
“A human being should be able to change a diaper, plan an invasion, butcher

a hog, conn a ship, design a building, write a sonnet, balance accounts, build

a wall, set a bone, comfort the dying, take orders, give orders, cooperate,

act alone, solve equations, analyze a new problem, pitch manure, program

a computer, cook a tasty meal, fight efficiently, die gallantly. Specialization

is for insects.”

Robert A. Heinlein



 

University of Alberta 
 
 
 

Interpolating Refinable Function Vectors and Matrix Extension with 
Symmetry 

 
by 

 
Xiaosheng Zhuang 

 
 
 
 

A thesis submitted to the Faculty of Graduate Studies and Research  
in partial fulfillment of the requirements for the degree of  

 
 

Doctor of Philosophy 

in 

Applied Mathematics 
 
 
 
 

Department of Mathematical and Statistical Sciences 
 
 
 
 
 

©Xiaosheng Zhaung  

Fall 2010 
Edmonton, Alberta 

 

 

 

 

 
Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis 
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is 

converted to, or otherwise made available in digital form, the University of Alberta will advise potential 
users of the thesis of these terms. 

 
The author reserves all other publication and other rights in association with the copyright in the thesis and, 

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or 
otherwise reproduced in any material form whatsoever without the author's prior written permission. 



 
 

Examining Committee 
 
 
Bin Han, Mathematics and Statistical Sciences 
 
 
John C. Bowman, Mathematics and Statistical Sciences 
 
 
Rong-Qing Jia, Mathematics and Statistical Sciences 
 
 
Yau Shu Wong, Mathematics and Statistical Sciences 
 
 
Mrinal Mandal, Electrical and Computer Engineering 
 
 
Ding-Xuan Zhou, Mathematics, City University of Hongkong 
 
 
 
 



To my parents



iii

Abstract

In this thesis, we are interested in the construction of interpolating refin-

able function vectors with certain desirable properties, matrix extension

with symmetry, and construction of wavelet generators from such refinable

function vectors via our matrix extension algorithms with symmetry.

In Chapters 1 and 2, we introduce the definition of interpolating refin-

able function vectors in dimension one and high dimensions, characterize

such interpolating refinable function vectors in terms of their masks, and

derive their sum rule structure explicitly. We study biorthogonal refin-

able function vectors from interpolating refinable function vectors. We also

study the symmetry property of an interpolating refinable function vector

and characterize a symmetric interpolating refinable function vector in any

dimension with respect to certain symmetry group in terms of its mask.

Examples of interpolating refinable function vectors with some desirable

properties, such as orthogonality, symmetry, compact support, and so on,

are constructed according to our characterization results.

In Chapters 3 and 4, we turn to the study of general matrix extension prob-

lems with symmetry for the construction of orthogonal and biorthogonal

multiwavelets. We give characterization theorems and develop step-by-step
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algorithms for matrix extension with symmetry. To illustrate our results,

we apply our algorithms to several examples of interpolating refinable func-

tion vectors with orthogonality or biorthogonality obtained in Chapter 1.

In Chapter 5, we discuss some possible future research topics on the sub-

jects of matrix extension with symmetry in high dimensions and frequency-

based nonstationary tight wavelet frames with directionality. We demon-

strate that one can construct a frequency-based tight wavelet frame with

symmetry and show that directional analysis can be easily achieved under

the framework of tight wavelet frames. Potential applications and research

directions of such tight wavelet frames with directionality are discussed.
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Chapter 1

Univariate Interpolating

Refinable Function Vectors of

Type (d,Γr, 0)

We first discuss some motivations of this thesis and present a short sum-

mary of our main results and contributions.

Refinable function vectors play a central role in both wavelet analysis and

its applications. In sampling theory, shift-invariant spaces generated by

compactly supported refinable function vectors are often used in sampling

theorems in signal processing. The most desirable properties of a refinable

function vector in sampling theorems are interpolation and orthogonality

so that inner products can be realized by sampling and thus prefiltering

is on longer needed in signal processing. In computer graphics, a refin-

able function vector is the limit function vector of a subdivision scheme,

1



2

which is widely used in smooth curve and surface generation. For a subdivi-

sion scheme, smoothness and symmetry of the limit function vectors are of

paramount importance for the reason that smooth curves and surfaces with

good visual effect are preferred and symmetry of a refinable function vector

is indispensable in the implementation of a subdivision scheme in the design

of free-form curves and surfaces. In multiresolution analysis (MRA), mul-

tiwavelets can be derived from a refinable function vector associated with

a low-pass filter (or mask). In electronic engineering, such a multiwavelet

system is associated with a filter bank with the perfect reconstruction prop-

erty. Symmetry and short support are two desirable properties for such a

filter bank since short support usually means fast algorithms and symmetry

generally provides better visual results in image compression and denoising,

not to mention the reduction of the computational cost using a symmetric

system. Though in different applications, different properties of a refinable

function vectors are desired, those properties (orthogonality, biorthogonal-

ity, symmetry, interpolation, smoothness, and compact support) usually

mutually conflict to each other. It is not easy (in some cases, it is impossi-

ble) to have all these nice properties together for a refinable function vector.

Also, the construction of multiwavelets from refinable function vectors can

be formulated as some matrix extension problems. When integrated with

symmetry, the matrix extension problems with symmetry become far more

complicated and extra effort is needed to guarantee symmetry of the ex-

tension matrices so that from which multiwavelets can also possess the

property of symmetry.

Motivated by wavelet applications in sampling theory, subdivision schemes,

and image/signal processing, Chapters 1 and 2 study the interpolating refin-

able function vectors and provide complete mathematical characterizations
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for such interpolating refinable function vectors in terms of their masks (see

Theorems 1.1 and 2.1). Based on our characterization theorems, we show

that we can construct families of univariate interpolating refinable func-

tion vectors that have properties of symmetry, interpolation, orthogonality,

and compact support, simultaneously (see Examples 1.4 and 1.5). Such

examples provide Shannon-like sampling theorems which make them very

attractive in sampling theorems and signal processing. Moreover, in high

dimensions, we study the symmetry property of an interpolating refinable

function vector, which involves some symmetry groups that are highly non-

trivial compared to symmetry groups in one dimension. We also provide a

characterization theorem of an interpolating refinable function vector to be

symmetry with respect to some symmetry group in terms of its mask (see

Theorem 2.3). Based on this theorem, we present several examples in di-

mension two that are D4-symmetric and C1 smoothness (see Examples 2.1

and 2.2). Our general construction and examples with nice properties of

symmetry, smoothness, and interpolation may find their application for de-

signing suitable surfaces which are preferred in geometric modeling and for

new sampling theorems in signal processing.

On the other hand, motivated by the applications of the general matrix ex-

tension problem in electronic engineering, in system sciences, and especially

in the construction of multiwavelets from interpolating refinable function

vectors with symmetry and orthogonality (biorthogonality), Chapters 3

and 4 study the general matrix extension problems with symmetry in di-

mension one. For matrix extension with symmetry, deriving the extension

matrices with symmetry is not an easy task due to different symmetry

patterns of different columns for a given matrix of Laurent polynomials.

In Chapter 3, we introduce the notion of compatibility of symmetry and
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successfully solve the matrix extension problem with symmetry for parau-

nitary matrices. We provide a complete characterization theorem for any

paraunitary matrix (see Theoerm 3.1). More importantly, we provide a

step-by-step algorithm (see Algorithm 3.1) to derive the desired extension

matrix such that it has compatible symmetry and its length of coefficient

support is controlled in an optimal way in the sense of (3.1.7). In Chapter 4,

we discuss the matrix extension problem with symmetry for biorthogonal

matrices. We also provide a step-by-step algorithm (see Algorithm 4.1)

to derive the desired pair of biorthogonal matrices. We apply our algo-

rithms to the construction of orthogonal and biorthogonal multiwavelets

(see Sections 3.4 and 4.3) and show that our algorithms indeed guarantee

the symmetry of orthogonal multiwavelets or biorthogonal multiwavelets

from some orthogonal refinable function vectors with symmetry or pairs of

dual refinable function vectors with symmetry. For those examples in Chap-

ters 3 and 4, their associated filter banks having the perfect reconstruction

property and symmetry are highly desirable in image compression/denois-

ing and may provide better performance in applications compared to those

classical families of wavelets.

In summary, we provide complete analysis, characterizations, and construc-

tion of families of interpolating refinable function vectors in both dimension

one and high dimensions. We completely solve the matrix extension prob-

lems with symmetry and present step-by-step algorithms for deriving the

extension matrices. Our results and algorithms provide engineers and ap-

plied mathematicians a powerful tool for constructing new wavelets and

filter banks with the perfect reconstruction property, symmetry, and other

nice properties.
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1.1 Introduction

We say that φ := [φ1, . . . , φr]
T : R → Cr×1 is a d-refinable function vector

if

φ(x) = |d|
∑

k∈Z

a(k)φ(dx− k), a.e. x ∈ R, (1.1.1)

where a : Z → Cr×r is a finitely supported sequence of r × r matrices on

Z, called the (matrix) mask with multiplicity r for the refinable function

vector φ, and d denotes a dilation factor, which is an integer with |d| > 1;

for simplicity of presentation, we further assume that d > 1 while the

results for a negative dilation factor can be obtained similarly. When the

multiplicity r = 1, the function vector φ is simply a scalar function and it

is called a scalar d-refinable function.

In the frequency domain, the matrix refinement equation in (1.1.1) can be

rewritten as

φ̂(dξ) = â(ξ)φ̂(ξ), ξ ∈ R, (1.1.2)

where â is the Fourier series of the mask a given by

â(ξ) :=
∑

k∈Z

a(k)e−ikξ, ξ ∈ R. (1.1.3)

Here, i denotes the imaginary unit such that i2 = −1 and the Fourier

transform f̂ of f ∈ L1(R) is defined to be f̂(ξ) :=
∫

R
f(x)e−ixξ dx, which can

be extended to square integrable functions (L2(R) functions) and tempered

distributions. For simplicity, we also call â the mask for φ.

For the scalar case (r = 1), Cavaretta et al. in [2] proved that there exists

a unique compactly supported distribution solution to (1.1.1) under a very

mild condition: â(0) = 1 and φ̂(0) = 1. This result was extended to the
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vector case (r > 1) by Heil et al. in [40] (c.f. [70]) under the condition that

1 is a simple eigenvalue of â(0) while all the other eigenvalues of â(0) are

less than 1 in modulus and φ̂(0)
T

φ̂(0) = 1. Consequently, for a given mask

a, the existence of φ with refinability as in (1.1.1) can be easily checked

by the condition on â(0). In many applications, for example, image/signal

processing, sampling theory, numerical algorithm, and so on, besides the

refinability of a function vector φ, it is often desirable that φ also has

other properties such as regularity, interpolation, symmetry, orthogonality,

etc. To obtain such a function vector φ, extra conditions must be imposed

on the mask a. We shall see that the main focus of this chapter and

next chapter is on characterizing a refinable function vector φ with certain

desired properties in terms of its mask a.

Refinability is important in many aspects. Here are two of the most impor-

tant reasons. On one hand, it allows for the definition of a nested sequence

of shift-invariant spaces {Vj : j ∈ Z}, which is the so-called multiresolution

analysis (MRA, see [55, 57, 58]). MRA is the key to wavelet constructions

and their associated fast wavelet algorithms. Once a multiresolution anal-

ysis is obtained, a (multi)wavelet ψ is generally derived from the refinable

function vector φ via

ψ̂(dξ) := b̂(ξ)φ̂(ξ), ξ ∈ R (1.1.4)

for some r× r matrix b̂ of 2π-periodic trigonometric polynomials. Accord-

ing to various requirements of problems in applications, different desired

properties of the wavelet function vector ψ and the refinable function vec-

tor φ are needed, which can be characterized by conditions on the mask

a. We shall see in Chapters 3 and 4 on the subjects of matrix extension
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with symmetry, which plays an important role in deriving a proper wavelet

mask b from the mask a so that ψ has symmetry once the corresponding

refinable function vector φ also has symmetry.

On the other hand, functions composed from linear combinations of shifts of

a refinable function φ can be computed using a simple subdivision scheme

(or cascade algorithm, see Section 2.2 for a detailed definition). Conse-

quently, such functions can be computed at any desired resolution and any

desired position. Such an adaptive “Zoom-in” property makes subdivi-

sion curves and surfaces very attractive for interactive geometric modeling

applications (see [15]). Among many subdivision schemes, interpolatory

subdivision schemes and Hermite interpolatory subdivision schemes are of

great interest in sampling theory, CAGD (Computer Aided Geometric De-

sign) and computer graphics. See Figure 1.1 for an example of interpolatory

subdivision schemes. In this chapter, we are interested in interpolatory sub-

division schemes, which corresponds to refinable function vector with the

interpolation property (see (1.1.5)).

Figure 1.1: Example of an interpolatory subdivision scheme for curves
in the plane. Initial points remain unchanged while additional points are

added by rules related to an interpolatory mask.

Before giving the definition of interpolating refinable function vectors, let

us discuss two particular important families of scalar refinable functions.
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One is the family of Deslauriers-Dubuc interpolating refinable functions

and another is the family of Daubechies orthogonal refinable functions.

We say that a compactly supported d-refinable function φ with mask a is

interpolating if the function φ is continuous and φ(k) = δ(k) for all k ∈ Z,

where δ denotes the Dirac sequence such that δ(0) = 1 and δ(k) = 0 for all

k 6= 0. We say that a compactly supported d-refinable function φ with mask

a is orthogonal if
∫

R
φ(x−k)φ(x) dx = δ(k) for all k ∈ Z. By the refinement

equation (1.1.1), one can easily see that the mask a of a scalar interpolating

d-refinable function must be an interpolatory mask with the dilation factor

d: a(dk) = 1
d
δ(k) for all k ∈ Z, or equivalently,

∑d−1
m=0 â(ξ + 2πm/d) = 1.

Similarly, the mask a for an orthogonal d-refinable function must be an

orthogonal mask with dilation factor d:
∑d−1

m=0 |â(ξ + 2πm/d)|2 = 1.

The family of Deslauriers-Dubuc interpolatory masks [12] is a family of in-

terpolatory masks {bn : n ∈ N} with dilation factor d = 2 such that bn is

supported on [1−2n, 2n−1] and b̂n(ξ) = cos2n(ξ/2)
∑n−1

j=0

(
n−1+j

j

)
sin2j(ξ/2).

Also b̂n(ξ) > 0 for all ξ ∈ R. It is well known [10, 11] that the family of

Daubechies orthogonal masks {an : n ∈ N} is closely related to the mask

{bn : n ∈ N} via |ân(ξ)|2 = b̂n(ξ). That is, the Daubechies orthogonal

mask ân of order n can be obtained from the interpolatory mask b̂n via the

Riesz lemma. These two families of refinable function vectors have been

extensively studied and applied in many application fields such as sampling

theory, image/signal processing. Though these two families are connected

via Riesz lemma, each of them cannot have the property of the other one.

That is, the family of Deslauriers-Dubuc interpolating refinable functions

is not orthogonal while the family of Daubechies orthogonal refinable func-

tions is not interpolating.
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Figure 1.2: The sinc function.

An interesting example is the sinc function: sinc(x) := sin(πx)
πx

, see Fig-

ure 1.2. The sinc function is interpolating: sinc|Z = δ, which is used in

the Shannon sampling theorem saying that for f ∈ C(R) ∩ L1(R) such

that f̂ is supported inside [−π, π] (that is, f is bandlimited with band

π), f(x) = limn→∞
∑n

k=−n f(k)sinc(x− k), where the series converges uni-

formly for any x ∈ R. The Shannon sampling theorem can be restated

using shift-invariant spaces. For a function vector f = [f1, . . . , fr]
T in

L2(R), we denote by V (f) the smallest closed subspace in L2(R) contain-

ing f1(· − k), . . . , fr(· − k) for all k ∈ Z. Due to the interpolation property

of the sinc function, for any continuous function f ∈ V (sinc) ∩ L1(R),

one always has f =
∑

k∈Z
f(k)sinc(· − k). Note that ŝinc = χ(−π,π] is the

characteristic function of the interval (−π, π]. It is well known in the lit-

erature ([66, 68] and references therein) that sinc is a 2-refinable function

satisfying ŝinc(2ξ) = â(ξ)ŝinc(ξ), where â is a 2π-periodic function defined

by â(ξ) := χ(−π/2,π/2](ξ) for all ξ ∈ (−π, π]. So, sinc is an interpolating 2-

refinable function. Moreover, it is easy to verify that sinc is also orthogonal:

〈sinc, sinc(· − k)〉 = δ(k) for all k ∈ Z. For a function f ∈ V (sinc)∩L2(R),

one also has f =
∑

k∈Z
〈f, sinc(· − k)〉sinc(· − k). Consequently, for a func-

tion f ∈ V (sinc) ∩ L1(R) ∩ L2(R), the coefficients 〈f, sinc(· − k)〉, k ∈ Z

can be realized by sampling f instead of inner products, which in signal
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processing means prefiltering is no longer needed.

Though sinc has the properties of both interpolation and orthogonality, it

is not compactly supported and has a slow decay rate near ∞. Motivated

by the wavelet applications in sampling theorems in signal processing, it

is desirable to have compactly supported refinable functions that are both

interpolating and orthogonal ([53, 62, 73]). However, it has been observed

in [53, 62, 73] that for the dilation factor d = 2, it is impossible to have

a compactly supported scalar 2-refinable function such that it is both in-

terpolating and orthogonal. In order to achieve both interpolation and

orthogonality, it is natural to consider either the dilation factor d > 2 or

the multiplicity r > 1. For d = r = 2, several interesting examples have

been obtained in [53, 61, 62, 73] to show that one indeed can achieve both

the interpolation and orthogonality properties of a refinable function vec-

tor simultaneously. In this chapter, we shall consider the general case of

interpolating d-refinable function vectors and investigate their properties.

More precisely, we are interested in a family of d-refinable function vectors

with the interpolation property defined as follows.

We say that φ = [φ1, . . . , φr]
T : R → Cr×1 is an interpolating refinable func-

tion vector of type (d,Γr, 0) if φ is d-refinable, continuous, and interpolating,

i.e., φ ∈ (C(R))r×1 satisfies (1.1.1) and

φℓ

(m
r

+ j
)

=δ(j)δ(ℓ− 1 −m), ∀ j ∈ Z,

m = 0, . . . , r − 1, ℓ = 1, . . . , r.

(1.1.5)

Here, Γr := {0, 1
r
, . . . , r−1

r
} and the meaning of 0 in (d,Γr, 0) will become

obvious in Chapter 2. Comparing with the sinc function that interpolates

on the integer lattice Z, we use r functions φ1, . . . , φr to interpolate the
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lattice r−1Z. For a function f : R → C, it can be interpolated and approx-

imated by

f̃ =
r∑

ℓ=1

∑

k∈Z

f
(ℓ− 1

r
+ k

)
φℓ(· − k)

=
∑

k∈Z

[
f(k), f

(1

r
+ k

)
, . . . , f

(r − 1

r
+ k

)]
φ(· − k).

Since φ is interpolating, f̃(k/r) = f(k/r) for all k ∈ Z; that is, f̃ agrees

with f on the lattice r−1Z. Such an interpolation property is important

in approximation and sampling theory. For more about the approximation

property of such a function φ, one may refer to [41, 73].

The structure of this chapter is as follows. In Section 1.2, we shall charac-

terize both compactly supported interpolating d-refinable function vectors

and orthogonal interpolating d-refinable function vectors in terms of their

masks. In Section 1.2, we also study the sum rule structure of the interpo-

latory masks of type (d,Γr, 0) for interpolating d-refinable function vectors

with multiplicity r, which will play a central role in our construction of

interpolatory masks of type (d,Γr, 0). In Section 1.3, based on the results

of Section 1.2, several examples of interpolating refinable function vectors

will be presented. Finally, in Section 1.4, we shall discuss biorthogonal mul-

tiwavelets derived from interpolating refinable function vectors and some

examples will be presented. Conclusions and remarks shall be given in Sec-

tion 1.5, in which we shall also discuss relations of results in this chapter

to the next serval chapters. Most of the results in this chapter and next

chapter have been published in [30, 37].
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1.2 Analysis of Interpolating Refinable Func-

tion Vectors

In this section, we shall study the interpolating refinable function vectors

of type (d,Γr, 0). Based on [24, Theorem 4.3], we shall provide a complete

characterization for a compactly supported d-refinable function vector in

terms of its mask. We also study the sum rule structure of such interpo-

lating refinable function vectors. As a consequence, we obtain a criterion

for a compactly supported interpolating refinable function vectors whose

shifts are orthogonal.

Before we introduce our characterization theorem, we need a quantity

νp(a, d), whose detailed definition is given in (2.2.8) (see Chapter 2). For a

finitely supported matrix mask a, the quantity ν2(a, d) can be numerically

computed by finding the spectral radius of certain finite matrix using the al-

gorithm in [44, 45, 51, 72]. The quantity νp(a, d) plays a very important role

in characterizing the convergence of a vector cascade algorithm in a Sobolev

space and in characterizing the Lp smoothness of a refinable function vector.

In general, νp(a, d) provides a lower bound for the Lp smoothness exponent

νp(φ) (see (2.2.9)) of a refinable function vector φ with mask a and dilation

factor d, that is, νp(a, d) 6 νp(φ) always holds. Moreover, if the shifts of

the refinable function vector φ associated with mask a and dilation factor

d are stable in Lp(R), then νp(φ) = νp(a, d). That is, in this case, νp(a, d)

indeed characterizes the Lp smoothness exponent of a refinable function

vector φ with mask a and dilation factor d. Although there is no general

algorithm for the computation of νp(a, d), we can use ν2(a, d) to estimate

νp(a, d) by the inequalities: ν2(a, d) > νp(a, d) > ν2(a, d)−(1/2−1/p) for all

p > 2. One may refer to [22, 24, 31, 46, 49, 50, 51, 72] and many references
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therein for more details on the convergence of vector cascade algorithms

and smoothness of refinable function vectors.

For 1 6 ℓ 6 r, let eℓ denote the ℓ-th unit coordinate column vector in Rr;

that is, eℓ is the r × 1 column vector whose only nonzero entry is located

at the ℓth component with value 11. For a function f , let f (j) denote its

j-th derivative.

Now we have the following result characterizing a compactly supported

interpolating d-refinable function vector in terms of its mask.

Theorem 1.1. Let d and r be positive integers such that d > 1. Let

a : Z → Cr×r be a finitely supported sequence of r × r matrices on Z. Let

φ = [φ1, . . . , φr]
T be a compactly supported d-refinable function vector such

that φ̂(dξ) = â(ξ)φ̂(ξ). Then φ is interpolating, that is, φ is a continuous

function vector and (1.1.5) holds if and only if the following statements

hold:

(i) [1, . . . , 1]φ̂(0) = 1 (This is a normalization condition on the refinable

function vector φ).

(ii) a is an interpolatory mask of type (d,Γr, 0): [1, . . . , 1]â(0) = [1, . . . , 1]

and

a(Rℓ + dj)eQℓ+1 = d−1δ(j)eℓ+1, ∀ j ∈ Z; ℓ = 0, 1, . . . , r − 1, (1.2.1)

where for each ℓ = 0, 1, . . . , r − 1, Rℓ ∈ Z and Qℓ ∈ {0, 1, . . . , r − 1}
are defined to be

Rℓ :=
⌊dℓ

r

⌋
and Qℓ := r

(dℓ

r
−

⌊dℓ

r

⌋)
= dℓ mod r. (1.2.2)

1For convention, eℓ shall denote a 1 × r row vector in Chapters 3 and 4.



14

Here ⌊x⌋ denotes the largest integer that is not larger than x.

(iii) ν∞(a, d) > 0.

We have presented a complete proof in [30, Theorem 2.1] and since it is a

special case of Theorem 2.1 of Chapter 2, we shall omit the proof here.

As a consequence of Theorem 1.1, we have the following result charac-

terizing compactly supported orthogonal interpolating refinable function

vectors.

Corollary 1.2. Let d and r be positive integers such that d > 1. Let

a : Z → Cr×r be a finitely supported sequence of r × r matrices on Z and

φ be a compactly supported d-refinable function vector such that φ̂(dξ) =

â(ξ)φ̂(ξ). Then φ is an orthogonal interpolating function vector; that is, φ

is continuous, (1.1.5) holds and

∫

R

φ(x− j)φ(x)
T
dx =

1

r
δ(j)Ir ∀ j ∈ Z, (1.2.3)

if and only if, (i)–(iii) of Theorem 1.1 hold and a is an orthogonal mask:

d−1∑

m=0

â(ξ + 2πm/d)â(ξ + 2πm/d)
T

= Ir. (1.2.4)

Proof. Necessity. Suppose that φ is an orthogonal interpolating d-refinable

function vector. Then in particular, φ is an interpolating d-refinable func-

tion vector. Hence, by Theorem 1.1, (i)–(iii) hold. Now we show that

(1.2.3) implies (1.2.4). Since φ is a compactly supported d-refinable func-

tion vector satisfying the refinement equation (1.1.1), noting that the mask
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a is finitely supported, we deduce from (1.2.3) that

1

r
δ(j)Ir =

∫

R

φ(x− j)φ(x)
T
dx =

d

r

∑

k∈Z

a(k)a(dj + k)
T
,

which is equivalent to (1.2.4).

Sufficiency. Since (i)–(iii) of Theorem 1.1 hold, by Theorem 1.1, we see

that φ is continuous and (1.1.5) holds. To complete the proof, we show

that (1.2.3) holds. Since (iii) of Theorem 1.1 holds, we have ν∞(a, d) > 0.

Since ν2(a, d) > ν∞(a, d) > 0, by [24, Theorem 4.3], the vector cascade

algorithm associated with mask a and dilation factor d converges in L2(R).

Let f0 := [g(r·), g(r ·−1), . . . , g(r ·−(r−1))]T and fn := d
∑

k∈Z
a(k)fn−1(d ·

−k), where g = χ[0,1], the characteristic function of the interval [0, 1]. De-

note y := [1, . . . , 1] ∈ R1×r. By calculation, we have ĝ(ξ) = 1−e−iξ

iξ
. There-

fore, ĝ(0) = 1 and ĝ(2πk) = 0 for all k ∈ Z\{0}. By the same argument as

in the proof of Theorem 2.1, we can check that yf̂0(0) = 1 and yf̂0(2πk) = 0

for all k ∈ Z \ {0}. Since yâ(0) = y by (ii) of Theorem 1.1, f0 is a suit-

able initial function vector in L2(R). On the other hand, by (i), we have

yφ̂(0) = 1. Now by ν2(a, d) > 0, we see that limn→∞ ‖fn − φ‖(L2(R))r×1 = 0.

By induction on n, we can show that

∫

R

fn(x− j)fn(x)
T
dx =

1

r
δ(j)Ir ∀ j ∈ Z, n ∈ N0. (1.2.5)

Now it is easy to conclude from limn→∞ ‖fn − φ‖(L2(R))r×1 = 0 and (1.2.5)

that (1.2.3) is true.

For a matrix mask a with multiplicity r, we say that a satisfies the sum

rules of order κ with a dilation factor d ([22, 24, 43, 60]) if there exists a
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sequence y ∈ (ℓ0(Z))1×r such that ŷ(0) 6= 0 and

[ŷ(d·)â(·)](j)(2πm/d) = δ(m)ŷ(j)(0) ∀ j = 0, . . . , κ− 1 and

m = 0, . . . , d − 1.
(1.2.6)

Next, we shall study the structure of the vector ŷ in the definition of the

sum rules in (1.2.6) for the particular family of interpolatory masks of

type (d,Γr, 0) given in (1.2.1). Once the structure of ŷ is determined,

the nonlinear equations in (1.2.6) become linear equations, which greatly

facilities our construction of interpolatory masks of type (d,Γr, 0).

Theorem 1.3. Let d and r be positive integers such that d > 1. Let a : Z →
Cr×r be a finitely supported sequence of r×r matrices on Z. Suppose that a

is an interpolatory mask of type (d,Γr, 0); that is, [1, . . . , 1]â(0) = [1, . . . , 1]

and (1.2.1) holds. If a satisfies the sum rules of order κ in (1.2.6) with a

sequence y ∈ (ℓ0(Z))1×r and ŷ(0) = [1, . . . , 1], then

ŷ(j)(0) = ijr−j[δ(j), 1j, 2j, . . . , (r − 1)j], j = 0, . . . , κ− 1. (1.2.7)

In other words, ŷ(ξ) = Y (ξ) +O(|ξ|κ) with Y (ξ) := [1, eiξ/r, . . . , ei(r−1)ξ/r].

Since Theorem 1.3 is a special case of Theorem 2.2, we shall also leave

its proof to Chapter 2. The above characterizations greatly facilitate our

design of interpolatory masks of type (d,Γr, 0) (see next section for such

examples). In fact, under certain constrains, we can construct families of

interpoatory masks of type (d,Γr, h) for any d, r and h. For details, see

Section 2.4.
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1.3 Examples

In this section, to illustrate our main results, we shall present several ex-

amples of interpolatory masks of type (d,Γr, 0), as well as several examples

of masks for orthogonal interpolating refinable function vectors.

Example 1.1. Let d = r = 2. Then we have an interpolatory mask a of

type (2,Γ2, 0) satisfying the sum rules of order 3 and supported on [−1, 2]

as follows:

a(−1) =
1

16


0 6

0 −1


 , a(0) =

1

16


8 6

0 3


 ,

a(1) =
1

16


0 0

8 3


 , a(2) =

1

16


0 0

0 −1


 .

We have ν2(a, 2) ≈ 1.839036. Therefore, ν∞(a, 2) > ν2(a, 2) − 1/2 ≈
1.339036 > 0. By Theorem 1.1, its associated refinable function vector

φ = [φ1, φ2]
T is interpolating. Moreover, φ1(−x) = φ1(x) and φ2(1 − x) =

φ2(x) for all x ∈ R. See Figure 1.3 for the graph of the interpolating

2-refinable function vector φ associated with the mask a.

−1 −0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

Figure 1.3: The graphs of φ1 (left) and φ2 (right) in Example 1.1.
ν2(φ) ≈ 1.839036, φ1(−·) = φ1, and φ2(1 − ·) = φ2.

Example 1.2. Let d = 3 and r = 2. Then we have an interpolatory

mask a of type (3,Γ2, 0) satisfying the sum rules of order 4. The mask a is
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supported on [−2, 3] and is given by

a(−2) =
1

243


−21 0

4 0


 , a(−1) =

1

243


30 60

−4 −5


 , a(0) =

1

243


81 84

0 14


 ,

a(1) =
1

243


14 0

84 81


 , a(2) =

1

243


−5 −4

60 30


 , a(3) =

1

243


0 4

0 −21


 .

(1.3.1)

We have ν2(a, 3) ≈ 1.348473. Therefore, ν∞(a, 3) > ν2(a, 3) − 1/2 ≈
0.848473 > 0. By Theorem 1.1, its associated refinable function vector

φ = [φ1, φ2]
T is interpolating. See Figure 1.4 for the graph of the interpo-

lating 3-refinable function vector φ associated with the mask a.
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Figure 1.4: The graphs of φ1 (left) and φ2 (right) in Example 1.2.
ν2(φ) ≈ 1.348473 and φ1 = φ2(1/2 − ·).

Example 1.3. Let d = r = 3. Then we have an interpolatory mask a of

type (3,Γ3, 0) satisfying the sum rules of order 6. The mask a is supported

on [−2, 3] and is given by

a(−2) =
1

2187




0 −176 −175

0 55 50

0 −8 −7


 , a(−1) =

1

2187




0 280 560

0 −56 −70

0 7 8


 ,
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a(0) =
1

2187




729 700 440

0 175 440

0 −14 −22


 , a(1) =

1

2187




0 −22 −14

729 440 175

0 440 700


 ,

a(2) =
1

2187




0 8 7

0 −70 −56

729 560 280


 , a(3) =

1

2187




0 −7 −8

0 50 55

0 −175 −176


 .

We have ν2(a, 3) ≈ 2.589443. Therefore, ν∞(a, 3) > ν2(a, 3) − 1/2 ≈
2.089443 > 0. By Theorem 1.1, its associated refinable function vector

φ = [φ1, φ2, φ3]
T is interpolating and belongs to (C2(R))3×1. See Figure 1.5

for the graph of the interpolating 3-refinable function vector φ.
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Figure 1.5: The graphs of φ1 (left), φ2 (middle), and φ3 (right) in
Example 1.3. ν2(φ) ≈ 2.589443.

Examples of orthogonal interpolating refinable function vectors of type

(2,Γ2, 0) have been given in [53, 62, 73]. Next, let us present two examples

of orthogonal interpolating refinable function vectors of type (3,Γ2, 0).
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Example 1.4. Let d = 3 and r = 2. The orthogonal and interpolatory

mask a of type (3,Γ2, 0) is supported on [−2, 3] and is given by

a(−2) =


− 17

702 −
√

17
351 0

− 8
351 + 5

√
17

702 0


 , a(−1) =




85
702 − 8

√
17

351
68
351 + 29

√
17

702

1
351 +

√
17

702
11
702 − 7

√
17

351


 ,

a(0) =




1
3

119
351 − 11

√
17

702

0 29
702 + 4

√
17

351


 , a(1) =




29
702 + 4

√
17

351 0

119
351 − 11

√
17

702
1
3


 ,

a(2) =




11
702 − 7

√
17

351
1

351 +
√

17
702

68
351 + 29

√
17

702
85
702 − 8

√
17

351


 , a(3) =


0 − 8

351 + 5
√

17
702

0 − 17
702 −

√
17

351


 .

The mask a satisfies the sum rules of order 2. We have ν2(a, 3) ≈ 1.046673.

Therefore, ν∞(a, 3) > ν2(a, 3) − 1/2 ≈ 0.546673 > 0. By Corollary 1.2,

the refinable function vector φ = [φ1, φ2]
T associated with the mask a and

dilation factor d is interpolating and orthogonal. See Figure 1.6 for the

graph of the orthogonal interpolating 3-refinable function vector φ.
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Figure 1.6: The graphs of φ1 (left) and φ2 (right) in Example 1.4.
ν2(φ) ≈ 1.046673 and φ1 = φ2(1/2 − ·).

Example 1.5. Let d = 3 and r = 2. We have an orthogonal and inter-

polatory mask a of type (3,Γ2, 0) satisfying the sum rules of order 2. The
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mask a is supported on [−4, 4] and

a(0) =




1
3

29
108 +

√
41

108

0 7
60 −

√
41

180


 , a(1) =




11
108 −

√
41

108 0

37
180 +

√
41

60
1
3


 ,

a(2) =


 − 2

135 −
√

41
270

1
540 −

√
41

540

37
180 +

√
41

60
7
60 −

√
41

180


 , a(3) =




0 17
270 −

√
41

135

0 − 7
60 +

√
41

180


 ,

a(4) =




− 47
540 + 7

√
41

540 0

23
180 −

√
41

60 0


 ,

while a(−4), a(−3), a(−2), a(−1) can be obtained by the symmetry con-

dition in (1.5.2). We have ν2(a, 3) ≈ 0.976503. Therefore, ν∞(a, 3) >

ν2(a, 3) − 1/2 ≈ 0.476503 > 0. By Corollary 1.2, its associated 3-refinable

function vector φ = [φ1, φ2]
T is an orthogonal interpolating refinable func-

tion vector of type (3,Γ2, 0). See Figure 1.7 for the graphs of φ1 and φ2.
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Figure 1.7: The graphs of φ1 and φ2 in Example 1.5. ν2(φ) ≈ 0.976503,
φ1(−·) = φ1, and φ2(1 − ·) = φ.
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1.4 Biorthogonal Refinable Function Vectors

It is of interest to construct biorthogonal refinable function vectors from

interpolating refinable function vectors, due to their interesting interpola-

tion property. In this section, let us discuss how to derive biorthogonal

refinable function vectors from interpolating refinable function vectors that

have been investigated and constructed in previous sections. To do so, let

us introduce some necessary concepts.

