
UNIVERSITY OF ALBERTA

Cost Adaptive OSPF Routing Evaluation

by

Iman Ghamari

A PROJECT DISSERTATION

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE IN INTERNETWORKING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

EDMONTON, ALBERTA

OCTOBER, 2010

© IMAN GHAMARI 2010

1

Abstract

Traditionally, a single metric is used to calculate the shortest path to destination in OSPF.

Network administrators typically set the OSPF cost metric manually for each connected

interface in routers. This way of configuring OSPF in a network can lead to a very

uneven traffic flow that can cause some links along some paths to become more

congested compared to others. This problem is known as local congestion of network,

owing to traffic aggregation.

When the utilization ratio of the links along the current shortest path is not high, then of

course, the traditional OSPF packet forwarding is the best selection. However, when this

current shortest path gets congested over time, the better selection may be to choose other

paths whose costs are higher but their link utilization are lower. Therefore, modifying

OSPF in such a way that it can dynamically detect that the current link utilization along

the shortest path is higher than a certain threshold value and switch to a path with higher

cost but the lower link utilization, results in controlling the local congestion, balancing

the network traffic and hence improving QoS.

In this project, OSPF is modified so that it may dynamically adjust its interface’s cost

according to the link utilization of the interface’s bandwidth, and as a result, the traffic

load is distributed more evenly in a single-constraint routed OSPF network.

Consequences are improved QoS and resource utilization ratio.

2

 Acknowledgements

I would like to thank my supervisor Dr. Mike MacGregor, Professor and Chair of

Department of Computing Science, for suggesting this interesting and challenging project

and financially supporting me. I am thankful to him for the inspiration which kept me

going through the project.

3

 Table of Contents

Abstract ..1
Acknowledgements..2
Table of Contents...3

CHAPTER ONE: INTRODUCTION..5
1.1 OSPF..5
1.2 OSPF Cost..7
1.3 Cost Adaptive OSPF..9

CHAPTER TWO: ALGORITHM DESIGN ...12
2.1 Hill Climbing Algorithm ...12
2.2 Monitoring Subsystem...14
2.3 Cost Adaptive Subsystem ..15

CHAPTER THREE: SIMULATION ..18
3.1 Designing Network Topology ...18
3.2 A Note on OPNET...19
3.3 NS-3 Design...21

3.3.1 Node ..21
3.3.2 Channel..22
3.3.3 Net Device ...23
3.3.4 Topology Helpers ..23
3.3.5 Node Container..24
3.3.6 P2P Links...25
3.3.7 Net Device Container ..26
3.3.8 Internet Stack...27
3.3.9 Assigning IP Addresses...28
3.3.10 LAN Design...30
3.3.11 Traffic Generation ...32
3.3.12 Call Backs..34
3.3.13 CA-OSPF...37
3.3.14 Simulator ...39

3.4 Test Case Results ...40
3.5 Routing Oscillations ..47

CHAPTER FOUR: LAB IMPLEMENTATION...52
4.1 Open Source Routers ...52
4.2 Designing OSPF Network with Cisco Routers..52
4.3 Implementing CA-OSPF with Automated Scripts...54
4.4 SNMP, OIDs and MIB-II...56
4.5 Scripting the Monitoring Subsystem with Perl..57
4.6 Scripting the Cost Adaptive Subsystem with Expect ..62
4.7 Test Case Results ...66

4

CHAPTER FIVE: CONCLUSION..74

REFERENCES ..75

5

Chapter One: Introduction

1.1 OSPF

The Open Shortest Path First (OSPF) protocol, defined in RFC 2328, is an

Interior Gateway Protocol used to distribute routing information within a single

Autonomous System. OSPF protocol was developed due to a need in the internet

community to introduce a high functionality non-proprietary Internal Gateway Protocol

(IGP) for the TCP/IP protocol family. The OSPF protocol is based on link-state

technology, which is a departure from the Bellman-Ford vector based algorithms used in

traditional Internet routing protocols such as RIP.

OSPF uses a shortest path first algorithm in order to build and calculate the

shortest path to all known destinations. The shortest path is calculated with the use of the

Dijkstra algorithm. The algorithm by itself is quite complicated. This is a very high level,

simplified way of looking at the various steps of the algorithm:

1. Upon initialization or due to any change in routing information, a router generates

a link-state advertisement. This advertisement represents the collection of all link-

states on that router.

2. All routers exchange link-states by means of flooding. Each router that receives a

link-state update should store a copy in its link-state database and then propagate

the update to other routers.

3. After the database of each router is completed, the router calculates a Shortest

Path Tree to all destinations. The router uses the Dijkstra algorithm in order to

6

calculate the shortest path tree. The destinations, the associated cost and the next

hop to reach those destinations form the IP routing table.

4. In case no changes in the OSPF network occur, such as cost of a link or a network

being added or deleted, OSPF should be very quiet. Any changes that occur are

communicated through link-state packets, and the Dijkstra algorithm is

recalculated in order to find the shortest path.

The algorithm places each router at the root of a tree and calculates the shortest

path to each destination based on the cumulative cost required to reach that destination.

Each router will have its own view of the topology even though all the routers will build

a shortest path tree using the same link-state database.

A router periodically advertises its routing information, also called link state, by

flooding. The flooding makes sure that all the routers in the network have the same

database of the routing information i.e. link state database. Link state is also advertised

whenever the state of a router changes. The unit of these data describing the local state of

routers or network is called Link State Advertisement (LSA). RFC 2328 defines five

types of LSAs namely: Router-LSA (Type 1), Network-LSA (Type 2), Summary LSA

(Type 3 or 4) and AS-External-LSA (Type 5). In this project Router-LSA is the LSA

adopt to propagate the link cost changes. This LSA is originated by all the routers in the

network and describes the collected state of the router's interface. Updating a new LSA in

link-state database as result of flooding or router's self-generated LSA, may invokes

recalculating the OSPF routing table and hence the change of best paths. The content of

7

the new LSA is compared to the current instance in link-state database, if there is no

difference; there is no need to recalculate the routing table. But, if the contents are

different; parts of the routing table may be recalculated based on the new LSA type. For

Router-LSAs, the entire routing table must be recalculated and reconfigured.

1.2 OSPF Cost

The cost (also called metric) of an interface in OSPF is an indication of the

overhead required to send packets across a certain interface. The cost of an interface is

inversely proportional to the bandwidth of that interface. A higher bandwidth indicates a

lower cost. Obviously there is more overhead (higher cost) and time delays involved in

crossing a 56k serial line than crossing a 10M Ethernet line.

In Cisco routers, by default, the cost of an interface is calculated based on the

bandwidth, but the cost of interface can be forced with the ip ospf cost <value> interface

sub-configuration mode command. Network administrators usually set the link costs

manually during the network setup. Designing a bad cost scheme is root of the problem

that is to be addressed in this project.

Consider the OSPF network shown in figure 1-1. There are two traffic flows in

the network each at 50Mbps. The first one is from Terminal 1 destined to Terminal 3 and

the second one is from Terminal 2 destined to Terminal 4. Let say the links connecting

the routers are 100BASE-T links. By looking at the figure we can say that traffic-1 could

flow the path along routers R1-R7 and traffic-2 along R8-R1-R2-R3-R4.

8

Figure 1-1 An OSPF network with a bad cost (metric) setup

But, in this network a bad scheme has been used for interface cost assignments by the

network manager. This bad manual assignment of interface costs has caused the traffic-1

from terminal 1 to terminal 3 to flow along the path R1-R2-R3-R4-R5-R6-R7. Therefore

this traffic doubles the load on path R1-R2-R3-R4 as traffic-2 is flowing through the

same path too. As a result of this, path R1-R2-R3-R4 gets overloaded (shown in red color

in figure) while some other paths like R1-R7 are totally unused. In this situation, the

entire routing performance is affected and it can be observed how traffic has been

jammed on a particular path while other better paths exist.

9

Measurements from the Internet indicate that for almost 80% of the taken traffic

paths, alternative paths exists which offer higher bandwidth and lower round-trip delay

(S. Savage et al. 1999). Major reason these superior quality alternatives paths being

unused is due to poor links' costs assignments. Network managers normally set the value

of link costs proportional to the link's physical distance between network's nodes or

according to some rules such as link priority which might be prone to the human

mistakes. The standard heuristic recommended by Cisco is to set the link cost inversely

proportional to the link capacity. But, often the main goal of the network administrator is

to avoid the traffic congestion in the entire network and to achieve a better utilization of

network resources.

1.3 Cost Adaptive OSPF

All the attempts in OSPF for choosing the best path based on static links, assume

that link costs remain unchanged during the network operation and hence the selected

best path remains the best choice regardless of the current network conditions such as

current link's load and availability of other better paths. A direct consequence of this is

the fact that some paths known as best paths to some sources for reaching some

destinations always get overloaded while other paths with less traffic jam may exist that

could offer better performance.

A solution for this problem could be an enhanced routing protocol that includes a

monitoring subsystem and a cost adaptive subsystem. The monitoring component

monitors the network in real time and if the best paths are overloaded, notifies the core

10

algorithm of the cost adaptive component of the protocol which in turn dynamically

associates the link costs to link congestion levels and therefore establishes the real best

paths in the network in real time. The literature survey part of this project clearly

indicated that cost adaptive routing is well known to improve the network performance

by increasing its throughput and possibly lowering the end-to-end packet delay (D. W.

