

DETECTION EFFICIENCY OF STATIC ANALYZERS

AGAINST OBFUSCATED ANDROID MALWARE

Co-authored by Victor Ajiri

Sergey Butakov

Pavol Zavarsky

Project report

Submitted to the Faculty of Graduate Studies,

Concordia University of Edmonton

in Partial Fulfillment of the

Requirements for the

Final Research Project for the Degree

MASTER OF INFORMATION SYSTEMS SECURITY MANAGEMENT

Concordia University of Edmonton

FACULTY OF GRADUATE STUDIES

Edmonton, Alberta

April 2020

DETECTION EFFICIENCY OF STATIC ANALYZERS AGAINST OBFUSCATED
ANDROID MALWARE

Victor Ajiri

Approved:

Sergey Butakov [Original Approval on File]

Sergey Butakov Date: April 15, 2020

Primary Supervisor

Edgar Schmidt [Original Approval on File]

Edgar Schmidt, DSocSci Date: April 20, 2020

Dean, Faculty of Graduate Studies

Detection Efficiency of Static Analyzers against

Obfuscated Android Malware

Victor Ajiri

Information Systems Security Management

 Concordia University of Edmonton

 Edmonton, Canada

vajiri@student.concordia.ab.ca

Sergey Butakov

Information Systems Security Management

Concordia University of Edmonton

Edmonton, Canada

sergey.butakov@concordia.ab.ca

Pavol Zavarsky

Information Systems Security Management

Concordia University of Edmonton

 Edmonton, Canada

pavol.zavarsky@concordia.ab.ca

Abstract—Mobile antivirus technologies incorporate static

analysis which involves the analysis of programs without its

execution. This technique relies on pattern matching against a

signature repository to identify malware, which can be easily

tricked by transformation techniques such as obfuscation.

Obfuscation renders character strings disguised and

incomprehensive to prevent tampering and reengineering. This

paper attempts to study the detection efficiency of static analyzers

against obfuscated Android malware. This study is the first step in

a larger project attempting to improve the efficiency of malware

detectors.

Keywords—obfuscated malware, static analyzer, Android,

malware detection efficiency, mobile antivirus, signature repository

I. INTRODUCTION

Malwares are being produced at an unprecedented scale with
hundreds of new entities targeting users across all of technology,
as malware developers explore new ways or exploit old ones to
evade detection and defeat analysis [1]. The process of
obfuscation is originally used to protect benign applications
from code alterations, manipulations and reverse engineering,
but this mechanic is also a tool malware developers could
manipulate to mask the malicious applications they create. In
fact, obfuscation has become one of the “popular” techniques
used by malware developers. The technique employs processes
that make malware code difficult to understand, as the code is
being altered in a number of ways with the attempt to make the
code look different from the original script while still producing
the same malicious actions. Its purpose is to defeat detection by
concealing its payload [2]. Obfuscation bypasses static code
analyzers to avoid code study as character strings are concealed
and made incomprehensive via algorithms that decode the code
at execution [3].

In this paper , a publicly available Android malware dataset
was subjected to three popular obfuscation techniques [4] [5].
ten random Android malware families were selected from this
dataset, with each comprising of five variant samples. The
samples were individually subjected to three obfuscation
techniques control flow, renaming and string encryption and a
final process of combining these individual techniques on the
same application. A widespread analysis of these obfuscated and
non-obfuscated samples was further carried out against available
mobile anti-malware engines provided by virus total platform.

The research summary is described below:

• Obtained and subjected Android malware samples
to available obfuscation techniques from [4] [5].

• Subjected these samples to a number of mobile
analyzers to assess the detection efficiency of these
platforms against obfuscated and non-obfuscated
Android malware

This paper reports results of the study of detection efficiency
of anti-malware engines against obfuscated Android application
malware samples.

II. RELATED WORK

The nature of mobile anti-malware engines being reliant on
signature repositories to flag applications as malicious gives
room to malicious applications evading detection by the
application of evasive techniques such as obfuscation.

