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Abstract 

Tele-immersive systems aim at creating the illusion that all participants at a remote 

location are in the same virtual room. As a new emerging technique, it is faced 

with many challenging problems, one of which is automatic, real-time foreground-

background video segmentation, or called bi-layer video segmentation. 

This thesis presents a novel method for the bi-layer video segmentation problem 

based on the fusion of infrared and color video. The method improves on previous 

algorithms by making the system independent of changes in ambient lighting and 

dynamic background, and it achieves the goal of automatic video segmentation in 

real time. Two possibilities for utilizing infrared sources are explored, namely fore­

ground illumination and background illumination. Experimental results show that 

segmentation based on infrared and color video is a promising technique for real­

time segmentation. 
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Chapter 1 

Introduction 

1.1 Motivation 

Many tasks in computer vision involve robust and accurate foreground-background 

video segmentation. In many applications, including, for example, surveillance, 

video conferencing, motion capture, or gesture analysis for human-computer inter­

action (HCI), video foreground objects have to be separated from the background 

scene before proceeding with further analysis. 

One prime application of foreground-background video segmentation is video 

conferencing systems, where there is a need to remove the background and replace 

it with a different one. For example, Microsoft's research group at Cambridge has 

developed a desktop videoconference system, i2i [17], which includes background 

substitution. The immersive video conferencing system proposed by HP [5, 4], 

called the Coliseum project, aims at providing realism in communication (see Fig­

ure 1.1). The idea of this next-generation videoconference system is to generate a 

virtual meeting environment, into which all participants at remote location will be 

inserted. The meeting room is then rendered for each participant from their view­

point. In these applications, segmentation of the foreground/participant from the 

scene becomes an essential and crucial step. 

There are many techniques and mature products on the market that provide 

foreground-background image segmentation. However, bilayer video segmentation 

remains a challenging problem. In many respects, it has higher demands than image 
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Figure 1.1: HP Coliseum immersive system [5]. 

Figure 1.2: iChat 

segmentation, including real-time processing speed, consistency of segmentations 

between frames and minimal manual editing. Only a few video chat products on 

the market have successfully incorporated background substitution. For example, 

Apple introduced iChat in their release of Mac OS X version 10.3 "Panther" [1]. 

This product is capable of performing instant background substitution during video 

chatting. However, it only produces acceptable results in the situations where the 

background is static and uniformly colored, which largely constrains its usefulness 

in many common scenarios. 

The challenges in foreground-background video segmentation, especially for 
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video conferencing system, include the following: 

• Real-time processing: Segmentation should be performed at live processing 

speed to ensure the smooth progress of the video meeting/chatting. 

• Robustness: Segmentation should be robust to environment changes, includ­

ing illumination changes, camera shaking, dynamic backgrounds with pres­

ence of large moving objects and more. 

• Automation: The foreground should be segmented automatically without 

user intervention. 

We aim to solve this bi-layer video segmentation problem addressing the above 

challenges. Once the foreground objects have been detected and extracted by our 

system, they can be further processed for a variety of purposes. 

1.2 Thesis Scope 

This thesis explores mainly a new solution to the problem of bi-layer video seg­

mentation by fusing infrared and color information. A powerful data acquisition 

unit has been developed using an optical technique that automatically gives syn­

chronized infrared video and color video. We explore two possibilities for utilizing 

infrared illumination, foreground and background illumination. In the foreground 

illumination method, the resulting video sequences, infrared video and color video, 

are fed into the segmentation algorithm, Graph Cut or Relaxation Labeling, to opti­

mize the segmentation results. The experimental results show the potential of both 

algorithms. Relaxation Labeling can utilize the fast parallel processing ability of the 

GPU and is more stable than Graph Cut in terms of changes in parameter values. 

1.3 Contributions 

The thesis makes two main contributions. First, we propose to adopt infrared in­

formation in the video segmentation system. The way we combined the infrared 

camera and the color camera automatically gives synchronized video sequences, 
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avoiding the disadvantages of conventional two-camera systems. Second, we ex­

plore two ways of utilizing IR illumination for bi-layer video segmentation. Third, 

in the foreground illumination method, we propose two different algorithms for 

video segmentation, achieving the goal of real-time processing speed, robustness 

and automatization. For Graph Cut, we simplify the graph construction by taking 

advantages of cue map. The efficiency of the Graph Cut algorithm is improved 

largely due to decreased number of graph nodes and edges. For Relaxation Label­

ing, it is a perfect parallel algorithm whose computation kernel can be implemented 

on a GPU, so that the segmentation can be done in microseconds. 

1.4 Thesis Outline 

Chapter 2 discusses the related work. Chapter 3 describes our proposed system 

by foreground IR illumination. In Chapter 4, we describe the other possibility of 

video segmentation by background IR illumination. In Chapter 5, we present our 

conclusions and future work. 

4 



Chapter 2 

Literature Review 

2.1 Video Segmentation 

Video segmentation is an extension of image segmentation in the sense that video 

is a spatio-temporal sequence of images. Compared to the spatial nature of (static) 

images, video has both spatial and temporal characteristics. Segmenting a frame of 

video in the spatial domain is just like segmenting a static image [55]. In image seg­

mentation the goal is to segment an image into spatially coherent regions, whereas 

in video segmentation the goal is to segment the image into spatio-temporally co­

herent regions [3]. That is, the segmentation of video sequence should be consis­

tent among frames. Segmentation results usually serve for subsequent video/image 

analysis, such as object representation and description, feature measurement and 

even higher level tasks such as object classification, scene interpretation and coding 

purposes. 

"Correct" video segmentation varies depending on the application. For exam­

ple, for the purpose of achieving high video compression performance, the seg­

mented objects might not be semantically meaningful to human observers [54]. 

Most of the current video segmentation research focuses on automatically segment­

ing images into semantically meaningful entities, such as people, ground, cars, sky 

or background etc. This object-based segmentation has wide applications in object-

based media compression and coding (e.g., MPEG-4, codecs), visual-content re­

trieval (e.g., MPEG-7 related schemes) and object recognition. 
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There is no general technical theory for video/image segmentation. Many re­

search directions have been explored, but none of the developed segmentation al­

gorithms are generally applicable to all images, and different algorithms are not 

equally suitable for particular applications [55]. As more and more segmentation 

algorithms are explored, classification of the various techniques for video segmen­

tation becomes an essential task. Although there are a number of survey papers 

on image segmentation, very few discuss video segmentation, which only cover a 

small set of techniques developed and only focus on a specific application area. For 

example, Koprinska and Carrato [34] present a survey of techniques of temporal 

video segmentation. Temporal video segmentation divides a video stream into a 

set of meaningful and manageable shots, each of which is a sequence of frames 

and represented by selecting key frames. Zhang and Lu [54] present a review of 

motion-based segmentation algorithms. Correia and Pereira [15] present a classifi­

cation criteria based on the application scenarios. 

In video segmentation, more information can be used beyond color, edges and 

contrast information, which always play an important role in both video and image 

segmentation. A high-level understanding of image contents can also help to obtain 

automatic video segmentation. Acquiring such high-level cues, including frame 

difference, motion model, depth and stereo etc. at the pixel level or object level, 

often makes the video segmentation and tracking less challenging. 

In this thesis, we focus on a specific application of video segmentation, video 

conferencing system, in which each frame is partitioned into two regions: fore­

ground and background. The foreground (or object of interest) refers to the partici­

pant of the remote video meeting/chatting. 

2.2 Previous Approaches 

This section provides a general review of several state-of-the-art approaches in the 

field of bilayer video segmentation. The approaches can be classified into two gen­

eral categories, segmentation by visual cues and segmentation by fusing visual with 
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(a) 

Figure 2.1: Segmentation results by Interactive Graph Cuts [11]. 

other cues. 

2.2.1 Segmentation by Visual Cues 

Visual cues usually refer to the information observed in an image or a video frame, 

such as color, texture, contour and contrast information etc. It is unclear which cues 

to choose for a given segmentation problem and how to weight their importance, a 

problem known as the cue combination problem in computer vision [43]. Tradi­

tionally, supervised learning is used to label the data in an image and a classifier is 

trained on the labeled data to classify unlabeled pixels. Unsupervised segmentation 

methods can group pixels into regions of similar texture, but not able to segment 

foreground and background regions. 

Recently, interactive segmentation techniques exploiting color/intensity and con­

trast cues have been demonstrated to be very effective for static images, as demon­

strated in [44]. Usually color priors for the foreground and background are used to 
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classify pixels in the unknown area, and inaccurate segmentation caused by color 

noise is compensated by the contrast cues, which force the segmentation bound­

aries to be located where the contrast is locally maximum. Some techniques such as 

Active Contours [30] also use smoothness constraints to restrict the segmentation 

boundary. Unfortunately, all these methods require manual user input to provide 

segmentation cues. For example, Intelligent Scissors [38] and Live Wire [20] re­

quire boundary cues; the user has to accurately select some pixels the segmentation 

boundary should pass through. Then the segmentation boundary is determined by 

computing the "shortest path" between the marked pixels. In [11], the user needs to 

mark several foreground and background pixels, providing color cues on what the 

user intends to segment. In "GrabCut" [44], the user drags a rectangle around the 

desired foreground object. After initial segmentation, more editing may be needed 

to obtain the desired result. 