Glazer et al. 1990, A. Khanna et al. 1989). The best application of cost adaptive OSPF

could be in Internet, but, this kind of routing protocol has been largely abandoned in

practice due to a problem associated with routing oscillation that will be discussed in

section 3.5 of chapter 3.

In this dissertation, the concept of effective bandwidths for links will be

introduced to define a new link cost for the proposed cost adaptive OSPF and its

performance will be evaluated under overloading multiple traffics. In essence, the

effective bandwidth for links is a link utilization parameter which allows us to define a

new concept of “Network Quality” different than QoS for connections. Effective

bandwidth estimations used in adaptive OSPF let us know the network load considering

quality constrains desired for links.

As explained in section 1.2, multiple traffics in a network can easily overload

some links if the initial cost assignments are susceptible to cause this situation. A

network running cost adaptive OSPF as its routing protocol should be able to converge

eventually in the event of overloaded links. In other words, the cost adaptive OSPF

11

should be able to adjust the link costs with respect to the live traffic load on links and

hence cause an even distribution of traffic on the network.

In next chapter, detailed steps of our algorithm design will be explained. In

chapter 3, first the proposed algorithms will be simulated in ns-3 and run under multiple

overloading traffics and then, in chapter 4, the functionality of the core algorithm will be

implemented in real Cisco routers in the internetworking lab to measure and analyze

performance against projected optimization targets obtained from the simulation.

12

Chapter Two: Algorithm Design

2.1 Hill Climbing Algorithm

Hill climbing algorithm is a mathematical optimization algorithm which belongs

to a larger family of algorithms known as local search algorithms. It's relatively a simple

algorithm to implement that usually makes it a standard first choice. There are other more

advanced algorithms as well but for the purpose of this project, hill climbing is a better

choice as for real-time systems it can get a better solution in a limited time.

Hill climbing can be used in problems that have many solutions (called search

space). Different solutions in search space usually have different values. Hill climbing

starts with a random or presumed solution which is usually a poor solution and then

makes small changes (its value is called hill climbing step size) to it to generate the next

neighbour solution in each iteration. If the newly generated solution is better than the

current one then it replaces the current solution. This iteration continues until there are no

more better solutions available for the problem. At this point it's safe to say that hill

climbing has generated a solution close to optimal but it's not guaranteed.

Mathematically, hill climbing attempts to maximize (or minimize) a function f(x),

where x are discrete states. These states are typically represented by vertices in a graph,

where edges in the graph encode nearness or similarity of a graph. Hill climbing will

follow the graph from vertex to vertex, always locally increasing (or decreasing) the

value of f, until a local maximum (or local minimum) xm is reached.

13

In this project, to design the core algorithm of our adaptive OSPF protocol, a

variation of hill climbing algorithm is used. In this variation algorithm, each interface of

each router in the network is sensed periodically for its link utilization ratio. In each

iteration, the link utilization ratio of the link attached to that interface is measured and if

it's below a first threshold or above a second threshold, then the link cost of that interface

decreases or increases respectively. Here, the value by which the interface cost is

increased or decreased is the step size of our variation hill climbing algorithm. The

iteration continues until the measured interface link utilization ratio is no longer above or

below the two thresholds i.e. it's between the two threshold values. At this point, a local

optimal solution is found and as long as the thresholds' conditions are satisfied on future

iterations, the current local optimal solution is valid.

In section 1.3, we briefly introduced the two components of our design. The

monitoring subsystem is responsible for periodical sensing of links to measure their live

link utilization. Based on the measured values, the appropriate part of the core algorithm

in the cost adaptive subsystem will be invoked. The cost adaptive subsystem works

closely with monitoring subsystem to change the interface costs based on the value

obtained from the monitoring subsystem. These two components compose the core

algorithm of cost adaptive property of CA-OSPF and enable the protocol to change its

costs in real time with respect to network’s links utilization ratios in order to distribute

the traffic more evenly in the network and enhance the performance. In the next two

sections we will have a closer look at the details inside the design of these two

components.

14

2.2 Monitoring Subsystem

The monitoring component of CA-OSPF includes the algorithms to check the live

link utilization ratios of the routers' interfaces on regular basis. The monitoring subsystem

can be either centralized or distributed. In centralized monitoring, a single node in the

network is responsible for links' utilization measurements. In this approach, the

centralized node logins to each router in the OSPF network remotely and measures the

link utilization of all of its connected interfaces. In distributed approach however, the

monitoring algorithm is implemented inside each router device separately. Therefore, the

OSPF process in each router is responsible to measure the link utilization ratio of its

connected interfaces periodically. There are some important time synchronization issues

in the centralized approach that will be discussed in chapter 4. We will use both of these

approaches in this project. The distributed approach will be used in the simulation since

the ns-3 simulated routers are open source and we're able to write our code inside each

router in the network. In real implementation with Cisco routers however, we're forced to

use the centralized approach as Cisco boxes and specially their IOS are not open source

and as a result we can not run our code as a part of OSPF process inside their IOS. More

details on this and the actual implementation will be covered in chapter 4.

Now there is an important question regarding the monitoring component and that

is how often this component should be run during the course of CA-OSPF? To answer

this question there are two factors that should be considered. The first factor is the

network convergence time and the second one is the resulted overhead in the network. If

the time between runs of monitoring component is small, then network will converge

15

faster; however there will be more overhead generated as a result of procedure calls (the

cost adaptive component might be called as the result of the monitoring component call).

In contrast, if the time between monitoring component calls is large, then there will be

less overhead generated but probably network is going to converge slower. So, as it can

be seen there is a trade-off here for choosing the best value for the frequency of calls to

the monitoring subsystem. This time value can be optimized by comparing a series of test

results.

2.3 Cost Adaptive Subsystem

The key idea of CA-OSPF is to adjust router's interface cost dynamically

according to the bandwidth utilization ratio of the interface. In this way, the shortest path

is the best path. According to the bandwidth utilization ratio U (0≤U≤100%) of router's

interface obtained from the monitoring subsystem, we set two threshold values Ө1 and Ө2

in the same range as U, such that Ө2 is greater than Ө1. Each time the monitoring

subsystem measures the link utilization ratio of the router’s interface, the interface state

must be one of the following three states:

(I) Under-used state (0 ≤ U ≤ Ө1)

(II) Middle state (Ө1 < U < Ө2)

(III) Over-used state (Ө2 ≤ U ≤ 100%)

Let also say that initial interface cost set by the network manager is C0 and the

dynamic cost is C (C≥C0).

16

Initially C is set equal to C0. Monitoring subsystem checks the interface link

utilization periodically and depending on the link utilization state, cost adaptive

component takes one of the following actions:

(1) When the interface’s link utilization is in the over-used state, the interface’s cost

C is increased by ∆.

(2) When the interface’s link utilization is in the middle state, the interface’s cost is

kept unchanged.

(3) When the interface’s link utilization is in the under-used state, first C is compared

to C0. If they are equal, do nothing; if the current cost C is greater than the initial

cost C0, then C is decreased by ∆, but C can never become less that the initial cost

C0.

Delta (∆) is the step size in our hill climbing algorithm. Similar to the problem

that how often the monitoring component should be run, delta size also is an important

issue to consider. Larger delta size could lead the network to converge faster however a

problem arises when delta is set to a very large value. Consider a situation, where an

interface is in over-used state and delta size is very large. Here, the interface cost

increases by delta value but since delta is very large, the resulted interface cost becomes

too large and this may impact the entire network negatively in terms of proper traffic

distribution. Hence, delta should not be set to a very large value indefinitely. We have a

trade-off here to consider and in fact the delta size could be optimized by comparing a

series of test results.

17

Cost adaptive subsystem also could be implemented using a centralized or a

distributed approach. Details of these approaches are same as the monitoring subsystem

explained in the previous section, and in fact in this project, monitoring and cost adaptive

components are in complete agreement in terms of centralized or distributed approach

used.

18

Chapter Three: Simulation

3.1 Designing Network Topology

The network topology that is designed for the simulation is similar to the OSPF

network diagram shown in chapter 1. As shown in figure 3-1, we have eight routers

which construct the backbone of our network for the simulation. There are two LANs

named as LAN 5 and LAN 8 in the network which are connected to routers R5 and R8

respectively. In the actual code, LAN 5 and LAN 8 have been implemented as loop-back

interfaces to routers R5 and R8 and each have been assigned the address blocks

10.1.5.0/24 and 10.1.8.0/24 respectively. Routers in the backbone network have IP

addresses from the 10.1.1.0/24 address block, but for neatness of the figure, individual

interface addresses have been omitted. There are two traffic flows in the network; traffic-

1 from router R1 to a destination in LAN 5 and traffic-2 from router R4 to a destination

in LAN 8.

Since the simulation has been coded in ns-3, each router in the network is a node

(in ns-3 terminology, every network device is a node). Therefore, each router in the

network is also named by the letter “n” and a number. For example, router R1 is node n0

and router R2 is node n3 and so on. The numbers shown on each router’s interface

indicate the interface number of that interface in that router. Links are bidirectional and

numbered by combining node number with interface number. For example, the link from

n3 to n5 is link 32 because it is attached to node 3, interface 2. The link in the reverse

direction, from n5 to n3 is link 50 because it is attached to node 5, interface 0.

