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Robust Forecasting-Aided State Estimation for Power
System Against Uncertainties

Yi Wang"?, Student Member, IEEE, Yonghui Sun

Abstract—Accurate forecasting-aided state estimation plays a
vital role in reliable and secure operation of power systems. How-
ever, most of existing methods are unable to deal with the un-
certainties that might be caused by uncertain model parameters
or uncertain noise statistics. Therefore, the performance of these
methods may be inevitably degraded significantly. To address these
issues, based on the robust control theory, in this paper, by in-
corporating the modified innovation based Sage-Husa estimator
of noise statistics and the proposed estimation error covariance
matrix adaptive technique, a novel adaptive H ., extended Kalman
filter (AHEKF) is developed to realize robust forecasting-aided
state estimation for power system with model uncertainties. Ex-
tensive simulations carried out on several different test systems
demonstrate the efficiency and robustness of the proposed method.

Index Terms—Model uncertainties, extended Kalman filter, H .
filter theory, forecasting-aided state estimation.

LIST OF ACRONYMS

SE State estimation.

DSE Dynamic state estimation.

EKF Extended Kalman filter.

IEKF Iterated extended Kalman filter.
UKF Unscented Kalman filter.

PF Particle filter.
HEKF  H. extended Kalman filter.
AHEKF Adaptive H, extended Kalman filter.

1. INTRODUCTION

CCURATE state estimation of power system plays an
important role in‘secure and reliable operation of power
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systems, since it can provide the vital information for system
monitoring and control [1]. The states'of power system are
generally estimated by the traditional static SE approach uti-
lizing redundant measurements [2]. Static SE method exhibits
the characteristics of simplified implementation and fast conver-
gence, but it regards the current state as only related to present
measurements and ignores the dynamics of power system. In
fact, due to the continuous variations in loads and generators,
the state of the system changes slowly with time rather than
being static [3]. In addition, with inefeasing number of wind
farms integrated into power grid, the stochastic and intermittent
characteristics inevitably increase the probability of bus voltage
phasor suddenly changing during a short time. As a result, the
estimation results obtained by utilizing static SE methods may
not effectively and acecurately reflect the actual operation states
of power system.

In recent years, to overcome the drawbacks of static SE, sig-
nificant attention has been paid to the design of forecasting-aided
SE (somerésearchers also call it DSE [4]) for power systems.
Up to date, a variety of useful approaches have been developed,
which are mainly based on Kalman filter [5]-[13]. In [5], by
using the terminal reactive power, active power, frequency,
and voltage phasor measurements from PMUs, a decentralized
extended Kalman filter with unknown inputs method was de-
veloped to accurately estimate the states of the synchronous
machine in multi-machine power systems. In [6], based on
the generalized maximum likelihood method, by incorporating
the traditional EKF, a robust IEKF approach was proposed.
The method exhibits robustness to innovation and observation
outliers. In [7], anew method was developed to calculate the state
transition matrix of power system, which enhanced the accuracy
of DSE. In [8], based on the EKF algorithm, a placement
strategy was proposed for the number and locations of PMUs
installed in the system to guarantee satisfactory state estimation
results. Further, in order to circumvent the approximation errors
introduced by linearization in conventional EKF, other nonlinear
filters have also been developed and utilized in power system
dynamic state estimation, such as the UKF [9]-[12] and the
PF [13].

Based on the above analysis, it can be seen that Kalman-type
filters play an important role in power system dynamic state
estimation. However, it should be noted that most of the afore-
mentioned methods assume that the complete knowledge of DSE
model is available, which means that these approaches work well
only while certain conditions are satisfied [14]-[20]. First, the
state-space model is assumed to be known accurately, such as all
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the model parameters can be acquired exactly. Second, the noise
statistics of process noise and measurement noise are assumed
to be known in advance, wherein their covariance matrices
can be calculated exactly; the reason is that the performance
of Kalman-type filters are highly affected by the covariance
matrices of noise [21]-[24]. However, for a practical power
system, these assumptions might not be valid in most cases.
One reason is that the noise statistics of process noise and
measurement noise may be difficult to be obtained, due to both
of them being heavily affected by the real operating conditions
of power system that change dynamically; the other reason is
that some nonlinearities may not be modeled. These model
uncertainties inevitably degrade the estimation performance of
aforementioned Kalman-type filters, and significantly biased
estimation results might be obtained.

