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ABSTRACT 

Myasthenia Gravis (MG) is a chronic, potentially debilitating autoimmune disease 

characterized by weakness and rapid fatigue of the voluntary muscles that worsens on 

exertion and improves on rest. Left untreated, MG symptoms may cause significant 

morbidity, affecting occupational performance, social activities, and family life. In 

severe cases, death may occur. To date, no robust biological marker is available to 

follow the course of the disease. Therefore, new diagnostic approaches and biological 

markers are essential not only for improved diagnosis of the disease but for improved 

outcomes. 

The research presented here attempts to provide an alternative biomarker model for the 

pathogenesis of myasthenia gravis and humoral autoimmune disease in general. The 

underlying hypothesis was that the metabolomic profile of myasthenia gravis would 

provide fundamental clues about the functioning of the disease and potential biomarkers 

to monitor it. The three papers provided have offered proof of concept that 

metabolomics can profile a disease, differentiate it from other similar diseases and 

correlate with clinical parameters. These results suggest a new mechanism for the 

diagnosis and clinical management of myasthenia gravis. 
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INTRODUCTION 

MG is a humoral autoimmune disease caused by the presence of antibodies against 

components of the muscle membrane at the neuromuscular junction. In most cases, 

autoantibodies against the acetylcholine receptor (AChR) can be found.  

The origin of the autoimmune dysfunction in MG patients is unknown, but thymic 

abnormalities, defects in immune regulation and sex hormones play major roles in 

patients with anti-AChR antibodies. Genetic predisposition is also likely to influence the 

occurrence of the disease. 

Here, we will review the pathophysiology of MG and provide a description of the roles 

of immunological, genetic, hormonal and environmental factors in the development of 

this disease. The inclusion criteria of this study were restricted in scope; patients with 

thymoma, comorbid autoimmune disease or classed as Musk-positive or seronegative 

were excluded. For that reason, immunopathology will be limited to discussions of 

AChR seropositive MG and will not describe thymoma involvement in detail. 

1.1 History of Myasthenia Gravis 

The first written description of myasthenia gravis (MG) is found in De anima brutorum 

(1672), a work by the English anatomist Thomas Willis, who wrote about “a woman 

who temporarily lost her power of speech and became mute as a fish.” 1 The first 

modern description was given by Samuel Wilks in 1877, published in a paper in the 

journal Guy's Hospital Reports. Wilks describes a case of “Cerebritis, Hysteria, and 

Bulbar Paralysis, as illustrative of arrest of function of the cerebro-spinal centres.” 1 The 

patient was a girl diagnosed with bulbar paralysis, whose weakness fluctuated in course, 

but ultimately ended in death. In the report, the case was summarized as “Bulbar 

paralysis; fatal; no disease found.” 1  The first formally described accounts of MG were 

those of Erb in 1878 and Goldflam in 1893, 2,3 earning the disorder the name 

ErbGoldflam syndrome. 

 In 1895, Friedrich Jolly first used the name myasthenia gravis, or in his words, 

myasthenis gravis pseudo-paralytica. Jolly was also the first to demonstrate the 

“myasthenic reaction” of muscle repeatedly stimulated by Faradism,4  introducing the 

basic criteria of repetitive nerve stimulation (RNS), the fundamental instrumental 
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technique of MG diagnosis; later, RNS would be further improved by Desmedt.5 In 

1934, Scottish physician Mary B. Walker discovered the beneficial effects of 

physostigmine, a cholinesterase inhibitor, on myasthenic symptoms. She further 

postulated that the neuromuscular junctions (NMJ) were the focus of the disease.6 Two 

years later, Henry Dale demonstrated the effect of acetylcholine (ACh) as a 

neurotransmitter at the NMJ and confirmed the anticholinesterase inhibiting effects of 

physostigmine.7  

The association of MG with thymic tumours and hyperplasia was first established in 

1901 by Carl Weigert, who described a myasthenic patient with a thymic mass8; in 1911 

the first thymectomy was performed on a female MG patient.9 In 1949, a series of 

patients with thymic hyperplasia and thymoma related to MG were reported by 

Castleman and Norris.10 It wasn’t until the 1970s, however, that the autoimmune nature 

of MG was described in animal models by Patrick, Lindstrom, Fambrough, and 

Lennon.11–13 Modern research has identified the presence of ACh-receptor (AChR) 

antibodies in serum of patients affected by MG and the production of antigen-specific 

CD4+ and CD8+ T-cells in cases with thymomas.14 
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2 CHAPTER 2. METABOLOMICS  

2.1 Definition 

Metabolomics refers to the systematic identification and quantification of the small 

molecule metabolic products (the metabolome) of a biological system (cell, tissue, 

organ, biological fluid, or organism) at a specific point in time.15 Whereas genomics 

involves the study of gene expression and proteomics involves the expression of 

proteins, metabolomics describes the consequences of the activity of these genes and 

proteins. A hypothesis-forming approach, it is driven by the nondiscriminant analysis of 

low-molecular-weight metabolites present in biological samples. All organs and tissues 

in the body contribute to the metabolites observed in blood, tissue and other biological 

samples that comprise a metabolomic profile or fingerprint; the sum of this metabolic 

flux describes at once their function and dysfunction at any point in time, providing a 

unique global picture of the patient and her or his condition. 

2.2 Metabolomic Analysis and Statistics 

2.2.1 Metabolomic analysis 

2.2.1.1 Chemical Analysis Techniques 

To identify the constituent metabolites contained within a biological sample and 

construct a profile of molecular species present, two analytical techniques are primarily 

used: Nuclear Magnetic Resonance (NMR) and Mass spectrometry (MS). Employing 

strong magnetic fields, NMR allows the identification of hydrogen-containing 

compounds with a sample. Every chemically distinct hydrogen or group of hydrogens 

will give a resonance in the NMR spectra. MS is an analytical technique that ionizes 

chemical species and sorts the ions based on their mass-to-charge ratio. In simpler 

terms, a mass spectrometer measures the chemical masses within a biological sample. 

The earliest technology employed for metabolomic analysis, NMR has several benefits. 

NMR is nondestructive; samples can be recovered and stored for a long time and 

several analyses can be carried out on the same sample. Samples also require minimal 

preparation and can be either fluid or tissue, allowing for in vivo studies as well. 

Finally, all metabolites present at NMR detectable levels can be detected at once, with 

very high reproducibility. NMR presents with some significant disadvantages as well. 

Sensitivity is low compared to MS and relatively low numbers of different compounds 
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can be detected. Depending on methods, spectral resolution and spectral libraries, 

approximately 40–200 compounds can be detected. While there are drawbacks to MS 

analysis as well (moderate reproducibility, more involved sample preparation; needs 

different columns and optimization of ionization conditions and no in vivo study) the 

benefits have established it as the technique of choice. MS has a very high sensitivity 

with a nanomolar detection limit and, while destructive to samples, the amount of 

sample required is very small (~100-200 ul). Excellent for targeted and untargeted 

analysis, MS can identify many compounds of several classes, over 500 depending on 

techniques and available chemical libraries. MS is also less susceptible to matrix 

effects.16 LC-MS, the chaining of liquid column chromatography with MS, in 

particular, allows for improved analysis and is widely adopted throughout the literature. 

2.2.1.2 Chemical Isotope Labelling (CIL) 

Traditional liquid chromatography-mass spectrometry (LC-MS) analysis techniques are 

susceptible to artifacts resulting from matrix effects, ion suppression, or MS 

instrumental drift in MS detection. To overcome these potential inaccuracies and effect 

broad metabolite coverage, this study applied the chemical isotope labelling (CIL) LC-

MS strategy as described by Liang et al.17,18   

In preparation for LC-MS analysis, each 12C-labeled serum sample is intermixed with 

an equal amount of subject-corresponding 13C-labelled pooled sample which served as 

the UMS. Using the intensity ratio of each sample 12C/13C peak pair, the relative 

concentration of each metabolite to that of the corresponding metabolite in the UMS is 

measured. The use of 13C-labeled UMS as internal standard libraries endorses more 

accurate quantification of 12C-labeled metabolites. Since the same pooled UMS is 

present in all comparative samples, the peak ratio values of a given metabolite in each 

individual sample reflected the concentration differences between these samples. This 

technique offers significant advantages over unlabelled chemometric analyses, with the 

benefit of ongoing sample addition. Future samples may simply be aliquoted, 13C-

labelled, and added cumulatively to the existing UMS pool, then 12C-labelled and 

compared to the modified 13C-labeled UMS, thereby allowing expansion of the current 

dataset to a larger cohort. Further, the dansylation and acid-labelling LC-MS strategies 

employed here also have the advantage of improved chromatographic separation and 
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enhanced electrospray ionization (ESI) response; a 10- to 1000-fold increase in 

detection sensitivity can be expected over traditional approaches. 

2.3 Statistics 

Metabolomics allows the measurement of thousands of metabolites simultaneously. 

The sheer volume of data and complexity of high-throughput small molecule 

measurements now constitutes a substantial challenge to the researchers. Given the 

thousands of chemically distinct metabolites measured in a specific experiment, robust 

statistical methods are required to analyze and meaningfully interpret the complex 

information informed by thousands of analytes. In order to fully understand 

metabolomic analyses, it’s useful to be aware of the statistical methods commonly 

endorsed. 

2.3.1 Q-value 

The q-value is a p-value that has been adjusted for the False Discovery Rate (FDR), the 

proportion of false positives you can expect to get from a test.19 A result is considered 

significant if the p-value is less than the chosen cutoff value, normally 0.05. Therefore, 

a false positive emerges when you get a significant difference where none exists.; 

choosing a cutoff of 0.05 means there is a 5% chance that a result is identified as 

significant, when in fact it is not. While 5% is acceptable for one test, if many tests are 

conducted on the data, then this 5% can result in a large number of false positives. For 

example, if 9000 compounds are measured in an experiment and an Anova or t-test is 

applied to each, then we would expect to get 450 (i.e. 5%) false positives by chance 

alone. This is known as the multiple testing problem.20 There are several approaches to 

overcoming the multiple testing problem. Many traditional techniques such as the 

Bonferroni correction are too conservative; while they reduce the number of false 

positives, they also reduce the number of true discoveries.21 The False Discovery Rate 

approach is a more popular method. This approach controls the number of false 

discoveries only in those tests that result in a positive discovery (i.e. a significant 

result). Because of this, it is less conservative than the Bonferroni approach and has 

greater ability (i.e. power) to find truly significant results. Put another way, a p-value of 

0.05 implies that 5% of all tests will result in false positives. An FDR adjusted p-value 

(or q-value) of 0.05 implies that 5% of significant tests will result in false positives. 
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Because only truly significant results are included, the q-value will result in fewer false 

positives. 

2.3.2 Multivariate Analysis 

Analysis of metabolomics data requires working with very large data sets, where the 

observed variables significantly outnumber the recorded observations. Often referred to 

as “High dimensional” data, these datasets can be unwieldly to analyze due to their 

large size. Further, the high number of variables relative to the number of observations 

makes it very likely that redundant information is distributed throughout. In other 

words, there is high collinearity between the variables. To efficiently manage such 

large data, it is desirable to reduce the amount of data present as much as possible 

while retaining as much information contained, or variance, as possible. Multivariate 

techniques allow the performance of data reduction, without losing a significant 

amount of the information contained within. 

2.3.2.1 PCA, PLS-DA, OPLS-DA 

There are three main methods used to explore the variability, or statistical dispersion, 

present in metabolomic data: principal component analysis (PCA), partial least squares 

discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant 

analysis (OPLS-DA). PCA is the simplest of these. Simply put, PCA seeks out the 

direction that best describes the most variability in the data. The weighted variables 

constituting the most variability describe a latent variable, hidden in the data, called a 

principal component. Next, another direction is chosen, perpendicular, or orthogonal, 

to the first component, that contains the most variability present in the remaining, 

undescribed data.  This is the second component. This process continues until all 

variance in the data has been described by the observed variables (i.e. metabolites). The 

maximum number of components possible is equal to the number of metabolites. This 

process is illustrated by Figure 2.1. 
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Figure 2.1 Utah teapot example of principal component vectors 

PCA is described as an unsupervised method. This means that class information (i.e. 

MG vs. control) is not taken into account by the analysis. PLS-DA and OPLS-DA are 

supervised methods. This means that the group to which each data set belongs to is 

taken into account. Sample noise is a potential confound in any data set, but 

particularly in biological data. PCA does not account for this noise, but rather makes 

the best decision on the data as a whole. PLS-DA also makes no accommodation for 

noise, but using class as a secondary discriminating variable, between-group separation 

is generally better. OPLS-DA methods take into account the noise unrelated to the 

variance present in each class, also called orthogonal variation, as well as class 

membership. Ideally, this will produce the best model of the data, as the effects of class 

and unrelated variation in the data are accounted for. One downside to this method, 

however, is the risk of overfitting the data. To overfit the data is to match the data so 

closely that the predictive model constructed by the analysis is no longer generalizable 

to data outside the sample. This severely hampers the utility of potential biomarkers, 

which must remain robust throughout a heterogeneity of collected samples. 
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3 CHAPTER 3. A NAT OMY A ND PH YSIOLOGY: A PRIMER FOR MYAS THENIA GRAVIS  

3.1 The Thymus 

3.1.1 Structure and Function 

The thymus plays a major role in the pathogenesis of MG with anti-AChR antibodies; 

marked pathologic alterations are present in most AChR-positive patients. 

Functionally, the thymus contains the elements required to initiate and sustain an 

autoimmune reaction (AChR autoantigen, AChR-specific T cells, and autoantibody-

secreting plasma cells). 

The thymus is an encapsulated primary lymphoid organ, divided into subcapsular 

cortical, cortical and medullary regions within each lobe.  The thymus is structured 

such that a darker cortical region surrounds a lighter medullary compartment. The 

colour of the darker cortical region (also called the dark zone) is attributed to the high 

density of thymocytes. Therefore, the darker cortex has more T-lymphocytes when 

compared to the lighter medulla (called the light zone). 

There are two major categories of cells within the thymus: the thymic epithelial cells 

and thymocytes. The thymic epithelial cells are endodermal derivatives of the third 

pharyngeal pouch that further differentiates into specialized epithelium within the 

cortex and medulla. Overall, these cells are characterized by an eosinophilic cytoplasm 

containing intermediate filament bundles with pale, ovoid nuclei. 

The supporting structure of the cortex is called the cytoreticulum. A collagenous 

reticular network, the cytoreticulum facilitates attachment of maturing lymphocytes and 

surrounding macrophages. Cytoreticular, or epithelial reticular, cells are antigen 

presenting cells (APC) that express both class I and class II major histocompatibility 

complex (MHC I and MHC II) proteins that participate in the thymic education 

program. The major histocompatibility complex (MHC) is a set of cell surface proteins 

essential for the acquired immune system to recognize foreign molecules, which in turn 

determines histocompatibility, or compatibility with self. The primary function of 

MHC molecules is to bind to antigens derived from pathogens and display them on the 

cell surface for recognition by the appropriate T-cells.22 Epithelial reticular cells are 

also the primary cells involved with ensuring no autoreactive cells survive the 

maturation process. Thymocytes, also called T-lymphocytes, evolve from bone marrow 
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hematopoietic progenitor cells that migrate to the cortex of the thymus. Maturing T-

cells migrate from the cortex (dark zone) of the thymus to the medulla (light zone), 

where they come into contact with many epithelial reticular cells. Here, if T-cell MHC-

presented self-proteins are recognized as autoreactive, the epithelial cells remove these 

T-cells.  

Within the medulla, a cytoreticulum also provides a similar microenvironment for 

resident dendritic cells, macrophages and more mature thymocytes. A collection of 

thymic epithelial cells known as Hassall corpuscles are responsible for the release of 

cytokines that regulate dendritic cell activity. Further, they program a subset of 

thymocytes, regulatory T-cells, that facilitate peripheral tolerance.  

3.1.1.1 Education of Thymic T-cells  

Early T-lymphoblasts that enter the thymus do not express T-cell receptor proteins 

(TCR) or CD4 or CD8 proteins. T-cell receptors are responsible for recognizing 

fragments of foreign antigen. CD4 and CD8 proteins both help to identify the type of 

T-cell and are co-receptors of the T-cell receptor (TCR) that assist the TCR in 

communicating with antigen-presenting cells (i.e. dendritic cells, macrophages and B-

cells). Within the cortex, as the cells replicate, there is activation of the T-cell receptor 

alpha and beta (TCR- α and TCR-β) genes that result in the surface expression of the 

receptor proteins, and both CD4 and CD8 surface proteins. 

Following this activation, the thymocytes undergo quality control testing to ensure that 

receptor binding is effective and selective. Within the cortex, cytoreticular cells present 

MHC I and MHC II proteins to the maturing thymocytes. The TCR proteins that bind 

to MHC I will predominantly express CD8 proteins at the end of the thymic education 

program (i.e. cytotoxic T-lymphocytes). Similarly, those that bind to MHC II will 

express CD4 proteins at the end of maturation (i.e. helper T-lymphocytes). If the 

binding is successful, the maturing lymphocytes have passed the positive selection test 

and will proceed to migrate into the medulla of the thymus. If binding fails, however, 

the cells will undergo apoptosis. 

T-lymphocytes that make it to the medulla are now capable of binding MHC I or MHC 

II proteins. It is essential, however, that these cells do not bind to self-antigens. 

Therefore, a wide variety of tissue-specific antigens are expressed by medullary thymic 
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epithelial cells through activation of the autoimmune regulator (AIRE) gene. Dendritic 

cells will present variations of these self-antigens to the developing T-lymphocytes. If 

the T-lymphocytes bind to the self-antigen, then they will undergo apoptosis. 

Approximately 2% of T-lymphocytes do not bind to the self-antigen. These “approved’ 

cells are then able to leave the thymus and carry out their functions in the periphery. 

From start to finish, thymic education takes approximately 2 weeks to complete. 

3.2 The Neuromuscular Junction 

3.2.1 Structure and function 

The neuromuscular junction (NMJ) is the site of communication between motor nerves 

and muscle fibers. It is composed of two main structures: The axon terminal and motor 

end plate. These two structures are separated by a narrow space called the synaptic 

cleft. 

3.2.2 Axon Terminal 

Axonal terminals are specialized nerve endings whose purpose is to release the 

neurotransmitters of the presynaptic cell. The chemical means of communication 

between the motor nerve and the adjacent muscle is the neurotransmitter acetylcholine 

(ACh). Ach is synthesized from the coenzyme Acetyl CoA and ammonium salt choline 

by the transferase enzyme choline acetyltransferase (ChAT) within the cytoplasm of 

the nerve terminal. The ACh is then stored in small vesicles within the cytoplasm of the 

nerve terminal. 

3.2.3 Motor End Plate 

The motor end plate is a highly excitable region of the muscle fiber plasma membrane 

responsible for initiating action potentials across the muscle surface; this action 

ultimately results in muscle contraction. It is the part of the sarcolemma of muscle 

cell, which is in closest proximity to the synaptic end bulb. Components of the motor 

end plate include: 

i. Synaptic Gutter: The invaginated membrane, which forms space 

for the synaptic end bulbs to reach close to the muscle fiber 

sarcolemma. 
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ii. Subneural Clefts: These are small folds of the muscle membrane 

present at the bottom of the synaptic gutter. They greatly increase 

the surface area at which the neurotransmitter can act. 

iii. Increased number of mitochondria: Because the neuromuscular 

junction experiences high energy demands, the area of the muscle 

fiber surrounding the motor end plate shows a significant increase 

in the number of mitochondria. 

 

3.2.4 Acetylcholine Receptors 

In order to be effective, ACh must join with the surface of the motor end plate. This is 

accomplished through binding to specialized proteins called receptors. The primary 

receptor present in muscle for motor nerve-muscle communication, nicotinic 

acetylcholine receptors, or nAChRs, are receptor proteins that respond to the 

neurotransmitter acetylcholine and subsequently control muscle contraction. Densely 

packed, acetylcholine receptors are located in the subneural clefts of the motor end 

plate plasma membrane. The concentration of AChRs in the membrane opposite 

presynaptic release sites is about 10 000 per μm2 on the surface of fold peaks. In its 

initial state, the AChR is in a closed state. Once two ACh molecules have bound to the 

α subunits on its surface, the receptor opens, allowing the passage of cations, including 

Na+ and K+, to cross the membrane into the muscle. This passage of cations induces a 

local depolarization of the muscle membrane. As more molecules of ACh activate 

more receptors, the net depolarization of the muscle membrane progresses until an 

action potential is generated sufficient to recruit the muscle fiber. When this effect 

occurs collectively across many muscle fibers, the result is muscle movement. 