For two r × 1 vectors φ and φ̃ of compactly supported functions in L2(R),

we say that (φ, φ̃) is a pair of dual function vectors (or φ̃ is a dual function

vector of φ) if

∫

R

φ(x− j)φ̃(x)
T

dx =
1

r
δ(j)Ir, j ∈ Z. (1.4.1)

For two r × r matrices â and ̂̃a of 2π-periodic trigonometric polynomials,

we say that (a, ã) is a pair of dual masks (or ã is a dual mask of a) with a

dilation factor d if

d−1∑

m=0

â(ξ + 2πm/d)̂̃a(ξ + 2πm/d)
T

= Ir. (1.4.2)

If a is a dual mask of itself, then (1.4.2) becomes (1.2.4) and a is an orthog-

onal mask. Let φ and φ̃ be two compactly supported d-refinable function

vectors with masks a and ã, respectively. Assume that φ̂(0) and
̂̃
φ(0) are

appropriately normalized so that φ̂(0)
T ̂̃
φ(0) = 1. Then it is known that

(φ, φ̃) is a pair of dual d-refinable function vectors in L2(R), if and only if,

(a, ã) is a pair of dual masks and both ν2(a, d) > 0 and ν2(ã, d) > 0. In

wavelet analysis, for a given mask a, it is of interest to construct a dual
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mask ã of a such that ã can attain the sum rules of any preassigned order

κ̃ with a sequence ỹ, that is, ̂̃y(0) 6= 0 and

̂̃y(dξ)̂̃a(ξ+2πm/d) = δ(m)̂̃y(ξ)+O(|ξ|eκ), ξ → 0, m = 0, . . . , d−1. (1.4.3)

A systematic way of constructing such desirable dual masks ã has been

developed in [4, 21, 22]. There are two key ingredients in the proposed

CBC (coset by coset) algorithm in [21]. In the following, let us outline

the main ideas of the CBC algorithm and use it to construct biorthogonal

multiwavelets for the interpolating refinable function vectors obtained in

this chapter.

The first key ingredient of the CBC algorithm in [4, 21, 22] is the following

interesting fact, whose proof is given in [22], as well as [21] for the scalar

case. For the purpose of completeness, we shall provide a self-contained

proof here.

Theorem 1.4. Let d be a dilation factor. Let â be an r × r matrix of 2π-

periodic trigonometric polynomials such that 1 is a simple eigenvalue of â(0)

and for every j ∈ N, dj is not an eigenvalue of â(0). Suppose that ã is a dual

mask of a and ã satisfies the sum rules of order κ̃ in (1.4.3) with a sequence

ỹ. Then up to a multiplicative constant, the values ̂̃y(j)
(0), j = 0, . . . , κ̃− 1

are uniquely determined by the mask â via the following recursive formula:

̂̃y(0) = ̂̃y(0)â(0)
T

and for j = 1, . . . , κ̃,

̂̃y(j)
(0) =

[
j−1∑

k=0

j!

k!(j − k)!
̂̃y(k)

(0)â(j−k)(0)
T

]
[djIr − â(0)

T
]−1. (1.4.4)

In other words, if φ is a compactly supported d-refinable function vector

satisfying φ̂(dξ) = â(ξ)φ̂(ξ) and φ̂(0) 6= 0, then ̂̃y(ξ) = cφ̂(ξ)
T

+ O(|ξ|eκ) as
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ξ → 0 for some nonzero constant c.

Proof. By (1.4.2), we deduce that

̂̃y(dξ)
T

=
d−1∑

m=0

â(ξ + 2πm/d)̂̃a(ξ + 2πm/d)
T ̂̃y(dξ)

T

=

d−1∑

m=0

â(ξ + 2πm/d)̂̃y(dξ)̂̃a(ξ + 2πm/d)
T

.

Now by (1.4.3) we get

̂̃y(dξ)
T

= â(ξ)̂̃y(ξ)
T

+ O(|ξ|eκ), ξ → 0.

That is, the vector ̂̃y must satisfy

̂̃y(dξ) = ̂̃y(ξ)â(ξ)T
+O(|ξ|eκ), ξ → 0. (1.4.5)

By Leibniz differentiation formula, it follows from (1.4.5) that

dĵ̃y(j)
(0) = ̂̃y(j)

(0)â(0)
T

+

j−1∑

k=0

j!

k!(j − k)!
̂̃y(k)

(0)â(j−k)(0)
T
, j = 0, . . . , κ̃.

Since 1 is a simple eigenvalue of â(0) and dj is not an eigenvalue of â(0) for

all j ∈ N, now the recursive formula in (1.4.4) can be easily deduced from

the above relation. Moreover, the relation ̂̃y(ξ) = cφ̂(ξ)
T

+ O(|ξ|eκ) follows

directly from (1.4.5).

By obtaining the values ̂̃y(j)
(0), j ∈ N0 from a given mask a via the recursive

formula in (1.4.4) of Theorem 1.4, the CBC algorithm reduces the system

of nonlinear equations (in terms of both ã(k), k ∈ Z and ̂̃y(j)
(0), j =

0, . . . , κ̃− 1) in (1.4.3) into a system of linear equations, since now ̂̃y(j)
(0),
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j = 0, . . . , κ̃− 1 are known. On the other hand, both conditions in (1.4.2)

and (1.4.3) can be equivalently rewritten in terms of the cosets of the masks

a and ã. More precisely, it is easy to verify that (1.4.2) is equivalent to

d−1∑

m=0

âm(ξ)̂̃am
(ξ)

T

= d−1Ir, (1.4.6)

where ̂̃am
(ξ) :=

∑
k∈Z

ã(m+ dk)e−iξ(m+dk), and (1.4.3) is equivalent to

̂̃y(dξ)̂̃am
(ξ) = d−1̂̃y(ξ) +O(|ξ|eκ), ξ → 0, m = 0, . . . , d− 1. (1.4.7)

The second key ingredient lies in that using Therorem 1.4, the CBC algo-

rithm reduces the big system of linear equations in both (1.4.3) and (1.4.2)

into small systems of linear equations using the idea of coset by coset con-

struction and the equations in (1.4.6) and (1.4.7). Moreover, the CBC

algorithm in [22] guarantees that for any given positive integer κ̃, there

always exists a finitely supported dual mask ã of a such that ã satisfies the

sum rules of order κ̃, see [22, Theorem 3.4] and [4, 21] for more details on

the CBC algorithm.

We also mention that due to Theorem 1.3, all biorthogonal multiwavelets

derived from interpolating refinable function vectors in this section have

the highest possible balancing order, that is, its balancing order matches

the order of sum rules. See [26, 28] and references therein on balanced

biorthogonal multiwavelets.

In the following, let us present several examples of dual masks for some

given interpolatory masks constructed in this paper.



26

Example 1.6. Let d = r = 2. Let a denote the mask given in Example 1.1.

By (1.4.4) of Theorem 1.4 with κ̃ = 3, we have

̂̃y(0) =
1

2
[3, 2],

−i
1!

̂̃y(1)
(0) =

1

2
[0, 2],

(−i)2

2!
̂̃y(2)

(0) =
1

136
[3, 14].

By the CBC algorithm in [22], we have a dual mask ã of a such that ã

satisfies the sum rules of order 3. The dual mask ã is supported on [−1, 3]

and is given by

ã(−1) =
1

384


−28 112

21 −36


 , ã(0) =

1

384


216 112

−18 60


 , ã(1) =

1

384


−28 0

330 60


 ,

ã(2) =
1

384


 0 0

−18 −36


 , ã(3) =

1

384


 0 0

21 0


 .

By calculation, we have ν2(ã, 2) ≈ 1.117992. So, the associated 2-refinable

function vectors φ and φ̃ with masks a and ã indeed satisfy the biorthogonal

relation in (1.4.1). See Figure 1.8 for the graph of the dual 2-refinable

function vector φ̃ = [φ̃1, φ̃2]
T . Note that φ̃1(−x) = φ̃1(x) and φ̃2(1 − x) =

φ̃2(x) for all x ∈ R.
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Figure 1.8: The graphs of φ̃1 (left) and φ̃2 (right) in Example 1.6 for
the interpolating 2-refinable function vector in Example 1.1. ν2(φ̃) ≈

1.117992, φ̃1(−·) = φ̃1, and φ̃2(1 − ·) = φ̃2.
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Example 1.7. Let d = 3 and r = 2. Let a denote the mask given in

Example 1.2. By (1.4.4) of Theorem 1.4 with κ̃ = 2, we have

̂̃y(0) = [1, 1],
−i
1!

̂̃y(1)
(0) =

1

774
[32, 355].

By the CBC algorithm in [22], we have a dual mask ã of a such that ã

satisfies the sum rules of order 2. The dual mask ã is supported on [−2, 3]

and is given by

ã(−2) =
1

34884


1292 −4773

−969 1866


 , ã(−1) =

1

34884


2844 9682

386 −1284


 ,

ã(0) =
1

34884


17496 8715

−2961 2590


 , ã(1) =

1

34884


2590 −2961

8715 17496


 ,

ã(2) =
1

34884


−1284 386

9682 2844


 , ã(3) =

1

34884


 1866 −969

−4773 1292


 .

(1.4.8)

By calculation, we have ν2(ã, 3) ≈ 0.736519. Therefore, the associated 3-

refinable function vectors φ and φ̃ with masks a and ã indeed satisfy the

biorthogonal relation in (1.4.1). See Figure 1.9 for the graph of the dual

3-refinable function vector φ̃ = [φ̃1, φ̃2]
T . Note that φ̃1 = φ̃2(1/2 − ·).
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Figure 1.9: The graphs of φ̃1 (left) and φ̃2 (right) in Example 1.7 for
the interpolating 3-refinable function vector in Example 1.2. ν2(φ̃) ≈

0.736519 and φ̃1 = φ̃2(1/2 − ·).
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1.5 Conclusions and Remarks

In this chapter, we present in Theorem 1.1 a complete characterization of

an interpolating refinable function vector of type (d,Γr, 0) in terms of its

mask. As a consequence, we have a criterion for orthogonal interpolating

d-refinable function vectors in Corollary 1.2. We introduce the notion of

an interpolatory mask of type (d,Γr, 0) and study its sum rule structure

in Theorem 1.3. We address in Section 1.4 how to construct pairs of dual

d-refinable function vectors using the CBC algorithm in [22] from the inter-

polatory masks of type (d,Γr, 0) obtained in this chapter. In next chapter,

we shall introduce the notation of interpolating refinable function vector of

type (M,ΓN , h) in high dimensions and shall also characterize such refinable

function vectors in terms of their masks.

Symmetry property is one of the most important and desirable properties

in wavelet analysis (e.g. [11, 23, 34]). Though we provide several exam-

ples of interpolatory masks, we did not address the symmetry properties of

a general interpolatory mask of type (d,Γr, 0) and its associated refinable

function vector. For dilation factor d = 2 and r = 2, we can show that an

interpolating d-refinable function does possess a certain symmetry pattern

once its associated interpolatory mask of type (2,Γ2, 0) has symmetry (see

Corollary 2.6). However, when the dilation factor d > 2 and the multiplicity

r > 1, except for some special cases (e.g. [34]), it seems that little is known

in the literature about the connections between the symmetry property of a

matrix mask and that of its associated refinable function vector. For an in-

terpolating refinable function vector φ = [φ1, . . . , φr]
T with an interpolatory

mask a of type (d,Γr, 0), it is natural that each function φℓ, ℓ = 1, . . . , r, is

symmetric about the point (ℓ−1)/r, more precisely, φℓ(2(ℓ−1)/r−·) = φℓ.
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For d > 2 and r > 1, it is unclear to us so far under which kind of sym-

metry conditions on its interpolatory mask a, the interpolating refinable

function vector φ is guaranteed to possess the desired symmetry property.

That is, what is the right symmetry condition for an interpolatory mask of

type (d,Γr, 0) so that its associated interpolating refinable function vector

possesses certain desired symmetry. Nevertheless, when extra conditions

imposed on d and r, we do have the following proposition that provides

symmetry conditions for an interpolating refinable function vector of type

(d,Γr, 0) in terms of its mask (see Appendix A for its proof).

Proposition 1.5. Let φ = [φ1, . . . , φr]
T be an interpolating d-refinable

function vector with mask a. Let a1, . . . , ar : Z → C be defined by aℓ(j) :=

[a(Qj)]ℓ,Rj+1 for ℓ = 1, . . . , r, where Rj, Qj ∈ Z are uniquely determined by

j = rQj +Rj , 0 6 Rj 6 r − 1. Then

(1) if φℓ = φr−ℓ+1(
r−1

r
− ·) for ℓ = 1, . . . , r, then

aℓ(j) = ar−ℓ+1(−j + (r − 1)d), j ∈ Z; ℓ = 1, . . . , r. (1.5.1)

(2) if φℓ = φℓ(
2(ℓ−1)

r
− ·) for ℓ = 1, . . . , r, then

aℓ(j) = ar−ℓ+1(−j + 2(ℓ− 1)d), j ∈ Z; ℓ = 1, . . . , r. (1.5.2)

Conversely, if d−1 = k0r for some integer k0 > 1, (1.5.1) or (1.5.2) implies

the symmetry of φ as in item (1) or (2), respectively.

Due to the above proposition, we can see that both the interpolating re-

finable function vectors in Examples 1.2, 1.4, and 1.5 of Section 1.3 have

symmetry. One may consider the condition d − 1 = k0r for some integer
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k0 > 1 too restricted and unnatural, yet we point out this condition cannot

be removed in the proposition. In fact, we can verify that (1.5.1) holds

with d = r = 3 in Example 1.3 in Section 1.3 and from the graph of φ, it

seems φ has symmetry. However, a careful computation shows that φ is not

symmetric. For example, − 4433
177147

= φ1(14/27) 6= φ3(2/3 − 14/27) = 920
177147

.

We mentioned that there is no compactly supported 2-refinable scalar func-

tion that is both interpolating and orthogonal, while orthogonality and in-

terpolation can be easily achieved when considering compactly supported

d-refinable function vectors. For d = r = 2, Zhou in [73] pointed out there

is also no compactly supported 2-refinable function vector that can have or-

thogonality, interpolation, and symmetry, simultaneously. Under our gen-

eral setting, we show in Examples 1.4 and 1.5 that we can have these nice

properties simultaneously when we consider dilation factors d > 2. Once

φ has symmetry and orthogonality, we can derive its corresponding or-

thogonal multiwavelets by employing techniques for matrix extension with

symmetry, which we shall give a detailed study in Chapter 3.

In Section 1.4, we discuss how to derive biorthogonal refinable function vec-

tors from an interpolating refinable function vector. Examples 1.6 and 1.7

are two such biorthogonal refinable function vectors derived from two in-

terpolating refinable function vectors (Examples 1.1 and 1.2, respectively).

We can see that the interpolating refinable function vectors and their dual

biorthogonal refinable function vectors have the same symmetry patterns.

Constructing their corresponding biorthogonal multiwavelets with symme-

try are of interest and importance in applications. Such constructions can

be also reduced to a matrix extension problem. We shall study the biorthog-

onal matrix extension problem in Chapter 4.
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In one dimension, the symmetry patterns of a d-refinable function vec-

tors are somewhat simple (symmetric, antisymmetric) compared to those

in higher dimension. In higher dimensions, the symmetry of a refinable

function vector becomes highly nontrivial which involves symmetry groups

in high dimensions. We shall also study the symmetry of an interpolat-

ing refinable function vector of type (M,ΓN , h) in high dimensions in next

chapter.



Chapter 2

Multivariate Interpolating

Refinable Function Vectors of

Type (M,ΓN , h)

2.1 Introduction

In this chapter, we shall study the interpolating refinable function vectors

in a more general setting: interpolating refinable function vector of type

(M,ΓN , h) in any dimension.

We say that a d×d integer matrix M is a dilation matrix if limn→∞ M−n = 0,

that is, all the eigenvalues of M are greater than 1 in modulus. A d×d dila-

tion matrix is isotropic if it is similar to a diagonal matrix diag(σ1, . . . , σd)

32
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such that |σ1| = · · · = |σd| = | detM|1/d. An M-refinable function (or dis-

tribution) vector φ = [φ1, . . . , φL]T satisfies the vector refinement equation

φ = | detM|
∑

k∈Zd

a(k)φ(M · −k), (2.1.1)

where a : Zd → CL×L is a (matrix) mask with multiplicity L for φ.

In the frequency domain, (2.1.1) can be rewritten as

φ̂(MT ξ) = â(ξ)φ̂(ξ), a.e. ξ ∈ Rd, (2.1.2)

where MT denotes the transpose of the matrix M and for f ∈ L1(Rd), its

Fourier transform f̂ is defined to be f̂(ξ) :=
∫

Rd f(x)e−ix·ξdx, ξ ∈ Rd, which

can be naturally extended to tempered distributions and L2(Rd).

In this chapter, we shall generalize the results of univariate interpolating

refinable function vectors of type (d,Γr, 0) in Chapter 1 to the multivariate

refinable function vectors of type (M,ΓN , h). Before giving the definition,

let us introduce two examples. The first example is a univariate 2-refinable

function vector φ = [φ0, φ1]
T ∈ (C1(R))2×1, which is a refinable Hermite

interpolant from [63], whose mask is given by:

a(−1) =




1
2

3
4

−1
8

−1
8


 , a(0) =


1 0

0 1
2


 , a(1) =




1
2

−3
4

1
8

−1
8


 .

φ has the Hermite interpolation property: φ(k) = δ(k)[1, 0]T , φ′(k) =

δ(k)[0, 1]T , ∀k ∈ Z, where φ′ is the first derivative of φ. φ consists of

cubic splines. See Figure 2.1 for its graph.

Another example is a bivariate example of Goodman et al. [18], which
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Figure 2.1: Refinable Hermite cubic splines. φ = [φ0, φ1]
T and φ′ =

[φ′0, φ
′
1] (left to right).

obtains an M√
2-refinable function vector φ = [φ0, φ1]

T (see Figure 2.2),

where

M√
2 :=


1 1

1 −1


 . (2.1.3)
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Figure 2.2: Two components φ0 (left) and φ1 (right) of the M√
2-

refinable function vector in [18].

From Figure 2.2, it is evident that φ is a piecewise linear function vector

satisfying the following interpolation property:

φ0(k) = δ(k) and φ1((1/2, 1/2)T + k) = δ(k), k ∈M−1√
2
Z2. (2.1.4)

But φ in Figure 2.2 is not a function vector in (C1(R2))2×1. It is of interest

to have compactly supported M√
2-refinable function vectors satisfying the

interpolation property in (2.1.4) and having higher order of smoothness,

such as C1 smoothness.
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In a moment, we shall see that the above two examples are just two special

cases of our interpolating refinable function vectors of type (M,ΓN , h).

Let N0 := N ∪ {0}. For x = (x1, . . . , xd) ∈ Rd and µ = (µ1, . . . , µd) ∈ Nd
0,

we denote µ! := µ1! · · ·µd!, |x| := |x1|+ · · ·+ |xd| and xµ := xµ1

1 · · ·xµd

d . For

a given Hermite order h ∈ N0, we denote Oh := {µ : |µ| = h, µ ∈ Nd
0} and

Λh := {µ : |µ| 6 h, µ ∈ Nd
0}. Also, #Oh and #Λh denote the cardinalities

of the sets Oh and Λh, respectively. It is easy to see that #Λh =
(

h+d
d

)
.

Throughout this chapter, the elements in Oh and Λh will be always ordered

in such a way that ν = (ν1, . . . , νd) is less than µ = (µ1, . . . , µd) if either

|ν| < |µ| or if |ν| = |µ|, νj = µj for j = 1, . . . , ℓ − 1 and νℓ < µℓ for some

1 6 ℓ 6 d.

Let ∂j denote the differentiation operator with respect to the j-th coor-

dinate. For µ = (µ1, . . . , µd) ∈ Nd
0, ∂

µ is the differentiation operator

∂µ1

1 · · ·∂µd

d and DΛh := (∂µ)µ∈Λh
is a 1 × (#Λh) row vector.

For a d×dmatrixN , S(N,Oh) is defined to be the following (#Oh)×(#Oh)

matrix [25], uniquely determined by

(Nx)µ

µ!
=

∑

ν∈Oh

S(N,Oh)µ,ν
xν

ν!
, µ ∈ Oh. (2.1.5)

Clearly, S(N,Λh) := diag(S(N,O0), S(N,O1), . . . , S(N,Oh)), which is a

(#Λh)× (#Λh) matrix. It is obvious that S(A,Oh)S(B,Oh) = S(AB,Oh).

For matrices A = (ai,j)16i6I,16j6J and B = (bℓ,k)16ℓ6L,16k6K , the (right)

Kronecker product A⊗ B is defined to be A⊗ B := (ai,jB)16i6I,16j6J ; its

((i−1)L+ ℓ, (j−1)K+k)-entry is ai,jbℓ,k and can be conveniently denoted

by [A⊗B]i,j;ℓ,k. Throughout this paper, for an I × J block matrix A with

each block of size L ×K, we will use [A]i,j to denote the (i, j)-block of A
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and [A]i,j;ℓ,k to denote the (ℓ, k)-entry of the block [A]i,j. It is easily shown

that (A+B)⊗C = (A⊗C)+ (B⊗C), C⊗ (A+B) = (C⊗A)+ (C⊗B),

(A⊗ B)(C ⊗ E) = (AC) ⊗ (BE) and (A⊗ B)T = AT ⊗ BT .

Let M be a d × d dilation matrix. Let N be a d × d invertible integer

matrix. Then Zd ⊆ N−1Zd. We denote ΓN an ordered complete set of

representatives of the cosets of [N−1Zd]/Zd with the first element of ΓN

being 0. Naturally, we require that M and N should be compatible by

imposing the condition MN−1Zd ⊆ N−1Zd. This is equivalent to saying

that NMN−1 is an integer matrix. Let h ∈ N0 be a Hermite order. Let

φ = (φγ)γ∈ΓN
be a (#ΓN )(#Λh)× 1 column vector of compactly supported

distributions with each φγ = (φγ,µ)µ∈Λh
being a (#Λh) × 1 column vector.

We say that φ is an interpolating refinable function vector of type (M,ΓN , h)

if

(i) φ is an M-refinable function vector associated with a mask a: φ̂(MT ξ) =

â(ξ)φ̂(ξ);

(ii) φ satisfies the Hermite interpolation property:

φ ∈ (Ch(Rd))(#ΓN )(#Λh)×1 and for all β, γ ∈ ΓN , k ∈ Zd,

[DΛh ⊗ φγ](β + k) = δ(k)δ(β − γ)I#Λh
.

(2.1.6)

The above notation seems a little bit complicated, but it essentially says

that the components of the function vector φ interpolate all the derivatives

up to order h on the lattice N−1Zd. Let φ be an interpolating refinable

function vector of type (M,ΓN , h). For a function f ∈ Ch(Rd), defining

f̃(x) :=
∑

γ∈ΓN

∑

µ∈Λh

∑

k∈Zd

[∂µf ](k + γ)φγ,µ(x− k), x ∈ Rd, (2.1.7)
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then ∂µf̃(x) = ∂µf(x) for all µ ∈ Λh and x ∈ N−1Zd; that is, f̃ agrees with

f on the lattice N−1Zd with all derivatives up to order h.

Obviously, the sinc function is an interpolating refinable function of type

(2,Γ1, 0). The refinable Hermite interpolant introduced above is an in-

terpolating refinable function vector of type (2,Γ1, 1). The function vec-

tor from Goodman [18] is an interpolating refinable function vector of

type (M√
2,ΓM√

2
, 0). More generally, an M-refinable function φ satisfy-

ing φ|Zd = δ is simply an interpolating function of type (M,ΓId
, 0). All

examples in [62, 73] are just interpolating refinable function vectors of type

(2,Γ2, 0) and the one-dimensional examples in Chapter 1 correspond to

interpolating refinable function vectors of type (d,Γr, 0) for any positive

integers d > 1 and r > 1. All examples of refinable Hermite interpolants

from [36] are interpolating refinable function vectors of type (M,ΓI , h) for

some dilation matrix M and Hermite order h. We shall see more general

examples of interpolating refinable function vectors of type (M,ΓN , h) for

some N 6= I and h > 0.

The structure of this chapter is as follows. In Section 2.2, we shall in-

troduce definitions for the sum rule of a mask, the quantity νp(a,M), the

convergence of a cascade algorithm, etc. In Section 2.3, for an isotropic

dilation matrix M, we shall characterize an interpolating refinable function

vector of type (M,ΓN , h) in terms of its mask and study the underlying

sum rule structure of its interpolatory mask of type (M,ΓN , h). Due to the

importance of the symmetry property in applications, we shall also discuss

the symmetry property of an interpolating M-refinable function vector and

its interpolatory mask. We shall postpone proofs of the results in this sec-

tion until Section 2.5 for the sake of readability. In Section 2.4, using the

results in Section 2.3, for any dilation factor d, integers r ∈ N, and h ∈ N0,
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we construct a family of univariate interpolatory masks of type (d,Γr, h)

with increasing orders of sum rules. Such a family includes the family of

the famous Deslauriers-Dubuc interpolatory masks in [12] and the family

of Hermite interpolatory masks in [22] as special cases. Conclusions and

remarks shall be given in the last section.

2.2 Auxiliary Results

A (vector) cascade algorithm associated with a matrix mask a and a dilation

matrix M is defined by Qn
a,Mφ0, n = 1, . . ., where

Qa,Mφ0 := | detM|
∑

k∈Zd

a(k)φ0(M · −k)

and φ0 is an appropriate initial function vector (see definition (2.2.4)).

For a matrix mask a with multiplicity L, we say that a satisfies the sum rules

of order κ with a dilation matrix M if there exists a sequence y ∈ (ℓ0(Zd))1×L

such that ŷ(0) 6= 0 and

∂µ[ŷ(MT ·)â(·)](0) = ∂µŷ(0) ∀ |µ| < κ, µ ∈ Nd
0.

∂µ[ŷ(MT ·)â(·)](2πγ) = 0 ∀ |µ| < κ, γ ∈ [(MT )−1Zd] \ Zd.
(2.2.1)

Let ΩM be a complete set of representatives of the cosets Zd/[MZd] such

that 0 ∈ ΩM. Then one can show that (2.2.1) is equivalent to

ŷ(MT ξ)âω(ξ) = | detM|−1ŷ(ξ) +O(‖ξ‖κ), ξ → 0, ω ∈ ΩMT , (2.2.2)

where âω(ξ) :=
∑

k∈Zd a(ω + Mk)e−iξ·(ω+Mk) is called the coset of â(ξ).
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The convolution of two sequences u and v is defined to be

[u ∗ v](j) :=
∑

k∈Zd

u(k)v(j − k), u ∈ (ℓ0(Z
d))r×m, v ∈ (ℓ0(Z

d))m×n,

Clearly, û ∗ v = ûv̂. For y ∈ (ℓ0(Zd))1×L and a positive integer κ, we

say that a function vector f = [f1, . . . , fL]T ∈ (W κ
p (Rd))L×1 satisfies the

moment conditions of order κ+ 1 with respect to y if

ŷ(0)f̂(0) = 1 and ∂µ[ŷ(·)f̂(·)](2πβ) = 0, ∀|µ| 6 κ; β ∈ Zd\{0}. (2.2.3)

The space Fκ,y,p of all appropriate initial function vectors in the Sobolev

space (W κ
p (R))L×1 depending on κ, y, p is defined by

Fκ,y,p :={f ∈ (W κ
p (Rd))L×1 : f is compactly supported and

satisfies the moment conditions of order κ + 1 with

respect to y}.

(2.2.4)

We next introduce the quantity νp(a,M). For y ∈ (ℓ0(Zd))1×L and a positive

integer κ, as in [24], we define the space Vκ,y by

Vκ,y := {v ∈ (ℓ0(Z
d))L×1 : ∂µ[ŷ(·)v̂(·)](0) = 0 ∀ |µ| < κ, µ ∈ Nd

0}.
(2.2.5)

By convention, V0,y := (ℓ0(Zd))L×1. The above equations in (2.2.1), (2.2.2),

and (2.2.5) depend only on the values ∂µŷ(0), |µ| < κ. For a mask a with

multiplicity L, a sequence y ∈ (ℓ0(Zd))1×L, a dilation matrix M, and κ ∈ N0,

we define

ρκ(a,M, y, p) := sup
{

lim sup
n→∞

‖an ∗ v‖1/n

(ℓp(Zd))L×1 : v ∈ Vκ,y

}
, (2.2.6)
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where ân(ξ) := â((MT )n−1ξ) · · · â(MT ξ)â(ξ). For 1 6 p 6 ∞, define

ρ(a,M, p) := inf{ρκ(a,M, y, p) : (2.2.1) holds for some κ ∈ N0

and some y ∈ (ℓ0(Zd))1×L with ŷ(0) 6= 0}.
(2.2.7)

The quantity νp(a,M) is then defined by:

νp(a,M) := − logρ(M)

[
| detM|1−1/pρ(a,M, p)

]
, 1 6 p 6 ∞, (2.2.8)

where ρ(M) denotes the spectral radius of the matrix M. Up to a scalar

multiplicative constant, the vectors ∂µŷ(0), µ ∈ Nd
0 are quite often uniquely

determined ([24] and Theorem 2.2 of this chapter).

The quantity νp(a,M) characterizes the convergence of a vector cascade

algorithm in a Sobolev space and the Lp smoothness of a refinable function

vector. As in [24, Theorem 4.3], the vector cascade algorithm associated

with mask a and an isotropic dilation matrix M converges in the Sobolev

space W κ
p (Rd) := {f ∈ Lp(Rd) : ∂µf ∈ Lp(Rd) ∀ |µ| 6 κ} for any initial

function vector φ0 ∈ Fκ,y,p if and only if νp(a,M) > κ. Generally, νp(a,M) 6

νp(φ) always holds, where νp([f1, . . . , fL]T ) := min16ℓ6L νp(fℓ) and for f ∈
Lp(Rd),

νp(f) := sup{n+ ν : ||∂µf − ∂µf(· − t)||Lp(Rd) 6 Cf |t|ν ∀|µ| = n; t ∈ Rd}.
(2.2.9)

Also νp(φ) = νp(a,M) if the shifts of the refinable function vector φ associ-

ated with a mask a and an isotropic dilation matrix M are stable in Lp(Rd)

(see (2.5.1) for definiton). Furthermore, we have νp(a,M) > νq(a,M) >

νp(a,M) + (1/q − 1/p) logρ(M) | det M| for 1 6 p 6 q 6 ∞. In particular,

we have ν2(a,M) > ν∞(a,M) > ν2(a,M) − d/2 when M is isotropic. For a
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finitely supported matrix mask a, the quantity ν2(a,M) can be numerically

computed by finding the spectral radius of certain finite matrix using an

algorithm in [45] (also see [25] for computing ν2(a,M) using the symmetry

of the mask a). For more about vector cascade algorithms and smoothness

of refinable function vectors, see [5, 15, 21, 22, 24, 31, 33, 36, 44, 49, 50,

51, 65, 71, 72] and many references therein.

2.3 Analysis of Interpolating Refinable Func-

tion Vectors

We have the following result characterizing an interpolating refinable func-

tion vector of type (M,ΓN , h) in terms of its mask.

Theorem 2.1. Let h ∈ N0 and M be a d× d dilation matrix. When h > 0,

we further assume that M is isotropic. Let N be a d×d invertible integer ma-

trix such that NMN−1 is also an integer matrix. Let ΓN be a given ordered

complete set of representatives of [N−1Zd]/Zd with the first element of ΓN

being 0. Let φ = (φγ)γ∈ΓN
be a (#ΓN)(#Λh)×1 column vector of compactly

supported distributions with each φγ = (φγ,α)α∈Λh
being a #Λh × 1 column

vector and φ̂(MT ξ) = â(ξ)φ̂(ξ), where a : Zd → C(#ΓN )(#Λh)×(#ΓN )(#Λh)

is a (#ΓN ) × (#ΓN) block matrix mask for φ. Then φ is an interpolat-

ing refinable function vector of type (M,ΓN , h) if and only if the following

statements hold:

(1) [(1, 1, . . . , 1)⊗(1, 0, . . . , 0)]φ̂(0) = 1 (This is a normalization condition

on φ);

(2) ν∞(a,M) > h;
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(3) The mask a is an interpolatory mask of type (M,ΓN , h); that is,

(i) The mask a satisfies the following condition:

[a(Mk + [Mα]ΓN
)]γ,〈Mα〉ΓN

= | det M|−1S(M−1,Λh)δ(k)δ(α− γ),

∀ α, γ ∈ ΓN , k ∈ Zd,

(2.3.1)

where [Mα]ΓN
∈ Zd and 〈Mα〉ΓN

∈ ΓN are uniquely determined

by the relation Mα = [Mα]ΓN
+ 〈Mα〉ΓN

.

(ii) The mask a satisfies the sum rules of order h + 1 with a 1 ×
(#ΓN )(#Λh) row vector y = (yγ)γ∈ΓN

in (ℓ0(Zd))1×(#ΓN )(#Λh)

such that

ŷγ(ξ) = eiγ·ξ((iξ)ν)ν∈Λh
+O(‖ξ‖h+1), ξ → 0, γ ∈ ΓN , (2.3.2)

or equivalently,

ŷ(ξ) = (eiγ·ξ)γ∈ΓN
⊗ ((iξ)ν)ν∈Λh

+O(‖ξ‖h+1), ξ → 0. (2.3.3)

To improve the readability, we shall present the proof of Theorem 2.1 in

Section 2.5. We mention that the sufficiency part of Theorem 2.1 still holds

without assuming that M is isotropic. In general, the conditions in (2.3.1)

and (2.2.1) with κ = h + 1 cannot guarantee that up to a scalar multi-

plicative constant, the vector ŷ in (2.2.1) must satisfy (2.3.3). However, if

in addition ν∞(a,M) > h, then up to a scalar multiplicative constant, the

vector ŷ in (2.2.1) must be unique and satisfy (2.3.3).

As we discussed before, to design an interpolatory mask of type (M,ΓN , h)

with a preassigned order of sum rules, it is of importance to investigate

its sum rule structure; in particular, it is of interest to know the values
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∂µŷ(0), |µ| < κ in advance so that the nonlinear equations in (2.2.1) will

become linear equations. We have the following result concerning the struc-

ture of the y vector for an interpolatory mask of type (M,ΓN , h), whose

proof will also be given in Section 2.5.

Theorem 2.2. Let M be a d × d dilation matrix and N,ΓN , h as in The-

orem 2.1. Suppose that a is an interpolatory mask of type (M,ΓN , h) sat-

isfying the sum rules of order κ with κ > h in (2.2.1) with a sequence

y ∈ (ℓ0(Zd))1×(#ΓN )(#Λh) satisfying (2.3.3). Let σ := (σ1, . . . , σd)
T , where

σ1, . . . , σd are all the eigenvalues of M. If

σµ /∈ {σν : ν ∈ Λh}, ∀ h < |µ| < κ (2.3.4)

( (2.3.4) clearly holds when M is an isotropic dilation matrix), then we must

have

ŷ(ξ) =
(
eiγ·ξ)

γ∈ΓN
⊗ ((iξ)ν)ν∈Λh

+O(‖ξ‖κ), ξ → 0. (2.3.5)

In high dimensions, symmetry becomes important for at least two reasons.

One is that wavelets and refinable function vectors with symmetry gen-

erally provide better results in applications. Another reason is that when

designing a matrix mask, symmetry significantly reduces the number of free

parameters in the system of linear equations, especially in higher dimen-

sions. In the following, we will discuss symmetry in high dimensions and

characterize an interpolating refinable function vector of type (M,ΓN , h)

with symmetry in terms of its mask. With the symmetry condition on the

masks and the vector y determined in Theorem 2.2, obtaining interpolatory

masks of type (M,ΓN , h) with high orders of sum rules becomes far more

easy (see examples in this section and the following sections).
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Unlike the symmetry in dimension one, in which case a function is either

symmetric or antisymmetric about some point, symmetry of a function in

high dimensions Rd is closely related to a symmetry group. Let G be a

finite set of d × d integer matrices. We say that G is a symmetry group

with respect to a dilation matrix M ([25]) if G forms a group under matrix

multiplication and

| detE| = 1 and MEM−1 ∈ G ∀ E ∈ G. (2.3.6)

For dimension d = 1, there is only one nontrivial symmetry group G =

{−1, 1} with respect to any dilation factor d > 1. In dimension two, two

commonly used symmetry groups are D4 and D6 for the quadrilateral and

triangular meshes, respectively:

D4 :=



±


1 0

0 1


 ,±


1 0

0 −1


 ,±


0 1

1 0


 ,±


 0 1

−1 0





 ,

D6 :=



±


1 0

0 1


 ,±


0 −1

1 −1


 ,±


−1 1

−1 0


 ,±


0 1

1 0


 ,

±


1 −1

0 −1


 ,±


−1 0

−1 1





 .

