xo 0.18 023 | 0 +o
GSE15096 | 22393.87 + 20624.00 0.74 + 060 | 5.37 £29 | 6.89 +371 | 16.1 +6.01
GSE15097 | 22788.62 + 23342.37 0.77 + o062 | 4.9 + 2.90 12.16 +6.1 | 16.8 +6.85
GSE13429 | 339.29 + 170.11 1.73 £ 044 | 1.66 + 044 | 5.12 + 078 | 14 + 5.04
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Figure 3.3: Reproducibility scores (mean and standard deviation) for all 16
continuous datasets, both for complete datasets with n instances (left) and for
half-sized with § instances (right), for & =50 iterations. The x-axes (for both
plots) are sorted by the value of the over-bound for the D™ datasets. We
see, in both, that the over-bound ORS is consistently higher than the under-
bound URS, and the middle-value estimate MRS is between them. Moreover,
the right plot shows that the “truth” RS is also between URS and ORS.
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Figure 3.4: Reproducibility scores (mean and standard deviation) for 7 SNP
datasets, both for complete datasets with n instances (left) and for half-sized
with § instances (right), for 50 iterations. The x-axes (for both plots) is sorted
by the value of the overbound ORS for the D™ datasets. We see, in both,
that the over-bound ORS is consistently higher than the under-bound URS,
and the middle-value estimate MRS is between them. Moreover, the right plot
shows that the “truth” RS is also within the range of ORS and URS.
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Chapter 4

Discussion

4.1 Future Work

While the message of this dissertation is very general, the specific analyses all
used the standard discovery algorithm BD;g053m. Our empirical studies all
dealt with standard datasets, whose values were either all real values or all
categorical values; none had some of each. We only considered datasets whose
labels are binary and our use of t-test implicitly assumes they are Gaussian;
see also footnote 6. Our analytic model considers the overlap of biomarkers
found from two datasets, of the same size. (That is, we do not consider how
the biomarkers obtained from a 100-element dataset, overlap with those from
a 300-element dataset.) Finally, our analysis estimated the expected RS, for a
given BD and dataset D. It would be interesting to explore a variant of this:
Given a dataset D and a minimum score s > 0, find the “BD’( D, s) discovery
algorithm” that would produce the biomarker set whose expected Jaccard
score would be at least s. (This might mean adjusting the p-value cut-off,
and/or including some specific FDR algorithm, or some other modification.)

4.2 Contributions

There are effective ways to accurately estimate the reproducibility of the
biomarker set obtained from a (labeled) dataset and Bioaarker Discovery
method. This dissertation provides (1) a formal definition of the reproducibil-
ity of the biomarker set obtained from a (labeled) dataset and Biomarker
Discovery method, (2) techniques that accurately estimate this reproducibil-
ity score, and (3) empirical results that demonstrate the effectiveness of those
techniques, for a range of t-test based BD methods over 25 real datasets.

No Machine Learning paper simply presents a learned classifier — they al-
ways accompany that classifier with a claim about its accuracy (eg, “87 +- 2%
accuracy”, or “AUC of 0.72” or ...). Similarly, we anticipate that no future
Biomarker Discovery paper will simply present a set of biomarkers. Instead,
future biomarker discovery researchers will always accompany that set with
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some falsifiable claim — if not based on a biological experiment, or its use in
a downstream classifier, then about its reproducibility. This dissertation has
(1) motivated and defined this reproducibility framework — in terms of the set
of biomarkers, produced from a labeled dataset and a specific biomarker dis-
covery method, evaluated in terms of its expected Jaccard score wrt similarly
generated datasets, (2) presented a body of specific algorithms for effectively
bounding this reproducibility score for BD’s that are based on t-test, and (3)
demonstrated that this algorithms do effectively bound that RS.
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Appendix A

Exploring other settings

For consistency, all of the experiments in the main text used the same BDy g 05 g
biomarker discovery algorithm. It is worth noting that this tool produces very
different numbers of biomarkers over the 25 datasets we considered; see Fig-
ure A.1, which also relates this to the number of features in each dataset.
However, there are many other approaches that can, and have, been used in
other association studies. Here, we continue to consider only the t-test as the
main statistical significance test. Appendix A.1 explores different options for
the p-value threshold and the p-value adjustment method, to see how changing
these affect the reproducibility results. This dissertation introduced three
different approximations for the Reproducibility Score — URS, MRS, ORS.
Appendix A.2 explores how these approximations change as we adjust the

number of iterations of running the algorithms, k.

A.1 p-value adjustment methods and p-value
threshold

Note that FDR-correction is designed to increase precision (aka positive pre-
dictive value), but it might reduce recall (aka true positive rate or sensitivity),
which means it might reduce the Jaccard score, and so lead to lower RS scores.
We therefore experimented with different correction methods to see their effect
on the reproducibility of biomarker sets.