19

LAN 5

10.1.5.0/24
LAN 8

10.1.8.0/24

R1 R2 R3

R8R7

R6

R5
R4

Loopback 8

Loopback 5

Traffic 2

n0 n3

n1
n2

n4

n6 n7

n5

0 1

2

0

1 1

0 2

0

0

1

1

2

2 0

1 2

0
1

2

0

1

Figure 3-1 OSPF network topology designed for simulation

Here, we aren't using any extra multipliers to differentiate between links of

different types (e.g. terrestrial vs. satellite) so what we’re going to get are minimum-hop

solutions.

3.2 A Note on OPNET

This project was first attempted to be simulated by using OPNET simulator. After

creating the network topology and writing some significant amount of code inside the

ospf_v2 process of routers, the coding process encountered some difficulties at the

implementation stage of monitoring subsystem.

20

In OPNET, link utilization statistic has two possible meanings, depending on the

collection method used:

1. When collected by statistic probe, this statistic is a measure of the

consumption to date of an available channel bandwidth. This statistic is

expressed as a percentage, with 100 indicating full usage.

2. When collected by statistic wire, this statistic has one of two values: 0 and

100. Instantaneous utilization is not accumulated. In other words, if we

utilize a statistic wire to convey the utilization statistic value to our

module/processor, it'll be of value 0 or 100.

Regarding statistic probe, the returned value is an accumulated consumption rate

to date. What indeed is our criteria here is that the value which is returned at the current

simulation time, let say Ti, should be an accumulated consumption rate to date which is

calculated from the beginning of the simulation to the current simulation time Ti. To get

this, we need the API to read this static probe at the simulation time Ti.

After some research and consulting with OPNET technical support

representatives, it was discovered that the statistic collected via statistic probe could be

only viewed during simulation (via Live Stats page of the Simulation Progress dialog

box) or using the result viewer at the end of the simulation. There isn't actually any API

to read out the statistic value amid the DES.

21

This obstacle marked the end of OPNET use in this project and it was decided to

carry out the simulation part of this project in ns-3 network simulator which was a more

powerful choice for what we were looking for. The power of ns-3 lies in its pure C++

structure that actually gives the developer the freedom of coding virtually anything,

which is essential to implement those low level concepts that are not otherwise possible

with simulators like OPNET.

3.3 NS-3 Design

The ns-3 simulator is a discrete-event network simulator for internet systems

targeted primarily for research, development and educational use. It’s very popular for its

extensibility due to its open source model. Being an open source project written in C++,

researchers and developers can design and develop all their requirements by using ns-3’s

rich set of classes or by deriving new classes from existing classes. In fact, in ns-3 every

entity and object is an instance of these classes.

In the following sections, we will step through designing our simulation scenario

for the network shown in Figure 3-1. We will only examine the example codes for the

subnet R1-R4. The remaining subnets have been coded similarly.

3.3.1 Node

In ns-3 the basic computing device abstraction is called the node. This abstraction

is represented in C++ by the class Node. The Node class provides methods for managing

the representations of computing devices in simulations. We should think of a Node as a

22

computer to which we will add functionality. One adds things like applications, protocol

stacks and peripheral cards with their associated drivers to enable the computer to do

useful work. The same basic model is used in ns-3.

We start coding our simulation by creating eight Nodes. These Nodes represent

our routers R1 to R8 shown in Figure 3-1. The NodeContainer helper will be used for

creating our nodes and connecting them as explained in section 3.3.5.

3.3.2 Channel

In real world, in order to connect our routers, we use communication channels. In

the simulated world of ns-3, one connects the Node to an object representing a

communication channel. Here the basic communication sub-network abstraction is called

the channel and is represented in C++ by the class Channel.

 The Channel class provides methods for managing communication sub-network

objects and connecting nodes to them. Channels may also be specialized by developers in

the object oriented programming sense. A Channel specialization may model something

as simple as a wire. The specialized Channel can also model things as complicated as a

large Ethernet switch, or three-dimensional space full of obstructions in the case of

wireless networks. We will use specialized version of the Channel called

PointToPointChannel in our simulation.

23

3.3.3 Net Device

In real world, when we want to connect a computer or a router to network, we

have to first install a Network Interface Card (NIC) inside our box. A NIC will not work

without a software driver to control the hardware. NICs are controlled using network

device drivers collectively known as net devices. In Unix and Linux these net devices are

referred to by names such as eth0. In ns-3 the net device abstraction covers both the

software driver and the simulated hardware. A net device is “installed” in a Node in order

to enable the Node to communicate with other Nodes in the simulation via Channels. Just

as in a real computer, a Node may be connected to more than one Channel via multiple

net devices.

The net device abstraction is represented in C++ by the class NetDevice. The

NetDevice class provides methods for managing connections to Node and Channel

objects; and may be specialized by developers in the object-oriented programming sense.

We will use the specialized version of the NetDevice called PointToPointNetDevice in

this simulation. Just as an Ethernet NIC is designed to work with an Ethernet network,

the PointToPointNetDevice is designed to work with a PointToPointChannel.

3.3.4 Topology Helpers

In a real network, we find host computers with added (or built-in) NICs. In ns-3

we would say that Nodes are with attached NetDevices. In a large simulated network we

will need to arrange many connections between Nodes, NetDevices and Channels. Since

connecting NetDevices to Nodes, NetDevices to Channels, assigning IP addresses, etc.,

24

are such common tasks in ns-3; topology helpers are provided to make this as easy as

possible. For example, it may take many distinct ns-3 core operations to create a

NetDevice, add a MAC address, install that net device on a Node, configure the node’s

protocol stack, and then connect the NetDevice to a Channel. Even more operations

would be required to connect multiple devices onto multipoint channels and then to

connect individual networks together into internetworks. Topology helper objects are

provided that combine those many distinct operations into an easy to use model for

convenience. In the next few sections we will see how topology helpers make our life

easier to code our simulation.

3.3.5 Node Container

We use various topology helpers in this simulation. Initially to create our nodes

and connecting them via communication channels, we use NodeContainer helper. Let’s

have a look at the code for creating routers R1 and R4:

NodeContainer R14;

R14.Create (2);

The NodeContainer topology helper provides a convenient way to create, manage

and access any Node objects that we create in order to run a simulation. The first line

above just declares a NodeContainer which we call R14. The second line calls the Create

method on the nodes object and asks the container to create two nodes which actually

corresponds to our nodes R1 and R4 in Figure 3-1. As described in the ns-3 Doxygen, the

25

container calls down into the ns-3 system proper to create two Node objects and stores

pointers to those objects internally.

3.3.6 P2P Links

The nodes as they stand in the script do nothing. The next step in constructing a

topology is to connect our nodes together into a network. The form of network we need is

a single point-to-point link between two nodes. We’ll construct one of those links here.

Recall that two of our key abstractions are the NetDevice and the Channel. In the

real world, these terms correspond roughly to peripheral cards and network cables.

Typically these two things are intimately tied together. Topology Helpers follow this

intimate coupling and therefore we will use a single PointToPointHelper to configure and

connect ns-3 PointToPointNetDevice and PointToPointChannel objects.

The next three lines from my actual code, is an example of using

PointToPointHelper to configure and connect ns-3 PointToPointNetDevice and

PointToPointChannel objects:

PointToPointHelper p2p;

p2p.SetDeviceAttribute ("DataRate",

StringValue ("100Mbps"));

p2p.SetChannelAttribute ("Delay",

TimeValue (NanoSeconds (6560)));

26

The first line basically instantiates a PointToPointHelper object on the stack.

From a high-level perspective the second line tells the PointToPointHelper object to use

the value “100Mbps” as the “DataRate” when it creates a PointToPointNetDevice object.

From a more detailed perspective, the string “DataRate” corresponds to what is called an

Attribute of the PointToPointNetDevice. Similar to the “DataRate” on the

PointToPointNetDevice there is a “Delay” Attribute associated with the

PointToPointChannel. The final line tells the PointToPointHelper to use the value

“6560ns” (6560 nanoseconds) as the value of the transmission delay of every point to

point channel it subsequently creates.

3.3.7 Net Device Container

At this point, we have a NodeContainer that contains two nodes; R1 and R4. We

have a PointToPointHelper that is primed and ready to make PointToPointNetDevices

and wire PointToPointChannel objects between them. Just as we used the NodeContainer

topology helper object to create the Nodes for our simulation, we will ask the

PointToPointHelper to do the work involved in creating, configuring and installing our

devices for us. We need to have a list of all of the NetDevice objects that are created, so

we use a NetDeviceContainer to hold them just as we used a NodeContainer to hold the

nodes we created. The following two lines of code will finish configuring the devices and

channel:

NetDeviceContainer R14D;

R14D = p2p.Install (R14);

27

The first line declares the device container mentioned above and the second does

the heavy lifting. The Install method of the PointToPointHelper takes a NodeContainer as

a parameter. Internally, a NetDeviceContainer is created. For each node in the

NodeContainer (there must be exactly two for a point-to-point link and here we have R1

and R4) a PointToPointNetDevice is created and saved in the device container. A

PointToPointChannel is created and the two PointToPointNetDevices are attached. When

objects are created by the PointToPointHelper, the Attributes previously set in the helper

are used to initialize the corresponding Attributes in the created objects.