 Pomilia Matteo investigated and implemented a framework
to subject applications to obfuscation techniques to avoid
detection and tested the samples against nine popular anti-
malware tools at the time of research: Avast, AVG, F-secure,
Kaspersky, McAfee, Microsoft, Sophos, Symantec and
TrendMicro [6]. The malwares included samples preceding the
year 2013 from the Drebin and Contagio malware datasets.
Results obtained showed obfuscation techniques applied to
malware preceding 2013 had averagely a detection rate above
55% opposed to obfuscated malwares of samples succeeding
2012 from the Andrototal and Contagio datasets which reported
a detection drop rate below 55%. Furthermore, techniques to
reverse engineer obfuscated applications for manual analysis
was discussed by the author.

Rastogi et al. proved that the top ten anti-malware products
at the time the research was conducted were all vulnerable to
common obfuscation techniques [7]. These malware samples
were subjected to ten transformation techniques in which most
applications were only subjected to not more than two
combinations of transformation techniques. Reports from the
study showed 43% of signatures identification used by static
detection engines were not based on code level objects, stating
that simply changing component names in the AndroidManifest
was more than appropriate to defeat detection. The paper further
states that 90% of signatures did not require static analysis of

bytecode because most of the information used for analysis were
found in the class.dex file of the application which contained the
code executed by the Android runtime.

[8] Performed a wide-ranging experimental analysis to

estimate the efficacy of top anti-malware products against

various obfuscation tools by using twenty nine (29) obfuscation

techniques from seven (7) obfuscation tools against 3000

benign and malicious applications, coming to the conclusion

that obfuscation impacts Android anti-malware products and

the detection of these applications by Android anti-malware

products depends on the obfuscation technique adopted and tool

used.

III. EXPERIMENT

The Android malware dataset samples needed for the
research was obtained from Argus Lab [4]. Subsequently a
random selection of ten Android malware families was made,
with five variants under each family. The list of selected families
comprised of AndroRat, Cova, DroidKungfu, FakeAngry,
FakeInst, Finspy, Golddream, Koler, Lootoor, SMSZombie. In
total fifty Android malware samples were tested before and after
obfuscation. These “original” / un-obfuscated malware samples
were passed through the virus total online platform to scan
samples through a number of static anti-malware engines. This
step created a baseline of pre-obfuscation detection rate. The
obtained malware samples are then passed through the DashO
obfuscator [5], transforming these samples via three obfuscation
techniques ; control flow , renaming and string encryption and
then a final transformation is carried out using a combination of
all three techniques. Figure 1 shows the logical flow of our
experimentation on the Android malware samples and the
obfuscation process.

Fig 1. Obfuscation transformation process

The experimental testbed was set with some variations for
parameters for conducting the obfuscation process. Parameters
for the control flow obfuscation which changes the execution

sequence of instructions found in methods to render the flow of
control difficult to understand and trace the instructions included
the following settings:

(i) Block jumbling - this process randomly organizes how
the code blocks are represented.

(ii) Dalvik compatibility - this allows the support of the
Dalvik virtual machine to emulate Android platform

(iii) Try/Catch- this process adds try/catch handlers to code
which confuses decompilers.

(iv) Block splitting- this process splits blocks into smaller
blocks and adds switch-based control flow

(v) Target block size- This process indicates the minimum
number of bytecode instructions to remain in each block.

Parameters for the renaming obfuscation which changes the
class names, methods, fields and packages to render bytecode
compact included

i) Overload induction- which comprises of processes to
induce maximum reuse of methods.

Parameters for string encryption obfuscation which is a
technique that replaces strings with encrypted values decrypted
at execution included

(i) String encryption level - this process controls the strength
and performance of the encryption process.

(ii) Decrypter- this parameter controls the decryptor methods
that will be created and added to each output.

IV. EXPERIMENTAL RESULTS

During experimentations with obfuscated Android malware
samples it was observed that a number of anti-malware engines
did not show so much resilience in detecting obfuscated samples
as opposed to detecting samples prior to obfuscation. Table I
shows a sample section of the detection results of a family
variant of Android malware prior and subjected to obfuscation
transformations against the virus total platform which houses a
number of anti-malware engines, rendering updated insights on
the state-of-the-art detection of obfuscated malware in the first
quarter of 2020.