3.2.5 Neuromuscular Transmission: Sequence of Events 

When a skeletal muscle movement is initiated (e.g. leg movement), the action 

potential travels down the motor nerve until it reaches the location of the muscle to 

activated.  Once the impulse has reached the end of the nerve (i.e.axon terminal) it 

elicits a muscle action potential in the following four steps: 

i. Neuromuscular release of acetylcholine. The motor nerve action 

potential arrives at the synaptic end bulbs, opening voltage-gated 
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channels. Following the electrochemical gradient, Ca2+ flows 

inward through the open channels. The entering Ca2+ in turn 

stimulates the synaptic vesicles to fuse with the synaptic end bulb 

plasma membrane and undergo exocytosis. During exocytosis, the 

synaptic vesicles release ACh into the synaptic cleft. The ACh then 

diffuses across the synaptic cleft between the motor neuron and the 

motor end plate. 

 

ii. Activation of ACh receptors. ACh arriving at the motor end plate 

begins binding to sites on the ACh receptors on its surface. The 

binding of two molecules of ACh to the receptor opens a 

transmembrane ion channel within the ACh receptor. Once the 

channel is open, small cations, most importantly Na+ (inward) and 

K+ (outward), begin to flow across the membrane. 

 

iii. Production of muscle action potential. The inflow of Na+ changes 

the membrane potential, triggering a muscle action potential. 

Normally, one nerve impulse elicits one muscle action potential. 

The muscle action potential then travels along the sarcolemma, 

causing the sarcoplasmic reticulum to release its stored Ca2+ back 

into the sarcoplasm and eliciting a muscle fiber contraction. 

 

iv. Termination of ACh activity. The effect of ACh binding is very 

brief; it takes approximately 1 ms for the ACh to diffuse away and 

be rapidly broken down by the enzyme acetylcholinesterase 

(AChE). Attached to collagen fibers in the extracellular matrix of 

the synaptic cleft, AChE breaks down ACh into acetyl and choline, 

products reabsorbed back into the synaptic bulb and used to form 

additional ACh, thus continuing the cycle. 
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3.2.6 Safety Factor 

Reliability of neuromuscular transmission is normally ensured by the release of more 

ACh than is required to initiate an action potential. The term safety factor is used to 

describe this excess.23 Postsynaptic features influencing the response to ACh include 

acetylcholinesterase (AChE) and the density and distribution of ACh receptors. 

Before it can bind to an AChR, each ACh molecule must traverse the AChE-rich 

membrane of the motor end plate. Under normal conditions, this happens sufficiently 

rapidly that most ACh molecules are bound to AChRs before they are broken down 

(hydrolyzed).  

When AChE activity is substantially reduced, the safety factor is enhanced. The 

medication pyridostigmine bromide (Mestion) is an anti-cholinesterase that 

carbamylates (i.e. binds the negative ion cyanate to form a molecular complex24) 

about 30% of peripheral cholinesterase.23 The carbamylated enzyme complex is 

unable to catalyze the breakdown of ACh, increasing the amount and duration of 

ACh exposure in the synaptic cleft. Eventually, AChE regenerates by natural 

hydrolysis and excess ACh levels revert to normal. 

The effect of ACh released from the nerve is also influenced by the number of 

AChRs it can activate. Reductions in the density and distribution of AChRs are 

known to occur in MG. This leads to a reduction in the safety factor and impairment 

of neuromuscular transmission. 

 

 

 

 

 



17 
 

 

 

 

 

 

CHAPTER 4. 

 

 

IMMUNOMETABOLISM 

 

 

 

 

 

 

 

 

 

 

 



18 
 

 

4 CHAPTER 4. IMMUNOMETA BOLISM  

4.1 The glycolytic metabolic pathway (glycolysis) 

Arguably the most important immunometabolic pathway, is essential to a number of 

immune processes. 

  

Previous work has indicated that both activated macrophages and T-cells have a 

substantial appetite for glucose.25,26 These studies and others have pointed to 

glycolysis as being essential to immune cell function. Metabolically, this is 

unexpected as glycolysis is not the most effective way to generate energy, in the 

form of ATP. Glycolysis generates 2 molecules of ATP from 1 molecule of glucose. 

Much more efficient, oxidative phosphorylation generates 36 ATP molecules from a 

single molecule of glucose. However, while the yield of glycolysis is less than that 

of OP, glycolysis can be rapidly activated via the induction of enzymes that are 

involved in this pathway. By contrast, initiating oxidative phosphorylation requires 

mitochondrial biogenesis, a much more complex and slower process. Accordingly, 

cells requiring rapidly available ATP will switch to glycolysis. 

 

Equally important to rapid ATP synthesis, however, is the capacity of glycolysis to 

provide biosynthetic intermediates to support rapid cell growth. Activating signals 

such as growth factors strongly promote increased glucose uptake and glycolysis, 

which supplies ATP, supports the TCA cycle, and donates intermediates for the PPP, 

glycosylation reactions and synthesis of key biomass constituents, including serine, 

glycine, alanine, and acetyl-CoA for lipid synthesis. 

 

Glycolysis is essential to the activation of several cell types. Enhanced glycolysis 

occurs in lipopolysaccharide (LPS)-activated macrophages and DCs,27,28 in activated 

natural killer (NK) cells,29 in activated effector T-cells30 and in activated B-cells.31 

Following activation, effector T-cell subsets all show an increase in glycolysis, most 

notably T helper 17 (TH17) cells15, TH1 and TH2 cells30 and activated effector 

CD8+ T-cells32 
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Increased kinase mTOR pathway activity is correlated with increased glycolysis.  

While it appears to correlate with the initial generation of peripherally-induced 

regulatory T (pTreg) cells, the effect on their long-term survival and lineage stability 

is unclear.33–35 

 

As noted previously, glycolysis enables the immune cell to generate sufficient ATP 

and biosynthetic intermediates to carry out the cells particular effector functions. For 

macrophages this includes phagocytosis and inflammatory cytokine production, for 

DCs this includes antigen presentation36 and for T-cells this includes the production 

of effector cytokines (such as IL-17 in the case of TH17 cells37). A similar role for 

glycolysis in immune cell reprogramming has been reported in TH17 cells; 

glycolysis is inhibited with 2-deoxyglucose converting TH17 cells into Treg cells.37 

In contrast, hyperactivation of mTOR pathway signalling results in increased 

glycolysis in peripheral Treg cells; paradoxically, this may limit their survival.25,31–42 

 

These studies further emphasize the link between metabolism and the phenotype of 

an immune cell, with glycolysis, along with hypoxia-reactive transcription subunit 

(HIF1a) induction, leading to the evolution of a more inflammatory phenotype. 

While oxidative phosphorylation has been associated with a more anti-inflammatory 

cell phenotype,43,44 recent studies have shown that human Treg cells can utilize 

glycolysis,40,45 suggesting that glycolysis is not solely associated with inflammatory 

cell functions. 

 

4.2 The TCA cycle (Citric acid cycle, Krebs cycle) 

The TCA, or Krebs, cycle has been studied extensively in immune cells. 

 

While there is a shift towards glycolysis and away from the TCA cycle in effector T-

cells, the TCA cycle is very prominent in memory CD8+ T-cells.46  

 

The TCA cycle is also expressed differentially in distinct macrophage sub-types. In 

M2 macrophages, there is an intact TCA cycle that is coupled to oxidative 

phosphorylation.43 This allows the generation of intracellular signaling nucleotide 
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monosaccharide (UDP-GlcNAc) intermediates that are essential for the 

glycosylation of M2-associated receptors, such as the mannose receptor.43 

 

M1 macrophages present a different scenario. In these cells, the TCA cycle functions 

atypically, allowing for an excess of citrate. The accumulated citrate is then 

transported from the mitochondria where it is utilized for the production of fatty 

acids, which in turn are used for membrane biogenesis. 

 

This broken TCA cycle is also seen in activated DCs. Here, the production of citrate 

is especially vital for proper function, as DCs require substantial membrane 

production to support antigen presentation.36 Pathogen degradation pathways are 

also fed by excess citrate. Crucial effector molecules, nitric acid and prostaglandins, 

are generated by macrophages that employ citrate in their production. Finally, the 

metabolic intermediate succcinate accumulates in M1 macrophages as a consequence 

of a broken TCA cycle. This accumulation has a direct impact on macrophage 

cytokine production.47 The above cases show that alterations in the TCA cycle 

occurring in M1 macrophages lead to an accumulation of metabolites which can 

significantly affect their expression of immune functions. 

 

4.3 The pentose phosphate pathway 

NADPH has multiple functions in immune cells. First, it is used by the NADPH 

oxidase to generate reactive oxygen species (ROS) during the respiratory burst, the 

rapid release of reactive oxygen species (superoxide radical and hydrogen peroxide) 

employed to degrade pathogens. Conversely, NADPH also acts as a counter-balance 

in the generation of glutathione and other antioxidants. During an infection, 

macrophages and neutrophils probably require both of these NADPH-dependent 

functions. In the purge and cleanup of the immune response, the rapid production of 

ROS is useful initially to clear infectious agents, followed by induction of 

antioxidants to prevent post-clearance tissue damage.48 

 

DCs also use NADPH and lipid synthesis to endorse endoplasmic reticulum 

synthesis, which is necessary for DC activation and cytokine secretion.49,50 
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4.4 Fatty acid oxidation and immune function 

Fatty acid oxidation has key roles in the regulation of adaptive and innate immune 

responses. In contrast to aerobic glycolysis that is often observed in inflammatory 

and rapidly proliferating immune cells, a reliance on fatty acid oxidation has been 

observed in many immune cells that are not inflammatory in nature and exhibit 

increased cellular lifespans, including M2 macrophages, Treg cells and memory T-

cells. 

 

4.5 Fatty acid oxidation and macrophage function 

Fatty acid oxidation regulates the inflammatory functions of macrophages51,52 and 

also plays a key role in macrophage polarization. While glycolytic metabolism is 

essential for the activation of M1 macrophages,53 M2 macrophages are specifically 

activated by fatty acid oxidation.54 

 

4.6 Fatty acid oxidation and T-cell responses 

Fatty acid oxidation also plays a contributing role in regulating T-cell responses. 

Previous work has observed that fatty acid oxidation effects regulate the balance 

between inflammatory effector T-cells and suppressive Treg cells.  Fatty acid 

oxidation effects also promote sustained immune function through long-lived 

memory T-cells. The contribution of fatty acid oxidation regulation to the balance 

between effector T-cells and Treg cells are two-fold: a) Treg cells exhibit increase 

fatty acid oxidation relative to TH1, TH2 and TH17 cells and b) fatty acid oxidation 

promotes the generation of Treg cells while inhibiting effector T-cell polarization.55 

Further, effector T-cells have been shown to downregulate fatty acid oxidation 

during activation.56 

 

Fatty acid oxidation has additional roles in the proliferation and ongoing support of 

long-lived memory CD8+ T-cells. Memory CD8+ T-cells, quiescent under steady-

state conditions,57 appear to require fatty acid oxidation to for rapid response to 

antigen stimulation.58 Stimulation of memory CD8+ T-cells with IL-15 increases 
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their expression of the CPT1A gene and promotes fatty acid oxidation, resulting in 

increased cell survival.38 The CPT1A gene, essential for fatty acid oxidation, 

provides instructions for making the enzyme carnitine palmitoyltransferase, a 

fundamental step in sphingolipid synthesis. Together, these observations indicate key 

roles for fatty acid oxidation both in the generation of tolerance-maintaining Treg 

cells as well as in the support of long-lived memory CD8+ T-cells. 

 

4.7 Fatty acid synthesis 

In contrast to fatty acid oxidation, which points toward the development and activity 

of non-inflammatory immune cells, fatty acid synthesis appears to positively regulate 

immune cells of both the innate and adaptive immune systems. Numerous studies 

suggest that inflammatory stimuli such as the membrane antigens (bacterial 

lipopolysaccharides) and pro-inflammatory cytokines trigger an increase in fatty acid 

synthesis in macrophages.59,60 Notably, the observed increase in fatty acid synthesis 

was also crucial to the differentiation and inflammatory function of macrophages.61 

Taken together, these observations suggest that fatty acid synthesis is required for 

the promotion of inflammatory macrophage responses.  

 

Similarly, fatty acid synthesis provides a link between innate and adaptive immunity 

through regulation of DC function. Toll-like receptor (TLR)-mediated DC activation 

has been observed to upregulate fatty acid synthesis. This increased fatty acid 

synthesis is essential for DC activation and the associated stimulation of CD8+ T-

cell responses.36 

 

Fatty acid synthesis is also key to the cell intrinsic function of T-cells and B-cells; 

synthesis of fatty acids and sterols has been shown to be necessary for cell 

proliferation once activation is initiated through antigen receptors.62,63 

 

Overall, fatty acid oxidation and fatty acid synthesis appear to play opposing roles in 

the immune system; fatty acid oxidation is preferentially used by non-inflammatory 

and tolerogenic (i.e. induce tolerance of specific antigens) immune cells, whereas 

fatty acid synthesis is more characteristic of inflammatory responses within the 
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innate and adaptive immune systems. The mechanisms behind this distinction are 

unclear. While fatty acid metabolism may lead to these opposing immunological 

functions, the efficiency of lipid oxidation for energy generation coupled with the 

necessity of lipid synthesis for biosynthesis and cell growth suggest that pro-

inflammatory and regulatory immune cells exhibit fundamental differences in the 

role of ATP generation. Further, it is possible that effector cells require fatty acid 

synthesis during rapid growth to allow membrane biogenesis, while, in contrast, the 

slow growth of memory cells occurs as a result of fatty acid oxidation. 

 

Finally, there are additional reviews which comment in detail upon the metabolism 

of other lipid species in immune cell function, notably of cholesterol and 

sphingolipids.42,64 

 

4.8 Amino acid metabolic pathways 

The protein kinase mTOR links with other proteins and serves as a core component 

for two distinct protein complexes, mTOR complex 1 and mTOR complex 2, which 

regulate different cellular processes.65 In particular, mTOR functions as a 

serine/threonine protein kinase that regulates cell growth, cell proliferation, cell 

motility, cell survival, protein synthesis, autophagy, and transcription.65,66 The 

mTOR pathway has important roles in cellular metabolism, including in the sensing 

of amino acid levels to couple nutrient availability to cellular growth and 

proliferation. Accordingly, the availability and metabolism of amino plays a role in 

immune function. 

 

4.8.1 Glutamine metabolism 

Glutamine catabolism regulates numerous aspects of immune cell function. 

Glutamine metabolism is important for the generation of nitric oxide, exhibiting a 

role for glutamine in the cytotoxic functions of macrophages. Further, T-cell and B-

cell responses are also regulated by glutamine metabolism. Glutamine usage 

increases markedly upon both T-cell and B-cell activation, and both populations 

require glutamine to respond to antigen receptor stimulation.56,67,68 
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4.8.2 Arginine metabolism 

Arginine metabolism plays a key role in the inflammatory function of 

macrophages.69 Macrophages use arginine in two distinct metabolic pathways, the 

nitric oxide synthesis pathway and the arginase pathway. 

 

The arginine metabolism pathway has profound effects on the immune function of 

the cell. The inflammatory M1 macrophage phenotype is associated with a flux of 

arginine into the nitric oxide synthesis pathway. In contrast, arginine flux through 

the arginase pathway is associated with a more tolerant immune response, often 

associated with wound healing.70 Curiously, arginase expression in macrophages 

also limits the inflammatory potential of effector T-cells.71 This indicates a probable 

immunoregulatory role for arginine metabolism beyond macrophages. As a further 

example, arginine  regulates the expression of T-cell receptor72 components and 

promotes proliferation of human T-cells.73 
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5 CHAPTER 5. MYASTHE NIA GRAVIS  

5.1 Epidemiology 

The most common disorder affecting the neuromuscular junction, myasthenia gravis 

is also a rare disease. The incidence ranges from 1.7 to 21.3 per million, and the 

prevalence is between 15 and 179 per million inhabitants, depending on the 

location.74,75 In Canada, a study from British Columbia, Canada, found the overall 

average anti-AChR seropositivity IR of 13.2 per million with an increasing 

incidence in the elderly.76 Additionally, in 2013, there were 3611 prevalent cases in 

Ontario, and the crude prevalence rate was 32.0/100,000 population.77 Based on 

epidemiological data, it has been estimated that the number of patients with MG in 

the United States was ∼60,000 in 2003.78 At observed rates, this number would be 

much higher at this time. The reported prevalence of the disease has increased in 

every decade since the 1950s.79,80  By the 1990s the prevalence of the disease was at 

least four times higher than that of the 1950s.79 The increase in the number of 

patients with MG can most likely be attributed to several factors, including improved 

recognition of the disease, the availability of diagnostic tests with higher sensitivity 

and specificity, longer life span in affected patients due to more effective treatment, 

and an increase in the population at risk due to aging.   

Myasthenia gravis can present at any age, but there is a bimodal peak of incidence, 

with the first peak in the third decade (predominantly affecting women) and the 

second peak in the sixth and seventh decades (predominantly affecting men). It has 

been suggested that incidence falls after 70 years of age. It is also probable that MG 

is underdiagnosed in the elderly. A 2003 study reviewed the medical records of 3183 

AChR seropositive individuals. This study concluded that myasthenia gravis in the 

UK is substantially underdiagnosed in people over 75 years.81 

Additionally, MG is associated with a higher incidence of comorbid autoimmune 

disease. MG patients are at increased risk for complicating autoimmune diseases, 

most commonly autoimmune thyroid disease, systemic lupus erythematosus and 

rheumatoid arthritis.82 



27 
 

5.2 Clinical Description 

5.2.1 Presentation 

MG presents with a range of symptoms, including trouble speaking, facial paralysis, 

difficulty breathing due to muscle weakness, difficulty swallowing or chewing, 

fatigue, hoarse voice, or drooping of eyelids (ptosis). Because of the broad range of 

presentations, which can involve a variety of muscle groups, coupled with its 

relative rarity and the variable severity of weakness, MG can be difficult for the 

clinician to identify. 

Evidence is accumulating that MG subtypes exist with clinical and immunological 

differences from the conventional forms of the disease. For example, patients who 

present predominantly with weakness in distal extremity muscles have been 

described.83,84 These patients often have different electrophysiological and 

immunological findings alongside atypical limb presentations. An Austrian study 

has examined the prevalence of this specific presentation of MG.85 Of 84 MG 

patients, 6 had either distal onset of disease or a predominance of weakness in distal 

muscles. This number, although small at 7%, is large enough to consider the 

presence of an additional MG subtype. 

The sections below discuss specific clinical phenotypes: 

5.2.2 Clinical subtypes 

Several clinical subgroups of MG patients with anti-AChR antibodies have been 

identified, as described below.  

5.2.2.1 Ocular Myasthenia (oMG) 

In approximately 15% of MG patients, weakness is restricted to the ocular 

muscles.86 The distinguishing features of oMG are ptosis, produced by weakened 

levator palpebrae, and double vision, the most common symptom of extraocular 

muscles (EOM). In nearly half of patients with MG, ocular manifestations will be 

the first symptoms of MG; almost all patients will develop double vision or ptosis, 

during the course of their illness.87 Since this is a cardinal sign of MG, a diagnosis of 

MG may need to be questioned if ocular manifestations do not occur. Approximately 
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half of all patients develop weakness within 6 months of the onset of visual 

symptoms. After 2-3 years, ~6% of ocular patients will transition into generalized 

MG.87 

5.2.2.2 Generalized Myasthenia (gMG) 

In generalized disease, the weakness commonly affects ocular muscles, but it also 

involves a variable combination of bulbar, limb, and respiratory muscles. While 

many patients exhibit a widespread subclinical defect in neuromuscular 

transmission, at some point most MG patients will have weakness that involves one 

or more skeletal muscles to some degree. In general, patients have compromised 

limb strength, which leads to difficulties with daily activities such as walking, 

opening jars, shaving, or climbing stairs. Weakness of neck extensors or distal limb 

muscles may occur, producing foot drop or wrist drop, mimicking peripheral nerve 

involvement. Approximately 15% of patients with MG will develop prominent 

weakness of cranial nerve innervated muscles, leading to a clinical classification of 

this subgroup as “bulbar”.88 Grave weakness of the respiratory muscles, “myasthenic 

crisis” may occur in the context of severe, worsening generalized weakness. Crisis is 

potentially life-threatening and requires immediate medical intervention. 

