
If we knew what it was we were doing, it would not be called research, would it?

- Albert Einstein, 1879 -1955.

University of Alberta

ROBUST REAL-TIME BI-LAYER VIDEO SEGMENTATION USING INFRARED , ^ ^

VIDEO l w ,

by

Qiong Wu

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful
fillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-47442-6
Our file Notre reference
ISBN: 978-0-494-47442-6

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Tele-immersive systems aim at creating the illusion that all participants at a remote

location are in the same virtual room. As a new emerging technique, it is faced

with many challenging problems, one of which is automatic, real-time foreground-

background video segmentation, or called bi-layer video segmentation.

This thesis presents a novel method for the bi-layer video segmentation problem

based on the fusion of infrared and color video. The method improves on previous

algorithms by making the system independent of changes in ambient lighting and

dynamic background, and it achieves the goal of automatic video segmentation in

real time. Two possibilities for utilizing infrared sources are explored, namely fore

ground illumination and background illumination. Experimental results show that

segmentation based on infrared and color video is a promising technique for real

time segmentation.

Acknowledgements

I would like to thank all people who have helped and inspired me during my master

study.

I especially want to thank my supervisor, Dr. Pierre Boulanger. His wide knowl

edge and his logical way of thinking have been of great value for me. I am deeply

grateful to my co-supervisor, Dr. Walter F. Bischof, for his detailed and constructive

comments, and for his important support throughout this work. They both offered

me great freedom on what I want to do and encouraged me to try different ways

of solving problems. Their understanding, encouragement and personal guidance

have provided a good basis for the present thesis.

I also would like to thank HP laboratories and TRLabs who offered financial

support throughout my graduate studies.

Table of Contents

1 Introduction 1

1.1 Motivation 1

1.2 Thesis Scope 3

1.3 Contributions 3

1.4 Thesis Outline 4

2 Literature Review 5

2.1 Video Segmentation 5

2.2 Previous Approaches 6

2.2.1 Segmentation by Visual Cues 7

2.2.2 Segmentation by Fusing Visual with Other Cues 8

3 Segmentation by Foreground Illumination 16

3.1 Data Acquisition Unit 17

3.2 Cue Map Initialization 21

3.3 Graph Cut 26

3.4 Contrast Preserving Relaxation Labeling 29

3.4.1 CPRL Implementation on GPU 31

3.5 Experimental Results 31

3.5.1 Convergence of CPRL 31

3.5.2 Comparison between GC and CPRL 32

3.5.3 Comparison between Pentamap and Trimap 42

3.5.4 Comparison with Other Segmentation Methods 44

3.5.5 Background Substitution In Sequences 44

3.6 Discussion 49

4 Segmentation by Background Illumination 52

4.1 Data Acquisition 52

4.2 Experimental Results 54

4.3 Discussion 54

4.3.1 Comparison with Foreground Illumination 56

5 Conclusions and Future Work 57

5.1 Conclusions 57

5.2 Future Work 58

Bibliography 60

List of Tables

3.1 Edge weight table 28

3.2 Error rate table for the segmentation results produced by GC 38

3.3 Error rate table for the segmentation results produced by CPRL . . . 39

3.4 Comparison table 45

List of Figures

1.1 HP Coliseum immersive system 2

1.2 iChat 2

2.1 Segmentation results by Interactive Graph Cuts 7

2.2 Comparison segmentation results 10

2.3 i2i stereo web-cam 13

2.4 Zcam 14

3.1 Structure of the data acquisition unit 18

3.2 Data acquisition unit 19

3.3 MacBeth calibration pattern 19

3.4 Process of operation 20

3.5 Pentamap initialization 24

3.6 Graph construction from a pentamap 27

3.7 Convergence of CPRL on Seq 1 at frame 101 33

3.8 Convergence of CPRL on Seq2 at frame 027 34

3.9 Comparison of CPRL with GC 35

3.10 Error rate of GC and CPRL 37

3.11 Spatial distribution of the segmentation error for Seql at frame 60 . 40

3.12 Comparison error rate of CPRL with GC 41

3.13 Pentamap vs. Trimap 43

3.14 Video segmentation and background substitution 44

3.15 Comparison of border blurring 47

3.16 Comparison of border blurring with Bayesian matting 48

4.1 A frame of IR image and color image produced by background IR

illumination 53

4.2 Segmentation results by background IR illumination 55

Chapter 1

Introduction

1.1 Motivation

Many tasks in computer vision involve robust and accurate foreground-background

video segmentation. In many applications, including, for example, surveillance,

video conferencing, motion capture, or gesture analysis for human-computer inter

action (HCI), video foreground objects have to be separated from the background

scene before proceeding with further analysis.

One prime application of foreground-background video segmentation is video

conferencing systems, where there is a need to remove the background and replace

it with a different one. For example, Microsoft's research group at Cambridge has

developed a desktop videoconference system, i2i [17], which includes background

substitution. The immersive video conferencing system proposed by HP [5, 4],

called the Coliseum project, aims at providing realism in communication (see Fig

ure 1.1). The idea of this next-generation videoconference system is to generate a

virtual meeting environment, into which all participants at remote location will be

inserted. The meeting room is then rendered for each participant from their view

point. In these applications, segmentation of the foreground/participant from the

scene becomes an essential and crucial step.

There are many techniques and mature products on the market that provide

foreground-background image segmentation. However, bilayer video segmentation

remains a challenging problem. In many respects, it has higher demands than image

1

Figure 1.1: HP Coliseum immersive system [5].

Figure 1.2: iChat

segmentation, including real-time processing speed, consistency of segmentations

between frames and minimal manual editing. Only a few video chat products on

the market have successfully incorporated background substitution. For example,

Apple introduced iChat in their release of Mac OS X version 10.3 "Panther" [1].

This product is capable of performing instant background substitution during video

chatting. However, it only produces acceptable results in the situations where the

background is static and uniformly colored, which largely constrains its usefulness

in many common scenarios.

The challenges in foreground-background video segmentation, especially for

2

video conferencing system, include the following:

• Real-time processing: Segmentation should be performed at live processing

speed to ensure the smooth progress of the video meeting/chatting.

• Robustness: Segmentation should be robust to environment changes, includ

ing illumination changes, camera shaking, dynamic backgrounds with pres

ence of large moving objects and more.

• Automation: The foreground should be segmented automatically without

user intervention.

We aim to solve this bi-layer video segmentation problem addressing the above

challenges. Once the foreground objects have been detected and extracted by our

system, they can be further processed for a variety of purposes.

1.2 Thesis Scope

This thesis explores mainly a new solution to the problem of bi-layer video seg

mentation by fusing infrared and color information. A powerful data acquisition

unit has been developed using an optical technique that automatically gives syn

chronized infrared video and color video. We explore two possibilities for utilizing

infrared illumination, foreground and background illumination. In the foreground

illumination method, the resulting video sequences, infrared video and color video,

are fed into the segmentation algorithm, Graph Cut or Relaxation Labeling, to opti

mize the segmentation results. The experimental results show the potential of both

algorithms. Relaxation Labeling can utilize the fast parallel processing ability of the

GPU and is more stable than Graph Cut in terms of changes in parameter values.

1.3 Contributions

The thesis makes two main contributions. First, we propose to adopt infrared in

formation in the video segmentation system. The way we combined the infrared

camera and the color camera automatically gives synchronized video sequences,

3

avoiding the disadvantages of conventional two-camera systems. Second, we ex

plore two ways of utilizing IR illumination for bi-layer video segmentation. Third,

in the foreground illumination method, we propose two different algorithms for

video segmentation, achieving the goal of real-time processing speed, robustness

and automatization. For Graph Cut, we simplify the graph construction by taking

advantages of cue map. The efficiency of the Graph Cut algorithm is improved

largely due to decreased number of graph nodes and edges. For Relaxation Label

ing, it is a perfect parallel algorithm whose computation kernel can be implemented

on a GPU, so that the segmentation can be done in microseconds.

1.4 Thesis Outline

Chapter 2 discusses the related work. Chapter 3 describes our proposed system

by foreground IR illumination. In Chapter 4, we describe the other possibility of

video segmentation by background IR illumination. In Chapter 5, we present our

conclusions and future work.

4

Chapter 2

Literature Review

2.1 Video Segmentation

Video segmentation is an extension of image segmentation in the sense that video

is a spatio-temporal sequence of images. Compared to the spatial nature of (static)

images, video has both spatial and temporal characteristics. Segmenting a frame of

video in the spatial domain is just like segmenting a static image [55]. In image seg

mentation the goal is to segment an image into spatially coherent regions, whereas

in video segmentation the goal is to segment the image into spatio-temporally co

herent regions [3]. That is, the segmentation of video sequence should be consis

tent among frames. Segmentation results usually serve for subsequent video/image

analysis, such as object representation and description, feature measurement and

even higher level tasks such as object classification, scene interpretation and coding

purposes.

"Correct" video segmentation varies depending on the application. For exam

ple, for the purpose of achieving high video compression performance, the seg

mented objects might not be semantically meaningful to human observers [54].

Most of the current video segmentation research focuses on automatically segment

ing images into semantically meaningful entities, such as people, ground, cars, sky

or background etc. This object-based segmentation has wide applications in object-

based media compression and coding (e.g., MPEG-4, codecs), visual-content re

trieval (e.g., MPEG-7 related schemes) and object recognition.

5

There is no general technical theory for video/image segmentation. Many re

search directions have been explored, but none of the developed segmentation al

gorithms are generally applicable to all images, and different algorithms are not

equally suitable for particular applications [55]. As more and more segmentation

algorithms are explored, classification of the various techniques for video segmen

tation becomes an essential task. Although there are a number of survey papers

on image segmentation, very few discuss video segmentation, which only cover a

small set of techniques developed and only focus on a specific application area. For

example, Koprinska and Carrato [34] present a survey of techniques of temporal

video segmentation. Temporal video segmentation divides a video stream into a

set of meaningful and manageable shots, each of which is a sequence of frames

and represented by selecting key frames. Zhang and Lu [54] present a review of

motion-based segmentation algorithms. Correia and Pereira [15] present a classifi

cation criteria based on the application scenarios.

In video segmentation, more information can be used beyond color, edges and

contrast information, which always play an important role in both video and image

segmentation. A high-level understanding of image contents can also help to obtain

automatic video segmentation. Acquiring such high-level cues, including frame

difference, motion model, depth and stereo etc. at the pixel level or object level,

often makes the video segmentation and tracking less challenging.