TABLE I. DETECTION RATE OF A SAMPLE OBFUSCATED ANDROID

MALWARE

Variant 1
Androrat

Number of

engines

Samples

Detected

Samples

Undetected

Detection

Ratio %

Without

Obfuscation

60 29 31 48.33%

Control flow

obfuscation
61 21 40 34.42%

Renaming

obfuscation
60 19 41 31.66%

String

encryption

obfuscation

61 17 44 27.86%

Combination 59 9 50 15.25%

Results obtained from the total experimentation done showed
that detection efficiency of anti-malware engines reduces

Extracted

malware samples

from Argus Labs

Upload Android

malware apk file

to VirusTotal

Subject Extracted

malware samples

through DashO

obfuscator

Obfuscate apk with

control flow obfuscation

Obfuscate apk with

renaming obfuscation

Obfuscate apk with

string encryption

obfuscation

Upload

obfuscated apk

file to VirusTotal

drastically when malicious software are subjected to
obfuscation. It is also clear that a software subjected to a
combination of obfuscation techniques reduces the likelihood of
detection as seen in Table I.

Detailed results of detection for each variation with various
obfuscation techniques can be found on the following website:
https://sites.google.com/view/malware-analysis-
spreedsheet/home

Table II shows the average detection rating of each 5 samples
under individual malware families. This is achieved by taking
the detection ratio values of each five variants of a family and
deriving the average of those five results. From Table II it can
be observed that there’s a significant drop in detection rate
between the obfuscated and non-obfuscated malware samples,
as seen from the results the average rating is slightly dropping
with each technique integrated and even lower when a
combination of techniques is applied, proving that obfuscation
if done properly as an evasion technique is a significant threat to
the detection efficiency of static analyzers. The final values are
an average of all 10 family derived values.

TABLE II. AVERAGE DETECTION RATING OF EACH OBFUSCATED FIVE

MALWARE SAMPLES OF EACH FAMILY

Family

*
Without

obfuscation

Control

flow
Renaming

String

encryption

Combination

1 52.13 % 34.54 % 27.06 % 33.78 % 16.59 %

2 50.32 % 18.55 % 14.05 % 11.51 % 12.09 %

3 63.06 % 53.62 % 52.93 % 48.06 % 46.08 %

4 48.04 % 23.44 % 28.84 % 6.65 % 7.03 %

5 54.08 % 37.49 % 27.03 % 15.22 % 9.96 %

6 57.18 % 28.42 % 27.89 % 21.41 % 20.23 %

7 59.66 % 47.34 % 46.03 % 22.68 % 23.52 %

8 45.92 % 17.05 % 11.21 % 10.19 % 5.94 %

9 63.79 % 51.14 % 50.35 % 47.84 % 46.89 %

10 51.69 % 41.45 % 42.48 % 40.26 % 43.6 %

AVG 54.58 % 35.30 % 32.78 % 25.76 % 23.19 %

* Families- (1) AndroRat (2) Cova (3) DroidKungfu (4) FakeAngry (5) FakeInst
(6) Finspy (7) Golddream (8) Koler (9) Lootoor (10) SMSZombie

Table III shows some anti-malware tools ranked by levels of
performance in showing resilience against the obfuscated
Android malware samples used during experimentation. This
ranking was based on the number of detected obfuscated
samples across all obfuscation methods applied. The optimality
of the anti-malware engines provided by the Virus Total
platform is unknown, therefore the results obtained are subject
to change and does in no way discredit the antimalware engines
listed. In total the consideration was 200 obfuscated samples
excluding 50 unobfuscated samples. The table below shows a
ranking based on percentages obtained from the total number of
detected obfuscated instances of a sample variant by each
analyzer. An example would be the Dr web anti malware engine
which detected 196 obfuscated instances of all variants out of
the 200 obfuscated samples.