After executing the p2p.Install (R14) call we will have two nodes R1 and R4,

each with an installed point-to-point net device and a single point-to-point channel

between them. Both devices will be configured to transmit data at 100 megabits per

second over the channel which has a 6560 nanosecond transmission delay.

3.3.8 Internet Stack

We now have nodes and devices configured, but we don’t have any protocol

stacks installed on our nodes. The next two lines of code will take care of that:

InternetStackHelper stack;

stack.Install (R14);

The InternetStackHelper is a topology helper that is to internet stacks what the

PointToPointHelper is to point-to-point net devices. The Install method takes a

28

NodeContainer as a parameter. When it is executed, it will install an Internet Stack (TCP,

UDP, IP, etc.) on each of the nodes (R1 and R4 here) in the node container.

3.3.9 Assigning IP Addresses

Next we need to associate the devices on our nodes with IP addresses. We provide

a topology helper to manage the allocation of IP addresses. The only user-visible API is

to set the base IP address and network mask to use when performing the actual address

allocation (which is done at a lower level inside the helper). The next two lines of code

from my actual code declare an address helper object and tell it that it should begin

allocating IP addresses from the network 10.1.1.0 using the mask 255.255.255.252 to

define the allocatable bits:

Ipv4AddressHelper address;

address.SetBase ("10.1.1.0","255.255.255.252");

By default the addresses allocated will start at one and increase monotonically, so

the first addresses allocated from this base will be 10.1.1.1/30, followed by 10.1.1.2/30.

The low level ns-3 system actually remembers all of the IP addresses allocated and will

generate a fatal error if the same address accidentally caused to be generated twice

(which is a very hard to debug error, by the way).

The next line of code performs the actual address assignment:

29

Ipv4InterfaceContainer R14I = address.Assign (R14D);

In ns-3, the association between an IP address and a device are made using an

Ipv4Interface object. Just as we sometimes need a list of net devices created by a helper

for future reference, we sometimes need a list of Ipv4Interface objects. The

Ipv4InterfaceContainer provides this functionality.

For setting the base address for our next set of NetDevices (in subnets other than R1-R4),

we can write a code like this:

address.SetBase (address.NewNetwork(),"255.255.255.252");

The address helper allocated IP addresses based on a given network number and

initial IP address. In order to separate the network number and IP address parts, SetBase

was given an initial network number value, a network mask and an initial address base.

NewNetwork() method of Ipv4AddressHelper class increments the network number and

resets the IP address counter to the last base value used. Therefore the next call to the

Assign method of address object, will assign addresses 10.1.1.5/30 and 10.1.1.6/30 to the

two NetDevices passed to it.

Now we have a point-to-point network built, with stacks installed and IP

addresses assigned. What we need at this point are applications to generate traffic, but

30

before going to explanation of traffic generation codes, let’s quickly have a look at our

codes to implement LANs.

3.3.10 LAN Design

I mentioned that we design our LANs as loopback addresses. First we define our

two loopback addresses:

Ipv4InterfaceAddress loo5 ("10.1.5.0","255.255.255.0");

Ipv4InterfaceAddress loo8 ("10.1.8.0","255.255.255.0");

Ipv4InterfaceAddress is a class to store IPv4 address information on an interface.

We create two objects loo5 and loo8 out of this class and send IPv4 address and the mask

to its constructor. The class constructor looks like this:

Ipv4InterfaceAddress (Ipv4Address local, Ipv4Mask mask)

We assigned the address 10.1.5.0/24 and 10.1.8.0/24 to loo5 and loo8

respectively. We then attach LAN5 and LAN8 as loopback addresses to routers R5 and

R8 respectively. Here we just show the code for attaching loo5 to R5:

(pair[2][1].first)->AddAddress (0, loo5);

31

We're not going to go inside the details of my actual coding strategies in this

documentation, but just to have an understanding of the above snippet, pair[2][1] is an

element of a 2D array, that could be defined by a line of code like this:

std::pair<Ptr<Ipv4>,uint32_t> pair[2][1] = R45I.Get(1);

The Get method of Ipv4InterfaceContainer class is actually defined as:

std::pair<Ptr<Ipv4>, uint32_t>

ns3::Ipv4InterfaceContainer::Get (uint32_t i) const

It returns the std::pair of a Ptr<Ipv4> and interface stored at the location specified by the

index i. Therefore, R45I.Get(1) gets the mentioned pair corresponding to router R5 (R45I

contains R4 and R5 Ipv4Interface objects). Now, we can understand that pair[2][1].first is

actually referring to Ipv4 object belonging to R5. This Ipv4 object has a method called

AddAddress that is defined as below according to ns-3 Doxygen:

virtual bool

ns3::Ipv4::AddAddress (uint32_t interface,

 Ipv4InterfaceAddress address

) [pure virtual]

32

Interface number 0 of an Ipv4 interface corresponds to a loopback address,

therefore, (pair[2][1].first)->AddAddress(0, loo5); is actually assigning the loopback

address loo5 (10.1.5.0/24) to interface number 0 of Ipv4 object of router R5.

3.3.11 Traffic Generation

Another one of the core abstractions of the ns-3 system is the Application. We

need applications to generate traffic in our simulated network. In this simulation we use

two specializations of the core ns-3 class Application called OnOffApplication and

PacketSink to generate traffics. Just as we have in our previous explanations, we use

helper objects to help configure and manage the underlying objects. Here, we use

OnOffHelper and PacketSinkHelper objects to make our lives easier.

As shown in Figure 3-1, we have two traffic flows in our network. Therefore we

need to create two instances of OnOffApplication and two instances of PacketSink.

OnOffApplication serves as our source (traffic generator) while PacketSink is our

destination (sink). Here, we just go through implementation of traffic-1 which flows

from R1 to LAN5. The same strategy is used to implement the second traffic.

We first create an object of OnOffApplication to define our source:

OnOffHelper onoff ("ns3::UdpSocketFactory",

InetSocketAddress ("10.1.5.0", 8));

33

The first parameter passed to the object constructor is the name of the protocol to use to

send traffic by the applications. This string identifies the socket factory type used to

create sockets for the applications. The second parameter passed to the object constructor

is the address of the remote node to send traffic to. The ns3::InetSocketAddress class is

an Inet address class which is similar to inet_sockaddr in the BSD socket API. i.e., this

class holds an Ipv4Address and a port number to form an ipv4 transport endpoint. Here

our destination is port 8 of any node in LAN5.

The following three lines of code then set the attributes of our source traffic

generator:

onoff.SetAttribute ("OnTime",

RandomVariableValue (ConstantVariable (1)));

onoff.SetAttribute ("OffTime",

RandomVariableValue (ConstantVariable (0)));

onoff.SetAttribute ("DataRate", StringValue ("40Mbps"));

These codes set up a continuous traffic flow at the data rate of 40Mbps. What we

need now is to install this application on our source-1 which is router R1. The following

three lines take care of that:

ApplicationContainer src = onoff.Install (R15.Get (0));

src.Start (Seconds (start));

src.Stop (Seconds (stop));

34

ApplicationContainer is a class that holds a vector of ns3::Application pointers.

The first line actually installs the application that we created and defined previously on

R1. The second and third lines set the times that when the application should start and

stop. These times are declared in the program by the variables start and stop.

Now following the same analogy, we define and install our sink application on

LAN5 which is in fact the loopback interface of router R5:

PacketSinkHelper sink ("ns3::UdpSocketFactory",

InetSocketAddress ("10.1.5.0", 8));

ApplicationContainer dest = sink.Install (R15.Get (1));

dest.Start (Seconds (start));

dest.Stop (Seconds (stop));

The only difference here is that the second parameter passed to the

PacketSinkHelper object is the address of the sink itself which is port 8 of any machine in

LAN5.

3.3.12 Call Backs

In this section we are going to see how the power of C++ in ns-3 and its open

source nature is beautifully used to overcome the bottleneck that prevented us from using

OPNET for our simulation. In section 3.2, we explained how OPNET gave us a hard time

to implement and simulate the monitoring component of our hill climbing algorithm.

35

Here we see how the C++ concept of Callback is used to actually measure the live link

utilization of all the interfaces of all the routers in our network in real time.

The goal of the Callback system in ns-3 is to allow one piece of code to call a

function (or method in C++) without any specific inter-module dependency. This

ultimately means we need some kind of indirection – we treat the address of the called

function as a variable. This variable is called a pointer-to-function variable. The

relationship between function and pointer-to-function pointer is really no different that

that of object and pointer-to-object.

Again we are not going to present my actual coding strategies in this

documentation, but for the sake of completeness of this section, we briefly cover the high

level design. Also it’s worthy to mention that the Callback system in ns-3 is a part of ns-

3's Tracing System which by itself is a huge topic. Obviously covering the Tracing

System of ns-3 is not in the scope of this documentation. Therefore, readers are advised

to make themselves familiar with the concepts of trace source and trace sinks before

reading the following paragraphs. Ns-3 documentations and manuals have an extensive

coverage on these topics.