(2.3.7)

It is easy to verify that D4 is a symmetry group with respect to the dilation

matrix M√
2 while D6 is a symmetry group with respect to the dilation

matrix M√
3 :=

[
2 −1

1 −2

]
.

Let G be a symmetry group with respect to a dilation matrix M. Let φ =

(φγ)γ∈ΓN
be an interpolating refinable function vector of type (M,ΓN , h).
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We say that φ is G-symmetric if

φβ(E(· − β) + β) = S(E,Λh)φβ ∀ E ∈ G, β ∈ ΓN . (2.3.8)

For aG-symmetric interpolating refinable function vector of type (M,ΓN , h),

we have the following result on characterizing such a refinable function vec-

tor in terms of its mask. We shall leave its proof to Section 2.5 as well.

Theorem 2.3. Let M, N,ΓN , h and Λh be as in Theorem 2.1. Let φ =

(φγ)γ∈ΓN
be an interpolating refinable function vector of type (M,ΓN , h)

with a matrix mask a. Let G be a symmetry group with respect to M. If

EΓN ⊂ ΓN + Zd ∀ E ∈ G (2.3.9)

and φ is G-symmetric, then the mask a is (G,M)-symmetric:

[a(j)]β,α = S(E−1,Λh)[a(MEM−1j + [JE,α,β]ΓN
)]β,〈JE,α,β〉ΓN

S(MEM−1,Λh),

∀j ∈ Zd, α, β ∈ ΓN ;E ∈ G,

(2.3.10)

where

JE,α,β := MEM−1α + M(Id − E)β, (2.3.11)

and [JE,α,β]ΓN
∈ Zd, 〈JE,α,β〉ΓN

∈ ΓN are uniquely determined by the rela-

tion JE,α,β = [JE,α,β]ΓN
+ 〈JE,α,β〉ΓN

.

Conversely, if (2.3.10) holds and

(Id − E)ΓN ⊂ Zd ∀ E ∈ G, (2.3.12)

then φ is G-symmetric.
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Note that (2.3.12) implies (2.3.9). So, if (2.3.12) is satisfied, then an inter-

polating refinable function vector φ of type (M,ΓN , h) with a mask a and

a dilation matrix M is G-symmetric if and only if the mask a is (G,M)-

symmetric. In dimension one, it is evident that (2.3.12) is satisfied if N = 2

and G = {−1, 1} (see Corollary 2.6).

To illustrate the results of this section, we present two examples. Note that

D4 is a symmetry group with respect to M√
2 and (2.3.12) is satisfied for

G = D4 and N = M√
2.

The example in Goodman [18] is an interpolating refinable function vector

of type (M√
2,ΓM√

2
, 0), but it is not in (C1(R2))2×1. In the following, we

present a C1 interpolating refinable function vector of type (M√
2,ΓM√

2
, 0).

Example 2.1. Let M = N = M√
2, where M√

2 is defined in (2.1.3). Then

ΓN = {(0, 0), (1
2
, 1

2
)}. Let a be an interpolatory mask of type (M√

2,ΓM√
2
, 0)

with support [−2, 1] × [−2, 1] and of (M√
2, D4)-symmetry (see (2.3.10)).

Then a satisfies the sum rules of order 2 and is given by:

a(−2,−2) =




0 t3

0 0


 , a(−2,−1) =




0 t5

0 0


 , a(−2, 0) =




0 t5

0 0


 ,

a(−2, 1) =




0 t3

0 0


 , a(−1,−2) =




0 t5

0 t4


 , a(−1, 1) =




0 t5

0 t4


 ,

a(1,−2) =




0 t3

0 t2


 , a(1,−1) =




0 t5

0 t1


 , a(1, 0) =




0 t5

1
2

t1


 ,

a(1, 1) =




0 t3

0 t2


 , a(0,−2) =




0 t5

0 t2


 , a(0, 1) =




0 t5

0 t2


 ,
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a(−1, 0) =




0 1
4
− t3 − 2t5 − 2t2 − t4 − t1

0 t2


 ,

a(−1,−1) =




0 1
4
− t3 − 2t5 − 2t2 − t4 − t1

0 t2


 ,

a(0,−1) =




0 1
4
− t3 − 2t5 − 2t2 − t4 − t1

0 t1


 ,

a(0, 0) =




1
2

1
4
− t3 − 2t5 − 2t2 − t4 − t1

0 t1


 ,

where t1, t2, t3, t4, t5 ∈ R are free parameters. When t2 = t3 = t4 = t5 = 0,

the mask a is supported on [−1, 1] × [−1, 0]. If in addition t1 = 0, then

we have ν2(a,M) = 1.5 (and therefore, ν∞(a,M) > ν2(a,M)− 1 > 0.5) and

this is the mask for the interpolating M√
2-refinable function vector given

in Goodman [18] (See Figure 2.2).

When t1 = 1
4

+ 8t3, t2 = t4 = 0, t5 = − 1
32

− t3, the mask a satisfies the sum

rules of order 4. If in addition t3 = − 5
256

, we have ν2(a,M√
2) ≈ 2.535219.

Therefore, ν∞(a,M√
2) > ν2(a,M√

2)− 1 = 1.535219 > 1. By Theorem 2.1,

its associated M√
2-refinable function vector φ = [φ(0,0), φ( 1

2
, 1
2
)]

T is an inter-

polating refinable function vector in (C1(R2))2×1 of type (M√
2,ΓM√

2
, 0).

See Figure 2.3.

Example 2.2. Let M = N = M√
2 and h = 1. Then

Λh = {(0, 0), (0, 1), (1, 0)} and ΓN = {(0, 0), (
1

2
,
1

2
)}.

Let a (with multiplicity 6) be an interpolatory mask of type (M√
2,ΓN , h).

Suppose that a is (M√
2, D4)-symmetric and supported on [−1, 1]× [−1, 0].
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Figure 2.3: The graphs of φ(0,0) (left) and φ( 1
2
, 1
2
) (right) of the D4-

symmetric interpolating refinable function vector of type (M√
2,ΓM√

2
, 0)

in Example 2.1 for t1 = 3
32 , t2 = t4 = 0, t3 = − 5

256 , and t5 = − 3
256 .

We obtain an (M√
2, D4)-symmetric interpolatory mask a of type (M√

2,ΓN , h)

which satisfies the sum rules of order 4 and is given by:

a(−1,−1) =
1

16

2
66666666666666666664

0 0 0 64t 6 6

0 0 0 0 0 0

0 0 0 −16t −1 −1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
77777777777777777775

, a(−1, 0) =
1

16

2
66666666666666666664

0 0 0 64t −6 6

0 0 0 −16t 1 −1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
77777777777777777775

,

a(0,−1) =
1

16

2
66666666666666666664

0 0 0 64t 6 −6

0 0 0 16t 1 −1

0 0 0 0 0 0

0 0 0 4 − 64t 6 6

0 0 0 0 0 0

0 0 0 16t − 1 −1 −1

3
77777777777777777775

, a(0, 0) =
1

16

2
66666666666666666664

8 0 0 64t −6 −6

0 −4 4 0 0 0

0 4 4 16t −1 −1

0 0 0 4 − 64t −6 6

0 0 0 16t − 1 1 −1

0 0 0 0 0 0

3
77777777777777777775

,

a(1,−1) =
1

16

2
66666666666666666664

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 4 − 64t 6 −6

0 0 0 1 − 16t 1 −1

0 0 0 0 0 0

3
77777777777777777775

, a(1, 0) =
1

16

2
66666666666666666664

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

8 0 0 4 − 64t −6 −6

0 −4 4 0 0 0

0 4 4 1 − 16t −1 −1

3
77777777777777777775

,

where t ∈ R is a free parameter. For t = 3
128

, we have ν2(a,M√
2) = 2.5.

Therefore, ν∞(a,M√
2) > ν2(a,M√

2) − 1 = 1.5 > 1. By Theorem 2.1,
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its associated M√
2-refinable function vector φ is an interpolating refinable

function vector of type (M√
2,ΓM√

2
, 1). See Figure 2.4 for the graph of φ

with t = 3
128

.
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Figure 2.4: The graphs of φ(0,0),µ (left) and φ( 1
2
, 1
2
),µ (right), µ ∈ Λh

in the D4-symmetric interpolating refinable function vector of type
(M√

2,ΓM√
2
, 1) in Example 2.2 with t = 3

128 .

2.4 Construction of Univariate Interpolat-

ing Refinable Function Vectors

Based on the results in Section 2.3 of this chapter, in this section we shall

present a family of interpolatory masks of type (d,Γr, h) (more precisely, of
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type (d, {0, 1
r
, . . . , r−1

r
}, h) with increasing orders of sum rules in dimension

one. Here in dimension one, d > 1 is the dilation factor, h ∈ N0 is the order

of derivative, and r > 1 is an integer. We follow the idea of CBC similar

to [22].

Recall that [A]i,j is the (i, j)-block of a block matrix A and [A]i,j;ℓ,k is the

(ℓ, k)-entry of the block [A]i,j. Let a be an interpolatory mask of type

(d,Γr, h) in dimension one. a can be viewed as an r × r block matrix

with each block of size (h + 1) × (h + 1). For ℓ = 0, 1, . . . , r − 1, let

Eℓ+1 := [0, . . . , 0, Ih+1, 0, . . . , 0]T be an r× 1 block matrix with each block

of size (h + 1) × (h + 1) and its nonzero block is located at the (ℓ + 1)-th

position. Then (2.3.1) and (2.3.3) in dimension one become

(1) a satisfies the following condition:

[a(dk +Rℓ)]:,Qℓ+1 = d−1δ(k)Eℓ+1D, (2.4.1)

where D := diag(1, d−1, . . . , d−h), Rℓ := ⌊dℓ
r
⌋ and Qℓ := r(dℓ

r
− Rℓ) =

dℓ mod r for ℓ = 0, . . . , r − 1;

(2) a satisfies the sum rules of order h+ 1 with a vector y such that

ŷ(ξ) = [(1, ei 1
r
ξ, . . . , ei r−1

r
ξ)⊗ (1, iξ, . . . , (iξ)h)]+O(|ξ|h+1), ξ → 0.

(2.4.2)

In other words, the (j, Qℓ + 1)-block of the mask a for all j = 1, . . . , r on

the coset Rℓ + dZ, that is, {[a(Rℓ + dk)]:,Qℓ+1}k∈Z, ℓ = 0, . . . , r − 1, are

completely determined by the condition (2.4.1) for an interpolatory mask
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of type (d,Γr, h). Denote

Γd,r := {(m,n) : 0 6 m 6 d−1, 1 6 n 6 r}\{(Rℓ, Qℓ+1) : 0 6 ℓ 6 r−1}.
(2.4.3)

Then, in order to construct an interpolatory mask a of type (d,Γr, h) with

sum rules of order κ, it suffices to construct {[a(m + dk)]:,n}k∈Z for every

(m,n) ∈ Γd,r such that the sum rule conditions in (2.2.2) are satisfied.

We have the following result on interpolatory masks of type (d,Γr, h) with

increasing orders of sum rules.

Theorem 2.4. Let d, r,K be positive integers with d > 1. Let h be a

nonnegative integer and L = r(h+1). Suppose that for every (m,n) ∈ Γd,r,

Sm,n is a subset of Z such that #Sm,n = K. Then there exists a unique

finitely supported mask a : Z → CL×L satisfying the following conditions:

(1) a is an interpolatory mask of type (d,Γr, h);

(2) For every (m,n) ∈ Γd,r, [a(m+ dk)]:,n = 0 for all k ∈ Z\Sm,n;

(3) a satisfies the sum rules of order LK.

In fact, the unique mask a must be real-valued, that is, a : Z → RL×L.

Proof. Note that (2.4.1) is equivalent to

[âRℓ(ξ)]:,Qℓ+1 = d−1e−iRℓξEℓ+1D, ℓ = 0, . . . , r − 1.
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Let ŷ(ξ) = [(1, ei 1
r
ξ, . . . , ei r−1

r
ξ) ⊗ (1, iξ, . . . , (iξ)h)]. It is easy to see that

ŷ(dξ)[âRℓ(ξ)]:,Qℓ+1 = d−1ŷ(dξ)e−iRℓξEℓ+1D

= d−1ei( dℓ
r
−Rℓ)ξ[1, idξ, . . . , (idξ)h]D

= d−1ei
Qℓ
r

ξ[1, iξ, . . . , (iξ)h]

= d−1ŷQℓ+1(ξ), ξ → 0, ℓ = 0, . . . , r − 1,

where ŷn(ξ) = ei n−1
r

ξ[1, iξ, . . . , (iξ)h], 1 6 n 6 r and âm(ξ) :=
∑

k∈Z
a(m+

dk)e−i(m+dk)ξ, 0 6 m 6 d − 1 are the cosets of a. To require that a

should satisfy the sum rules of order LK, by Theorem 2.2 and (2.2.2), it is

necessary and sufficient to require

ŷ(dξ)[âm(ξ)]:,n = d−1ŷn(ξ) +O(|ξ|LK), ξ → 0, ∀ (m,n) ∈ Γd,r.

That is, as ξ → 0,

r−1∑

ℓ=0

∑

k∈Sm,n

ŷℓ+1(dξ)[a(m+ dk)]ℓ+1,ne
−i(m+dk)ξ

=
1

d
ei n−1

r
ξ[1, iξ, . . . , (iξ)h] +O(|ξ|LK).

(2.4.4)

Now we need to show that for every (m,n) ∈ Γd,r the above system of linear

equations on {[a(m+ dk)]ℓ+1,n : ℓ = 0, . . . , r − 1, k ∈ Sm,n} has a unique

solution.

For x ∈ R and j, s ∈ N0, denote

vj,s(x) =





0, j < s;

j!
(j−s)!

xj−s, j > s.
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Note that (2.4.4) is equivalent to: for t = 0, 1, . . . , h,

r−1∑

ℓ=0

∑

k∈Sm,n

h∑

s=0

[a(m+ dk)]ℓ+1,n; s+1,t+1e
i(dℓ/r−m−dk)ξ(idξ)s

= d−1ei n−1
r

ξ(iξ)t +O(|ξ|LK), ξ → 0.

(2.4.5)

For each t = 0, 1, . . . , h, taking j-th derivative on both side of (2.4.5) and

evaluating them at ξ = 0, we obtain

r−1∑

ℓ=0

∑

k∈Sm,n

h∑

s=0

[a(m+ dk)]ℓ+1,n; s+1,t+1 ds vj,s(dℓ/r −m− dk)

= d−1vj,t

(n− 1

r

)
, j = 0, 1, . . . , LK − 1.

(2.4.6)

Since #Sm,n = K for all (m,n) ∈ Γd,r, we see that for each (m,n) ∈ Γd,r,

the set {dℓ/r − m − dk : k ∈ Sm,n, ℓ = 0, 1, . . . , r − 1} consists of rK

distinct points in R. The coefficient matrix of (2.4.6) is

C = (ds vj,s(dℓ/r −m− dk))j=0,1,...,Lr−1; s=0,1,...,h, k∈Sm,n, ℓ=0,1,...,r−1,

which is an LK × LK matrix. Notice that

V := (vj,s(dℓ/r −m− dk))j=0,1,...,LK−1; s=0,1,...,h, k∈Sm,n, ℓ=0,1,...,r−1

is a confluent Vandermonde matrix of size LK × LK, which is invertible,

and

C = V · diag(1, 1, . . . , 1︸ ︷︷ ︸
rK times

, d, d, . . . , d︸ ︷︷ ︸
rK times

, . . . , dh, dh, . . . , dh

︸ ︷︷ ︸
rK times

).

Hence C is an invertible matrix of size LK × LK. Moreover, the num-

ber of unknowns {[a(m + dk)]ℓ+1,n; s+1,t+1 : s = 0, 1, . . . , h, k ∈ Sm,n, ℓ =

0, 1, . . . , r − 1} in (2.4.6) is also LK. Consequently, the solution to the
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system of linear equations in (2.4.6) is unique. Furthermore, it is evident

that the solution is real-valued.

The following result is a direct consequence of Theorem 2.4.

Corollary 2.5. Let d, r,K be positive integers such that d > 1. Let h be a

nonnegative integer and L = r(h + 1). Let S be any subset of Z such that

#(S ∩ (m + dZ)) = K for all m ∈ Z and {Rℓ}r−1
ℓ=0 ⊂ S, where Rℓ := ⌊dℓ

r
⌋.

Then there exists a unique finitely supported mask a : Z → RL×L satisfying

the following conditions:

(1) a is an interpolatory mask of type (d,Γr, h);

(2) a is supported on S;

(3) a satisfies the sum rules of order LK.

In particular, if S = [−N0, dK −N0 − 1]∩Z for N0 ∈ Z, then #(S ∩ (m+

dZ)) = K for all m ∈ Z.

For the case d = rr′ for some r′ ∈ N, we have Qℓ = 0, Rℓ = r′ℓ for all

ℓ = 0, . . . , r − 1. (2.4.1) is equivalent to

[âr′ℓ(ξ)]:,1 = d−1e−ir′ℓ·ξEℓ+1D, ℓ = 0, . . . , r − 1. (2.4.7)

In particular, if d = r, i.e., r′ = 1, then an interpolatory mask of type

(d,Γd, h) is of the form

â(ξ) =
1

d




D ∗ · · · ∗
De−iξ ∗ · · · ∗

...
...

. . .
...

De−i(d−1)ξ ∗ · · · ∗



, (2.4.8)
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where D = diag(1, d−1, . . . , d−h).

For the case d = r = 2, we have the following result on interpolatory masks

of type (2, {0, 1
2
}, h) with symmetry.

Corollary 2.6. For any positive integer K and any nonnegative integer h,

there exists a unique interpolatory mask a of type (2, {0, 1
2
}, h) such that

(1) a is supported on [1 −K,K];

(2) a is real-valued and satisfies the sum rules of order (h+ 1)(2K − 1);

(3) The mask a is ({−1, 1}, 2)-symmetric:

â(ξ) = diag(P, Pe2iξ)â(ξ)diag(P, Pe−iξ), (2.4.9)

where P := diag((−1)0, (−1)1, . . . , (−1)h) is a diagonal matrix of size

(h+ 1) × (h+ 1).

Moreover, if ν∞(a, 2) > h, then φ = [φ0,0, . . . , φ0,h, φ 1
2
,0, . . . , φ 1

2
,h]

T is {1,−1}-
symmetric, where φ is the 2-refinable function vector associated with mask

a. More precisely, φ0,j(−·) = (−1)jφ0,j and φ 1
2
,j(1 − ·) = (−1)jφ 1

2
,j for

j = 0, 1, . . . , h.

Proof. Since d = r = 2, we see that {[a(k)]:,1}k∈Z are completely deter-

mined by (2.4.8). By the symmetry condition (2.4.9), {[a(2k + 1)]:,2}k∈Z

are completely determined by {[a(2k)]:,2}k∈Z. Moreover, [a(k)]1,2 = 0 if k is

even, or [a(1− k)]2,2 = 0 if k is odd due to the symmetry condition (2.4.9).

Now the proof is completed by a similar proof of Theorem 2.4.
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In the rest of this section, let us present in Tables 2.1 and 2.2 the smooth-

ness exponents of some families of the interpolatory masks constructed

in Corollaries 2.5 and 2.6. An example of an interpolatory mask of type

(2, {0, 1
2
}, 1) will also be given.

K 1 2 3 4 5 6
a(3,{0, 1

2
},1) 0.5 2.557920 2.952713 3.223482 3.425445 3.583893

a(3,{0, 1
2
},2) 0.5 3.286249 3.767089 4.065856 4.234592 4.311367

Table 2.1: The quantities ν2(a(3,{0, 1
2
},1), 3) and ν2(a(3,{0, 1

2
},2), 3) for the

interpolatory masks a(d,Γr ,h) constructed in Corollary 2.5. Here S :=
[−N0, 3K −N0 − 1] with N0 := ⌊3(K − 1)/2⌋.

K 1 2 3 4 5 6
asym

(2,{0, 1
2
},1) 0.5 2.494509 3.051766 3.646481 3.791163 4.000000

asym

(2,{0, 1
2
},2) 0.5 2.958569 3.931713 4.471009 4.421853 4.999996

asym

(2,{0, 1
2
},3) 0.5 3.351721 4.343120 4.650265 4.890424 5.498152

Table 2.2: The quantities ν2(a
sym

(2,{0, 1
2
},h)

, 2) for the symmetric inter-

polatory masks asym

(2,{0, 1
2
},h)

constructed in Corollary 2.6 for h = 1, 2, 3,

respectively.

Example 2.3. Let d = r = 2, h = 1 and K = 2 in Corollary 2.6. Then we

have a symmetric interpolatory mask a of type (2, {0, 1
2
}, 1) satisfying the

sum rules of order 6. The mask a is supported on [−1, 2] and a(0), a(2)

are given by

a(0) =




1
2

0 9
32

−3
4

0 1
4

9
128

−3
64

0 0 45
256

93
128

0 0 −9
512

−15
256




a(2) =




0 0 0 0

0 0 0 0

0 0 11
256

3
128

0 0 3
512

1
256




,
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while a(−1), a(1) can be obtained by symmetry in (2.4.9). Then we have

ν2(a, 2) ≈ 2.494509. Therefore, ν∞(a, 2) > ν2(a, 2) − 1/2 ≈ 1.994509 > 1.

By Theorem 2.1, the 2-refinable function vector φ = [φ0,0, φ0,1, φ 1
2
,0, φ 1

2
,1]

T

with mask a is a symmetric C1 interpolating refinable function vector of

type (2,Γ2, 1). Moreover, φ0,j(−·) = (−1)jφ0,j and φ 1
2
,j(1 − ·) = (−1)jφ 1

2
,j

for all j = 0, 1. See Figure 2.5 for the graph of φ.
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Figure 2.5: The graphs of φ0,j, j = 0, 1 (top) and φ 1
2
,j, j = 0, 1

(bottom) in Example 2.3. ν2(φ) ≈ 2.494509. φ0,j(−·) = (−1)jφ0,j and
φ 1

2
,j(1 − ·) = (−1)jφ 1

2
,j for all j = 0, 1.

2.5 Proofs of Theorems 2.1, 2.2, and 2.3

In this section, we shall prove Theorems 2.1, 2.2, and 2.3 of Section 2.3.

Since stability and linear independence of a refinable function vector will

be needed in our proofs, let us recall their definitions here. For an L × 1

vector φ = [φ1, . . . , φL]T of compactly supported functions in Lp(R
d) for

1 6 p 6 ∞, we say that the shifts of φ are stable in Lp(Rd) if there exist
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two positive constants C1 and C2 such that

C1

L∑

ℓ=1

∑

k∈Zd

|cℓ(k)|p 6

∥∥∥∥∥
L∑

ℓ=1

∑

k∈Zd

cℓ(k)φℓ(· − k)

∥∥∥∥∥

p

Lp(Rd)

6 C2

L∑

ℓ=1

∑

k∈Zd

|cℓ(k)|p

(2.5.1)

for all finitely supported sequences c1, . . . , cL in ℓ0(Zd). For a compactly

supported function vector φ = [φ1, . . . , φL]T , we say that the shifts of φ are

linearly independent if for any sequences c1, . . . , cL : Zd → C such that

L∑

ℓ=1

∑

k∈Zd

cℓ(k)φℓ(x− k) = 0, a.e. x ∈ Rd, (2.5.2)

then one must have cℓ(k) = 0 for all ℓ = 1, . . . , L and k ∈ Zd.

The following lemma is needed latter.

Lemma 2.7. Let N be a d× d matrix. Then

µ!S(N,Λh)µ,ν = ν!S(NT ,Λh)ν,µ ∀ µ, ν ∈ Λh, h ∈ N0. (2.5.3)

Consequently, for a row vector ((iξ)ν)ν∈Λh
, we have

((iξ)ν)ν∈Λh
S(N,Λh) = ((iNT ξ)ν)ν∈Λh

. (2.5.4)

Proof. Let x, y ∈ Rd. Note that (x·y)h =
∑

µ∈Oh

h!
µ!
xµyµ. Expanding ex·(Ny)

at the origin, we deduce that

ex·(Ny) =

∞∑

h=0

(x · (Ny))h

h!
=

∞∑

h=0

∑

µ∈Oh

xµ (Ny)µ

µ!

=

∞∑

h=0

∑

µ∈Oh

∑

ν∈Oh

1

ν!
S(N,Oh)µ,νx

µyν .
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Similarly, we have ey·(NT x) =
∑∞

h=0

∑
ν∈Oh

∑
µ∈Oh

1
µ!
S(NT , Oh)ν,µx

µyν. Since

ex·(Ny) = ey·(NT x), comparing the coefficients of xµyν in both expressions,

we conclude that 1
ν!
S(N,Oh)µ,ν = 1

µ!
S(NT , Oh)ν,µ for all µ, ν ∈ Oh. That

is, (2.5.3) holds.

To prove (2.5.4), we have

((iξ)ν)ν∈Λh
S(N,Λh) =

( ∑

ν∈Λh

(iξ)νS(N,Λh)ν,µ

)
µ∈Λh

.

By (2.5.3), we deduce that

∑

ν∈Λh

(iξ)νS(N,Λh)ν,µ =
∑

ν∈Λh

ν!S(N,Λh)ν,µ
(iξ)ν

ν!
= µ!

∑

ν∈Λh

S(NT ,Λh)µ,ν
(iξ)ν

ν!

= µ!
(iNT ξ)µ

µ!
= (iNT ξ)µ.

So, (2.5.4) is verified.

Now, we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Necessity. By φ(M−1·) = | detM|∑k∈Zd a(k)φ(·−k)
and [24, Proposition 2.1], we have

[DΛh ⊗ φ](M−1·)S(M−1,Λh) = D
Λh ⊗ [φ(M−1·)]

= | det M|
∑

j∈Zd

a(j)[DΛh ⊗ φ](· − j).

Hence,

[DΛh ⊗ φγ](·)S(M−1,Λh) = | detM|
∑

j∈Zd

∑

β∈ΓN

[a(j)]γ,β[DΛh ⊗ φβ](M · −j).
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That is, for α ∈ ΓN and k ∈ Zd, we have

[DΛh ⊗ φγ](α + k)S(M−1,Λh)

= | det M|
∑

j∈Zd

∑

β∈ΓN

[a(j)]γ,β[DΛh ⊗ φβ](Mα+ Mk − j).

Since NMN−1 is an integer matrix, we have MN−1Zd ⊆ N−1Zd, that is,

M[ΓN + Zd] ⊆ ΓN + Zd. Thus, for each α ∈ ΓN , we can uniquely write

Mα = [Mα]ΓN
+ 〈Mα〉ΓN

with [Mα]ΓN
∈ Zd and 〈Mα〉ΓN

∈ ΓN . Applying

(2.1.6) to the above equation, we obtain

δ(k)δ(α− γ)S(M−1,Λh)

= | det M|
∑

j∈Zd

∑

β∈ΓN

[a(j)]γ,β[DΛh ⊗ φβ](〈Mα〉ΓN
+ [Mα]ΓN

+ Mk − j)

= | det M|
∑

β∈ΓN

[a(Mk + [Mα]ΓN
)]γ,βδ(β − 〈Mα〉ΓN

)

= | det M|[a(Mk + [Mα]ΓN
)]γ,〈Mα〉ΓN

.

That is, [a(Mk + [Mα]ΓN
)]γ,〈Mα〉ΓN

= | detM|−1S(M−1,Λh)δ(k)δ(α − γ) for

all α, γ ∈ ΓN and k ∈ Zd. So, (2.3.1) holds.

By (2.1.6), it is easy to see that the shifts of φ are linearly independent.

In fact, suppose
∑

γ∈ΓN

∑
µ∈Λh

∑
k∈Zd cγ,µ(k)φγ,µ(x − k) = 0. Taking the

differentiation operator ∂ν on both sides and setting x = β + j, we ob-

tain cβ,ν(j) = 0 for all β ∈ ΓN , ν ∈ Λh and j ∈ Zd. So the shifts of φ

are linearly independent and therefore stable ([47]). Consequently, by [24,

Corollary 5.1] and φ ∈ (Ch(Rd))(#ΓN )(#Λh)×1, we must have ν∞(a,M) > h.

That is, item (2) holds.

Since ν∞(a,M) > h, by [24, Theorem 4.3], the mask a must satisfy the sum

rules of order h+1 with a vector y ∈ (ℓ0(Zd))1×(#ΓN )(#Λh) and ŷ(0)φ̂(0) = 1.
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But this implies ([24]) that ∂µ[ŷ(·)φ̂(·)](0) = δ(µ) and ∂µ[ŷ(·)φ̂(·)](2πk) = 0

for all |µ| 6 h and k ∈ Zd\{0}. By the remark after [24, Proposition 3.2],

this is equivalent to (p ∗ y) ∗ φ = p for all p ∈ Πh, where Πh denotes the

linear space of all polynomials with total degree no greater than h. More

precisely, by [24, (2.13)], we have

∑

j∈Zd

∑

µ∈Λh

∑

γ∈ΓN

∂µp(j)
(−i∂)µ

µ!
ŷγ(0)φγ(· − j) = p, p ∈ Πh.

Hence,

∑

j∈Zd

∑

µ∈Λh

∑

γ∈ΓN

∂µp(j)
(−i∂)µ

µ!
ŷγ(0)[DΛh ⊗ φγ](· − j) = D

Λh ⊗ p, p ∈ Πh.

So, for x = β + k, β ∈ ΓN and k ∈ Zd, for any p ∈ Πh, we have

∑

j∈Zd

∑

µ∈Λh

∑

γ∈ΓN

∂µp(j)
(−i∂)µ

µ!
ŷγ(0)[DΛh ⊗ φγ](β + k − j) = [DΛh ⊗ p](β + k).

By (2.1.6) and the above identity, we obtain

∑

µ∈Λh

∂µp(k)
(−i∂)µ

µ!
ŷβ(0) = [DΛh ⊗ p](β + k), p ∈ Πh, k ∈ Zd, β ∈ ΓN .

Set pν(x) := xν

ν!
. Taking k = 0 in the above identity, we get

(−i∂)ν

ν!
ŷβ(0) = [DΛh ⊗ pν ](β) = ([∂µpν ](β))µ∈Λh

. (2.5.5)

For µ = (µ1, . . . , µd) and ν = (ν1, . . . , νd), we say that ν 6 µ if νj 6 µj for

all j = 1, . . . , d. Denote sgn(µ) = 1 if µ > 0 and 0, otherwise. Now it is
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easy to see that (2.5.5) is equivalent to

(−i∂)µ

µ!
ŷβ(0) =

( βµ−ν

(µ− ν)!
sgn(µ− ν)

)
ν∈Λh

. (2.5.6)

Note that (2.5.6) is satisfied by the choice ŷβ(ξ) := eiβ·ξ((iξ)η)η∈Λh
, since

(−i∂)µ

µ!
ŷβ(0) =

∑

o6ν6µ

(−i∂)µ−ν

(µ− ν)!
eiβ·ξ

∣∣∣∣
ξ=0

(−i∂)ν

ν!
[(iξ)η]η∈Λh

∣∣∣∣
ξ=0

=
∑

06ν6µ

βµ−ν

(µ− ν)!
[δη−ν ]η∈Λh

=

(
βµ−ν

(µ− ν)!
sgn(µ− ν)

)

ν∈Λh

.

Hence, a is an interpolatory mask of type (M,ΓN , h). So, item (3) holds.

Since item (3) holds, by (2.3.3), we have ŷ(0) = [(1, 1, . . . , 1)⊗(1, 0, . . . , 0)].

By (p ∗ y) ∗ φ = p with p = 1, we must have ŷ(0) ∗ φ = 1. Consequently,

we have ŷ(0)φ̂(0) = 1. Thus, item (1) holds.

Sufficiency. Let g ∈ (Ch(Rd))(#Λh)×1 be an function vector satisfying (2.1.6)

with N = Id and Hermite order h (see [22] and [24, Corollary 5.2] for the

construction of such function vectors) such that

[1, 0, . . . , 0]ĝ(0) = 1 and ((iξ)ν)ν∈Λh
ĝ(ξ + 2πk) = O(‖ξ‖h+1), ξ → 0

(2.5.7)

for k ∈ Zd\{0}. Define a (#ΓN)(#Λh) × 1 column vector by

f :=
(
S(N−1,Λh)g(N(· − γ))

)
γ∈ΓN

. (2.5.8)

Then we have f̂(ξ) =
(
| detN |−1e−iγ·ξS(N−1,Λh)ĝ((N

T )−1ξ)
)

γ∈ΓN
. This

can be rewritten as

f̂(ξ) = | detN |−1[(e−iγ·ξ)γ∈ΓN
]T ⊗ [S(N−1,Λh)ĝ((N

T )−1ξ)]. (2.5.9)



63

Note that by (2.5.7), the first component of ĝ(0) is 1. Also, we observe that

the first row of S(N−1,Λh) is [1, 0, . . . , 0]. Consequently, the first compo-

nent of S(N−1,Λh)ĝ(0) is 1. Now by ŷ(0) = [(1, 1, . . . , 1)⊗ (1, 0, . . . , 0)], we

conclude from (2.5.9) that

| detN |ŷ(0)f̂(0)

= [(1, 1, . . . , 1) ⊗ (1, 0, . . . , 0)] × [(1, 1, . . . , 1)T ⊗ (S(N−1,Λh)ĝ(0))]

= [(1, 1, . . . , 1) × (1, 1, . . . , 1)T ] ⊗ [(1, 0, . . . , 0) × (1, ∗, . . . , ∗)T ]

= | detN |,

where ∗ denotes some number and we used the fact S(N−1,Λh)ĝ(0) =

[1, ∗, . . . , ∗]T in the last second identity. Hence ŷ(0)f̂(0) = 1.

On the other hand, we deduce from (2.5.9) that as ξ → 0,

| detN |ŷ(ξ)f̂(ξ + 2πk) =
(
(eiβ·ξ)β∈ΓN

⊗ ((iξ)ν)ν∈Λh

)

×
(
[(e−iγ·(ξ+2πk))γ∈ΓN

]T ⊗ [S(N−1,Λh)ĝ((N
T )−1(ξ + 2πk))]

)
+O(‖ξ‖h+1)

=
(∑

γ∈ΓN

e−i2πk·γ
)(

((iξ)ν)ν∈Λh
S(N−1,Λh)ĝ((N

T )−1ξ + 2π(NT )−1k)
)

+O(‖ξ‖h+1).

By Lemma 2.7, we see that ((iξ)ν)ν∈Λh
S(N−1,Λh) = ((i(NT )−1ξ)ν)ν∈Λh

.

Consequently, we have

| detN |ŷ(ξ)f̂(ξ + 2πk) =
( ∑

γ∈ΓN

e−i2πk·γ
)(

((i(NT )−1ξ)ν)ν∈Λh

× ĝ((NT )−1ξ + 2π(NT )−1k)
)

+O(‖ξ‖h+1), ξ → 0.

(2.5.10)

For k ∈ Zd\[NT Zd], we have
∑

γ∈ΓN
e−i2πk·γ = 0 and consequently it follows

from the above identity that ŷ(ξ)f̂(ξ + 2πk) = O(‖ξ‖h+1) as ξ → 0 for
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all k ∈ Zd\[NT Zd]. For k ∈ [NT Zd]\{0}, we have k = NTk′ for some

k′ ∈ Zd\{0}. Therefore, by (2.5.7), we have

((i(NT )−1ξ)ν)ν∈Λh
ĝ((NT )−1ξ + 2π(NT )−1k) +O(‖ξ‖h+1) = O(‖ξ‖h+1),

as ξ → 0. Hence, we conclude that ŷ(ξ)f̂(ξ + 2πk) = O(‖ξ‖h+1), ξ → 0 for

all k ∈ Zd\{0}. So, f is a suitable initial function vector with respect to y.

Let f0 := f and fn := Qa,Mfn−1, n ∈ N. Now we prove by induction that

all fn satisfies (2.1.6). When n = 0, f0 = f . By the choice of the initial

function f in (2.5.8) and by [24, Proposition 2.1], for γ ∈ ΓN , we have

D
Λh ⊗ fγ = D

Λh ⊗ [S(N−1,Λh)g(N(· − γ))]

= S(N−1,Λh)[D
Λh ⊗ g](N(· − γ))S(N,Λh).