TABLE III. DETECTION RATING OF ANTI MALWARE ENGINES BASED ON

DETECTED OBFUSCATED APPLICATIONS

SN Anti-malware SN Anti-malware

1. Dr web c. 98% 32. Fireeye 16%

2. ESET-NOD32 86.5% 32. Antiy avl 16%

3. K7GW 82.5% 33. Sangfor Engine Zero

11.5%

4. Zone Alarm 75.5 % 34. Max-secure 10%

5. Sophos-AV 74.5 % 35. eScan 10%

6. Kaspersky 74% 36. Symantec 8.5%

7. Ikarus 66% 37. Yandex 6%

8. Qihoo 65.5% 38. Zoner 6%

9. F-secure 65% 39. Alibaba 4%

9. Ahnlab-v3 65% 40. Aegislab 0.5%

10. AVG 64.5% 40. Tencent Habo 0.5%

11. Avast 64% 41. Alyac 0%

11. Avast mobile 64% 42. Vipre 0%

12. CAT Quickheal 63% 43 TotalDefense 0%

13. Symantec mobile insight 56.5% 44. SuperAntispyware 0%

14. Fortinet 54.5% 45. Panda 0%

15. Tencent 44.5% 46. Kingsoft 0%

16. Nano-Antivirus 43.5% 47. CMC 0%

17. Avira 39% 48. BitDefenderTheta 0%

18. Cyren 36% 49. Baidu 0%

19. Microsoft 35.5 % 50 Ad aware 0%

20. Trustlook 34.5% 51. Virobot 0%

21. McAfee 34 % 52. VBA32 0%

22. Clam AV 32 % 53. Tachyon 0%

23. McAfee-GW-Edition 30% 54. Malwarebytes 0%

24. Jiangmin 26% 55. K7antivirus 0%

25. Comodo 25.5% 56. BKAV 0%

26. Rising 21.5% 57. Acronis 0%

27. Gdata 20.5% 58. Crowdstrike falcon 0%

28. F-prot 19% 59. Cylance 0%

29. Zilya 17% 60. Endgame 0%

30. Max 16.5% 61. Sentinel one 0%

31. Trendmicro housecall 16.5% 62. Cyber reason 0%

31. Emsisoft 16.5% 63. eGambit 0%

32. Trendmicro 16% 64. Palo Alto Network 0%

32. Arcabit 16% 65. Sophos ML 0%

32. Bitdefender 16% 66. Webroot 0%

V. CONCLUSION

This study is a step in the development of improved malware

tools. It shows that obfuscation has a serious impact to the

detection efficiency of existing anti-malware analyzers. Some

obfuscation techniques show strong detection resilience, but a

mixture of obfuscation techniques show even stronger detection

resilience. Publicly available dataset was examined and utilized

for this study, while being subjected to obfuscation techniques

offered by the PreEmptive DashO obfuscator. The results

obtained shows there needs to be an improvement in mobile

security as access to these obfuscation mechanics are available

to the public. There is also a large existence of Anti-malware

engines in mobile stores that do not perform any form of

analysis, these engines claim to do some form of checks but in

reality do next to nothing as they are developed by individuals

for monetary purposes and offer no protection which begs to

question which mobile anti malware software actually offers a

satisfactory amount of protection and is resilient to

masqueraded malware. Anti-malware static analysis engines

should be trained with obfuscated samples so signatures and

prints these techniques leave behind should serve to aid

blacklisting of similar applications that portray these same

behaviors. Additional research may be required for tools that

look at system calls for detection purpose.

https://sites.google.com/view/malware-analysis-spreedsheet/home
https://sites.google.com/view/malware-analysis-spreedsheet/home

VI. ACKNOWLEDGEMENTS

Authors would like to acknowledge the help from Argus Labs

for providing access to Android malware database

(http://amd.arguslab.org/) and PreEmptive solutions

(https://www.preemptive.com/) for the obfuscation tool used

during the research.

VII. REFERENCES

[1] S. M, L. A, G. Jonathan and L. Wenke , "Impeding

Malware Analysis Using Conditional Code

Obfuscation," in 16th Annual Network & Distributed

System Security Symposium Proceedings, 2008.

[2] K. Iliev, "Top 6 Advanced Obfuscation Techniques

Hiding Malware on Your Device," 31 August 2017.

[Online]. Available:

https://sensorstechforum.com/advanced-obfuscation-

techniques-malware/. [Accessed 8 June 2019].

[3] T. Gendron, "Malware Analysis, Part 1: Understanding

Code Obfuscation Techniques," 16 May 2019. [Online].

Available: https://www.vadesecure.com/en/malware-

analysis-understanding-code-obfuscation-techniques/.

[Accessed 12 June 2019].

[4] A. Labs, "Android Malware Dataset," Argus Lab,

January 2020. [Online]. Available: amd.arguslab.org.

[Accessed September 2019].

[5] P. solutions, "PreEmptive protection," PreEmptive ,

[Online]. Available: Preemptive.com. [Accessed

September 2019].