There are two main disadvantages caused by manual input. First, the segmenta­

tion results seem to be very sensitive to user initialization. For example, in [11], it 

is important for the segmentation result that the user selects the most characteristic 

color region of the foreground and background. Figure 2.1 shows segmentation re­

sults obtained with the algorithm presented in [11]. We used the Matlab code [24] 

by Mohit Gupta and Krishnan Ramnath. The user input is shown in the left subim-

ages of (a) and (b). The red brush stokes denote foreground seeds and the blue brush 

stokes denote background seeds. We can see from (a) and (b) that slightly different 

initial input results in very different segmentation result. Second, segmentation is 

beyond the capabilities of fully automatic methods. This makes them not applica­

ble to video segmentation since manual editing of each frame is too expensive and 

impossible for video conferencing application. 

2.2.2 Segmentation by Fusing Visual with Other Cues 

In order to obtain the fully automatic segmentation, a more robust approach is re­

quired that explores fusions of several cues. Recently, many researchers have inves­

tigated the fusion of background model, motion or stereo with color and contrast, 
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as described in the following sections. 

Background Model Based Segmentation 

Several segmentation systems rely on prior knowledge about the background scene, 

which is represented by a histogram-based background model for gray images. The 

foreground is considered a region (in each new frame) mat differs significantly from 

the background. This type of approach is commonly referred to as background 

subtraction, referring to the simple technique of subtracting the background model 

from a new frame and thresholding the result to find the foreground region. 

The simplest background subtraction technique is based on the assumption that 

the background, as viewed by the camera, is static. In this simplified case, the back­

ground model is a background picture captured apriori. The foreground is detected 

by subtracting the current frame from the background picture and thresholding the 

result [35]. This process can be represented as: \framei — background] > Th, 

where i is the frame index and Th is a predefined threshold. This method obviously 

fails if the background is dynamic. More advanced techniques in this category use 

an adaptive background model to solve problems caused by regularly time-varying 

backgrounds, such as water waves, moving clouds, trees waving in the wind and so 

on. In the Pfinder system [52], each background pixel is modeled with the Gaussian 

described by a mean color value and a full covariance matrix, and the background 

model is continually updated. In [23, 29, 47], each pixel is modeled by a mixture 

of K Gaussians, 
K 

where ji^t is the expectation of the ith Gaussian at time t, £ ^ t = crftl is the co-

variance matrix. uijt, Hi,t and of t are updated according to whether It matches 

derived current Gaussian components. These methods can learn and adapt a back­

ground model, but they are based on the assumption that the color distributions of 

the foreground and background pixels are well separated. 

There are several problems in developing a background subtraction algorithm. 

9 

file:///framei


Ik 
(a) (b) 

(c) (d) 

Figure 2.2: Comparison segmentation results (reproduced from [53]). (a) Original, 
(b) Result from motion-based segmentation in [18], where the large moving objects 
in the background are falsely classified as the foreground, (c) Result from motion-
based segmentation in [53], where the moving background parts are removed, but 
some foreground boundary parts are missing, (d) Result from stereo-based segmen­
tation in [32], with more accurate foreground boundaries. 

First, the threshold is critical, resulting in a lot of noise if selected too low and sup­

pressing significant changes if selected too high. Second, background subtraction 

techniques fail in the presence of large moving objects in the background. Third, 

they are very sensitive to illumination changes and image noise. Finally, they can­

not discriminate foreground from background, if there is lack of color differences. 

Motion-Based Segmentation 

Traditional motion-based segmentation methods usually employ motion informa­

tion only. Motions are typically represented as a 2D optic flow [6, 42, 46, 41, 49, 

26]. The optic flow of a pixel is a motion vector calculated between a pixel in one 

frame and its corresponding pixel in the following frame. Motion-based segmen­

tation finds groups of pixels in two or more frames where each group is a smooth 

motion field, or say, optic flow field. Motion segmentation alone cannot solve the 

segmentation problem of static scenes. Further, due to occlusion and disocclusion, 
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optic flow is not reliable at the boundaries of moving objects [31]. Finally, the es­

timation of per-pixel optic flow is computationally expensive because it involves 

extensive search for finding matching/corresponding pixels. 

Very often the foreground object to be segmented has inconsistent motion and 

is often stationary, so adding other feature information can overcome this prob­

lem. The earliest work, to our knowledge, on combining motion with other image 

features for segmentation has been explored by Thompson [48]. Images were seg­

mented based on regions with similar intensity and optic-flow values. The resulting, 

over-segmented regions were then merged using a heuristic approach. Black [10] 

combined intensity and motion for segmenting images based on Markov Random 

Fields. Tekalp et al. [2] presented a method for segmenting images separately by 

motion and color, and color segments were merged by regions belonging to the 

same motion region. All these methods segment each video frame into several lay­

ers for the purpose of video compression rather than for foreground-background 

segmentation; the segmented layers usually have holes and are not accurate at the 

boundaries [31]. Finally, with extensive optic flow computation, it is hard to achieve 

real-time processing speed. 

Recent research on bi-layer video segmentation based on fusing motion, color 

and contrast cues has produced promising results. Criminisi et al. [18] present an 

algorithm that probabilistically fuses motion, color and contrast cues together with 

spatial and temporal priors. The main contribution of their paper is removing the 

need of computing pixel velocities, which is required for optic flow computation. 

However, it cannot cope with a large moving background or a stationary foreground. 

Yin et al. [53] improved motion-based segmentation results in the presence of large 

background motion and a stationary foreground. They showed a comparison result 

between their algorithm and the algorithm in [18] as well as a stereo-based segmen­

tation algorithm [32], as shown in Figure 2.2. One can see that the motion-based 

algorithms can not beat stereo-based algorithms, which will be introduced in the 

next section. In addition, none of motion-based segmentation algorithms claimed 

real-time processing speed. In [53], a processing speed of between 1.2 and 2.7 fps 
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was reported in a Matlab implementation. 

Stereo-Based Segmentation 

Stereo vision usually refers to the problem of inferring the 3D structure of a scene 

from two or more images taken from different viewpoints. A two-camera stereo 

setup imitates the human vision system, which has two eyes looking into the scene. 

The major task in stereo is to exploit the correlation between stereo images, to 

compute disparity between corresponding image pixels, and to infer a depth map of 

image pixels from the disparity information. Stereo vision involves computing the 

depth of each image pixel, and thus can be applied to bilayer video segmentation 

due to the fact that the foreground is usually located on a depth plane with smaller 

depth than that of the background. 

Conventional stereo algorithms have proven useful in depth computation [40, 

16]. Recent research on addressing occlusion [21, 7, 33, 19] and depth discontinu­

ities [9] are of particular interest for extracting a foreground object from the back­

ground. Williams [51] proposed a Gaussian process framework for the bi-layer 

segmentation of a scene, given a stereo pair of images, by estimating pixel-wise 

disparity. His approach classifies all pixels into three categories: foreground, back­

ground and occlusion, based on a disparity model used as the pixel classifier, which 

roughly estimates the disparity value for foreground (0.8D), background (0.2D) 

and occlusion (0.5D), where D is the maximum disparity value in the image. When 

the disparity model is violated, the application is bound to be incorrect. Further, 

Williams uses NSSD (normalized sum of squared differences) for matching when 

evaluating the correlation of pixels. Such depth computation from stereo is not only 

computationally expensive, it is also not accurate and not robust over low-textured 

or homogeneous regions. 

In our opinion, the most compelling real-time algorithm on bilayer video seg­

mentation, which fuses stereo, color and contrast, was proposed by Kolmogorov et 

al. [32]. They investigated two different real-time algorithms to probabilistically 

fuse stereo, color and contrast cues, Layered Dynamic Programming (LDP) and 
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(a) (b) (c) 

Figure 2.3: i2i stereo web-cam 

Layered Graph Cut (LGC). In LDP, a Gibbs energy function E(z, d, x; 6 , $) is de­

fined explicitly incorporating priors on stereo disparity <& and color/contrast infor­

mation 0 . The segmentation is obtained by minimizing the energy independently 

over each epipolar line with a dynamic programming algorithm. In LGC, an energy 

function E(z, x; 0) is globally minimized over an image, in which stereo disparity 

does not appear explicitly. Instead, the stereo match likelihoods are marginalized 

to compute a probability over the foreground and background hypotheses. The seg­

mentation is determined by an expanded form of graph cuts. In both algorithms, 

stereo likelihoods are still measured by NSSD, which is computationally expen­

sive. Color likelihood is modeled by Gaussian mixtures in RGB color space as in 

"GrabCut" [44]. The contrast term is computed by neighboring pixel-pairs in the 

cyclopean image. A real-time implementation of LGC was reported in their paper 

at around 10 frames per second for a 320x240 image on a 3-GHZ Pentium desktop 

machine. 