Patients with generalized MG can be divided into three subgroups according to the 

age of onset: 

5.2.2.2.1 Early-onset form (EOMG) (age of onset <50 years).  

Most early onset MG (EOMG) patients exhibit high levels of anti-AChR antibodies along 

with thymic follicular hyperplasia characterized by ectopic germinal centers (GCs). 89 

Further, sex hormones may play a role in this form of the disease; more than 80% of patients 

with follicular hyperplasia are women.90  Finally, patients in this subgroup may have other 

autoantibodies and are at risk of developing other autoimmune diseases, such as thyroiditis.91 

5.2.2.2.2 Late-onset form (LOMG) (age of onset >50 years).  

Usually generalized and severe, presenting with bulbar signs and frequent severe respiratory 

crises, 92 LOMG is also frequently associated with the presence of a thymoma.  
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5.2.2.2.3 Very late-onset form (VLOMG) (age of onset >60 years). 

Recently, a form of MG that appears after 60 years of age has been described. Predominantly 

affecting males, VLOMG is distinct from LOMG, as patients do not present with thymoma.93 

5.3 Diagnosis 

The clinical diagnosis of MG is confirmed by bedside evaluations, electrodiagnostic studies, 

and serology for autoantibodies. 

5.3.1 Bedside evaluations 

On first suspicion of MG, an acetylcholinesterase inhibitor such as edrophonium (Tensilon), can 

be administered. If improvement occurs in the suspected weakened muscle, the test can be 

considered positive. Alternately, with ptosis, the ice pack test can be performed. An ice pack is 

placed over the patient’s affected eye for 5 minutes. If the eyelid lifts normally, this also is 

considered a positive result for MG. In the proper contexts, these tests are very reliable. 

5.3.2 Electrodiagnostic studies 

Electrodiagnostic studies are an essential tool for the evaluation of possible MG. With repetitive 

nerve stimulation (RNS), a decremental response of the compound muscle action potential is 

identified in about three-quarters of patients.94 Despite the absence of generalized weakness, 

patients with ocular myasthenia will also frequently demonstrate a decremental response. 

Single-fiber electromyography (SFEMG), where a single muscle fiber is stimulated and its 

responses measured, is currently the most sensitive test for detecting abnormalities consistent 

with MG.95 

5.3.3 Serology 

For the diagnosis of the AChR binding antibody, a standard radioimmunoassay methodology is 

used, with human AChR as the antigen. About 85% of patients with generalized MG have 

elevated titers of binding antibodies, 50% or less of those with ocular myasthenia will be 

positive.96 Seropositivity increases with time and therefore repeat testing is beneficial to 

confirm the diagnosis. Although uncommon, AChR antibodies may be detected at low levels in 

other conditions (patients with thymoma, amyotrophic lateral sclerosis, and rheumatoid 

arthritis, as well as family members of patients with MG) when there is no clinical or 

electrophysiological evidence of MG. Otherwise, the AChR binding test is highly sensitive. 
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Some caution should be exercised if relying on serology alone. Approximately 10-20 % of 

patients are seronegative for AChR, and confirmation of the diagnosis relies on other diagnostic 

testing.97  

5.4 Treatments 

Like many autoimmune diseases, therapeutic management of MG presents a challenge for the 

clinician. Many treatments come with the risk of significant side effects, requiring the balancing 

of an improvement of MG symptoms with potential side effects. Presently, there is no cure for 

myasthenia gravis. 

There are four basic therapies used to treat myasthenia gravis (MG): 

5.4.1 Symptomatic treatments 

Acetylcholinesterase inhibitors are often the first line of treatment due to their safety and ease 

of use. Acetylcholinesterase inhibitors, such as pyridostigmine bromide (Mestinon), are 

symptomatic treatments; they don’t meaningfully affect the clinical course of MG. 

Acetylcholinesterase inhibitors hinder the hydrolysis of acetylcholine in the neuromuscular 

junction.98 As a result, the presence of neurotransmitter within the neuromuscular gap is 

prolonged, leading to a variable improvement in strength. While effective in a majority of cases, 

diplopia is particularly resistant to these medications in many patients.87  

Very rarely, cholinergic crisis, a paradoxical weakening with excessive anticholinesterase 

medication, can occur. Requiring hospitalization, myasthenic crisis requires immediate attention 

and can be life-threatening.  

5.4.2 Chronic immunomodulating treatments 

Immunomodulators weaken or modulate the activity of the immune system. That, in turn, 

decreases the inflammatory response. Commonly used immunotherapeutic drugs in MG are 

prednisone, azathioprine, cyclosporine, and mycophenolate mofetil. In cases of refractory MG, 

where other immunomodulating treatments have failed, agents such as the monoclonal antibody 

rituximab and interleukin-2 inhibitor tacrolimus may be considered. While frequently quite 

effective, these medications are often very expensive. 
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5.4.3 Rapid immunomodulating treatments 

Plasmapheresis and IVIG are rapid immunotherapies that work quickly but have a short 

duration of action. Plasmapheresis and IVIG are also immunomodulating. However, they are 

rapid acting, with benefits lasting only short term (weeks). Plasmapheresis (plasma exchange) 

directly removes acetylcholine receptor (AChR) antibodies from the circulation with clinical 

improvement corresponding roughly with the reduction in antibody levels.99 IVIg is the infusion 

of pooled Ig immunoglobulin; its mechanism of action in MG is uncertain. 

Plasmapheresis and IVIg are used primarily in four cases: 

i. Myasthenic crisis 

ii. Preoperatively before thymectomy or other surgery. 

iii. As a "bridge" to slower acting immunotherapies. 

iv. Periodically to maintain remission in patients with MG that is not 

well controlled. 

  

5.4.4 Surgical treatment 

Thymectomy is beneficial for patients with nonthymomatous, generalized acetylcholine 

receptor (AChR) antibody-associated MG. However, it generally takes months to years for the 

benefits of thymectomy to accrue. Typically, this option is most suited to younger patients and 

those in whom thymoma has been diagnosed. 

 

5.5 Pathophysiology 

For a disorder to fulfill the criteria for an autoimmune disease, the criteria of Witebsky's 

postulates must be met:100 (1) direct evidence from transfer of disease-causing antibody or 

disease-causing T lymphocyte white blood cells; (2) indirect evidence based on reproduction of 

the autoimmune disease in experimental animals; (3) circumstantial evidence from clinical clues; 

(4) genetic evidence suggesting "clustering" with other autoimmune diseases. 

 MG is a prototypical disease in that it supports these criteria: (1) experimentally acquired 

Myasthenia Gravis (EAMG): Purified AChR antigens administered to an animal can induce a 

disorder with features similar to those of the human disorder; (2) administration of human or 
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animal autoantibodies into animal models reproduce the phenotype of patients with MG; (3) 

radiolabelled AChR immunoglobulin will bind to the neuromuscular junctions of patients and has 

further been determined to bind the autoantigen epitopes; (4) AChR antibodies can be detected in 

greater than 95% of patients; and (5) treatments that reduce the serum concentration of anti-

AChR antibody, such as plasma exchange or intravenous IVIg, improve MG symptoms, 

especially fatigue.  

AChR antibodies are heterogeneous, with a variation in immunoglobulin G (IgG) subclasses. 

Different subclasses of the IgG heavy chain (subclass 1 or 3 in human myasthenia) bind to 

various sites on the AChR.  

5.5.1   Damage to ACh Receptors Alters Function 

AChR antibodies, the source of MG pathology, impair neuromuscular transmission by three 

mechanisms: AChR Blocking, antigenic modulation, and complement mechanisms. 

 

5.5.1.1 AChR Blocking 

Anti-AChR antibodies may form physical barriers to ACh by blocking AChr binding sites or 

by obstructing ion channel function, both of which would be expected to produce particularly 

severe weakness. Antibodies of this type appear to play only a small part in MG pathology, 

however, as they appear to represent only a portion of AChR antibodies among patients. 

Animal models provide further evidence. Anti-cholinergic antibodies from human patients can 

cause acute, severe weakness in animals, suggesting that at low concentration these antibodies 

can create a functional block of AChRs and induce produce profound weakness.101 

Monoclonal antibodies specific to the ACh binding site of animal receptors can block ion 

channels, resulting in rapid onset of weakness.102  

5.5.1.2 AChR Crosslinking 

Antigenic modulation is the ability of an antibody to cross-link two receptor epitopes, 

triggering cellular signals which initiate accelerated endocytosis and degradation of those 

receptors.103 Modelling reveals that immunoglobulins extracted from patients with MG 

accelerate the degradation rate of the AChR in vivo and in cultured muscle cells. 101 

Autoantibodies do not always engage in crosslinking, however. It is thought that variations in 

the epitope location on the AChR surface may prevent cross-linking from occurring, as 
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antibody FAB regions fail to align with the epitopes of adjacent receptors. Further, as a 

consequence of complement initiated damage to the membrane, receptor structure may be 

altered, further inhibiting epitope alignment. Additionally, damage to the postsynaptic features 

resulting from complement injury could interfere with cross-linking by altering receptor 

structure.  

5.5.1.3 Complement Mechanisms 

Probably the most important mechanism by which antibodies produce weakness is 

complement-mediated remodelling of the motor end plate.104 An area of significant interest, 

the contribution of the complement cascade to the functional pathophysiology of MG is 

evidenced by several observations.105,106 Ultrastructural, light microscopic localization and 

electrophysiologic evidence suggests the postsynaptic surface in patients and EAMG animals 

contains complement component activation fragments and the membrane attack complex 

(MAC).107 This has been experimentally confirmed using animal models. As proof of concept, 

complement activity in animals has been disrupted to demonstrate that the disruption of 

complement activity by various means protects animals from EAMG. Mice deficient in 

complement components are resistant to the development of weakness induced by EAMG.108–

110 This resistance to EAMG indicates that without activation of complement, AChR 

antibodies cannot significantly compromise neuromuscular transmission. 

5.5.2 AChR Epitopes and Antibody Binding 

Nicotinic ACh receptors are made up of five subunits, arranged symmetrically around a central 

pore.111 AChR antibodies are polyclonal, binding to a heterogeneous set of epitopes on all five 

AChR subunits and representing all IgG subclasses.112 The epitope and the type of heavy chain 

present within AChR antibodies determines their pathogenicity,113 although not all AChR 

antibodies are pathogenic.114 Because AChR autoantibodies may bind without cross-linking 

AChR or be of an undetermined subtype, it is very likely that this functional irregularity is why 

serum AChR antibodies correlate poorly with disease severity. 

5.5.3 T-cells and Tolerance 

Autoantibody production in MG is a T-cell dependent process. Specifically, a breakdown in 

tolerance towards self-antigens appears to be the primary malfunction pathogenic for MG. The 

thymus sensitizes lymphocytes to foreign antigens, while also removing autoreactive T-cells. 
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Immature T-cells first pass through the thymic cortex; those that recognize self-major 

histocompatibility complex (MHC) antigens then pass through to the medulla. During this 

stage in the thymic cortex, T-cells that would react towards self-antigens are removed. 

Malfunctions in this process may lead to autoimmunity. Once in the medulla, the T-cells 

differentiate into helper and suppressor cells which are eventually released into circulation. 

Healthy individuals usually have T-cells specific for autoantigens, including the muscle AChR, 

but their presence rarely leads to autoimmune diseases. The MHC complex is a mechanism in 

place to remove these “self-attacking” or autoreactive cells. MHC complex binds to 

autoreactive T-cells, preventing their proliferation. If the MHC complex binds poorly with the 

T-cell (i.e has low affinity), the autoreactive T-cell may survive. These low-affinity 

autoreactive T-cells may never become activated during life, and most often die. Because of 

the high number of somatic mutations, the large numbers of potentially auto-reactive T-cells 

require ongoing vigilance to keep self-reactive T-cell activity in check. Failure of these 

mechanisms is a likely cause of MG and autoimmune diseases in general. 

Recently, additional interest has focused on T-cells that express the transcription factor Foxp-

3. Referred to as T-regulatory cells or Tregs, they play a crucial role in the maintenance of 

peripheral tolerance towards self-antigens,115 and impairment of their function has been 

demonstrated in patients with MG. How this loss of tolerance develops in MG is not well 

understood, but thymic abnormalities appear to be important in the pathogenesis of 

MG.96,116,117 

5.5.4 B-Cells and Tolerance 

Recently, B-cells have emerged as a novel therapeutic target118 and a previously overlooked 

participant in the pathogenesis of MG.119  Within a subgroup of MG patients, the thymus 

displays signs of ongoing immunostimulation. B-cells collect in the germinal centres and 

correlate positively with circulating AChR antibodies. This B-cell population is heterogenous, 

however, with very few cells expressing significant autoreactivity to AChRs. The removal of 

the thymus in these patients is associated with a reduction in AChR autoantibodies, however, 

detectable levels persist. This would seem to indicate that other, more peripheral sources of B-

cells are present. The presence of AChR-specific B-cells in the circulation,120,121 lymph nodes122 

and bone marrow123 strongly suggest these sources are alternate immunological compartments 

responsible for the ongoing titers of AChR autoantibodies. 
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While post-thymectomy levels are strongly suggestive of peripheral B-cell involvement, 

identifying the specific cells involved has been inconclusive. No significant difference is 

observed between the populations of circulating memory B-cells and antibody-secreting B-cells 

in Mg and healthy patients. Regulatory B-cells show more promise as they vary in frequency as 

compared to healthy controls while correlating with disease severity. During naive B-cell 

maturation, to manage the emergence of autoreactive B-cells, processes are in place to eliminate 

them from the pool and prevent their proliferation. First, a B-cell tolerance checkpoint in the 

bone marrow removes developing B-cells that express autoreactive antibodies. At this point, the 

majority of autoreactive cells are intercepted and removed.124 Additionally, a B-cell tolerance 

checkpoint in the periphery identifies autoreactive cells and removes them before they can enter 

the mature naive B-cell compartment. As with T-cells, if these safeguards malfunction, 

autoreactive cells may be allowed to proliferate. Many autoimmune diseases exhibit defective 

B-cell tolerance checkpoints. Indeed, dysfunctional B-cell tolerance mechanisms have been 

observed in AChR+ MG patients, evident as a naïve B-cell repertoire in MG which differs from 

that of individuals in which the B-cell checkpoints are functioning. 

5.6 Biomarkers 

Recent review papers have identified the need for improved and novel biomarkers for MG.125,126  

Several agencies, including the Food and Drug Administration127  National Institutes of Health 

(NIH),128 and others129 have identified biomarker discovery and validation as key research 

priorities.    

As an orphan disease, MG has received comparatively little attention in the development of 

innovative diagnostic and treatment alternatives. There is a broad consensus among MG experts 

about the urgent need for robust biologic markers in MG in order to 

1. Increase diagnostic accuracy, particularly in patients in whom the clinical signs 

are ambiguous, diagnosis is equivocal and laboratory tests are indeterminate. 

2. Delineate the metabolic changes and potential biochemical mechanisms 

underlying the course, distribution, and severity of the disease in order to 

develop novel and more effective therapeutic modalities.  

3. Accurately predict response to therapies to optimize and individualize treatment. 
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4. Provide an objective and quantitative assessment tool to be employed as an 

“end-point” in routine clinical management as well as clinical trials. 

Currently, biomarkers for MG are primarily clinical and diagnostic in nature.15 Further, 

diagnosis is usually determined on the basis of several biomarkers in combination; no 

universally accepted biomarkers exist for the prediction of therapeutic outcome, disease 

progression or severity.37 

5.6.1 Bedside Assessments 

The Tensilon (edrophonium) challenge test is useful in distinguishing myasthenic from 

cholinergic crisis. Edrophonium is a readily reversible acetylcholinesterase inhibitor which acts 

to prolong the action of acetylcholine. The sensitivity of this test is ~60 %. 

Another bedside assessment, the ice pack test is useful in diagnosing ocular myasthenia. By 

applying an ice pack over the eye of a suspected MG patient, the action of acetylcholinesterase 

is inhibited resulting in temporary remission of eye droop (ptosis). A recent study evaluated the 

value of the ice test in diagnosing MG.130 The test was positive in 48 (96%) patients and 

negative in two patients of the myasthenia group. In the control group, 6 (12%) patients had a 

false positive ice test and in the remaining 44 patients (88%), the ice pack test was negative. 

Contrary to anecdote, the ice pack test appears to have a high specificity and sensitivity in the 

differential diagnosis of myasthenic ptosis. 

5.6.2 Electrophysiology 

Electrophysiological testing is essential for diagnosing MG, and the most commonly used 

electrophysiological techniques are repetitive nerve stimulation (RNS) and single-fiber 

electromyography (SFEMG). In MG, nerve signal transduction decreases because of damaged 

acetylcholine receptors (AChRs). Low frequency (2-5 Hz) RNS results show a decreasing 

amplitude of compound muscle action potential (CMAP). With these low rates of motor nerve 

stimulation, RNS depletes the immediate stores of acetylcholine at the neuromuscular junction; 

decrements of >10% are typically regarded as abnormal.131 In clinical practice, however, the 

degree of decrement varies greatly within individual patients. Recently, a retrospective chart 

review of 75 MG patients was undertaken to revisit the correlation between RNS and clinical 

characteristics.94 Clinical characteristics were compared between patients with high jitter 

(>100 µs) and decrement (>10%), and patients with lower values to explore the correlations and 
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optimal thresholds of jitter and decrement for different clinical features. High jitter and 

decrement values revealed multiple correlations. More severe disease, as manifested by more 

frequent symptomatic bulbar and limb muscle weakness, more frequent ocular and limb muscle 

weakness on  

examination, higher quantitative MG score, and generalized disease were all associated with 

raised jitter and decrement values. These finding suggest some predictive value may lie in 

electrophysiological testing as a biomarker of future disease-related decline. 

SFEMG is the most sensitive diagnostic test for detecting abnormal neuromuscular 

transmission. In SFEMG, individual muscle fiber action potentials generated by the same motor 

neuron are recorded. The variability in time interval between the firing of one muscle fiber 

potential with relation to the other is termed the neuromuscular jitter.132 SFEMG is ideally 

performed in a clinically weak muscle whenever possible. Typically, the extensor digitorum 

communis (EDC) is studied initially. If the findings are normal in the EDC, a facial muscle 

should be studied.133 When a facial and a limb muscle are studied, SFEMG is over 97% 

sensitive for detecting MG134. Although highly sensitive in diagnosing MG, SFEMG has shown 

limited value as a biomarker for other clinical parameters such as prognosis or therapeutic 

response. Summary clinical utility parameters for RNS and SFEMG are listed in Table 5.1. 
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Table 5.1 Clinical utility parameters for RNS and SFEMG 

5.6.3 Immunologic/serologic 

Autoantibodies against AChR proteins in the postsynaptic membrane are the most predictive 

biomarkers guiding diagnosis of MG and defining patient MG subtype. AChR antibodies can be 

detected with routine assays in ~70% of all patients with MG.135–138 In another 5–10% of 

patients. As yet, no consistent correlation has been established between anti-AChR antibody 

serum titers and MG disease severity. 

Antibodies against the α subunit of the AChR are more pathogenic than those against the β 

subunit; therefore, the AChR epitope pattern influences disease severity.139 Although total 

AChR antibody concentration does not correlate well with symptom severity,135–138 patients 

with ocular MG tend to have lower antibody titers compared with patients with generalized 

MG.140–142 Fluctuations in AChR antibody concentration have been also reported to correspond 

with the severity of muscle weakness and to predict exacerbations in individual AChR+ 

patients.143 The value of serial anti-AChR antibody level measurements in individual MG 

patients is remains unclear. Several studies have reported clinical improvement of response to 

reductions in AChR antibody titers correlating with immunomodulation and thymectomy.144–149 

In a prospective study of 60 MG patients, changes in AChR-binding antibody levels correlated 

Test Utility Notes 

RNSa 

 Sensitivity and 
specificity of 50% and 
97% respectively for 
ocular. 
 

 Sensitivity and 
specificity of 79% and 
97% respectively for 
generalized. 

 

EMGb 

 Sensitivity 86% to 92% 
and specificity 70% to 
96% in facial muscles in 
ocular. 
 

 Sensitivity and 
specificity of 98% for 
generalized. 

 Abnormal EMG may 
be seen in LEMS 
and ALS, 
inflammatory 
myopathies, or 
patients injected with 
Botox 

 Painful, impractical 
for serial measures, 
not widely available. 