[6] M. Pomilia, "A STUDY ON POPULAR

OBFUSCATION TECHNIQUES FOR ANDROID

MALWARE," March 2016. [Online]. Available:

https://pdfs.semanticscholar.org/2ff1/9ac2087bcc8fbbe1

d11b9b49c8e8d2486964.pdf. [Accessed 17 June 2019].

[7] V. Rastogi, Y. Chen and X. Jiang, "Droidchameleon:

Evaluating Android Anti-malware against

Transformation Attacks," Information Forensics and

Security IEEE Transactions, vol. 9, no. 1, pp. 99-108,

2014.

[8] H. Mahmoud, J. Garcia and S. Malek, "A Large-Scale

Emprical Study on the Effects of Code Obfuscations on

Android Apps and Anti-Malware Products," in

International Conference on Software Engineering, New

York, 2018.

APPENDIX

Detection rating of all samples under each Android malware family

 Engines Samples

Detected

Samples

Undetected

Detection Ratio

%

 Engines Samples

Detected

Samples

Undetected

Detection Ratio

%

 AndroRat COVA

Without Obfuscation 60 29 31 48.33 % 62 32 30 51.61 %

Control flow obfuscation 61 21 40 34.42 % 62 13 49 20.96 %

Renaming obfuscation 60 19 41 31.66 % 63 10 53 15.87 %

String Encryption 61 17 44 27.86 % 59 5 54 8.47 %

Combined Obfuscation Techniques 59 9 50 15.25 % 61 9 52 14.75 %

Without Obfuscation 62 31 31 50 % 62 31 31 50 %

Control flow obfuscation 61 21 40 34.42 % 62 12 50 19.35 %

Renaming obfuscation 62 19 43 30.64 % 63 9 54 14.28 %

String Encryption 59 23 36 38.98 % 64 17 47 26.56 %

Combined Obfuscation Techniques 62 10 52 16.12 % 60 7 53 11.66 %

Without Obfuscation 61 33 28 54.09 % 61 31 30 50.81 %

Control flow obfuscation 59 20 39 33.89 % 61 10 51 16.39 %

Renaming obfuscation 60 15 45 25 % 61 8 53 13.11 %

String Encryption 61 18 43 29.5 % 61 4 57 6.55 %

Combined Obfuscation Techniques 63 11 52 17.46 % 61 7 54 11.47 %

Without Obfuscation 58 31 27 53.44 % 60 30 30 50 %

Control flow obfuscation 60 21 39 35 % 60 11 49 18.33 %

Renaming obfuscation 59 15 44 25.42 % 61 9 52 14.75 %

String Encryption 62 19 43 30.64 % 62 5 57 8.06 %

Combined Obfuscation Techniques 61 10 51 16.39 % 62 7 55 11.29 %

Without Obfuscation 62 34 28 54.83 % 61 30 31 49.18 %

Control flow obfuscation 60 21 39 35 % 62 11 51 17.74 %

Renaming obfuscation 59 15 44 25.42 % 62 9 53 14.51 %

String Encryption 62 26 36 41.93 % 63 5 58 7.93 %

Combined Obfuscation Techniques 62 11 51 17.74 % 62 7 55 11.29 %

 DROIDKUNGFU FAKEANGRY

Without Obfuscation 62 37 25 59.67 % 62 31 31 50 %

Control flow obfuscation 62 25 37 40.32 % 60 13 47 21.66 %

Renaming obfuscation 60 25 35 41.66 % 60 15 45 25 %

String Encryption 62 18 44 29.03 % 60 7 53 11.66 %

Combined Obfuscation Techniques 62 16 46 25.8 % 60 5 55 8.33 %

Without Obfuscation 61 33 28 54.09 % 63 31 32 49.2 %

Control flow obfuscation 62 23 39 37.09 % 58 17 41 29.31 %

Renaming obfuscation 61 22 39 36.06 % 60 18 42 30 %

String Encryption 60 17 43 28.33 % 61 2 59 3.27 %

Combined Obfuscation Techniques 62 16 46 25.8 % 59 4 55 6.77 %

Without Obfuscation 62 41 21 66.12 % 60 27 33 45 %