Compared to other video segmentation methods, stereo-based segmentation needs 

a two-camera binocular stereo video setup, as shown in Figure 2.3. Stereo cameras 

can add additional computation for calibration and synchronization, which are both 

important for stereo match computation. Camera calibration is needed to rectify 

any pair of images to a "parallel camera geometry" so that two corresponding points 

line on the same horizontal line, called epipolar line, in the two images. The epipo­

lar line constraints can reduce the search of corresponding points to a ID search 

problem. Synchronization is necessary to ensure that the video sequences gener­

ated by two cameras are using the same timing, so that two corresponding frames 
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(a) (b) 

Figure 2.4: Zcam (a) The new ZCam (b) Mini camera 

are generated at the same time. The synchronization can be completed by either 

special digital circuit design, e.g. the synchronized USB 2.0 stereo web-cam devel­

oped by Microsoft research at Cambridge, as shown in Figure 2.3(c), or over the 

network. Nevertheless, both calibration and synchronization add extra time to the 

stereo computation kernel. 

Time-Of-Flight Camera Based Segmentation 

In general, time-of-flight (TOF) cameras are able to obtain depth information based 

on the time-of-flight principle. They consist of an amplitude-modulated infrared 

light source and obtain depth information by measuring the time taken by infrared 

light to travel to all objects in the scene and then return back to the camera. They 

can produce either a depth value for each captured pixel or a gray-scale depth map 

with an intensity proportional to the time of flight of the light reflected by a dis­

tant object [45]. A more detailed description of the time-of-flight principle can be 

found in [36, 39, 22]. Compared to the stereo-based methods, TOF cameras obtain 

depth information directly, avoiding the inconvenient and expensive computation, 

e.g. NSSD, for stereo matching. 

In order to apply TOF cameras to real-time bilayer video segmentation, many 

researchers combine a TOF camera with a 2D regular web camera to produce both 

RGB and depth signals. Unfortunately, as in [45], the 2D camera image and the 

depth image do not correlate directly, caused by significant differences in camera 

lens and image characteristics of two cameras. Other problems discussed in [45] 
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include resampling if two cameras have different resolution, synchronization if two 

cameras have different frame rates, and calibration in order to map color image with 

depth image. 

Today, several manufacturers have produced an integrated depth-video camera, 

e.g. the ZCam [28] shown in Figure 2.4, which is capable of producing perfectly 

synchronized RGB and depth signals. Such 3D cameras have many desirable prop­

erties, including robustness against illumination changes, fast and easy processing. 

Unfortunately these sensors are very expensive and difficult to integrate with nor­

mal video technology. 
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Chapter 3 

Segmentation by Foreground 
Illumination 

Traditional bi-layer segmentation methods based on the color and contrast informa­

tion alone can only achieve desirable results with user interaction. In order to ob­

tain automatic foreground-background video segmentation, one needs to infer more 

information than what is given in the original video. While some compelling algo­

rithms have been proposed on combining stereo or motion information with original 

color video, they all have problems with illumination changes, with large moving 

object in the background, with high computational cost and so on. In this thesis, 

we seek a solution to bi-layer video segmentation problem by fusing infrared, color 

and contrast information. The challenges solved by our proposed system include 

real-time processing speed, automatic segmentation and robustness to illumination 

change and dynamic background. 

We designed a data acquisition unit, involving an IR camera and a color camera, 

to automatically generate synchronized IR video and color video. An IR illumina­

tor is used as an imperceptible light source besides ambient light in the visible 

spectrum. We investigate two ways of employing IR information by illuminating 

different parts of the scene with the IR illuminator: foreground IR illumination and 

background IR illumination. In the foreground IR illumination, the IR illuminator 

is put in front of the foreground/object, and it lights the foreground. In the back­

ground IR illumination, the IR illuminator is put behind the foreground and lights 

the background area. In either cases, the resulting video sequences will be fed to the 
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segmentation algorithms to complete foreground segmentation. Two segmentation 

algorithms are explored in this thesis on fusing infrared, color and contrast informa­

tion: Graph Cut (GC) and Contrast Preserving Relaxation Labeling (CPRL). Both 

algorithms are suited for real-time implementation. Given the fact that CPRL can be 

computed by a parallel algorithm, its computation kernel can be implemented in the 

GPU with higher computation speed. The claims are verified in the experimental 

section. 

In this Chapter we introduce how to achieve bi-layer video segmentation by 

foreground IR illumination. The background IR illumination method will be pre­

sented in the next Chapter. 

3.1 Data Acquisition Unit 

Figure 3.1 illustrates the structure of our data acquisition unit. An IR projector at 

850nm is used as an imperceptible light source to illuminate the scene, besides the 

ambient light in the visible spectrum. We chose a ELMO CN42H three-CCD color 

camera (referred as color camera below) and a Sony XC-EI50 near IR CCD camera 

(referred as IR camera below) to capture the scene. The color camera is chosen to 

produce color video, and the IR camera sensitive at 400nm to lOOOnm, is used for 

recording the IR video sequences. Since the XC-EI50 is also sensitive to visible 

light, an interference filter with a narrow-band ( pass 850nm±25nm ) is used to 

reject all light except the one produced by the IR illuminator. The color camera 

used in our system has no response to IR light, which is not true for all color video 

cameras. 

As shown in Figure 3.2, the color and IR cameras are mounted at perpendicular 

angles on a cube beam splitter. A beam splitter is placed between the two cameras 

at a 45 degree angle, partitioning the incoming light into two perpendicular paths. 

Half of the light, including the IR light and ambient light, is reflected to the color 

camera, and the other half is transmitted to the IR camera. In the foreground IR 

illumination method, the foreground/object is in the field of IR illumination so that 
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.,_~--f'" SSOnm IR 

Figure 3.1: Structure of the data acquisition unit 

the foreground can be illuminated by the IR illuminator. 

The color and IR cameras have the same lens, and therefore yield the same 

video-resolution of 365x480 pixel images, which avoids the resampling compu­

tation. The two cameras are synchronized using a genlock mechanism, which is 

a technique to temporally synchronize video signals from different sources. The 

IR image is a mirror version of the color image due to the optical beam splitter. 

Also, the use of a beam splitter guarantees that the color image and IR image will 

be coplanar and coaxial because they have the same center of projection, so com­

plex calibration is avoided to align images. A MacBeth calibration pattern [37], as 

shown in Figure 3.3, is used in our system to register two images. After selecting 

four corresponding point pairs in the IR and color images, the offset caused by the 

small differences in the position of the camera-lens centers can be estimated by 

computing the linear translation among these point pairs. This step can be done 

automatically by recognizing corresponding points of the MacBeth calibration pat-
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Figure 3.2: Data acquisition unit 

Figure 3.3: MacBeth calibration pattern 

tern. 

The advantage of our system is that it gives full control of the illumination pro­

cess because of the attributes of IR light, which is independent of ambient lighting 

in the visible spectrum. It solves the problem that video segmentation is sensitive 

to illumination changes. Furthermore, the inconvenient resampling and synchro­

nization problem of conventional two-camera system in stereo based segmentation 

methods are also avoided, as described in the previous paragraph. 

The basic outline of the process of our segmentation system is illustrated in 

Figure 3.4. The color image generated by the color camera will look the same as 

the view scene. The IR image is a mirror version of the color image due to the beam 

splitter and it can be easily registered with a simple image transposition. 

Assume that afterimage registration, each IR image is an array / = (Ii...Ii...I\p\), 
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<d) (e) 

Figure 3.4: Process of operation (a) The view scene. IR light and normal illumi­
nation enters the camera, (b) A cube beam splitter splits the light into two perpen­
dicular paths, (c) The color image generated by color camera, (d) The IR image 
generated by IR camera tuned to 850nm, with an interference filter (850nm±25nm) 
rejecting all light except IR light, (e) The registered IR image, (f) New composed 
image with background substitution. 
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and the color image is an array Z = (Zi...Zi...Z\p\), where Ii is a gray scale value, 

Zi is a RGB color vector, and P is the pixel set of an image. For the foreground-

background segmentation, we seek a binary label vector / — (/1; h---f\p\), where 

fi G {0,1}, with 1 denoting the foreground label and 0 the background label. The 

foreground is segmented as described below: 

1. Cue Map Initialization. Information provided by the IR image allows esti­

mation of the foreground, background and an unknown region. Further, it 

provides clues for building a Gaussian Mixture Model (GMM) for the fore­

ground and background color spaces respectively. 

2. Image Segmentation. For each video frame, the initialized cue map and the 

color image are fed to the segmentation algorithm to complete foreground 

segmentation. Two segmentation algorithms are investigated in our work: 

• Graph Cut (GC). Construct a graph for the color image with N-links 

reflecting contrast information and T-links reflecting color information. 

Each pixel in the unknown area is assigned a probability value in the 

maximum a posteriori sense given foreground and background GMM. 