 Requires skill to 
perform. 

ARepetitive nerve stimulation  bElectromyography 
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with changes in the quantitative clinical score in most patients, and correlations with clinical 

state were stronger for binding compared with blocking AChR antibodies.145 Additionally, a 

larger study noted a strong correlation between change in AChR antibody titer and clinical 

status after treatment with prednisone or immunotherapy, and post-thymectomy.146,147  

Anecdotally, fluctuating antibody levels can influence therapeutic decisions:  an increase in 

antibody concentration is thought to indicate exacerbation of MG, whereas a stable or 

decreasing concentration could indicate stable disease. Functionally, however, it is not 

autoantibody concentrations that directly affect the severity of the disease, but rather reduced 

number of available receptors. The loss of receptors depends not only on total AChR-antibody 

concentration, but also on autoantibody epitope patterns and non-antibody factors.135–138 

Anti-AChR-binding antibodies are not specific for MG; patients may be categorized ‘falsely 

seronegative’ due to immunosuppression or if the test is performed too early in the disease 

course.150 Although uncommon, anti-AChR-binding antibodies may also be found in patients 

with autoimmune liver disease, systemic lupus, rheumatoid arthritis patients receiving 

penicillamine, in allogeneic bone marrow transplantation patients who develop graft-versus-

host disease,151 and in patients with thymoma without MG,151 as well as in neuromyelitis 

optica.152 

However, neither the presence nor the absolute concentration of antibodies precisely predicts 

disease class in all MG patients, nor does it accurately predict clinical disease course or 

therapeutic response in individual patients. Clinical utility parameters for AChR antibody 

testing are listed in Table 5.2. 
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Table 5.2 Clinical utility parameters for serology 

5.6.4 Genetic 

Since the first report in 1976,153 several studies have reported evidence of association of 

antigens/alleles with MG. The human leukocyte antigen (HLA) locus is of particular interest as 

multiple genetic association studies have observed an association with MG (Table 5.3). 

Recently, the genotyping of single nucleotide polymorphisms (SNPs) of tumour necrosis factor 

α-induced protein 3 (TNFAIP3) genes in MG patients was undertaken. 215 adult MG patients 

were divided into subgroups according to their clinical features, age of onset, thymic 

pathology, and autoantibodies. For comparison, 235 healthy controls were also divided into 

subgroups and gender- and age-matched. The distribution of TNFAIP3 gene rs7749323∗A 

allele in late-onset MG (AChR+, without thymoma) patients was significantly higher than that 

of gender- and age-matched healthy controls. Multiple studies have reported an association of 

A1-B8-DR3-DQ2 with EOMG.154–156 A northern Europe GWAS study of 600 patients also 

found interacting protein TNFAIP3, related to the HLA-B08 serotype gene, is associated with 

EOMG.157 More often, genes have been associated with LOMG. HLA genes DRB1*15:01, 

DQB1*05:02, DRB1*16 and HLA-DQA1, all corresponding to MHC class II, are all 

associated with LOMG.158–160 Additionally, non-HLA genes have demonstrated associations 

with MG. Primarily related to T-cell subtype and function, several of these are listed in Table 

5.4.  

Test Utility Notes 

Serology  
Anti-

AChRa 

 Sensitivity and 
specificity of 44%-66% 
and 95%-100% 
respectively, in ocular. 

 Sensitivity and 
specificity of 90% and 
99%-100% respectively 
in generalized.  

 Detectable in 80% to 
90% of patients. 

 Low in seronegative, 
high in seropositive 
patients.  

 Seronegative result 
nonspecific for Anti-
MuSK MG. 

aAnti-acetylcholine receptor antibody 
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Genetic 

MHC class II MHC class I   

Predisposing Protective Predisposing Protective Cell 

Signalling 

References 

DQB1*05:02, DRB1*03, 

DRB1*04, DQB1*02, 

DQB1*03, DRB1*09, 

DRB1*15:01, DQB1*05:02, 

DRB1*16, 

DQA1*03:02/DQB1*03:03:0

2 

DRB1*08, 

DRB1*13:01, 

DQA1*05:01 

B*08, C*07:01 – CTLA4, 

PTPN22, 

TNFRSF11

A22 and 

TNFAIP3 

158,160–169 

 

 

Table 5.3. Summary of HLA class I and II associated susceptible or protective alleles in neurological diseases.  

      Adapted from: Immunology (2018) 153:399-414.170 
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Locus symbol, 

gene product 
Variant or marker Mechanism References 

Cathepsin L2 

(CTSL2) 

Association between rs4361859 with EO 

MG 

Unknown 171 

Cellular tyrosine 

phosphatase 22 

(PTPN22) 

Coding (Arg620Trp) Trp allele impairs binding to Csk 

kinase 172–175 

Cytotoxic T cell late 

antigen 4 (CTLA4) 

Two SNPs in the promoter region Abnormal alternative splicing 
176,177 

Galectin-1 

(LGALS1) 

Association with regulatory region 

(rs4820293, rs4820294) 

Unknown 
178 

Fork head/winged-

helix transcription 

factor 3 (FOXP3) 

SNP in the intron region IVS9+459 (A/G, 

rs2280883) 

Unknown 
179 

Interleukin receptor 

2β (IL2Rβ) 

Association with regulatory region 

(rs743777, rs228941) 

Unknown 
178 

Interferon-γ (IFNG) Noncoding SNP (+874A/T) Putative NF-κB binding site 178 

Interleukin-4 

receptor a (IL4R) 

Coding I75V Reduced responsiveness to 

interleukin-4 
180 

Interleukin-10 (IL10) 5′ flanking sequence of the human IL-10 

gene (rs45552637 (A/C), rs1800872 (T/C), 

and rs1800896 (A/G)) 

Correlated with IL-10 protein 

production in vitro 181,182 

Muscle nicotinic 

acetylcholine 

receptor α-subunit 

(CHRNA1) 

Upstream polymorphism (−478A/G) Alters binding of IRF8 

183,184 

Muscle nicotinic 

acetylcholine 

receptor δ-subunits 

(CHRND) 

Intronic microsatellite Unknown 
185 

Tumor necrosis 

factor alpha (TNF) 

Rs1800629(-308G<A) Higher secretion of TNF-alpha 
186–188 

TNFAIP3-

interacting protein 1 

(TNIP1) 

rs2233290(Pro151Ala) Ubiquitin-dependent 

dysregulation of NF-kappaB 

signaling 

189 

 

Table 5.4. Non-HLA genes associated with MG. Source: Journal of Autoimmunity (2014) 52:146-153.190 
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5.6.5 Proteomic 

To date, two studies have profiled the MG proteome. A proteome-wide search for potential 

serum protein diagnostic markers for MG was undertaken using surface-enhanced laser 

desorption/ionization (SELDI) time-of-flight mass spectrometry (TOFMS).191 The proteomic 

spectra from 80 MG patients and 80 healthy individuals were generated by SELDI. The SELDI 

TOFMS analysis generated 101 peaks. Among them, 9 peaks were down-regulated, and 30 

others were up-regulated in the MG sera compared with the controls. A decision tree model 

was then constructed. The model identified MG patients and healthy individuals with a 

sensitivity of 83.3% and a specificity of 87.5%, validating the method as a useful tool for the 

detection and identification of potential serum biomarkers that can diagnose MG. 

In a subsequent study, profiling was conducted in an experimental myasthenia gravis 

setting.192 Chronic EAMG was induced in seven-week-old rats by immunization with purified 

AChRs. Using mass spectroscopy and gel electrophoresis, the proteomic profile of rat tibialis 

anterior muscle was analyzed at different EAMG disease stages. In all, 22 differentially 

expressed proteins were identified. The majority of these proteins are involved in metabolic 

pathways (glycolysis and the citric acid cycle), while others are related to cellular-stress 

responses (e.g. glutathione S-transferase Yb3, 60 KDa heat shock protein), or are contractile 

proteins (myosin-4 and myozenin-1). Compared to control rats, a reduction of β-enolase and 

an increase of CAIII levels were detected in all EAMG disease stages. The study failed, 

however, to identify any changes in well-known NMJ-related protein between EAMG and 

control muscles. 

5.6.6 Metabolomic 

To date, only two studies have examined the serum metabolomic profile of myasthenia 

gravis.193,194 Both study cohorts were composed of AChR seropositive patients. In 2012, Lu et 

al. published the first description of the metabolomic profile of myasthenia. An LC-MS 

chemical analysis was conducted on the serum samples from 42 MG patients and 16 healthy 

volunteers. The OPLS discriminant analysis (OPLS-DA) class prediction models of acquired 

metabolomic spectra accurately discriminated MG from healthy controls with 92.8% 

sensitivity, 83.3% specificity and 90% accuracy. Furthermore, these models also described 

differences in metabolic profiles between early- and late stage MG patients. Nine potential 

biomarkers were identified, including gammaaminobutyric acid and sphingosine 1-phosphate. 
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Two years later, in 2014, Sengupta et al. explored the utility of metabolomic biomarkers as a 

surrogate measure of treatment response to prednisone. 15 mild to moderate MG patients 

were recruited. Patients were AChR seropositive and immunosuppressive naïve. Samples 

were taken at baseline and after 12 weeks of prednisone treatment. Analysis was then 

performed using ultra-performance liquid chromatography coupled with electro-spray 

quadrupole time of flight mass spectrometry to obtain comparative metabolomic and 

lipidomic profiles. Untargeted metabolic profiling of serum showed a clear distinction 

between pre- and post- treatment groups. Metabolite profiling of chronic prednisone treatment 

revealed associations with proinflammatory, glycerophospholipid synthesis pathways. 

Upregulation was observed for membrane associated glycerophospholipids: 

phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, 1, 2- diacyl-sn glycerol 3 

phosphate and 1-Acyl-sn-glycero-3-phosphocholine. Arachidonic acid (AA) and AA derived 

proinflammatory eicosanoids such as 18-carboxy dinor leukotriene B4 and 15 

hydroxyeicosatetraenoic acids were reduced. Additional changes in amino acid, carbohydrate, 

vitamin and lipid metabolism were also observed.  
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6  CHAPTER 6. RHE UMAT OID ARTHRITIS AS A COM PARATIVE DISEASE  

Rheumatoid arthritis (RA) is a chronic inflammatory and systemic disease characterized by 

extensive synovial inflammation resulting in the erosion of articular cartilage and marginal 

bone leading to joint destruction.195 Like MG, RA is an autoimmune disease; autoantibodies 

are produced against the Fc fragment of immunoglobulin (Ig) G molecules (rheumatoid 

factor) and citrullinated proteins and peptides (anti-citrullinated protein antibodies). As a 

humoral disease, RA shares many immunopathogenic and immunometabolic features with 

MG. This, along with its well-understood pathophysiology and widespread patient 

availability, make RA a useful comparative disease. 

6.1 Pathogenesis of RA 

The pathogenesis of RA is a gradual process; beginning with the development of 

autoimmunity, RA progresses with local inflammation and eventually stimulates bone 

destruction.195,196 

The synovial membrane is the primary target of the immune response. The synovial 

membrane is connective tissue formed by two main layers: the synovial lining and the 

synovial sublining. In RA patients, the synovial membrane is characterized by cellular 

hyperplasia, increased vascularity, and the infiltration of inflammatory cells that invade, 

grow and destroy adjacent cartilage and bone. This influx of cells, combined with reduced 

cell death, increases oxygen demand, resulting in local hypoxia. The inadequate 

oxygenation which results promotes the inflammatory response.197,198 This process supports 

further infiltration of inflammatory cells (CD4+ T cells, B cells, plasma cells, NK cells, 

dendritic cells (DCs) and mast cells), production of inflammatory mediators, and further 

degradation of supporting tissues.199–201   

Unlike MG, both the adaptive and the innate immune pathways are activated and contribute 

to the inflammatory process. In MG, only the adaptive immune pathway is stimulated, 

further activating the classical complement pathway. Where primary immunoprogramming 

and maturation takes place in the thymus in MG, the interactions among dendritic cells, T-

cells and B-cells occur primarily in the lymph node in RA and generate both the 

autoimmune response and the activation of T-cells. The RA immune response is also an 

example of Type III hypersensitivity. Type III hypersensitivity occurs when there is 

accumulation of immune complexes (antigen-antibody complexes) that have not been 

adequately cleared by innate immune cells, giving rise to an inflammatory response and 
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attraction of leukocytes. It involves soluble antigens that are not bound to cell surfaces (as 

opposed to those in type II hypersensitivity, such as MG). A complex cytokine network 

promotes inflammation202 and perpetuates the disease through positive feedback loops. 

These loops further promote the manifestation of systemic disorders.203 

Genetic contributions to the pathogenesis of RA have also been observed. Transcription 

factor signal transducer and activator of transcription 4 (STAT4) play a key role in the 

interleukin (IL)-12 signalling in T-cells and natural killer (NK) cells, leading to the 

production of interferon (IFN)-γ and the differentiation of T helper (Th)1 and Th17 

cells.204  The STAT4 gene provides instructions for a protein that acts as a transcription 

factor, which means that it attaches (binds) to specific regions of DNA and helps control the 

activity of certain genes. The STAT4 protein is turned on (activated) by cytokines. When 

activated, the STAT4 protein increases the activity of genes that promote the maturation of 

naive T-cells into specialized T-cells, called Th1 cells, which suppress or regulate immune 

responses.  Similarly, other candidate genes have immunomodulatory effects.204,205  

Finally, the contribution of environmental factors to the pathogenesis of RA have been 

studied extensively. Smoking, infections, sex hormones, birth weight, alcohol intake and 

socioeconomic status can all modify the risk for RA.206,207  

 

6.1.1 RA is an Energy-Intensive Disease 

The widespread systemic effects mediated by pro-inflammatory cytokines in RA impact on 

metabolism and on lymphocyte metabolism in particular. In the presence of pathogens or 

products of inflamed tissues that provoke inflammation, macrophages and lymphocytes 

rapidly switch from resting to a highly active state and exhibit a pronounced increase in 

production of host defence factors resulting in enhanced phagocytosis and antigen 

presentation.208 Mounting an inflammatory response is an energy-consuming process. 

Activation, growth, and proliferation of leukocytes all impose heavy metabolic demands. 

Activated macrophages exhibit a high hexokinase activity, the first enzyme involved in 

glycolysis and in the pentose phosphate pathway. Glycolysis and glutamine metabolism are 

also markedly increased during phagocytosis.27 A shift towards high glycolysis is a property 

of inflammatory cells, whereas oxidative phosphorylation is more characteristic of anti-

inflammatory cells. A shift towards aerobic glycolysis occurs in macrophages and DCs 
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acting through Toll-like receptor 4 (TLR4), and in inflammatory macrophages and in Th17 

lymphocytes.37,209 Cells limiting inflammation, such as regulatory T-cells (Treg),210 anti-

inflammatory macrophages and quiescent memory T-cells that carry the CD8 antigen, 

exhibit oxidative metabolism with more limited rates of glycolysis.38 Glucose uptake and 

glycolysis are increased in Th17 cell β-oxidation (as well as Th2 and Th1 cells) compared 

with Treg cells, which in turn have increased membrane potential and oxidize lipids at a 

higher rate than other subsets of cells that carry the CD4 antigen.211,212 Conversely, excess 

metabolism may prevent apoptosis, exacerbate cell function, and thus promote T-cell hyper-

reactivity, leading to autoimmunity and inflammatory diseases.213,214  
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7 CHAPTER 7. METH ODS  

7.1.1 Clinical characteristics of study subjects 

This study was conducted in accordance with the Declaration of Helsinki ethical principles for medical 

research involving human subjects and received ethics approval from the University of Alberta 

Research Ethics Board and operational approvals from Alberta Health Services. Each study patient 

provided his/her informed consent for the study. 

We prospectively enrolled 50 seropositive MG, and 50 seropositive RA patients, and 50 healthy 

controls (HC). MG and RA serostatus was confirmed with antibody testing for either anti-AChR (MG) 

or rheumatoid factor (RA).  For the purposes of this study, ocular and generalized MG subtypes were 

considered phenotypically identical and serum sample were collected from both. RA patients were 

diagnosed in accordance with the American Rheumatology Association 1987 criteria.1 To exclude the 

confounds of race, only Caucasian patients were included in this study. There were no smokers and no 

statistically significant differences between all groups from time of last meal or BMI.  

Clinical patients and healthy controls were enrolled in a prospective observational trial to obtain serum. 

MG and HC were collected within the same clinic. RA samples were collected in multiple clinics. 

Study subjects were age and gender matched, within the limitations of opportunistic sampling in the 

clinical setting. Further, patients had no history of any other autoimmune disease or thymoma. Finally, 

due to the nature of recruitment, patients were not required to fast. In total, 27 age and gender-matched 

samples were added to the cohort for a sum of 50. Batch effects were considered significant, however, 

and these samples were excluded, leaving a study cohort of 46 MG, 23 RA and 49 controls. Table 7.1 

summarizes patient data. 
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Feature Value 

MG n= 46 

Gender (M/F, %) 61/39 

Age (years) 59 ± 3.1 (Range: 19-93) 

BMI 28.08 ± 0.56 (Range: 

19.06-34.97) 

Class (ocular/generalized, %) 24/76 

MMT 4 ± 0.75 (Range: 0-23) 

Age of onset (years) 52 ± 3.3 (Range: 15-86) 

Duration since diagnosis (years) 7 ± 1.1 (Range: 0-46) 

    

Myasthenia Gravis Medications  (n/46, %) 

Pyridostigmine 35 (76) 

Prednisone 19 (41) 

Azathioprine 14 (30) 

Mycophenolate mofetil 7 (15) 

Tacrolimus 1 (2)   

RA n= 23 

Gender (M/F, %)) 71/29 

Age (years) 56 ± 3.2 (Range: 24-84) 

RF (% positive) 61.3 

BMI 26.18 ± 0.83 (Range: 

19.63-42.57) 

Symptom Duration (years) 35 ± 4.05 (Range: 1-75) 

Diagnosis Duration (years) 37 ± 4.02 (Range: 1-76) 

DAS 4 ± 0.33 (Range: 1-8) 

HAQ 1 ± 0.18 (Range: 0-4) 

ESR 24.54 ± 5.02 (Range: 0-

108) 

CRP 13.62 ± 3.91 (Range: 0.2-

86)   

Controls n= 49 

Gender (M/F, %) 53/47 

Age (years) 49 ± 2.7 (Range: 19-88) 

BMI 27.47 ± 0.55 (Range: 

18.07-36.58) 

BMI= Body Mass index, MMT= manual muscle testing, RF= Rheumatoid factor, DAS=Disease activity 

score, HAQ= Health assessment questionnaire, ESR=Erythrocyte sedimentation rate , CRP= C-

Reactive protein 

Table 7.1. Demographic data and clinical profiles 

 

24 ml blood samples were drawn from the anticubital vein using a 21 G needle and vacutainer® red top 

no additive tubes (Becton Dickenson Ref:366408). Collected samples were allowed to clot for 30 

minutes, at which time serum was drawn using a 0.2 um syringe filter and dispensed into a sterile 

labelled 15 ml centrifuge tube. (Corning part # 431224).  The blood samples were centrifuged at 2200g 
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for 10 minutes at 4°C within 45 min and the serum was immediately frozen on dry ice. Collected 

samples were stored at -80 °C until further use. 

7.1.2 Metabolite Extraction and Labelling 

The workflow for CIL LC-MS profiling of serum is illustrated in Figure 7.1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 workflow for CIL LC-MS profiling 
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7.1.2.1 Dansylation Labelling 

In brief, frozen serum samples were thawed on ice, vortexed to dissolve precipitates and then 

centrifuged at 14000 rpm for 10 min. 25 μL supernatant was transferred into an Eppendorf tube and 

was mixed with 75 μL cold methanol. The mixture was then incubated on ice for 15 min to precipitate 

any proteins. Next, the mixture was centrifuged at 14000 rpm for 15 min. 75 μL supernatant was taken 

and dried using a SpeedVac. The sample was reconstituted in 50 μL 1:1(v:v) Water/ACN solution. An 

aliquot of 25 μL serum solution was then mixed with 25 μL of 250 mM sodium carbonate/sodium. This 

bicarbonate buffer was further added into the sample to make a basic environment for the dansylation 

reaction. The solution was vortexed, spun down, and mixed with 25 μL of freshly prepared 12C-dansyl 

chloride solution (18 mg/mL) (for light labelling) or 13C-dansyl chloride solution (18 mg/mL) (for 

heavy labelling). After 45 min incubation at 40 °C, 5 μL of 250 mM NaOH was added to the reaction 

mixture to quench the excess dansyl chloride. The solution was then incubated at 40 °C for another 10 

min. Finally, 25 μL formic acid (425 mM) in 1:1(v:v) ACN/H2O was added to acidify the solution. 