Since g satisfies (2.1.6) with N = Id, we deduce that for all β ∈ ΓN and

k ∈ Zd,

[DΛh ⊗ fγ](β + k) = S(N−1,Λh)[D
Λh ⊗ g](Nk +N(β − γ))S(N,Λh)

= S(N−1,Λh)δ(k)δ(β − γ)I#Λh
S(N,Λh)

= δ(k)δ(β − γ)I#Λh
.

So, f satisfies (2.1.6). Suppose that fn−1 satisfies (2.1.6). Then by fn =

Qa,Mfn−1 = | detM|∑j∈Zd a(j)fn−1(M · −j), for γ ∈ ΓN , we have

[fn]γ = | det M|
∑

j∈Zd

∑

α∈ΓN

[a(j)]γ,α[fn−1(M · −j)]α.
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Hence, by [24, Proposition 2.1], we have

D
Λh ⊗ [fn]γ = | detM|

∑

j∈Zd

∑

α∈ΓN

[a(j)]γ,αD
Λh ⊗ [fn−1(M · −j)]α

= | detM|
∑

j∈Zd

∑

α∈ΓN

[a(j)]γ,α[DΛh ⊗ [fn−1]α](M · −j)S(M,Λh).

So, for β ∈ ΓN and k ∈ Zd, we deduce that

[DΛh ⊗ [fn]γ](β + k)

= | det M|
∑

j∈Zd

∑

α∈ΓN

[a(j)]γ,α[DΛh ⊗ [fn−1]α](Mβ + Mk − j)S(M,Λh).

Now by induction hypothesis, we have

[DΛh ⊗ [fn−1]α](Mβ + Mk − j)

= [DΛh ⊗ [fn−1]α](〈Mβ〉ΓN
+ [Mβ]ΓN

+ Mk − j)

= δ(〈Mβ〉ΓN
− α)δ([Mβ]ΓN

+ Mk − j)I#Λh
.

Therefore, by (2.3.1), we get

[DΛh ⊗ [fn]γ ](β + k)

= | det M|
∑

j∈Zd

∑

α∈ΓN

δ(〈Mβ〉ΓN
− α)δ([Mβ]ΓN

+ Mk − j)[a(j)]γ,αS(M,Λh)

= | det M|[a(Mk + [Mβ]ΓN
)]γ,〈Mβ〉ΓN

S(M,Λh)

= δ(k)δ(β − γ)S(M−1,Λh)S(M,Λh)

= δ(k)δ(β − γ)I#Λh
.

Hence, fn satisfies (2.1.6). Now by induction, all fn, n = 0, 1, . . . satisfy

(2.1.6).



66

Since ν∞(a,M) > h, the cascade algorithm fn converges in the function

space in (Ch(Rd))(#ΓN )(#Λh)×1 ([24, Theorem 4.3]). By (ii) of item (3), we

have ŷ(0) = [(1, 1, . . . , 1) ⊗ (1, 0, . . . , 0)]. Now by item (1), we see that

ŷ(0)φ̂(0) = 1. Since ŷ(0)φ̂(0) = ŷ(0)f̂(0) = 1, we see that fn → φ in

(Ch(Rd))(#ΓN )(#Λh)×1 as n→ ∞. Consequently, since all fn satisfies (2.1.6),

φ is also an interpolating function vector of type (M,ΓN , h). �

Next, we prove Theorem 2.2.

Proof of Theorem 2.2. For simplicity, let us define two operators R : ΓN +

Zd → Zd and Q : ΓN + Zd → ΓN by R(α) := [Mα]ΓN
and Q(α) = 〈Mα〉ΓN

.

Let Eα := [0, . . . , 0, I#Λh
, 0, . . . , 0]T , α ∈ ΓN , be a (#ΓN)× 1 block matrix

with each block of size (#Λh) × (#Λh), whose nonzero block is located at

the α-th position.

Using the cosets of the mask a, we see that (2.3.1) can be equivalently

rewritten as

âR(α)(ξ)EQ(α) = | detM|−1e−iR(α)·ξEαS(M−1,Λh) ∀ α ∈ ΓN . (2.5.11)

Since a satisfies the sum rules of order κ with the vector ŷ, we have (2.2.2).

In particular, using (2.2.2) with ω = R(α), we deduce from (2.5.11) that

as ξ → 0,

| det M|−1ŷ(ξ)EQ(α) = ŷ(MT ξ)âR(α)(ξ)EQ(α) +O(‖ξ‖κ)

= | detM|−1e−iR(α)·ξ ŷ(MT ξ)EαS(M−1,Λh) +O(‖ξ‖κ).
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Denote ŷ(ξ) := (ŷα(ξ))α∈ΓN
with each ŷα being a 1 × (#Λh) row vector.

Then the above identity can be rewritten as

ŷQ(α)(ξ) = e−iR(α)·ξ ŷα(MT ξ)S(M−1,Λh) +O(‖ξ‖κ), ξ → 0.

That is, since (2.3.2) is satisfied, for all α ∈ ΓN , as ξ → 0, we have

ŷα(ξ) = eiα·ξ((iξ)ν)ν∈Λh
+O(‖ξ‖h+1),

ŷα(MT ξ) = eiR(α)·ξ ŷQ(α)(ξ)S(M,Λh) +O(‖ξ‖κ),
(2.5.12)

Note that the above relation is just a system of linear equations on the

unknowns {∂µŷ(0) : h < |µ| < κ}. In the following, we shall argue that

the above system of linear equations in (2.5.12) has a unique solution for

the unknowns {∂µŷ(0) : h < |µ| < κ}. Moreover, we shall prove that the

unique solution to (2.5.12) must be given in (2.3.5).

For all α ∈ ΓN and n ∈ N, employing (2.5.12) iteratively, we have

ŷα(ξ) = eiξ·M−1R(α)ŷQ(α)((M
T )−1ξ)S(M,Λh) +O(‖ξ‖κ)

= eiξ·(M−2R(Q(α))+M−1R(α))ŷQ2(α)((M
T )

−2
ξ)S(M2,Λh) +O(‖ξ‖κ)

...

= eiξ·(
Pn

k=1 M−kR(Qk−1(α)))ŷQn(α)((M
T )

−n
ξ)S(Mn,Λh) +O(‖ξ‖κ),

as ξ → 0. That is, for α ∈ ΓN , as ξ → 0, we have

ŷα(ξ) = eiξ·(
Pn

k=1 M−kR(Qk−1(α))ŷQn(α)((M
T )−nξ)S(Mn,Λh) +O(‖ξ‖κ).

(2.5.13)

Let S denote the set of all α ∈ ΓN such that α ∈ S means that there exists

nα ∈ N satisfying Qnα(α) = α. For every α ∈ S, since {∂µŷα(0) : |µ| 6 h}
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is uniquely determined by (2.3.2), by [24, Lemma 2.2], (2.5.13) with n = nα

has a unique solution {∂µŷα(0) : h < |µ| < κ}, which can be obtained

recursively. More precisely, since for α ∈ S, we have Qnα(α) = α for some

nα ∈ N. Therefore, (2.5.13) becomes

ŷα(ξ) = Xα((MT )−nαξ)ŷα((MT )−nαξ)S(Mnα,Λh) +O(‖ξ‖κ), ξ → 0,

where Xα((MT )−nαξ) := eiξ·(
Pnα

k=1 M−kR(Qk−1(α))), or equivalently,

ŷα((MT )nαξ)I#Λh
= Xα(ξ)ŷα(ξ)S(Mnα,Λh) +O(‖ξ‖κ), ξ → 0.

Note that σnαν , ν ∈ Oj and σ−nαµ, µ ∈ Λh are eigenvalues of S(Mnα, Oj)

and S(M−nα,Λh), respectively. By our assumption on M, we see that

S(Mnα, Oj) ⊗ I#Λh
− I#Oj

⊗ S(Mnα,Λh)
T

= [S(Mnα, Oj) ⊗ S(M−nα,Λh)
T − I#Oj

⊗ I#Λh
][I#Oj

⊗ S(Mnα,Λh)
T ]

is invertible for all j = h+ 1, . . . , κ− 1. Therefore, by [24, Lemma 2.2],

∂µ[ŷα((MT )nαξ)I#Λh
](0) = ∂µ[Xα(ξ)ŷα(ξ)S(Mnα,Λh)](0), h < |µ| < κ

has a unique solution {∂µŷα(0) : h < |µ| < κ} for every α ∈ S. Conse-

quently, for every α ∈ S, {∂µŷα(0) : |µ| < κ} is completely determined by

the relation (2.5.12).

For α ∈ ΓN\S, since Qn(α) ∈ ΓN for all n ∈ N, there must exist Nα ∈ N

such that QNα(α) ∈ S. Hence, by (2.5.13) with n = Nα, we have

ŷα(ξ) = eiξ·(
PNα

k=1 M−kR(Qk−1(α))ŷQNα(α)((M
T )−Nαξ)S(MNα,Λh) +O(‖ξ‖κ).

(2.5.14)
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By what has been proved, all {∂µŷQNα(α)(0) : |µ| < κ} is completely

determined by (2.5.12). Thus, it follows from (2.5.14) that for every α ∈
ΓN\S, the values {∂µŷα(0) : |µ| < κ} is completely determined by (2.5.14)

and therefore, is uniquely determined by the system of linear equations in

(2.5.12).

That is, we proved that if (2.5.12) holds, then all ∂µŷα(0), h < |µ| < κ, α ∈
ΓN are uniquely determined by (2.5.12). Therefore, if there is a solution to

the system of linear equations in (2.5.12), then the solution must be unique

according to the above argument.

In the following, let us show that the system of linear equations in (2.5.12)

indeed has a solution. Let Y (ξ) := (Yα(ξ))α∈ΓN
with Yα(ξ) := eiα·ξ ((iξ)ν)ν∈Λh

.

Since

Mα = [Mα]ΓN
+ 〈Mα〉ΓN

= R(α) +Q(α),

we have Yα(ξ) = eiα·ξ((iξ)ν)ν∈Λh
+O(‖ξ‖h+1) as ξ → 0 and α ∈ ΓN , and by

Lemma 2.7,

Yα(MT ξ) = eiMα·ξ (
(iMT ξ)ν

)
ν∈Λh

= eiR(α)·ξ [eiQ(α)·ξ ((iξ)ν)ν∈Λh
]S(M,Λh)

= eiR(α)·ξYQ(α)(ξ)S(M,Λh).

Therefore, if we take ∂µŷα(0) = ∂µYα(0) for all α ∈ ΓN and |µ| < κ,

then it is a solution to the system of linear equations in (2.5.12). By

the uniqueness of the solution to (2.5.12), we must have (2.3.5), which

completes the proof. �

Finally, we prove Theorem 2.3.

Proof of Theorem 2.3. Suppose that φ is G-symmetric and (2.3.9) holds.

Then, by (2.3.8) and the refinement equation (1.1.1), for β ∈ ΓN , we deduce
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that

∑

k∈Zd

∑

γ∈ΓN

[a(k)]β,γφγ(x− k) = | detM|−1φβ(M
−1x)

= | detM|−1S(E−1,Λh)φβ(E(M−1x− β) + β)

= S(E−1,Λh)
∑

k∈Zd

∑

γ∈ΓN

[a(k)]β,γφγ(MEM−1x− M(E − Id)β − k)

=
∑

k∈Zd

∑

γ∈ΓN

S(E−1,Λh)[a(k)]β,γS(MEM−1,Λh)

× φγ(x−ME−1M−1k −JE−1,γ,β +γ).

Therefore, for x = α + j with α ∈ ΓN and j ∈ Zd, we deduce that

∑

k∈Zd

∑

γ∈ΓN

[a(k)]β,γ [D
Λh ⊗ φγ](α + j − k)

=
∑

k∈Zd

∑

γ∈ΓN

S(E−1,Λh)[a(k)]β,γS(MEM−1,Λh)

× [DΛh ⊗ φγ](α + j − ME−1M−1k − JE−1,γ,β + γ).

(2.5.15)

By (2.3.9) and the interpolation property of φ in (2.1.6), it is easy to verify

that (2.5.15) implies (2.3.10).

Conversely, suppose that (2.3.10) and (2.3.12) are satisfied. By induction

on n, we first prove that

φβ(E(x− β) + β) = S(E,Λh)φβ(x) (2.5.16)

for all x ∈ M−n(Zd + ΓN), n ∈ N0, E ∈ G, β ∈ ΓN . By φγ(α + j) =

δ(α − γ)δ(j)[1, 0, . . . , 0]T for all α, γ ∈ ΓN and j ∈ Zd, it is evident that

(2.5.16) holds for n = 0. Suppose that (2.5.16) holds for n−1. Then for any

x ∈ M−n(Zd + ΓN), we have x = M−1y with y := Mx ∈ M−(n−1)(Zd + ΓN).
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Therefore,

| detM|−1S(E,Λh)φβ(x) = S(E,Λh)
∑

k∈Zd

∑

γ∈ΓN

[a(k)]β,γφγ(Mx− k)

=
∑

k∈Zd

∑

γ∈ΓN

S(E,Λh)[a(k)]β,γφγ(y − k).

Since y − k ∈ M−(n−1)(Zd + ΓN), by our induction hypothesis in (2.5.16),

S(MEM−1,Λh)φγ(y − k) = φγ(MEM−1(y − k − γ) + γ)

= φγ(MEx− MEM−1(k + γ) + γ).

Note that

JE,γ,β = MEM−1γ + M(Id −E)β = γ − (Id − MEM−1)γ + M(Id − E)β.

By (2.3.12), we can verify that 〈JE,γ,β〉ΓN
= γ for all γ, β ∈ ΓN . Now by

(2.3.10) and the above identities, we deduce that for any x ∈ M−n(Zd+ΓN),

|detM|−1S(E,Λh)φβ(x) =
∑

k∈Zd

∑

β∈ΓN

S(E,Λh)[a(k)]β,γφγ(y − k)

=
∑

k∈Zd

∑

γ∈ΓN

S(E,Λh)[a(k)]β,γS(ME−1M−1,Λh)φγ(MEx− MEM−1(k + γ) + γ)

=
∑

k∈Zd

∑

γ∈ΓN

[a(MEM−1k + [JE,γ,β]ΓN
)]β,〈JE,γ,β〉ΓN

φγ(MEx− MEM−1(k + γ) + γ)

=
∑

k∈Zd

∑

γ∈ΓN

[a(MEM−1k + [JE,γ,β]ΓN
)]β,γφγ(MEx− MEM−1(k + γ) + γ)

=
∑

k∈Zd

∑

γ∈ΓN

[a(k)]β,γφγ(MEx− k + γ − MEM−1γ + [JE,γ,β]ΓN
)

=
∑

k∈Zd

∑

γ∈ΓN

[a(k)]β,γφγ(MEx+ M(Id − E)β − k)

= |det M|−1φβ(Ex+ β − Eβ) = |det M|−1φβ(E(x− β) + β).
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Hence, (2.5.16) holds for n. By induction, (2.5.16) holds for all n ∈ N0,

Since φ is continuous and {M−n(Zd + ΓN) : n ∈ N0} is dense in Rd, we

conclude that (2.3.8) holds. So, φ is G-symmetric. �

2.6 Conclusions and Remarks

In this chapter, we present in Theorem 2.1 a complete characterization of

a generalized interpolating refinable function vector of type (M,ΓN , h) in

terms of its mask and study its sum rule structure in Theorem 2.2. We also

study symmetry of M-refinable function vectors in high dimensions, which is

related to a symmetry group. We give a characterization of an interpolating

refinable function vector of type (M,ΓN , h) to be symmetric with respect

to a symmetry group in terms of its mask and present several examples

in dimension two. We provide in Section 2.4 a family of one dimensional

interpolatory masks of type (d,Γr, h) with arbitrarily high orders of sum

rules.

When dimension d is higher than 2, for example, in dimension three, there

is a great number of symmetry groups. However, other than the trivial

dilation matrix kId for some integer |k| > 1, we do not know whether there

exists a nontrivial dilation matrix M for which there is a symmetry group

G satisfying (2.3.6); that is, G is a symmetry group with respect to M.

When L = 1 (scalar function), it is well known that a scalar mask a satis-

fying the sum rules of order κ + 1 with respect to a dilation matrix M as
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in (2.2.1) is equivalent to (see [43])

∑

β∈MZd

a(γ + β)p(γ + β) =
∑

β∈MZd

a(β)p(β), ∀γ ∈ Zd, p ∈ Πκ. (2.6.1)

Note that (2.6.1) depends only on the lattice MZd.

The lattice generated by the dilation matrix M = M√
2 in dimension two is

M√
2Z

2 = {(β1, β2) ∈ Z2 : β1 + β2 is an even number},

which is called the quincunx lattice. An interpolatory mask a of type

(M√
2,ΓI2, 0) is called a quincunx interpolatory mask ; that is, the mask

a satisfies

a(0) =
1

2
and a(β) = 0 ∀β ∈M√

2Z
2\{0}.

In [32, Theorem 3.3], Han and Jia proved the following result:

Theorem 2.8. Given a pair (m,n) of nonnegative integers with m+n being

an odd integer, there exists a unique quincunx interpolatory mask am,n such

that am,n is supported on

{(β1, β2) ∈ Z2 : |β1| 6 m, |β2| 6 n},

and am,n satisfies the sum rules of order m + n + 1 with respect to the

quincunx lattice: {(β1, β2) ∈ Z2 : β1 + β2 is an even integer}.

A natural question is whether the above result is still true in high dimen-

sions. The answer is yes. In high dimensions, the lattice corresponding the
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quincunx lattice is called the checkerboard lattice given by

{(β1, . . . , βd) ∈ Zd : β1 + · · ·+ βd is an even integer}.

There are many dilation matrices that can generate the above lattice, for

example, a dilation matrix M in dimension three given by

M =




1 0 1

−1 −1 1

0 −1 0




generates the checkerboard lattice in dimension three. We have the fol-

lowing theorem that generalizes Theorem 2.8 to any dimension (see Ap-

pendix A for its proof).

Theorem 2.9. Let m = (m1, . . . , md) ∈ Nd
0 be such that m1+· · ·+md is an

odd integer. Let Γ := {(β1, . . . , βd) ∈ Zd : β1 + · · ·+βd is an even integer}
be the checkerboard lattice. Then there exists a unique interpolatory mask

am such that

(1) am(0) = 1
2

and am(β) = 0 for all β ∈ Γ\{0};

(2) am is supported on S := {(β1, . . . , βd) ∈ Zd : |β1| 6 m1, . . . , |βd| 6

md};

(3) am satisfies the sum rules of order |m| + 1 with respect to the lattice

Γ:

∑

β∈Γ

am(γ + β)p(γ + β) =
∑

β∈Γ

am(β)p(β), ∀γ ∈ Zd; p ∈ Π|m|. (2.6.2)



Chapter 3

Matrix Extension with

Symmetry

3.1 Introduction and Main Results

In Chapters 1 and 2, we discussed the characterizations and construction

of interpolating refinable function vectors with orthogonality, compact sup-

port, and symmetry. After we obtained such refinable function vectors with

those nice properties, a natural question is: How to derive the correspond-

ing multiwavelets? More importantly, how to derive the multiwavelets with

symmetry when the given refinable function vectors have symmetry? In this

chapter, we shall study this problem, which is the so-called matrix extension

problem (we shall discuss in Section 3.4 for the connection of multiwavelets

to matrix extension).

The matrix extension problem plays a fundamental role in many areas

such as electronic engineering, system sciences, mathematics, and etc. To

75
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mention only a few references here on this topic, see [7, 8, 11, 16, 20, 27, 47,

52, 54, 59, 64, 67, 69]. For example, matrix extension is an indispensable

tool in the design of filter banks in electronic engineering ([52, 67, 69]) and

in the construction of multiwavelets in wavelet analysis ([7, 8, 11, 14, 16, 20,

27, 35, 42, 54, 59]). In order to state the matrix extension problem and our

main results on this topic, let us introduce some notation and definitions

first.

Let p(z) =
∑

k∈Z
pkz

k, z ∈ C\{0} be a Laurent polynomial with complex

coefficients pk ∈ C for all k ∈ Z. We say that p has symmetry if its

coefficient sequence {pk}k∈Z has symmetry; more precisely, there exist ε ∈
{−1, 1} and c ∈ Z such that

pc−k = εpk, ∀ k ∈ Z. (3.1.1)

If ε = 1, then p is symmetric about the point c/2; if ε = −1, then p is

antisymmetric about the point c/2. Symmetry of a Laurent polynomial

can be conveniently expressed using a symmetry operator S defined by

Sp(z) :=
p(z)

p(1/z)
, z ∈ C\{0}. (3.1.2)

When p is not identically zero, it is evident that (3.1.1) holds if and only

if Sp(z) = εzc. For the zero polynomial, it is very natural that S0 can be

assigned any symmetry pattern; that is, for every occurrence of S0 appear-

ing in an identity in this paper, S0 is understood to take an appropriate

choice of εzc for some ε ∈ {−1, 1} and c ∈ Z so that the identity holds. If

P is an r × s matrix of Laurent polynomials with symmetry, then we can

apply the operator S to each entry of P, that is, SP is an r×s matrix such

that [SP]j,k := S([P]j,k), where [P]j,k is the (j, k)-entry of the matrix P.
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For two matrices P and Q of Laurent polynomials with symmetry, even

though all the entries in P and Q have symmetry, their sum P+Q, difference

P−Q, or product PQ, if well defined, generally may not have symmetry any

more. This is one of the difficulties for matrix extension with symmetry. In

order for P±Q or PQ to possess some symmetry, the symmetry patterns of

P and Q should be compatible. For example, if SP = SQ, that is, both P

and Q have the same symmetry pattern, then indeed P ±Q has symmetry

and S(P ± Q) = SP = SQ. In the following, we discuss the compatibility

of symmetry patterns of matrices of Laurent polynomials. For an r × s

matrix P(z) =
∑

k∈Z
Pkz

k, we denote

P∗(z) :=
∑

k∈Z

P ∗
k z

−k with P ∗
k := Pk

T
, k ∈ Z, (3.1.3)

where Pk
T

denotes the transpose of the complex conjugate of the constant

matrix Pk in C. We say that the symmetry of P is compatible or P has

compatible symmetry, if

SP(z) = (Sθ1)∗(z)Sθ2(z), (3.1.4)

for some 1 × r and 1 × s row vectors θ1 and θ2 of Laurent polynomials

with symmetry. For an r × s matrix P and an s × t matrix Q of Laurent

polynomials, we say that (P,Q) has mutually compatible symmetry if

SP(z) = (Sθ1)∗(z)Sθ(z) and SQ(z) = (Sθ)∗(z)Sθ2(z) (3.1.5)

for some 1× r, 1× s, 1× t row vectors θ1, θ, θ2 of Laurent polynomials with

symmetry. If (P,Q) has mutually compatible symmetry as in (3.1.5), then

their product PQ has compatible symmetry and in fact S(PQ) = (Sθ1)∗Sθ2.
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For a matrix of Laurent polynomials, another important property is the

support of its coefficient sequence. For P =
∑

k∈Z
Pkz

k such that Pk = 0 for

all k ∈ Z\[m,n] with Pm 6= 0 and Pn 6= 0, we define its coefficient support

to be coeffsupp(P) := [m,n] and the length of its coefficient support to be

|coeffsupp(P)| := n − m. In particular, we define coeffsupp(0) := ∅, the

empty set, and |coeffsupp(0)| := −∞. Also, we use coeff(P, k) := Pk to

denote the coefficient matrix (vector) Pk of zk in P. In this thesis, 0 always

denotes a general zero matrix whose size can be determined in the context.

The Laurent polynomials that we shall consider have their coefficients in a

subfield F of the complex field C. Let F denote a subfield of C such that F

is closed under the operations of complex conjugate of F and square roots

of positive numbers in F. In other words, the subfield F of C satisfies the

following properties:

x̄ ∈ F and
√
y ∈ F, ∀ x, y ∈ F with y > 0. (3.1.6)

Two particular examples of such subfields F are F = R (the field of real

numbers) and F = C (the field of complex numbers). A nontrivial example

is the field of all algebraic number, i.e., the algebraic closure Q of the

rational number Q. A subfield of R given by Q ∩ R also satisfies (3.1.6).

Now, we introduce the general matrix extension problem with symmetry.

We shall use r and s to denote two positive integers such that 1 6 r 6 s.

Let P be an r×s matrix of Laurent polynomials with coefficients in F such

that P(z)P∗(z) = Ir for all z ∈ C\{0} and the symmetry of P is compatible,

where Ir denotes the r × r identity matrix. The matrix extension problem

with symmetry is to find an s× s square matrix Pe of Laurent polynomials

with coefficients in F and with symmetry such that [Ir, 0]Pe = P (that is,
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the submatrix of the first r rows of Pe is the given matrix P), the symmetry

of Pe is compatible, and Pe(z)P
∗
e(z) = Is for all z ∈ C\{0} (that is, Pe is

paraunitary). Moreover, in many applications, it is often highly desirable

that the coefficient support of Pe can be controlled by that of P in some

way.

In this chapter, we study this general matrix extension problem with sym-

metry and we completely solve this problem as follows:

Theorem 3.1. Let F be a subfield of C such that (3.1.6) holds. Let P be

an r× s matrix of Laurent polynomials with coefficients in F such that the

symmetry of P is compatible and P(z)P∗(z) = Ir for all z ∈ C\{0}. Then

there exists an s × s square matrix Pe, which can be constructed by Algo-

rithm 3.1 in Section 3.3 from the given matrix P, of Laurent polynomials

with coefficients in F such that

(i) [Ir, 0]Pe = P, that is, the submatrix of the first r rows of Pe is P;

(ii) Pe is paraunitary: Pe(z)P
∗
e(z) = Is for all z ∈ C\{0};

(iii) The symmetry of Pe is compatible;

(iv) The coefficient support of Pe is controlled by that of P in the following

sense:

|coeffsupp([Pe]j,k)| 6 max
16n6r

|coeffsupp([P]n,k)|, 1 6 j, k 6 s.

(3.1.7)

i.e., the length of the coefficient support of any entry in the k-th col-

umn of Pe is controlled by that of the entry in the k-th column of P

with maximal length of coefficient support.
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Theorem 3.1 on matrix extension with symmetry is built on a stronger

result which represents any given paraunitary matrix having compatible

symmetry by a simple cascade structure. The following result leads to a

proof of Theorem 3.1 and completely characterizes any paraunitary matrix

P in Theorem 3.1.

Theorem 3.2. Let P be an r× s matrix of Laurent polynomials with coef-

ficients in a subfield F of C such that (3.1.6) holds. Then P(z)P∗(z) = Ir

for all z ∈ C\{0} and the symmetry of P is compatible as in (3.1.4), if and

only if, there exist s× s matrices P0, . . . ,PJ+1 of Laurent polynomials with

coefficients in F such that

(1) P can be represented as a product of P0, . . . ,PJ+1:

P(z) = [Ir, 0]PJ+1(z)PJ (z) · · ·P1(z)P0(z); (3.1.8)

(2) Pj, 1 6 j 6 J , are elementary: Pj(z)P
∗
j (z) = Is and coeffsupp(Pj) ⊆

[−1, 1];

(3) (Pj+1,Pj) has mutually compatible symmetry for all 0 6 j 6 J ;

(4) P0 = U∗
Sθ2

and PJ+1 = diag(USθ1, Is−r), where USθ1, USθ2 are products

of a permutation matrix with a diagonal matrix of monomials, as

defined in (3.3.2);

(5) J 6 max
16m6r,16n6s

⌈|coeffsupp([P]m,n)|/2⌉, where ⌈·⌉ is the ceiling func-

tion.

The representation in (3.1.8) (without symmetry) is often called the cas-

cade structure in the literature of engineering, see [52, 67]. In the context
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of wavelet analysis, matrix extension without symmetry has been discussed

by Lawton, Lee, and Shen in their paper [54]. In electronic engineering, an

algorithm using the cascade structure for matrix extension without sym-

metry has been given in [67] for filter banks with the perfect reconstruction

property. The algorithms in [54, 67] mainly deal with the special case that

P is a row vector (that is, r = 1 in our case) without symmetry and the

coefficient support of the derived matrix Pe indeed can be controlled by

that of P. The algorithms in [54, 67] for the special case r = 1 can be

employed to handle a general r×s matrix P without symmetry, see [54, 67]

for detail. However, for the general case r > 1, it is no longer clear whether

the coefficient support of the derived matrix Pe obtained by the algorithms

in [54, 67] can still be controlled by that of P.

Several special cases of matrix extension with symmetry have been con-

sidered in the literature. For F = R and r = 1, matrix extension with

symmetry has been considered in [59]. For r = 1, matrix extension with

symmetry has been studied in [27] and a simple algorithm is given there. In

the context of wavelet analysis, several particular cases of matrix extension

with symmetry related to the construction of wavelets and multiwavelets

have been investigated in [8, 20, 27, 52, 59]. However, for the general case

of an r × s matrix, the approaches on matrix extension with symmetry in

[27, 59] for the particular case r = 1 cannot be employed to handle the

general case. The algorithms in [27, 59] are very difficult to be generalized

to the general case r > 1, partially due to the complicated relations of the

symmetry patterns between different rows of P. For the general case of

matrix extension with symmetry, it becomes much harder to control the

coefficient support of the derived matrix Pe, comparing with the special
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case r = 1. Extra effort is needed in any algorithm of deriving Pe so that

its coefficient support can be controlled by that of P.

The structure of this chapter is as follows. In Section 3.2, we shall intro-

duce some auxiliary results. In Section 3.3, we shall present a step-by-step

algorithm which leads to constructive proofs of Theorems 3.1 and 3.2. In

Section 3.4, we shall discuss an application of our main results on matrix

extension with symmetry to the construction of symmetric orthonormal

multiwavelets in wavelet analysis. Examples will be provided to illustrate

our algorithms. We shall prove Theorems 3.1 and 3.2 in Section 3.5. Con-

clusions and remarks shall be given in the last section. Most of the results

in this chapter have been accepted for publication in [38].

3.2 Auxiliary Results

In this section, we shall introduce some auxiliary results.

First, let us introduce a unitary matrix Uf constructed with respect to a

given row vector f and a unitary matrix UG constructed with respect to

a given matrix G, which shall be used in Algorithm 3.1 and the proofs of

Theorems 3.1 and 3.2. For a 1 × n row vector f in F such that ‖f‖ 6= 0,

where ‖f‖2 := ff∗, we define nf to be the number of nonzero entries in f

and ej := [0, . . . , 0, 1, 0, . . . , 0] to be the j-th unit coordinate row vector in

Rn. Let Ef be a permutation matrix such that fEf = [f1, . . . , fnf
, 0, . . . , 0]

with fj 6= 0 for j = 1, . . . , nf. We define

Vf :=





f̄1

|f1| , if nf = 1;

f̄1

|f1|

(
In − 2

‖vf‖2 v
∗
fvf

)
, if nf > 1,

(3.2.1)
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where vf := f − f1

|f1|‖f‖e1. Observing that ‖vf‖2 = 2‖f‖(‖f‖ − |f1|), we

can verify that VfV
∗
f = In and fEfVf = ‖f‖e1. Let Uf := EfVf. Then Uf

is unitary and satisfies Uf = [ f∗

‖f‖ , F
∗] for some (n − 1) × n matrix F in

F such that fUf = [‖f‖, 0, . . . , 0]. We also define Uf := In if f = 0 and

Uf := ∅ if f = ∅. Here, Uf plays the role of reducing the number of nonzero

entries in f. More generally, for an r×n nonzero matrix G of rank m in F,

employing the above procedure recursively to each row of G, we can obtain

an n× n unitary matrix UG such that GUG = [R, 0] for some r ×m lower

triangular matrix R of rank m (This is in fact the QR decomposition). If

G1G
∗
1 = G2G

∗
2, then the above procedure produces two matrices UG1 , UG2

such that G1UG1 = [R, 0] and G2UG2 = [R, 0] for some lower triangular

matrix R of full rank. It is important to notice that the constructions of

Uf and UG only involve the nonzero entries of f and nonzero columns of G,

respectively. In other words, up to a permutation matrix, we have

[Uf]j,: = ([Uf]:,j)
T = ej, if [f]j = 0,

[UG]j,: = ([UG]:,j)
T = ej , if [G]:,j = 0.

(3.2.2)

Next, we shall construct a paraunitary matrix Bq with respect to a row

vector q of Laurent polynomial such that Bq reduces the length of the

coefficient support of q by 2 and keeps its symmetry pattern.

Let q be a 1 × s row vector of Laurent polynomials satisfying qq∗ = 1 and

Sq = εzc[1s1 ,−1s2 , z
−11s3 ,−z−11s4] for some ε ∈ {−1, 1}, c ∈ {0, 1} and

nonnegative integers s1, . . . , s4 such that s1 + s2 + s3 + s4 = s. For ε = −1,

there is a permutation matrix Eε such that

S(qEε) = zc[1s2,−1s1 , z
−11s4 ,−z−11s3 ].
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For ε = 1, we let Eε := Is. Then, qEε must take the form in either (3.2.3)

or (3.2.4) with f1 6= 0 as follows:

qEε = [f1,−f2, g1,−g2]z
ℓ1 + [f3,−f4, g3,−g4]z

ℓ1+1 + · · ·

+ [f3, f4, g1, g2]z
ℓ2−1 + [f1, f2,0,0]zℓ2 ;

(3.2.3)

qEε = [0,0, f1,−f2]z
ℓ1 + [g1,−g2, f3,−f4]z

ℓ1+1 + · · ·

+ [g3, g4, f3, f4]z
ℓ2−1 + [g1, g2, f1, f2]z

ℓ2 .
(3.2.4)

If qEε takes the form in (3.2.4), we construct a permutation matrix Eq so

that [g1, g2, f1, f2]Eq = [f1, f2, g1, g2] and let Uq,ε := EεEqdiag(Is−sg, z
−1Isg),

where sg is the size of the row vector [g1, g2]. Then qUq,ε takes the form

in (3.2.3). For qEε of form (3.2.3), we simply let Uq,ε := Eε. In this way,

q0 := qUq,ε always takes the form in (3.2.3) with f1 6= 0.

Note that Uq,εU
∗
q,ε = Is and ‖f1‖ = ‖f2‖ if q0q

∗
0 = 1. Now an s × s

paraunitary matrix Bq0 to reduce the coefficient support of q0 as in (3.2.3)

with f1 6= 0 from [ℓ1, ℓ2] to [ℓ1 + 1, ℓ2 − 1] is given by:

B∗
q0

:=
1

c




f1(z + c0
cf1

+ 1
z ) f2(z − 1

z ) g1(1 + 1
z ) g2(1 − 1

z )

cF1 0 0 0

−f1(z − 1
z ) −f2(z − c0

cf1
+ 1

z ) −g1(1 − 1
z ) −g2(1 + 1

z )

0 cF2 0 0

cg1
cf1

f1(1 + z) − cg1
cf1

f2(1 − z) cg′1g
′
1 0

0 0 cG1 0

cg2
cf1

f1(1 − z) − cg2
cf1

f2(1 + z) 0 cg′2g
′
2

0 0 0 cG2




,

(3.2.5)

where [
f∗j
‖fj‖ , F

∗
j ] = Ufj

, [g′∗j , G
∗
j ] = Ugj

are unitary constant extension matri-

ces in F for vectors fj , gj in F, for j = 1, 2, respectively. And the constant
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c, c0, cf1 , cg1 , cg2, cg′1 , cg′2 are: cf1 := ‖f1‖, cg1 := ‖g1‖, cg2 := ‖g2‖,

cg′1 :=





−2cf1−c0
cg1

if g1 6= 0;

c otherwise,

cg′2 :=





2cf1−c0
cg2

if g2 6= 0;

c otherwise,

c := (4c2f1
+ 2c2g1

+ 2c2g2
+ |c0|2)1/2,

c0 := coeff(q0, ℓ1 + 1)coeff(q∗0,−ℓ2)/cf1 .

(3.2.6)

The operations for the emptyset ∅ are defined by ‖∅‖ = ∅, ∅ + A = A and

∅ · A = ∅ for any object A.

In fact, the matrix Bq0 is obtained as follows.