In this thesis, we focus on a specific application of video segmentation, video

conferencing system, in which each frame is partitioned into two regions: fore

ground and background. The foreground (or object of interest) refers to the partici

pant of the remote video meeting/chatting.

2.2 Previous Approaches

This section provides a general review of several state-of-the-art approaches in the

field of bilayer video segmentation. The approaches can be classified into two gen

eral categories, segmentation by visual cues and segmentation by fusing visual with

6

(a)

Figure 2.1: Segmentation results by Interactive Graph Cuts [11].

other cues.

2.2.1 Segmentation by Visual Cues

Visual cues usually refer to the information observed in an image or a video frame,

such as color, texture, contour and contrast information etc. It is unclear which cues

to choose for a given segmentation problem and how to weight their importance, a

problem known as the cue combination problem in computer vision [43]. Tradi

tionally, supervised learning is used to label the data in an image and a classifier is

trained on the labeled data to classify unlabeled pixels. Unsupervised segmentation

methods can group pixels into regions of similar texture, but not able to segment

foreground and background regions.

Recently, interactive segmentation techniques exploiting color/intensity and con

trast cues have been demonstrated to be very effective for static images, as demon

strated in [44]. Usually color priors for the foreground and background are used to

7

classify pixels in the unknown area, and inaccurate segmentation caused by color

noise is compensated by the contrast cues, which force the segmentation bound

aries to be located where the contrast is locally maximum. Some techniques such as

Active Contours [30] also use smoothness constraints to restrict the segmentation

boundary. Unfortunately, all these methods require manual user input to provide

segmentation cues. For example, Intelligent Scissors [38] and Live Wire [20] re

quire boundary cues; the user has to accurately select some pixels the segmentation

boundary should pass through. Then the segmentation boundary is determined by

computing the "shortest path" between the marked pixels. In [11], the user needs to

mark several foreground and background pixels, providing color cues on what the

user intends to segment. In "GrabCut" [44], the user drags a rectangle around the

desired foreground object. After initial segmentation, more editing may be needed

to obtain the desired result.

There are two main disadvantages caused by manual input. First, the segmenta

tion results seem to be very sensitive to user initialization. For example, in [11], it

is important for the segmentation result that the user selects the most characteristic

color region of the foreground and background. Figure 2.1 shows segmentation re

sults obtained with the algorithm presented in [11]. We used the Matlab code [24]

by Mohit Gupta and Krishnan Ramnath. The user input is shown in the left subim-

ages of (a) and (b). The red brush stokes denote foreground seeds and the blue brush

stokes denote background seeds. We can see from (a) and (b) that slightly different

initial input results in very different segmentation result. Second, segmentation is

beyond the capabilities of fully automatic methods. This makes them not applica

ble to video segmentation since manual editing of each frame is too expensive and

impossible for video conferencing application.

2.2.2 Segmentation by Fusing Visual with Other Cues

In order to obtain the fully automatic segmentation, a more robust approach is re

quired that explores fusions of several cues. Recently, many researchers have inves

tigated the fusion of background model, motion or stereo with color and contrast,

8

as described in the following sections.

Background Model Based Segmentation

Several segmentation systems rely on prior knowledge about the background scene,

which is represented by a histogram-based background model for gray images. The

foreground is considered a region (in each new frame) mat differs significantly from

the background. This type of approach is commonly referred to as background

subtraction, referring to the simple technique of subtracting the background model

from a new frame and thresholding the result to find the foreground region.

The simplest background subtraction technique is based on the assumption that

the background, as viewed by the camera, is static. In this simplified case, the back

ground model is a background picture captured apriori. The foreground is detected

by subtracting the current frame from the background picture and thresholding the

result [35]. This process can be represented as: \framei — background] > Th,

where i is the frame index and Th is a predefined threshold. This method obviously

fails if the background is dynamic. More advanced techniques in this category use

an adaptive background model to solve problems caused by regularly time-varying

backgrounds, such as water waves, moving clouds, trees waving in the wind and so

on. In the Pfinder system [52], each background pixel is modeled with the Gaussian

described by a mean color value and a full covariance matrix, and the background

model is continually updated. In [23, 29, 47], each pixel is modeled by a mixture

of K Gaussians,
K

where ji^t is the expectation of the ith Gaussian at time t, £ ^ t = crftl is the co-

variance matrix. uijt, Hi,t and of t are updated according to whether It matches

derived current Gaussian components. These methods can learn and adapt a back

ground model, but they are based on the assumption that the color distributions of

the foreground and background pixels are well separated.

There are several problems in developing a background subtraction algorithm.

9

file:///framei

Ik
(a) (b)

(c) (d)

Figure 2.2: Comparison segmentation results (reproduced from [53]). (a) Original,
(b) Result from motion-based segmentation in [18], where the large moving objects
in the background are falsely classified as the foreground, (c) Result from motion-
based segmentation in [53], where the moving background parts are removed, but
some foreground boundary parts are missing, (d) Result from stereo-based segmen
tation in [32], with more accurate foreground boundaries.

First, the threshold is critical, resulting in a lot of noise if selected too low and sup

pressing significant changes if selected too high. Second, background subtraction

techniques fail in the presence of large moving objects in the background. Third,

they are very sensitive to illumination changes and image noise. Finally, they can

not discriminate foreground from background, if there is lack of color differences.

Motion-Based Segmentation

Traditional motion-based segmentation methods usually employ motion informa

tion only. Motions are typically represented as a 2D optic flow [6, 42, 46, 41, 49,

26]. The optic flow of a pixel is a motion vector calculated between a pixel in one

frame and its corresponding pixel in the following frame. Motion-based segmen

tation finds groups of pixels in two or more frames where each group is a smooth

motion field, or say, optic flow field. Motion segmentation alone cannot solve the

segmentation problem of static scenes. Further, due to occlusion and disocclusion,

10

optic flow is not reliable at the boundaries of moving objects [31]. Finally, the es

timation of per-pixel optic flow is computationally expensive because it involves

extensive search for finding matching/corresponding pixels.

Very often the foreground object to be segmented has inconsistent motion and

is often stationary, so adding other feature information can overcome this prob

lem. The earliest work, to our knowledge, on combining motion with other image

features for segmentation has been explored by Thompson [48]. Images were seg

mented based on regions with similar intensity and optic-flow values. The resulting,

over-segmented regions were then merged using a heuristic approach. Black [10]

combined intensity and motion for segmenting images based on Markov Random

Fields. Tekalp et al. [2] presented a method for segmenting images separately by

motion and color, and color segments were merged by regions belonging to the

same motion region. All these methods segment each video frame into several lay

ers for the purpose of video compression rather than for foreground-background

segmentation; the segmented layers usually have holes and are not accurate at the

boundaries [31]. Finally, with extensive optic flow computation, it is hard to achieve

real-time processing speed.

Recent research on bi-layer video segmentation based on fusing motion, color

and contrast cues has produced promising results. Criminisi et al. [18] present an

algorithm that probabilistically fuses motion, color and contrast cues together with

spatial and temporal priors. The main contribution of their paper is removing the

need of computing pixel velocities, which is required for optic flow computation.

However, it cannot cope with a large moving background or a stationary foreground.

Yin et al. [53] improved motion-based segmentation results in the presence of large

background motion and a stationary foreground. They showed a comparison result

between their algorithm and the algorithm in [18] as well as a stereo-based segmen

tation algorithm [32], as shown in Figure 2.2. One can see that the motion-based

algorithms can not beat stereo-based algorithms, which will be introduced in the

next section. In addition, none of motion-based segmentation algorithms claimed

real-time processing speed. In [53], a processing speed of between 1.2 and 2.7 fps

11

was reported in a Matlab implementation.

Stereo-Based Segmentation

Stereo vision usually refers to the problem of inferring the 3D structure of a scene

from two or more images taken from different viewpoints. A two-camera stereo

setup imitates the human vision system, which has two eyes looking into the scene.

The major task in stereo is to exploit the correlation between stereo images, to

compute disparity between corresponding image pixels, and to infer a depth map of

image pixels from the disparity information. Stereo vision involves computing the

depth of each image pixel, and thus can be applied to bilayer video segmentation

due to the fact that the foreground is usually located on a depth plane with smaller

depth than that of the background.

Conventional stereo algorithms have proven useful in depth computation [40,

16]. Recent research on addressing occlusion [21, 7, 33, 19] and depth discontinu

ities [9] are of particular interest for extracting a foreground object from the back

ground. Williams [51] proposed a Gaussian process framework for the bi-layer

segmentation of a scene, given a stereo pair of images, by estimating pixel-wise

disparity. His approach classifies all pixels into three categories: foreground, back

ground and occlusion, based on a disparity model used as the pixel classifier, which

roughly estimates the disparity value for foreground (0.8D), background (0.2D)

and occlusion (0.5D), where D is the maximum disparity value in the image. When

the disparity model is violated, the application is bound to be incorrect. Further,

Williams uses NSSD (normalized sum of squared differences) for matching when

evaluating the correlation of pixels. Such depth computation from stereo is not only

computationally expensive, it is also not accurate and not robust over low-textured

or homogeneous regions.

In our opinion, the most compelling real-time algorithm on bilayer video seg

mentation, which fuses stereo, color and contrast, was proposed by Kolmogorov et

al. [32]. They investigated two different real-time algorithms to probabilistically

fuse stereo, color and contrast cues, Layered Dynamic Programming (LDP) and

12

(a) (b) (c)

Figure 2.3: i2i stereo web-cam

Layered Graph Cut (LGC). In LDP, a Gibbs energy function E(z, d, x; 6 , $) is de

fined explicitly incorporating priors on stereo disparity <& and color/contrast infor

mation 0 . The segmentation is obtained by minimizing the energy independently

over each epipolar line with a dynamic programming algorithm. In LGC, an energy

function E(z, x; 0) is globally minimized over an image, in which stereo disparity

does not appear explicitly. Instead, the stereo match likelihoods are marginalized

to compute a probability over the foreground and background hypotheses. The seg

mentation is determined by an expanded form of graph cuts. In both algorithms,

stereo likelihoods are still measured by NSSD, which is computationally expen

sive. Color likelihood is modeled by Gaussian mixtures in RGB color space as in

"GrabCut" [44]. The contrast term is computed by neighboring pixel-pairs in the

cyclopean image. A real-time implementation of LGC was reported in their paper

at around 10 frames per second for a 320x240 image on a 3-GHZ Pentium desktop

machine.