7.1.2.2 DmPA (dimethylaminophenacyl) labelling 

For DmPA labelling after protein precipitation, an aliquot of 20 μL reconstituted serum sample 

(described above) was mixed with 20 μL water and 5 μL 6 M HCl solution, then followed by adding 5 

μL of saturated NaCl solution. The vial was vortexed, then spun down and the sample was extracted 

using 150 μL ethyl acetate. Each vial was further vortexed for 30s and then centrifuged at 8000 rpm for 

5 min. The organic phase was transferred into another centrifuge vial with a screw cap and the pH was 

adjusted to 8 by adding 20 μL TEA solution (20 mg/mL in acetonitrile). Afterwards, the sample was 

dried down by using SpeedVac and then reconstituted in 30 μL TEA solution (10 mg/mL in 

acetonitrile). A solution of either 12C-DmPA or 13C-DmPA (10 mg/mL in acetonitrile) was added into 

the vial. The vial was again vortexed and spun down.  Finally, the vial was incubated in an oven at 

85◦C for 55 min.  

7.1.2.3 LC−UV Quantification 

Sample amount was normalized using a protocol previously described2 based on LC−UV measurement 

of the total concentration of dansyl or DmPA labelled metabolites in a sample. A Waters ACQUITY 

UPLC system with a photodiode array (PDA) detector was used. 4 μL (dansyl-labelled) or 1 μL 

(DmPA-labelled) of each labelled serum sample was injected onto a Phenomenex Kinetex C18 column 

(50 mm × 2.1 mm, 1.7 μm particle size, 100 Å pore size) for a fast-step gradient run.  Solvent A was 

0.1% formic acid/5% ACN/water(v/v/v), and solvent B was 0.1% formic acid/ACN((v/v). The step 

gradient started with 0% B for 1 min and was increased to 95% within 0.01 min and held at 95% B for 
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1 min to ensure complete elution of all labelled metabolites. The flow rate was set at 0.45 mL/min. The 

total peak area of the labelled metabolites was measured at 338 nm and integrated using the Empower 

software (6.00.2154.003). Based on the quantification results, the 12C - and 13C -labelled samples were 

then mixed in equal amounts. 

7.1.2.4 LC−QTOF-MS 

Labelled serum samples were analyzed using a Bruker HD Impact quadrupole time-of-flight (QTOF) 

mass spectrometer (Billerica, MA, U.S.A.) with ESI linked to an Agilent 1100 series HPLC system 

(Palo Alto, CA, U.S.A.) along with an Agilent eclipse plus C18 column (100 mm × 2.1 mm, 1.8 μm 

particle size, 95 A pore size). LC Solvent A was 0.1% formic acid/5% ACN/water(v/v/v), and solvent 

B was 0.1% formic acid/ACN((v/v). The gradient elution profile was as follows: t = 0 min, 20% B; t = 

3.5 min, 35% B; t = 18.0 min, 65% B; t = 24.0 min, 99% B; t = 28.0 min, 99% B. After each injection, 

the column was re-equilibrated with the initial mobile phase conditions for 15 min. The flow rate was 

set at 180 μL/min.  Sample loading amount was optimized (data not included) and the same amount of 

each mixed sample was injected into the LC-MS system according to the LC-UV quantification result.  

The flow was loaded to the electrospray ionization (ESI) source of a Bruker maXis impact high-

resolution quadrupole time-of-flight (Q-TOF) mass spectrometer (Bruker, Billerica, MA). All MS 

spectra were obtained in the positive ion mode.   

7.1.2.5 Data Processing 

After LC− QTOF-MS analysis, entire peak lists were exported from Bruker Data Analysis software 

with a signal-to-noise threshold of 3. An in-house IsoMS software was used for peak-pair picking, 

peak-pair filtering, and peak-pair intensity ratio calculations.3 The program eliminates false-positive 

peaks such as dimers and common adducts. A zero-fill program developed in-house was used 

afterwards to fill in missing values in the CSV file by searching the raw data file for missed peaks. 

Finally, peak pairs were reconstructed, and their chromatographic peak ratios were determined using 

IsoMS-Quant.  

7.1.3 Statistical Analysis 

Data cleaning was performed on the provided intensity ratio data.  Only those peak-pair features shared 

by more than 50% of the samples were retained for statistical analysis. Sample imputation was 

performed on those remaining features missing <50% data by k-nearest neighbors algorithm using the 

“Impute” package of the BioConductor package (www.Bioconductor.org) under R (https://cran.r-

project.org/). All data was mean-centered and auto-scaled (unit variance) prior to analysis. Multivariate 



78 
 

statistical analysis including principal component analysis (PCA), partial least squares discriminant 

analysis (PLS-DA) and Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) 

was carried out using SIMCA-P+ 14.1 (Umetrics, Umeå, Sweden). PLS-DA and OPLS-DA validation 

was performed using 999-permutation test built into the SIMCA-P+ 14.1 program. VIP values used in 

part to choose metabolites were calculated by PLS-DA. To calculate p-value, Student’s t tests were 

performed using SPSS 25.0 (IBM Corp., Armonk, NY, USA). To estimate the false discovery rate, the 

multiple-testing-corrected p-value (q-value) was calculated using R (https://cran.r-project.org/) and 

BioConductor4 with the package “qvalue”.5,6 For comparisons between two groups, the area under the 

curve (AUC), was calculated using Metaboanalyst 3.7 

Strict selection criteria were then applied to the analyzed data. These criteria were: fold change > 1.5, 

q-value < 0.05, VIP >1.  Only those metabolites meeting these criteria were selected as potential 

biomarkers. 
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8 CHAPTER 8. SERUM META BOLOMIC PROFILING OF M YASTHENIA GRAVIS  

8.1 Abstract 

High-throughput, multiplexed, metabolomics profiling is rapidly becoming a new standard for 

biomarker discovery in the diagnosis, prognosis and therapy of disease. The present study applied a 

two-control, multi-label metabolomics profiling approach as a potential strategy for the identification 

of biomarkers unique to myasthenia gravis (MG). Metabolic analyses using acid- and dansyl-labelled 

serum from seropositive MG (n=46), rheumatoid arthritis (RA) (n=23) and healthy controls (HC) 

(n=49) were performed on samples from adult patients presenting to the University of Alberta Hospital 

neuromuscular and rheumatology clinics. Comparisons between patients with MG vs. HC, and RA vs. 

HC were made using univariate and multivariate statistics. Serum biomarker patterns were statistically 

significantly different between groups. PLS-DA and OPLS-DA models exhibited considerable 

distinction between all groups. Metabolites were then filtered to remove peak pairs common to both 

disease cohorts. Combined metabolite panels revealed clear separation between MG and HC for both 

library-matched (AUROC: 0.92 ± 0.03) and highest AUC patients (AUROC: 0.94 ± 0.05). In patients 

presenting to the clinic with seropositive MG, metabolomic profiling is capable of distinguishing 

patients with disease from those without. These results provide an important first step towards a 

potential biomarker for improving MG identification. 

8.2 Introduction 

Myasthenia gravis (MG) is a chronic autoimmune neuromuscular junction disorder characterized by the 

breakdown of normal communication between nerves and muscles, resulting in fluctuating weakness of 

the voluntary muscle groups.  Rapid, accurate diagnosis of MG presents a challenge, particularly in the 

emergency room setting. Patients may not present with the typical symptoms, frequently mimicking 

other neurological conditions, such as stroke, or Gullain Barré Syndrome that can also produce facial 

and limb weakness like that seen in MG. 

Biomarkers confirming MG are few and primarily diagnostic in nature. To date, no single biomarker 

has demonstrated reliable predictive power in MG. Serum antibodies are limited to diagnosis and 

differentiation of MG subtypes. In limited cases, such as muscle specific kinase (MuSK) antibodies, the 

response to therapy can be anticipated as refractory; this rarely informs the care of the patient, however. 

Electrophysiological studies are often used for the diagnosis of MG; these may be limited by factors 

related to accuracy, reproducibility and availability. Indeed, significant practice variation in the 

diagnosis of MG has been recognized, further illustrating the need for novel methods of diagnosis. 
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In the present study we aim to evaluate the potential of a novel, multiplexed, dual- control 

metabolomics-based approach to aid the diagnosis and management of MG. Metabolites represent the 

intermediary and final products of the metabolic pathways within an organism; therefore, it is possible 

to achieve unique insight by studying these compounds under any given physiological condition. In 

addition, profiling of the extended spectrum of chemically-labelled species could provide an expanded 

understanding of the overall immune response. In pilot studies, other groups have explored the 

feasibility of a metabolomic approach for differentiating MG patients from healthy controls. To the 

best of our knowledge, however, no metabolomic study of autoimmune disease has attempted to 

remove the confounding effects of common pathophysiology, such as generalized immune responses. 

The aim of the present study is to apply a novel humoral-disease control approach to accurately identify 

unique metabolomic serum biomarkers, which distinguish patients presenting with seropositive MG 

from a reference autoimmune disease i.e. Rheumatoid Arthritis (RA) and healthy controls. 

8.3 Methods 

8.3.1 See Section 7.1 

8.4 Results 

8.4.1 Multivariate modelling 

As an initial data survey, principal component analysis was conducted on the different combinations of 

samples. Appendices 1 and 2 illustrate these plots; Appendix 3 describes the model R2 and Q2 values.   

To further illustrate class separation, initial multivariate modelling of all three groups was performed 

using partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least squares-

discriminant analysis (OPLS-DA). Score plots are shown in Figures 8.1 & 8.2.  
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Figure 8.1 Score Plots for MG vs. RA vs. C 

PLS-DA and OPLS-DA score plots for Acid-labelled (A, B) and Dansyl-labelled (C, D) MG vs. RA vs. C groups. 

PLS-DA plots are positioned as the first column, OPLS-DA as the second column. 
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Figure 8.2 Score Plots for MG vs. C 

PLS-DA and OPLS-DA score plots for Acid-labelled (A, B) and Dansyl-labelled (C, D) MG vs. C groups. PLS-DA 

plots are positioned as the first column, OPLS-DA as the second column. 

 

The acid-labelled groups exhibited excellent discrimination of the three cohorts. The dansyl-labelled 

groups, while still good, showed less tight clustering and greater overlap of the MG and control groups 

for the PLS-DA model than the acid-labelled groups, indicating reduced intergroup variability for these 

samples. MG vs. C modelling revealed a significant difference between the healthy controls (squares) 

and the MG patients (circles), illustrating good class difference. This group separation was further 

validated by permutation testing as found in Appendix 4. The model performance indicators (the R2, 

Q2 values and permutation intercepts) are provided in Tables 8.1 and 8.2.  
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Dansyl           Intercepts 

  A N R2X(cum) R2Y(cum) Q2(cum) R2 Q2 

MG vs. RA  vs. C 7 118 0.562 0.977 0.78 0.82 0.04 

MG vs. C 5 95 0.477 0.982 0.781 0.95 0.29 

RA vs. C 3 72 0.545 0.991 0.97 0.69 0.21 

                

Acid A N R2X(cum) R2Y(cum) Q2(cum) R2 Q2 

MG vs. RA  vs. C 5 118 0.412 0.986 0.949 0.71 0.06 

MG vs. C 3 95 0.302 0.98 0.944 0.79 0.33 

RA vs. C 2 72 0.333 0.989 0.982 0.56 0.11 

Table 8.1 PLS-DA model Scores 

 

Dansyl           Intercepts 
 

A N R2X(cum) R2Y(cum) Q2(cum) R2 Q2 

MG vs. RA vs. C 2+5+0 118 0.591 0.955 0.747 0.80 0.37 

MG vs. C 1+5+0 95 0.506 0.991 0.678 0.96 0.36 

RA vs. C 1+2+0 72 0.545 0.991 0.965 0.69 0.34 
  

  
   

    

Acid A N R2X(cum) R2Y(cum) Q2(cum) R2 Q2 

MG vs. RA vs. C 2+5+0 118 0.467 0.989 0.892 0.84 0.23 

MG vs. C 1+3+0 95 0.353 0.991 0.942 0.92 0.24 

RA vs. C 1+1+0 72 0.333 0.989 0.98 0.57 0.33 

 

Table 8.2 OPLS-DA model Scores 
 

8.4.2 Multivariate Model Diagnostic Power 

To evaluate the diagnostic power of each PLS-DA model, the sensitivity (SE), specificity (SP), positive 

predictive power (PPP) and negative predictive power (NPP) were calculated. These are presented as 

Appendix 5. All models demonstrated excellent SE, SP, PPP, and NPP. 

8.4.3 Metabolite Identification 

The UMS LC-MS technique, provided broad coverage of both the carboxyl and phenol/amine serum 

submetabolomes for all three patient groups: MG, RA and HC. In total, the application of two labelling 

techniques revealed an overall total of 9954 12C/13C carboxyl-labelled peak pairs (features) and 7458 

phenol or amine features. After data processing, metabolites were matched to in-house standard 

libraries. A total of 160 individual metabolites were positively identified. Of these, 13 were matched to 
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MG, while 147 were matched to RA. For the remaining features, an accurate mass search of the Human 

Metabolome Database was undertaken, using the MycompoundID library.8 A mass tolerance of 0.005 

Da was set as a tolerance cutoff. This search revealed a further 401 putatively-matched metabolites, 19 

for MG and 382 for RA. In total, 496 metabolites were either library-matched or putatively identified. 

Of note also, many metabolites contained carboxyl groups, as a majority of identified metabolites were 

acid-labelled. Further, benzenoids were heavily represented for both the library-matched and putative 

metabolites, with six present for each. This was followed by amino acids at five for putatively-matched 

compounds.  

8.4.4 Discriminating Metabolites 

Metabolites meeting the following criteria were subjected to further analysis: p-value ≤ 0.05, fold 

change ≥ 1.5, q-value ≤ 0.05 and VIP ≥ 1. Employing the strategy endorsed by Lindahl et.al9, 

metabolites common to MG and RA were identified and removed from the analysis identifying those 

unique to MG. After simple filtering, a total of five library-matched metabolites were identified as 

unique to MG, and eight metabolites common to both MG and RA. Of the putatively identified 

metabolites, seven were unique to MG and 12 common to both groups. Of these, no dansyl-labelled 

metabolites were matched, either by standard library, or putatively. Of the library-matched, two 

metabolites were short-chain keto acids, while structural lipids dominated putative matches with five. 

A complete list of metabolites common to both MG and RA is presented in Appendix 6. 

The total number of metabolites discovered is illustrated by Figure 8.3, and further detailed by the 

Venn diagrams and tables found in Appendix 7 and Appendix 8. Appendix 9 summarizes the chemical 

taxonomies and associated pathways for all identified common and unique metabolites. 
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Figure 8.3 Venn chart illustrating numbers of significant metabolites identified by group 

 

8.4.5 Receiver Operating Characteristic Curves 

Metaboanalyst 3.0 was used to generate receiver operating characteristic (ROC) curves for 

differentiating MG and RA from healthy controls both for individual labelling strategies and combined. 

Classification models were built using the random forest method based on the five most predictive 

metabolites as presented in Tables 8.3, 8.4. Biomarker panels were composed of the four library-

matched candidate biomarkers and the 5 candidate biomarkers with highest AUC overall. Terephthalic 

acid was excluded as a xenometabolite, and, therefore, of little predictive value. 
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As illustrated in Figures 8.4 and 8.5, significant discrimination was evident in both combinations. To 

obviate any suggestion of overfitting, permutation tests of each ROC curve were undertaken. Using 

these permutation tests, we did not find any overfitting of the ROC results. 

 

HMDB Name Sample 

mz 
Monoistopic 

mz 
rt AUC q-value VIP Ratio FC 

HMDB00008 2-Hydroxybutyric acid 104.0472 104.0468 577.24 0.80 3.53E-08 1.78 2.08 2.08 

HMDB00011 (R)-3-Hydroxybutyric acid 104.0464 104.0468 610.10 0.83 3.82E-08 0.58 1.60 1.60 

HMDB00060 Acetoacetic acid 102.0299 102.0311 913.06 0.81 6.54E-07 2.43 1.75 1.75 

HMDB00005 2-Ketobutyric acid 102.0299 102.0311 913.06 0.81 6.54E-07 2.43 1.75 1.75 

*Terephthalic acid excluded as a xenometabolite. 

Table 8.3 Library-matched metabolites  

HMDB Name Sample 

mz 

Monoistopic 

mz 

rt AUC q-value VIP Ratio FC 

HMDB11489 LysoPE(0:0/20:5(5Z,8Z,11Z,14Z,17Z)) 499.268 499.2699 1227.72 0.88 3.46E-09 2.27 0.42 -2.36 

HMDB00328 12-Ketodeoxycholic acid 390.2757 390.277 2300.92 0.87 2.54E-08 3.15 0.45 -2.24 

HMDB11496 LysoPE(0:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) 525.2857 525.2855 1132.3 0.85 4.67E-07 2.41 0.57 -1.76 

HMDB11494 LysoPE(0:0/22:5(4Z,7Z,10Z,13Z,16Z)) 527.2992 527.3012 1398.73 0.84 1.11E-07 2.32 0.56 -1.79 

HMDB00139 Glyceric acid 106.0253 106.0266 645.02 0.83 1.51E-07 2.12 2.07 2.07 

 

Table 8.4 Highest AUC metabolites  
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Figure 8.4 ROC curve permutation plots for the top 4 library-matched MG vs. C metabolites panel 
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Figure 8.5 ROC curve permutation plots for the top 5 MG vs. C metabolites panel 
 

Finally, to evaluate within-model prediction power, a cross-validation was performed for each of the 

diagnosis panels. Samples were randomly picked and labelled as “new data”. Using metaboanalyst, 

these data were then input into the ROC models of each panel, and the results observed. If the output 

group information of these samples matches the true group information, the diagnosis model is 

considered validated by this small internal set of samples. As presented in Appendices 10 and 11, all 

results showed good predictive power. 

8.5 Discussion 

No biomarkers exist that reliably predict the clinical course or therapeutic response in MG. Present 

biomarkers are primarily diagnostic in nature; both Acetylcholine receptor (AChR) and anti-MuSK 

antibodies confirm the diagnosis of MG, but do not correlate with disease severity and/or clinical 

response.10–12 Two recent reviews summarize the current state of biomarkers for MG, identifying the 
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need for metabolomic markers.13,14 Previously, only two studies have explored the metabolomic basis 

of MG15,16; a clear need exists for further exploration of metabolomic analysis for the study of MG. In 

this study we explored the utility of metabolomics to identify metabolites differentially regulated in 

MG patients compared to healthy volunteers and patients with RA.  

We first explored the relationships between the MG, RA and HC cohorts using multivariate analysis. 

PLS-DA and OPLS-DA modelling were used to reveal patterns of between-class variance for both all 

classes and class pairs for each acid- and dansyl- chemical-labelling strategy. Clear separation was 

observed for all groups. This is consistent with previous work which not only distinguished MG from 

healthy controls,15 but also acted as a surrogate measure of disease severity in MG16; less severe MG 

patients were metabolomically distinct from the more severe. Within-class spread was also observed 

within our MG groups. This may reflect the presence of patients exhibiting significant refractory 

disease, or duration of disease, possibly representing metabolomically separate subgroups of AChR 

seropositive MG. 

Next, we further investigated the potential of metabolic profiling as a diagnostic tool. Sera from MG 

and RA patients were observed to have overlapping metabolomic profiles when compared to healthy 

individuals. The 20 metabolites common to MG and RA were removed from the MG profile on the 

assumption that these did not represent compounds unique to MG, but rather to more generalized 

physiological states common to both diseases (such as inflammation). Analysis of these common 

compounds will be the topic of a parallel manuscript as we seek a better understanding of metabolic 

profile overlap in antibody-mediated disease. Filtering of common metabolites revealed a set of 12 

unique metabolites specific to MG. We found a markedly different metabolic profile in MG patients vs. 