Suppose, Sq0 = [1s′1,−1s′2 , z
−11s′3,−z−11s′4 ]. Then due to ‖f1‖ = ‖f2‖ > 0,

we have s′1, s
′
2 > 0. Let I := {1, 1+s′1, (1−δ(s′3))(1+s′1+s′2), (1−δ(s′4))(1+

s′1 + s′2 + s′3)}\{0} be an index set and sI be its number of entries, which is

at most 4. Let U := diag(Uf1 , Uf2 , Ug1 , Ug2). Then by our construction of

Uf, it is easy to verify that coeffsupp([qU ]j) ⊆ [ℓ1 + 1, ℓ2 − 1] for all j /∈ I.

Hence, we only need to find a paraunitary matrix that reduces the lengths

of the coefficient support of those entries j ∈ I for q0U . Let q1 be a 1× sI

row vector such that [q1]j = [q0U ]Ij
for all j = 1, . . . , sI . Then q1 is of the

form:

q1 = [cf1 ,−cf1 , cg1 ,−cg2 ]z
ℓ1 + [cf3 ,−cf4 , ∗,−∗]zℓ1+1 + · · ·

+ [cf3 , cf4 , cg1 , cg2 ]z
ℓ2−1 + [cf1 , cf1 , 0, 0]z

ℓ2 ,

where cf3 := f3f
∗
1/cf1 and cf4 := f4f

∗
2/cf1 . Define an sI × sI matrix U1:

U1 :=
1

c




cf1(z + 1
z ) + c0 cf1(z − 1

z ) cg1(1 + 1
z ) cg2(1 − 1

z )

−cf1(z − 1
z ) −cf1(z + 1

z ) + c0 −cg1(z + 1
z ) −cg2(z + 1

z )

cg1(1 + z) −cg1(1 − z) c3 0

cg2(1 − z) −cg2(1 + z) 0 c4



,
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where

c3 :=





−2cf1 − c0 if cg1 > 0;

∅ if g1 = ∅;

c otherwise,

and c4 :=





2cf1 − c0 if cg2 > 0;

∅ if g2 = ∅;

c otherwise.

Direct computations show that U1 is paraunitary and U1 reduces the length

of the coefficient support of q1 exactly by 2. Moreover, U1 does not change

the symmetry pattern of q1. Let U0 be the paraunitary matrix of size

s × s that extends U1, i.e., [U0]Ij ,Ik
:= [U1]j,k, for 1 6 j, k 6 sI and

[U0]j,k = δ(j−k) for all j, k /∈ I. Then, one can easily check that Bq0 = UU0.

Define Bq := Uq,εBq0U
∗
q,ε. Then Bq is paraunitary. Due to the particular

form of Bq0 as in (3.2.5), we have the following lemma regarding the prop-

erties of the paraunitary matrix Bq, which plays an important role in our

matrix extension with symmetry.

Lemma 3.3. Let q be a 1 × s row vector of Laurent polynomial satisfying

qq∗ = 1 and Sq = εzcSθ with Sθ := [1s1,−1s2 , z
−11s3,−z−11s4 ], for some

ε ∈ {−1, 1}, c ∈ {0, 1} and nonnegative integers s1, . . . , s4 such that s1 +

s2 + s3 + s4 = s. Let Bq := Uq,εBq0U
∗
q,ε be constructed as above. Then,

(P1) SBq = (Sθ)∗Sθ, coeffsupp(Bq) = [−1, 1], and coeffsupp(qBq) = [ℓ1 +

1, ℓ2−1]. That is, Bq has compatible symmetry with coefficient support

on [−1, 1] and Bq reduces the length of the coefficient support of q

exactly by 2. Moreover, S(qBq) = Sq.

(P2) if (p, q∗) has mutually compatible symmetry such that pq∗ = 0, then

S(pBq) = S(p) and coeffsupp(pBq) ⊆ coeffsupp(p). That is, Bq keeps



87

the symmetry pattern of p and does not increase the length of the

coefficient support of p.

Proof. Property (P1) follows directly from our construction. Due to (p, q∗)

has mutually compatible symmetry, up to a permutation matrix Up,ε, p

takes the form in (3.2.3). Then, Property (P2) can be checked by directly

computation using the orthogonality of p, q (pq∗ = 0) and the definition of

Bq from (3.2.5).

Finally, we introduce a paraunitary matrix B(q1,q2) constructed with respect

to a pair (q1, q2) from two rows of P so that B(q1,q2) reduces the length of

the coefficient support of of the pair (q1, q2) by 2 and keeps their symmetry

patterns.

Let q1, q2 be two 1× s row vectors of Laurent polynomials with symmetry

such that qj1q
∗
j2

= δ(j1 − j2) for j1, j2 = 1, 2, Sq1 = ε1Sθ and Sq2 = ε2zSθ
with Sθ := [1s1 ,−1s2, z

−11s3 ,−z−11s4] for some ε1, ε2 ∈ {−1, 1}. Suppose

coeffsupp(q1) = [−k, k − 1] and coeffsupp(q2) = [−k + 1, k] with k > 1.

Then, similar to the discussion before (3.2.3), there is a permutation matrix

E(q1,q2) such that q̃1 := q1E(q1,q2) and q̃2 := q2E(q1,q2) take the following

form:

2
4 eq1

eq2

3
5 :=

2
4 q1

q2

3
5 E(q1,q2) =

2
64

0 0 eg3 −eg4

0 0 0 0

3
75 z−k +

2
64

ef5 − ef6 eg7 −eg8

εeg1 −εeg2 ε ef7 −ε ef8

3
75 z−k+1

+

k−2X

n=2−k

coeff(

2
4 eq1

eq2

3
5 , n) +

2
64

ef5
ef6 eg3 eg4

eg5 eg6
ef7

ef8

3
75 zk−1 +

2
64

0 0 0 0

eg1 eg2 0 0

3
75 zk,

(3.2.7)

where ε ∈ {−1, 1} and all g̃j ’s are nonzero row vectors. Note that ‖g̃1‖ =

‖g̃2‖ =: ceg1 and ‖g̃3‖ = ‖g̃4‖ =: ceg3 . Similar to the construction of Bq0 , we
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can build an s × s paraunitary matrix B(eq1,eq2) that reduces the length of

the coefficient support of both q̃1 and q̃2 as follows:

B∗
(eq1,eq2) :=

1

c




c0
ceg1

g̃1 0 g̃3(1 + 1
z ) g̃4(1 − 1

z )

cG̃1 0 0 0

0
c0
ceg1

g̃2 −g̃3(1 − 1
z ) −g̃4(1 + 1

z )

0 cG̃2 0 0

ceg3
ceg1

g̃1(1 + z) − ceg3
ceg1

g̃2(1 − z) − c0
ceg3

g̃3 0

0 0 cG̃3 0

ceg3
ceg1

g̃1(1 − z) − ceg3
ceg1

g̃2(1 + z) 0 − c0
ceg3

g̃4

0 0 0 cG̃4




,

(3.2.8)

where c0 := coeff(q̃1,−k + 1)coeff(q̃∗
2,−k)/ceg1 , c := (|c0|2 + 4c2eg3

)1/2, and

[
eg∗j
‖egj‖ , G̃

∗
j ] = Uegj

are unitary constant extension matrices in F for vectors g̃j

in F, j = 1, . . . , 4, respectively. Let B(q1,q2) := E(q1,q2)B(eq1,eq2)E
T
(q1,q2). Then

B(q1,q2) is paraunitary and also has properties similar to (P1) and (P2) of

Bq, which are summerized by the following lemma.

Lemma 3.4. Let q1, q2 be two 1×s row vectors of Laurent polynomials such

that qj1q
∗
j2 = δ(j1−j2) for j1, j2 = 1, 2, Sq1 = ε1[1s1,−1s2 , z

−11s3,−z−11s4 ]

and Sq2 = ε2z[1s1 ,−1s2 , z
−11s3,−z−11s4 ] for some ε1, ε2 ∈ {−1, 1}. Sup-

pose coeffsupp(q1) = [−k, k−1] and coeffsupp(q2) = [−k+1, k] with k > 1.

Let B(q1,q2) be constructed as above. Then,

(P3) SB(q1,q2) = [1s1 ,−1s2, z1s3 ,−z1s4 ]
T [1s1,−1s2 , z

−11s3,−z−11s4 ], the co-

efficient support of B(q1,q2) is on [−1, 1], coeffsupp(q1B(q1,q2)) ⊆ [−k+

1, k−1] and coeffsupp(q2B(q1,q2)) ⊆ [−k+1, k−1]. That is, B(q1,q2) has

compatible symmetry with coefficient support on [−1, 1] and B(q1,q2)
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reduces the length of both the coefficient supports of q1 and q2 by 2.

Moreover, S(q1B(q1,q2)) = Sq1 and S(q2B(q1,q2)) = Sq2.

(P4) if both (p, q∗
1) and (p, q∗

2) have mutually compatible symmetry and

pq∗
1 = pq∗

2 = 0, then S(pB(q1,q2)) = Sp and coeffsupp(pB(q1,q2)) ⊆
coeffsupp(p). That is, B(q1,q2) keeps the symmetry pattern of p and

does not increase the length of the coefficient support of p.

Proof. Direct computations yield the results.

3.3 An Algorithm for Matrix Extension with

Symmetry

In this section, we present a step-by-step algorithm on matrix extension

with symmetry to derive a desired matrix Pe in Theorem 3.2 from a given

matrix P. Our algorithm has three steps: initialization, support reduction,

and finalization. The step of initialization reduces the symmetry pattern

of P to a standard form. The step of support reduction is the main body of

the algorithm, producing a sequence of elementary matrices A1, . . . ,AJ that

reduce the length of the coefficient support of P to 0. The step of finalization

generates the desired matrix Pe as in Theorem 3.2. More precisely, our

algorithm written in the form of pseudo-code for Theorem 3.2 is as follows:

Algorithm 3.1. Input P as in Theorem 3.2 with SP = (Sθ1)∗Sθ2 for some

1×r and 1×s row vectors θ1 and θ2 of Laurant polynomials with symmetry.

1. Initialization: Let Q := U∗
Sθ1

PUSθ2. Then the symmetry pattern of Q is

SQ = [1r1 ,−1r2 , z1r3 ,−z1r4 ]
T [1s1 ,−1s2, z

−11s3 ,−z−11s4], (3.3.1)
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where all nonnegative integers r1, . . . , r4, s1, . . . , s4 are uniquely determined

by SP.

2. Support Reduction: Let P0 := U∗
Sθ2

and J := 1.

while (|coeffsupp(Q)| > 0) do %% outer while loop

Let Q0 := Q, [k1, k2] := coeffsupp(Q), and AJ := Is.

if k2 = −k1 then

for j from 1 to r do

Let q := [Q0]j,:, p := [Q]j,:, the j-th row of Q0, Q, respectively.

Let [ℓ1, ℓ2] := coeffsupp(q), ℓ := ℓ2 − ℓ1, and Bj := Is.

if coeffsupp(q) = coeffsupp(p) and ℓ > 2 and (ℓ1 = k1 or ℓ2 = k2)

then

Bj := Bq. AJ := AJBj. Q0 := Q0Bj.

end if

end for

Q0 takes the form in (3.3.4).

Let B(−k2,k2) := Is, Q1 := Q0, j1 := 1 and j2 := r3 + r4 + 1.

while j1 6 r1 + r2 and j2 6 r do %% inner while loop

Let q1 := [Q1]j1,: and q2 := [Q1]j2,:.

if coeff(q1, k1) = 0 then j1 := j1 + 1. end if

if coeff(q2, k2) = 0 then j2 := j2 + 1. end if

if coeff(q1, k1) 6= 0 and coeff(q2, k2) 6= 0 then

B(−k2,k2) := B(−k2,k2)B(q1,q2).

Q1 := Q1B(q1,q2). AJ := AJB(q1,q2).

j1 := j1 + 1. j2 := j2 + 1.

end if

end while %% end inner while loop

end if
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Q1 takes the form in (3.3.4) with either coeff(Q1,−k) = 0

or coeff(Q1, k) = 0.

Let AJ := AJBQ1 and Q := QAJ .

Then SQ = [1r1 ,−1r2, z1r3 ,−z1r4 ]
T [1s′1

,−1s′2
, z−11s′3

,−z−11s′4
].

Replace s1, . . . , s4 by s′1, . . . , s
′
4, respectively.

Let PJ := A∗
J and J := J + 1.

end while %% end outer while loop

3. Finalization: Q = diag(F1, F2, F3, F4) for some rj ×sj constant matrices

Fj in F, j = 1, . . . , 4. Let U := diag(UF1 , UF2, UF3 , UF4) so that QU =

[Ir, 0]. Define PJ := U∗ and PJ+1 := diag(USθ1, Is−r).

Output a desired matrix Pe satisfying all the properties in Theorem 3.2.

In the following subsections, we shall give a detailed explanation of each

step of Algorithm 3.1.

3.3.1 Initialization

Let θ be a 1×n row vector of Laurent polynomials with symmetry such that

Sθ = [ε1z
c1 , . . . , εnz

cn ] for some ε1, . . . , εn ∈ {−1, 1} and c1, . . . , cn ∈ Z.

Then, the symmetry of any entry in the vector θdiag(z−⌈c1/2⌉, . . . , z−⌈cn/2⌉)

belongs to {±1,±z−1}. Thus, there is a permutation matrix Eθ to regroup

these four types of symmetries together so that

S(θUSθ) = [1n1 ,−1n2 , z
−11n3 ,−z−11n4 ], (3.3.2)

where USθ := diag(z−⌈c1/2⌉, . . . , z−⌈cn/2⌉)Eθ, 1m denotes the 1×m row vector

[1, . . . , 1], and n1, . . . , n4 are nonnegative integers uniquely determined by
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Sθ. Since P satisfies (3.1.4), it is easy to see that Q := U∗
Sθ1

PUSθ2 has the

symmetry pattern as in (3.3.1). Note that USθ1 and USθ2 do not increase

the length of the coefficient support of P.

3.3.2 Support Reduction

Denote Q := U∗
Sθ1

PUSθ2 as in Algorithm 3.1. The outer while loop in the

step of support reduction produces a sequence of elementary paraunitary

matrices A1, . . . ,AJ that reduce the length of the coefficient support of Q

gradually to 0. The construction of each Aj has three parts: {B1, . . . ,Br},
B(−k,k), and BQ1 . We next explain the construction and purpose of each

part.

The first part {B1, . . . ,Br} (see the for loop) is constructed recursively for

each of the r rows of Q so that Q0 := QB1 · · ·Br has a special form as in

(3.3.4). In fact, suppose coeffsupp(Q) = [−k, k] with k > 1. Then, Q is of

the form as follows:

Q =

2
666664

F11 −F21 G31 −G41

−F12 F22 −G32 G42

0 0 F31 −F41

0 0 −F32 F42

3
777775

z−k +

2
666664

F51 −F61 G71 −G81

−F52 F61 −G72 G82

G11 −G21 F71 −F81

−G12 G22 −F72 F82

3
777775

z−k+1

+

k−2X

n=2−k

coeff(Q, n) +

2
666664

F51 F61 G31 G41

F52 F61 G32 G42

G51 G61 F71 F81

G52 G62 F72 F82

3
777775

zk−1 +

2
666664

F11 F21 0 0

F12 F22 0 0

G11 G21 F31 F41

G12 G22 F32 F42

3
777775

zk

(3.3.3)

with all Fjk’s and Gjk’s being constant matrices in F and F11, F22, F31, F42

being of size r1 × s1, r2 × s2, r3 × s3, r4 × s4, respectively. In the for

loop, Bj is simply Bq with q being the current j-th row of QB0 · · ·Bj−1 and

with B0 := Is. Due to properties (P1) and (P2) of Bq (see Lemma 3.3),
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each Bj does not increase the lengths of the coefficient support of any other

rows and also keeps the symmetry patterns of any rows. More importantly,

Bj reduces the length of the coefficient support of current j-th row by 2

if the current j-th row satisfies conditions of the if sentence in the for

loop. Consequently, the for loop in Algorithm 3.1 reduces Q in (3.3.3) to

Q0 := QB1 · · ·Br as follows:

2
66666664

0 0 eG31 − eG41

0 0 − eG32
eG42

0 0 0 0

0 0 0 0

3
77777775

z−k + · · · +

2
66666664

0 0 0 0

0 0 0 0

eG11
eG21 0 0

eG12
eG22 0 0

3
77777775

zk. (3.3.4)

The second part B(−k,k) is constructed recursively from pairs (q1, q2) with

q1, q2 being two rows of Q0 satisfying coeff(q1,−k) 6= 0 and coeff(q2, k) 6= 0.

In fact, if both coeff(Q0,−k) 6= 0 and coeff(Q0, k) 6= 0, then the inner while

loop chooses a pair (q1, q2) satisfies conditions in Lemma 3.4 and constructs

the corresponding paraunitary matrix B(q1,q2). By properties (P3) and (P4)

of each B(q1,q2), i.e., B(q1,q2) does not increase the lengths of the coefficient

support of any other rows, keeps the symmetry patterns of any rows, and

reduces the lengths of both q1 and q2, the matrix B(−k,k) constructed in the

inner while loop reduces Q0 of the form in (3.3.4) to Q1 := Q0B(−k,k) of the

form in (3.3.4) with at least one of coeff(Q1,−k) and coeff(Q1, k) being 0.

The last part BQ1 is constructed to handle the case that coeffsupp(Q1) =

[−k, k − 1] or coeffsupp(Q1) = [−k + 1, k] so that coeffsupp(Q1BQ1) ⊆
[−k + 1, k − 1]. In fact, if coeffsupp(Q1) = [−k + 1, k − 1] after the for

loop and inner while loop, then we simply define BQ1 := Is. If one of

coeff(Q1,−k) and coeff(Q1, k) is nonzero, then BQ1 := diag(U1W1, Is3+s4)E

with matrices U1,W1 constructed with respect to coeff(Q1, k) 6= 0 or BQ1 :=
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diag(Is1+s2 , U3W3)E with U3,W3 constructed with respect to coeff(Q1,−k) 6=
0, where E is a permutation matrix. Let Q1 take form in (3.3.4). The ma-

trices U1,W1 or U3,W3, and E are constructed as follows.

Let U1 := diag(U eG1
, U eG2

) and U3 := diag(U eG3
, U eG4

) with

G̃1 :=


 G̃11

G̃12


 , G̃2 :=


 G̃21

G̃22


 , G̃3 :=


 G̃31

G̃32


 , G̃4 :=


 G̃41

G̃42


 .

(3.3.5)

Here, for a nonzero matrix G with rank m, UG is a unitary matrix such

that GUG = [R, 0] for some matrix R of rank m. For G = 0, UG := I and

for G = ∅, UG := ∅. When G1G
∗
1 = G2G

∗
2, UG1 and UG2 can be constructed

such that G1UG1 = [R, 0] and G2UG2 = [R, 0].

Letm1,m3 be the ranks of G̃1, G̃3, respectively (m1 = 0 when coeff(Q1, k) =

0 and m3 = 0 when coeff(Q1,−k) = 0). Note that G̃1G̃
∗
1 = G̃2G̃

∗
2 or

G̃3G̃
∗
3 = G̃4G̃

∗
4 due to Q1Q

∗
1 = Ir. The matrices W1,W3 are then con-

structed by:

W1 :=




U1 U2

Is1−m1

U2 U1

Is2−m1



,W3 :=




U3 U4

Is3−m3

U4 U3

Is4−m3



,

(3.3.6)

where U1(z) = −U2(−z) := 1+z−1

2
Im1 and U3(z) = U4(−z) := 1+z

2
Im3 .

Let WQ1 := diag(U1W1, Is3+s4) for the case that coeff(Q1, k) 6= 0 or WQ1 :=

diag(Is1+s2 , U3W3) for the case that coeff(Q1,−k) 6= 0. Then WQ1 is pa-

raunitary. By the symmetry pattern and orthogonality of Q1, WQ1 reduces

the coefficient support of Q1 to [−k + 1, k − 1], i.e., coeffsupp(Q1WQ1) =

[−k + 1, k − 1]. Moreover, WQ1 changes the symmetry pattern of Q1 such
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that S(Q1WQ1) = [1r1 ,−1r2 , z1r3 ,−z1r4 ]
TSθ1 with

Sθ1 = [z−1
1m1 ,1s1−m1 ,−z−1

1m1 ,−1s2−m1 ,1m3 , z
−1

1s3−m3 ,−1m3 ,−z−1
1s4−m3 ].

E is then the permutation matrix such that

S(Q1WQ1)E = [1r1 ,−1r2 , z1r3 ,−z1r4 , ]
TSθ,

with Sθ = [1s1−m1+m3 , ,−1s2−m1+m3 , z
−11s3−m3+m1 ,−z−11s4−m3+m1 ].

3.3.3 Finalization

After the second step of support reduction, we must have |coeffsupp(Q)| =

0 and SQ = [1r1 ,−1r2 , z1r3 ,−z1r4 ]
T [1s1,−1s2 , z

−11s3,−z−11s4 ] for some

nonnegative integers s′1, . . . , s
′
4 such that s1 + · · · + s4 = s. Thus, Q =

diag(F1, F2, F3, F4) for some rj × sj constant matrices Fj in F, j = 1, . . . , 4.

Then, due to QQ∗ = Ir, AJ = U := diag(UF1, UF2 , UF3, UF4) normalizes Q to

be QU = [Ir, 0]. Consequently, U∗
Sθ1

PUSθ2A1 . . .AJ = [Ir, 0]. Let Pj := A∗
j

for j = 1, . . . , J , P0 := USθ2 , and PJ+1 := diag(USθ1, Is−r). Then items (1),

(3) and (4) of Theorem 3.2 can be easily checked by our construction.

3.4 Applications to Orthonormal Multiwave-

lets and Filter Banks with Symmetry

In this section, we shall discuss the application of our results on matrix

extension with symmetry to d-band symmetric paraunitary filter banks in
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electronic engineering and to orthonormal multiwavelets with symmetry in

wavelet analysis. In order to do so, let us introduce some definitions first.

Let F be a subfield of C such that (3.1.6) holds. Let a0 : Z → Fr×r be a

mask with multiplicity r (a low-pass filter in electronic engineering) . The

symbol of the filter a0 is defined to be a0(z) :=
∑

k∈Z
a0(k)z

k, which is a

matrix of Laurent polynomials with coefficients in F. Let d be a dilation

factor. The d-band subsymbols (polyphase) of a0 are defined by a0;γ(z) :=
√

d
∑

k∈Z
a0(γ+dk)zk, γ ∈ Z. It is easily seen that a0 is a d-band orthogonal

mask (i.e., (1.2.4) holds for a0) if

d−1∑

γ=0

a0;γ(z)a
∗
0;γ(z) = Ir, z ∈ C\{0}. (3.4.1)

To construct orthogonal multiwavelets (or an orthogonal filter bank with

the perfect reconstruction property in electronic engineering), one has to

design masks (high-pass filters) a1, . . . , ad−1 : Z → Fr×r such that the

polyphase matrix

P(z) =




a0;0(z) · · · a0;d−1(z)

a1;0(z) · · · a1;d−1(z)
...

...
...

ad−1;0(z) · · · ad−1;d−1(z)




(3.4.2)

is paraunitary, that is, P(z)P∗(z) = Idr, where each am;γ is a subsymbol of

am for m, γ = 0, . . . , d − 1, respectively. We say that the mask (low-pass

filter) a0 (or a0) has symmetry if

a0(z) = diag(ε1z
dc1 , . . . , εrz

dcr)a0(1/z)diag(ε1z
−c1 , . . . , εrz

−cr) (3.4.3)
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for some ε1, . . . , εr ∈ {−1, 1} and c1, . . . , cr ∈ R such that dcℓ−cj ∈ Z for all

ℓ, j = 1, . . . , r. To construct orthogonal multiwavelets from an orthogonal

mask, one has to construct masks (high-pass filters) a1, . . . , ad−1 : Z → Fr×r

such that all of them have symmetry that is compatible with the symmetry

of a0 in (3.4.3) and the polyphase matrix P in (3.4.2) is paraunitary. Let

φ = [φ1, . . . , φr]
T be an orthogonal compactly supported d-refinable func-

tion vector in L2(R) associated with an orthogonal mask (low-pass filter)

a0. Define multiwavelet function vectors ψm = [ψm
1 , . . . , ψ

m
r ]T associated

with the masks (high-pass filters) am, m = 1, . . . , d − 1, by

ψ̂m(dξ) := am(e−iξ)φ̂(ξ), ξ ∈ R, m = 1, . . . , d − 1. (3.4.4)

It is well known that {ψ1, . . . , ψd−1} generates an orthonormal multiwavelet

basis in L2(R); that is, {dj/2ψm
ℓ (dj · −k) : j, k ∈ Z;m = 1, . . . , d − 1; ℓ =

1, . . . , r} is an orthonormal basis of L2(R), for example, see [11, 30, 37, 64]

and references therein.

In what follows, to distinguish mask a0 for the d-refinable function vector

φ and mask am for the multiwavelet function vector ψm, m = 1, . . . , d − 1,

we shall refer a0 as the low-pass filter for φ and am as the high-pass filter

for ψm, m = 1, . . . , d − 1. {a0, a1, . . . , ad−1} denotes an orthogonal filter

bank with the perfect reconstruction property if its corresponding polyphase

matrix P in (3.4.2) is paraunitary.

If a0 has symmetry as in (3.4.3) and if 1 is a simple eigenvalue of a0(1), then

it is well known that the d-refinable function vector φ in (1.1.1) associated

with the low-pass filter a0 has the following symmetry:

φ1(c1 − ·) = ε1φ1, φ2(c2 − ·) = ε2φ2, . . . , φr(cr − ·) = εrφr. (3.4.5)
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Under the symmetry condition in (3.4.3), to apply Theorem 3.1, we first

show that there exists a suitable paraunitary matrix U acting on Pa0 :=

[a0;0, . . . , a0;d−1] so that Pa0U has compatible symmetry. Note that Pa0 itself

may not have any symmetry.

Lemma 3.5. Let Pa0 := [a0;0, . . . , a0;d−1], where a0;0, . . . , a0;d−1 are d-band

subsymbols of a d-band orthogonal low-pass filter a0 satisfying (3.4.3). Then

there exists a dr × dr paraunitary matrix U such that Pa0U has compatible

symmetry.

Proof. From (3.4.3), we have [a0(k)]ℓ,j = εℓεj[a0(dcℓ − cj − k)]ℓ,j, which

implies that for γ = 0, . . . , d − 1 and ℓ, j = 1, . . . , r,

[a0;γ(z)]ℓ,j = εℓεjz
Rγ

ℓ,j [a0;Qγ
ℓ,j

(z−1)]ℓ,j, (3.4.6)

where Qγ
ℓ,j ∈ Γ := {0, . . . , d− 1} and Rγ

ℓ,j, Q
γ
ℓ,j are uniquely determined by

dcℓ − cj − γ = dRγ
ℓ,j +Qγ

ℓ,j with Rγ
ℓ,j ∈ Z, Qγ

ℓ,j ∈ Γ. (3.4.7)

Since dcℓ − cj ∈ Z for all ℓ, j = 1, . . . , r, we have cℓ − cj ∈ Z for all

ℓ, j = 1, . . . , r and therefore, Qγ
ℓ,j is independent of ℓ. Consequently, by

(3.4.6), for every 1 6 j 6 r, the j-th column of the matrix a0;γ is a flipped

version of the j-th column of the matrix a0;Qγ
ℓ,j

. Let κj,γ ∈ Z be an integer

such that |coeffsupp([a0;γ]:,j + zκj,γ [a0;Qγ
ℓ,j

]:,j)| is as small as possible. Define

P := [b0;0, . . . , b0;d−1] as follows:

[b0;γ]:,j :=





[a0;γ]:,j, γ = Qγ
ℓ,j ;

1√
2
([a0;γ]:,j + zκj,γ [a0;Qγ

ℓ,j
]:,j), γ < Qγ

ℓ,j ;

1√
2
([a0;γ]:,j − zκj,γ [a0;Qγ

ℓ,j
]:,j), γ > Qγ

ℓ,j ,

(3.4.8)
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where [a0;γ]:,j denotes the j-th column of a0;γ. Let U denote the unique

transform matrix corresponding to (3.4.8) such that P := [b0;0, . . . , b0;d−1] =

[a0;0, . . . , a0;d−1]U. It is evident that U is paraunitary and P = Pa0U. We

now show that P has compatible symmetry. Indeed, by (3.4.6) and (3.4.8),

[Sb0;γ ]ℓ,j = sgn(Qγ
ℓ,j − γ)εℓεjz

Rγ
ℓ,j

+κj,γ , (3.4.9)

where sgn(x) = 1 for x > 0 and sgn(x) = −1 for x < 0. By (3.4.7) and

noting that Qγ
ℓ,j is independent of ℓ, we have

[Sb0;γ ]ℓ,j
[Sb0;γ ]n,j

= εℓεnz
Rγ

ℓ,j
−Rγ

n,j = εℓεnz
cℓ−cn,

for all 1 6 ℓ, n 6 r, which is equivalent to saying that P has compatible

symmetry.

Now, for a d-band orthogonal low-pass filter a0 satisfying (3.4.3), we have

the following algorithm to construct high-pass filters a1, . . . , ad−1 such that

{a0, a1, . . . , ad−1} forms a symmetric paraunitary filter bank with the perfect

reconstruction property.

Algorithm 3.2. Input an orthogonal d-band filter a0 with symmetry in

(3.4.3).

(1) Construct U as in (3.4.8) such that P := Pa0U has compatible sym-

metry: SP = [ε1z
k1 , . . . , εrz

kr ]TSθ for some k1, . . . , kr ∈ Z and some

1 × dr row vector θ of Laurent polynomials with symmetry.

(2) Derive Pe with all the properties as in Theorem 3.1 from P by Algo-

rithm 3.1.
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(3) Let P := PeU
∗ =: (am;γ)06m,γ6d−1 as in (3.4.2). Define high-pass

filters

am(z) :=
1√
d

d−1∑

γ=0

am;γ(z
d)zγ , m = 1, . . . , d − 1. (3.4.10)

Output a symmetric filter bank {a0, a1, . . . , ad−1} with the perfect recon-

struction property, i.e. P in (3.4.2) is paraunitary and all filters am,

m = 1, . . . , d − 1, have symmetry:

am(z) = diag(εm
1 z

dcm
1 , . . . , εm

r z
dcm

r )am(1/z)diag(ε1z
−c1 , . . . , εrz

−cr),

(3.4.11)

where cmℓ := (km
ℓ − kℓ) + cℓ ∈ R and all εm

ℓ ∈ {−1, 1}, km
ℓ ∈ Z, for

ℓ = 1, . . . , r and m = 1, . . . , d− 1, are determined by the symmetry pattern

of Pe as follows:

[ε1z
k1 , . . . , εrz

kr , ε1
1z

k1
1 , . . . , ε1

rz
k1

r , . . . , εd−1
1 zkd−1

1 , . . . , εd−1
r zkd−1

r ]TSθ := SPe.

(3.4.12)

Proof. Rewrite Pe = (bm;γ)06m,γ6d−1 as a d × d block matrix with r × r

blocks bm;γ. Since Pe has compatible symmetry as in (3.4.12), we have

[Sbm;γ ]ℓ,: = εm
ℓ εℓz

km
ℓ
−kℓ [Sb0;γ ]ℓ,: for ℓ = 1, . . . , r and m = 1, . . . , d − 1. By

(3.4.9), we have

[Sbm;γ ]ℓ,j = sgn(Qγ
ℓ,j − γ)εm

ℓ εjz
Rγ

ℓ,j
+κj,γ+km

ℓ
−kℓ , ℓ, j = 1, . . . , r. (3.4.13)

By (3.4.13) and the definition of U∗ in (3.4.8), we deduce that

[am;γ]ℓ,j = εm
ℓ εjz

Rγ
ℓ,j

+km
ℓ
−kℓ [am;Qγ

ℓ,j
(z−1)]ℓ,j. (3.4.14)
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This implies that [Sam]ℓ,j = εm
ℓ εjz

d(km
ℓ
−kℓ+cℓ)−cj , which is equivalent to

(3.4.11) with cmℓ := km
ℓ − kℓ + cℓ for m = 1, . . . , d − 1 and ℓ = 1, . . . , r.

Since the high-pass filters a1, . . . , ad−1 satisfy (3.4.11), it is easy to verify

that each ψm = [ψm
1 , . . . , ψ

m
r ]T defined in (3.4.4) also has the following

symmetry:

ψm
1 (cm1 − ·) = εm

1 ψ
m
1 , ψm

2 (cm2 − ·) = εm
2 ψ

m
2 , . . . , ψm

r (cmr − ·) = εm
r ψ

m
r .

(3.4.15)

In the following, let us present several examples to demonstrate our results

and illustrate our algorithms.

Example 3.1. Let d = 2 and r = 2. A 2-band orthogonal low-pass filter

a0 with multiplicity 2 in [16] is given by

a0(z) =
1

40


 12(1 + z−1) 16

√
2z−1

−
√

2(z2 − 9z − 9 + z−1) −2(3z − 10 + 3z−1)


 .

The low-pass filter a0 satisfies (3.4.3) with c1 = −1, c2 = 0 and ε1 = ε2 = 1.

Using Lemma 3.5, we obtain Pa0 := [a0;0, a0;1] and U as follows:

Pa0
=

1

20




6
√

2 0 6
√

2
z

16
z

9 − z 10
√

2 9 − 1
z

−3
√

2(1 + 1
z
)


 ,U =

1√
2




1 0 1 0

0
√

2 0 0

z 0 −z 0

0 0 0
√

2z



.

Then P := Pa0U satisfies SP = [1, z]T [1, z−1,−1, 1] and is given by

P =

√
2

20


 6

√
2 0 0 8

√
2

4(1 + z) 10 5(1 − z) −3(1 + z)


 .
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Applying Algorithm 3.1, we obtain a desired paraunitary matrix Pe as

follows:

Pe =

√
2

20




6
√

2 0 0 8
√

2

4(1 + z) 10 5(1 − z) −3(1 + z)

4(1 + z) −10 5(1 − z) −3(1 + z)

4
√

2(1 − z) 0 5
√

2(z + 1) 3
√

2(z − 1)



.

We have SPe = [1, z, z,−z]T [1, z−1,−1, 1] and the coefficient supports of Pe

satisfies coeffsupp([Pe]:,j) ⊆ coeffsupp([P]:,j) for all 1 6 j 6 4. Now, from

the polyphase matrix P := PeU
∗ =: (am;γ)06m,γ61, we derive a high-pass

filter a1 as follows:

a1(z) =
1

40


 −

√
2(z2 − 9z − 9 + z−1) −2(3z + 10 + 3z−1)

2(z2 − 9z + 9 − z−1) 6
√

2(z − z−1)


 .

Then the high-pass filter a1 satisfies (3.4.11) with c11 = c12 = 0 and ε1
1 =

1, ε1
2 = −1. See Figure 3.1 for the graphs of the 2-refinable function vector

φ associated with the low-pass filter a0 and the multiwavelet function vector

ψ associated with the high-pass filter a1.

Example 3.2. Let d = 3 and r = 2. Let a0 be the 3-band orthogonal

low-pass filter with multiplicity 2 obtained in Example 1.5. Then

a0(z) =
1

540


 a11(z) + a11(z

−1) a12(z) + z−1a12(z
−1)

a21(z) + z3a21(z
−1) a22(z) + z2a22(z

−1)


 ,

where

a11(z) = 90 + (55 − 5
√

41)z − (8 + 2
√

41)z2 + (7
√

41 − 47)z4;

a12(z) = 145 + 5
√

41 + (1 −
√

41)z2 + (34 − 4
√

41)z3;
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Figure 3.1: The graphs of the 2-refinable function vector φ = [φ1, φ2]
T

associated with a0 (top row) and the multiwavelet function vector ψ =
[ψ1, ψ2]

T associated with a1 (bottom 2) in Example 3.1.

a21(z) = (111 + 9
√

41)z2 + (69 − 9
√

41)z4;

a22(z) = 90z + (63 − 3
√

41)z2 + (3
√

41 − 63)z3.

The low-pass filter a0 satisfies (3.4.3) with c1 = 0, c2 = 1 and ε1 = ε2 = 1.

From Pa0 := [a0;0, a0;1, a0;2], the matrix U constructed by Lemma 3.5 is given

by

U :=
1√
2




√
2 0 0 0 0 0

0 1 0 0 0 1

0 0 1 0 1 0

0 0 0
√

2 0 0

0 0 z 0 −z 0

0 z 0 0 0 −z




.