Control flow obfuscation 63 41 22 65.07 % 61 6 55 9.83 %

Renaming obfuscation 60 39 21 65 % 60 20 40 33.33 %

String Encryption 60 37 23 61.66 % 60 5 55 8.33 %

Combined Obfuscation Techniques 60 39 21 65 % 61 4 57 6.55 %

Without Obfuscation 62 44 18 70.96 % 63 29 34 46 %

Control flow obfuscation 60 38 22 63.33 % 60 17 43 28.33 %

Renaming obfuscation 61 37 24 60.65 % 60 17 43 28.33 %

String Encryption 61 37 24 60.65 % 60 3 57 5 %

Combined Obfuscation Techniques 61 35 26 57.37 % 59 4 55 6.77 %

Without Obfuscation 64 43 21 67.18 % 62 31 31 50 %

Control flow obfuscation 61 38 23 62.29 % 57 16 41 28.07 %

Renaming obfuscation 62 38 24 61.29 % 58 16 42 27.58 %

String Encryption 61 37 24 60.65 % 60 3 57 5 %

Combined Obfuscation Techniques 62 35 27 56.45 % 59 4 55 6.77 %

 FAKEINST FINSPY

Without Obfuscation 63 34 29 53.96 % 61 35 26 57.37 %

Control flow obfuscation 58 22 36 37.93 % 59 16 43 27.11 %

Renaming obfuscation 58 18 40 31.03 % 59 16 43 27.11 %

String Encryption 60 11 49 18.33 % 60 11 49 18.33 %

Combined Obfuscation Techniques 61 11 50 18.03 % 60 9 51 15 %

Without Obfuscation 60 29 31 48.33 % 61 36 25 59.01 %

Control flow obfuscation 59 23 36 38.98 % 60 14 46 23.33 %

Renaming obfuscation 60 16 44 26.66 % 60 15 45 25 %

String Encryption 61 10 51 16.39 % 59 9 50 15.25 %

Combined Obfuscation Techniques 59 5 53 8.47 % 60 9 51 15 %

Without Obfuscation 60 34 26 56.66 % 61 30 31 49.18 %

Control flow obfuscation 59 21 38 35.59 % 59 20 39 33.89 %

Renaming obfuscation 61 15 46 24.59 % 58 18 40 31.03 %

String Encryption 60 6 54 10 % 60 19 41 31.66 %

Combined Obfuscation Techniques 60 4 56 6..66 % 61 18 43 29.5 %

Without Obfuscation 59 30 29 50.84 % 61 38 23 62.29 %

Control flow obfuscation 60 22 38 36.66 % 58 20 38 34.48 %

Renaming obfuscation 58 16 42 27.58 % 59 19 40 32.2 %

String Encryption 61 10 51 16.39 % 60 19 41 31.66 %

Combined Obfuscation Techniques 60 5 55 8.33 % 60 17 43 28.33 %

Without Obfuscation 61 37 24 60.65 % 62 36 26 58.06 %

Control flow obfuscation 60 23 37 38.33 % 60 14 46 23.33 %

Renaming obfuscation 60 16 44 26.66 % 58 14 44 24.13 %

String Encryption 60 9 51 15 % 59 6 53 10.16 %

Combined Obfuscation Techniques 60 5 55 8.33 % 60 8 52 13.33 %

 GOLDDREAM KOLER

Without Obfuscation 60 35 25 58.33 % 63 27 36 42.85 %

Control flow obfuscation 60 27 33 45 % 60 10 50 16.66 %

Renaming obfuscation 60 27 33 45 % 60 6 54 10 %

String Encryption 61 7 54 11.47 % 60 3 57 5 %

Combined Obfuscation Techniques 60 8 52 13.33 % 61 11 50 16.66 %

Without Obfuscation 61 36 25 59.01 % 61 30 31 49.18 %

Control flow obfuscation 60 29 31 48.33 % 62 12 50 19.35 %

Renaming obfuscation 60 30 30 50 % 60 7 53 11.66 %

String Encryption 59 18 41 30.5 % 61 16 45 26.22 %

Combined Obfuscation Techniques 60 19 41 31.66 % 61 2 59 3.27 %

Without Obfuscation 61 38 23 62.29 % 62 30 32 48.38 %

Control flow obfuscation 60 31 29 51.66 % 59 10 49 16.94 %