The segmentation is determined by finding max-flow/min-cut of the 

constructed graph. 

• Contrast Preserving Relaxation Labeling (CPRL). Each pixel in the un­

known area is assigned a probability vector with the first element rep­

resenting the probability of belonging to the foreground and the second 

element the probability of belonging to the background. The probabil­

ity vector is updated based on the neighborhood linear constraints. The 

segmentation is determined by the convergence of probability after a 

sufficient number of iterations. 

3.2 Cue Map Initialization 

A cue map can be defined according to the attributes of the IR image to improve the 

segmentation result. The cue map defined in our system is called the "pentamap". 
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The pentamap and color image are fed together to the segmentation algorithm to 

complete the foreground segmentation. We will present how to initialize a pen­

tamap from an IR image in this section. 

The attributes of the IR image provides clue for predicting foreground and back­

ground areas. The IR image is a gray scale image, in which brighter parts indicate 

the foreground (illuminated by IR source). Some foreground parts may be missing 

as they fall in the shadow area of IR illumination field. Missing foreground parts, 

however, must be within a certain distance from the illuminated parts as an inte­

grated foreground object. Assuming this distance is r (in numbers of pixels), one 

can predict that any dark area outside of this distance belongs to the background. 

The value of r increases with the distance of the object to the IR source. That is, 

the further the object from the IR source, the more foreground parts are missing. 

Suppose the effective distance for the IR source is Dmax, r = rmax — f(Dmax), 

and the value of r does not change during the video capture if the user does not 

change the camera and IR illumination configuration. 

An estimate of the foreground area, which we call MASK, can be found from 

the IR image by simple thresholding: MASK = {p £ P\Ip > T}. A conventional 

trimap can be easily defined in terms of MASK and r. In many image segmenta­

tion algorithms, e.g. GrabCut [44], the input is a trimap. A trimap T partitions an 

image into three regions: foreground Tp, background TB and unknown region Tv. 

Since we are sure that MASK belongs to the foreground, we can say TF = MASK. 

In addition, since we know any area outside of distance r from MASK belongs to 

the background, we can represent the predicted background by applying a dilation 

morphological operation Tg = P — MASK.dilation(r). The remaining area is 

unknown, so Tv = P - TF - TB = MASK.dilation(r) - MASK. 

In the traditional image segmentation algorithm, the trimap is used to build color 

GMMs for the foreground and background, which are derived from TF and TB 

respectively. Here, we propose the idea of a pentamap, which can derive more 

reliable color GMMs, leading to more accurate segmentation results. 
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We define a pentamap as follows: 

Definition 1 A pentamap Q partitions an image into five regions, certain fore­

ground QCF, certain background QCB, local foreground QLF, local background 

QLB and unknown Qu, represented as Q : P —> {QCF,QCB,QLF,QLB,QU}, 

with 

QCF = {p\p G MASK.erosion(s)} 

QLF = {p\p e MASK - QCF} 

QCB = {p\p G~ (MASK.dilation(r + s))} 

QLB = {p\p e MASK.dilation(r + s) - MASK.dilation^)} 

Qu = {P\P eP- QCF - QCB - QLF - QLB} 

where r and s are in terms of number of pixels. 

Given these definition, one can transform a pentamap into a trimap as follows: 

• QCF + QLF = TF 

• QCB + QLB = TB 

• Qu = Tv 

Figure 3.5 shows an example of a MASK, trimap and pentamap. In the pen­

tamap model, QLF(QLB) is a narrow strip of width s that is separated from TF(TB). 

In our approach, the color GMM of the foreground is derived from QLF rather than 

TF (similarly, the color GMM of the background is derived from QLB rather than 

TB), given that it is reasonable to assume that color in the unknown region is consis­

tent with the color in its neighborhood regions rather than the whole map. That is, 

the color in Qu should be consistent with the color of QLF or QLB rather than the 

whole region of TF and TB. In the experimental section, we show that our pentamap 

performs better than the trimap. 

A pentamap can be automatically initialized from the IR image. The threshold T 

can be fixed since the intensity of the IR image does not change as the ambient light 
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(c) (d) 

Figure 3.5: Pentamap initialization, (a) Registered IR image, (b) Foreground 
MASK, (c) Trimap with red=Tp, green=Te and remaining=T(y. (d) Pentamap with 
red=QcF, grecn=QcB, b\ue=QLF, pink=QLJ5, and the remaining area=Qu. 
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changes. The value of r is determined by the configuration of the IR camera and the 

distance between the foreground object and the IR source, and it does not change 

during the video capture. In our experiments, we used the following parameter 

values: T = 0.004 and r = 55. The value of s (in the definition of QLF and QLB 

above) does not change the segmentation result much if s G [15, 25]. 

As in GrabCut [44], we use a Gaussian Mixture Model (GMM) to represent the 

foreground and background color spaces, which are derived from QLF and QLB-

Each GMM, one for foreground and one for background, is a Gaussian mixture 

with M components (M=10 gives the best performance in the experiments), which 

can be interpreted as the number of RGB color clusters. An example of GMM 

representing foreground and background color models can be found in [44]. A 

vector K = {Kij1...Kiji...K\p\jw} is introduced to assign a GMM component 

to each pixel in the image, Kijt G {1...M} representing a GMM component with 

mean / i j ^ and covariance matrix ^V , = of'^. The component is either from the 

foreground GMM or background GMM according to /;, which is the label of the 

pixel. For each pixel in the unknown area Qv, the probability that it belongs to the 

foreground is defined in the maximum a posteriori (MAP) sense, as in (3.1): 

Vp G Qv, Pr(p\fp = 1) = max Pr{Zp\KpJp=1) (3.1) 

where Pr(-) is measured by a Gaussian probability distribution, so that: 

Pr(ZP\KpJp=1) = \(2<K)dZpA \*exp{-±(Zp - ^i)TYTP\{Zp - fipA)} (3.2) 

d is the dimension of the measurement vector Zp, which is the RGB value of pixel 

p. Similarly, the probability that a pixel belongs to the background is defined in 

(3.3) and (3.4): 

Vp G Qu, Pr(p\fp = 0) = max Pr{Zp\KpJp=0) (3.3) 
tip ,0 = 1--M 

Pr(Zp\KpJp=0) = \(27r)dZp,o \^exp{-l-{Zp - Vpfi)
TZ^P ~ fh,o)} (3-4) 
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3.3 Graph Cut 

Boykov et al. [11, 12, 13] proposed the graph cut-based segmentation algorithm 

to perform various segmentation tasks. In this algorithm, a graph is constructed 

according to an energy function derived from the original image. The image seg­

mentation is obtained by minimizing the energy function corresponding to the min-

cut/max-flow of the constructed graph. 

A good segmentation of an image should correspond to the minimum of an 

energy function in the form of: 

E(f) = D(f) + V(f) (3.5) 

D(f) and V(f) are defined as: 

D(f) = \J2Dp(fp) (3.6) 

V(f)= J2 VP * f<]VM(fP, f<) (3-7) 
{p,<?}eiN 

where A specifies the relative importance of D(f), [•] is a delta function that gives 

1 for fp ^ fq and 0 otherwise, and IN is the set of all pairs of neighboring pixels. 

D(f), called the data term, gives a penalty for assigning different labels to each 

pixel, and V(f), called the smoothness term, corresponds to the penalty of the 

edge/contrast information. 

An undirected graph G(V, E) is constructed according to the energy function. 

Each node in the graph corresponds to a pixel in the original image. There are 

two additional terminal nodes, one for the object, called OBJ, and the other for the 

background, called BKG. The weight of edges connecting nodes and terminals are 

given by the data term, and the weight of edges connecting neighborhood nodes are 

given by the smoothness term. The segmentation of the image is found by solving 

the min-cut/max-flow problem on the graph G, which should correspond to the 

minimum value of the energy function. 
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(a) An example of T-links (b) An example of N-links 

Figure 3.6: Graph construction from a pentamap. (a) T-links. Black node in 
red area=VcF> black node in green area=Vc£> blue nodes=VLF corresponding to 
each pixel in QLF, pink nodes=Vj,s corresponding to each pixel in QLB, yellow 
nodes=V[/ corresponding to each pixel in Qy. Edges are constructed between each 
graph node V and terminal nodes, with edge weights reflecting the probability of 
classifying each node to each terminal, (b) N-links. Edges are constructed between 
node pairs (V;, Vj), V- e VLF/VLB/Vu, Vj e VUt {i, j} € IN and i^j. 

The graph constructed in our segmentation system is simplified because of the 

pentamap. In this section, we introduce how to construct a graph from an image to 

integrate the Graph Cut segmentation algorithm in our system. 