In order to mitigate the adverse effects of model uncertainties,
some robust dynamic state estimation approaches for power
system were proposed in [20], [23]. Specifically, by using the
generalized likelihood estimator, a robust unscented Kalman
filter method for power system DSE was proposed in [20], which
exhibited a robustness to unknown noise statistics. Recently,
based on H filter, a new approach for power system DSE
considering the model uncertainties was developed in [19],
which could realize the DSE of power system under the given
finite upper bound of the model uncertainties. However, it should
be pointed out that, the covariance matrices of system noise and
measurement noise are still assumed to be constants during the
process of dynamic state estimation, thus their dynamic feature
of changing with time is not taken into account. In addition; in
this method, the finite upper bound of the model uncertainties
need to be set up artificially, which might be difficult to choose
the appropriate value of it for real applications. Thus, the prac-
tical value of the proposed method would be hampered.

To address these issues, in this paper, a-novel adaptive
H,, extended Kalman filter_ is developed .to realize robust
forecasting-aided state estimation for powet system with model
uncertainties. At first, an adaptive strategy is proposed to
automatically tune the estimatiofl error covariance matrix cor-
responding to the changeableconditions«Then the difficulty of
choosing an suitableé upper bound of estimation error is avoided,
and a better robust behavior can be obtained. In addition, a mod-
ified innovation based Sage-Husa estimator of noise statistics is
also adopted to dynamically calculate the covariance matrices
of system noise and measurement noise. Finally, extensive test
results of IEEE 14, 30, 57, and 118-bus are provided to demon-
strate the effectiveness and robustness of the proposed method.

The remainder of this paper is organized as follows. In
Section I, the state-space model of power system is presented. In
Section 111, the proposed adaptive H, extended Kalman filter
approach is introduced in detail. In Section IV, results of the
extensive simulations carried out on several test systems are
provided to demonstrate the efficacy of the proposed method,
and finally the conclusions are drawn in Section V.

Notation: The notation utilized here is fairly standard ex-
cept where otherwise stated. &) and &, indicate the predicted
and estimated state vector at time instant k, respectively. zy
represents the measurement at time instant k. F'x_; denotes
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the state transition matrix at time instant k¥ — 1. I denotes the
identity matrix with appropriate dimension. E[x] stands for
the expectation of the stochastic variable . K, represents the
Kalman gain at time instant k. é . and Ry, are the estimated
covariance matrices of process noise and measurement noise at
time instant k, respectively.

II. STATE-SPACE MODEL OF POWER SYSTEM

In this section, the general discrete time state-space model
of power system is described. Then, the state transition model
represented by Holt’s exponential smoothing technique is
discussed. Finally, the different types of measurements are
analyzed, and the specific nonlinear measurement model is
presented.

A. Discrete Time State-Space Model

In general, the discrete time state and measurement equations
of a dynamical power system can be described by

xp = fxr-1) + wi, (D
z = h(xy) + s, 2

where the subscripts .k and & — 1 are two successive discrete
time instants separated by a sample period 7. f(-) and h(-) are
the system function and the measurement function, respectively,
both of them/can be linearized by Taylor series expansion. xj,
denotes-the state vector, z; is the measurement vector, wy
represents the Gaussian system noise with zero mean and the
covariance &, vy indicates the Gaussian measurement noise
with zero mean and the covariance Ry,.

B. State Transition Model

In this brief, the power system is assumed to operate under the
quasi-steady state, where loads and generators do not have large
sudden changes [27]-[29]. Note that such kind of steady-state
dynamics is typically different from the transient ones might
be caused by the large disturbances, such as cyber-attack, short
circuit faults, to cite a few [1]. In order to reflect the dynamic
changes of power system, several state transition models have
been investigated in [25]-[28]. Among them, the one that ex-
pressed by the Holt’s exponential smoothing technique is the
most widely utilized [37].