Compared to other video segmentation methods, stereo-based segmentation needs

a two-camera binocular stereo video setup, as shown in Figure 2.3. Stereo cameras

can add additional computation for calibration and synchronization, which are both

important for stereo match computation. Camera calibration is needed to rectify

any pair of images to a "parallel camera geometry" so that two corresponding points

line on the same horizontal line, called epipolar line, in the two images. The epipo

lar line constraints can reduce the search of corresponding points to a ID search

problem. Synchronization is necessary to ensure that the video sequences gener

ated by two cameras are using the same timing, so that two corresponding frames

13

(a) (b)

Figure 2.4: Zcam (a) The new ZCam (b) Mini camera

are generated at the same time. The synchronization can be completed by either

special digital circuit design, e.g. the synchronized USB 2.0 stereo web-cam devel

oped by Microsoft research at Cambridge, as shown in Figure 2.3(c), or over the

network. Nevertheless, both calibration and synchronization add extra time to the

stereo computation kernel.

Time-Of-Flight Camera Based Segmentation

In general, time-of-flight (TOF) cameras are able to obtain depth information based

on the time-of-flight principle. They consist of an amplitude-modulated infrared

light source and obtain depth information by measuring the time taken by infrared

light to travel to all objects in the scene and then return back to the camera. They

can produce either a depth value for each captured pixel or a gray-scale depth map

with an intensity proportional to the time of flight of the light reflected by a dis

tant object [45]. A more detailed description of the time-of-flight principle can be

found in [36, 39, 22]. Compared to the stereo-based methods, TOF cameras obtain

depth information directly, avoiding the inconvenient and expensive computation,

e.g. NSSD, for stereo matching.

In order to apply TOF cameras to real-time bilayer video segmentation, many

researchers combine a TOF camera with a 2D regular web camera to produce both

RGB and depth signals. Unfortunately, as in [45], the 2D camera image and the

depth image do not correlate directly, caused by significant differences in camera

lens and image characteristics of two cameras. Other problems discussed in [45]

14

include resampling if two cameras have different resolution, synchronization if two

cameras have different frame rates, and calibration in order to map color image with

depth image.

Today, several manufacturers have produced an integrated depth-video camera,

e.g. the ZCam [28] shown in Figure 2.4, which is capable of producing perfectly

synchronized RGB and depth signals. Such 3D cameras have many desirable prop

erties, including robustness against illumination changes, fast and easy processing.

Unfortunately these sensors are very expensive and difficult to integrate with nor

mal video technology.

15

Chapter 3

Segmentation by Foreground
Illumination

Traditional bi-layer segmentation methods based on the color and contrast informa

tion alone can only achieve desirable results with user interaction. In order to ob

tain automatic foreground-background video segmentation, one needs to infer more

information than what is given in the original video. While some compelling algo

rithms have been proposed on combining stereo or motion information with original

color video, they all have problems with illumination changes, with large moving

object in the background, with high computational cost and so on. In this thesis,

we seek a solution to bi-layer video segmentation problem by fusing infrared, color

and contrast information. The challenges solved by our proposed system include

real-time processing speed, automatic segmentation and robustness to illumination

change and dynamic background.

We designed a data acquisition unit, involving an IR camera and a color camera,

to automatically generate synchronized IR video and color video. An IR illumina

tor is used as an imperceptible light source besides ambient light in the visible

spectrum. We investigate two ways of employing IR information by illuminating

different parts of the scene with the IR illuminator: foreground IR illumination and

background IR illumination. In the foreground IR illumination, the IR illuminator

is put in front of the foreground/object, and it lights the foreground. In the back

ground IR illumination, the IR illuminator is put behind the foreground and lights

the background area. In either cases, the resulting video sequences will be fed to the

16

segmentation algorithms to complete foreground segmentation. Two segmentation

algorithms are explored in this thesis on fusing infrared, color and contrast informa

tion: Graph Cut (GC) and Contrast Preserving Relaxation Labeling (CPRL). Both

algorithms are suited for real-time implementation. Given the fact that CPRL can be

computed by a parallel algorithm, its computation kernel can be implemented in the

GPU with higher computation speed. The claims are verified in the experimental

section.

In this Chapter we introduce how to achieve bi-layer video segmentation by

foreground IR illumination. The background IR illumination method will be pre

sented in the next Chapter.

3.1 Data Acquisition Unit

Figure 3.1 illustrates the structure of our data acquisition unit. An IR projector at

850nm is used as an imperceptible light source to illuminate the scene, besides the

ambient light in the visible spectrum. We chose a ELMO CN42H three-CCD color

camera (referred as color camera below) and a Sony XC-EI50 near IR CCD camera

(referred as IR camera below) to capture the scene. The color camera is chosen to

produce color video, and the IR camera sensitive at 400nm to lOOOnm, is used for

recording the IR video sequences. Since the XC-EI50 is also sensitive to visible

light, an interference filter with a narrow-band (pass 850nm±25nm) is used to

reject all light except the one produced by the IR illuminator. The color camera

used in our system has no response to IR light, which is not true for all color video

cameras.

As shown in Figure 3.2, the color and IR cameras are mounted at perpendicular

angles on a cube beam splitter. A beam splitter is placed between the two cameras

at a 45 degree angle, partitioning the incoming light into two perpendicular paths.

Half of the light, including the IR light and ambient light, is reflected to the color

camera, and the other half is transmitted to the IR camera. In the foreground IR

illumination method, the foreground/object is in the field of IR illumination so that

17

.,_~--f'" SSOnm IR

Figure 3.1: Structure of the data acquisition unit

the foreground can be illuminated by the IR illuminator.

The color and IR cameras have the same lens, and therefore yield the same

video-resolution of 365x480 pixel images, which avoids the resampling compu

tation. The two cameras are synchronized using a genlock mechanism, which is

a technique to temporally synchronize video signals from different sources. The

IR image is a mirror version of the color image due to the optical beam splitter.

Also, the use of a beam splitter guarantees that the color image and IR image will

be coplanar and coaxial because they have the same center of projection, so com

plex calibration is avoided to align images. A MacBeth calibration pattern [37], as

shown in Figure 3.3, is used in our system to register two images. After selecting

four corresponding point pairs in the IR and color images, the offset caused by the

small differences in the position of the camera-lens centers can be estimated by

computing the linear translation among these point pairs. This step can be done

automatically by recognizing corresponding points of the MacBeth calibration pat-

18

Figure 3.2: Data acquisition unit

Figure 3.3: MacBeth calibration pattern

tern.

The advantage of our system is that it gives full control of the illumination pro

cess because of the attributes of IR light, which is independent of ambient lighting

in the visible spectrum. It solves the problem that video segmentation is sensitive

to illumination changes. Furthermore, the inconvenient resampling and synchro

nization problem of conventional two-camera system in stereo based segmentation

methods are also avoided, as described in the previous paragraph.

The basic outline of the process of our segmentation system is illustrated in

Figure 3.4. The color image generated by the color camera will look the same as

the view scene. The IR image is a mirror version of the color image due to the beam

splitter and it can be easily registered with a simple image transposition.

Assume that afterimage registration, each IR image is an array / = (Ii...Ii...I\p\),

19

<d) (e)

Figure 3.4: Process of operation (a) The view scene. IR light and normal illumi
nation enters the camera, (b) A cube beam splitter splits the light into two perpen
dicular paths, (c) The color image generated by color camera, (d) The IR image
generated by IR camera tuned to 850nm, with an interference filter (850nm±25nm)
rejecting all light except IR light, (e) The registered IR image, (f) New composed
image with background substitution.

20

and the color image is an array Z = (Zi...Zi...Z\p\), where Ii is a gray scale value,

Zi is a RGB color vector, and P is the pixel set of an image. For the foreground-

background segmentation, we seek a binary label vector / — (/1; h---f\p\), where

fi G {0,1}, with 1 denoting the foreground label and 0 the background label. The

foreground is segmented as described below:

1. Cue Map Initialization. Information provided by the IR image allows esti

mation of the foreground, background and an unknown region. Further, it

provides clues for building a Gaussian Mixture Model (GMM) for the fore

ground and background color spaces respectively.

2. Image Segmentation. For each video frame, the initialized cue map and the

color image are fed to the segmentation algorithm to complete foreground

segmentation. Two segmentation algorithms are investigated in our work:

• Graph Cut (GC). Construct a graph for the color image with N-links

reflecting contrast information and T-links reflecting color information.

Each pixel in the unknown area is assigned a probability value in the

maximum a posteriori sense given foreground and background GMM.

The segmentation is determined by finding max-flow/min-cut of the

constructed graph.

• Contrast Preserving Relaxation Labeling (CPRL). Each pixel in the un

known area is assigned a probability vector with the first element rep

resenting the probability of belonging to the foreground and the second

element the probability of belonging to the background. The probabil

ity vector is updated based on the neighborhood linear constraints. The

segmentation is determined by the convergence of probability after a

sufficient number of iterations.

3.2 Cue Map Initialization

A cue map can be defined according to the attributes of the IR image to improve the

segmentation result. The cue map defined in our system is called the "pentamap".

21

The pentamap and color image are fed together to the segmentation algorithm to

complete the foreground segmentation. We will present how to initialize a pen

tamap from an IR image in this section.

The attributes of the IR image provides clue for predicting foreground and back

ground areas. The IR image is a gray scale image, in which brighter parts indicate

the foreground (illuminated by IR source). Some foreground parts may be missing

as they fall in the shadow area of IR illumination field. Missing foreground parts,

however, must be within a certain distance from the illuminated parts as an inte

grated foreground object. Assuming this distance is r (in numbers of pixels), one

can predict that any dark area outside of this distance belongs to the background.

The value of r increases with the distance of the object to the IR source. That is,

the further the object from the IR source, the more foreground parts are missing.

Suppose the effective distance for the IR source is Dmax, r = rmax — f(Dmax),

and the value of r does not change during the video capture if the user does not

change the camera and IR illumination configuration.