HC as compared to RA patients vs. HC: 6 metabolites were significantly up-regulated and 6 down-

regulated in MG compared to the controls according to stringent AUC, p-values, q-values, VIP and 

fold-change criteria. Furthermore, the ROC curve analysis of multiple metabolite panels of MG 

reflected the excellent performance of the applied OPLS-DA modelling of metabolic profiles for the 

discrimination between studied diseases and controls, with cross-validated predictive scores >80%. 

Since our study was focused on AChR seropositive MG, we placed the observed metabolic profile 

differentiating MG from HC within a biochemical context. Previous work by Lu et al. illustrated 

significant changes in amino acid, fatty acid, bile acid, structural lipid and oxidative phosphorylation 

pathways.15 Of these, only bile acid metabolism change was observed in our study. Bile acid 

metabolites were previously observed to be largely downregulated compared to healthy subjects. This 
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was also confirmed by our study, where 12-Ketodeoxycholic acid was likewise observed to be 

downregulated. Along with their role in the absorption, transport, and metabolism of dietary fats and 

lipid-soluble vitamins,  bile acids have also been implicated in cell signalling, glucose metabolism17 

and inflammation.18 The reason for the observed reduction of bile acids in the MG group remains 

unclear. Pharmacological effects seem unlikely since while pyridostigmine is subject to metabolism 

during the first passage through the liver, its hepatotoxicity is quite low. It has been suggested that gut 

microbiota may reduce the production of bile acids while increasing inflammation,19 although the 

broader implications for autoimmune disease are uncertain.   

Several membrane glycerophospholipids (lysophospholipids) were also changed when compared to 

controls. This reflects the findings of an earlier paper that also observed perturbation of 

glycerophospholipid metabolism in response to prednisone treatment in MG patients.16 Paradoxically, 

however, where it was previously observed that glycerophospholipids were upregulated in those 

patients taking prednisone, in our cohort glycerophospholipid downregulation was noted for all 

patients, including those on prednisone (n=19, fold-change mean = -2.71). Pathway-associated 

glycerolipids (Monoradylglycerolipids) were also found to be downregulated, with 

MG(0:0/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) exhibiting similar negative fold change to measured 

glycerophospholipids. Arachidonic acid can be released from activated inflammatory cell membrane 

phospholipids by phospholipase D (PLA2).20,21 This downregulation of lipids may reflect a higher 

activity of phospholipase A2 (PLA2), a family of enzymes present in the arachidonic acid pathway, 

which hydrolyze membrane glycerophospholipids to lysoPCs and fatty acids.22  

A majority of identified metabolites have significant roles within energy production pathways. Glyceric 

acid is a natural three-carbon sugar acid obtained from the oxidation of glycerol. Several phosphate 

derivatives of glyceric acid, including 2-phosphoglyceric acid, 3-phosphoglyceric acid, 2,3-

bisphosphoglyceric acid, and 1,3-bisphosphoglyceric acid, are important biochemical intermediates in 

glycolysis.23 Many cells ranging from microbes to lymphocytes use aerobic glycolysis during rapid 

proliferation, which suggests it may play a fundamental role in supporting cell growth.  Activated B- 

and T-cells also experience increases in aerobic glycolysis and oxygen consumption.24–26  

In our cohort, upregulation of short-chain keto acids in MG patients compared to controls was 

observed. This could suggest increased activity in any of several metabolic pathways. 2-ketobutyric 

acid (a-Ketobutyrate) is involved in the synthesis of aspartic acid, glutamic acid, asparagine, glutamine, 

ornithine and proline. α-Ketobutyric acid is a product of the lysis of cystathionine. It is also one of the 
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degradation products of threonine, produced by the catabolism of the amino acid by threonine 

dehydratase. Additionally, 2-ketobutyric acid is produced by the degradation of homocysteine and the 

metabolism of methionine. Within the mitochondria, it can be converted into propionyl-CoA (and 

subsequently methylmalonyl CoA, which can be converted into succinyl CoA, a citric acid cycle 

intermediate), and thus enter the citric acid cycle.  Ketone bodies (acetoacetic acid, and β-

hydroxybutyric acid) are produced mainly in the mitochondrial matrix of liver cells, from acetyl-CoA 

when a scarcity of carbohydrates requires that energy must be obtained from the breaking down of fatty 

acids, in a process called ketogenesis. Ketone bodies are transported from the liver to other tissues, 

where acetoacetate and β-hydroxybutyrate can be reconverted to acetyl-CoA to produce energy. Some 

of the acetyl-CoA produced by fatty acid oxidation in liver mitochondria is converted to acetone, 

acetoacetate and β-hydroxybutyrate. β-hydroxy butyrate ((R)-3-Hydroxybutyric acid) is further 

converted to acetoacetate for energy. Both are elevated in uncontrolled diabetes mellitus (DMII); due to 

an absence of insulin, cells, metabolically starved, turn to gluconeogenesis and fat/protein catabolism 

for energy. 

Upregulation of ketone bodies (3-OH-butyrate and acetoacetate) has been also observed in the blood of 

patients with MS.27 Suggestive of an “energy shift”, in conditions of low glucose or carbohydrate 

concentrations, ketone bodies are produced in mitochondria through fatty acid catabolism. Acetoacetic 

acid and β-hydroxybutyric acid cross the blood-brain barrier and can be used by cells as an energy 

source (i.e., converted to acetyl coenzyme A to participate in the citric acid cycle in mitochondria). 

Impaired glycolysis leading to reduced ATP synthesis may ultimately lead to cell death or 

degeneration, especially as the mitochondria generates most of the energy for neuronal cells.28 

2-Hydroxybutyric acid (or α-Hydroxybutyrate) may be an early marker of DMII.2930 Previously, high 

levels of 2--hydroxybutyrate were previously suggested to be an early marker for impaired glucose 

regulation.31 This may arise due to increased lipid oxidation (as evidenced by an elevated 

NADH/NAD+ ratio) and oxidative stress because 2-hydroxybutyrate is produced from threonine and 

methionine catabolism as well as glutathione metabolism, in response to increased production of 

oxidizing species.32 Further, accumulating evidence has shown that oxidative stress contributes toward 

the pathogenesis in MG,33 neurodegenerative disease,34 and inflammatory/autoimmune-mediated tissue 

damage.35 Several studies have suggested the relationship between 2-hydroxybutyrate and disorders 

such as dihydrolipoyl dehydrogenase (E3) deficiency36 and cerebral lactic acidosis.37 Oxidative stress 

has also been implicated in the pathogenesis of MS.38 
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Finally, phthalates are xenoestrogenic compounds, environmental toxicants that mimic or induce 

endogenous hormones.  Also known as endocrine disrupting chemicals (EDCs), these include 

terephthalic acid, which was found to be upregulated in MG. EDCSs can disrupt the immune-

neuroendocrine network (INEN), the network joining the endocrine, immune and nervous systems.39  

Environmental stressors such as phthalate chemical exposure may result in cytokine-induced 

neurotoxicity by inducing oxidative stress,40 and neuroinflammation.41,42 Phthalates are also widely 

used as excipients for the enteric coating of pharmaceutical Tablets.43 Increased terephthalic acid levels 

may also reflect high-frequency medication schedules, or the taking of large quantities of phthalate-

coated medication contiguous with study blood sample collection. 

There are multiple drawbacks in our study, which may affect our results. Use of acetylcholinesterase 

inhibitor and immunosuppressive in the MG patients can change the metabolic profile by introducing 

new metabolites, and possibly disrupting important immunopathogenic pathways. Larger studios with 

subgroup analysis is needed to discern the effect of medications.  Our patients did not fast prior to 

sample collection, which can potentially introduce variability in the serum metabolome. Ideally, this 

would add some measure of consistency, but the nature of opportunist sampling of a rare disease 

precluded the inclusion of this criteria as logistically unwieldy. 

8.6 Conclusion 

This study successfully illustrated the potential of LC–MS-based serum metabolomics for rapid 

identification and distinguishing of MG sera from healthy subjects and a reference autoimmune 

disease.  Metabolomics can play an important diagnostic and prognostic role in clinical medicine, 

although further work with larger samples remains to correlate the results of previous studies, and 

possibly those of other autoimmune diseases, to establish robust metabolomic models of MG.  
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9 CHAPTER 8  METABOLOMIC PR OFILE OVERLAP IN PR OTOTYPICA L AUT OIMM UNE HUM ORAL D ISEASE. A COMPARIS ON OF MYAST HENIA GRAVIS AND RHE UMAT OID ARTHRITIS  

9.1 Abstract 

Myasthenia gravis (MG) and rheumatoid arthritis are examples of antibody-mediated chronic, 

progressive autoimmune diseases. Phenotypically dissimilar, MG and RA share common 

immunological features. This study illustrates the metabolomic profile overlap found between these 

two diseases and describes the immunometabolomic significance. Metabolic analyses using acid- and 

dansyl-labelled serum from seropositive myasthenia gravis (n=46), rheumatoid arthritis (n=23) and 

healthy controls (n=49) were performed on samples from adult patients presenting to the University of 

Alberta Hospital neuromuscular and rheumatology clinics. Metabolites matching our criteria for 

significance were selected if they were present in both groups. Biochemical pathway analysis was then 

conducted to gain understanding of the principal pathways involved in antibody-mediated 

pathogenesis. We found 20 metabolites dysregulated in both MG and RA when compared to healthy 

controls. Most prominently, observed changes were related to pathways associated with phenylalanine 

metabolism, tyrosine metabolism, ubiquinone and other terpenoid-quinone biosynthesis, and pyruvate 

metabolism.  

9.2 Introduction 

Metabolomic analysis has significantly increased our understanding of autoimmune disease in recent 

years. In particular, the field of immunometabolism has not only revealed the major roles played by 

immune cells in metabolic homeostasis but also the impact of metabolic pathways on immune cell 

function.1–4 Further, the metabolomic profiles of chronic inflammation,5 metabolic disease6 and the 

metabolic underpinnings of immune cell function,7–9 all rooted in immunometabolism, have been 

documented for several autoimmune diseases.  

Autoimmune diseases encompass a wide range of immunoresponses, many of which are non-specific. 

Cell signalling, immune cell proliferation, cellular debris from membrane attack complexes, fatty acid 

and glucose energy metabolism, and oxidative stress all affect the flux of metabolites present in 

humoral autoimmune disease.10,11 Previous work has identified the unique metabolomic profiles of 

several autoimmune diseases.12–15 However, how informative these profiles are remains in question. Do 

these differences truly represent the unique metabolomic signature of the disease in question, or are 

they the result of common pathophysiological responses common to all humoral disease? Conversely, 

these shared metabolites may be hypothesis generating, illuminating additional directions of inquiry 

that may enhance our understanding of autoimmune responses. 
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Recently, examples of metabolomic overlap have been published. Through subtractive merging of 

metabolomic profiles, a more accurate metabolome should emerge, representing the true metabolomic 

profile of each disease. The aim of the present study is to describe a specific metabolomic profile 

shared by humoral autoimmune diseases. By applying this subtractive approach, we hope to accurately 

identify metabolomic biomarkers shared by immunophenotypically similar humoral diseases, and 

profile their biochemical categories and functions.  

9.3 Methods 

9.3.1 See Section 7.1 

9.4 Results 

The UMS LC-MS technique employed in this study provided broad coverage of both the carboxyl and 

phenol/amine serum submetabolomes for all three patient groups: MG, RA and C. In total, the 

application of two labelling techniques revealed an overall total of 9954 C12/C13 carboxyl-labelled 

peak pairs (features) and 7458 phenol or amine features. After data processing, metabolites were 

matched to in-house standard libraries. A total of 160 individual metabolites were positively identified. 

Of these, 13 were matched to MG, while 147 were matched to RA. For the remaining features, an 

accurate mass search of the Human Metabolome Database was undertaken using the MycompoundID 

portal. A mass tolerance of 0.005 Da was set as a tolerance cutoff. This search revealed a further 401 

putatively-matched metabolites, 19 for MG and 382 for RA. In total, 496 metabolites were either 

library-matched or putatively identified. Of note also, it was observed that many metabolites contained 

carboxyl groups, as a majority of identified metabolites were acid-labelled. Further, benzenoids were 

heavily represented for both the library-matched and putative metabolites, with 6 present for each. This 

was followed by amino acids at 5 for putatively-matched compounds.  

9.5 Common Discriminating Metabolites 

Employing the simple filtering strategy endorsed by Lindahl et al., metabolites common to MG and RA 

were identified. After filtering, a total of 5 library-matched metabolites were identified as unique to 

MG, 139 unique to RA and 8 metabolites common to both MG and RA. Of the putatively identified 

metabolites, 7 were unique to MG, 370 unique to RA and 12 common to both groups. A complete list 

of metabolites common to both MG and RA is presented in Table 9.1. 
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    MG RA 

HMDB I.D. Name p-value q-value FC p-value q-value FC 

HMDB00339 2-Methylbutyrylglycine 7.23E-10 3.42E-08 1.70 5.61E-09 9.11E-09 1.78 

HMDB02466 3-Hydroxybenzoic acid 8.06E-07 1.16E-05 2.09 1.09E-08 1.70E-08 2.04 

HMDB00022 3-Methoxytyramine 1.55E-07 7.43E-06 1.55 1.50E-08 4.56E-09 1.77 

HMDB00500 4-Hydroxybenzoic acid 8.06E-07 1.16E-05 2.09 1.09E-08 1.70E-08 2.05 

HMDB00707 
4-Hydroxyphenylpyruvic 

acid 1.96E-06 2.44E-05 -2.22 2.03E-03 1.18E-03 1.96 

HMDB00503 
7a-Hydroxy-3-oxo-5b-

cholanoic acid 4.93E-10 2.54E-08 -2.24 1.35E-07 1.75E-07 2.05 

HMDB28691 Alanyl-Leucine 1.61E-06 1.73E-05 1.62 6.31E-10 2.44E-10 2.00 

HMDB00511 Capric acid 3.72E-08 8.79E-07 -2.28 2.10E-12 5.57E-12 2.41 

HMDB00451 

cis-4-
Hydroxycyclohexylacetic 

acid 1.36E-11 2.31E-09 2.34 1.41E-08 2.14E-08 2.42 

HMDB01311 D-Lactic acid 1.92E-10 1.37E-08 2.36 5.48E-08 3.48E-09 3.31 

HMDB11162 L-beta-aspartyl-L-alanine 1.08E-12 2.60E-10 2.71 1.07E-11 5.87E-12 1.81 

HMDB00158 L-Tyrosine 7.28E-11 7.78E-09 1.66 1.21E-05 2.24E-06 1.61 

HMDB11487 
LysoPE(0:0/20:4(5Z,8Z,1

1Z,14Z)) 5.87E-07 8.94E-06 -2.17 1.51E-07 3.84E-08 1.44 

HMDB00691 Malonic acid 3.21E-09 1.10E-07 2.21 1.31E-11 3.10E-11 4.76 

HMDB00202 Methylmalonic acid 4.91E-11 5.90E-09 2.19 2.04E-09 3.52E-09 3.38 

HMDB12271 O-Ureidohomoserine 2.68E-07 4.74E-06 -2.06 0.00E+00 0.00E+00 4.04 

HMDB00220 Palmitic acid 2.74E-03 7.24E-03 -1.14 6.94E-14 2.23E-13 -4.35 

HMDB00209 Phenylacetic acid 1.31E-09 5.48E-08 2.25 8.26E-06 7.67E-06 1.79 

HMDB02107 Phthalic acid 1.77E-07 3.34E-06 1.60 5.83E-08 7.95E-08 1.81 

HMDB00252 Sphingosine 5.07E-10 2.57E-08 -1.80 3.00E-17 5.00E-17 3.47 

        
Table 9.1 List of significantly altered metabolites common to MG and RA serum samples meeting selection 

criteria (fold change > 1.5, p < 0.05, q < 0.05, VIP >1). 

 

Appendix 12 illustrates group distribution of MG and RA metabolite profiles. Appendix 13 summarizes 

the chemical taxonomies and associated pathways for all identified common metabolites. 

9.5.1 Biological functions of potential biomarkers 

To place potential biomarker metabolites in a biological context, enrichment and pathway analyses 

were undertaken. Analysis was first undertaken to construct a broad view of the contribution selected 

metabolites had on known metabolic pathways. By requiring only metabolite names, this analysis 

simply evaluates the statistical contribution of selected grouped metabolites to known pathways 

without any a priori knowledge of actual sample metabolite abundance (i.e. concentration, 

upregulation/downregulation). Pathways most relevant to the group of interest are characterized by 
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both large − log (p) (i.e. low p-value) and high pathway impact values. This first look identified three 

significant pathway perturbations: Phenylalanine, Ubiquinone and other terpenoid-quinone 

biosynthesis, tyrosine metabolism. Metabolites contributing significantly to these pathways were 

phenylacetic acid, 4-Hydroxybenzoic acid, L-Tyrosine, 4-Hydroxybenzoic acid, 4-

Hydroxyphenylpyruvic acid, and 3-Methoxytyramine.  

To further explore the disease-specific metabolic relationships of the potential biomarkers, a more 

exhaustive pathway analysis was undertaken. Quantitative enrichment and pathway topology analyses 

further considered the extent of metabolite fold change and abundance in the list of significant entities, 

the inclusion of any metabolite in the list typically depending on a fixed arbitrary threshold (such as p-

value). The concentration tables of MG vs. healthy control and RA vs. healthy control were 

individually analysed (Figures 9.1, 9.2). These analyses revealed similar pathway effects as metabolite 

contributions to phenylalanine metabolism, ubiquinone and other terpenoid-quinone biosynthesis, and 

pyruvate metabolism were significant. Metabolites correlated with these pathways were phenylacetic 

acid, 4-Hydroxybenzoic acid, L-Tyrosine, L-Lactic acid, 4-Hydroxyphenylpyruvic acid. Appendix 14 

details the relative abundance of each metabolite for each study cohort as box and whisker plots. 
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Figure 9.1 Overview of pathway analysis based on the concentration of common metabolites in the MG 

cohort.   The node color and radius were determined by p-value and pathway impact value, 
respectively. 
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Figure 9.2 Overview of pathway analysis based on the concentration of common metabolites in the RA 

cohort.  The node color and radius were determined by p-value and pathway impact value, 
respectively. 
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9.6 Discussion 

There is emerging awareness of potential overlap between disease metabolomic profiles. For example, 

the metabolite profiles of rheumatoid diseases (Systemic lupus erythematosus (SLE), primary Sjögrens 

syndrome (pSS) and systemic sclerosis (SSc)) have been compared18, while pathophysiologically 

disparate conditions such as pneumonia, congestive heart failure, lymphoma and healthy controls have 

also been investigated. 19 Driving this examination is the certainty that, in order to identify reliable 

biomarkers, the specificity of any particular metabolite to the disease or physiological parameter in 

question must be determined. Conversely, between-disease comparisons of metabolomic profiles may 

reveal common biochemical mechanisms that inform the systems biology of either disease, disease 

class or both. In this report we describe, for the first time, overlapping biomarker profiles for MG and 

RA, by LC-MS-based metabolomic analysis of serum. 

Autoimmune diseases result from a complex interplay of metabolic pathways, molecular and cellular 

events and immunoreactive cycles which promote the emergence of autoreactivity, followed by 

ongoing self-sustaining tissue damage.  Enormously complex, these mechanisms present a significant 

challenge in the elucidation of autoimmune pathophysiology. Factors essential to the autoimmune 

response include abnormalities in antigenic tolerance, regulatory T-cell (Treg) development, and 

immune-signalling thresholds. Lymphocyte activation and proliferation, in particular, underlies a great 

deal of the autoimmune response; immune cells may persist in a state of quiescence, roam as sentinels 

or become rapidly stimulated in a burst of activity. Accordingly, the cellular metabolic response 

contributes significantly to the immunometabolomic profile. 

In the present study, we revealed a total of 20 significantly changed metabolites shared by MG and RA, 

many of which exhibit profound immunometabolomic properties. 