By utilizing the Holt’s exponential smoothing technique, the
state transition function f(-) in (1) can be expressed by

flxp—1) =ap—1+ by, 3)

where a1 and by, are respectively the horizontal component
and the inclined component at time instant £ — 1, which are
recursively defined as follows

ap-1 = oxp_1+ (1 —a)Tp_1, 4)
bi_1 = Blag—1 —ax—2) + (1 — B)bi_2, )

where « and /3 are the two different smoothing parameters with
values between 0 and 1. xx_1 and xj_; represent the true
state vector, the predicted state vector at time instant k — 1,
respectively.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 18,2022 at 17:22:02 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: ROBUST FORECASTING-AIDED STATE ESTIMATION FOR POWER SYSTEM AGAINST UNCERTAINTIES 693

Then, by substituting (4), (5) into (3) and considering the
system noise, the general form of state transition model can be
derived as follows [25]

T =Frazp 1+ G+ w1, (6)
where
Fr1=a(l+p)I, (7
Gr1=(1+8)(1-a)xk1— Pa 2
+ (1= B)bg—2, (®)

where F'j,_q denotes the state transition matrix, G';,_1 indicates
the parameter vector; I represents the identity matrix with
corresponding dimension. More detailed information about this
model can be found in [25].

In addition, it is worth pointing out that the state vector to
be estimated in forecasting-aided state estimation consists of
voltage phase angle and amplitude at each node, which is defined
as follows

Ongos Vi, Voo Vi)t (9)

where the subscript [V denotes the total number of nodes in a
power system, ¢; ;. (in radians) represents the phase angle at bus
i and time instant k, V; 1, indicates the voltage magnitude at bus
i and time instant k. Note that #; ;. acts as the reference phase,
which is not considered in the state vector to be estimated.

= [02,5, 054, -

C. Measurement Model

For forecasting-aided state estimation of power system,
the following noise-contaminated measurements are utilized,
which consists of the voltage magnitude, active and reactive
power injections at buses, denoted as V', = [V g, .5, Vi, 4,
Py =[Pi,..., Po, s and Q) = [Q1 ks, Qn, k], TESPEC-
tively; and the active power flow' measurements P£ =
[P/, ... P,{
[Q‘lka,, Ce in «] [29]. Suppose all the measurements are
collected, then the nonlinear measurement model in (2) can be
expressed as

zr = Vi Pr Q P£ Qi]T‘i"Uk-

By utilizing the <general two-port m-model of network
branches [30], the precise elements for the measurements Py,
Q.. P£ , Q{ are given as follows (for brevity, the time subscript
k is omitted):

.|, the reactiveipower flow. measurements Q£ =

(10)

N
P = ZMHVJ'KGHCOSQM+B¢jSin9ij)a (11D
j=1
Qi = Z\VHV| ijsin®;; — B;jcosb;j), (12)
Pij = WQ(Gsi + GL]) - ‘MH‘/JKGZJ COSGij
+ B;jsinb;;), (13)
Qij = =V (Bai + Byj) — [Vil|V|(Gi; sin 03
— Bij cos 0ij), (14)

where P; and @); denote the active power and reactive power
injections at bus 7; P;; and ();; represent the real power flow,
the reactive power flow between buses ¢ and j, respectively;
V; indicates the voltage magnitude of bus i; G;;, B;; denote
the conductance and the susceptance of the line between i
and j, respectively; G; and By; indicate the conductance, the
susceptance of the shunt at bus ¢, respectively.

Remark 1: The power system model expressed by (6) and
(10) has been widely utilized in many forecasting-aided state
estimation studies [25]—[27], in most of these research, both the
model parameters and the noise statistics are usually assumed
to be known accurately in advance. However, for a practical
power system, some model parameters.are difficult to obtain
exactly (such as the smoothing parameters «, 3 ) and the noise
statistics maybe unknown. These uncertainties inevitably affect
the performance of the conventional state estimator, yielding sig-
nificantly biased estimation results [2], [19]. To deal with these
problems, a robust forecasting-aided state estimation method for
power system against uncertainties will be designed in the next
section.

IIL...PROPOSED ADAPTIVE H,, EXTENDED KALMAN FILTER

In this section, the eriteria for bounding the state estimation
error caused by model uncertainties is introduced. Then, by
using the criteria, the main steps to develop the adaptive H
extended Kalman filter are presented in detail.

A. Criteria for Model Uncertainties

The model uncertainties inevitably degrade the performance
of conventional forecasting-aided state estimation methods sig-
nificantly. In order to deal with this problem, based on the
robust control theory [17], a criteria that derives the finite upper
bound on the state estimation error can be established as follows
(191, [31]

A2 > sup

{0, vk, Wi}

N = |

i

[0 — o2, ot Yool llwkll2y + loxll?
3 Ry,

5)

where A > 0 represents the attenuation level that bounds on the
estimation error, [V; denotes the number of measurements, xy, is
the true state vector, &, indicates the estimation result of x; 150
is the initial state estimation covariance matrix, Pk. represents
the state estimation covariance matrix at time instant k. é i, and
Ry, are the respective covariance matrices of process noise and
measurement noise at time instant &, which could be estimated
by the method introduced in Part C of this Section.