In this simulation we are using point-to-point links. Therefore our routers have

point-to-point interfaces. On every point-to-point interface, there is a trace source called

MacTx which indicates a packet has arrived for transmission by that interface while

simulation is under run. We can connect this trace source to a trace sink specially coded

36

to use the parameters passed by the trace source. We can use the Config::Connect

subsystem in order to connect MacTx trace source to our specialized trace sink. It turns

out that the parameter passed by MacTx of each interface to our trace sink is a pointer to

the Packet that is about to be sent out of that particular interface. Please note that each

pointer is in fact pointing to an object of class Packet. This class has a method called

GetSize() which can help us to get what we want. Therefore, we code our trace sink

TraceMacTx something like this:

uint64_t p2pBytes = 0;

void TraceMacTx (std::string context,

 Ptr<const Packet> txPacket) {

p2pBytes += txPacket->GetSize (); }

Of course, the way this is presented here, it will add up all bytes received on all

point-to-point interfaces. In my actual code there's a strategy to find out which interface

was sending the trace request.

Finally, after each time we use p2pBytes of each interface to calculate its link

utilization, we zero it and then we start accumulating a new count. When the event

signalling the end of a monitoring interval fires, we take the totals and divide by the

length of the interval to get the byte rates. After zeroing the counts, we use the byte rates

in the hill climber to adjust the link costs.

37

3.3.13 CA-OSPF

So far we saw how we designed and implemented our OSPF network. Now we

run the OSPF process on our routers by a single line of code:

Ipv4GlobalRoutingHelper::PopulateRoutingTables();

The PopulateRoutingTables() method of Ipv4GlobalRoutingHelper class builds a

routing database and initialize the routing tables of the nodes in the simulation. It also

makes all nodes in the simulation into routers. All that actually this function does is call

the functions BuildGlobalRoutingDatabase () and InitializeRoutes () internally.

Now it’s time to set up our initial link costs. These are the metrics set by the

network manager at the network setup that in our test case actually represents a bad setup.

As explained in chapter 1, we are going to assign link costs in such a way to overload the

links 02, 32 and 52 (node 5 - interface 2).

Our metric assignment for the OSPF network of Figure 3-1 is shown by green

numbers in Figure 3-2. The Ipv4 objects of all the interfaces in our simulation have a

method called SetMetric. This method is used to set the initial costs in our OSPF

network. After each cost assignment to any interface we execute the following code in

order to force ns-3 routers to recompute their routing tables:

Ipv4GlobalRoutingHelper::RecomputeRoutingTables();

38

LAN 5

10.1.5.0/24
LAN 8

10.1.8.0/24

R1 R2 R3

R8R7

R6

R5
R4

Loopback 8

Loopback 5

Traffic 2

n0 n3

n1
n2

n4

n6 n7

n5

0 1

2

0

1 1

0 2

0

0

1

1

2

2 0

1 2

0
1

2

0

1

50 50

50

50

1 1

1

1

11

98

Figure 3-2 Simulated OSPF network with bad cost (metric) setup

RecomputeRoutingTables() removes all routes that were previously installed in a

prior call to either PopulateRoutingTables() or RecomputeRoutingTables(), and adds a

new set of routes. This method does not change the set of nodes over which

GlobalRouting is being used, but it will dynamically update its representation of the

global topology before recomputing routes.

The last part of CA-OSPF which is remaining is our hill climber itself which is

actually the core of our cost adaptive OSPF network. We implement it and all it’s

subroutines in a function called hill().

39

3.3.14 Simulator

Finally it’s now time to schedule and run our discrete event simulation. We

schedule our calls to hill() by using the Schedule method of class Simulator. This method

schedules an event to expire at the relative time "t" is reached. This can be thought of as

scheduling an event for the current simulation time plus the Time passed as a parameter.

When the event expires (when it becomes due to be run) the input method will be

invoked on the input object. To schedule our hill climber to run on time frequencies

indicated by the variable f, we can write the following snippet:

for (int t=start+f; t<=stop; t=t+f)

 Simulator::Schedule (Seconds(t),hill);

This loop sets hill() up to be run after each f seconds intervals starting at time

“start” and stopping at time “stop” seconds. Now all is remaining is to run our

simulation:

Simulator::Run ();

When Simulator::Run is called, the system will begin looking through the list of

scheduled events and executing them. When these events are all executed, there are no

further events to process and Simulator::Run returns. The simulation is then complete.

All that remains is to clean up. This is done by calling the global function

Simulator::Destroy. As the helper functions (or low level ns-3 code) executed, they

40

arranged it so that hooks were inserted in the simulator to destroy all of the objects that

were created. We did not have to keep track of any of these objects ourselves — all we

need to do is to call Simulator::Destroy and exit from our program:

Simulator::Destroy ();

return 0;

3.4 Test Case Results

Now it’s time to see our simulated CA-OSPF network in action. In this test case

scenario, we set the step size of our hill climber ∆=2 and the frequency of calls to hill() at

f=2 seconds i.e. hill() is scheduled to be invoked every two seconds during the simulation

run. Furthermore, we set the start of our two 40Mbps traffics at start=1 second and the

stop time at stop=30 seconds where simulation ends too. So our simulation is set to run

for 30 seconds of simulation time. Please note this indicates the simulation time and is

actually different from the real time. The actual time that is taken for the simulation to

complete 30 seconds of our scenario is approximately 442 seconds on a 32-bit 1.6 GHz

Centrino machine.

Recalling that our links are 100Mbps point-to-point links, we set our first hill

climber threshold Ө1=20% and our second threshold Ө2=80%. So if the average link

utilization of any interface in our network goes above 80Mbps during any monitoring

interval, the cost adaptive component will increase the interface’s cost by ∆=2. If the

average link utilization remains between 20Mbps and 80Mbps, then the interface’s cost is

41

kept unchanged and finally if it happens that a interface’s average link utilization falls

below 20Mbps in any monitoring interval, its cost will be decreased by ∆=2 provided that

it’s not already equal to the interface’s initial cost C0 (shown in Figure 3-2).

This setup of threshold values and our two traffic flows at 40Mbps, cause our

hill() to flag links 02, 32 and 52 in figure 3-2 as overloaded from the very first monitoring

interval. Therefore, the cost adaptive component of hill() starts increasing those

interfaces’ costs after each monitoring interval as long as their link utilizations are above

80Mbps. This ultimately causes traffic 1 to find a better path than going through the path

R1-R2-R3-R8-R7-R6-R5-LAN5. Figure 3-3 (a) to (f) shows the output of our program at

different simulation times.

Figure 3-3 (a) Simulation time 17:00:03

42

(b) Simulation time 17:00:05

(c) Simulation time 17:00:07

43

(d) Simulation time 17:00:17

(e) Simulation time 17:00:19

44

(f) Simulation time 17:00:21

Let say the simulation started at time 17:00:00 (hh:mm:ss). We can see from

figure 3-3 (a) that our hill() has noticed the overloaded links 02, 32 and 52 after the very

first monitoring interval. The first monitoring interval actually started from the first

second to 3s (17:00:03). The hill climber sees that the average link utilizations on these

interfaces have been more than 80 Mbps during the first monitoring interval and hence

increases the costs on those links by the step size value ∆=2. Similarly after subsequent

monitoring intervals, those links’ costs are further increased (as seen in Figure 3-3 (b), (c)

and (d)) because their average link utilizations have been still more than our upper

threshold Ө2=80 Mbps. Ultimately as seen in Figure 3-3 (d), when the costs on those

45

links are further increased to 17 at the simulation time 17:00:17, the total cost on path

R1-R2-R3-R8-R7-R6-R5 for traffic-1 becomes 54 which is more than the cost of 50

which is for path R1-R5. Therefore, at this stage router R1 notices the better path for

traffic-1 and hence starts forwarding all the packets belonging to traffic-1 to its interface

01 instead of interface 02. So, from next monitoring intervals shown in figure 3-3 (e) and

(f), we can see that traffic-1 follows path R1-R5-LAN5 and traffic-2 follows path R4-R1-

R2-R3-R8-LAN8 as before and therefore no interface in the network is overloaded

anymore. So our CA-OSPF network took 17 simulation seconds to converge with f=2 and

∆=2. The result is a true stable traffic distribution in the network where no interface is

overloaded. The costs on all the interfaces are kept unchanged as long as traffic

conditions are same. If there are any changes in traffic patterns, our CA-OSPF network is

able to adapt itself again and causes the traffics to be distributed evenly.

Figure 3-4 (a) and (b) show the link utilization graphs for links 01 and 02

respectively. The packets sent from these interfaces have been captured with Wireshark

protocol analyzer in order to produce these graphs.

Figure 3-4 (a) Link utilization on link 01 (node 0 – interface 1)

46

 (b) Link utilization on link 02 (node 0 – interface 2)

Figure 3-4 (a) shows that no packet was seen on link 01 until the simulation time

of 17:00:17. We know that because R1 was forwarding all the packets to its interface 02

until that time. But after the simulation time of 17:00:17, R1 calculated a better path for

traffic-1 and started forwarding traffic-1 packets to its interface 01 and hence we see the

data rate on graph for link 01 jumps to ~42 Mbps after the simulation time of 17:00:17.

In Figure 3-4 (b) however, interface 2 of R1 (node 0) was overloaded from the

beginning of simulation to simulation time 17:00:17 after which its data rate dropped to

~42 Mbps. This is because of the fact that traffic-1’s load was removed from it at

simulation time of 17:00:17.

These two graphs together show us how our CA-OSPF network relieved

overloaded interface and consequently distributed total traffic in our network more

evenly.