Renaming obfuscation 60 28 32 46.66 % 61 7 54 11.47 %

String Encryption 61 18 43 29.5 % 61 4 57 6.55 %

Combined Obfuscation Techniques 60 19 41 31.66 % 61 2 59 3.27 %

Without Obfuscation 62 37 25 59.67 % 61 29 32 47.54 %

Control flow obfuscation 60 26 34 43.33 % 61 11 50 18.03 %

Renaming obfuscation 61 27 34 44.26 % 61 7 54 11.47 %

String Encryption 61 7 54 11.47 % 60 4 56 6.66 %

Combined Obfuscation Techniques 61 6 55 9.83 % 61 2 59 3.27 %

Without Obfuscation 61 36 25 59.01 % 60 25 35 41.66 %

Control flow obfuscation 62 30 32 48.38 % 61 11 50 16.66 %

Renaming obfuscation 61 27 34 44.26 % 61 7 54 11.47 %

String Encryption 59 18 41 30.5 % 61 4 57 6.55 %

Combined Obfuscation Techniques 61 19 42 31.14 % 61 2 59 3.27 %

 LOOTOOR SMSZOMBIE

Without Obfuscation 61 42 19 68.85 % 62 32 30 51.61 %

Control flow obfuscation 61 36 25 59.01 % 62 27 35 43.54 %

Renaming obfuscation 61 36 25 59.01 % 61 26 35 42.62 %

String Encryption 62 36 26 58.06 % 60 25 35 41.66 %

Combined Obfuscation Techniques 61 35 26 57.37 % 61 24 37 39.34 %

Without Obfuscation 61 41 20 67.21 % 64 35 29 54.68 %

Control flow obfuscation 61 36 25 59.01 % 59 26 33 44.06 %

Renaming obfuscation 59 33 26 55.93 % 60 26 34 43.33 %

String Encryption 60 34 26 56.66 % 61 25 36 40.98 %

Combined Obfuscation Techniques 61 35 26 57.37 % 61 25 36 40.98 %

Without Obfuscation 61 40 21 65.57 % 63 34 29 53.96 %

Control flow obfuscation 62 29 33 46.77 % 61 25 36 40.98 %

Renaming obfuscation 61 28 33 45.9 % 60 25 35 41.66 %

String Encryption 61 26 35 42.62 % 60 25 35 41.66 %

Combined Obfuscation Techniques 61 26 35 42.62 % 61 26 35 42.62 %

Without Obfuscation 61 36 25 59.01 % 59 27 32 45.76 %

Control flow obfuscation 61 27 34 44.26 % 61 23 38 37.7 %

Renaming obfuscation 61 27 34 44.26 % 59 22 37 37.28 %

String Encryption 60 23 37 38.33 % 61 19 42 31.14 %

Combined Obfuscation Techniques 62 23 39 37.09 % 61 19 42 31.14 %

Without Obfuscation 60 35 25 58.33 % 61 32 29 52.45 %

Control flow obfuscation 60 28 32 46.66 % 61 25 36 40.98 %

Renaming obfuscation 60 28 32 46.66 % 61 29 32 47.54 %

String Encryption 59 24 35 40.67 % 61 28 33 45.9 %

Combined Obfuscation Techniques 60 24 36 40 % 61 39 22 63.93 %

GRAPH SHOWING DETECTION RANKING

98
%

86
.5

0%
8

2
.5

0%
75

.5
0%

74
.5

0%
7

4
%

66
%

65
.5

0%
65

%
65

%
64

.5
0%

64
%

64
%

63
%

5
6

.5
0%

54
.5

0%
44

.5
0%

4
3

.5
0%

39
%

36
%

35
.5

0%
34

.5
0%

34
%

32
%

30
%

26
%

25
.5

0%
21

.5
0%

20
.5

0%
19

%
17

%
16

.5
0%

16
.5

0%
16

.5
0%

16
%

16
%

16
%

16
%

16
%

11
.5

0%
10

%
10

%
8.

50
%

6% 6% 4% 0.
50

%
0.

50
%

0% 0%

DETECTION RATING

	Ajiri, Victor - 139286 - MISSM - Title Page
	Ajiri, Victor - 139286 - MISSM - Signature Page
	Victor Ajiri - 139286 - MISSM - Capstone Project
	I. Introduction
	II. Related Work
	III. Experiment
	IV. Experimental Results
	V. Conclusion
	VI. Acknowledgements
	VII. REFERENCES