9.7 Identified metabolites that contribute to energy metabolism 

Central to the mobilization of the immune response is energy metabolism. A ubiquitous organic acid, 

lactic acid is a principal metabolic intermediate in most living organisms, the normal endpoint of 

glucose breakdown in tissue, or glycolysis. Glycolysis is crucial in both immunity and disease states, 

serving both anabolic and catabolic roles. Occurring mainly in the cell cytoplasm under hypoxic 

conditions or as a consequence of high flux of glycolysis in proliferating cells,20 glycolysis enables the 

conversion of one glucose molecule to 2 pyruvate molecules, with subsequent production of lactate, 
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NAD+, and ATP. Lactate is produced in conditions where pyruvate production exceeds the rate of 

pyruvate oxidation and cytosolic NAD+/NADH is reduced.21 

Immune processes have significant bioenergetic and biosynthetic demands, which are met by dynamic 

changes in energy metabolism. Quiescent T- and B- cells typically rely on anaerobic glycolysis and 

fatty acid oxidation for energy metabolism, preferentially metabolizing glucose to pyruvate, rather than 

lactic acid.22 Once activated, however, lymphocytes proliferate, secrete cytokines, and can make 

antibodies. Activated B- and T- cells meet the bioenergetic demand for these processes by up-

regulating aerobic glycolysis and fatty acid metabolism.23 Upon antigen encounter, T-cells significantly 

enhance rates of glucose uptake, through increased expression of the cell‐surface transporter Glut1, B-

cells.24  Extracellular lactate levels also strongly correlate with T- cell proliferation.25 B-cells, dendritic 

cells and macrophages also experience increased glycolysis upon activation,22 expressed as increased 

serum lactic acid, as glucose is preferentially metabolized to lactic acid as opposed to pyruvate. 

Glycolysis also plays an additional role in the initiation and maintenance of inflammation through cell 

signalling.26 Finally, lactic acid is alternatively formed and accumulated in muscle under conditions of 

high energy demand, rapid fluctuations of the energy requirement and insufficient supply of O2.27  

Lactic acid was upregulated in both the MG and RA patient groups. This shift in lactate levels is 

indicative of increased levels of glycolysis.  

Elevated levels of lactic acid have been found in MG patients when compared to healthy controls.28 

Studies in humans have also revealed that patients with autoimmune diseases such as rheumatoid 

arthritis (RA) and systemic lupus erythematosus (SLE) display defects in metabolic pathways such as 

glycolysis.29 The joints of RA patients are observed to be lactate rich.30 The result of inflammation, 

infiltration of immune cells, and high synovial cell metabolic demand,31 lactate accumulates in the 

synovial fluid. Similarly, a recent study carried out on the sera samples of RA patients has highlighted 

a metabolic signature of RA patients compared to healthy controls.14 RA patients displayed decreased 

levels of amino acids (aa) (leucine, phenylalanine, pyroglutamate, serine, isoleucine, methionine, 

threonine, proline, and valine) and glucose alongside with increased levels of fatty acids such as 

palmitelaidate, oleate, trans9-octadecenoate,cis-5,8,11-eicosatrienoate, docosahexaenoate, 2-

ketoisocaproateand 3-methyl-2-oxovalerate, and cholesterol. Along with perturbations in several 

bioenergetic pathways such as fatty acid and aa metabolism and other related metabolic pathways, this 

profile suggests that glycolysis plays a pivotal role in the metabolic pathogenesis of RA.  
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Similarly, SLE exhibits metabolic dysregulation in both humans and mice. Specifically, CD4+ T cells 

from SLE patients exhibit enhanced glycolysis and mitochondrial metabolism that correlate with their 

activation status.32,33 In contrast, a metabolomics study on SLE sera revealed reduced glycolysis, Krebs 

cycle, fatty acid β oxidation, and aa metabolism in these patients compared to healthy controls. This 

dysregulation reflects a state of dampened energy generation, high oxidative stress, inflammation, and 

altered lipid profiles.34 

Lactic acid dysregulation has also been described in MS, a chronic inflammatory disease, characterized 

by focal plaques of demyelination and tissue injury in the CNS. De Rosa et al.35 recently observed that 

glycolysis is required for the expression of FOXP3 (forkhead box P3), a master regulator in the 

development and suppressive function of Treg cells. Impaired rates of glycolysis have been noted in 

MS patients, which in turn alters peripheral Treg-cell generation and functions.35 Conversely, other 

authors have found increased levels of lactate in the cerebrospinal fluid36 and serum of MS patients 

when compared to controls.37 

Additionally, locally high concentrations of lactate have been found near many tumours due to the 

upregulation of lactate dehydrogenase.38 These locally high concentrations of lactic acid are known to 

markedly impede the function of normal immune cells and will lead to a loss of T-cell function of 

human tumour-infiltrating lymphocytes.39 Known as Warburg metabolism, lactic acid produced by 

tumours through aerobic glycolysis acts as an immunosuppressant and tumour promoter.40 A positive 

correlation between LDH-A, high lactate levels, and tumour progression has been widely described in 

various tumours and is associated with disease progression and activity.37 Interestingly, high levels of 

lactic acid have also been found in tissues proximal to thymic carcinoma.41  It may be that lactic acid is 

an early biomarker of MG in younger patients who will later develop AChR-seropositive disease 

resulting from thymic tumours. 

Coenzyme Q10, also known as ubiquinone or 4-Hydroxybenzoic acid, is a coenzyme ubiquitous in 

animals and most bacteria. Coenzyme Q10 is present in all respiring eukaryotic cells, primarily in the 

mitochondria. It is a component of the electron transport chain and participates in aerobic cellular 

respiration, which generates energy in the form of ATP.42 Ninety-five percent of human metabolic 

energy is generated this way.43  Upregulated in both RA and MG, circulating levels of Q10 have been 

positively correlated with serum cholesterol or triglycerides, gender (increased in men) and age, BMI 

and smoking; Q10 is negatively correlated with aerobic conditioning.44 It is possible that the 

upregulation of Q10 observed in our study was the result of gender bias in favour of men, age or a 
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general lack of conditioning that might be expected from these factors in combination with decreased 

activity as might be seen in autoimmune diseases. Additionally, coenzyme Q10 is an important 

lipophilic antioxidant, preventing the generation of free radicals as well as oxidative modifications of 

proteins, lipids, and DNA. It might therefore be the case that a number of patients in this study 

consumed additional supplements of Q10. 

Activated T-cells also rely on fatty- or amino- acid metabolism.29,45 Methylmalonic acid is a malonic 

acid derivative, which is a vital intermediate in the metabolism of fat and protein. MMA in serum is 

derived from the hydrolysis of d-methylmalonyl-CoA (MMA-CoA), which is a metabolic intermediate 

in the conversion of propionic acid (the product of fatty acid and amino acid metabolism) to succinic 

acid.46 Upregulated in both MG and RA, methylmalonic acid, in its coenzyme A-linked form 

methylmalonyl-CoA, is converted into succinyl-CoA by methylmalonyl-CoA mutase in a reaction that 

requires vitamin B12 as a cofactor. In this way, methylmalonic acid enters the Krebs cycle and is thus 

part of one of the anaplerotic reactions. If insufficient B12 is available, serum methylmalonic acid 

levels will increase. In this way, methylmalonic acid is a useful surrogate measure of B12 deficiency; 

methylmalonic acid is markedly elevated in the vast majority (>98%) of patients with clinical B12 

deficiency.47 

Malonic acid is also a fatty acid pathway participant. A dicarboxylic acid, malonic acid is the 

archetypal example of a competitive inhibitor: it acts against succinate dehydrogenase (complex II) in 

the respiratory electron transport chain.48 Further, malonyl-CoA, a coenzyme A derivative of malonic 

acid, is an essential component of the fatty acid biosynthesis pathways for capric and palmitic acid, 

among others.49 Malonic acid was upregulated in both MG and RA.  

9.8 The contribution of fatty acids to immune pathways 

The final product of fatty acid biosynthesis, palmitic acid (or palmitate), is a saturated fatty acid also 

found in plant oils. Palmitate is the precursor of stearate and longer-chain saturated fatty acids, as well 

as the monounsaturated acids, palmitoleate and oleate. Fatty acids are a primary energy source and an 

important component of membrane lipids.50 They also serve as cellular signalling molecules that play 

an important role in the etiology of metabolic syndrome.51  

It has been established that free fatty acids activate or inhibit certain cell types through TLR4.52,53 

Palmitate also activates CCL4 expression in human monocytic cells.52,53 The use of fatty acids as fuel 

increases the risk of enhanced oxidative stress.54 Reactive oxygen species (ROS) produced during the 
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reduction of molecular oxygen by the electron transport chain (ETC) forms superoxides that can cause 

damage to lipids, proteins and DNA55 and can be toxic and pro-inflammatory.56 

Preferred energy substrates vary based on immune cell state.  FAO is the preferred energy source for 

low metabolic need or slow-to-activate cells for development and long-term survival. Lipid oxidation, 

for example, is important in the maintenance of quiescent memory T-cells57–59generation of both 

regulatory T-cells (Tregs)60 and memory CD8+ T-cells61,62, and M2 macrophage metabolism.62 

Previous studies have revealed changes in palmitic acid expression in rheumatoid disease; however, 

results have been mixed. While palmitate has been observed as downregulated in RA63 and systemic 

lupus erythematosus (SLE)13 , Yan et al. noted positive correlations between C4 and two metabolites, 

glycerol and palmitic acid in patients with SLE.64 Shin et al. also examined serum palmitic acid. The 

levels of myristic and palmitic acid were significantly higher in SLE as compared to controls. 65 This 

contrasts with our study, where serum levels of palmitic acid were downregulated for both MG and 

RA. These results indicate that the fatty acid metabolism was overall less activated in the control group 

than in the RA group and more activated in the control group than in the MG group. 

The reasons for diminished levels of palmitic acid in our samples are unclear. It may be that dietary 

fatty acid intake or palmitic acid synthesis is unable to meet demand, resulting in reduced serum 

palmitate. For instance, it has been observed that innate immune cytokines, such as IL-1, can prevent 

fatty acid synthesis.66 

Another fatty acid, capric acid, was found to be downregulated in MG and upregulated in RA. Capric 

acid is a member of the series of fatty acids found in oils and animal fats. A medium chain fatty acid, 

capric acid changes have been observed in lupus nephritis67 and osteoarthritis.68 Orally ingested 

medium chain fatty acids are very rapidly degraded by first-pass metabolism by being taken up in the 

liver, and quickly metabolized via coenzyme A intermediates through β-oxidation and the citric acid 

cycle to produce carbon dioxide, acetate and ketone bodies for use in energy metabolism.69 

Sphingosine is an 18-carbon amino alcohol with a long unsaturated hydrocarbon chain; sphingosine 

and its derivative sphinganine form the major bases of the sphingolipids in mammals.70 Sphingosine 

can be phosphorylated via kinases sphingosine kinase type 1 and type 2 to lead to the formation of 

sphingosine-1-phosphate (S1P), a potent signalling lipid. S1P controls numerous aspects of cell 

physiology, including cell survival and mammalian inflammatory responses including cyclooxygenase-

2 induction (COX-2), and regulation of eicosanoids production.71 In our samples, sphingosine was 
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downregulated in MG but upregulated in RA. This is consistent with previous studies, which 

demonstrated the increased presence of S1P in RA patients.72 S1P in RA exhibits increased production 

of pro-inflammatory chemokines and cytokines, particularly tumour necrosis factor-alpha (TNF-α), a 

critical cytokine responsible for RA activity.73 Sphingosine 1‐phosphate (S1P) receptor antagonists, 

such as fingolimod (Gilenya™ / FTY720) or the more recently developed siponimod (BAF312) are 

thought to supress S1P activity, resulting from upregulated sphingosine, in RA. Consistent with our 

observations, fingolimod or siponimod therapy had no significant effect on antibody titers and disease 

severity in mice with experimental MG.74 This suggests that sphingosine, or sphingosine kinase activity 

may be reduced in MG. 

2-Methylbutyrylglycine is another amino acid, an acyl glycine, and is upregulated in both MG and RA.  

Acyl glycines are normally minor metabolites of fatty acids, and therefore play a role most closely 

related to energy production and cell structure maintenance. However, 2-Methylbutyrylglycine has 

been observed to induce lipid oxidative damage and decrease the antioxidant defenses in rat brain.75  

The lysophospholipid LysoPE(0:0/20:4(5Z,8Z,11Z,14Z)) was found to be downregulated in MG and 

upregulated in RA. This reflects the findings of an earlier paper that also observed perturbation of 

glycerophospholipid metabolism in response to prednisone treatment in MG patients.76 Paradoxically, 

however, where it was previously observed that glycerophospholipids were upregulated in those 

patients taking prednisone, in our cohort glycerophospholipid downregulation was noted for all 

patients, including those on prednisone (n=19, fold-change mean = -2.71). Fatty acids are strongly 

correlated with inflammation;77 arachidonic acid can be released from activated inflammatory cell 

membrane phospholipids by phospholipase D (PLA2).78,79 This downregulation of lipids may reflect a 

higher activity of phospholipase A2 (PLA2), a family of enzymes present in the arachidonic acid 

pathway, which hydrolyze membrane glycerophospholipids to lysoPCs and fatty acids.80  

9.9 Tyrosine and related metabolites 

L-Tyrosine and 3-Methoxytyramine were found to be upregulated in both MG and RA. L-Tyrosine is a 

non-essential amino acid, one of the 20 standard amino acids that are used by cells to synthesize 

proteins. L-Tyrosine is also a key precursor metabolite in the synthesis of catecholamines, the thyroid 

hormones triiodothyronine (T3) and thyroxine (T4), and the coenzyme Q10.81 L-Tyrosine is also an 

element of fatty acid biosynthesis.  The decomposition of L-tyrosine into acetoacetate further results in 

the liberation of acetyl-CoA, which can be used for fatty acid synthesis.82 
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3-Methoxytyramine is a dopamine metabolite. During DA synthesis, L-DOPA is produced from the 

amino acid tyrosine by tyrosine hydroxylase. After release and activation of its receptors, DA 

undergoes dilution by diffusion, but also becomes subject to metabolic degradation by catechol-o-

methyl transferase (COMT). This process yields the major extracellular metabolite, 3-methoxytyramine 

(3-MT) which has been observed to exert significant neuromodulatory/neurotransmitter actions which 

may affect neuroimmune responses.83  The dopaminergic system is highly involved in 

immunomodulation and inflammation within autoimmune disease, including lupus, rheumatoid arthritis 

and inflammatory bowel disease.84 Changes in tyrosine expression may be relect this upregulation. 

Autoimmune thyroid disease is a common cormorbidity alongside other autoimmune diseases, 

including MG and RA.85 Thyroid disease may disrupt thyroid hormone production, resulting in 

endocrine changes that lead to an excess of unmetabolized tyrosine. The tyrosine metabolite cis-4-

Hydroxycyclohexylacetic acid was also upregulated in both MG and RA. 

4-Hydroxyphenylpyruvic acid (4-HPPA) is a keto acid, part of the tyrosine catabolism pathway. It is a 

product of the enzyme (R)-4-hydroxyphenyllactate dehydrogenase and is formed during tyrosine 

metabolism. 4-HPPA was found to be downregulated in MG and upregulated in RA. The role of 4-

HPPA in the current study is unclear. 

9.10 Diet, gut microbiota and bile acids contribute to the immune response and homeostasis 

A byproduct of xenobiotic metabolism, 3-Hydroxybenzoic acid is produced by the gut microflora as 

one of the three main metabolites formed from the catechin diet.86 Upregulated in both groups, 3- and 

4-Hydroxybenzoic acid is also a product of benzoate degradation. Converted to 2,5 

Dihydroxybenzoate, it is a precursor to tyrosine metabolism. 

Bile acids are increasingly recognized for their role in autoimmunity. Several metabolomics studies 

have identified perturbation of bile acids and their pathways in several diseases, including 

inflammatory bowel disease,87 RA, ankylosing spondylitis, MG, Parkinson’s, MS.88 At the time of this 

manuscript, Johns Hopkins University is currently conducting a trial to assess the efficacy of bile acid 

supplementation to normalize blood bile acid levels, abnormal immune responses and the gut 

microbiome (ClinicalTrials.gov Identifier: NCT03423121). The secondary bile acid 7a-Hydroxy-3-

oxo-5b-cholanoic acid was downregulated in MG but upregulated in RA. 

Secondary bile acids are derived from the primary bile acids by the enzymatic action of intestinal 

bacteria through the process of deconjugation and dehydroxylation.89 Complex mechanisms regulate 
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the biosynthesis of bile acids and the way bile acid receptors and their effectors affect cholesterol, 

glucose, fatty acid, and energy metabolism.90,91 

Along with their role in the absorption, transport, and metabolism of dietary fats and lipid-soluble 

vitamins,  bile acids have also been implicated in cell signalling, glucose metabolism92 and 

inflammation.93 The reason behind the observed reduction of bile acids in the MG group remains 

unclear. Pharmacological effects seem unlikely since while pyridostigmine is subject to metabolism 

during the first passage through the liver, its hepatotoxicity is quite low.94 It has been suggested that gut 

microbiota may reduce the production of bile acids while increasing inflammation,95 although the 

broader implications for autoimmune disease are uncertain.   

9.11 Phthalates, environmental xenometabolites 

Finally, phthalates are xenoestrogenic compounds, environmental toxicants that mimic or induce 

endogenous hormones.  Also known as endocrine disrupting chemicals (EDCs), these include 

terephthalic acid, which was found to be upregulated. EDCSs can disrupt the immune-neuroendocrine 

network (INEN), the network joining the endocrine, immune and nervous systems.96  Environmental 

stressors such as phthalate chemical exposure may result in cytokine-induced neurotoxicity by inducing 

oxidative stress97 and neuroinflammation.98,99 Phthalates are also widely used as excipients for the 

enteric coating of pharmaceutical tablets.100 Increased terephthalic acid levels may also reflect high-

frequency medication schedules, or the taking of large quantities of phthalate-coated medication 

contiguous with study blood sample collection. 

9.12 Metabolites of unclear significance 

Four identified metabolites were of undetermined significance. Phenylacetate (or phenylacetate) is a 

carboxylic acid ester that has been found in the biofluids of patients with nephritis and/or hepatitis, as 

well as patients with phenylketonuria (PKU). Phenylacetate is also produced endogenously as 2-

Phenylethylamine is metabolized in the small intestine by monoamine oxidase B (MAO-B) and then 

aldehyde dehydrogenase (ALDH), which convert it to phenylacetic acid. 2-phenylethylamine is an 

"endogenous amphetamine" which may modulate central adrenergic functions.101 The role of 

phenylacetate in the current study is unclear; however, the anti-inflammatory diclofenac is also a 

phenylacetate. While the metabolite profile for diclofenac has only been partially revealed, widespread 

use among RA patients indicates phenylacetate may be an as-yet unobserved metabolite. Alanyl-

Leucine is a dipeptide composed of alanine and leucine and was upregulated in both MG and RA 

samples. It is the product of the incomplete breakdown of protein digestion or protein catabolism. The 
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amino acid O-Ureidohomoserine was found to be downregulated in MG and upregulated in RA. O-

Ureidohomoserine is a participant in the canavanine biosynthesis pathway. It can be generated from the 

enzymatic reduction of canavaninosuccinate or enzymatic oxidation of L-canaline. Canavanine is a 

non-proteinogenic amino acid found in certain leguminous plants. It’s been observed that mice fed L-

canavanine develop a syndrome similar to systemic lupus erythematosus.102 Finally, L-beta-aspartyl-l-

alanine, a peptidomimetic, is the result of proteolytic breakdown product of larger proteins. 

Upregulated in both MG and RA, its role in this study is unknown. 

9.13 Conclusion 

In summary, 20 identified metabolites have emerged as shared biomarkers for the pathophysiology 

common to MG and RA. We have shown that many of these biomarkers are strongly related to 

immunological mechanisms disrupted in humoral autoimmune disease. In this regard, the further 

elucidation of shared metabolomic profiles may lead to an improved understanding of broader 

autoimmune disruptions and to novel immunometabolic therapies for autoimmune diseases. 
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10 CHAPTER 9. CLINICAL A ND META BOLOMIC CORRELATIONS IN MYASTHE NIA GRAVIS  

10.1 Abstract 

Ideally, high value research is translational. In the case of metabolomics, this often means relating 

observed biomarker data to real world clinical practice parameters. The present study sought to 

summarize the correlations found between a two-control, multi-label metabolomics profiling of 

biomarkers unique to myasthenia gravis (MG), and matched clinical and laboratory measures. 

Independent T-tests and linear regression models were used for comparisons. Clinical correlations 

revealed negative associations between treatment efficacy, MG class and disease duration. A positive 

correlation was observed for prednisone benefit and early or late onset MG. T-testing further revealed 

differences in mestinon response between MG classes. Age of onset also differed MG class and gender. 