One advantage of the pentamap is that it simplifies the complexity of the graph 

construction and thus improves the efficiency of the Graph Cut algorithm. An ex­

ample of graph construction in our method is shown in Figure 3.6. For each frame 

to be segmented, an undirected graph G = (V, E) is defined with a set of nodes V 

and a set of undirected edge E that connect nodes. Nodes are defined as follows: 

• Terminal nodes: OBJ and BKG, representing the foreground and background 

respectively. 
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Table 3.1: Edge weight table 
Edge Weight Table 

Edge 

(V^OBJ) 

(Vi,BKG) 

(VuVj) 

Weight 
K 
0 
- l n P r ( p | / p = 0)*A 
K 
0 
- l n P r ( p | / p = l )*A 
a*exp(- | |Zi - Zj\\2/p) 
(3 is the expectation 
Z JuA Zj A 

II fc J II 

For 

^ G W ^ F 
V$ € W ^ L B 

ViGK/ 
V e VCB/VLB 

V e VCF/VLF 

Vi€Vu 
{i,j}eN,i^j, 
Vi E VLF/VLB/Vu, 
V3 e Vu 

• Graph nodes V are classified into two categories: 

Certain Nodes: VCF and VCB correspond to QCF and QCB area respectively. 

Cut Nodes: Vcut = V-VCF-VCB = {VLF, VLB, VJ}- V e VLF corresponds 

to each pixel in QLF, V, £ VLB corresponds to each pixel in QLB, and Vi G 

VJJ corresponds to each pixel in Qu. 

Edges are added between node pairs in the following cases: 

• (V, OBJ/BKG), V e V. Such edges are called T-links, as shown in Fig­

ure 3.6(a). The weight of T-links corresponds to the penalty of assigning a 

node to the corresponding terminal, which is given by the data term (3.8). 

• (Vu Vj), V e VLF/VLB/VU, VJ e Vv, {i,j} e IN and i ^ j . Such edges are 

called N-links, as shown in Figure 3.6(b). The weight of N-links corresponds 

to the contrast/edge information, which is given by the smoothness term (3.9). 

The edge weights are defined in Table 3.1, where K = oo (a very large value 

in practice), A is the relative importance of data term, a controls smoothness. D(f) 

and V(f) in (3.5) now become 

D(f) = \J2-^Pr(p\fP) (3-8) 

V(f) = a J2 [/^/JexpHI^-ZJ2//?) (3.9) 
{p,q}eW 
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Compared to previous segmentation techniques based on graph cuts, our graph 

construction is much simplified in terms of number of nodes and edges. Rather 

than creating a node for every pixel in the image, all pixels in QCF are represented 

by a single node, and the same principle holds true for pixels in QCB- Such rep­

resentation prevents a cut from being made across the QCF (and QCB) area. In 

addition, we add neighborhood edges under very strict conditions: Since a cut can 

only happen in the unknown area, a contrast term (Vi,Vj) for predicting the object 

boundary is computed only in Qy or between Qv and QLF/QLB- The worst-case 

runtime complexity for solving a min-cut/max-flow problem is 0(mn2), where n 

is the number of nodes and m is the number of edges in the graph [12]. In our 

approach, the number of nodes for the same image can, experimentally on average, 

be reduced to n/5 and the number of edges can be reduced to m/2, so the runtime 

complexity can be reduced to 1/50 * 0(mn2) on average. 

3.4 Contrast Preserving Relaxation Labeling 

Relaxation labeling can be used to reduce ambiguities and noise based on the paral­

lel use of local constraints between labels [27]. In image segmentation by relaxation 

labeling, each pixel is first assigned a probability vector and a label based on the 

color information, and the probability vector is then updated iteratively based on 

the local constraints between labels [25]. 

We can apply the Relaxation Labeling technique to complete our foreground 

segmentation based on the initialized pentamap described in Section 3.2. We pro­

pose a new local constraint involving a contrast term, which we call contrast pre­

serving relaxation labeling. As in [25], we proceed in three steps: 

• Step 1: Initialization. For each pixel p, compute a probability vector 

Pr^p)^^^) Pr°0(p)] (3.10) 

where Pr\{p) is the probability of pixel p belonging to the foreground (fp = 

1), and PTQ(P) the probability of belonging to the background (fp = 0). 
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Based on the pentamap, the probability vector is defined according to the 

following scheme: 

Pr\ip) 

1, VP€QCF,QLF, 

Pr(p\fP = 1) 
VpeQu, (3.11) 

Pr(p\fp = l) + Pr(p\fp = Oy 

0, VpeQcB,QLB 

and 

Pr°0(p) = 1 - Pr^p) (3.12) 

Pr(p\fp — 1) a nd Pr{p\fp = 0) are previously defined in (3.1) and (3.3) 

respectively. 

• Step 2: Iteration. In the nth iteration, the probability vector Prn(p) for pixel 

p is updated based on the previous vector Prn^1{p) and the neighborhood 

probability vector Prn(q), q € N(p) where N(p) is the 8-connected neigh­

borhood about pixel p. 

where 

^ _ 1 (p ) = ,L, „ E c(p< *) * ^?_ 1(?) (3-14) 
card(tf(p)) q^{p) 

with z = {0,1}. C(p, q) is the compatibility coefficient, and it uses contrast 

information as follows: 

r( \ J1' X\\ZP-Zq\\<6, 
C(p,q) = < . (3.15) 

1—1, otherwise 

where 9 is the threshold of the contrast term. 

• Step 3: Convergence and final labeling. As noted in [27], (3.13) converges to 

a consistent labeling as n —• oo. After running for n/ iterations, each pixel is 

assigned a label with a larger probability component. We found Nf — 10 to 

be sufficient in our experiment. 
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3.4.1 CPRL Implementation on GPU 

GPUs (graphics processing unit) are typically used only for computer graphics com­

putations, which were traditionally handled by CPUs. GPUs add programmable 

vertex and fragment shaders to the graphics pipeline to increase graphics program­

ming flexibility and to accelerate graphics pipeline processing. Vertex shaders al­

low vertex-based computation such as vertex's 3D position, and fragment shaders 

are used for per-pixel computation such as color processing. 

GPUs can only process independent vertices and fragments, but can process 

many in parallel. This is especially effective when one wants to apply the same 

computation to many vertices or fragments. This computation is called kernel, and 

the programmer only needs to specify the kernel and data the kernel has to be ap­

plied to. 

We claim that CPRL can be implemented in real-time based on the fact that it 

can be implemented in the GPU fragment shader. First, CPRL is a parallel algo­

rithm, and the loop body in Step 2 is the computation kernel. Second, the updating 

process for each pixel is independent from the others in the same iteration, depend­

ing only on probability vectors of neighborhood pixels in the previous iteration. 

3.5 Experimental Results 

We captured two test video sequences for foreground IR illumination. Each video 

frame (either the color image or the IR image) has 365 x 480 pixels. All pro­

cesses are running on a 2GHz Pentium desktop machine with 1G RAM. Real-time 

segmentation by GC was implemented in our laboratory, but in the meantime the 

alternative CPRL algorithm was implemented in Matlab. 

3.5.1 Convergence of CPRL 

We first show some segmentation results produced by CPRL. Figure 3.7 and Fig­

ure 3.8 are two examples of CPRL. At each iteration, we label pixels as fore­

ground if the probability PTQ E [0,0.2), color pixels in pink if the probability 
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PVQ £ [0.2,0.8], and otherwise in blue if the probability Pr^ G (0.8,1]. We can see 

that as more iterations are done, some pink pixels become either blue or labeled as 

foreground, which means the probability of those pixels converges to either 0 or 1. 

In the pentamap initialization, we used the following parameter values: T = 0.004 

and r = 55. The value of s (in the definition of QLF and QLB) does not change 

the segmentation result much if s e [15,25]. We use s = 25 for video sequence 1 

(referred as Seql below), and s = 15 for video sequence 2 (referred as Seq2 below). 

Throughout our experiments, we used the same parameter value for the pentamap 

initialization. 

3.5.2 Comparison between GC and CPRL 

Figure 3.9 shows the visual quality comparison of CPRL and GC. The segmentation 

results of CPRL and GC are not much different in visual quality, except that CPRL 

generates a smoother object boundary due to the fact that the computation of each 

pixel's probability of labeling is updated based on the neighborhood information. 

On the other hand, GC preserves better contrast information, which can be seen 

from the finger part of Seql frame 044 and frame 101 (see Figure 3.9). Some pixels 

between the fingers are background pixels but are labeled foreground in CPRL. 