47

3.5 Routing Oscillations

As it was briefly mentioned in introduction of this documentation, the best

application of cost adaptive OSPF could be in Internet, but this kind of routing protocol

has been largely abandoned in practice due to a problem associated with routing

oscillations. Routing oscillation is a situation in which an interface is oscillated between

overused and underused states. We can see the effect of this by changing the cost on our

link R4-R5 from 98 to 97. The new cost assignment is shown in Figure 3-5.

LAN 5

10.1.5.0/24
LAN 8

10.1.8.0/24

R1 R2 R3

R8R7

R6

R5
R4

Loopback 8

Loopback 5

Traffic 2

n0 n3

n1
n2

n4

n6 n7

n5

0 1

2

0

1 1

0 2

0

0

1

1

2

2 0

1 2

0
1

2

0

1

50 50

50

50

1 1

1

1

11

97

Figure 3-5 Metric assignment causing routing oscillation

48

When hill() increases the cost on links 01, 32 and 52 after each monitoring

interval, finally their individual costs reach 17 at simulation time 17:00:17. At this point

not only traffic-1 finds a better path but also traffic-2 does. We have already seen the

calculation for traffic-1’s best path selection. For traffic-2, when the costs on links 02, 32

and 52 reach 17 each, the cost of path R4-R1-R2-R3-R8 becomes 101. At this point

router R4 notices the path R4-R5-R6-R7-R8 which has a better total cost (100). Hence

R4 starts forwarding traffic-2’s packets to its interface 1 rather than interface 0. So, both

the traffics are now rerouted and hence the link utilization of links 02, 32 and 52 drop to

zero. This can be seen in Figure 3-6 when we are 19s into simulation.

49

50

Figure 3-6 Routing oscillations

When the link utilization of links 02, 32 and 52 drop to zero, CA-OSPF flags

them as underused and hence decrease their cost by ∆=2. This causes both of our traffics

to be rerouted again to their previous paths. After this point as also seen in Figure 3-6,

links 02, 32 and 52 keep oscillating between overused and underused states. This

increases the total overhead in network as more LSAs are generated for link costs that

change every 2 seconds.

Figure 3-7 (a) and (b) show these oscillations on links 01 and 02 graphically.

51

Figure 3-7 (a) Data rate oscillation on link 01

 (b) Data rate oscillation on link 02

As mentioned before, routing oscillations are the main issue in CA-OSPF that

prevent developers from using it widely in internet systems. But this issue is not

something without solution. I have developed an algorithm to change the step size of hill

climber dynamically in real time to avoid the routing oscillations. This algorithm is

currently under test at the time of this writing and its details are beyond the scope of this

documentation.

52

Chapter Four: Lab Implementation

4.1 Open Source Routers

After getting our expected results from the simulation, it's now time to implement

our CA-OSPF in internetworking lab to see its action in real world and to measure and

analyze its performance against projected optimization targets. To implement CA-OSPF

directly inside routers, one is forced to use open source routers like Quagga. In other

words, to modify the routing process inside the routers, there is no choice other than

using these open source softwares. This is due to the fact that real routers like Cisco

devices are closed source and hence do not allow programmers to modify their IOS.

Therefore we can not directly modify router's OPSF process to convert it to CA-OSPF.

Since the initial plan of this project was to finally test our developed CA-OSPF

with real routers, it was decided to use real Cisco boxes instead of open source routing

suite softwares like Quagga. To use real Cisco routers however, we have to develop a

method to implement our CA-OSPF inside routers indirectly. We will see the details of

this method in section 4.3.

4.2 Designing OSPF Network with Cisco Routers

The network topology that was designed in internetworking lab for our hill

climber implementation is shown in Figure 4-1.

53

U
D
P
 T
ra
ffic
 1

Figure 4-1 OSPF network with Cisco 2600 series routers

There are six Cisco 2600 series routers interconnected with the combination of

Fast Ethernet and serial links as shown in the figure. Fast Ethernet interfaces operate at

100 Mbps and serial interfaces are configured to operate at the clock data rate of 8 Mbps.

Fa0/0 of router R1 is connected to the workstation T1-w which serves as the source of

our first UDP traffic. Workstation T1-w is also where we implement our CA-OSPF core

algorithms. Fa0/0 of R2 is connected to a Sun Blade server (T1-Blade) which acts as the

destination for traffic-1 as well as the source for our second UDP traffic. Fa0/0 of R6 is

connected to our seconds Sun Blade T2-Blade which is the sink for traffic-2. Hence,

traffic-1 flows from T1-w to T1-Blade and traffic-2 flows from T1-Blade to T2-Blade.

54

In Cisco routers by default the OSPF costs on Fast Ethernet and serial interfaces

are 1 and 64 respectively, but in our network design shown in Figure 4-1, we have

reduced the costs on some serial interfaces to 1 purposely in order to implement the bad

cost scheme we have talked about in previous chapters. Please note that only the costs on

serial interfaces R4 (S0/1), R6 (S0/1) and R3 (S0/0) are reduced to 1 and all the other

serial interfaces in the network have the OSPF cost of 64. Now, with this bad cost

assignment shown in the figure, traffic-1 takes the path (T1-W)-R1-R4-R6-R5-R3-R2-

(T1-Blade) instead of physically shorter path of (T1-W)-R1-R2-(T1-Blade) and traffic-2

takes the path (T1-Blade)-R2-R1-R4-R6-(T2-Blade). This scheme therefore causes the

links R1-R4 and R4-R6 to get overloaded by both the traffic flows.

All the network interfaces are addressed from 10.10.10.0/24 address block and

OSPF routing process is configured for this network block on all the routers in the

network.

4.3 Implementing CA-OSPF with Automated Scripts

In section 4.1 we explained that we cannot directly implement our developed hill

climber in Cisco routers. The IOS of Cisco routers are not open source and hence

programmers are not allowed to modify its internal structure in any way. For our purpose

what that means is that we cannot implement our CA-OSPF in IOS simply by modifying

its OSPF process. Therefore what we need to do is to develop a method to implement our

CA-OSPF somehow indirectly.

55

We can do this by writing some automated scripts. If we could write some scripts

that run in a node attached to our network and if these scripts could remotely check the

link utilization of all the links in our network via a network management protocol like

SNMP then we have already implemented the monitoring subsystem of our CA-OSPF.

Furthermore, if our scripts are also able to modify the OSPF costs on all the interfaces in

the network then we have accomplished the task of cost adaptive subsystem as well.

This is the art of scripting where we have two distinct scripts; one is responsible

for the monitoring subsystem of our hill climber and the other is responsible for the cost

adaptive subsystem. I have developed the first script with Perl and the second script with

Expect both of which are powerful scripting languages. Both scripts are run on

workstation T1-w which is attached to our network via router R1. The Perl script

responsible for the monitoring subsystem connects to each router in our network via

SNMP, checks the link utilization of its interfaces and if required calls the Expect script

to change their OSPF cost. The Expect script (if called) connects to the flagged routers

remotely to change the OSPF cost on its flagged interface(s).

We will see the designing details of these two scripts in sections 4.5 and 4.6 but

before that some background in SNMP and MIB-II are necessary. Therefore, we first go

through these topics briefly in the next section.

56

4.4 SNMP, OIDs and MIB-II

Simple Network Management Protocol is a simple method of interacting with

networked devices. The standard is defined by IETF RFC 1157. SNMP can often seem

quite confusing and overly complicated, its available APIs tend to put a lot of wrapping

around what should be very simple.

A network device runs an SNMP agent as a daemon process which answers

requests from the network. The agent provides a large number of Object Identifiers

(OIDs). An OID is a unique key-value pair. The agent populates these values and makes

them available. An SNMP manager (client) can then query the agent’s key-value pairs for

specific information. From a programming standpoint it’s not much different than

importing a ton of global variables. SNMP OIDs can be read or written.

OIDs are numerical and global. An OID looks similar to an IPv6 address and

different vendors have different prefixes and so forth. The OIDs are long enough that it’s

complicated for a human to remember or make sense of them, so a method was devised

for translating a numeric OID into a human readable form. This translation mapping is

kept in a portable flat text file called a Management Information Base or MIB.

IETF RFC 1213 defines the second version of the Management Information Base

(MIB-II) for use with network management protocols in TCP/IP-based internets. All

SNMP agent and tool distributions should include MIBs that will comply with MIB-II

and all devices should at the very least return values that comply with the MIB-II

57

standard. For our monitoring script, we use the 'Interfaces' group of MIB-II which is

documented in RFC 2863.

SNMP can be used in 2 ways: polling and traps. Polling just means that we write

an application that sets an SNMP GET request to an agent looking some value. This

method is useful because if the device responds we get the information we want and if the

device does not respond we know there is a problem. Polling is an active form of

monitoring and we actually use it to implement the monitoring component of our hill

climber in section 4.5. On the other hand, SNMP traps can be used for passive monitoring

by configuring an agent to contact another SNMP agent when some action occurs.