Let

c0 = 11 −
√

41; t12 = 5(7 −
√

41); c12 = 10(29 +
√

41); t13 = −5c0;

t16 = 3c0; t15 = 3(3
√

41 − 13); t25 = 6(7 + 3
√

41); t26 = 6(21 −
√

41);

t53 = 400
√

6/c0; t55 = 12
√

6(
√

41 − 1); t56 = 6
√

6(4 +
√

41); c66 = 3
√

6(3 + 7
√

41).
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Then P := Pa0U satisfies SP = [1, z]T [1, 1, 1, z−1,−1,−1] and is given by

P =

√
6

1080


 180

√
2 b12(z) b13(z) 0 t15(z − z−1) t16(z − z−1)

0 0 180(1 + z) 180
√

2 t25(1 − z) t26(1 − z)


 ,

where b12(z) = t12(z + z−1) + c12 and b13(z) = t13(z − 2 + z−1). Applying

Algorithm 3.1, we obtain a desired paraunitary matrix Pe as follows:

Pe =

√
6

1080




180
√

2 b12(z) b13(z) 0 t15(z − 1
z
) t16(z − 1

z
)

0 0 180(1 + z) 180
√

2 t25(1 − z) t26(1 − z)

360 − b12(z)√
2

− b13(z)√
2

0 t15√
2
( 1

z
− z) t16√

2
( 1

z
− z)

0 0 90
√

2(1 + z) −360 t25√
2
(1 − z) t26√

2
(1 − z)

0
√

6t13(1 − z) t53(1 − z) 0 t55(1 + z) t56(1 + z)

0
√

6t12
2

( 1
z
− z)

√
6t13
2

( 1
z
− z) 0 b65(z) b66(z)



,

where b65(z) = −
√

6(5t15(z + z−1) + 3c12)/10 and b66(z) = −
√

6t16(z +

z−1)/2 + c66. Note that SPe = [1, z, 1, z,−z,−1]T [1, 1, 1, z−1,−1,−1] and

the coefficient support of Pe satisfies coeffsupp([Pe]:,j) ⊆ coeffsupp([P]:,j)

for all 1 6 j 6 6. From the polyphase matrix P := PeU
∗ =: (am;γ)06m,γ62,

we derive two high-pass filters a1, a2 as follows:

a1(z) =

√
2

1080


 a1

11(z) + a1
11(z

−1) a1
12(z) + z−1a1

12(z
−1)

a1
21(z) + z3a1

21(z
−1) a1

22(z) + z2a1
22(z

−1)


 ,

a2(z) =

√
6

1080


 a2

11(z) − z3a2
11(z

−1) a2
12(z) − z2a2

12(z
−1)

a2
21(z) − a2

21(z
−1) a2

22(z) − z−1a2
22(z

−1)


 ,

where

a1
11(z) = (47 − 7

√
41)z4 + 2(4 +

√
41)z2 + 5(

√
41 − 11)z + 180;

a1
12(z) = 2(2

√
41 − 17)z3 + (

√
41 − 1)z2 − 5(29 +

√
41);
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a1
21(z) = 3(37 + 3

√
41)z + 3(23 − 3

√
41)z−1;

a1
22(z) = −180z + 3(21 −

√
41) − 3(21 −

√
41)z−1;

a2
11(z) = (43 + 17

√
41)z + (67 − 7

√
41)z−1;

a2
12(z) = 11

√
41 − 31 − (79 +

√
41)z−1;

a2
21(z) = (47 − 7

√
41)z4 + 2(4 +

√
41)z2 − 3(29 +

√
41)z;

a2
22(z) = 2(2

√
41 − 17)z3 + (

√
41 − 1)z2 + 3(3 + 7

√
41).

Then the high-pass filters a1, a2 satisfy (3.4.11) with c11 = 0, c12 = 1, ε1
1 =

ε1
2 = 1 and c21 = 1, c22 = 0, ε2

1 = ε2
2 = −1. See Figure 3.2 for the graphs

of the 3-refinable function vector φ associated with the low-pass filter a0

and the multiwavelet function vectors ψ1, ψ2 associated with the high-pass

filters a1, a2, respectively.
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Figure 3.2: The graphs of the 3-refinable function vector φ = [φ1, φ2]
T

associated with a0 (left column), multiwavelet function vector ψ1 =
[ψ1

1 , ψ
1
2 ]T associated with a1 (middle column), and multiwavelet function

vector ψ2 = [ψ2
1 , ψ

2
2 ]

T associated with a2 (right column) in Example 3.2.

As demonstrated by the following example, our Algorithm 3.2 also applies

to low-pass filters with symmetry patterns other than those in (3.4.3).
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Example 3.3. Let d = 3 and r = 2. Let a0 be the 3-band orthogonal

low-pass filter with multiplicity 2 obtained in Example 1.4. Then

a0(z) =
1

702


 a11(z) a12(z)

a21(z) a22(z)


 ,

where

a11(z) = (11 − 14
√

17)z2 + (29 + 8
√

17)z + 234 + (85 − 16
√

17)z−1 − (17 + 2
√

17)z−2;

a12(z) = (5
√

17 − 16)z3 + (2 +
√

17)z2 + 238 − 11
√

17 + (136 + 29
√

17)z−1;

a21(z) = (136 + 29
√

17)z2 + (238 − 11
√

17)z + (2 +
√

17)z−1 + (5
√

17 − 16)z−2;

a22(z) = (−17 − 2
√

17)z3 + (85 − 16
√

17)z2 + 234z + 29 + 8
√

17 + (11 − 14
√

17)z−1.

This low-pass filter a0 does not satisfy (3.4.3). However, we can employ

a very simple orthogonal transform E := 1√
2

[
1 1

1 −1

]
to a0 so that the

symmetry in (3.4.3) holds. That is, for ã0(z) := Ea0(z)E, it is easy to

verify that ã0 satisfies (3.4.3) with c1 = c2 = 1/2 and ε1 = 1, ε2 = −1.

Construct Pea0 := [̃a0;0, ã0;1, ã0;2] from ã0. The matrix U constructed by

Lemma 3.5 from Pea0 is given by:

U =
1√
2




z−1 0 z−1 0 0 0

0 z−1 0 z−1 0 0

1 0 −1 0 0 0

0 1 0 −1 0 0

0 0 0 0
√

2 0

0 0 0 0 0
√

2




.

Then P := Pea0U satisfies SP = [z−1,−z−1]T [1,−1,−1, 1, 1,−1] and

P = c

[
234(1 + 1

z
) t12(1 − 1

z
) t13(1 − 1

z
) 0 117

√
2(1 + 1

z
) t16(1 − 1

z
)

t21(1 − 1
z
) t22(1 + 1

z
) t23(1 + 1

z
) t24(1 − 1

z
) t25(1 − 1

z
) t26(1 + 1

z
)

]
,
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where c =
√

6
1404

and tjk’s are constants defined as follows:

t12 = 3(11 −
√

17); t13 = 3(
√

17 − 89); t16 = 15
√

2(2 +
√

17);

t21 = 13(
√

17 − 17); t22 = 6(2 +
√

17); t23 = 6(37 −
√

17);

t24 = −13(1 +
√

17); t25 = −13
√

2(8 +
√

17); t26 = −3
√

2(7 + 10
√

17).

Applying Algorithm 3.1 to P, we obtain a desired paraunitary matrix Pe

as follows:

Pe = c




234(1 + 1
z
) t12(1 − 1

z
) t13(1 − 1

z
) 0 117

√
2(1 + 1

z
) t16(1 − 1

z
)

t21(1 − 1
z
) t22(1 + 1

z
) t23(1 + 1

z
) t24(1 − 1

z
) t25(1 − 1

z
) t26(1 + 1

z
)

t31(1 − 1
z
) t32(1 + 1

z
) t33(1 + 1

z
) t34(1 − 1

z
) t35(1 − 1

z
) t36(1 + 1

z
)

t41(1 + 1
z
) t42(1 − 1

z
) t43(1 − 1

z
) t44(1 + 1

z
) −

√
2t41(1 + 1

z
) t46(1 − 1

z
)

2√
3
t44 0 0 −2

√
3t41 − 4√

6
t44 0

0 t62 t63 0 0 t66




,

where all tjk’s are constants given by:

t31 = −
√

26(61 + 25
√

17)/4; t32 = −3
√

26(397 + 23
√

17)/52;

t33 = 3
√

26(553 + 23
√

17)/52; t34 = 25
√

26(1 +
√

17)/4;

t35 =
√

13(25
√

17 − 43)/2; t36 = 15
√

13(23
√

17 − 19)/26

t41 = 9
√

26(1 − 3
√

17)/4; t42 = −3
√

26(383 + 29
√

17)/52;

t43 = 3
√

26(29
√

17 + 227)/52; t44 = 27
√

26(1 +
√

17)/4;

t46 = 3
√

13(145
√

17 − 61)/26; t62 = 9
√

78(41
√

17 − 9)/26;

t63 = 9
√

78(11
√

17 + 9)/26; t66 = 27
√

3(
√

17 + 15)/
√

13.

Note Pe satisfies SPe = [z−1,−z−1,−z−1, z−1, 1,−1]T [1,−1,−1, 1, 1,−1]

and we have coeffsupp([Pe]:,j) ⊆ coeffsupp([P]:,j) for all 1 6 j 6 6. From

the polyphase matrix P := PeU
∗, we derive two high-pass filters ã1, ã2 as
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follows:

ã1(z) =

√
26

36504


 a1

11(z) − za1
11(z

−1) a1
12(z) + za1

12(z
−1)

a1
21(z) + za1

21(z
−1) a1

22(z) − za1
22(z

−1)


 ,

ã2(z) =

√
78

4056


 a2

11(z) a2
12(z)

a2
21(z) a2

22(z)


 ,

where

a1
11(z) = (433 − 128

√
17)z3 + 13(25

√
17 − 43)z2 − (1226 + 197

√
17)z;

a1
12(z) = (128

√
17 − 433)z3 + 15(23

√
17 − 19)z2 − (758 + 197

√
17)z;

a1
21(z) = 3(133 − 44

√
17)z3 + 117(3

√
17 − 1)z2 − 3(73

√
17 + 94)z;

a1
22(z) = 3(44

√
17 − 133)z3 + 3(145

√
17 − 61)z2 − 3(250 + 73

√
17)z;

a2
11(z) = 13(1 +

√
17)(z3 − 2z2 + z);

a2
12(z) = 13(3

√
17 − 1)(z3 − z);

a2
21(z) = (9 + 11

√
17)(z3 − z);

a2
22(z) = (41

√
17 − 9)(z3 + 24z2/137 + 18

√
17z2/137 + z).

Then the high-pass filters ã1 and ã2 satisfy (3.4.11) with c11 = c12 = 1/2,

ε1
1 = −1, ε1

2 = 1 and c21 = c22 = 3/2, ε1
1 = 1, ε1

2 = −1, respectively.

Let a1, a2 be high-pass filters constructed from ã1, ã2 by a1(z) := Eã1(z)E

and a2(z) := Eã2(z)E. Then due to the orthogonality of E, {a0, a1, a2} still

forms a d-band filter bank with the perfect reconstruction property but

their symmetry patterns are different to those of ã0, ã1, ã2. See Figure 3.3

for the graphs of the 3-refinable function vector φ associated with the low-

pass filter a0, the multiwavelet function vectors ψ1, ψ2 associated with the

high-pass filters a1, a2, respectively. Also, see Figure 3.3 for the graphs of

the 3-refinable function vector η associated with the low-pass filter ã0, the
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multiwavelet function vectors ζ1, ζ2 associated with the high-pass filters

ã1, ã2, respectively.
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Figure 3.3: The graphs of the function vectors η = [η1, η2]
T , ζ1 =

[ζ1
1 , ζ

1
2 ]T , ζ2 = [ζ2

1 , ζ
2
2 ]T (left two columns, from top to bottom) associated

with ã0, ã1, ã2 in Example 3.3. And the graphs of function vector φ =
[φ1, φ2]

T , ψ1 = [ψ1
1 , ψ

1
2 ]

T , ψ2 = [ψ2
1 , ψ

2
2 ]T (right two columns, from top to

bottom) associated with a0, a1, a2. Note that [η, ζ1, ζ2] = E[φ,ψ1, ψ2].

3.5 Proofs of Theorems 3.1 and 3.2

In this section, we shall prove Theorems 3.1 and 3.2. The key ingredient

is to prove that the coefficient supports of A1, . . . ,AJ constructed in Algo-

rithm 3.1 are all contained inside [−1, 1]. Note that each Aj takes the form

Aj = (B1 · · ·Br)B(−k,k)BQ1 . We first show that the coefficient support of

B := (B1 · · ·Br)B(−k,k) is contained inside [−1, 1] and then show that the

coefficient support of BBQ1 is also contained inside [−1, 1].



110

We establish the following lemma, which is needed later to show that the

coefficient support of (B1 · · ·Br)B(−k,k) is contained inside [−1, 1].

Lemma 3.6. Let B be an s× s paraunitary matrix such that coeffsupp(B) ⊆
[−1, 1] and SB = (Sθ)∗Sθ with Sθ = [1s1,−1s2 , z

−11s3,−z−11s4] for some

nonnegative integers s1, . . . , s4 such that s1 + s2 + s3 + s4 = s. Then the

following statements hold.

(1) Let p be a 1 × s row vector of Laurent polynomials with symmetry

such that pp∗ = 1, coeffsupp(p) = [k1, k2] with k2 − k1 > 2, and

Sp = εzcSθ for some ε ∈ {−1, 1} and c ∈ {0, 1}. Let q := pB. If

coeffsupp(q) = coeffsupp(p), then coeffsupp(BBq) ⊆ [−1, 1], where

Bq is constructed with respect to q as in Section 3.2.

(2) Let p1, p2 be two 1 × s row vectors of Laurent polynomials with sym-

metry such that pj1p
∗
j2

= δ(j1 − j2) for j1, j2 = 1, 2, Sp1 = ε1Sθ
and Sp2 = ε2zSθ for some ε1, ε2 ∈ {−1, 1}, and coeffsupp(p1) =

coeffsupp(p2) ⊆ [−k, k] with k > 1. Let q1 := p1B and q2 := p2B.

If coeffsupp(q1) = [−k, k − 1] and coeffsupp(q2) = [−k + 1, k], then

coeffsupp(BB(q1,q2)) ⊆ [−1, 1], where B(q1,q2) is constructed with re-

spect to the pair (q1, q2) as in Section 3.2.

Proof. Due to Sp = εzcSθ, as we discussed in Section 3.2, there is an

Up,ε such that pUp,ε takes the form in (3.2.3). Since Up,ε is a product

of a permutation matrix and a diagonal matrix of monomials, we shall

consider the case that Up,ε = Is, while the proofs for other cases of Up,ε can

be obtained accordingly. Then p takes the standard form in (3.2.3) with

f1 6= 0. In this case, s1 > 0 and s2 > 0 due to ‖f1‖ = ‖f2‖ 6= 0. By our
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assumptions, q := pB must take the following form:

q := pB =[f̃1,−f̃2, g̃1,−g̃2]z
k1 + [f̃3,−f̃4, g̃3,−g̃4]z

k1+1 +

k2−2∑

n=k1+2

coeff(pB, n)zn

+ [f̃3, f̃4, g̃1, g̃2]z
k2−1 + [f̃1, f̃2,0,0]zk2

with f̃1 6= 0. Then Bq is given by (3.2.5) with f1, f2, g1, g2, F1, F2, G1,

G2 being replaced by f̃1, f̃2, g̃1, g̃2, F̃1, F̃2, G̃1, G̃2 respectively and all

constants cef1
, ceg1 , ceg2, c0, c, ceg′1 , ceg′2 being defined accordingly.

Also, due to the symmetry pattern and coeffsupp(B) ⊆ [−1, 1], B is of the

form:

B =




A1(z + 1
z ) +D1 A3(z − 1

z ) B3(1 + 1
z ) B4(1 − 1

z )

A2(z − 1
z ) A4(z + 1

z ) +D2 C3(1 − 1
z ) C4(1 + 1

z )

B1(1 + z) C1(1 − z) A5(z + 1
z ) +D3 A7(z − 1

z )

B2(1 − z) C2(1 + z) A6(z − 1
z ) A8(z + 1

z ) +D4




,

(3.5.1)

where Aj’s, Bj ’s, Cj’s and Dj’s are all constant matrices in F and Dj is of

size sj × sj for j = 1, . . . , 4.

Let I := {1, s1 + 1, (1 − δ(s3))(s1 + s2 + 1), (1 − δ(s4))(s1 + s2 + s3 + 1)}
be an index set. It is easy to verify that coeffsupp([BBq]:,j) ⊆ [−1, 1] for

all j /∈ I. Hence, by coeffsupp(BBq) ⊆ [−2, 2], we only need to compute

coeff([BBq]:,j, 2) and coeff([BBq]:,j,−2) for those j ∈ I. Let us show that

coeff([BBq]:,j, 2) = 0 for j = 1, i.e., the coefficient vector of z2 for the first

column of BBq is 0.
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Since coeff(pB, k1) = coeff(p, k1 + 1)coeff(B,−1) + coeff(p, k1)coeff(B, 0),

we have

f̃1 = f3A1 + f4A2 + f1D1 + g1B1 − g2B2;

f̃2 = f3A3 + f4A4 + f2D2 − g1C1 + g2C2;

g̃1 = f3B3 + f4C3 + g3A5 + g4A6 + f1B3 − f2C3 + g1D3;

g̃2 = f3B4 + f4C4 + g3A7 + g4A8 − f1B4 + f2C4 + g2D4.

(3.5.2)

Similarly, by coeff(BBq, 2) = coeff(B, 1)coeff(Bq, 1), we have

coeff([BBq]:,1, 2) =
1

c

2
666664

A1 A3 0 0

A2 A4 0 0

B1 −C1 A5 A7

−B2 C2 A6 A8

3
777775

2
666664

ef∗1
−ef∗2
eg∗1
−eg∗2

3
777775

=
1

c

2
666664

A1ef∗1 − A3ef∗2
A2ef∗1 − A4ef∗2

B1ef∗1 + C1ef∗2 + A5eg∗1 − A7eg∗2
−B2ef∗1 − C1ef∗2 + A6eg∗1 − A8eg∗2

3
777775

.

By the paraunitary property of B, i.e., BB∗ = Is, we have





A1A
∗
1 −A3A

∗
3 = 0, A1A

∗
2 −A3A

∗
4 = 0;

A1D
∗
1 +D1A

∗
1 +B3B

∗
3 −B4B

∗
4 = 0;

D1A
∗
2 −A3D

∗
2 +B3C

∗
3 −B4C

∗
4 = 0;

A1B
∗
1 +A3C

∗
1 +B3A

∗
5 −B4A

∗
7 = 0;

−A1B
∗
2 −A3C

∗
2 +B3A

∗
6 −B4A

∗
8 = 0.

Applying the above identities to A1f̃
∗
1 − A3f̃

∗
2 and using (3.5.2), we get

A1f̃
∗
1 −A3f̃

∗
2 = A1(f3A1 + f4A2 + f1D1 + g1B1 − g2B2)

∗

−A3(f3A3 + f4A4 + f2D2 − g1C1 + g2C2)
∗

= (A1A
∗
1 −A3A

∗
3)f

∗
3 + (A1A

∗
2 −A3A

∗
4)f

∗
4 + (A1D

∗
1)f

∗
1

+ (−A3D
∗
2)f

∗
2 + (A1B

∗
1 +A3C

∗
1)g∗1 − (A1B

∗
2 +A3C

∗
2 )g∗2

= −(D1A
∗
1 +B3B

∗
3 −B4B

∗
4)f∗1 − (D1A

∗
2 +B3C

∗
3 −B4C

∗
4 )f∗2

− (B3A
∗
5 −B4A

∗
7)g

∗
1 − (B3A

∗
6 −B4A

∗
8)g

∗
2
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= −D1(f1A1 + f2A2)
∗ −B3(f1B3 + f2C3 + g1A5 + g2A6)

∗

+B4(f1B4 + f2C4 + g1A7 + g2A8)
∗

= 0,

where the last identity follows from coeff(pB, k2 + 1) = coeff(pB, k1 − 1) = 0.

Similarly, we can show that A2f̃
∗
1−A4f̃

∗
2 = 0, B1f̃

∗
1+C1f̃

∗
2+A5g̃

∗
1−A7g̃

∗
2 = 0,

and −B2f̃
∗
1 − C1f̃

∗
2 + A6g̃

∗
1 − A8g̃

∗
2 = 0. Hence, coeff([BBq]:,1, 2) = 0. By

similar computations as above and using the paraunitary property of B,

we have coeff([BBq]:,j,±2) = 0 for all j ∈ I. Therefore, we conclude that

coeffsupp(BBq) ⊆ [−1, 1]. Item (1) holds.

For item (2), up to a permutation matrix E(q1,q2) as in Section 3.2, B(q1,q2)

takes the form in (3.2.8). Since B takes the form in (3.5.1), to show that

the coefficient support of BB(q1,q2) is contained inside [−1, 1], we only need

to show that coeff([BB(q1,q2)]:,j,±2) = 0 for all j ∈ I, which is to show

that all the coefficient vectors A1g̃
∗
1 − A3g̃

∗
2, A2g̃

∗
1 − A4g̃

∗
2, A5g̃

∗
3 − A7g̃

∗
4,

and A6g̃
∗
3 −A8g̃

∗
4 are zero. Again, using the paraunitary property of B and

expressing g̃1, g̃2, g̃3, g̃4 in terms of the original vectors from p1, p2 similar

to (3.5.2), we conclude that coeffsupp(BB(q1,q2)) ⊆ [−1, 1].

With the results of Lemma 3.6, the next lemma shows that the coefficient

support of B := (B1 · · ·Br)B(−k,k) is contained inside [−1, 1]. Moreover,

the next lemma shows that the coefficient support of A := BBQ1 is also

contained inside [−1, 1].

Lemma 3.7. Suppose Q is an r×s matrix of Laurent polynomials such that

QQ∗ = Ir, SQ satisfies (3.3.1), and coeffsupp(Q) = [k1, k2] with k2−k1 > 1.

Then there exists an s×s paraunitary matrix A of Laurent polynomials with

symmetry such that
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(1) the coefficient supports of A and Q satisfy coeffsupp(A) ⊆ [−1, 1] and

|coeffsupp(QA)| 6 |coeffsupp(Q)| − |coeffsupp(A)|;

(2) if the j-th column p := [Q]:,j of Q satisfies coeff(p, k1) = coeff(p, k2) =

0, then, up to a permutation matrix, [A]j,: = ([A]:,j)
T = ej. That is,

any entry in the j-th row or j-th column of A is zero except that the

(j, j)-entry [A]j,j = 1;

(3) SA = [1s1,−1s2 , z1s3 ,−z1s4 ]
T [1s′1

,−1s′2
, z−11s′3

,−z−11s′4
] for some

nonnegative integers s′1, . . . , s
′
4 such that s′1 + s′2 + s′3 + s′4 = s.

Proof. Let A = (B1 · · ·Br)B(−k,k)BQ1 be constructed as in Algorithm 3.1,

where Q1 := Q(B1 · · ·Br)B(−k,k), B(−k,k) is constructed in the inner while

loop of Algorithm 3.1, and B1, . . . ,Br is constructed in the for loop of Al-

gorithm 3.1. If k2 6= −k1, then B1 = · · · = Br = B(−k,k) = Is and A is simply

BQ1 , where Q1 = Q is of the form in (3.3.4) with either coeff(Q1,−k) = 0 or

coeff(Q1, k) = 0. In this case, by the construction of BQ1 as in Section 3.2,

all items in Lemma 3.7 hold. We are already done. So, without loss of

generality, we assume that k2 = −k1 = k.

We first show that the coefficient support of B1 · · ·Br is contained in-

side [−1, 1]. Let pj := [Q]j,:, B0 := Is, and qj := pjB0 · · ·Bj−1 for j =

1, . . . , r. Suppose we already show that coeffsupp(B0 · · ·Bj−1) ⊆ [−1, 1] for

j > 1. Then, according to Algorithm 3.1, Bj = Bqj
if coeffsupp(pj) =

coeffsupp(qj), |coeffsupp(qj)| > 2, and one of coeff(qj , k) and coeff(qj ,−k)
is nonzero; otherwise Bj = Is. Note that B0 · · ·Bj−1 is paraunitary and

satisfies S(B0 · · ·Bj−1) = (Sθ)∗Sθ with Sθ = [1s1,−1s2 , z
−11s3,−z−11s4 ].

By item (1) of Lemma 3.6, the coefficient support of B0 · · ·Bj−1Bj is also

contained inside [−1, 1]. By induction, the coefficient support of B1 · · ·Br
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is contained inside [−1, 1]. Moreover, B1 · · ·Br takes the form in (3.5.1).

Next, since B(−k,k) is constructed recursively from pairs (q1, q2) of Q0 :=

Q(B1 · · ·Br), by applying induction again and using item (2) of Lemma

3.6, we conclude that the coefficient support of B := (B1 · · ·Br)B(−k,k) is

contained inside [−1, 1].

Due to the properties (P1), (P2) of Bq and (P3), (P4) of B(q1,q2), B1, . . . ,Br

and B(−k,k) reduce Q of the form in (3.3.3) to Q1 = Q(B1 · · ·Br)B(−k,k) = QB

of the form in (3.3.4) with at least one of coeff(Q1,−k) and coeff(Q1, k)

being 0. As constructed in Section 3.2, we have BQ1 = Is for the case

that coeff(Q1,−k) = coeff(Q1, k) = 0, or BQ1 = diag(U1W1, Is3+s4)E for

the case coeff(Q1, k) 6= 0, or BQ1 := diag(Is1+s2, U3W3)E for the case that

coeff(Q1,−k) 6= 0. We next show that coeffsupp(BBQ1) ⊆ [−1, 1].

Let Q,Q1 take the form in (3.3.3), (3.3.4), respectively, with coeff(Q1, k) 6=
0. Then BQ1 := diag(U1W1, Is3+s4)E with U1, W1, and E being constructed

as in Section 3.2. B takes the form in (3.5.1). Define

[G1, G2, F3, F4, G5, G6, F7, F8] :=

[
G11 G21 F31 F41 G51 G61 F71 F81

G12 G22 F32 F42 G52 G62 F72 F82

]
.

By coeff(Q1, k) = coeff(Q, k − 1)coeff(B, 1)+coeff(Q, k)coeff(B, 0), we have

G̃1 = G5A1 +G6A2 + F7B1 − F8B2 +G1D1 + F3B1 + F4B2;

G̃2 = G5A3 +G6A4 − F7C1 + F8C2 +G2D2 + F3C1 + F4C2;

0 = F7A5 + F8A6 +G1B3 +G2C3 + F3D3 =: F̃3;

0 = F7A7 + F8A8 +G1B4 +G2C4 + F4D4 =: F̃4,

(3.5.3)

where G̃1, G̃2 are matrices defined in (3.3.5). Then U1 = diag(U eG1
, U eG2

) and

W1 is defined as in (3.3.6). By the coefficient supports of B and BQ1, we only
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need to check that coeff(Bdiag(U1W1, Is3+s4),−2) = 0. Let V11, V12, V21, V22

be diagonal matrices of size s1 × s1, s1 × s2, s2 × s1, s2 × s2, respectively,

and satisfy diag(Vjℓ) = [1m1 , 0] for j, ℓ = 1, 2, where m1 is the rank of G̃1.

Then

coeff(Bdiag(U1W1, Is3+s4),−2) = coeff(B,−1) · coeff(diag(U1W1, Is3+s4),−1)

=




A1 −A3 B3 −B4

−A2 A4 −C3 C4

0 0 A5 −A7

0 0 −A6 A8







U eG1
V11 U eG1

V12 0 0

U eG2
V21 U eG2

V22 0 0

0 0 0 0

0 0 0 0



.

Thus, we need to show that for each j = 1, 2, A1U eG1
V1j −A3U eG2

V2j = 0

and A2U eG1
V1j −A4U eG2

V2j = 0, which is equivalent to showing that for each

j = 1, 2, Vj1U
∗
eG1
A∗

1 − Vj2U
∗
eG2
A∗

3 = 0 and Vj1U
∗
eG1
A∗

2 − Vj2U
∗
eG2
A∗

4 = 0. Since

G̃1U eG1
= [R, 0] and G̃2U eG2

= [R, 0], for some lower triangular matrix R

of full rank m1, it is equivalent to proving that G̃1A
∗
1 − G̃2A

∗
3 = 0 and

G̃1A
∗
2 − G̃2A

∗
4 = 0. By (3.5.3), we have,

G̃1A
∗
1 − G̃2A

∗
3 = G̃1A

∗
1 − G̃2A

∗
3 + F̃3B

∗
3 − F̃4B

∗
4

= (G5A1 +G6A2 + F7B1 − F8B2 +G1D1 + F3B1 + F4B2)A
∗
1

− (G5A3 +G6A4 − F7C1 + F8C2 +G2D2 + F3C1 + F4C2)A
∗
3

+ (F7A5 + F8A6 +G1B3 +G2C3 + F3D3)B
∗
3

− (F7A7 + F8A8 +G1B4 +G2C4 + F4D4)B
∗
4

= G5(A1A
∗
1 −A3A

∗
3) +G6(A2A

∗
1 −A4A

∗
3)

+ F7(B1A
∗
1 + C1A

∗
3 +A5B

∗
3 −A7B

∗
4)

+ F8(−B2A
∗
1 − C2A

∗
3 +A6B

∗
3 −A8B

∗
4)

+G1(D1A
∗
1 +B3B

∗
3 −B4B

∗
4) +G2(−D2A

∗
3 + C3B

∗
3 − C4B

∗
4)

+ F3(B1A
∗
1 − C1A

∗
3 +D3B

∗
3) + F4(B2A

∗
1 − C2A

∗
3 −D4B

∗
4) = 0,
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where the last identity follows from BB∗ = Is and coeff(QB, k + 1) =

0. Similarly, G̃1A
∗
2 − G̃2A

∗
4 = 0. The computation for showing that

coeffsupp(BBQ1) ⊆ [−1, 1] with BQ1 = diag(Is1+s2, U3W3)E is similar. Con-

sequently, coeffsupp(BBQ1) ⊆ [−1, 1]. Therefore, item (1) holds. Item (2)

is due to the property (3.2.2) of Uf and UG.

Note that SB = (Sθ)∗Sθ with Sθ = [1s1,−1s2 , z
−11s3,−z−11s4 ]. And by

the construction of BQ1 , SBQ1 = (Sθ)∗[1s′1,−1s′2 , z
−11s′3,−z−11s′4] for some

nonnegative integers s′1, . . . , s
′
4 depending on the rank of G̃1 or G̃3 (see

Section 3.2). Consequently, item (3) holds. This also completes the proof

of Algorithm 3.1.

Now, we are ready to prove Theorems 3.1 and 3.2.

Proof of Theorems 3.1 and 3.2: The sufficiency part of Theorem 3.2 is ob-

vious. We only need to show the necessary part. Suppose SP = (Sθ1)∗Sθ2.
Let Q := U∗

Sθ1
PUSθ2 and coeffsupp(Q) := [k1, k2]. Then SQ satisfies

(3.3.1). By Lemma 3.7, the step of support reduction in Algorithm 3.1

produces a sequence of paraunitary matrices A1, . . . ,AJ with coefficient

support contained inside [−1, 1] such that QA1 · · ·AJ = [Ir, 0]. Due to item

(1) of Lemma 3.7, J 6 ⌈k2−k1

2
⌉. Let Pj := A∗

j , P0 := U∗
Sθ2

and PJ+1 :=

diag(USθ1 , Is−r). Then Pe := PJ+1PJ · · ·P1P0 satisfies [Ir, 0]Pe = P. By

item (3) of Lemma 3.7, (Pj+1,Pj) has mutually compatible symmetry for all

0 6 j 6 J . The claim that |coeffsupp([Pe]k,j)| 6 max16n6r |coeffsupp([P]n,j)|
for 1 6 j, k 6 s follows from item (2) of Lemma 3.7. Hence, all claims in

Theorems 3.1 and 3.2 have been verified. �
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3.6 Conclusions and Remarks

In this chapter, we introduce the general problem of matrix extension with

symmetry. We successfully solve this problem for any r, s such that 1 6

r 6 s. More importantly, we obtain a complete representation of any

r × s paraunitary matrix P having compatible symmetry with 1 6 r 6 s.

This representation leads to a step-by-step algorithm for deriving a desired

matrix Pe from a given matrix P.

Moreover, we obtain an optimal result in the sense of (3.1.7) on controlling

the coefficient support of the desired matrix Pe derived from a given matrix

P by our algorithm. This is of importance in both theory and application,

since short support of a filter is a highly desirable property, which usually

means a fast algorithm and simple implementation in practice.

Furthermore, we introduce the notion of compatibility of symmetry, which

plays a critical role in the study of the general matrix extension problem

with symmetry for the multi-row case (r > 1). We provide a complete

analysis and a systematic construction algorithm for d-band symmetric

filter banks and symmetric orthonormal multiwavelets.

Finally, most of the literature on the matrix extension problem only con-

sider Laurent polynomials with coefficients in the special field C ([54]) or R

([6, 59]). In this chapter, our setting is under a more general field F, which

can be any subfield of C satisfying (3.1.6).

In next chapter, we shall study the matrix extension problem with symme-

try for the biorthogonal case, which can be applied to the construction of

biorthogonal multiwavelets from a pair of dual d-refinable function vectors.



Chapter 4

Matrix Extension with

Symmetry: Biorthogonal

Generalization

4.1 Introduction and Main Results

In this chapter, we shall consider the matrix extension problem for the

construction of biorthogonal multiwavelets.

Due to the flexibility of the biorthogonality relation, the restriction in

(3.1.6) for a coefficient field F can be released and F can be relaxed as

any subfield in C. In this chapter, we shall refer F as a subfield of C.

Now we generalize the matrix extension problem to the biorthogonal case

as follows: Let P, P̃ be two r × s matrices of Laurent polynomials with

coefficients in F such that P(z)P̃∗(z) = Ir for all z ∈ C\{0}, the symmetry

119
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of each P and P̃ is compatible, and SP = SP̃. Find two s×s square matrices

Pe, P̃e of Laurent polynomials with coefficients in F and with symmetry such

that [Ir, 0]Pe = P, [Ir, 0]P̃e = P̃, (that is, the submatrix of the first r rows

of Pe, P̃e is the given matrix P, P̃, respectively), the symmetry of Pe and

P̃e is compatible, and Pe(z)P̃
∗
e(z) = Is for all z ∈ C\{0}. The coefficient

support of Pe, P̃e can be controlled by that of P, P̃ in some way.

Due to the flexibility of biorthogonality, the above extension problem be-

comes far more complicated than the matrix extension problem we con-

sidered in Chapter 3. The difficulty here is not the symmetry patterns

of the extension matrices, but the support control of the extension matri-

ces. Without considering any issue on support control, almost all results of

Theorems 3.1 and 3.2 can be transferred to the biorthogonal case without

much difficulty. In Chapter 3, we showed that the length of the coefficient

support of the extension matrix can never exceed the length of the coeffi-

cient support of the given matrix. Yet, for the extension matrices in the

biorthogonal extension case, we can no longer expect such a nice result,

that is, in this case, the length of the coefficient supports of the exten-

sion matrices might not be controlled by one of the given matrices. Let us

present an example here to show why we might not have such a result.

Example 4.1. Consider two 1 × 3 vectors of Laurent polynomials p(z) =

[1, 0, a(z)] and p̃(z) = [1, ã(z), 0] with |coeffsupp(a)| > 0, |coeffsupp(ã)| > 0.

We have pp̃∗ = 1. Let Pe and P̃e be their extension matrices such that

PeP̃
∗
e = I3. Then Pe, P̃e must be of the form:

Pe =




1 0 a(z)

−b1(z)ã∗(z) b1(z) c1(z)

−b2(z)ã∗(z) b2(z) c2(z)


 , P̃e =




1 ã(z) 0

−c̃1(z)a∗(z) b̃1(z) c̃1(z)

−c̃2(z)a∗(z) b̃2(z) c̃2(z)


 .
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It is easy to show that det(Pe) = b1(z)c2(z)− b2(z)c1(z). Since Pe is invert-

ible with P−1
e = P̃∗

e, we know that det(Pe) must be a monomial. Without

loss of generality, we can assume b1(z)c2(z) − b2(z)c1(z) = 1. Using the

cofactors of Pe, it is easy to show that P̃e = (P−1
e )∗ must be of the form:

P̃e =




1 ã(z) 0

b∗2(z)a
∗(z) c∗2(z) + ã(z)a∗(z)b∗2(z) −b∗2(z)

−b∗1(z)a∗(z) −c∗1(z) − ã(z)a∗(z)b∗1(z) b∗1(z)


 .