Evaluation Criteria 

The performance of the GC and CPRL algorithms was evaluated in three respects: 

stability, accuracy and efficiency. Stability refers to changes in segmentation results 

as parameter values in the algorithms are changed. Is the result very sensitive to the 

parameter or is it very stable with respect to the variation of the parameter value. We 

test the stability by measuring the error rate of segmentation results given different 

sets of parameter values of the algorithm, and see how the variation of parameter 

values affects segmentation results. Accuracy is tested by measuring the error rate 

of segmentation results produced by different segmentation algorithms, given the 

best set of parameter values obtained from a stability test. Efficiency is measured 

by the average processing time for each video frame. 
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(a) Pentamap (b) Iteration 1 (c) Iteration 2 (d) Iteration 3 

(e) Iteration 4 (f) Iteration 5 (g) Iteration 6 (h) Iteration 7 

(i) Iteration 8 (j) Iteration 9 (k) Iteration 10 (1) Final Result 

Figure 3.7: Convergence of CPRL on Seq 1 at frame 101. (a) Pentamap fed to 
CPRL. (b)-(k) show the probability of each pixel in each iteration. Pixels in pink 
color have the probability Pr^ G [0.2, 0.8]. Pixels in blue color have the probability 
PTQ € (0.8,1]. Pixels labeled as foreground have the probability PVQ G [0, 0.2). 
Note that as n increases, Pr^ —> 0/1. Results are produced by #=400. 
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(a) Pentamap (b) Iteration (c) Iteration 2 (d) Iteration 3 

(e) Iteration 4 (f) Iteration: (g) Iteration 6 (h) Iteration 7 

(i) Iteration 8 (j) Iteration 9 (k) Iteration 10 (1) Final result 

Figure 3.8: Convergence of CPRL on Seq2 at frame 027. (a) Pentamap fed to 
CPRL. (b)-(k) show the probability of each pixel in each iteration. Pixels in pink 
color have the probability Pr% G [0.2,0.8]. Pixels in light blue color have the 
probability Prfi € (0.8,1]. Pixels labeled as foreground have the probability Prfi G 
[0, 0.2). Note that as n increases, PTQ —> 0/1. Results are produced by #=200. 
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(a) Seql 044 (b) Seql 101 (c)Seq2 027 (d) Seq2 057 

(e) Seql 044 CPRL (f) Seql 101 CPRL (g) Seq2 027 CPRL (h) Seq2 057 CPRL 

(i) Seql 044 GC (j) Seql 101 GC (k) Seq2 027 GC (1) Seq2 057 GC 

Figure 3.9: Comparison of CPRL with GC. The first panel shows the original color 
images: we randomly select Seql frame044 and frame 101, Seq2 frame027 and 
frame057 for experiment. The second panel shows segmentation results produced 
by CPRL, with 0 = 400. The third panel shows segmentation results produced by 
GC, with a=2, /3=200, and A=10. 
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To measure the error rate of segmentation results, the ground truth data was 

labeled manually, labeling each pixel as foreground, background or unknown. The 

unknown label was used to mark mixed pixels occurring along layer boundaries. 

Error is then measured as the percentage of incorrectly labeled pixels over the image 

area, ignoring "unknown" pixels. We acquired two video sequences containing 120 

frames, and we measured the segmentation accuracy for every 10 frames starting 

with the 20th frame. In other words, we measured frames 20, 30, 40... 110. 

Stability 

The algorithm GC has three parameters: a controls the smoothness, (3 is the ex­

pectation of the contrast term, and A controls relative importance factor of the data 

term, which carries color information. We measured the error rate of segmenta­

tion results on Seql given four different sets of parameter values: {a = 1,(3 — 

200, A = 20}, {a = 10, (3 = 200, A = 20}, {a = 10,/? = 200, A = 2} and 

{a = 1, (3 = 200, A = 2}. We only varied the value of parameter a and A, since 

the segmentation result does not change much if (3 G [100,400]. The results are 

plotted in Figure 3.10(a), from which we can see that the segmentation result varies 

substantially as the parameter value changes. More specifically, the parameter sets 

{a = 1,(3 = 200, A = 20} and {a = 10,/3 = 200, A = 20} generally perform 

better than {a = 10, (3 = 200, A = 2} and {a = 1,(3 = 200, A = 2}. 

The CPRL algorithm has only one parameter, 9, the threshold of the contrast 

information. We also measured the error rate of segmentation results produced by 

three different parameter values: 9 = 100, 9 = 200 and 9 = 400, and we plotted 

the data in Figure 3.10(b). The data show that the segmentation result is robust 

as 9 varies. The numerical error rate value in Figure 3.10(a) and (b) are listed in 

Table 3.2 and Table 3.3. 

From our experiment, we can conclude that CPRL produces more stable seg­

mentation result with respect to variations of parameter values. The segmentation 

results and spatial location of segmentation error, by different sets of parameter 

value, of Seql at frame 60 are shown in Figure 3.11. 
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Figure 3.10: Error rate of GC and CPRL. The segmentation error is computed, 
with respect to ground truth, on Seql at every 10 frames starting at frame 20 till 
frame 110. (a) Error rate of segmentation results produced by GC. Tested on four 
different sets of parameter value: {a = l,/3 = 200, A = 20}, {a = 10, /3 = 
200, A = 20}, {a = 10,/? = 200, A = 2}, {a = 1,(3 = 200, A = 2}. Note 
that segmentation results vary largely on different set of parameter value, and the 
parameter set {a = l,/3 = 200, A = 20} produces lower segmentation error on 
average, (b) Error rate of segmentation results produced by CPRL. Tested on three 
different sets of parameter value: 9 — 100, 6 = 200 and 9 = 400. Note that the 
segmentation results do NOT vary largely on different sets of parameter values, and 
the parameter set 9 = 400 produces lower segmentation error on average. 
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Table 3.2: Error rate table for segmentation results produced by GC 

Error rate table 

Parameter Value 
{a= 1,/? = 200,A = 
{a= 10,/? = 200, A: 
{a= 10,/? = 200, A = 

20} 
= 20} 
= 2} 

20 
0.0035 
0.0029 
0.0153 

30 
0.0029 
0.0016 
0.0179 

Frame 
40 50 60 
0.0017 0.0006 0.0021 
0.0039 0.0041 0.0052 
0.0148 0.0084 0.0178 

70 
0.0024 
0.0030 
0.0157 

80 
0.0009 
0.0031 
0.0127 

90 
0.0038 
0.0035 
0.0140 

100 
0.0026 
0.0039 
0.0144 

110 
0.0011 
0.0010 
0.0121 

{ « = ! , / ? = 200, A = 2} 0.0096 0.0143 0.0096 0.0116 0.0129 0.0111 0.0113 0.0101 0.0102 0.0058 



Table 3.3: Error rate table for segmentation results produced by CPRL 

Error rate table 

Parameter Value 
0 = 1 0 0 
0 = 200 

20 
0.0039 
0.0019 

30 
0.0026 
0.0026 

40 
0.0011 
0.0022 

Frame 
50 60 
0.0014 0.0030 
0.0015 0.0025 

70 
0.0023 
0.0021 

80 
0.0009 
0.0009 

90 
0.0013 
0.0014 

100 
0.0037 
0.0028 

110 
0.0030 
0.0008 

0 = 400 0.0024 0.0024 0.0012 0.0008 0.0026 0.0022 0.0007 0.0014 0.0014 0.0022 



(a) GC 1 (b) GC2 (c) GC 3 (d) GC 4 

(e) GC diff 1 (f) GCdiff2 (g) GCdiff3 (h) GCdiff4 

(i) CPRL 1 (j) CPRL 2 (k) CPRL 3 

(1) CPRL diff 1 (m) CPRL diff 2 (n) CPRL diff 3 

Figure 3.11: Spatial distribution of segmentation error for Seql at frame 60. (a)-
(d) are the segmentation results produced by GC. (a) is produced by {a = 1, f3 = 
200, A = 20} (b) is produced by {a = 10, (3 = 200, A = 20} (c) is produced by 
{a = 10,/3 = 200, A = 2} (d) is produced by {a = 1, (3 = 200, A = 2}. (e)-(n) are 
the spatial distributions of the segmentation error corresponding to (a)-(d). (i)-(k) 
are the segmentation results produced by CPRL. (i) is produced by 9 = 100 (j) is 
produced by 6 = 200 (k) is produced by 6 = 400. (l)-(n) are the spatial distributions 
of segmentation error corresponding to (i)-(k). 
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•*• - CPRL: theta=400 

-6—GC: alpha=1,beta=200,lambda=20 

4 | , , , , , , , r 

frames 

Figure 3.12: Comparison error rate of GC with CPRL. Results are produced on 
Seql. Error rate of GC is produced by {a = 1, (3 = 200, A = 20} and error rate of 
of CPRL is produced by 9 = 400. 

Accuracy 

We compare the accuracy of CPRL with GC by measuring the error rate of segmen­

tation results produced by two algorithms. We used the parameter values which per­

formed best in the stability test. For GC, we used the parameter set with best overall 

performance in the stability test section, which is {a = 2,0 — 200, A = 20}. The 

same is true for CPRL, with overall best performance parameter value in the stabil­

ity test 6 — 400. The comparison of the error rates of CPRL and GC is shown in 

Figure 3.12. One can see that, given the specific parameter value, CPRL segments 

images with lower error rate on average comparing to GC. We compared error rate 

on 20 different sets of parameter value for GC and CPRL, the overall performance 

of CPRL is still superior to GC because the segmentation results produced by GC 

has larger variation depending on the parameter value. 
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Efficiency 

We implemented GC in C++, using the min-cut/max-flow algorithm code provided 

by Vladimir Kolmogorov [12]. Since the graph construction, in terms of the number 

of edges and nodes, is much simplified due to the pentamap, the computation is 

speeded up to the 1/50 percent of original speed (explained in section 3.3). On 

average, it took only 0.1 seconds for processing a 365 x 480 image on our computer. 