An estimate of the foreground area, which we call MASK, can be found from

the IR image by simple thresholding: MASK = {p £ P\Ip > T}. A conventional

trimap can be easily defined in terms of MASK and r. In many image segmenta

tion algorithms, e.g. GrabCut [44], the input is a trimap. A trimap T partitions an

image into three regions: foreground Tp, background TB and unknown region Tv.

Since we are sure that MASK belongs to the foreground, we can say TF = MASK.

In addition, since we know any area outside of distance r from MASK belongs to

the background, we can represent the predicted background by applying a dilation

morphological operation Tg = P — MASK.dilation(r). The remaining area is

unknown, so Tv = P - TF - TB = MASK.dilation(r) - MASK.

In the traditional image segmentation algorithm, the trimap is used to build color

GMMs for the foreground and background, which are derived from TF and TB

respectively. Here, we propose the idea of a pentamap, which can derive more

reliable color GMMs, leading to more accurate segmentation results.

22

We define a pentamap as follows:

Definition 1 A pentamap Q partitions an image into five regions, certain fore

ground QCF, certain background QCB, local foreground QLF, local background

QLB and unknown Qu, represented as Q : P —> {QCF,QCB,QLF,QLB,QU},

with

QCF = {p\p G MASK.erosion(s)}

QLF = {p\p e MASK - QCF}

QCB = {p\p G~ (MASK.dilation(r + s))}

QLB = {p\p e MASK.dilation(r + s) - MASK.dilation^)}

Qu = {P\P eP- QCF - QCB - QLF - QLB}

where r and s are in terms of number of pixels.

Given these definition, one can transform a pentamap into a trimap as follows:

• QCF + QLF = TF

• QCB + QLB = TB

• Qu = Tv

Figure 3.5 shows an example of a MASK, trimap and pentamap. In the pen

tamap model, QLF(QLB) is a narrow strip of width s that is separated from TF(TB).

In our approach, the color GMM of the foreground is derived from QLF rather than

TF (similarly, the color GMM of the background is derived from QLB rather than

TB), given that it is reasonable to assume that color in the unknown region is consis

tent with the color in its neighborhood regions rather than the whole map. That is,

the color in Qu should be consistent with the color of QLF or QLB rather than the

whole region of TF and TB. In the experimental section, we show that our pentamap

performs better than the trimap.

A pentamap can be automatically initialized from the IR image. The threshold T

can be fixed since the intensity of the IR image does not change as the ambient light

23

(c) (d)

Figure 3.5: Pentamap initialization, (a) Registered IR image, (b) Foreground
MASK, (c) Trimap with red=Tp, green=Te and remaining=T(y. (d) Pentamap with
red=QcF, grecn=QcB, b\ue=QLF, pink=QLJ5, and the remaining area=Qu.

24

changes. The value of r is determined by the configuration of the IR camera and the

distance between the foreground object and the IR source, and it does not change

during the video capture. In our experiments, we used the following parameter

values: T = 0.004 and r = 55. The value of s (in the definition of QLF and QLB

above) does not change the segmentation result much if s G [15, 25].

As in GrabCut [44], we use a Gaussian Mixture Model (GMM) to represent the

foreground and background color spaces, which are derived from QLF and QLB-

Each GMM, one for foreground and one for background, is a Gaussian mixture

with M components (M=10 gives the best performance in the experiments), which

can be interpreted as the number of RGB color clusters. An example of GMM

representing foreground and background color models can be found in [44]. A

vector K = {Kij1...Kiji...K\p\jw} is introduced to assign a GMM component

to each pixel in the image, Kijt G {1...M} representing a GMM component with

mean / i j ^ and covariance matrix ^V , = of'^. The component is either from the

foreground GMM or background GMM according to /;, which is the label of the

pixel. For each pixel in the unknown area Qv, the probability that it belongs to the

foreground is defined in the maximum a posteriori (MAP) sense, as in (3.1):

Vp G Qv, Pr(p\fp = 1) = max Pr{Zp\KpJp=1) (3.1)

where Pr(-) is measured by a Gaussian probability distribution, so that:

Pr(ZP\KpJp=1) = \(2<K)dZpA *exp{-±(Zp - ^i)TYTP\{Zp - fipA)} (3.2)

d is the dimension of the measurement vector Zp, which is the RGB value of pixel

p. Similarly, the probability that a pixel belongs to the background is defined in

(3.3) and (3.4):

Vp G Qu, Pr(p\fp = 0) = max Pr{Zp\KpJp=0) (3.3)
tip ,0 = 1--M

Pr(Zp\KpJp=0) = \(27r)dZp,o \^exp{-l-{Zp - Vpfi)
TZ^P ~ fh,o)} (3-4)

25

3.3 Graph Cut

Boykov et al. [11, 12, 13] proposed the graph cut-based segmentation algorithm

to perform various segmentation tasks. In this algorithm, a graph is constructed

according to an energy function derived from the original image. The image seg

mentation is obtained by minimizing the energy function corresponding to the min-

cut/max-flow of the constructed graph.

A good segmentation of an image should correspond to the minimum of an

energy function in the form of:

E(f) = D(f) + V(f) (3.5)

D(f) and V(f) are defined as:

D(f) = \J2Dp(fp) (3.6)

V(f)= J2 VP * f<]VM(fP, f<) (3-7)
{p,<?}eiN

where A specifies the relative importance of D(f), [•] is a delta function that gives

1 for fp ^ fq and 0 otherwise, and IN is the set of all pairs of neighboring pixels.

D(f), called the data term, gives a penalty for assigning different labels to each

pixel, and V(f), called the smoothness term, corresponds to the penalty of the

edge/contrast information.

An undirected graph G(V, E) is constructed according to the energy function.

Each node in the graph corresponds to a pixel in the original image. There are

two additional terminal nodes, one for the object, called OBJ, and the other for the

background, called BKG. The weight of edges connecting nodes and terminals are

given by the data term, and the weight of edges connecting neighborhood nodes are

given by the smoothness term. The segmentation of the image is found by solving

the min-cut/max-flow problem on the graph G, which should correspond to the

minimum value of the energy function.

26

(a) An example of T-links (b) An example of N-links

Figure 3.6: Graph construction from a pentamap. (a) T-links. Black node in
red area=VcF> black node in green area=Vc£> blue nodes=VLF corresponding to
each pixel in QLF, pink nodes=Vj,s corresponding to each pixel in QLB, yellow
nodes=V[/ corresponding to each pixel in Qy. Edges are constructed between each
graph node V and terminal nodes, with edge weights reflecting the probability of
classifying each node to each terminal, (b) N-links. Edges are constructed between
node pairs (V;, Vj), V- e VLF/VLB/Vu, Vj e VUt {i, j} € IN and i^j.

The graph constructed in our segmentation system is simplified because of the

pentamap. In this section, we introduce how to construct a graph from an image to

integrate the Graph Cut segmentation algorithm in our system.

One advantage of the pentamap is that it simplifies the complexity of the graph

construction and thus improves the efficiency of the Graph Cut algorithm. An ex

ample of graph construction in our method is shown in Figure 3.6. For each frame

to be segmented, an undirected graph G = (V, E) is defined with a set of nodes V

and a set of undirected edge E that connect nodes. Nodes are defined as follows:

• Terminal nodes: OBJ and BKG, representing the foreground and background

respectively.

27

Table 3.1: Edge weight table
Edge Weight Table

Edge

(V^OBJ)

(Vi,BKG)

(VuVj)

Weight
K
0
- l n P r (p | / p = 0)*A
K
0
- l n P r (p | / p = l)*A
a*exp(- | |Zi - Zj\\2/p)
(3 is the expectation
Z JuA Zj A

II fc J II

For

^ G W ^ F
V$ € W ^ L B

ViGK/
V e VCB/VLB

V e VCF/VLF

Vi€Vu
{i,j}eN,i^j,
Vi E VLF/VLB/Vu,
V3 e Vu

• Graph nodes V are classified into two categories:

Certain Nodes: VCF and VCB correspond to QCF and QCB area respectively.

Cut Nodes: Vcut = V-VCF-VCB = {VLF, VLB, VJ}- V e VLF corresponds

to each pixel in QLF, V, £ VLB corresponds to each pixel in QLB, and Vi G

VJJ corresponds to each pixel in Qu.

Edges are added between node pairs in the following cases:

• (V, OBJ/BKG), V e V. Such edges are called T-links, as shown in Fig

ure 3.6(a). The weight of T-links corresponds to the penalty of assigning a

node to the corresponding terminal, which is given by the data term (3.8).

• (Vu Vj), V e VLF/VLB/VU, VJ e Vv, {i,j} e IN and i ^ j . Such edges are

called N-links, as shown in Figure 3.6(b). The weight of N-links corresponds

to the contrast/edge information, which is given by the smoothness term (3.9).

The edge weights are defined in Table 3.1, where K = oo (a very large value

in practice), A is the relative importance of data term, a controls smoothness. D(f)

and V(f) in (3.5) now become

D(f) = \J2-^Pr(p\fP) (3-8)

V(f) = a J2 [/^/JexpHI^-ZJ2//?) (3.9)
{p,q}eW

28

Compared to previous segmentation techniques based on graph cuts, our graph

construction is much simplified in terms of number of nodes and edges. Rather

than creating a node for every pixel in the image, all pixels in QCF are represented

by a single node, and the same principle holds true for pixels in QCB- Such rep

resentation prevents a cut from being made across the QCF (and QCB) area. In

addition, we add neighborhood edges under very strict conditions: Since a cut can

only happen in the unknown area, a contrast term (Vi,Vj) for predicting the object

boundary is computed only in Qy or between Qv and QLF/QLB- The worst-case

runtime complexity for solving a min-cut/max-flow problem is 0(mn2), where n

is the number of nodes and m is the number of edges in the graph [12]. In our

approach, the number of nodes for the same image can, experimentally on average,

be reduced to n/5 and the number of edges can be reduced to m/2, so the runtime

complexity can be reduced to 1/50 * 0(mn2) on average.

3.4 Contrast Preserving Relaxation Labeling

Relaxation labeling can be used to reduce ambiguities and noise based on the paral

lel use of local constraints between labels [27]. In image segmentation by relaxation

labeling, each pixel is first assigned a probability vector and a label based on the

color information, and the probability vector is then updated iteratively based on

the local constraints between labels [25].