One the one hand, if |coeffsupp(b1(z))| > 0 or |coeffsupp(b2(z))| > 0, then

we see that one of the extension matrices will have support length exceeding

the maximal length of the given columns. One the other hand, if both

|coeffsupp(b1(z))| = 0 and |coeffsupp(b2(z))| = 0 (that is, both b1 and b2

are monomials), then the length of the coefficient support of c1(z) and c2(z)

in P̃e must be comparable with ã∗(z)a(z) so that the support length of P̃e

can be controlled by that of p or p̃, which in turn will result in longer

support length of Pe.

The above example shows that it is difficult to control the support length

of the coefficient support of the extension matrices independently by only

one given vector in the biorthogonal setting. Nevertheless, we have the

following result:

Theorem 4.1. Let F be a subfield of C. Let P, P̃ be two r × s matrices of

Laurent polynomials with coefficients in F such that the symmetry of each

P, P̃ is compatible: SP = SP̃ = (Sθ1)∗Sθ2 for some 1×r, 1×s vectors θ1, θ2

of Laurent polynomials with symmetry. P(z)P̃∗(z) = Ir for all z ∈ C\{0}.
Then there exist two s × s square matrices Pe, P̃e of Laurent polynomials

with coefficients in F such that
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(i) [Ir, 0]Pe = P, [Ir, 0]P̃e = P̃, that is, the submatrices of the first r rows

of Pe, P̃e are P, P̃, respectively;

(ii) Pe and P̃e are biorthogonal: Pe(z)P̃
∗
e(z) = Is for all z ∈ C\{0};

(iii) The symmetry of each Pe, P̃e is compatible: SPe = SP̃e = (Sθ)∗Sθ2
for some 1 × s vector θ of Laurent polynomials with symmetry.

(iv) Pe, P̃e can be represented as:

Pe(z) = PJ(z) · · ·P1(z), P̃e(z) = P̃J(z) · · · P̃1(z), (4.1.1)

where Pj , P̃j, 1 6 j 6 J are s × s matrices of Laurent polynomials

with symmetry that satisfy Pj(z)P̃
∗
j (z) = Is. Moreover, each pair of

(Pj+1,Pj) and (P̃j+1, P̃j) has mutually compatible symmetry for all

j = 1, . . . , J − 1.

(v) If r = 1, then the coefficient supports of Pe, P̃e are controlled by that

of P, P̃ in the following sense:

max
16j,k6s

{|coeffsupp([Pe]j,k)|} 6 max
16ℓ6s

|coeffsupp([P]ℓ)| + max
16ℓ6s

|coeffsupp([P̃]ℓ)|

max
16j,k6s

{|coeffsupp([P̃e]j,k)|} 6 max
16ℓ6s

|coeffsupp([P]ℓ)| + max
16ℓ6s

|coeffsupp([P̃]ℓ)|.
(4.1.2)

For r = 1, Goh et al. in [17] considered this matrix extension problem

without symmetry. They provided a step-by-step algorithm for deriving

the extension matrices, yet they did not concern about the support control

of the extension matrices nor the symmetry patterns of the extension ma-

trices. For r > 1, there are only a few results in the literature [3, 9] and

most of them concern only about some special cases. The difficulty still

comes from the flexibility of the biorthogonality relation between the given



123

two matrices. In this chapter, we shall mainly consider this matrix exten-

sion problem with symmetry for the biorthogonal case and shall provide

an extension algorithm from which the extension matrices can have both

symmetry and support control as stated in Theorem 4.1.

Here is the structure of this chapter. In Section 4.2, we shall introduce

some auxiliary results, prove Theorem 4.1, and also provide a step-by-step

algorithm for the construction of the extension matrices. In Section 4.3,

we shall discuss the applications of our main result to the construction of

symmetric biorthogonal multiwavelets in wavelet analysis. Examples will

be provided to illustrate our algorithms. Conclusions and remarks shall be

given in the last section.

4.2 Proof of Theorem 4.1 and an Algorithm

First, let us introduce some auxiliary results.

Lemma 4.2. Let f, f̃ be two nonzero 1×n vectors in F. Then the following

statements hold.

(1) If ff̃∗ 6= 0, then there exist two n× n matrices U(f,ef), Ũ(f,ef) in F such

that U(f,ef) = [(
ef
ec )

∗, F ], Ũ(f,ef) = [(f
c
)∗, F̃ ], and U(f,ef)Ũ

∗
(f,ef) = In, where

F, F̃ are n× (n− 1) constant matrices in F and c, c̃ are two nonzero

numbers in F such that ff̃∗ = cc̃. In this case, fU(f,ef) = ce1 and

f̃Ũ(f,ef) = c̃e1.

(2) If ff̃∗ = 0, then there exist two n × n matrices U(f,ef), Ũ(f,ef) in

F such that U(f,ef) = [( f

ec1 )
∗, (

ef
c2

)∗, F ], Ũ(f,ef) = [( f

c1
)∗, (

ef
ec2 )

∗, F̃ ], and

U(f,ef)Ũ
∗
(f,ef) = In, where F, F̃ are n×(n−2) constant matrices in F and
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c1, c2, c̃1, c̃2 are nonzero numbers in F such that ‖f‖2 = c1c̃1,‖f̃‖2 =

c2c̃2. In this case, fU(f,ef) = c1e1 and f̃Ũ(f,ef) = c2e2.

Proof. If ff̃∗ 6= 0, there exists {f2, . . . , fn} being a basis of the orthogonal

compliment of the linear span of {f} in Fn. Let F := [f∗2, . . . , f
∗
n] and

U(f,ef) := [(
ef
ec )

∗, F ]. Then U(f,ef) is invertible. Let Ũ(f,ef) := (U−1
(f,ef))

∗. It is easy

to show that U(f,ef) and Ũ(f,ef) are the desired matrices.

If ff̃∗ = 0, let {f3, . . . , fn} be a basis of the orthogonal compliment of

the linear span of {f, f̃} in Fn. Let U(f,ef) = [( f

ec1 )
∗, (

ef
c2

)∗, F ] with F :=

[f∗3, . . . , f
∗
n]. Then U(f,ef) and Ũ(f,ef) := (U−1

(f,ef))
∗ are the desired matrices.

Lemma 4.3. Let p, p̃ be two 1×s vectors of Laurent polynomials with sym-

metry such that pp̃∗ = 1 and Sp = Sp̃ = εzc[1s1,−1s2 , z
−11s3,−z−11s4 ] =:

Sθ for some nonnegative integers s1, . . . , s4 satisfying s1 + · · ·+ s4 = s and

ε ∈ {1,−1}, c ∈ {0, 1}. Suppose coeffsupp(p) > 0. Then there exist two

s× s matrices B(z), B̃(z) of Laurent polynomials with symmetry such that

(1) B(z), B̃(z) are biorthogonal: B(z)B̃(z)∗ = In;

(2) SB = SB̃ = (Sθ)∗Sθ1 with Sθ1 = εzc[1s′1
,−1s′2

, z−11s′3
,−z−11s′4

] for

some nonnegative integers s′1, . . . , s
′
4 such that s′1 + · · · + s′4 = s;

(3) the length of the coefficient support of p is reduced by that of B. B̃

does not increase the length of the coefficient support of p̃. That is,

|coeffsupp(pB)| 6 |coeffsupp(p)|−|coeffsupp(B)| and |coeffsupp(p̃B̃)| 6

|coeffsupp(p̃)|.

Proof. We shall only prove the case that Sθ = [1s1,−1s2 , z
−11s3,−z−11s4 ].

The proofs for other cases are similar. By their symmetry patterns, p and
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p̃ must take the form as follows with ℓ > 0 and coeff(p,−ℓ) 6= 0:

p = [f1,−f2, g1,−g2]z
−ℓ + [f3,−f4, g3,−g4]z

−ℓ+1 + · · ·

+ [f3, f4, g1, g2]z
ℓ−1 + [f1, f2,0,0]zℓ;

(4.2.1)

p̃ = [f̃1,−f̃2, g̃1,−g̃2]z
−eℓ + [f̃3,−f̃4, g̃3,−g̃4]z

−eℓ+1 + · · ·

+ [f̃3, f̃4, g̃1, g̃2]z
eℓ−1 + [f̃1, f̃2,0,0]z

eℓ;
(4.2.2)

Then, either ‖f1‖+‖f2‖ 6= 0 or ‖g1‖+‖g2‖ 6= 0. Considering ‖f1‖+‖f2‖ 6=
0, due to pp̃∗ = 1 and coeffsupp(p) > 0, we have f1f̃

∗
1 − f2f̃

∗
2 = 0. Let

c := f1f̃
∗
1 = f2f̃

∗
2. Then there are at most three cases: (a) c 6= 0; (b) c = 0

but both f1, f2 are nonzero vectors; (c) c = 0 and one of f1, f2 is 0.

Case (a): In this case, we have f1f̃
∗
1 6= 0 and f2f̃2 6= 0. By Lemma 4.2,

we can construct two pairs of biorthogonal matrices (U(f1,ef1), Ũ(f1,ef1)
) and

(U(f2,ef2)
, Ũ(f2,ef2)

) with respect to the pairs (f1, f̃1) and (f2, f̃2) such that

U(f1,ef1) = [(
f̃1

c̃1
)∗, F1], Ũ(f1,ef1) = [(

f1

c1
)∗, F̃1], f1U(f1,ef1) = c1e1, f̃1Ũ(f1,ef1) = c̃1e1,

U(f2,ef2) = [(
f̃2

c̃1
)∗, F2], Ũ(f2,ef2) = [(

f1

c1
)∗, F̃2], f2U(f2,ef2) = c1e1, f̃2Ũ(f2,ef2) = c̃1e1,

where c1, c̃1 are constants in F such that c = c1c̃1. Define B0(z), B̃0(z) as

follows:

B0(z) =




1+z−1

2
(

ef1

ec1 )∗ F1
1−z−1

2
(

ef1

ec1 )∗ 0 0

1−z−1

2
(

ef2

ec1 )∗ 0 1+z−1

2
(

ef2

ec1 )∗ F2 0

0 0 0 0 Is3+s4


 ,

B̃0(z) =




1+z−1

2
(f1

c1
)∗ F̃1

1−z−1

2
(f1

c1
)∗ 0 0

1−z−1

2
(f2

c1
)∗ 0 1+z−1

2
(f2

c1
)∗ F̃2 0

0 0 0 0 Is3+s4


 .

(4.2.3)
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Direct computation shows that B0(z)B̃0(z)
∗ = Is and B0(z), B̃0(z) reduce

the lengths of the coefficient support of p, p̃ by 1, respectively. Moreover,

S(pB0) = S(p̃B̃0) = [z−1, 1s1−1,−z−1,−1s2−1, z
−11s3 ,−z−11s4].

Let E be a permutation matrix such that

S(pB0)E = S(p̃B̃0)E = [1s1−1,−1s2−1, z
−11s3+1,−z−11s4+1] =: Sθ1.

Define B(z) = B0(z)E and B̃(z) = B̃0(z)E. Then B(z) and B̃(z) are the

desired matrices.

Case (b): In this case, both f1, f2 are nonzero vectors. We have f1f
∗
1 6=

0 and f2f
∗
2 6= 0. Again, by Lemma 4.2, we can construct two pairs of

biorthogonal matrices (U(f1,f1), Ũ(f1,f1)) and (U(f2,f2), Ũ(f2,f2)) with respect

to the pairs (f1, f1) and (f2, f2) such that

U(f1,f1) = [(
f1

c̃1
)∗, F1], Ũ(f1,f1) = [(

f1

c0
)∗, F1], f1U(f1,f1) = c0e1,

U(f2,f2) = [(
f2

c̃2
)∗, F2], Ũ(f2,f2) = [(

f1

c0
)∗, F2], f2U(f2,f2) = c0e1,

where c0, c̃1, c̃2 are constants in F such that f1f
∗
1 = c0c̃1 and f2f

∗
2 = c0c̃2.

Let B0, B̃0(z) be defined as follows:

B0(z) =




1+z−1

2
(f1

ec1 )∗ F1
1−z−1

2
(f1

ec1 )∗ 0 0

1−z−1

2
(f2

ec2 )∗ 0 1+z−1

2
(f2

ec2 )∗ F2 0

0 0 0 0 Is3+s4


 ,

B̃0(z) =




1+z−1

2
(f1

c0
)∗ F1

1−z−1

2
(f1

c0
)∗ 0 0

1−z−1

2
(f2

c0
)∗ 0 1+z−1

2
(f2

c0
)∗ F2 0

0 0 0 0 Is3+s4


 .

(4.2.4)
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We can show that B0(z) reduces the length of the coefficient support of

p by 1, while B̃0(z) does not increase the support length of p̃. Moreover,

similar to case (a), we can find a permutation matrix E such that

S(pB0)E = S(p̃B̃0)E = [1s1−1,−1s2−1, z
−11s3+1,−z−11s4+1] =: Sθ1.

Define B(z) = B0(z)E and B̃(z) = B̃0(z)E. Then B(z) and B̃(z) are the

desired matrices.

Case (c): In this case, without loss of generality, we assume that f1 6= 0

and f2 = 0. Construct a pair of matrices (U(f1,ef1), Ũ(f1,ef1)
) by Lemma 4.2

such that f1U(f1,ef1) = c1e1 and f̃1Ũ(f1,ef1)
= c2e2 (when f̃1 = 0, the pair of

matrices is given by (U(f1,f1), Ũ(f1,f1))). Extend this pair to a pair of s × s

matrices (U, Ũ) by U := diag(U(f1,ef1)
, Is3+s4) and Ũ := diag(Ũ(f1,ef1)

, Is3+s4).

Then pU and p̃Ũ must be of the form:

q := pU = [c1, 0, . . . , 0,−f2, g1,−g2]z
−ℓ + [f3,−f4, g3,−g4]z

−ℓ+1

+ · · · + [f3, f4, g1, g2]z
ℓ−1 + [c1, 0, . . . , 0, f2,0,0]zℓ;

(4.2.5)

q̃ := p̃Ũ = [0, c2, . . . , 0,−f̃2, g̃1,−g̃2]z
−eℓ + [f̃3,−f̃4, g̃3,−g̃4]z

−eℓ+1

+ · · · + [f̃3, f̃4, g̃1, g̃2]z
eℓ−1 + [0, c2, . . . , 0, , f̃2,0,0]z

eℓ;
(4.2.6)

If [q̃]1 ≡ 0, we choose k such that k = arg minℓ 6=1{|coeffsupp([q]1)| −
|coeffsupp([q]ℓ)|}, i.e., k is an integer such that the length of coefficient sup-

port of ([q]1 − [q]k) is minimal among those of all ([q]1 − [q]ℓ), ℓ = 2, . . . , s;

otherwise, due to qq̃∗ = 0, there must exist k such that

|coeffsupp([q]1)|−|coeffsupp([q]k)| 6 max
26j6s

|coeffsupp([q̃]j)|−|coeffsupp([q̃]1)|,

(k might not be unique, we can choose one of such k so that |coeffsupp([q]1)|−
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|coeffsupp([q]k)| is minimal among all |coeffsupp([q]1)|−|coeffsupp([q]ℓ)|, ℓ =

2, . . . , s). For such k (in the case of either [q̃]1 = 0 or [q̃]1 6= 0), define two

matrices B(z), B̃(z) as follows:

B(z) =




1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

−a(z) 0 · · · 1

Is−k




, B̃(z) =




1 0 · · · a(z)∗

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

Is−k




,

where a(z) in B(z), B̃(z) is a Laurent polynomial with symmetry such that

Sa(z) = S([q]1)/S([q]k), |coeffsupp([q1]−a(z)[q]k)| < |coeffsupp([q]k)|, and

|coeffsupp([q̃k] − a(z)∗[q̃]1)| 6 max16ℓ6s |coeffsupp([q̃]ℓ)|. Such a(z) can

be easily obtained by long division. It is straightforward to show that

B(z)B̃∗(z) = Is, B(z) reduces the length of the coefficient support of q by

that of a(z), and B̃(z) does not increase the length of the coefficient support

of q̃. Moreover, the symmetry patterns of both q and q̃ are preserved.

For ‖f1‖ + ‖f2‖ = 0, we must have ‖g1‖ + ‖g2‖ 6= 0. The discussion for

this case is similar to above. We can find two matrices B(z), B̃(z) such that

all items in the lemma hold. In the case that g1g̃
∗
1 = c1c̃1 6= 0, the pair

(B0(z), B̃0(z)) similar to (4.2.4) is of the form:

B0(z) =




Is1+s2 0 0 0 0

0 1+z
2

(eg1

ec1 )∗ G1
1−z
2

(eg1

ec1 )∗ 0

0 1−z
2

(eg2

ec1 )∗ 0 1+z
2

(eg2

ec1 )∗ G2


 ,

B̃0(z) =




Is1+s2 0 0 0 0

0 1+z
2

(g1

c1
)∗ G̃1

1−z
2

(g1

c1
)∗ 0

0 1−z
2

(g2

c1
)∗ 0 1+z

2
(g2

c1
)∗ G̃2


 .

(4.2.7)
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The pairs for other cases can be obtained similarly. We are done.

Now, we can prove Theorem 4.1 using Lemma 4.3.

Proof of Theorem 4.1. Let Q := U∗
Sθ1

PUSθ2 and Q̃ := U∗
Sθ1

P̃USθ2 (given θ,

USθ is obtained by (3.3.2)). Then the symmetry of each row of Q or Q̃ is of

the form εzc[1s1,−1s2 , z
−11s3 ,−z−11s4 ] for some ε ∈ {−1, 1} and c ∈ {0, 1}.

Let p := [Q]1,: and p̃ := [Q̃]1,: be the first row of Q, Q̃, respectively. Ap-

plying Lemma 4.3 recursively, we can find (B1, B̃1), ..., (BK , B̃K) such

that pB1 · · ·BK = [1, 0, . . . , 0] and p̃B̃1 · · · B̃K = [1, q(z)] for some 1 ×
(s − 1) vector of Laurent polynomials with symmetry. Now construct

BK+1(z), B̃K+1(z) as follows:

BK+1(z) =


 1 0

q∗(z) Is−1


 , B̃K+1(z) =


 1 −q(z)

0 Is−1


 .

BK+1 and B̃K+1 are biorthogonal. Let A := B1 · · ·BKBK+1 and Ã :=

B̃1 · · · B̃KB̃K+1. Then pA = p̃Ã = e1.

Note that QA and Q̃Ã are of the form:

QA =


 1 0

0 Q1(z)


 , Q̃Ã =


 1 0

0 Q̃1(z)


 .

The rest of the proof is completed by employing the standard procedure of

induction.

Next, according to the proof of Theorem 4.1, we have an extension algo-

rithm for Theorem 4.1 as follows:
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Algorithm 4.1. Input P, P̃ as in Theorem 4.1 with SP = SP̃ = (Sθ1)∗Sθ2
for two 1×r, 1×s row vectors θ1, θ2 of Laurant polynomials with symmetry.

1. Initialization: Let Q := U∗
Sθ1

PUSθ2 and Q̃ := U∗
Sθ1

P̃USθ2. Then both Q

and Q̃ have the the same symmetry pattern as follows:

SQ = SQ̃ = [1r1 ,−1r2 , z1r3 ,−z1r4 ]
T [1s1,−1s2 , z

−11s3,−z−11s4 ], (4.2.8)

where all nonnegative integers r1, . . . , r4, s1, . . . , s4 are uniquely determined

by SP. Note that this step does not increase the lengths of the coefficient

support of both P and P̃.

2. Support Reduction: Let U0 := U∗
Sθ2

and A = Ã := Is.

for k from 1 to r do

Let p := [Q]k,k:s and p̃ := [Q̃]k,k:s.

while |coeffsupp(p)| > 0 and |coeffsupp(p̃)| > 0 do

Construct B(z), B̃(z) with respect to p, p̃ by Lemma 4.3 such that

|coeffsupp(pB)| + |coeffsupp(p̃B̃)| < |coeffsupp(p)| + |coeffsupp(p̃)|.
Replace p, p̃ by pB, p̃B̃, respectively.

Set A := Adiag(Ik−1,B) and Ã := Ãdiag(Ik−1, B̃).

end while

The pair (p, p̃) is of the form: ([1, 0, . . . , 0], [1, q(z)]) for some

1 × (s− k) vector of Laurent polynomials q(z).

Construct B(z), B̃(z) as follows:

B(z) =


 1 0

q∗(z) Is−k


 , B̃(z) =


 1 −q(z)

0 Is−k


.

Set A := Adiag(Ik−1,B) and Ã := Ãdiag(Ik−1, B̃).

end for



131

3. Finalization: Let U1 := diag(USθ1, Is−r). Set Pe := U1A
∗U0 and P̃e :=

U1Ã
∗U0.

Output a pair of desired matrices (Pe, P̃e) satisfying all the properties in

Theorem 4.1.

4.3 Application to Biorthogonal Multiwave-

lets with Symmetry

In this section, we shall discuss the application of our results to biorthogo-

nal multiwavelets with symmetry. Several examples are provided to demon-

strate our results.

Let a0, ã0 : Z → Fr×r with multiplicity r be finitely supported sequences

of r × r matrices on Z. Let d be a dilation factor and d1, d2 be two fixed

number in F such that d = d1d2 (for instance d1 = 1, d2 = 2 for d = 2 if

F = Q). It is easily seen that (a0, ã0) is a pair of dual masks (see (1.4.2))

with respect to a dilation factor d if

d−1∑

γ=0

a0;γ(z)ã
∗
0;γ(z) = Ir, z ∈ C\{0}, (4.3.1)

where a0;γ and ã0;γ are subsymbols (polyphases) of a0 and ã0 defined to be

a0;γ(z) := d1

∑
k∈Z

a0(k + dk)zk,

ã0;γ(z) := d2

∑
k∈Z

ã0(k + dk)zk,
γ ∈ Z. (4.3.2)

We shall refer to such pair (a0, ã0) (the symbol of (a0, ã0)) a pair of d-band

biorthogonal filters.
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To construct biorthogonal multiwavelets, we need to design high-pass fil-

ters a1, . . . , ad−1 : Z → Fr×r and ã1, . . . , ãd−1 : Z → Fr×r such that the

polyphase matrices

P(z) =




a0;0(z) · · · a0;d−1(z)

a1;0(z) · · · a1;d−1(z)
...

...
...

ad−1;0(z) · · · ad−1;d−1(z)



, P̃(z) =




ã0;0(z) · · · ã0;d−1(z)

ã1;0(z) · · · ã1;d−1(z)
...

...
...

ãd−1;0(z) · · · ãd−1;d−1(z)




(4.3.3)

are biorthogonal, that is, P(z)P̃∗(z) = Idr, where am;γ, ãm;γ are subsymbols

of am, ãm defined similar to (4.3.2) for m, γ = 0, . . . , d − 1, respectively.

Let (φ, φ̃) be a pair of dual d-refinable function vectors in L2(R) asso-

ciated with a pair of d-band biorthogonal filters (a0, ã0) and with φ =

[φ1, . . . , φr]
T , φ̃ = [φ̃1, . . . , φ̃r]

T . Define multiwavelet function vectors ψm =

[ψm
1 , . . . , ψ

m
r ]T , ψ̃m = [ψ̃m

1 , . . . , ψ̃
m
r ]T associated with the high-pass filters

am, ãm, m = 1, . . . , d − 1, by

ψ̂m(dξ) := am(e−iξ)φ̂(ξ),
̂̃
ψm(dξ) := ãm(e−iξ)

̂̃
φ(ξ), ξ ∈ R. (4.3.4)

It is well known that {ψ1, . . . , ψd−1; ψ̃1, . . . , ψ̃d−1} generates a biorthonor-

mal multiwavelet basis in L2(R).

Now, for a pair of d-band biorthogonal low-pass filters (a0, ã0) with mul-

tiplicity r satisfying (3.4.3), we have the following algorithm to construct

high-pass filters a1, . . . , ad−1 and ã1, . . . , ãd−1 such that the polyphase matri-

ces P(z) and P̃(z) defined as in (4.3.3) satisfy P(z)P̃∗(z) = Idr. In what fol-

lows, Pa0 := [a0;0, . . . , a0;d−1] and P̃ea0 := [̃a0;0, . . . , ã0;d−1] are the polyphase

vectors of a0, ã0 obtained by (4.3.2), respectively.
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Algorithm 4.2. Input (a0, ã0) a pair of biorthogonal d-band filters with

multiplicity r and with the same symmetry as in (3.4.3).

(1) Construct a pair of biorthogonal matrices (U, Ũ) in F similar to (3.4.8)

such that both P := Pa0U and P̃ = P̃ea0Ũ are matrices of Laurent

polynomials with coefficient in F having compatible symmetry: SP =

SP̃ = [ε1z
k1 , . . . , εrz

kr ]TSθ for some k1, . . . , kr ∈ Z and some 1 × dr

row vector θ of Laurent polynomials with symmetry.

(2) Derive Pe, P̃e with all the properties as in Theorem 4.1 from P, P̃ by

Algorithm 4.1.

(3) Let P := PeU
∗ =: (am;γ)06m,γ6d−1, P̃ := P̃eŨ

∗ =: (ãm;γ)06m,γ6d−1 as

in (4.3.3). For m = 1, . . . , d − 1, define high-pass filters

am(z) :=
1

d1

d−1∑

γ=0

am;γ(z
d)zγ , ãm(z) :=

1

d2

d−1∑

γ=0

ãm;γ(z
d)zγ . (4.3.5)

Output symmetric filter banks {a0, a1, . . . , ad−1} and {ã0, ã1, . . . , ãd−1} with

the perfect reconstruction property, i.e. P, P̃ in (4.3.3) are biorthogonal

and all filters am, ãm, m = 1, . . . , d − 1, have symmetry:

am(z) = diag(εm1 z
dcm

1 , . . . , εmr z
dcm

r )am(1/z)diag(ε1z
−c1, . . . , εrz

−cr),

ãm(z) = diag(εm1 z
dcm

1 , . . . , εmr z
dcm

r )ãm(1/z)diag(ε1z
−c1, . . . , εrz

−cr),
(4.3.6)

where cmℓ := (km
ℓ − kℓ) + cℓ ∈ R and all εm

ℓ ∈ {−1, 1}, km
ℓ ∈ Z, for

ℓ = 1, . . . , r and m = 1, . . . , d− 1, are determined by the symmetry pattern

of Pe as follows:

[ε1z
k1 , . . . , εrz

kr , ε1
1z

k1
1 , . . . , ε1

rz
k1

r , . . . , εd−1
1 zkd−1

1 , . . . , εd−1
r zkd−1

r ]TSθ := SPe.

(4.3.7)
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Since the high-pass filters a1, . . . , ad−1, ã1, . . . , ãd−1 satisfy (4.3.6), it is easy

to verify that each ψm = [ψm
1 , . . . , ψ

m
r ]T , ψ̃m = [ψ̃m

1 , . . . , ψ̃
m
r ]T defined in

(3.4.4) also has the following symmetry:

ψm
1 (cm1 − ·) = εm

1 ψ
m
1 , ψm

2 (cm2 − ·) = εm
2 ψ

m
2 , . . . , ψm

r (cmr − ·) = εm
r ψ

m
r ,

ψ̃m
1 (cm1 − ·) = εm

1 ψ̃
m
1 , ψ̃m

2 (cm2 − ·) = εm
2 ψ̃

m
2 , . . . , ψ̃m

r (cmr − ·) = εm
r ψ̃

m
r .

(4.3.8)

In the following, let us present several examples to demonstrate our results

and illustrate our algorithms.

Example 4.2. Let d = r = 2 and a0, ã0 be a pair of dual masks obtained in

Examples 1.1 and 1.6 of Chapter 1. That is, a0, ã0 with symbols a0(z), ã0(z)

are given by

a0(z) =
1

16




8 6 z−1 + 6

8 z −z−1 + 3 + 3 z − z2


 ,

ã0(z) =
1

384




−28 z−1 + 216− 28 z 112 z−1 + 112

21 z−1 − 18 + 330 z − 18 z2 + 21 z3 −36 z−1 + 60 + 60 z − 36 z2


 .

Both a0 and ã0 have the same symmetry pattern and satisfy (3.4.3). Let

d = d1d2 with d1 = 1 and d2 = 2. Then, Pa0 := [a0;0, a0;1] and Pa0 :=

[a0;0, a0;1] are as follows:

Pa0 =
1

16




8 6 0 6 z−1

0 3 − z 8 −z−1 + 3


 ,

P̃ea0 =
1

192




216 112 −28(z−1 + 1) 112z−1

−18(1 + z) 12(5 − 3z) 3(7z−1 + 110 + 7z) 12(5 − 3z−1)


 .
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Let U and Ũ be defined by

U :=




1 0 0 0

0 1 0 1

0 0 1 0

0 z 0 −z



, Ũ :=

1

2




2 0 0 0

0 1 0 1

0 0 2 0

0 z 0 −z



.

Then we have UŨ∗ = I4. P := Pa0U and P̃ := P̃ea0U satisfy SP = SP̃ =

[1, z]T [1, 1, z−1,−1] and are given as follows:

P =
1

8




4 6 0 0

0 1(1 + z) 4 2(1 − z)


 ,

P̃ =
1

192




216 112 −28(1 + z−1) 0

−18(1 + z) 12(1 + z) 3(7z−1 + 110 + 7z) 48(1 − z)


 .

Now applying Algorithm 4.1, we obtain two extension matrices Pe and P̃e

as follows:

Pe =
1

192




96 144 0 0

0 24(1 + z) 96 48(1 − z)

−112 −3(z−1 − 70 + z) −12(1 + z−1) −6(z−1 − z)

0 −6(z − z−1) −24(1 − z−1) 12(z + 14 + z−1)




,

P̃e =
1

192




216 112 −28(1 + z−1) 0

−18(1 + z) 12(1 + z) 3(7z−1 + 110 + 7z) 48(1 − z)

−144 96 −24(1 + z−1) 0

0 0 −96(1 − z−1) 192




.

Note that SPe = SP̃e = [1, z, 1,−1]T [1, 1, z−1,−1]. Now from the polyphase

matrices P := PeU
∗ =: (am;γ)06m,γ61 and P̃ := P̃eŨ

∗ =: (ãm;γ)06m,γ61, we
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derive two high-pass filters a1, ã1 as follows:

a1(z) =
1

384




−8(3z + 28 + 3z−1) 3(z2 − 3z + 70 + 70z−1 − 3z−2 + z−3)

−48(z − z−1) 6(z2 − 3z + 28 − 28z−1 + 3z−2 − z−3)


 ,

ã1(z) =
1

16




−(z + 6 + z−1) 4(1 + z−1)

−4(z − z−1) 8(1 − z−1)


 .

See Figure 4.1 for the graphs of φ = [φ1, φ2]
T , ψ = [ψ1, ψ2]

T , φ̃ = [φ̃1, φ̃2]
T ,

and ψ̃ = [ψ̃1, ψ̃2]
T .
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Figure 4.1: The graphs of φ = [φ1, φ2]
T , ψ = [ψ1, ψ2]

T (top, left to
right), and φ̃ = [φ̃1, φ̃2]

T , ψ̃ = [ψ̃1, ψ̃2]
T (bottom, left to right) in Exam-

ple 4.2.

Example 4.3. Let d = 3, r = 2, and a0, ã0 be a pair of dual masks obtained

in Examples 1.2 and 1.7 of Chapter 1 (see (1.3.1) and (1.4.8)). The low-

pass filters a0 and ã0 do not satisfy (3.4.3). However, we can employ a very

simple orthogonal transform E :=
[

1 1

1 −1

]
to a0, ã0 so that the symmetry

in (3.4.3) holds. That is, for b0(z) := Ea0(z)E
−1 and b̃0(z) := E−1ã0(z)E,

it is easy to verify that b0 and b̃0 satisfy (3.4.3) with c1 = c2 = 1/2 and

ε1 = 1, ε2 = −1. Let d = d1d2 with d1 = 1 and d2 = 3. Construct

Pb0 := [b0;0, b0;1, b0;2] and P̃eb0
:= [b̃0;0, b̃0;1, b̃0;2] from b0 and b̃0. Let U be
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given by:

U =




z−1 0 z−1 0 0 0

0 z−1 0 z−1 0 0

1 0 −1 0 0 0

0 1 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




and Ũ := (U∗)−1. Then P := Pb0U and P̃ := P̃eb0
Ũ satisfy SP = SP̃ =

[z−1,−z−1]T [1,−1,−1, 1, 1,−1], and are given by

P = c


 t11(1 + 1

z
) t12(1 − 1

z
) t13(1 − 1

z
) t14 t15(1 + 1

z
) t16(1 − 1

z
)

t21(1 − 1
z
) t22(1 + 1

z
) t23(1 + 1

z
) t24(1 − 1

z
) t25(1 − 1

z
) t26(1 + 1

z
)


 ,

P̃ = c̃


 t̃11(1 + 1

z
) t̃12(1 − 1

z
) t̃13(1 − 1

z
) t̃14 t̃15(1 + 1

z
) t̃16(1 − 1

z
)

t̃21(1 − 1
z
) t̃22(1 + 1

z
) t̃23(1 + 1

z
) t̃24(1 − 1

z
) t̃25(1 − 1

z
) t̃26(1 + 1

z
)


 ,

where c = 1
486
, c̃ = 3

34884
and tjk’s, t̃jk’s are constants defined as follows:

t11 = 162; t12 = 34; t13 = −196; t14 = 0; t15 = 81; t16 = 29;

t21 = −126; t22 = −14; t13 = 176; t24 = −36; t15 = −99; t16 = −31;

et11 = 5814; et12 = −1615; et13 = −7160; et14 = 0; et15 = 5814; et16 = 2584;

et21 = −5551; et22 = 5808; et13 = 7740; et24 = −1358; et15 = −6712; et16 = −4254.

Applying Algorithm 4.1, we obtain Pe and P̃e as follows:

Pe = c




t11(1 + 1
z
) t12(1 − 1

z
) t13(1 − 1

z
) t14 t15(1 + 1

z
) t16(1 − 1

z
)

t21(1 − 1
z
) t22(1 + 1

z
) t23(1 + 1

z
) t24(1 − 1

z
) t25(1 − 1

z
) t26(1 + 1

z
)

t31(1 + 1
z
) t32(1 − 1

z
) t33(1 − 1

z
) t34(1 + 1

z
) t35(1 + 1

z
) t36(1 − 1

z
)

t41 0 0 t44 t45 0

0 t52 t53 0 0 t56

t61(1 − 1
z
) t62(1 + 1

z
) t63(1 + 1

z
) t64(1 − 1

z
) t65(1 − 1

z
) t66(1 + 1

z
)




,
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where all tjk’s are constants given by:

t31 = 24; t32 =
472

27
; t33 = −148

27
;

t34 = −36; t35 = −24; t36 = −112

27
;

t41 =
109998

533
; t44 =

94041

533
; t45 = −109989

533
;

t52 = 406c0; t53 = 323c0; t56 = 1142c0; c0 =
1609537

13122
;

t61 = 24210c1; t62 = 14318c1; t63 = −11807c1; t64 = −26721c1;

t65 = −14616c1; t66 = −1934c1; c1 = 200/26163.