Multiple regression also produced predictive models of therapy response based on clinical and 

laboratory factors. Biomarker analysis revealed predictive models for MG age of onset and manual 

muscle testing employing analyl-leucine and pthalic acid as factors. Response to therapy also produced 

valid models, with the identified metabolites Alanyl-Leucine, MG(0:0/22:5(4Z,7Z,10Z,13Z,16Z)/0:0), 

LysoPE(0:0/22:5(4Z,7Z,10Z,13Z,16Z)), Malonic acid, 3-Methoxytyramine, Terephthalic acid all 

explaining variance in several models. These results demonstrate the potential for metabolomic 

profiling to reveal useful clinical biomarkers. 

10.2 Introduction 

Biomarkers are important tools in the diagnosis and management of disease. Useful not only for 

diagnosis, biomarkers should ideally provide information about disease state and prognosis as well as 

therapeutic effectiveness. At present, very few biomarkers exist which consistently correlate with 

clinical measures in myasthenia gravis (MG).  

Biomarkers presently available for MG are primarily diagnostic in nature; acetylcholine receptor 

(AChR) antibodies confirm the diagnosis of AChR-seropositive MG, but correlate poorly with disease 

severity and clinical response. 1–3 Biomarkers are important in clinical trials as well, where robust 

biomarkers reflect the underlying disease process in a sensitive and reliable manner.  The Myasthenia 

Gravis Foundation of America Task Force evaluated several potential biomarkers observed in MG, 

including serum antibody levels and single-fibre EMG, and concluded that none fulfilled the criteria for 

meaningful surrogate clinical research endpoints.  

Metabolomic biomarkers may serve as rapidly translatable and cost-effective alternatives to less easily 

deployed tests such as genomic analysis. Further, metabolomic biomarkers reflect the current state of 
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disease and, as such, offer a snapshot of underpinning pathophysiology. The goal of the present study is 

to examine metabolomic biomarkers which correlate with clinical measures specific to the AChR-

seropositive myasthenia gravis population. 

10.3 Methods 

10.3.1 See Section 7.1 

10.3.2 Clinical Data 

The demographic data of each patient was collected upon enrolment. Date of birth, gender, height, 

weight and BMI were noted. MG classification (ocular or generalized) and manual muscle testing 

(MMT) scores were also collected. Using a brief survey, data including MG serostatus, age of symptom 

onset, duration of disease, perceived response to previously taken therapies and lifestyle measures were 

noted. Information regarding previous therapies employed an ordinal scale with 0=no effect on MG 

symptoms, 1=some positive effect on MG symptoms and 2=significant positive effect on MG 

symptoms. Where possible, patient recollections were confirmed with notes from the patient record. 

10.4 Results 

The UMS LC-MS technique employed in this study provided broad coverage of both the carboxyl and 

phenol/amine serum submetabolomes for MG. In total, the application of two labelling techniques 

revealed an overall total of 9954 C12/C13 carboxyl-labelled peak pairs (features) and 7458 phenol or 

amine features. After data processing, metabolites were matched to in-house standard libraries or 

putatively identified using an accurate mass search using the MycompoundID portal. A total of 12 

compounds were library- or putatively-matched matched to MG. Chemical species data for the 12 MG 

metabolites is listed in Table 10.1. 
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Library-matched 

HMDB Name Sample 

mz 

Monoistopic 

mz 

Regulation 

HMDB00011 (R)-3-Hydroxybutyric acid 104.05 104.05 Upregulated 

HMDB00008 2-Hydroxybutyric acid 104.05 104.05 Upregulated 

HMDB00005 2-Ketobutyric acid 102.03 102.03 Upregulated 

HMDB00060 Acetoacetic acid 102.03 102.03 Upregulated 

HMDB02428 Terephthalic acid 327.11 327.11 Upregulated 

 Putative 

HMDB Name Sample 

mz 

Monoistopic 

mz 

Regulation 

HMDB00328 12-Ketodeoxycholic acid 390.28 390.28 Downregulated 

HMDB00139 Glyceric acid 106.03 106.03 Upregulated 

HMDB11477 LysoPE(0:0/18:2(9Z,12Z)) 477.28 477.29 Downregulated 

HMDB11489 LysoPE(0:0/20:5(5Z,8Z,11Z,14Z,17Z)) 499.27 499.27 Downregulated 

HMDB11494 LysoPE(0:0/22:5(4Z,7Z,10Z,13Z,16Z)) 527.30 527.30 Downregulated 

HMDB11496 LysoPE(0:0/22:6(4Z,7Z,10Z,13Z,16Z,

19Z)) 

525.29 525.29 Downregulated 

HMDB11555 MG(0:0/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) 404.29 404.29 Downregulated 

Table 10.1 Library-matched and putative MG metabolites 

10.4.1 Clinical Correlations 

Independent sample T-tests were conducted to compare the therapeutic benefit of MG medications 

between groups for demographic and laboratory measures. Three comparisons were meaningful. A 

significant difference exists between the means of generalized and ocular MG when compared for 

mestinon benefit (mean difference = 0.44, p<0.01); ocular patients respond less often. Furthermore, age 

of onset displayed mean differences when compared by class (generalized/ocular) and gender. A mean 

difference of 15.44 years, p= 0.03 for gender and 15.18 years, p=0.05 by class. The data for these T-test 

is presented in Tables 10.2 and 10.3. 

 

 



123 
 

MG Class 

  Class  N (Generalized) N (Ocular) df P-value 

Mestinon Generalized 31 9 38 0.006 

Prednisione Generalized 25 4 27 0.574 

Imuran Generalized 25 5 28 0.189 

Duration of Disease 

  Disease duration  N (≤2 years) N (> 2years) df P-value 

Mestinon 2 years or less 7 33 38 0.516 

Prednisione 2 years or less 5 24 27 0.521 

Imuran 2 years or less 5 25 28 0.853 

IVIG 2 years or less 7 24 29 0.262 

Table 10.2 Independent T-testing comparing therapeutic benefit with MG class and Duration of disease 

 

Gender 

  N (Male) N (Female) df P-value 

Mestinon 25 15 38 0.717 

Prednisione 21 8 27 0.384 

Imuran 19 11 28 0.626 

CellCept 9 5 12 0.519 

IVIG 19 12 29 0.633 

Plasmapheresis 8 5 11 0.453 

Age of onset 

 N (Early onset) N (Late onset) df P-value 

Mestinon 14 26 38 0.3 

Prednisione 10 19 27 0.05 

Imuran 11 19 28 0.63 

CellCept 7 7 12 0.27 

IVIG 12 19 29 0.56 

Plasmapheresis 7 6 11 0.3 

MG class 

  N (Generalized) N (Ocular) df P-value 

MMT 33 11 42 0.394 

Age of onset 33 11 42 0.049 

Gender 

  N (Male) N (Female) df P-value 

MMT 28 16 42 0.669 

Age of onset 28 16 42 0.025 

 

Table 10.3 Independent T-testing comparing therapeutic benefit with gender and age of onset, MMT with MG class 

and gender  
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Several multiple regression models were constructed to assess the accuracy of demographic and 

laboratory measures to correctly predict therapeutic response to MG medications. Models were chosen 

based on a cutoff of adjusted R2 ≥ 0.70. Two models exhibited moderate predictability with 

significance better than p=0.05. In the first model, disease duration was found to be predictive of 

prednisone response. The total variance explained by the model as a whole was 50.2%, p< .001. 

Multiple factors predicted plasmapheresis response, in the second model. Early or Late disease onset, 

MMT, disease duration ≤, 2 years or > 2 years, Gender, Age, and age of onset together explained 

56.1%, p=0.05 of the variance in the model. a third model for mestinon was significant, however 

lacked predictive power. A total of 16.0% of the model’s variance could be explained by the influence 

of MG class (generalized/ocular) All other models for Imuran, cellcept and IVIg were non-predictive 

and possessed p >0.05. Model summaries are found in Table 10.4. 

Gender 

 Adjusted R2 P-value 

Mestinon 0.023 0.70 

Prednisone 0.008 0.38 

Imuran 0.027 0.63 

CellCept 0.045 0.52 

IVIg 0.026 0.63 

Plasmapheresis 0.034 0.45 

MMT 

 Adjusted R2 P-value 

Mestinon 0.025 0.86 

Prednisone 0.050 0.13 

Imuran 0.035 0.86 

CellCept 0.083 0.93 

IVIg 0.026 0.62 

Plasmapeheresis 0.053 0.54 

Table. 10.4 Regression models for therapeutic benefit comparing gender and MMT 

scores 

 

Regression models were also constructed to explore the contribution of gender and MMT to explained 

variance in therapeutic response (Table 10.5) None of these models proved predictive. 
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 Adjusted R2 P-value  

Mestinon 0.160 <0.01 Class 

Prednisone 0.502 <0.01 Disease duration 

Imuran 0.166 0.07 Age, disease duration, Class, Early or Late MG 

CellCept 0.246 0.25 
Age, MMT, Class, disease duration, gender, 
Early or Late MG 

IVIg 0.166 0.80 
Age, MMT, Class, disease duration, gender, 
Early or Late MG 

Plasmapheresis 0.561 0.05 
Early or Late MG, MMT, disease duration 
recode, gender, Age 

Table. 10.5 Regression models for therapeutic benefit comparing factor panels 

 

10.4.2 Biomarker Predictability 

To explore for potentially useful biomarkers, the relationships between significantly altered metabolites 

and demographic and laboratory measures were explored. Multiple regression models were constructed 

describing the relationship between measured metabolites and clinical and laboratory observations. The 

models for age of MG onset (R2= 0.739, p= <0.01), early or late onset MG (R2= 0.700, p= <0.01) and 

MMT (R2= 0.725, p= <0.01) described significant predictive relationships. Models for MG class 

(generalized/ocular), duration of disease and disease duration ≤, 2 years or > 2 years were failed to 

achieve the R2=0.70 threshold. Of those metabolites previously identified by chemical library, only 

analyl-leucine and pthalic acid explained variance in any model.  

To explore the usefulness of measured metabolites to predict the effectiveness of MG therapies, 

multiple regression models were constructed for each. The models for Mestinon (R2= 0.701, p= <0.01), 

Imuran (R2= 0.739, p= <0.01), Cellcept (R2= 0.779, p= <0.01), IVIg (R2= 0.749, p= <0.01), 

plasmapheresis (R2= 0.705, p= <0.01) all exhibited predictive scores. The model for Prednisone was 

valid as well but did not meet the required R2=0.70 threshold. The identified metabolites Alanyl-

Leucine, MG(0:0/22:5(4Z,7Z,10Z,13Z,16Z)/0:0), LysoPE(0:0/22:5(4Z,7Z,10Z,13Z,16Z)), Malonic 

acid, 3-Methoxytyramine, Terephthalic acid explained variance in several models. A summary is 

detailed in Table 10.6. 

 

 

 

 



126 
 

Clinical and laboratory 
factors 

Adjusted R2 P-value Metabolomic factors 

Age of Onset 0.739 <0.01 Acid:(8955, 16993, 9145, 5590, 19549, 1224, 2640)) 

Class (Generalized, Ocular) 0.271 <0.01 Acid:(1286) 

Duration of Disease 0.133 <0.01 Acid:(19110) 

Early or Late MG 0.700 <0.01 Acid:(1343) 

MMT 0.725 <0.01 Acid:(12046, 644, 1224, 14387, 19236, 8091), 
Dansyl:(12828), phthalic acid, alanyl-Leucine 

≤ 2 years, > 2 years 0.273 <0.01 Acid:(22137, 6833), dansyl:(10171) 

    

Therapeutic benefit Adjusted R2 P-value  

Mestinon 0.701 <0.01 Acid:(2244, 1317, 2610), dansyl:(4565) 

Prednisone 0.453 <0.01 Acid:(17947), MG(0:0/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) 

Imuran 0.739 <0.01 Acid:(9884, 9405), dansyl:(5349), 
lysoPE(0:0/22:5(4Z,7Z,10Z,13Z,16Z)), malonic acid, 

alanyl-Leucine 

CellCept 0.779 <0.01 Acid:(1343), Methoxytyramine 

IVIg 0.749 <0.01 Acid:(5628, 8091, 4739), dansyl:(5349), alanyl-Leucine 

Plasmapheresis 0.705 <0.01  Acid:(2401), terephthalic acid 

Table 10.6 Regression models for Clinical and laboratory factors and therapeutic benefit comparing 

metabolomic factors 

 

10.5 Discussion 

The purpose of this study was to explore the clinical, laboratory and metabolomic biomarker 

correlations of MG. Although other studies have done so previously, to the best of our knowledge, this 

is the most comprehensive to date. We first performed a broad correlative analysis to identify 

potentially significant relationships. In our group, moderately reduced effectiveness of Mestinon was 

reported in the ocular group. This is line with observations from previous studies that suggest pure 

oMG may respond less favorably to mestinon therapy.6 Disease duration and prednisone efficacy were 

also negatively correlated. Because prednisone is a first-line therapy, this finding suggests that patients 

begin to habituate to increasing doses over time, require upward titration. Indeed, this has been 

observed in other studies where disease duration was significantly longer in a high prednisone dose 

MG group.7 Finally, a difference in prednisone benefit between early and late onset MG further 

establishes the theory that these represent two different instantiations of MG.8   

Independent T-testing further supports the correlative observation that Mestinon efficacy in oMG is 

less than that in generalized; mean perceived effectiveness was 1.56 as compared to 2 for generalized. 

Additionally, late onset disease was more common in males than females, which is consistent and well-

documented.8 Finally, ocular MG patients were much older than those with generalized MG in our 

study. This, again, is consistent with previous studies.9 



127 
 

Demographic and laboratory data were largely nonpredictive of MG therapy benefit. However, disease 

duration was found to be moderately predictive of response to prednisone. This again, is supported by 

the note above, that disease duration and prednisone dose were correlated. A composite model of the 

factors early or late disease onset, MMT, disease duration ≤, 2 years or > 2 years, gender, age, and age 

of onset was also predictive, for plasmapheresis. This multifactorial approach may also be of value 

when assessing correlations of therapy with other demographic measures.  

Of the most interest, however, was the exploration of the utility of acquired metabolomic data in the 

prediction of MG disease types, onset and therapeutic efficacy. To this end, the results were quite 

promising. Potential biomarkers described predictive relationships with age of MG onset, early or late 

onset and MMT. To our knowledge, this has not been done previously. Furthermore, predictive models 

were successfully described for MG therapies using panels of metabolites.  While many metabolites 

remain unidentified, those that were included lipids, a dipeptide, carboxylic acid, benzoid and 

phthalate. 

In our models, MG(0:0/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) was predictive of positive benefit from 

prednisone. MG(0:0/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) is a monoacylglycerol lipid. In the previous report 

by Sengupta et al.10, several lipids were upregulated in response to prednisone indicating correlation. 

The significance of other compounds remains unclear. Further studies are required studies to confirm 

our results and provide metabolites of additional chemical classes to help build a more complete 

predictive model. 
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11  SUMMARY 

Overall, this work has provided novel information about the application of metabolomics in the 

study of myasthenia gravis. Additionally, it’s hoped that the research conducted will provide new 

insights into the pathogenesis of autoimmune disease like myasthenia gravis as well as opening 

new avenues for research into alternate biomarkers of disease. The hypotheses generated from 

this research will hopefully encourage others to pursue similar work in that it might be 

reproduced and fulfil the promise of translational medicine. 
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APPENDICES 

Appendix 1. Score plots for MG vs. RA vs. C. 

 

PCA score plots for Acid-labelled (A) and Dansyl-labelled (B) MG vs. RA vs. C groups. 

 

Appendix 2. Score plots for MG vs. C and RA vs. C. 

 

PCA score plots for Acid-labelled (A) and Dansyl-labelled (B) MG vs. C groups and Acid-labelled (A) and Dansyl-

labelled (B) RA vs. C.  
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Appendix 3. Group PCA model scores. 

 

 

 

Appendix 4. Permutation plots for MG vs. RA vs. C, mg vs. C and RA vs. C. 

 

PLS-DA and OPLS-DA permutation plots for Acid-labelled (A, B) and Dansyl-labelled (C, D) MG vs. RA 
vs. C groups. 
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PLS-DA and OPLS-DA permutation plots for Acid-labelled (A, B) and Dansyl-labelled (C, D) MG vs. C 

groups 

 

PLS-DA and OPLS-DA permutation plots for Acid-labelled (A, B) and Dansyl-labelled (C, D) RA vs. C groups. 
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Appendix 5. Contingency table results for PLS-DA models. 

 

 

Appendix 6. Venn categorized significant metabolites. 
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Appendix 7. Venn charts illustrating group distribution of library-matched (a) and putatively-matched 
(b) metabolites. 

A 

B 
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Appendix 8. Library-matched (a) and putatively-matched (b), venn-categorized significant metabolites. 

 

 

A 
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Appendix 9. Chemical class and pathway associations of MG-specific metabolites. 

 

 

Appendix 10. ROC curve permutation plots for the top 4 library-matched MG vs. C metabolites panel 
(a) and the top 5 MG vs. C metabolites panel (b). 

 

A 
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B 

Appendix 11. Biomarker panel cross-validation. Listed numbers represent the cumulative probabilities 
that predicted group assignment is correct. 
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Appendix 12. Venn chart illustrating group distribution of MG and RA metabolite profiles. 
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Appendix 13. Chemical taxonomies and associated pathways for all identified common metabolites. 

HMDB Name Library Chemical Class Metabolic Pathways 

HMDB00022 3-Methoxytyramine Putative Benzenoids Tyrosine Metabolism 

HMDB00158 L-Tyrosine Putative Amino acids 

Catecholamine Biosynthesis 

Phenylalanine and Tyrosine Metabolism 

Tyrosine Metabolism 

Thyroid hormone synthesis 

HMDB00220 Palmitic acid Putative Fatty acid/Fatty Acyl 

Fatty Acid Elongation In Mitochondria 

Fatty acid Metabolism 

Glycerolipid Metabolism 

Bile Acid Biosynthesis 

Fatty Acid Biosynthesis 

HMDB00252 Sphingosine Putative Amines Sphingolipid Metabolism 

HMDB00339 2-Methylbutyrylglycine Putative Amino acids No metabolic pathways indexed 

HMDB00451 
cis-4-

Hydroxycyclohexylacetic 
acid 

Putative Organooxygen compounds No metabolic pathways indexed 

HMDB00500 4-Hydroxybenzoic acid Putative Benzenoids Ubiquinone Biosynthesis 

HMDB00691 Malonic acid Putative Organic acids and derivatives Fatty Acid Biosynthesis 

HMDB00707 

4-Hydroxyphenylpyruvic 
acid 

Putative Benzenoids 

Phenylalanine and Tyrosine Metabolism 

4-Hydroxyphenylpyruvic 
acid 

Tyrosine Metabolism 

HMDB11162 L-beta-aspartyl-L-alanine Putative Peptidomimetics No metabolic pathways indexed 

HMDB11487 
LysoPE(0:0/20:4(5Z,8Z,11

Z,14Z)) 
Putative Glycerophospholipids Glycerophospholipid metabolism 

HMDB12271 O-Ureidohomoserine Putative Amino acids canavanine biosynthesis pathway 

HMDB00202 Methylmalonic acid Standard 
Dicarboxylic acids and 

derivatives 

Vitamin K Metabolism 

Valine, Leucine and Isoleucine 
Degradation 

Propanoate Metabolism 

HMDB00209 Phenylacetic acid Standard Benzenoids Phenylacetate Metabolism 

HMDB00503 
7a-Hydroxy-3-oxo-5b-

cholanoic acid 
Standard Bile acids Secondary bile acid biosynthesis 

HMDB00511 Capric acid Standard Fatty acid/Fatty Acyl Fatty Acid Biosynthesis 

HMDB01311 D-Lactic acid Standard 
Alpha hydroxy acids and 

derivatives 

Pyruvaldehyde Degradation 

Pyruvate Metabolism 

HMDB02107 Phthalic acid Standard Benzenoids 

Polycyclic aromatic hydrocarbon 
degradation 

Microbial metabolism in diverse 
environments 

Degradation of aromatic compounds 

ABC transporters 

HMDB02466 3-Hydroxybenzoic acid Standard Benzenoids 

Benzoate degradation 

Phenylalanine, tyrosine and tryptophan 
biosynthesis 

Toluene degradation 

Polycyclic aromatic hydrocarbon 
degradation 

Microbial metabolism in diverse 
environments 

Degradation of aromatic compounds 

HMDB28691 Alanyl-Leucine Standard Dipeptide Amino acid degradation 
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Appendix 14. The peak ratios of common metabolites for each cohort shown as box-and-whisker plots.

 