We can apply the Relaxation Labeling technique to complete our foreground

segmentation based on the initialized pentamap described in Section 3.2. We pro

pose a new local constraint involving a contrast term, which we call contrast pre

serving relaxation labeling. As in [25], we proceed in three steps:

• Step 1: Initialization. For each pixel p, compute a probability vector

Pr^p)^^^) Pr°0(p)] (3.10)

where Pr\{p) is the probability of pixel p belonging to the foreground (fp =

1), and PTQ(P) the probability of belonging to the background (fp = 0).

29

Based on the pentamap, the probability vector is defined according to the

following scheme:

Pr\ip)

1, VP€QCF,QLF,

Pr(p\fP = 1)
VpeQu, (3.11)

Pr(p\fp = l) + Pr(p\fp = Oy

0, VpeQcB,QLB

and

Pr°0(p) = 1 - Pr^p) (3.12)

Pr(p\fp — 1) a nd Pr{p\fp = 0) are previously defined in (3.1) and (3.3)

respectively.

• Step 2: Iteration. In the nth iteration, the probability vector Prn(p) for pixel

p is updated based on the previous vector Prn^1{p) and the neighborhood

probability vector Prn(q), q € N(p) where N(p) is the 8-connected neigh

borhood about pixel p.

where

^ _ 1 (p) = ,L, „ E c(p< *) * ^?_ 1(?) (3-14)
card(tf(p)) q^{p)

with z = {0,1}. C(p, q) is the compatibility coefficient, and it uses contrast

information as follows:

r(\ J1' X\\ZP-Zq\\<6,
C(p,q) = < . (3.15)

1—1, otherwise

where 9 is the threshold of the contrast term.

• Step 3: Convergence and final labeling. As noted in [27], (3.13) converges to

a consistent labeling as n —• oo. After running for n/ iterations, each pixel is

assigned a label with a larger probability component. We found Nf — 10 to

be sufficient in our experiment.

30

3.4.1 CPRL Implementation on GPU

GPUs (graphics processing unit) are typically used only for computer graphics com

putations, which were traditionally handled by CPUs. GPUs add programmable

vertex and fragment shaders to the graphics pipeline to increase graphics program

ming flexibility and to accelerate graphics pipeline processing. Vertex shaders al

low vertex-based computation such as vertex's 3D position, and fragment shaders

are used for per-pixel computation such as color processing.

GPUs can only process independent vertices and fragments, but can process

many in parallel. This is especially effective when one wants to apply the same

computation to many vertices or fragments. This computation is called kernel, and

the programmer only needs to specify the kernel and data the kernel has to be ap

plied to.

We claim that CPRL can be implemented in real-time based on the fact that it

can be implemented in the GPU fragment shader. First, CPRL is a parallel algo

rithm, and the loop body in Step 2 is the computation kernel. Second, the updating

process for each pixel is independent from the others in the same iteration, depend

ing only on probability vectors of neighborhood pixels in the previous iteration.

3.5 Experimental Results

We captured two test video sequences for foreground IR illumination. Each video

frame (either the color image or the IR image) has 365 x 480 pixels. All pro

cesses are running on a 2GHz Pentium desktop machine with 1G RAM. Real-time

segmentation by GC was implemented in our laboratory, but in the meantime the

alternative CPRL algorithm was implemented in Matlab.

3.5.1 Convergence of CPRL

We first show some segmentation results produced by CPRL. Figure 3.7 and Fig

ure 3.8 are two examples of CPRL. At each iteration, we label pixels as fore

ground if the probability PTQ E [0,0.2), color pixels in pink if the probability

31

PVQ £ [0.2,0.8], and otherwise in blue if the probability Pr^ G (0.8,1]. We can see

that as more iterations are done, some pink pixels become either blue or labeled as

foreground, which means the probability of those pixels converges to either 0 or 1.

In the pentamap initialization, we used the following parameter values: T = 0.004

and r = 55. The value of s (in the definition of QLF and QLB) does not change

the segmentation result much if s e [15,25]. We use s = 25 for video sequence 1

(referred as Seql below), and s = 15 for video sequence 2 (referred as Seq2 below).

Throughout our experiments, we used the same parameter value for the pentamap

initialization.

3.5.2 Comparison between GC and CPRL

Figure 3.9 shows the visual quality comparison of CPRL and GC. The segmentation

results of CPRL and GC are not much different in visual quality, except that CPRL

generates a smoother object boundary due to the fact that the computation of each

pixel's probability of labeling is updated based on the neighborhood information.

On the other hand, GC preserves better contrast information, which can be seen

from the finger part of Seql frame 044 and frame 101 (see Figure 3.9). Some pixels

between the fingers are background pixels but are labeled foreground in CPRL.

Evaluation Criteria

The performance of the GC and CPRL algorithms was evaluated in three respects:

stability, accuracy and efficiency. Stability refers to changes in segmentation results

as parameter values in the algorithms are changed. Is the result very sensitive to the

parameter or is it very stable with respect to the variation of the parameter value. We

test the stability by measuring the error rate of segmentation results given different

sets of parameter values of the algorithm, and see how the variation of parameter

values affects segmentation results. Accuracy is tested by measuring the error rate

of segmentation results produced by different segmentation algorithms, given the

best set of parameter values obtained from a stability test. Efficiency is measured

by the average processing time for each video frame.

32

(a) Pentamap (b) Iteration 1 (c) Iteration 2 (d) Iteration 3

(e) Iteration 4 (f) Iteration 5 (g) Iteration 6 (h) Iteration 7

(i) Iteration 8 (j) Iteration 9 (k) Iteration 10 (1) Final Result

Figure 3.7: Convergence of CPRL on Seq 1 at frame 101. (a) Pentamap fed to
CPRL. (b)-(k) show the probability of each pixel in each iteration. Pixels in pink
color have the probability Pr^ G [0.2, 0.8]. Pixels in blue color have the probability
PTQ € (0.8,1]. Pixels labeled as foreground have the probability PVQ G [0, 0.2).
Note that as n increases, Pr^ —> 0/1. Results are produced by #=400.

33

(a) Pentamap (b) Iteration (c) Iteration 2 (d) Iteration 3

(e) Iteration 4 (f) Iteration: (g) Iteration 6 (h) Iteration 7

(i) Iteration 8 (j) Iteration 9 (k) Iteration 10 (1) Final result

Figure 3.8: Convergence of CPRL on Seq2 at frame 027. (a) Pentamap fed to
CPRL. (b)-(k) show the probability of each pixel in each iteration. Pixels in pink
color have the probability Pr% G [0.2,0.8]. Pixels in light blue color have the
probability Prfi € (0.8,1]. Pixels labeled as foreground have the probability Prfi G
[0, 0.2). Note that as n increases, PTQ —> 0/1. Results are produced by #=200.

34

(a) Seql 044 (b) Seql 101 (c)Seq2 027 (d) Seq2 057

(e) Seql 044 CPRL (f) Seql 101 CPRL (g) Seq2 027 CPRL (h) Seq2 057 CPRL

(i) Seql 044 GC (j) Seql 101 GC (k) Seq2 027 GC (1) Seq2 057 GC

Figure 3.9: Comparison of CPRL with GC. The first panel shows the original color
images: we randomly select Seql frame044 and frame 101, Seq2 frame027 and
frame057 for experiment. The second panel shows segmentation results produced
by CPRL, with 0 = 400. The third panel shows segmentation results produced by
GC, with a=2, /3=200, and A=10.

35

To measure the error rate of segmentation results, the ground truth data was

labeled manually, labeling each pixel as foreground, background or unknown. The

unknown label was used to mark mixed pixels occurring along layer boundaries.

Error is then measured as the percentage of incorrectly labeled pixels over the image

area, ignoring "unknown" pixels. We acquired two video sequences containing 120

frames, and we measured the segmentation accuracy for every 10 frames starting

with the 20th frame. In other words, we measured frames 20, 30, 40... 110.

Stability

The algorithm GC has three parameters: a controls the smoothness, (3 is the ex

pectation of the contrast term, and A controls relative importance factor of the data

term, which carries color information. We measured the error rate of segmenta

tion results on Seql given four different sets of parameter values: {a = 1,(3 —

200, A = 20}, {a = 10, (3 = 200, A = 20}, {a = 10,/? = 200, A = 2} and

{a = 1, (3 = 200, A = 2}. We only varied the value of parameter a and A, since

the segmentation result does not change much if (3 G [100,400]. The results are

plotted in Figure 3.10(a), from which we can see that the segmentation result varies

substantially as the parameter value changes. More specifically, the parameter sets

{a = 1,(3 = 200, A = 20} and {a = 10,/3 = 200, A = 20} generally perform

better than {a = 10, (3 = 200, A = 2} and {a = 1,(3 = 200, A = 2}.

The CPRL algorithm has only one parameter, 9, the threshold of the contrast

information. We also measured the error rate of segmentation results produced by

three different parameter values: 9 = 100, 9 = 200 and 9 = 400, and we plotted

the data in Figure 3.10(b). The data show that the segmentation result is robust

as 9 varies. The numerical error rate value in Figure 3.10(a) and (b) are listed in

Table 3.2 and Table 3.3.

From our experiment, we can conclude that CPRL produces more stable seg

mentation result with respect to variations of parameter values. The segmentation

results and spatial location of segmentation error, by different sets of parameter

value, of Seql at frame 60 are shown in Figure 3.11.

36

- « — alpha=1, beta=200, lambda=20
-B—alpha=10lbeta=200,lambda=20
-X-~alpha=10,b8ta=200,lambda=2

' alpha=1 ,b8ta=20Q,lambda=2

o

0.02

0.01

0.01

P 0.005

0.02

-9--theta=100
-A--theta=200
-*--theta=400

60 70
frames

Figure 3.10: Error rate of GC and CPRL. The segmentation error is computed,
with respect to ground truth, on Seql at every 10 frames starting at frame 20 till
frame 110. (a) Error rate of segmentation results produced by GC. Tested on four
different sets of parameter value: {a = l,/3 = 200, A = 20}, {a = 10, /3 =
200, A = 20}, {a = 10,/? = 200, A = 2}, {a = 1,(3 = 200, A = 2}. Note
that segmentation results vary largely on different set of parameter value, and the
parameter set {a = l,/3 = 200, A = 20} produces lower segmentation error on
average, (b) Error rate of segmentation results produced by CPRL. Tested on three
different sets of parameter value: 9 — 100, 6 = 200 and 9 = 400. Note that the
segmentation results do NOT vary largely on different sets of parameter values, and
the parameter set 9 = 400 produces lower segmentation error on average.