And

P̃e = c̃




t̃11(1 + 1
z
) t̃12(1 − 1

z
) t̃13(1 − 1

z
) t̃14 t̃15(1 + 1

z
) t̃16(1 − 1

z
)

t̃21(1 − 1
z
) t̃22(1 + 1

z
) t̃23(1 + 1

z
) t̃24(1 − 1

z
) t̃25(1 − 1

z
) t̃26(1 + 1

z
)

t̃31(1 + 1
z
) t̃32(1 − 1

z
) t̃33(1 − 1

z
) t̃34(1 + 1

z
) t̃35(1 + 1

z
) t̃36(1 − 1

z
)

t̃41 0 0 t̃44 t̃45 0

0 t̃52 t̃53 0 0 t̃56

t̃61(1 − 1
z
) t̃62(1 + 1

z
) t̃63(1 + 1

z
) t̃64(1 − 1

z
) t̃65(1 − 1

z
) t̃66(1 + 1

z
)




,

where all t̃jk’s are constants given by:

t̃31 = 3483c̃0; t̃32 = 37427c̃0; t̃33 = 4342c̃0; t̃34 = −12222c̃0;

t̃35 = −3483c̃0; t̃36 = −7267; c̃0 =
8721

4264
;

t̃41 = 5814; t̃44 = 11628; t̃45 = −11628;

t̃52 = 3c̃1; t̃53 = 2c̃1; t̃56 = 10c̃1; c̃1 =
12680011

243
;

t̃61 = 18203c̃2; t̃62 = 101595c̃2; t̃63 = 1638c̃2; t̃64 = −33950c̃2;

t̃65 = −10822c̃2; t̃66 = −36582c̃2; c̃2 =
26163

213200
.

Note that Pe and P̃e satisfy

SPe = SPe = [z−1,−z−1, z−1, 1,−1,−z−1]T [1,−1,−1, 1, 1,−1].
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From the polyphase matrices P := PeU
∗ and P̃ := P̃eU

∗, we derive high-

pass filters b1, b2 and b̃1, b̃2 as follows:

b1(z) =


 b111(z) b112(z)

b121(z) b122(z)


 , b2(z) =


 b211(z) b212(z)

b221(z) b222(z)


 ,

where

b111(z) =
199

6561
+

125

6561
z3 − 4

81
z2 +

199

6561
z − 4

81
z−1 +

125

6561
z−2;

b112(z) = − 361

6561
− 125

6561
z3 − 56

6561
z2 +

361

6561
z +

56

6561
z−1 +

125

6561
z−2;

b121(z) =
679

3198
z3 +

679

3198
z − 679

1599
z2;

b122(z) =
387

2132
z3 − 387

2132
z;

b211(z) = c3(323z
3 − 323z);

b212(z) = c3(406z
3 + 2284z2 + 406z);

b221(z) = c4(−36017 + 12403 z3 − 29232 z2 + 36017 z + 29232 z−1 − 12403 z−2);

b222(z) = c4(41039 − 12403 z3 − 3868 z2 + 41039 z − 3868 z−1 − 12403 z−2);

c3 =
27

3219074
; c4 =

50

6357609
.

And

b̃1(z) =


 b̃111(z) b̃112(z)

b̃121(z) b̃122(z)


 , b̃2(z) =


 b̃211(z) b̃212(z)

b̃221(z) b̃222(z)


 ,

where

b̃111(z) = − 859

17056
+

7825

17056
z3 − 3483

8528
z2 − 859

17056
z − 3483

8528
z−1 +

7825

17056
z−2;

b̃112(z) = −49649

17056
+

25205

17056
z3 − 559

656
z2 +

49649

17056
z +

559

656
z−1 − 25205

17056
z−2;

b̃121(z) =
1

6
(z3 + z − 2z2);

b̃122(z) =
1

3
(z3 − z);
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b̃211(z) = 2c̃3(z
3 − z);

b̃212(z) = c̃3(3z
3 + 10z2 + 3z); c̃3 =

39257

26244
;

b̃221(z) = − 9939

170560
+

59523

852800
z3 − 16233

426400
z2 +

9939

170560
z +

16233

426400
z−1 − 59523

852800
z−2;

b̃222(z) =
81327

170560
+

40587

170560
z3 − 4221

32800
z2 +

81327

170560
z − 4221

32800
z−1 +

40587

170560
z−2.

Then the high-pass filters b1, b2 and b̃1, b̃2 satisfy (4.3.6) with c11 = c12 = 1/2,

ε1
1 = 1, ε1

2 = 1 and c21 = c22 = 3/2, ε1
1 = −1, ε1

2 = −1, respectively.

Let a1, a2 and ã1, ã2 be high-pass filters constructed from b1, b2 and b̃1, b̃2 by

a1(z) := E−1b1(z)E, a2 := E−1b2E and ã1(z) := Eb̃1(z)E
−1, ã2 := Eb̃2E

−1.

See Figure 4.4 for the graphs of the 3-refinable function vectors φ, φ̃ as-

sociated with the low-pass filters a0, ã0, respectively, and the biorthogo-

nal multiwavelet function vectors ψ1, ψ2 and ψ̃1, ψ̃2 associated with the

high-pass filters a1, a2 and ã1, ã2, respectively. Also, see Figure 4.5 for the

graphs of the 3-refinable function vectors η, η̃ associated with the low-pass

filters b0, b̃0, respectively, and the biorthogonal multiwavelet function vec-

tors ζ1, ζ2 and ζ̃1, ζ̃2 associated with the high-pass filters b1, b2 and b̃1, b̃2,

respectively.

4.4 Conclusions and Remarks

In this chapter, we study the general matrix extension problem with sym-

metry for the biothogonal case. We obtain a result on representing a pair

of r×s biorthogonal matrices (P, P̃) having the same compatible symmetry

and provide a step-by-step algorithm for deriving a pair of s× s biorthogo-

nal matrices from a given pair of biorthogonal matrices (P, P̃). Our results
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Figure 4.2: The graphs of η = [η1, η2]
T , ζ1 = [ζ1

1 , ζ
1
2 ]T , and ζ2 =

[ζ2
1 , ζ

2
2 ]T (top, left to right), and η̃ = [η̃1, η̃2]

T , ζ̃1 = [ζ̃1
1 , ζ̃

1
2 ]T , and ζ̃2 =
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2 ]T (bottom, left to right).

−1 −0.5 0 0.5 1 1.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

−1 −0.5 0 0.5 1 1.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

−1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.5 0 0.5 1 1.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.5 0 0.5 1 1.5
−4

−3

−2

−1

0

1

2

3

−1 −0.5 0 0.5 1 1.5
−3

−2

−1

0

1

2

3

4

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

2.5

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

2.5

−1 −0.5 0 0.5 1 1.5
−10

−8

−6

−4

−2

0

2

4

6

8

−1 −0.5 0 0.5 1 1.5
−12

−10

−8

−6

−4

−2

0

2

4

6

8

−1 −0.5 0 0.5 1 1.5
−3

−2

−1

0

1

2

3

−1 −0.5 0 0.5 1 1.5
−3

−2

−1

0

1

2

3

Figure 4.3: The graphs of φ = [φ1, φ2]
T , ψ1 = [ψ1

1 , ψ
1
2 ]
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2
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1
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T , and
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show that for the one row case (r = 1), the support lengths of the exten-

sion matrices can be controlled by the given pair of columns. We apply our

results in this chapter to the derivation of biorthogonal multiwavelets from

a pair of dual d-refinable functions constructed in Section 1.4.



Chapter 5

Future Research

In Chapters 1 and 2, we investigated refinable function vectors with many

desirable properties, such as interpolation, symmetry, orthogonality, and

so on. In Chapters 3 and 4, we mainly studied the matrix extension prob-

lem with symmetry, which plays a fundamental role in the construction

of orthogonal and biorthogonal multiwavelets with symmetry. Except in

Chapter 2 for some symmetric interpolating refinable function vectors in

high dimensions, in previous chapters, we mainly focus on the construction

of one-dimensional refinable function vectors and their corresponding mul-

tiwavelets. We did not address any results related to the construction of

high dimensional wavelets. In this chapter, we shall discuss several possi-

ble future research topics related to matrix extension and high dimensional

wavelets.

142
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5.1 Matrix Extension in Dimension One

For the matrix extension technique, it can be applied not only to the

construction of orthogonal or biorthogonal multiwavelets, but also to the

construction of tight wavelet frames (multiframes). For example, for a d-

refinable function φ in L2(R), if its associated mask (low-pass filter) a0

satisfies

0 6

d−1∑

γ=0

a0;γ(z)a
∗
0;γ(z) 6 1, (5.1.1)

then by Riesz lemma, one can derive an extra element a0;d(z) such that the

polyphase vector p(z) := [a0;0(z), . . . , a0,d−1(z), a0;d(z)] satisfies the matrix

extension condition, i.e., p(z)p∗(z) = 1. Consequently, using our matrix

extension algorithm, one can construct tight d-wavelet frames having sym-

metry with only d wavelet generators for any integer d > 2 provided p

satisfying certain symmetry condition. This is the case for scalar refinable

functions.

For d-refinable function vectors φ associated with a matrix mask a0 with

multiplicity r, condition (5.1.1) becomes

Ir −
d−1∑

γ=0

a0;γ(z)a
∗
0;γ(z) > 0, (5.1.2)

that is, the matrix of Laurent polynomials Ir −
∑d−1

γ=0 a0;γ(z)a
∗
0;γ(z) is pos-

itive semidefinite. In order to obtain an extra element a0;d(z) so that

P(z) := [a0;0(z), . . . , a0;d−1(z), a0;d(z)] satisfies the matrix extension con-

dition P(z)P∗(z) = Ir, one needs to employ the matrix-valued Riesz lemma

([39]). In this case, there are two main issues need to be clearified. On the

one hand, what types of d-refinable function vectors can satisfy (5.1.2)? In
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the scalar case, condition (5.1.1) can be easily satisfied if a mask â(ξ) is ob-

tained from b̂(ξ) := cos2n(ξ/2)
∑ℓ

j=0

(
n−1+j

j

)
sin2j(ξ/2) via the Riesz lemma

(ℓ 6 n − 1, see Section 1.1 of Chapter 1). Analogously, can one construct

families of d-refinable function vectors satisfying (5.1.2)? On the other

hand, in order to obtain tight wavelet multiframes with symmetry, the extra

element a0;d(z) obtained via the matrix-valued Riesz lemma needs to sat-

isfy certain symmetry condition. Though there are factorization algorithms

([39]) for the matrix-valued Riesz lemma, to our best knowledge, there is no

factorization algorithm with symmetry for the matrix-valued Riesz lemma.

Thus, to apply our matrix extension with symmetry to the construction of

tight wavelet multiframes with symmetry, we need to develop factorization

algorithms with symmetry for matrix-valued Riesz lemma.

In Chapter 4, we proposed an algorithm for deriving a pair of biorthgonal

s × s matrices (Pe, P̃e) from a pair of r × s matrices (P, P̃) under a co-

efficient field F. Though the condition, that the coefficient field F is only

required to be a subfield of C, is less restricted than that of F we considered

in Chapter 3 (see (3.1.6)), in electronic engineering or computer science,

filters with dyadic coefficients m
2n , m, n ∈ Z, are more preferred than that

with rational numbers. Note that Rd := { m
dn : m,n ∈ Z} is a ring. A

natural question is:“Can we construct pairs of d-band biorthogonal filters

with coefficients in a subring R of C, or more specifically, in Rd?” If the

answer is yes, we need to develop extension algorithms for these types of

filters so that the high-pass filters from such pairs forming filter banks with

perfect reconstruction property also have coefficients in R or Rd.

Also, for the scalar case, our result (Theorem 4.1) says that the lengths

of the coefficient supports of the extension matrices we obtained from a

pair of vectors (p, p̃) are controlled by the summation of both the lengths
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of p and p̃. This is not as nice as that in Theorem 3.1. For the vector

case, our extension algorithm proceeds recursively row-by-row on a given

pairs of r×s biorthogonal matrices (P, P̃), which might result in even longer

coefficient support of the pair (Pe, P̃e) of extension matrices. To have better

support control of the extension matrices, we need to develop algorithms

that take into account the coefficients of the pair (P, P̃) as coefficients of

matrix types.

This line of research is under development and we point out that one can

also apply our biorthogonal matrix extension technique to the construction

of wavelet bi-frames.

5.2 Matrix Extension in High Dimensions

In high dimensions, a simple and common way to construct wavelets is

via tensor product of one-dimensional wavelets. In this way, many proper-

ties, say symmetry, can be easily carried onto high dimensions. However,

tensor product wavelets favor only two main directions: horizontal and ver-

tical. To construct wavelets that favor directions other than horizontal and

vertical directions, one may consider non-tensor product wavelets, which

inevitably lead us to the study of the matrix extension problem in high

dimensions. Also, tensor product wavelets can yield only a few symmetry

patterns. Employing matrix extension with symmetry in high dimensions

shall enrich the symmetry patterns of wavelets in high dimensions and

might produce better results in applications.

Let M be a dilation matrix, m := | detM|, and ΩM := {ω0, . . . , ωm−1} be an

ordered of complete representatives of the cosets Zd/MZd. Suppose φ is an
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orthogonal M-refinable function vector in L2(Rd) associated with a matrix

mask a0 with multiplicity r. Define a0;ω(z) :=
√

m
∑

k∈Zd a(Mk+ω)zk, ω ∈
ΩM to be the polyphases of a0, where z = (z1, . . . , zd), k = (k1, . . . , kd), and

zk = zk1
1 · · · zkd

d . Then the orthogonality of φ implies that

∑

ω∈ΩM

a0;ω(z)a∗0;ω(z) = Ir. (5.2.1)

Here for a matrix of Laurent polynomials P(z) =
∑

k∈Zd Pkz
k, P∗(z) :=

∑
k∈Zd Pk

T
z−k. To construct high dimensional orthonormal multiwavelets

from φ, we need to derive masks a1, . . . , am−1 such that the polyphase ma-

trix

P(z) :=




a0;ω0(z) · · · a0;ωm−1(z)
...

. . .
...

am−1;ω0(z) · · · am−1;ωm−1(z)


 (5.2.2)

is paraunity, i.e., P(z)P∗(z) = Imr.

Consequently, the matrix extension problem in high dimensions can be

formulated as follows: Let P(z) be an r × s (1 6 r 6 s) matrix of Laurent

polynomials in Rd such that PP∗ = Ir. Find an s× s matrix Pe of Laurent

polynomials in Rd such that [Ir, 0]Pe = P and PP∗ = Is. Analogously, we

can formulate the matrix extension problem for biorthogonal multiwavelets

in high dimensions as: Given a pair of r × s matrices (P, P̃) of Laurent

polynomials in Rd such that PP̃∗ = Ir. Find a pair of matrices (Pe, P̃e)

such that [Ir, 0]Pe = P, [Ir, 0]P̃e = P̃ and PP̃∗ = Is.

In high dimensions, two main issues for the matrix extension are symme-

try and support control. Without considering any symmetry issue, for the

biorthogonal case, the matrix extension problem is guaranteed by Quillen-

Suslin theorem ([69]) and there are constructive algorithms to derive the
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extension matrices. For high dimensional orthogonal multiwavelets, to our

best knowledge, there is still no constructive algorithm to derive the cor-

responding extension matrix. When integrating symmetry to the matrix

extension problem, it becomes even more complicated. Firstly, the Quillen-

Suslin theorem does not guarantee symmetry of the extension system. Sec-

ondly, as we mentioned and studied in Chapter 2, symmetry in high di-

mensions is related to some symmetry groups, which is highly nontrivial

compared to symmetry in dimension one. Lastly but not least, we do not

know whether the support lengths of the extension matrices can be con-

trolled by the given matrices. These issues surely complicate the design of

the extension algorithm.

Nevertheless, to study the high dimensional matrix extension problem, we

may consider some specific cases first in order to gain a rough idea of matrix

extension in the high dimensional situation. For example, we may study

and develop possible algorithms for the matrix extension problem without

symmetry and then try to integrate symmetry to the algorithms. For sim-

plicity, we can consider the case for bivariate orthogonal multiwavelets from

a bivariate M-refinable function vectors in L2(R2) which is symmetric with

respect to a symmetry group G. To further simplify our analysis, we can

consider M = 2I2 and choose the symmetry group G to be D4 introduced

in Section 2.2 (see (2.3.7)). This line of research is under development.
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5.3 Tight Wavelet Frames with Directional-

ity in High Dimensions

Deriving high dimensional wavelets via matrix extension has its own rights

in many aspects. Though we can have directions other than horizonal and

vertical, we must point out that orthogonal (multi)wavelets derived via

matrix extension can only possess directions no more than | det M| − 1.

Yet in applications, for instance, image processing, wavelets (not necessar-

ily orthogonal) that can achieve as many directions as possible are desired,

especially in image denoising and edge detection. Moreover, redundant sys-

tems, say tight wavelet frames, are preferred and generally produce better

results in image denoising/inpainting than that of non-redundant systems.

For orthogonal wavelet bases, they are of course highly non-redundant sys-

tems compared with tight wavelet frames.

Also, from the point of view of approximation, orthogonal wavelets are

not good at representing smooth functions with discontinuity along some

piecewise smooth edges in dimension two. It is known ([13]) that the opti-

mal approximation rate of the best n-term wavelet approximation for any

orthogonal system is n−2, i.e.

‖f − fn‖2
L2(R2) ≍ n−2, n→ ∞, (5.3.1)

where fn is the approximation obtained by using the largest n coefficients

in the orthogonal expansion. When considering a function in R2 that is

C2 away from a discontinuity along a curve of finite length, the best n-

term approximation can only achieve approximation rate n−1, i.e., ‖f −
fn‖2

L2(R2) ≍ n−1 ([13, 56]), which is way far from the optimal approximation
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rate n−2. One of the reasons is again the lack of directionality of orthogonal

wavelets, which makes it impossible for representing the edge curve with

only few coefficients.

To overcome the above shortcomings of orthogonal wavelet systems, Candès

and Donoho in [1] introduced the so-called Curvelets and showed that these

systems can achieve nearly optimal approximation rate on representing

objects with C2 singularity, i.e., ‖f − fn‖2
L2(R2) ≍ n−2(logn)3. Curvelets

are tight frames, which of course have redundancy and can achieve better

results in image denoising. However, we must point out that curvelets are

not wavelet frames and involve with parabolic dilation matrix and rotation

opertators, which makes the design of the algorithms for curvelet transform

in applications very complicated, while for wavelet frames, the algorithms

for frame transforms are fast and can be easily designed.

The above discussion raises a question:“Can we achieve directionality and

optimal representation under the framework of tight wavelet fames?”.

In the following, we shall show that directionality can be easily achieved

under the framework of tight wavelet frames.

Let us first construct two univariate functions η, ζ in frequency domain

such that η(ξ)2 + ζ(ξ)2 = η(ξ/2)2. Define f(x) := e−
1

x2 , x > 0 and f(x) :=

0, x 6 0. Let g(x) :=
∫ x

−1
f(1 + t)f(1 − t)dx. Define

γ(x) :=
g(x)√

g(−x)2 + g(x)2
. (5.3.2)

Then one can show that γ ∈ C∞(R) and satisfies

γ(x) = 0, x < −1; γ(−x)2 + γ2(x) = 1; γ(x) = 1, x > 1. (5.3.3)
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Let c, ε > 0 be such that c− ε > 0. Define

βc,ε(ξ) :=





γ( ξ+c
ε

), −c− ε 6 ξ < −c + ε;

1, −c+ ε 6 ξ 6 c− ε;

γ(−ξ+c
ε

), c− ε < ξ 6 c+ ε;

0, otherwise.

(5.3.4)

Let cη, εη be such that cη + εη 6 π/2. Define η(ξ) := βcη ,εη
(ξ) and ζ(ξ) :=

(η(ξ/2)2−η(ξ)2)1/2. In this way, both η and ζ are supported inside [−π, π],

η(ξ) ≡ 1 in a neighborhood of the origin, and η(ξ)2 + ζ(ξ)2 = η(ξ/2)2.

Using tensor product in the polar coordinates and splitting technique in

[19], one can construct tight wavelet frames with directionality in dimension

two using η, ζ. Let us recall such an example from [29].

For a function f : Rd → C and a d × d real-valued invertible matrix U , in

what follows, we shall adopt the notation:

fU ;k,n(x) := | detU |1/2e−in·Uxf(Ux− k)

and fU ;k := fU ;k,0, x, k, n ∈ Rd.
(5.3.5)

Example 5.1. Consider M = 2I2 and N = (MT )−1. Let m be a positive

integer and ρ be a parameter such that 0 6 ρ < 1. We are going to

construct a nonstationary tight M-wavelet frame generated by Φ = {ϕ} and

Ψ = {Ψj}∞j=0, where Ψj = {ψj,1, . . . ,ψj,sj} ad sj = m2⌊ρj⌋, j = 0, . . . ,∞,

i.e., for all f ∈ L2(R2),

(2π)d‖f‖2
L2(Rd) =

r∑

ℓ=1

∑

k∈Zd

|〈f,ϕℓ
NJ ;0,k〉|2 +

∞∑

j=J

sj∑

ℓ=1

∑

k∈Zd

|〈f,ψj,ℓ
Nj ;0,k〉|2.
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Let ε be such that 0 < ε 6 2π/m and define a 2π-periodic function αm,ε ∈
C∞(T) such that αm,ε(ξ) := β π

2m
,ε(ξ), ξ ∈ [−π, π],where βc,ε is given in

(5.3.4). Then one can verify that

2m−1∑

ℓ=0

|αm,ε(ξ +
πℓ

m
)|2 = 1, ξ ∈ R. (5.3.6)

In the frequency domain, let reiθ denote the point (r cos θ, r sin θ). Define

ϕ(reiθ) = η(r), ψ(reiθ) = ζ(r), r > 0, θ ∈ [−π, π].

Now, we can define ψj,ℓ by splitting ψ using αm,ε and its property (5.3.6)

as follows:

ψj,ℓ(reiθ) := ψ(reiθ)

(
αm,ε(2

⌊ρj⌋θ +
(ℓ− 1)π

m
) + αm,ε(−2⌊ρj⌋θ − (ℓ− 1)π

m
)

)
.

(5.3.7)

Then due to (5.3.6), we have
∑sj

ℓ=1 |ψj,ℓ(reiθ)|2 = |ψ(reiθ)|2 = ζ(r)2. Con-

sequently, |ϕ(ξ)|2 +
∑sj

ℓ=1 |ψj,ℓ(ξ)|2 = |ϕ(ξ/2)|2 for all ξ ∈ R2. By [29,

Corollary 17], we conclude that Φ,Ψj , j = 0, . . . ,∞ generate a tight M-

wavelet frame.

According to the construction, ϕ,ψj,ℓ have the following properties:

(1) All functions in Φ,Ψ are compactly supported C∞(R2) functions.

ϕ ≡ 1 in a neighborhood of the origin and all ψj,ℓ vanish in a neigh-

borhood of the origin;

(2) Refinability: there exist 2πZ2-periodic functions a (low-pass filter)

and bj,ℓ (high-pass filters) such that ϕ(2ξ) = a(ξ)ϕ(ξ) and ψj,ℓ(2ξ) =

bj,ℓ(ξ)ϕ(ξ) (see [29]);
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(3) Fixed j > 0, ψj,ℓ are obtained via rotating ψj,1: ψj,ℓ(ξ) = ψj,1(Rθℓ
ξ)

with Rθℓ
being the standard rotation operator about angle θℓ = (ℓ−1)π

m2⌊ρj⌋ ;

(4) ψj,1
2−jI2;0,k

is symmetric about the origin and its support has two parts

with each part obeys width≈length1−ρ. More precisely, for all k ∈ Z2

and j > 0,

suppψj,1
2−jI2;0,k

= {reiθ, re−iθ : 2jr1 6 r 6 2jr2,−2−⌊ρj⌋θ0 6 θ 6 2−⌊ρj⌋θ0}.

We next illustrate some graphs to show the directionality of the tight

wavelet frame generated by ϕ and ψj,ℓ’s. See Figure 5.1 for the graphs

of ϕ,ψ and their graphs in time domain. See Figure 5.2 for the splitting

effect of αm,ε on ψ and Figure 5.3 for the rotation effect.

−4

−2

0

2

4

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

 

 
−4

−2

0

2

4

−4

−2

0

2

4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 

−10

−5

0

5

10

−10

−5

0

5

10
−0.02

0

0.02

0.04

0.06

0.08

0.1

−10

−5

0

5

10

−10

−5

0

5

10
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 5.1: The graphs of ϕ,ψ (top 2) in frequency domain and their
corresponding graphs (bottom 2) in time domain.

For the above example, in the frequency domain, the wavelet generators

ψj,ℓ’s are compactly supported and C∞. In the time domain, they are es-

sentially supported in rectangles obeying width≈length1−ρ (see Figures 5.2
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Figure 5.2: The splitting effect of αm,ε on ψ. The top row is the
graphs of the supports of ψ0,1 with respect to m = 2, 4, 8, 16 (left to
right). The bottom row is the graphs of corresponding effect on the

supports of ψ0,1 in the time domain.

Figure 5.3: The rotation effect on ψ0,1 with m = 8. The top row
is the graphs of the supports of ψ0,ℓ with respect to ℓ = 1, 2, 3, 4 (left
to right). The bottom row is the graphs of corresponding effect on the

supports of ψ0,ℓ in the time domain.

and 5.3). For implementation, the C∞ smoothness does not necessarily be

needed. Indeed, we can modify function γ(x) in (5.3.2) to obtain wavelet
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generators with regularity of Ck (γ can actually be a polynomial). Alter-

natively, one may consider the construction of compactly supported bivari-

ate tight wavelet frames with directionality in time domain. That is, the

wavelet generators ϕ, ψj,ℓ’s are compactly supported in time domain with

symmetry and certain regularity (vanishing moments).

Comparing with curvelets (or shearlets) using anisotropic dilation M =

diag(4, 2), here we use isotropic dilation matrix M = 2I2, which significantly

simplify the algorithm design. Also curvelets are essentially supported in

rectangles with width≈length1/2. In our case, the choice of the ratio ρ

in width≈length1−ρ is flexible, which might provide us more freedom in

the investigation of the optimal approximation rate of the representation

of objects with C2 singularities. Along this direction, we would like to

establish results similar to [1] on representing objects with C2 singularities

using the tight M-wavelet frame with directionality we constructed above.

Finally, let us end this chapter by commenting on possible applications of

the tight wavelet frames constructed in this chapter. Bearing the prop-

erties of redundancy and directional sensitivity, the tight wavelet frames

constructed in this chapter have the potential applications in signal/image

processing, or even in 3-D objects modeling and reconstructing. Our future

work shall continue along this line of research.



Appendix A

Proofs of Proposition 1.5 and

Theorem 2.9

A.1 Proof of Proposition 1.5

Proof. By φ(x) = d
∑

k∈Z
a(k)φ(dx − k), we can deduce that φℓ(x) =

d
∑

k∈Z
aℓ(k)φRk+1(dx − Qk), for ℓ = 1, . . . , r. Hence, for each j ∈ Z, sub-

stituting x0 :=
Rj

dr
+

Qj

d
to the above and using the interpolation property

of φ, we have φℓ(x0) = d
∑

k∈Z
aℓ(k)φRk+1(

Rj

r
+Qj −Qk) = daℓ(j).

On the other hand, φr−ℓ+1(
r−1

r
−x0) = d

∑
k∈Z

ar−ℓ+1(k)φRk+1(
d(r−1)

r
− Rj

r
−

Qj −Qk) = dar−ℓ+1(r(Qt −Qj)+Rt), where d(r− 1)−Rj = rQt +Rt with

Rt, Qt ∈ Z and 0 6 Rt 6 r− 1. Consequently, by φℓ(x) = φr−ℓ+1(
r−1

r
− x),

we conclude that

aℓ(j) = ar−ℓ+1(r(Qt −Qj) + Rt) = ar−ℓ+1(rQt +Rt − rQj)

= ar−ℓ+1(d(r − 1) − (rQj +Rj)) = ar−ℓ+1(−j + (r − 1)d).

155
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Therefore, (1.5.1) holds. The computations for showing (1.5.2) is similar.

Conversely, suppose (1.5.1) holds and d − 1 = k0r for some integer k0 > 1.

Since φ is interpolating, we automatically obtain

φℓ(
m

r
+ j) = φr−ℓ+1(

r − 1

r
− (

m

r
+ j)) j ∈ Z; 0 6 m 6 r − 1; ℓ = 1, . . . , r.

Suppose we have proved that for n > 1, 0 6 m 6 r − 1 and 1 6 ℓ 6 r,

φℓ(
1

dn−1
(
m

r
+ j)) =φr−ℓ+1(

r − 1

r
− 1

dn−1
(
k

r
+ j)), j ∈ Z.

Then

φℓ(
1

dn
(
m

r
+ j)) = d

∑

k∈Z

aℓ(k)φRk+1(
1

dn−1
(
m

r
+ j) −Qk)

= d
∑

k∈Z

ar−ℓ+1(−k + (r − 1)d)φr−Rk
(
r − 1

r
− 1

dn−1
(
m

r
+ j) +Qk)

= d
∑

k∈Z

ar−ℓ+1(−k + (r − 1)d)×

φr−Rk

(
d(
r − 1

r
− 1

dn
(
m

r
+ j)) − (d − 1)(r − 1)

r
+Qk

)
.

Now, let k′ = −k + (r − 1)d. We have k′ = −rQk − Rk + (r − 1)(k0r +

1) = −r(Qk − (r − 1)k0) + r − 1 − Rk. Hence, Rk′ = r − 1 − Rk and

Qk′ = Qk − (r − 1)k0 = Qk − (d−1)(r−1)
r

. Consequently,

φℓ(
1

dn
(
m

r
+ j)) = d

∑

k′∈Z

ar−ℓ+1(k
′)φRk′+1(d(

r − 1

r
− 1

dn
(
m

r
+ j)) −Qk′)

= φr−ℓ+1(
r − 1

r
− 1

dn
(
m

r
+ j)).

By induction, we have φℓ(
1
dn (m

r
+ j)) = φr−ℓ+1(

r−1
r

− 1
dn (k

r
+ j)), for 0 6

m 6 r − 1, 1 6 ℓ 6 r, j ∈ Z, and all n ∈ N. Therefore, by the continuity
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of φ and density of { 1
dn (m

r
+ j) : j ∈ Z;n ∈ N;m = 0, . . . , r − 1} in R, we

conclude that φℓ = φr−ℓ+1(
r−1

r
− ·), ℓ = 1, . . . , r. The proof for the other

case is similar.

A.2 Proof of Theorem 2.9

Proof. Existence. Let G := {(β1, . . . , βd) ∈ Zd : β1 + · · ·+βd is odd}. It is

easy to verify that G∪Γ = Zd and G = γ+Γ for any γ = (γ1, . . . , γd) ∈ Zd

with γ1 + · · ·+ γd being an odd number. That is, Zd/Γ = {0, γ} for any γ

with |γ| being an odd number. Together with item (1), item (3) becomes

∑

β∈Γ

a(γ + β)p(γ + β) =
1

2
δ(β)p(β), |γ| is odd; p ∈ Π|m|,

which is equivalent to
∑

β∈G a(β)βµ = 1
2
δ(µ), |µ| 6 |m|.

Claim 1: Let GS := G ∩ S. Then, (βµ)β∈GS ,|µ|6|m| is of full row rank.

In fact, define |m| hyperplanes:

H2j := {(x1, · · · , xs) ∈ Rd : x1 + · · ·+ xd = |m| − 2j};

H2j+1 := {(x1, · · · , xs) ∈ Rd : x1 + · · ·+ xd = −(|m| − 2j)},

for j = 0, . . . , |m|−1
2

. Note that #(GS ∩ H2j) = #(GS ∩ H2j+1) 6 #{µ :

|µ| 6 2j}. Due to the special structure of the points in GS, it is easy to

extend GS to GSe
such that GS ⊆ GSe

and #(GSe
∩ Hj) = #{µ : |µ| 6

j} for j = 0, . . . , |m|. Moreover, GSe
satisfies the “Node Configuration

A in Rd” as in [6]. Consequently, by [6, Theorem 4], we conclude that
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(βµ)β∈GSe ,|µ|6|m| is of full rank. Since GS ⊆ GSe
, (βµ)β∈GS ,|µ|6|m| is of full

row rank.

Claim 2: Let Γ0 := {µ ∈ Nd
0 : |µ| 6 |m| and µℓ 6 mℓ for ℓ = 1, . . . , d}.

Then (βµ)β∈GS ,|µ|6|m| and (βµ)β∈GS ,µ∈Γ0 have the same column rank.

In fact, for each µ /∈ Γ0 and |µ| 6 |m|, using long division of polynomials,

xµ with x = (x1, . . . , xd) ∈ Rd can be represented as

xµ = qµ
1 (x)

m1∏

j=−m1

(x1 − j) + · · · + qµ
d (x)

md∏

j=−md

(xd − j) + Pµ(x),

where qµ
1 (x), . . . , qµ

d (x) are polynomials of d variables and Pµ(x) is a linear

combination of xν with ν ∈ Γ0. Hence, we have Pµ(0) = 0. Now, the

conclusion follows from βµ = Pµ(β) for any β ∈ GS.

Claim 3: Let G+ := GS ∩Nd
0 and Γ1 := {2µ : 2µ ∈ Γ0}. Then #G+ = #Γ1

and (βµ)β∈G+,µ∈Γ1 is nonsingular.

In fact, Γ1 =
⋃ |m|−1

2
j=0 {2µ ∈ Nd

0 : |µ| = j, µℓ 6 mℓ; ℓ = 1, . . . , d} and G+ =
⋃ |m|−1

2
j=0 {β ∈ Nd

0 : |β| = 2j + 1, βℓ 6 mℓ; ℓ = 1, . . . , d}. For j = 2k + 1 with

0 6 2k + 1 6
|m|−1

2
, we have #{2µ ∈ Nd

0 : |µ| = 2k + 1, µℓ 6 mℓ; ℓ =

1, . . . , d} = #{β ∈ Nd
0 : |β| = 2k + 1, βℓ 6 mℓ; ℓ = 1, . . . , d}. And for

j = 2k with 0 6 2k 6
|m|−1

2
, we have #{2µ ∈ Nd

0 : |µ| = 2k, µℓ 6 mℓ; ℓ =

1, . . . , d} = #{β ∈ Nd
0 : |β| = |m| − 2k, βℓ 6 mℓ; ℓ = 1, . . . , d}. Therefore

#G+ = #Γ1.

Next, we show that (βµ)β∈G+,µ∈Γ1 is nonsingular. Suppose not, there exists

{cβ}β∈G+ with cβ 6= 0 for some β ∈ G+ such that
∑

β∈G+
cββ

µ = 0, ∀µ ∈ Γ1.

Let E := {Eε : Eε = diag(ε1, . . . , εd), ε = (ε1, . . . , εd) with each εℓ =

±1 for ℓ = 1, . . . , d}. By the symmetry of GS, we have GS = {Eεβ :
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β ∈ G+;Eε ∈ E}. By the evenness of Γ1,
∑

β∈GS
cββ

µ = 0, ∀µ ∈ Γ1, where

for each β = (β1, . . . , βd) ∈ GS, cβ := cβ+ with β+ = (|β1|, . . . , |βd|) ∈ G+.

For any µ ∈ Nd
0 such that |µ| is odd, by the symmetry of GS and oddness

of µ, we have

∑

β∈GS

cββ
µ =

∑

Eε∈E

∑

β∈G+

cEεβ(Eεβ)µ

=
∑

ε1=±1

· · ·
∑

εd∈±1

∑

β∈G+

cE(ε1,...,εd)β(E(ε1,...,εd)β)µ = 0.

Moreover, by Claim 2, βµ is the linear combination of βν , ν ∈ Γ0 for any

|µ| 6 |m. Consequently,
∑

β∈GS
cββ

µ = 0, ∀|µ| 6 |m|. This contradicts to

the Claim 1. Therefore, (βµ)β∈G+,µ∈Γ1 must be nonsingular.

By Claim 3, we can choose a subset Γ2 with Γ1 ⊆ Γ2 ⊆ Γ0 and #Γ2 = #GS

such that (βµ)β∈G+,µ∈Γ2 is a nonsingular matrix. Solve the linear system
∑

β∈GS
cββ

µ = 1
2
δ(µ), µ ∈ Γ2 for {cβ : β ∈ GS}. Then we also have

∑
β∈GS

cββ
µ = 1

2
δ(µ) for all |µ| 6 |m|. Construct the mask am to be

am(β) = cβ for β ∈ GS, am(0) = 1
2
, and am(β) = 0 otherwise. Then am

satisfies all conditions in item (1)–(3).

Uniqueness: Suppose there is another mask b satisfies conditions in item

(1)–(3). Then

∑

β∈GS

(am(β)−b(β))βµ = 0, ∀|µ| 6 |m|. =⇒
∑

β∈GS

(am(β)−b(β))βµ = 0, µ ∈ Γ2.

By the nonsingularity of (βµ)β∈G+,µ∈Γ2 , we have am(β) = b(β) for all β ∈
GS. Consequently, the mask am must be unique.
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