4.5 Scripting the Monitoring Subsystem with Perl

The Simple Network Management Protocol (SNMP) offers a general way to

remotely monitor and configure network devices and networked computers. One way we

can use SNMP from Perl is to use a Perl SNMP module. There are at least three separate

but similar modules available: Net::SNMP, by David M. Town; SNMP_Session.pm, by

Simon Leinen; and a module that has had several names, including NetSNMP,

Perl/SNMP, and “The Perl5 ‘SNMP’ Extension Module v5.0 for the Net-SNMP Library,”

originally written by G. S. Marzot and now maintained by the Net-SNMP Project. The

most significant difference between these three modules (other than their level of SNMP

support) is their reliance on libraries external to the core Perl distribution. I chose

Net::SNMP for our work because it's largely implemented in Perl alone. The Net::SNMP

module implements an object oriented interface to the Simple Network Management

58

Protocol. Therefore, Perl applications can use the module to retrieve or update

information on a remote host using the SNMP protocol. Each Net::SNMP object provides

a one-to-one mapping between a Perl object and a remote SNMP agent or manager. Once

an object is created, it can be used to perform the basic protocol exchange actions defined

by SNMP.

Before starting to write our monitoring script, we first need to configure and run

SNMP agent (process) on all the routers in our network. We use the following command

to configure SNMP agent on all of our routers:

snmp-server community iman RW

This command sets the SNMP community name to 'iman' and enables the SNMP

agent for both read and write access, but we will only use the read access.

Now we can start writing our Perl script to implement the monitoring subsystem

of our CA-OSPF. Please note since a centralized approach is used to implement our

monitoring subsystem, my actual Perl script includes many lines of code to solve the time

synchronization issues between routers and the monitoring workstation. Here, we will

only have a look at the high level design and will mostly pay attention to how

Net::SNMP Perl module is used to connect to our routers to get the information we need.

We will see the example codes for monitoring the interface Fa0/1 of router R1.

59

First we need to connect to our SNMP router:

my ($session,$error) = Net::SNMP->session(Hostname => $R1,

 Community => 'iman');

die "session error: $error" unless ($session);

session() is the constructor for Net::SNMP objects. In list context, a reference to a

new Net::SNMP object ($session) and an empty error message string is returned. If a

failure occurs, the object reference is returned as the undefined value. The error string

($error) may be used to determine the cause of the error. The IP address of the destination

SNMP device can be specified using the Hostname argument. $R1 is the variable that

holds the IP address of router R1. Since the Security Model is Community-based, the

only argument available is the Community argument. This argument expects a string that

is to be used as the SNMP community name. Since the destination port number is not

specified, the module uses the well-known SNMP port number 161.

Now that we are connected to our SNMP manager, the next step is to read the

average data rate on its Fa0/1 interface over the past monitoring window. Inside the

Interfaces Group of MIB-II (RFC 2863), there is a variable called ifOutOctets. Its

description says:

ifOutOctets OBJECT-TYPE

 SYNTAX Counter32

60

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "The total number of octets transmitted out of the interface, including

 framing characters. Discontinuities in the value of this counter can occur

 at reinitialization of the management system, and at other times as

 indicated by the value of ifCounterDiscontinuityTime."

 ::= { ifEntry 16 }

So it's a Counter32 type variable with read-only access and according to its

description, sounds promising for what we are looking for. The numerical OID for

ifOutOctets is “.1.3.6.1.2.1.2.2.1.16”. Therefore to read ifOutOctets of interface Fa0/1

(IFindex 2), we can write:

my $result = $session->get_request ('.1.3.6.1.2.1.2.2.1.16.2');

die 'request error: '.$session->error unless (defined $result);

The get_request() method performs a SNMP get-request query to gather data from

the remote agent on the host associated with the Net::SNMP object. Therefore $result

gets the ifOutOctets of Fa0/1 of R1. Let say $R1_fa01_OldMB holds the total megabytes

transmitted out of the interface, which was read last time the interface was monitored.

Now after sleeping for time t (defined by frequency of calls to monitoring subsystem), we

read the current ifOutOctets of the interface to calculate $R1_fa01_NewMB in order to

61

finally calculate the average data rate on the interface over the past monitoring interval

i.e. from the last time we read it up until now:

$R1_fa01_NewMB = $result->{'.1.3.6.1.2.1.2.2.1.16.2'}/10**6;

 if ($R1_fa01_NewMB<$R1_fa01_OldMB) {

$MB=(4294967295-$R1_fa01_OldMB+$R1_fa01_NewMB)*8/tv_interval($time);

}

 else {

 $MB=($R1_fa01_NewMB-$R1_fa01_OldMB)*8/tv_interval($time); }

The IF statement in above snippet is to handle the situation where ifOutOctets had

reached its maximum 32-bit value and wrapped around during the last monitoring

interval. tv_interval() is a method of Time::HiRes Perl module. We use this module in

our script to implements a Perl interface to the usleep, ualarm, and gettimeofday system

calls in order to achieve high resolution time synchronization for our monitoring

subsystem. tv_interval() returns the floating seconds between the two times. In our code

the second argument is omitted, therefore the current time is used. $time is a variable that

holds the accurate time of last time the interface was monitored and it was set by the

following statement:

$time=[gettimeofday()]; #Returns a floating seconds since the epoch

Finally, we reset $time to current time again to be used in the next call to the

monitoring subsystem and also we put $R1_fa01_NewMB into $R1_fa01_OldMB.

62

As seen so far, after each call to the monitoring subsystem we get the average data

rate on the interface over the past monitoring interval. Now we need to pass this

information to the cost adaptive subsystem. The cost adaptive subsystem determines

whether the cost on the interface needs to be changed or not. Our Expect script (explained

in next section) will be called if the interface cost has to be changed. For the Expect script

to work in this way, our Perl script needs to pass the following information to it:

1. The console IP address of the destination router

2. Interface name of the interface whose cost needs to be changed

3. The new cost value

Last, before wrapping up our Perl script, we need to clear the Transport Domain

and any errors associated with our Net::SNMP object. Once closed, the Net::SNMP

object can no longer be used to send or receive SNMP messages.

$session->close();

4.6 Scripting the Cost Adaptive Subsystem with Expect

Expect is a UNIX automation and testing tool, written by Don Libes as an

extension to the Tcl scripting language, for interactive applications. It uses UNIX pseudo

terminals to wrap up subprocesses transparently, allowing the automation of arbitrary

applications that are accessed over a terminal. Expect has regular expression pattern

matching and general program capabilities, allowing simple scripts to intelligently

control programs such as telnet, ftp and ssh, all of which lack a programming language,

63

macros, or any other program mechanism. The result is that Expect scripts provide old

tools with significant new power and flexibility. In fact Expect serves as a "glue" to link

existing utilities together.

All of these mean that we can actually use Expect to write a script to implement

our cost adaptive subsystem. The idea is very simple: if the Expect script is called by our

Perl script to change the cost on an interface, the Expect script logins to the flagged

router automatically, changes the cost on the flagged interface and exits. That's it!

We first write the following command in the beginning of our script to disable the

program’s output to the terminal in order to hide all the cost changing activities in the

back and to keep telnet outputs out of our display.

log_user 0

The script starts by logging to the flagged router using the spawn command:

spawn telnet [lindex $argv 0]

The spawn command starts another program. The first argument of the spawn

command is the name of a program to start. The remaining arguments are passed to the

program. So in our above code, telnet is started and the first argument that was passed to

Expect is passed to it. Recall that this argument was actually passed by the Perl script and

64

is the console IP address of the flagged router. This directs telnet to open a connection to

that host just as if the full command had been typed to the shell. We can now send

commands using send and read prompts and responses using expect.

The first thing router will ask us after telneting to it, is the IOS password. We can

write the following codes in our script to interact with it:

expect "Password:"

send "letmein\r"

expect "OK"

The script waits until it matches the exact phrase "Password:" and after matching

this, the script sends the password followed by a carriage return. Again script waits to

receive "OK" indicating that the password we sent was correct.

Of course we also use regular expressions in expect commands to make our script

more efficient. In the following lines we first send a carriage return after getting the

above "OK" and then we wait to match a string starting with “Router” followed by any

character including no character at all (given that the router's host name starts with the

word “Router”). Then we send enable command to router to enter the privileged mode.

Again we use regular expressions in the next expect command to match any character

followed by the # sign, since we know that in router's privileged mode prompt ends with

the number sign.

65

send "\r"

expect "Router*"

send "en\r"

expect "*#"

In the same way we can continue writing our script to interact with the router to

finally change the cost on the requested interface. Recalling that the flagged interface

name and its new cost were passed to the Expect script as its second and third arguments

respectively, the remaining of the script looks something like this:

send "conf t\r"

expect "*#"

send "int [lindex $argv 1]\r"

expect "*#"

send "ip ospf cost [lindex $argv 2]\r"

expect "*#"

send "exit\r"

expect "*#"

send "exit\r"

When the Expect script is done with the interface cost change, the control will be

back to the Perl script to continue with the next monitoring window.

66

4.7 Test Case Results

Now it’s time to see our automated scripts in action and see how they convert our

OSPF network to a CA-OSPF network. Let’s first set our hill climber parameters in our

Perl script. We set the step size of hill climber $delta=5 and the frequency of calls to our

hill climber at $time=10 seconds. This means each monitoring window is 10 seconds

long and therefore Perl script sleeps for 10 seconds between calls to monitoring

subsystem.