37

Table 3.2: Error rate table for segmentation results produced by GC

Error rate table

Parameter Value
{a= 1,/? = 200,A =
{a= 10,/? = 200, A:
{a= 10,/? = 200, A =

20}
= 20}
= 2}

20
0.0035
0.0029
0.0153

30
0.0029
0.0016
0.0179

Frame
40 50 60
0.0017 0.0006 0.0021
0.0039 0.0041 0.0052
0.0148 0.0084 0.0178

70
0.0024
0.0030
0.0157

80
0.0009
0.0031
0.0127

90
0.0038
0.0035
0.0140

100
0.0026
0.0039
0.0144

110
0.0011
0.0010
0.0121

{ « = ! , / ? = 200, A = 2} 0.0096 0.0143 0.0096 0.0116 0.0129 0.0111 0.0113 0.0101 0.0102 0.0058

Table 3.3: Error rate table for segmentation results produced by CPRL

Error rate table

Parameter Value
0 = 1 0 0
0 = 200

20
0.0039
0.0019

30
0.0026
0.0026

40
0.0011
0.0022

Frame
50 60
0.0014 0.0030
0.0015 0.0025

70
0.0023
0.0021

80
0.0009
0.0009

90
0.0013
0.0014

100
0.0037
0.0028

110
0.0030
0.0008

0 = 400 0.0024 0.0024 0.0012 0.0008 0.0026 0.0022 0.0007 0.0014 0.0014 0.0022

(a) GC 1 (b) GC2 (c) GC 3 (d) GC 4

(e) GC diff 1 (f) GCdiff2 (g) GCdiff3 (h) GCdiff4

(i) CPRL 1 (j) CPRL 2 (k) CPRL 3

(1) CPRL diff 1 (m) CPRL diff 2 (n) CPRL diff 3

Figure 3.11: Spatial distribution of segmentation error for Seql at frame 60. (a)-
(d) are the segmentation results produced by GC. (a) is produced by {a = 1, f3 =
200, A = 20} (b) is produced by {a = 10, (3 = 200, A = 20} (c) is produced by
{a = 10,/3 = 200, A = 2} (d) is produced by {a = 1, (3 = 200, A = 2}. (e)-(n) are
the spatial distributions of the segmentation error corresponding to (a)-(d). (i)-(k)
are the segmentation results produced by CPRL. (i) is produced by 9 = 100 (j) is
produced by 6 = 200 (k) is produced by 6 = 400. (l)-(n) are the spatial distributions
of segmentation error corresponding to (i)-(k).

40

•*• - CPRL: theta=400

-6—GC: alpha=1,beta=200,lambda=20

4 | , , , , , , , r

frames

Figure 3.12: Comparison error rate of GC with CPRL. Results are produced on
Seql. Error rate of GC is produced by {a = 1, (3 = 200, A = 20} and error rate of
of CPRL is produced by 9 = 400.

Accuracy

We compare the accuracy of CPRL with GC by measuring the error rate of segmen

tation results produced by two algorithms. We used the parameter values which per

formed best in the stability test. For GC, we used the parameter set with best overall

performance in the stability test section, which is {a = 2,0 — 200, A = 20}. The

same is true for CPRL, with overall best performance parameter value in the stabil

ity test 6 — 400. The comparison of the error rates of CPRL and GC is shown in

Figure 3.12. One can see that, given the specific parameter value, CPRL segments

images with lower error rate on average comparing to GC. We compared error rate

on 20 different sets of parameter value for GC and CPRL, the overall performance

of CPRL is still superior to GC because the segmentation results produced by GC

has larger variation depending on the parameter value.

41

Efficiency

We implemented GC in C++, using the min-cut/max-flow algorithm code provided

by Vladimir Kolmogorov [12]. Since the graph construction, in terms of the number

of edges and nodes, is much simplified due to the pentamap, the computation is

speeded up to the 1/50 percent of original speed (explained in section 3.3). On

average, it took only 0.1 seconds for processing a 365 x 480 image on our computer.

We implemented CPRL in Matlab, as an alternate algorithm for foreground seg

mentation. The claim we made that CPRL can be implemented in real-time is based

on the GPU implementation. If we have 10 iterations in CPRL, the image needs to

be processed in the GPU frame shader ten times. Given that the computation of

each iteration can be finished in a few microseconds, the processing of each image

can be done in real-time.

3.5.3 Comparison between Pentamap and Trimap

In our experiments, we verified that our proposed pentamap outperforms the trimap.

We initialized the pentamap and the trimap according to our definition in Section

3.2, fed them to the segmentation algorithm and compared the segmentation results.

According to the pentamap definition, the color model for foreground and back

ground should be derived from QLF and QLB, which are colored as blue and pink

region in the pentamap image, as shown in Figure 3.13(a) and Figure 3.13(g). In the

trimap definition, however, the foreground and background color model are derived

from TF and TB, which are colored red and green in the trimap image, as shown

in Figure 3.13(d) and Figure 3.13(g). The difference of color model leads to differ

ences in the segmentation results. The experimental results show that, in general,

the pentamap produces more accurate segmentation results than the trimap. This

supports our assumption in Section3.2 that "the color in unknown region should be

consistent with the color of neighborhood region rather than the whole image".

42

(a) 027 pentamap (b) GC result (c) CPRL result

(d) 027 trimap (e) GC result (f) CPRL result

(g) 057 pentamap (h) GC result (i) CPRL result

(j) 057 trimap (k) GC result (1) CPRL result

Figure 3.13: Pentamap vs. Trimap for Seq2 at frame 027 and frame 057. Segmen
tation results produced by GC use a=2, (3=200, and A=10. Segmentation results
produced by CPRL use 6 = 400.

43

(a) Seql 040 (b) Seql 088 (c) Seql 115

(d) Seq2 030 (e) Seq2 050 (f) Seq2 118

Figure 3.14: Video segmentation and background substitution. We show the seg
mentation results produced by GC for two experimental video sequences.

3.5.4 Comparison with Other Segmentation Methods

We compared our system with other video segmentation systems using the criteria

we proposed for video conferencing system (see Section 1.1): real-time processing

speed, robustness to dynamic background and automation. These are summarized

in Table 3.4.

3.5.5 Background Substitution In Sequences

Figure 3.14 demonstrates the application of foreground/background segmentation

in a video conferencing system, which substitutes the background in real-time. The

segmentation result of our segmentation process is a binary label map where each

pixel is classified as belonging to either the foreground or the background. Since

44

Table 3.4: Comparison table

Criteria

Image-based
segmentation
Motion-based
segmentation
Stere-based
segmentation
IR-based
segmentation

Source

Yin et al. [53]
Table 3
Yin et al. [53]
Table 3

Wu Table 3.3

Real-time
processing
no

no

lOfps
on 320x240 image
10 fps for GC
lOOfpsforCPRL
on 365x480 image

Robustness to
dynamic background
fail

range of error rate
[0.09 0.24]
range of error rate
[0.05 0.17]
range of error rate
[0.001 0.005]

Automation

user interaction
needed
yes

yes

yes

human vision is very sensitive to segmentation boundary artifacts, border blurring

is applied to the object borders in order to blend the foreground with the new back

ground. We thus achieve the equivalent of a-matting effects without really com

puting a values at each pixel but instead applying the process of Gaussian blurring

process.

ct-matting actually calculates a weighted average of foreground color and back

ground color for each pixel, and a Gaussian blurring filter pre-calculates a weighted

average of neighborhood colors for each pixel. These two definitions are very sim

ilar, especially when a pixel is at the border between foreground and background.

Border blurring begins with the "hard" segmentation produced by the GC algo

rithm (CPRL produces smoother object boundaries, and therefore we do not apply

blurring process for CPRL). A blurred boundary contour is defined by the fore

ground area found by GC algorithm and morphological operations. The defined

boundary contour should contain all pixels of boundary artifacts. A Gaussian filter

is then applied to the boundary contour, so that there is a smooth transition be

tween foreground and background, eliminating obvious artifacts at the boundaries.

Figure 3.15 illustrates the segmentation results before and after border blurring.

Conventional matting techniques, such as Bayesian matting [50], compute a

values based on the color of neighborhood pixels. This computation is very slow

and does not perform well for objects with relatively smooth boundaries. We com

pared results produced by Bayesian matting and border blurring (both in Matlab

code), as shown in Figure 3.16. For Bayesian matting, we used the Matlab code

provided by Rucheek Sangani [14]. For an image of size 365 x 480, Bayesian

matting took more than 40 minutes and border blurring took only less than 0.1 sec

onds. Our results presented here look very similar to the border matting results of

GrabCut [44]. Our method is, however, much simpler and more efficient.

46

(a) Boundary Before Segmentation

(b) Boundary After Segmentation

Figure 3.15: Comparison of border blurring. Suppose the foreground area in
(a) is F. The blurred boundary contour is defined as Blurmask = {F —
F.dilation(si).erosion(s2).dilation(s3)}. We used si = 4, s2 = 12, and s3 = 6.

47

(a) Bayesian matting

(b) Border blurring

Figure 3.16: Comparison of border blurring with Bayesian matting, (a) is generated
by Bayesian matting and (b) is generated by border blurring

48

3.6 Discussion

In this chapter, we presented a method for bi-layer segmentation of natural video in

real-time using foreground IR illumination. By illuminating the foreground with an

IR illuminator, the IR image has the following attributes:

• IR image is a gray-level image.

• The foreground object is illuminated by the IR illuminator and therefore has

high intensity in IR image.

• The background has lower intensity in the IR image.

Two algorithms are presented to complete foreground segmentation: Graph Cut

and Contrast Preserving Relaxation Labeling. We demonstrated the process of fore

ground segmentation by GC and CPRL with pentamaps, presented segmentation

results with different algorithms, and analyzed the properties of GC and CPRL.

• Both GC and CPRL are capable of real-time processing. In theory, CPRL has

more potential to achieve high speed by implementing the kernel in GPU due

to the fact that it is a parallel algorithm.