We implemented CPRL in Matlab, as an alternate algorithm for foreground seg­

mentation. The claim we made that CPRL can be implemented in real-time is based 

on the GPU implementation. If we have 10 iterations in CPRL, the image needs to 

be processed in the GPU frame shader ten times. Given that the computation of 

each iteration can be finished in a few microseconds, the processing of each image 

can be done in real-time. 

3.5.3 Comparison between Pentamap and Trimap 

In our experiments, we verified that our proposed pentamap outperforms the trimap. 

We initialized the pentamap and the trimap according to our definition in Section 

3.2, fed them to the segmentation algorithm and compared the segmentation results. 

According to the pentamap definition, the color model for foreground and back­

ground should be derived from QLF and QLB, which are colored as blue and pink 

region in the pentamap image, as shown in Figure 3.13(a) and Figure 3.13(g). In the 

trimap definition, however, the foreground and background color model are derived 

from TF and TB, which are colored red and green in the trimap image, as shown 

in Figure 3.13(d) and Figure 3.13(g). The difference of color model leads to differ­

ences in the segmentation results. The experimental results show that, in general, 

the pentamap produces more accurate segmentation results than the trimap. This 

supports our assumption in Section3.2 that "the color in unknown region should be 

consistent with the color of neighborhood region rather than the whole image". 
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(a) 027 pentamap (b) GC result (c) CPRL result 

(d) 027 trimap (e) GC result (f) CPRL result 

(g) 057 pentamap (h) GC result (i) CPRL result 

(j) 057 trimap (k) GC result (1) CPRL result 

Figure 3.13: Pentamap vs. Trimap for Seq2 at frame 027 and frame 057. Segmen­
tation results produced by GC use a=2, (3=200, and A=10. Segmentation results 
produced by CPRL use 6 = 400. 
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(a) Seql 040 (b) Seql 088 (c) Seql 115 

(d) Seq2 030 (e) Seq2 050 (f) Seq2 118 

Figure 3.14: Video segmentation and background substitution. We show the seg­
mentation results produced by GC for two experimental video sequences. 

3.5.4 Comparison with Other Segmentation Methods 

We compared our system with other video segmentation systems using the criteria 

we proposed for video conferencing system (see Section 1.1): real-time processing 

speed, robustness to dynamic background and automation. These are summarized 

in Table 3.4. 

3.5.5 Background Substitution In Sequences 

Figure 3.14 demonstrates the application of foreground/background segmentation 

in a video conferencing system, which substitutes the background in real-time. The 

segmentation result of our segmentation process is a binary label map where each 

pixel is classified as belonging to either the foreground or the background. Since 
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Table 3.4: Comparison table 

Criteria 

Image-based 
segmentation 
Motion-based 
segmentation 
Stere-based 
segmentation 
IR-based 
segmentation 

Source 

Yin et al. [53] 
Table 3 
Yin et al. [53] 
Table 3 

Wu Table 3.3 

Real-time 
processing 
no 

no 

lOfps 
on 320x240 image 
10 fps for GC 
lOOfpsforCPRL 
on 365x480 image 

Robustness to 
dynamic background 
fail 

range of error rate 
[0.09 0.24] 
range of error rate 
[0.05 0.17] 
range of error rate 
[0.001 0.005] 

Automation 

user interaction 
needed 
yes 

yes 

yes 



human vision is very sensitive to segmentation boundary artifacts, border blurring 

is applied to the object borders in order to blend the foreground with the new back­

ground. We thus achieve the equivalent of a-matting effects without really com­

puting a values at each pixel but instead applying the process of Gaussian blurring 

process. 

ct-matting actually calculates a weighted average of foreground color and back­

ground color for each pixel, and a Gaussian blurring filter pre-calculates a weighted 

average of neighborhood colors for each pixel. These two definitions are very sim­

ilar, especially when a pixel is at the border between foreground and background. 

Border blurring begins with the "hard" segmentation produced by the GC algo­

rithm (CPRL produces smoother object boundaries, and therefore we do not apply 

blurring process for CPRL). A blurred boundary contour is defined by the fore­

ground area found by GC algorithm and morphological operations. The defined 

boundary contour should contain all pixels of boundary artifacts. A Gaussian filter 

is then applied to the boundary contour, so that there is a smooth transition be­

tween foreground and background, eliminating obvious artifacts at the boundaries. 

Figure 3.15 illustrates the segmentation results before and after border blurring. 

Conventional matting techniques, such as Bayesian matting [50], compute a 

values based on the color of neighborhood pixels. This computation is very slow 

and does not perform well for objects with relatively smooth boundaries. We com­

pared results produced by Bayesian matting and border blurring (both in Matlab 

code), as shown in Figure 3.16. For Bayesian matting, we used the Matlab code 

provided by Rucheek Sangani [14]. For an image of size 365 x 480, Bayesian 

matting took more than 40 minutes and border blurring took only less than 0.1 sec­

onds. Our results presented here look very similar to the border matting results of 

GrabCut [44]. Our method is, however, much simpler and more efficient. 
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(a) Boundary Before Segmentation 

(b) Boundary After Segmentation 

Figure 3.15: Comparison of border blurring. Suppose the foreground area in 
(a) is F. The blurred boundary contour is defined as Blurmask = {F — 
F.dilation(si).erosion(s2).dilation(s3)}. We used si = 4, s2 = 12, and s3 = 6. 
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(a) Bayesian matting 

(b) Border blurring 

Figure 3.16: Comparison of border blurring with Bayesian matting, (a) is generated 
by Bayesian matting and (b) is generated by border blurring 
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3.6 Discussion 

In this chapter, we presented a method for bi-layer segmentation of natural video in 

real-time using foreground IR illumination. By illuminating the foreground with an 

IR illuminator, the IR image has the following attributes: 

• IR image is a gray-level image. 

• The foreground object is illuminated by the IR illuminator and therefore has 

high intensity in IR image. 

• The background has lower intensity in the IR image. 

Two algorithms are presented to complete foreground segmentation: Graph Cut 

and Contrast Preserving Relaxation Labeling. We demonstrated the process of fore­

ground segmentation by GC and CPRL with pentamaps, presented segmentation 

results with different algorithms, and analyzed the properties of GC and CPRL. 

• Both GC and CPRL are capable of real-time processing. In theory, CPRL has 

more potential to achieve high speed by implementing the kernel in GPU due 

to the fact that it is a parallel algorithm. 

• Both GC and CPRL produce good quality segmentation results. The seg­

mentation results produced by GC preserve better contrast information, and 

ones produced by CPRL preserve better smooth segmentation boundary. As 

analyzed in accuracy section, on average, CPRL produces more accurate seg­

mentation results with lower error rate. 

• CPRL is more stable than GC with respect to the variation of parameter value. 

In other words, CPRL is less sensitive to the variation of parameter value. 

Tradeoff between GC and CPRL: Given that both GC and CPRL produce good 

quality segmentation results, which one should we choose? At this point, we have 

a real-time GC implementation running in our laboratory. In the long run, however, 

once we have GPU implementation of CPRL, CPRL will exceed GC with respect 
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to processing time and stability. Furthermore, CPRL produces comparable, or even 

more accurate, segmentation results than GC. In a word, CPRL is more economical 

in computational speed. 

There are some other important differences between GC and CPRL. Currently, 

we are looking into a parallel algorithm solution for GC using a GPU, without 

which we can only improve the computational efficiency of GC by taking benefit 

from pentamaps. The idea behind this is that a pentamap can simplify the graph 

construction in terms of number of nodes and edges, and therefore the run time 

complexity is reduced as it is proportional to the graph complexity. 

There are many advantages for the foreground IR illumination design. First, 

the foreground object can be automatically recognized in the IR image given that 

it is illuminated by the IR illuminator and therefore appears bright in the IR im­

age. Second, due to many good attributes of the IR image, the pentamap can be 

initialized robustly and automatically. This plays an important role in achieving 

the capability of automatic foreground segmentation. Third, pentamap initializa­

tion is independent of ambient lighting because of IR characteristics. Hence, the 

foreground-background segmentation will not be affected by changes in illumina­

tion (of ambient light). Fourth, the foreground object can be recognized if it is 

within the effective distance (Dmax defined in Section 3.2) of the IR illuminator, 

and this distance acts like a plane dividing the foreground and background. There­

fore, any moving objects presented in the background will not be segmented if it 

appears beyond this effective distance. 

There are, however, two shortcomings with our foreground IR illumination 

method. 