Each traffic flow is set at 3Mbps considering the presence of serial links in our

network. Since we have a combination of Fast Ethernet and serial links in our test

network (figure 4-1), we set our threshold values with respect to the slower links. Setting

Ө1=25% and Ө2=75% of serial links’ speed, if the average data rate on any interface in

our network goes above 6Mbps during any monitoring interval, the cost adaptive

component will increase the interface’s cost by $delta=5. If the average data rate remains

between 2Mbps and 6Mbps, then the interface’s cost is kept unchanged and finally if it

happens that a interface’s average link utilization falls below 2Mbps in any monitoring

interval, its cost will be decreased by $delta=5 provided that it’s not already equal to the

interface’s initial cost C0 (shown in figure 4-1).

This setup causes the R1-Fa0/1 and R4-S0/1 interfaces to be flagged as

overloaded during those monitoring intervals that both traffics flow in the network.

Figures 4-2 to 4-6 show the output of our program on T1-w terminal at different

important moments.

67

Figure 4-2 This figure indicates that during the past monitoring window, only

traffic-1 was flowing in network. Due to the bad cost scheme used in the design of

OSPF network, traffic-1 is following the path R1-R4-R6-R5-R3-R2 instead of

physically shorter path of R1-R2.

68

Figure 4-3 Here we can see that traffic-2 also has started and therefore R1-Fa0/1

and R4-S0/1 interfaces have got overloaded. Our Perl script flagged these two

interfaces and called the Expect script to increase their cost by $delta=5. We know

that the initial cost on these two interfaces was 1 but as it is displayed in output, the

Expect script increased it to 6 i.e. increased it by the hill climber step size $delta.

This process continues as long as the average data rates on those interfaces are

above 6 Mbps.

69

Figure 4-4 The process of cost increment on R1-Fa0/1 and R4-S0/1 interfaces

continued until the OSPF cost on these two interfaces reached 31 each. At this point,

according to the initial cost plan seen in figure 4-1, the total cost for traffic-1 to flow

through its current path from R1 has reached 66 which is higher compared to the

physically shorter path of R1-R2-(T1-Blade) which has the cost of 65. Therefore at

this point, router R1 updates its routing table and from here onwards it will

forward all the packets destined for T1-Blade to its S0/0 interface instead of Fa0/1.

70

Figure 4-5 After network converged; we can see the new traffic distribution in this

figure. Router R1 forwards all the packets belonging to traffic-1 to its S0/0 interface

and all the packets belonging to traffic 2 to its Fa0/1 interface. The result is no

overloaded interface in the network anymore. Now the entire traffic is distributed

evenly in the network. Traffic-1 follows the new (and physically shorter) path of

(T1-w)-R1-R2-(T1-Blade) and traffic-2 follows the path (T1-Blade)-R2-R1-R4-R6-

(T2-Blade) as before.

71

Figure 4-6 Finally in this figure that shows the output of the past monitoring

window, we can see that traffic-1 had been stopped completely and traffic-2 was

going down. Now since the average data rate on R1-Fa0/1 and R4-S0/1 interfaces

are below 2 Mbps, our Perl script flags them as under-used and since their OSPF

cost are higher than their initial values (1), the Expect script is called to decrease

their cost by $delta=5. Therefore their costs drop to 26. Again, this process

continues as long as the costs on under-used interfaces are higher than their initial

values.

72

Now let’s see the performance boost that we get from CA-OSPF in comparison

with OSPF in terms of packet jitter. We manage our traffics to start at almost the same

time and to stop after 200 seconds.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0
.0

-
1
.0

6
.0

-
7
.0

1
2
.0

-1
3
.0

1
8
.0

-1
9
.0

2
4
.0

-2
5
.0

3
0
.0

-3
1
.0

3
6
.0

-3
7
.0

4
2
.0

-4
3
.0

4
8
.0

-4
9
.0

5
4
.0

-5
5
.0

6
0
.0

-6
1
.0

6
6
.0

-6
7
.0

7
2
.0

-7
3
.0

7
8
.0

-7
9
.0

8
4
.0

-8
5
.0

9
0
.0

-9
1
.0

9
6
.0

-9
7
.0

1
0
2
.0

-1
0
3
.0

1
0
8
.0

-1
0
9
.0

1
1
4
.0

-1
1
5
.0

1
2
0
.0

-1
2
1
.0

1
2
6
.0

-1
2
7
.0

1
3
2
.0

-1
3
3
.0

1
3
8
.0

-1
3
9
.0

1
4
4
.0

-1
4
5
.0

1
5
0
.0

-1
5
1
.0

1
5
6
.0

-1
5
7
.0

1
6
2
.0

-1
6
3
.0

1
6
8
.0

-1
6
9
.0

1
7
4
.0

-1
7
5
.0

1
8
0
.0

-1
8
1
.0

1
8
6
.0

-1
8
7
.0

1
9
2
.0

-1
9
3
.0

1
9
8
.0

-1
9
9
.0

Time (s)

J
it

te
r

(m
s

)

Figure 4-7 Average packet jitter over time for traffic2 packets received on T2-Blade

Figure 4-7 shows the average jitter over time for packets (belonging to traffic-2)

received on T2-Blade machine. We can see that during first few seconds when traffic-1

starts too, the average jitter of traffic-2 packets gets shot to above 1.2 ms. The packets

jitter remain relatively high until time=169 seconds. At this time network converges and

traffic on overloaded links are distributed more evenly (this corresponds to figure 4-4).

73

Therefore traffic congestion is greatly reduced on the links along the traffic-2 path. The

result can be seen in the figure 4-7 where the packet jitter drops drastically at time=169

seconds and remains low from there on.

If we imagine that our network was an OSPF network without traffic management

capabilities, we can see how it could suffer from high packet jitters as those seen in figure

4-7 before time=169 seconds. But CA-OSPF which is an OSPF routing protocol with

added traffic management capabilities enhanced our network performance.

74

Chapter Five: Conclusion

In this project one of the shortcomings of the existing OSPF routing protocol was

identified in terms of calculating the real best paths, and on the basis of this

identification, a cost adaptive version of the routing protocol was developed to include

the extra traffic management capabilities to overcome the identified shortcoming.

The cost adaptive OSPF was first researched and then developed using a variation

of hill climbing algorithm. The developed algorithm was then coded (in C++) and

simulated in ns-3 network simulator to analyze its performance in a simulation world.

After seeing the expected results from the simulation, the final milestone was to

implement the cost adaptive OSPF in real world and to measure and analyze its

performance against projected optimization targets.

The cost adaptive OSPF proved to overcome the shortcoming of traditional OSPF

in terms of even traffic distribution and in author’s view it can definitely replace OSPF in

internet systems provided that the associated routing oscillation issue is solved. As it was

mentioned in section 3.5, the routing oscillation problem associated with the cost

adaptive OSPF could have some solutions; one of which is currently under test by the

author as a potential patch to the developed cost adaptive OSPF.

75

References

[1] ns-3 Tutorial, 28 January 2010

[2] ns-3 Reference Manual, ns-3-dev 29 April 2010

[3] Zhou Haijun , Pan Jin & Shen Pubing , “Cost adaptive OSPF”, Lab of Network

Eng., Xi'an Commun. Inst., China

[4] Tatiana B. Pereira and Lee L. Ling, “Network Performance Analysis of an Adaptive

OSPF Routing Strategy – Effective Bandwidth Estimation”, International

Telecommunication Symposium – ITS 2002, Natal, Brazil

[5] Tatiana Brito Pereira, Lee Luan Ling, “An OPNET Modeler Based Simulation

Platform for Adaptive Routing Evaluation”, FEEC, UNICAMP Campinas, S.P.,

Brazil

[6] J. Moy, “OSPF Version 2”, RFC 2328, April 1998.

[7] K. McCloghrie, F. Kastenholz, “The Interfaces Group MIB”, RFC 2863, June 2000.

[8] Automating System Administration with Perl, David N. Blank-Edelman, May 2009

[9] The Net-SNMP Programming Guide, Ben Rockwood. Updated: Nov 17th, 2004

[10] Net::SNMP by David M. Town (http://search.cpan.org/~dtown/Net-SNMP-

v6.0.1/lib/Net/SNMP.pm)

[11] Exploring Expect - A Tcl-based Toolkit for Automating Interactive Programs, Don

Libes, December 1994

[12] S. Savage & A. Collins & E. Hoffman & J. Snell & T. Anderson,. The End-to-End

Effects of Internet Path Selection, 1999 ACM. SIGCOMM Conference, pp. 289-

299, September 1999.

76

[13] D. W. Glazer & C. Tropper, A New Metric for Dynamic Routing. Algorithms, IEEE

Transactions on Communications, Vol.38 No.3,. March 1990.

[14] A. Khanna & J. Zinky, The Revised ARPANET Routing Metric, In. Proceedings of

the ACM SIGCOMM, pp. 45-56, 1989.

[15] D. Edelson. Smart pointers: They're smart, but they're not pointers. University of

California, Santa Cruz, Computer Research Laboratory, 1992.

[16] Bernard Fortz, Mikkel Thorup, "Internet Traffic Engineering by Optimizing OSPF

Weights", IEEE INFOCOM 2000, pp. 519-528.

[17] D. Frigioni, M. loffreda, U. Nanni, and G. Pasqualone, "Experimental analysis of

dynamic algorithms for the single-source shortest path problems", ACM Jounal of

Experimental Algorithmics, vol 3, article 5, 1998.