• Both GC and CPRL produce good quality segmentation results. The seg

mentation results produced by GC preserve better contrast information, and

ones produced by CPRL preserve better smooth segmentation boundary. As

analyzed in accuracy section, on average, CPRL produces more accurate seg

mentation results with lower error rate.

• CPRL is more stable than GC with respect to the variation of parameter value.

In other words, CPRL is less sensitive to the variation of parameter value.

Tradeoff between GC and CPRL: Given that both GC and CPRL produce good

quality segmentation results, which one should we choose? At this point, we have

a real-time GC implementation running in our laboratory. In the long run, however,

once we have GPU implementation of CPRL, CPRL will exceed GC with respect

49

to processing time and stability. Furthermore, CPRL produces comparable, or even

more accurate, segmentation results than GC. In a word, CPRL is more economical

in computational speed.

There are some other important differences between GC and CPRL. Currently,

we are looking into a parallel algorithm solution for GC using a GPU, without

which we can only improve the computational efficiency of GC by taking benefit

from pentamaps. The idea behind this is that a pentamap can simplify the graph

construction in terms of number of nodes and edges, and therefore the run time

complexity is reduced as it is proportional to the graph complexity.

There are many advantages for the foreground IR illumination design. First,

the foreground object can be automatically recognized in the IR image given that

it is illuminated by the IR illuminator and therefore appears bright in the IR im

age. Second, due to many good attributes of the IR image, the pentamap can be

initialized robustly and automatically. This plays an important role in achieving

the capability of automatic foreground segmentation. Third, pentamap initializa

tion is independent of ambient lighting because of IR characteristics. Hence, the

foreground-background segmentation will not be affected by changes in illumina

tion (of ambient light). Fourth, the foreground object can be recognized if it is

within the effective distance (Dmax defined in Section 3.2) of the IR illuminator,

and this distance acts like a plane dividing the foreground and background. There

fore, any moving objects presented in the background will not be segmented if it

appears beyond this effective distance.

There are, however, two shortcomings with our foreground IR illumination

method.

1. If the foreground object is too far away from the IR source, it will not be

detected. This problem can be avoided by moving the IR source around and

find the best position of the IR source by observing whether the IR image

yields a good foreground MASK.

50

2. Any object behind the foreground object will be captured and segmented as

foreground if it is very close to the foreground and within the effective dis

tance of the IR source. This problem can be solved by using the background

IR illumination method discussed in the next chapter.

51

Chapter 4

Segmentation by Background
Illumination

In the previous chapter, we presented how to obtain automatic real-time foreground-

background video segmentation by foreground IR illumination. The foreground

illumination method has shortcomings caused by the constraints on the effective

distance. In addition, missing foreground parts can only be found by a segmentation

algorithm, which involves increased computational complexity. In this chapter, we

investigate another way of utilizing IR information for foreground segmentation,

background IR illumination. It can compensate, to a degree, for the disadvantages

caused by the foreground IR illumination method.

4.1 Data Acquisition

In the background IR illumination method, the same data acquisition unit is used as

in the foreground IR illumination method, as shown in Figure 3.1, except that the

IR illuminator is moved behind the foreground and illuminate the background. An

example of captured IR and color images is shown in Figure 4.1.

One can see that the IR image produced by background IR illumination is very

different from the one produced by foreground illumination method: The back

ground area appears bright in the IR image because of illumination of IR illumina

tor, and the foreground appears dark since all IR light hitting the foreground object

is blocked from the IR camera.

52

Figure 4.1: A frame of IR image and color image produced by background IR
illumination

We found that the background illumination method has several advantages.

First, in the IR image, the foreground object is separated from the background area

with high intensity contrast. Sharp and clear foreground boundary is well preserved

(see Figure 4.1). Second, with background illumination one has more freedom

regarding the positioning and orienting of the IR source (or sources). Even back

ground objects that are close to the foreground object can be illuminated with an

IR source and thus are easily classified as background. This reduces errors due

to spurious foreground objects, which can occur with the foreground illumination

method.

One can take advantage from IR images produced by background IR illumina

tion. We segment the foreground object from the background by simple threshold

ing technique, without assistance of any segmentation algorithm. Since the IR im

age preserves sharp and smooth foreground boundary, matting or boundary blurring

becomes unnecessary. However, as one may notice, some parts of the background

also appear dark in the IR image. This is because those background parts are be

yond the illumination field of the IR illuminator. If we have multiple IR illuminators

to illuminate the background, there will be no "blind spots" in the background. At

this point, we only have one IR illuminator, we will consider only the region of

the illumination field for the purpose of comparison this method with foreground

illumination method.

53

Since foreground segmentation is completed by only thresholding and no com

plex segmentation algorithm is needed, the processing is simple and very fast.

4.2 Experimental Results

We captured one test video sequence with background IR illumination. We cropped

the video frame size to limit the segmenting area within the illumination field of the

IR illuminator. As shown in Figure 4.2, in the view scene (images on left hand

side), a computer behind the foreground object is turned on, playing a dynamic

video sequence of desktop screen saver, which acts as the dynamic object presented

in the background. Images on the right hand side of Figure 4.2 are segmentation

results corresponding to the original video frame on the left. Our experiment results

show that the foreground object can be well segmented from the background with

simple thresholding, and there is no need to turn to any segmentation algorithm for

help. Even in the presence of moving objects in the background, the segmentation

results are not affected. The threshold we used in segmentation is threshold = 0.2.

4.3 Discussion

In this Chapter, we demonstrated a method of background IR illumination for fore

ground video segmentation, and presented segmentation results. By illuminating

the background by IR illuminator, we can obtain an IR image with following at

tributes:

• The IR image is a gray-level image.

• The background area is illuminated by the IR illuminator, and therefore has

high intensity in the IR image.

• The foreground has low intensity in the IR image.

• The foreground boundary highly contrasts in intensity against background,

and is very sharp and clear in the IR image.

54

• ""*!

(a) Frame 100

(c) Frame 130

(e) Frame 160

(e) Frame 190

(b) segmentation result

(d) segmentation result

(f) segmentation result

(h) segmentation result

(i) Frame 220 (j) segmentation result

Figure 4.2: Segmentation result by background IR illumination

55

4.3.1 Comparison with Foreground Illumination

The background illumination method is compared with the foreground illumination

method using the following criteria.

• Distance constraint: Background illumination method eliminates the distance

constraint that is required in the foreground illumination method. No matter

how close the background object is to the foreground object, it will not be

falsely labeled as the foreground as long as it is illuminated by the IR illumi

nator.

• Accuracy: In the background illumination IR image, the foreground has high

contrast with background at the boundaries. Therefore it has, on average, a

lower error rate.

• Efficiency: There is no need for complex algorithms in background illumina

tion. Simple thresholding can yield real-time processing speed.

• Cost: Background illumination has higher demands on the illumination. Adding

more IR illuminators increases the cost of the system.

If the background IR illumination method is superior to foreground IR illumina

tion method in so many aspects, should we simply go with background illumination

method for the application of background substitution in video conferencing sys

tem? In fact, this is still an open question. The background illumination method

has other problems, such as higher demands on illumination. Only if we have a

sufficient number of IR illuminators and the if background is well illuminated with

out any "blind spots" , then the simple thresholding technique can produce good

segmentation results.

56

Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis presents a system solution to the problem of automatic bi-layer video

segmentation in real-time in the application of background substitution for a video

conferencing system. The proposed system includes a design for combining IR

information with normal video information, and different methods are proposed for

segmentation for different IR illumination technique.

In our design, an IR illuminator gives an imperceptible light source in addi

tion to ambient light. The way we combine the IR camera and the color camera

enables the system to automatically generate synchronized IR video sequences.

We explored two ways of illuminating the scene with IR illuminators. Different

foreground background IR illumination leads to different methods for foreground-

background segmentation.

In foreground IR illumination, it is the foreground that is illuminated by the

IR illuminator. A foreground MASK can be found by thresholding the IR image,

and the missing foreground parts are completed by two alternative segmentation

algorithms, GC and CPRL. In the background IR illumination method, it is the

background that is illuminated by the IR illuminator. The complete foreground

region can be found by thresholding the IR image, requiring that the whole back

ground area in the view scene be well illuminated, which can only be achieved with

multiple IR illuminators.

57

This thesis presented these two options for applying IR information in video

segmentation. The experimental results show that they are both promising. Ad

vantages and disadvantages of both two methods are analyzed in the corresponding

chapter. It would be interesting to continue experimenting with both ways of IR

illumination and to compare which one is more suitable for the application of video

conferencing system.

As many systems specialized for the application in certain circumstances, our

proposed system also has limitations. The use of IR mainly determines the con

straints of the system. First, in the foreground illumination method, there is a dis

tance constraint. The IR camera can automatically detect the foreground object

only if it is within the effective distance of the IR source, and this distance is used

to divide foreground and background. Therefore, the user may need to move the IR

source around and find the best position by observing whether the IR image yields

a good foreground region. The distance constraint also requires that background

objects can not be too close to the foreground object, otherwise if the background

object is captured by the IR camera it is also labeled as foreground. Second, in

the background illumination method, the number of IR illuminators constrains the

illumination field, the field of view that our video segmentation system is effec

tive in. The field of view of the cameras has to be inside the illumination field.

Otherwise, there will be blind spots in the illuminated background. It would be

interesting to continue exploring our system to develop a method of eliminating the

these constraints.

5.2 Future Work

There are mainly two directions in our future work. First, CPRL needs to be im

plemented on a GPU for real-time bi-layer video segmentation. With further ex

perimental results, we will be in a better position to compare GC with CPRL. It is

also interesting to investigate how the compatibility coefficients in CPRL affect the

segmentation results. Other than contrast-preserving relaxation labeling, we should

investigate other suitable relaxation labeling models for video/image segmentation.

58

Second, other means of utilizing IR for video segmentation should be explored.

There are many ways of combining IR with normal video technique. For example,

the combination of foreground and background IR illumination may give a more

robust initialization of cue map. With more regions determined by the IR, we could

spend less effort and cost on the segmentation algorithms. On the downside, we

would have higher cost for buying IR sources. Introducing polarized IR may make

the detection of IR easier. As described by Ben-Ezra [8], polarized light from the

background makes the background black in the image because its polarization is

"out of stage". Ben-Ezra also tried out two illumination sources, the foreground

was illuminated by unpolarized light, and the background was illuminated by the

polarized light. It would be interesting to explore how it works on IR.