Figure A.2 shows the effect of Benjamini+Hochberg (BH) FDR correction

on the reproducibility scores, across all datasets. We see that this FDR correc-

33



Biomarkers found for D' for different datasets

10°
- & Number of features of the dataset
- j+ Number of biomarkers found for D2
107 4
=]
g A A AA Ad
L 10 : LY
£ a4 A . A
% by Tag L.‘_.‘,.‘.- \ A 4
£ "“‘__‘-.*
2 103 - kA
f _‘..‘..*-ll"‘ *
o E3
g 7 T S
E 10!
5 .
Z .. +*
1014 1:.‘
T T T T T T T T T T T T T T T

Figure A.1: Number of biomarkers (mean =+ sd) found for D2 when using
BD, 0.05,51 Over k = 20 iterations for various datasets, compared to the number
of features in each dataset. Note the y-axis is a log-scale.

tion is detrimental, as it reduces the reproducibility scores across all datasets:
While it is designed to reduce false discoveries (and hence increase precision),
this may mean it is reducing recall, which collectively leads to a smaller Jac-
card score.

There are many other methods for reducing FDR, in addition to Ben-
jamini+Hochberg (BH) [5], including: Benjamini+ Yekutieli (BY) [6], Bonfer-
roni [16], Hochberg [25] and Holm [26]. Figure A.3 shows the results of these 5
FDR methods, as well as the “no-FDR” approach, over all 25 datasets — here
showing RS wrt the half-datasets D™/ 2): see Equation 2.7. We see again that
“no-FDR” remains the best approach, and that BH is the 2nd best, followed
by the others.

We also anticipate the RS score will depend on the p-value threshold used
to determine the significance of each feature — i.e., BD, , gy, for various 7 €
(0,0.1). While most studies use a threshold of 7 =0.05, this number is fairly
arbitrary. Here we explored how the RS changed with different values of 7.

Figure A.4 shows that the reproducibility score for D/? appears monotonic
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Figure A.2: Scatter plot of Reproducibility Scores for all 25 datasets: each
(z,y) point represents the average D2 Jaccard scores for a single dataset
(using disjoint subset pairs), where the z-value represents the score with FDR
correction (BDygos ) and the y-value which represents the score without
FDR correction (BD;g5—). A point above the diagonal line means the FDR
correction led to inferior performance.

with 7 — larger 7 produces higher RS.

A.2 Changing k

Our various approximation algorithms each use k, the number of samples used
by the algorithms. As we often work with large datasets, these algorithms can
be very time consuming (even though they have been optimized), motivating
us to explore how these algorithms scale, based on this parameter.

We ran these algorithms for our largest dataset, Metabric, but varied the
number of iterations. Figure A.5 shows that we obtained very similar results,
whether we used k = 10, up to £ = 50. We also looked at the MRS values for
all 25 datasets when running the algorithm for k£ = 10 iterations versus k£ = 50
iterations and the difference between the two is very close to 0 for most cases;

see Figure A.6. We ran a paired t-test for these values, which resulted in a
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Figure A.3: Reproducibility scores for datasets when using D2 for different
p-value adjustment methods — i.e., BDy 5, for 5 different FDR adjustment
methods y, including BH and “no”.

p-value of 0.91 that tells us that MRS with k£ = 50 and MRS with & = 50 are

not statistically different.

A.3 PO Score

We have used Jaccard score as our similarity measure throughout all of our
experiments. This is a symmetric measure, meaning it provides information
about a pair of datasets { A, B } where J( A, B)=J( B, A). It can be very
useful when comparing the results from different experiments or evaluating the
outcome when trying to replicate results from a previous study. However, there
are other options for the similarity measure that are not symmetric and can
be provided together with the set of biomarkers for each dataset. One of these
options is the PO score, which is used by the Zou et al. [62] meta-study: for
each (ordered) pair of biomarker sets [B;, B;],

B; N B;
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Reproducibility Scores for D2 for different p-value thresholds
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Figure A.4: Reproducibility scores for various datasets when using D™/? for
different p-value thresholds — BD; ; gy, for various 7 € (0,0.1).

(Notice this is an assymmetric variant of the Jaccard score [Equation 2.2].) (As

that paper also reported the number of biomarkers found for each dataset, we

could recover the associated Jaccard score.)

Unlike the Jaccard score, this measure can be reported alongside a set of

biomarkers and claim that a certain number of these biomarkers should be

replicated, if another study is to be done with the same criteria for the data.
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Figure A.5: Reproducibility scores for different numbers of iterations, for the
Metabric dataset when using half the data.
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Figure A.6: MRS values for all 25 datasets when running k£ = 10 versus
k = 50 iterations on D"/?) subsets.
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