B. Adaptive H., Extended Kalman filter

In order to obtain a more accurate and reliable dynamic
state estimation result of power system, which could suppress
the adverse effects of model uncertainties on the accuracy of
estimation result, in this part, a robust forecasting-aided state
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estimation approach, named as adaptive H, extended Kalman
filter is designed.

By utilizing the criteria (15), the adaptive H,, extended
Kalman filter for robust forecasting-aided power system state
estimation against model uncertainties can be implemented by
the following consecutive steps:

1) Parameter Identification

In order to utilize the linear state transition model in (6), at
first, the parameter matrices of F';,_; and G';,_; need to be iden-
tified by utilizing the linear exponential smoothing technique
that expressed in (4), (5), (7) and (8).

2) Initialization

In this stage, in order to predict the states of the power system,
the values of state vector &y and the state estimation error
covariance matrix PO should be initialized in advance, which
can be computed as

ii‘o = E[CL‘()], (16)

Py = E[(zo — &0)(zo — 20)" . (17

3) State Prediction
The prediction state vector xj, and corresponding prediction
error covariance matrix P, attime instant k£ can be formulated as

Ty = Fp &1 + G, (18)

Py=F; 1P, F} | +§&_,, 19)
where Pk,l and &, represent the state estimation error co-
variance matrix and the estimated state at time instant A — 1,
respectively.

4) State Update

In this step, the predicted state vector & can be updated by
using the new set of measurement z, whichcan be calculated by

&, = @i + Kplze — B(@y)]) (20
where Kalman filer gain Ky, is expressed as
- T e
8$k x. =)
K= P H{ (HPHT + Ri) ", (22)

where Hj denotes the Jacobian matrix of the measurement
function h(-) at time instant k.
5) Adaptive Update of Estimation Error Covariance Matrix
Now, in order to guarantee the boundedness of the estimation
error, following the criteria (15), the estimation error covariance
matrix f—’k is designed as follows (detailed derivation process of
it can be seen in the part A of Appendix)

. {(I—I{;CHk)ﬁ)]c isz,k >Ozpz,k,

P, = (23)

(), —A"2L{ L},)"" otherwise,

where P, , = E(2,zF|Z_1) denotes the real covariance ma-
trix of the innovation 2, = z, — h(Zy) at time instant k&, « > 0
is a scalar parameter that provides an extra degree of the freedom
to tune the threshold in the process of implementation, 7;, and

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 35, NO. 1, JANUARY 2020

P ), are calculated by

e = Py + H{R, Hy, (24)
P.,=H.P.H} + Ry. (25)
In addition, P j can be estimated by [31]
B zZrz1, ifk=0,
P.,= { ppz)k;:lrzkzg, itk >0, (26)

where p represents a forgetting factor and usually set as
p =0.98 [32].
The matrix Ly, in (23) is designed-as follows
Ly, = i(ny, — g2 D),

~ YPmax

27)

where ()% denotes the matrix square root, @2 . I indicates
the upper bound of the Py which cafibe obtained from the
information of practical systems.

Remark. 2: 1t should be noted that the bound of &j can be
controlled by enlarging the estimation error covariance matrix
Pj,. Therefore, an appropriate design of the matrix Ly, is vital to
the robust ability of the proposed method. In [19] and [33], by
designing Ly, as an identity matrix I, P, could be enlarged by
decreasing A, but it is difficult to choose a suitable A to guarantee
Py, is sufficiently large. In order to deal with this problem, a
novel method is proposed to design matrix Ly, in (27), by which
not only the difficulty of tuning the parameter X is avoided, but
also the requirements of P}, can be satisfied.

Remark 3: It is worth pointing out that the use of the upper
bound ¢2 T might be too conservative, due to the overempha-
sis of accommodating the worst condition (largest uncertainties)
at the cost of optimality of the method. Thus, in order to improve
the robustness of the proposed method without decreasing ac-
curacy, a novel adaptive strategy that makes P, adapt to the
dynamically changing environment is proposed in (23). With
this specific design, while the innovation is large, the estimation
error covariance matrix Py, willbe setas (n;, — A 2LE L) to
avoid the proposed method divergence; on the other hand, while
the innovation is small, Pk will be set as (I — Kka)f:’k, SO
that the estimation will not be distorted.