The problem of video segmentation itself has a wide range of applications. The

approach proposed in the thesis is not only a new solution to real-time bi-layer

video segmentation, but also to motion tracking and many other video applications.

The idea of fusing IR with normal video technique provides us a new direction for

video technology. The promising results presented in the thesis not only prove the

usability of the system, but also reveal a new direction in vision in general.

59

Bibliography

[1] http://www.apple.com/macosx/features/ichat.html.

[2] Yucel Altunbasak, P. Erhan Eren, and A. Murat Tekalp. Region based para
metric motion segmentation using color information. Joural of Graphical
Models and Image Processing, 60(1): 13-23, January 1998.

[3] N. E. Apostoloff and A. W. Fitzgibbon. Automatic video segmentation using
spatiotemporal t-junctions. In Proceedings of the 17th British Machine Vision
Conference, Edinburgh, 2006.

[4] H. Harlyn Baker. The coliseum immersive teleconferencing system. HP Lab
oratories: Palo Alto Ca, 2002.

[5] H. Harlyn Baker. Computation and performance issues in coliseum, an im
mersive videoconferencing system. HP Laboratories: Palo Alto Ca, 2003.

[6] S. S. Beauchemin, D. J. Fleet, and J. L. Barron. Performance of optical flow
techniques. In CVPR92, pages 236-242, 1992.

[7] Peter N. Belhumeur. A bayesian approach to binocular stereopsis. Interna
tional Journal of Computer Vision, 19(3):237-260, 1996.

[8] Moshe Ben-Ezra. Segmentation with invisible keying signal. Computer Vi
sion and Pattern Recognition, IEEE Computer Society Conference on, 1:1032,
2000.

[9] Stan Birchfield and Carlo Tomasi. Depth discontinuities by pixel-to-pixel
stereo. In ICCV, pages 1073-1080, 1998.

[10] Michael J. Black. Combining intensity and motion for incremental segmen
tation and tracking over long image sequences. In European Conference on
Computer Vision, pages 485-493, 1992.

[11] Y. Boykov and M. P. Jolly. Interactive graph cuts for optimal boundary and
region segmentation of objects in n-d images. In Proc. IEEE International
Conference on Computer Vision, 1:105-112, 2001.

[12] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-
flow algorithms for energy minimization in vision. Pattern Analysis and Ma
chine Intelligence, IEEE Transactions on, 26(9): 1124-1137, 2004.

[13] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization
via graph cuts. IEEE Trans. Pattern Anal. Mack Intell, 23(11): 1222-1239,
November 2001.

60

http://www.apple.com/macosx/features/ichat.html

[14] Yung-Yu Chuang, Brian Curless, David H. Salesin, and Richard Szeliski. A
bayesian approach to digital matting.

[15] P. L. Correia and F. Pereira. Classification of video segmentation application
scenarios. IEEE Trans. Circuits Syst. Video Techn., 14(5):735-741, 2004.

[16] Ingemar J. Cox, Sunita L. Hingorani, Satish B. Rao, and Bruce M. Maggs. A
maximum likelihood stereo algorithm. Computer Vision and Image Under
standing, 63(3):542-567, 1996.

[17] A. Criminisi. i2i: 3d visual communication. Microsoft Research: Cambridge.

[18] A. Criminisi, G. Cross, A. Blake, and V. Kolmogorov. Bilayer segmentation
of live video. In CVPR06, pages 53-60, Washington, DC, USA, 2006. IEEE
Computer Society.

[19] A. Criminisi, J. Shotton, A. Blake, and P. H. S. Torr. Gaze manipulation for
one-to-one teleconferencing. In ICCV03, page 191, Washington, DC, USA,
2003.

[20] Alexandre X. Falcao, Jayaram K. Udupa, Supun Samarasekera, Shoba
Sharma, Bruce Elliot Hirsch, and Roberto de A. Lotufo. User-steered im
age segmentation paradigms: live wire and live lane. Graph. Models Image
Process., 60(4):233-260, 1998.

[21] Davi Geiger, Bruce Ladendorf, and Alan L. Yuille. Occlusions and binocular
stereo. In European Conference on Computer Vision, pages 425^33, 1992.

[22] S. Burak Gokturk, Hakan Yalcin, and Cyrus Bamji. A time-of-flight depth
sensor - system description, issues and solutions. In CVPRW04, page 35,
Washington, DC, USA, 2004. IEEE Computer Society.

[23] W. E. L. Grimson, C. Stauffer, R. Romano, and L. Lee. Using adaptive track
ing to classify and monitor activities in a site. In CVPR, page 22, Washington,
DC, USA, 1998. IEEE Computer Society.

[24] Mohit Gupta and Krishnan Ramnath. Interactive segmentation tool-box.

[25] Michael W Hansen and William E. Higgins. Relaxation methods for su
pervised image segmentation. IEEE Trans. Pattern Anal. Mach. Intell.,
19(9):949-962, 1997.

[26] Ellen Catherine Hildreth. Measurement of Visual Motion. MIT Press, Cam
bridge, MA, USA, 1984.

[27] R. A. Hummel and S. W. Zucker. On the foundations of relaxation labeling
processes, pages 585-605, 1987.

[28] G. Iddan and G. Yahav. 3d imaging in the studio (and elsewhere). In Proc. Of
SPIE 4298: Videometrics and Optical Methods for 3D Shape Measurements,
pages 48-55, 2001.

[29] Y. Ivanov, C. Stauffer, A. Bobick, and E. Grimson. Video surveillance of
interactions. In Proc. of the CVPR'99 Workshop on Visual Surveillance, Fort
Collins, Colorado, November 1998.

61

[30] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active con
tour models. International Journal of Computer Vision, (1):321—331, 1988.

[31] S. Khan and M. Shah. Object based segmentation of video using color motion
and spatial information. 2:746-751, 2001.

[32] V. Kolmogorov, A. Criminisi, A. Blake, G. Cross, and C. Rother. Bi-layer seg
mentation of binocular stereo video. In CVPR, pages 407^14, Washington,
DC, USA, 2005. IEEE Computer Society.

[33] Vladimir Kolmogorov and Ramin Zabih. Multi-camera scene reconstruction
via graph cuts. In ECCV02, pages 82-96, 2002.

[34] I. Koprinska and S. Carrato. Temporal video segmentation: A survey. Image
Communication, 16(5):477-500, 2001.

[35] Maylor K. Leung and Yee-Hong Yang. Human body motion segmentation in
a complex scene. Pattern Recognition, 20(l):55-64, 1987.

[36] X. Luan, R. Schwarte, Z. Zhang, Z. Xu, H.-G. Heinol, B. Buxbaum, T. Ring-
beck, and H. Hess. Three-dimensional intelligent sensing based on the pmd
technology. In Proc. SPIE, volume 4540, pages 482-487, Dec 2001.

[37] Tomoo Mitsunaga and Shree K. Nayar. Radiometric self calibration, cvpr,
01:1374, 1999.

[38] Eric N. Mortensen and William A. Barrett. Interactive segmentation with
intelligent scissors. Graph. Models Image Process., 60(5):349-384, 1998.

[39] T. Oggier, M. Lehmann, R. Kaufmann, M. Schweizer, M. Richter, R Met-
zler, G. Lang, F. Lustenberger, and N. Blanc. An all-solid-state optical range
camera for 3d real-time imaging with sub-centimeter depth resolution (swiss-
ranger). In Optical Design and Engineering. Proceedings of the SPIE, volume
5249, pages 534-545, Feb 2004.

[40] Y. Ohta and T. Kanade. Stereo by intra- and inter-scanline search using dy
namic programming. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 7(2):139-154, March 1985.

[41] I. Overington. Gradient-based flow segmentation and location of the focus of
expansion. In Proc. 3rdAlvey Vision Conference, pages 169-177, 1987.

[42] Jerry L. Potter. Scene segmentation using motion information. Computer
Graphics and Image Processing, 6:558-581, 1977.

[43] Andrew Rabinovich, Serge Belongie, Tilman Lange, and Joachim M. Buh-
mann. Model order selection and cue combination for image segmentation.
cvpr, 1:1130-1137, 2006.

[44] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. Grabcut: inter
active foreground extraction using iterated graph cuts. ACM Trans. Graph.,
23(3):309-314, August 2004.

[45] Neven Santrac, Gerald Friedland, and Raul Rojas. High resolution segmen
tation with a time-of-flight 3d-camera using the example of a lecture scene.
Technical Report B-06-09, Freie Universitat Berlin Department of Mathemat
ics and Computer Science, September 2006.

62

[46] A. Spoerri and S. Ullman. The early detection of motion boundaries. In Proc.
1st International Conference on Computer Vision, pages 209-218, 1987.

[47] C. Stauffer and W.E.L. Grimson. Adaptive background mixture models for
real-time tracking. Computer Vision and Pattern Recognition, 2:246-252,
1999.

[48] William B. Thompson. Combining motion and contrast for segmentation.
PAMI, pages 543-549, November 1980.

[49] William B. Thompson, Kathleen M. Mutch, and Valdis A. Berzins. Dynamic
occlusion analysis in optical flow fields. IEEE Trans, on Pattern Analysis and
Machine Intelligence, 7(4):374-383, 1985.

[50] Oliver Wang, Jonathan Finger, Qingxiong Yang, James Davis, and Ruigang
Yang. Automatic natural video matting with depth. In PG '07: Proceedings
of the 15th Pacific Conference on Computer Graphics and Applications, pages
469-472, Washington, DC, USA, 2007. IEEE Computer Society.

[51] Oliver Williams. A switched gaussian process for estimating disparity and
segmentation in binocular stereo. In Advances in Neural Information Pro
cessing Systems 19, pages 1497-1504. MIT Press, Cambridge, MA, 2007.

[52] C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland. Pfinder: Real-
time tracking of the human body. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(7):780-785, 1997.

[53] P. Yin, A. Criminisi, J. Winn, and I. A. Essa. Tree-based classifiers for bilayer
video segmentation. In CVPR07, pages 1-8. IEEE Computer Society, 2007.

[54] D. Zhang and G. Lu. Segmentation of moving objects in image sequence:
A review. Circuits, Systems, and Signal Processing, 20(2):143-183, March
2001.

[55] Yu-Jin Zhang. Advances in Image and Video Segmentation. IRM Press, May
2006.

63