1. If the foreground object is too far away from the IR source, it will not be 

detected. This problem can be avoided by moving the IR source around and 

find the best position of the IR source by observing whether the IR image 

yields a good foreground MASK. 
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2. Any object behind the foreground object will be captured and segmented as 

foreground if it is very close to the foreground and within the effective dis­

tance of the IR source. This problem can be solved by using the background 

IR illumination method discussed in the next chapter. 
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Chapter 4 

Segmentation by Background 
Illumination 

In the previous chapter, we presented how to obtain automatic real-time foreground-

background video segmentation by foreground IR illumination. The foreground 

illumination method has shortcomings caused by the constraints on the effective 

distance. In addition, missing foreground parts can only be found by a segmentation 

algorithm, which involves increased computational complexity. In this chapter, we 

investigate another way of utilizing IR information for foreground segmentation, 

background IR illumination. It can compensate, to a degree, for the disadvantages 

caused by the foreground IR illumination method. 

4.1 Data Acquisition 

In the background IR illumination method, the same data acquisition unit is used as 

in the foreground IR illumination method, as shown in Figure 3.1, except that the 

IR illuminator is moved behind the foreground and illuminate the background. An 

example of captured IR and color images is shown in Figure 4.1. 

One can see that the IR image produced by background IR illumination is very 

different from the one produced by foreground illumination method: The back­

ground area appears bright in the IR image because of illumination of IR illumina­

tor, and the foreground appears dark since all IR light hitting the foreground object 

is blocked from the IR camera. 
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Figure 4.1: A frame of IR image and color image produced by background IR 
illumination 

We found that the background illumination method has several advantages. 

First, in the IR image, the foreground object is separated from the background area 

with high intensity contrast. Sharp and clear foreground boundary is well preserved 

(see Figure 4.1). Second, with background illumination one has more freedom 

regarding the positioning and orienting of the IR source (or sources). Even back­

ground objects that are close to the foreground object can be illuminated with an 

IR source and thus are easily classified as background. This reduces errors due 

to spurious foreground objects, which can occur with the foreground illumination 

method. 

One can take advantage from IR images produced by background IR illumina­

tion. We segment the foreground object from the background by simple threshold­

ing technique, without assistance of any segmentation algorithm. Since the IR im­

age preserves sharp and smooth foreground boundary, matting or boundary blurring 

becomes unnecessary. However, as one may notice, some parts of the background 

also appear dark in the IR image. This is because those background parts are be­

yond the illumination field of the IR illuminator. If we have multiple IR illuminators 

to illuminate the background, there will be no "blind spots" in the background. At 

this point, we only have one IR illuminator, we will consider only the region of 

the illumination field for the purpose of comparison this method with foreground 

illumination method. 
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Since foreground segmentation is completed by only thresholding and no com­

plex segmentation algorithm is needed, the processing is simple and very fast. 

4.2 Experimental Results 

We captured one test video sequence with background IR illumination. We cropped 

the video frame size to limit the segmenting area within the illumination field of the 

IR illuminator. As shown in Figure 4.2, in the view scene (images on left hand 

side), a computer behind the foreground object is turned on, playing a dynamic 

video sequence of desktop screen saver, which acts as the dynamic object presented 

in the background. Images on the right hand side of Figure 4.2 are segmentation 

results corresponding to the original video frame on the left. Our experiment results 

show that the foreground object can be well segmented from the background with 

simple thresholding, and there is no need to turn to any segmentation algorithm for 

help. Even in the presence of moving objects in the background, the segmentation 

results are not affected. The threshold we used in segmentation is threshold = 0.2. 

4.3 Discussion 

In this Chapter, we demonstrated a method of background IR illumination for fore­

ground video segmentation, and presented segmentation results. By illuminating 

the background by IR illuminator, we can obtain an IR image with following at­

tributes: 

• The IR image is a gray-level image. 

• The background area is illuminated by the IR illuminator, and therefore has 

high intensity in the IR image. 

• The foreground has low intensity in the IR image. 

• The foreground boundary highly contrasts in intensity against background, 

and is very sharp and clear in the IR image. 
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• ""*! 

(a) Frame 100 

(c) Frame 130 

(e) Frame 160 

(e) Frame 190 

(b) segmentation result 

(d) segmentation result 

(f) segmentation result 

(h) segmentation result 

(i) Frame 220 (j) segmentation result 

Figure 4.2: Segmentation result by background IR illumination 
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4.3.1 Comparison with Foreground Illumination 

The background illumination method is compared with the foreground illumination 

method using the following criteria. 

• Distance constraint: Background illumination method eliminates the distance 

constraint that is required in the foreground illumination method. No matter 

how close the background object is to the foreground object, it will not be 

falsely labeled as the foreground as long as it is illuminated by the IR illumi­

nator. 

• Accuracy: In the background illumination IR image, the foreground has high 

contrast with background at the boundaries. Therefore it has, on average, a 

lower error rate. 

• Efficiency: There is no need for complex algorithms in background illumina­

tion. Simple thresholding can yield real-time processing speed. 

• Cost: Background illumination has higher demands on the illumination. Adding 

more IR illuminators increases the cost of the system. 

If the background IR illumination method is superior to foreground IR illumina­

tion method in so many aspects, should we simply go with background illumination 

method for the application of background substitution in video conferencing sys­

tem? In fact, this is still an open question. The background illumination method 

has other problems, such as higher demands on illumination. Only if we have a 

sufficient number of IR illuminators and the if background is well illuminated with­

out any "blind spots" , then the simple thresholding technique can produce good 

segmentation results. 
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Chapter 5 

Conclusions and Future Work 

5.1 Conclusions 

This thesis presents a system solution to the problem of automatic bi-layer video 

segmentation in real-time in the application of background substitution for a video 

conferencing system. The proposed system includes a design for combining IR 

information with normal video information, and different methods are proposed for 

segmentation for different IR illumination technique. 

In our design, an IR illuminator gives an imperceptible light source in addi­

tion to ambient light. The way we combine the IR camera and the color camera 

enables the system to automatically generate synchronized IR video sequences. 

We explored two ways of illuminating the scene with IR illuminators. Different 

foreground background IR illumination leads to different methods for foreground-

background segmentation. 

In foreground IR illumination, it is the foreground that is illuminated by the 

IR illuminator. A foreground MASK can be found by thresholding the IR image, 

and the missing foreground parts are completed by two alternative segmentation 

algorithms, GC and CPRL. In the background IR illumination method, it is the 

background that is illuminated by the IR illuminator. The complete foreground 

region can be found by thresholding the IR image, requiring that the whole back­

ground area in the view scene be well illuminated, which can only be achieved with 

multiple IR illuminators. 
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This thesis presented these two options for applying IR information in video 

segmentation. The experimental results show that they are both promising. Ad­

vantages and disadvantages of both two methods are analyzed in the corresponding 

chapter. It would be interesting to continue experimenting with both ways of IR 

illumination and to compare which one is more suitable for the application of video 

conferencing system. 

As many systems specialized for the application in certain circumstances, our 

proposed system also has limitations. The use of IR mainly determines the con­

straints of the system. First, in the foreground illumination method, there is a dis­

tance constraint. The IR camera can automatically detect the foreground object 

only if it is within the effective distance of the IR source, and this distance is used 

to divide foreground and background. Therefore, the user may need to move the IR 

source around and find the best position by observing whether the IR image yields 

a good foreground region. The distance constraint also requires that background 

objects can not be too close to the foreground object, otherwise if the background 

object is captured by the IR camera it is also labeled as foreground. Second, in 

the background illumination method, the number of IR illuminators constrains the 

illumination field, the field of view that our video segmentation system is effec­

tive in. The field of view of the cameras has to be inside the illumination field. 

Otherwise, there will be blind spots in the illuminated background. It would be 

interesting to continue exploring our system to develop a method of eliminating the 

these constraints. 

5.2 Future Work 

There are mainly two directions in our future work. First, CPRL needs to be im­

plemented on a GPU for real-time bi-layer video segmentation. With further ex­

perimental results, we will be in a better position to compare GC with CPRL. It is 

also interesting to investigate how the compatibility coefficients in CPRL affect the 

segmentation results. Other than contrast-preserving relaxation labeling, we should 

investigate other suitable relaxation labeling models for video/image segmentation. 
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Second, other means of utilizing IR for video segmentation should be explored. 

There are many ways of combining IR with normal video technique. For example, 

the combination of foreground and background IR illumination may give a more 

robust initialization of cue map. With more regions determined by the IR, we could 

spend less effort and cost on the segmentation algorithms. On the downside, we 

would have higher cost for buying IR sources. Introducing polarized IR may make 

the detection of IR easier. As described by Ben-Ezra [8], polarized light from the 

background makes the background black in the image because its polarization is 

"out of stage". Ben-Ezra also tried out two illumination sources, the foreground 

was illuminated by unpolarized light, and the background was illuminated by the 

polarized light. It would be interesting to explore how it works on IR. 

The problem of video segmentation itself has a wide range of applications. The 

approach proposed in the thesis is not only a new solution to real-time bi-layer 

video segmentation, but also to motion tracking and many other video applications. 

The idea of fusing IR with normal video technique provides us a new direction for 

video technology. The promising results presented in the thesis not only prove the 

usability of the system, but also reveal a new direction in vision in general. 
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