C. Estimation of Covariance Matrices &;, and Ry,

For a practical power system, the noise covariance matrices &,
and R, are heavily depending on the actual operating conditions
of the system and changing from time to time. Therefore, in order
to further enhance the robustness of the proposed method and
accommodate the changeable noise environment of power sys-
tem, the covariance matrices of process noise and measurement
noise should be estimated dynamically at each time instant.

In order to dynamically calculate the covariance matrices of
process noise and measurement noise, it follows from [34], [35]
that a modified Sage-Husa noise estimator is developed, which
can be summarized as the following steps:

Step 1: Calculate the innovation sequence zj, by

Zp = Zk — h(iik), (28)
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Algorithm 1: Adaptive [, Extended Kalman Filter.

1: Parameter Identification: identify the parameters of
matrices F',,_1 and Gj,_1;

2: Initialization: set initial values for x, 150, EO, Ro, St
3: Input: measurement zy;
4: fork =0to S; do
5: calculate the prediction state vector
6: Ty — FraZp 1+ Gr1;
7 compute the prediction error covariance matrix
8: Py« Fk71Pk71F£71 +&k_1s
9: calculate the gain of Kalman filter
10: Kk%png(HkPkHerRk)fl;
11: update the predicted state vector with
measurement zj
12: Zy <—ik+Kk[zk—h(§:k)];
13: compute the matrices 77, P j and Pz,k;
14: adaptive update the estimation error covariance
matrix
; { (I - KyHy)Py  if P.j > aP.y,
Py oy Tr1 -1 .
(n; — A *Lj, L)' otherwise,
15: estimate the covariance matrix of system noise
16: & (1 —di-1)€,4
+ dkfl(Kkikng{ + Pk),
17: estimate the covariance matrix of measurement
noise
18: Rk+1 — Ry - explel;
19: end for

where zj, and z, represent the innovation and real measurement,
respectively. h(&y,) indicates the predicted measurement at time
instant k.

Step 2: Estimate the covariance matrix of processnoise &, by

1-b
dj_1 = —— 29
FlS TR (29)
&= (1% dy_ 1),
—l—dk,l(KkaE{Kg +Pk), (30)

where b is_a constant parameter, which usually can be chosen
from the interval [0.95, 0.995under slowly changing character-
istics of system noise; é 1, represents the estimation covariance
matrix of process noise, P 1 indicates the state estimation error
covariance matrix at time instant k.

Step 3: Compute the covariance matrix of measurement noise
R, according to the following formula

Ryi(i,i) = Ry,_1(i,i) - exp @], 31
where Ry (i,i) represents the ith diagonal element of the es-
timation covariance of measurement noise, Z(7) indicates the
ith innovation at time instant k, exp denotes the exponential
function with the natural constant e as the base.

For convenience, the proposed forecasting-aided state estima-
tion for power system against uncertainties is fully summarized
as Algorithm 1.

TABLE I
MEASUREMENT CONFIGURATION FOR THE TEST SYSTEMS

Test system NS NPJ NPF NV | Redundancy
IEEE 14-bus 27 10 34 5 1.81
IEEE 30-bus 59 17 78 15 1.86
IEEE 57-bus 113 38 148 10 1.73
IEEE 118-bus 235 40 352 10 1.71

Remark 4: Based on the innovation information sequence, a
modified Sage-Husa noise estimator is designed. By using this
method, the covariance matrices of process noise and measure-
ment noise can be adjusted dynamically with the actual operating
conditions of the power system, which further enhances the
robustness and stability of the proposed method, and a much
better estimation performance can be achieved.

IV. NUMERICAL RESULTS

In this section, extensive numerical simulations are carried out
on different IEEE benchmark test systems with wind farms in-
tegration for verifying the performance of the proposed method.

A. Test Systems

In order to validate the robustness and effectiveness of the
proposed method, extensive simulations are carried out on the
IEEE 14, 30, 57 and 118-bus systems. The scaled 24-min load
coefficient, the generation participation factor and wind data
in [36] are utilized for simulations. The 24-min interval is filled
with 144 samples, which is similar to the simulations carried out
in [2]. Note that the generator outputs are changed according to
the assignment of the participation factors. Then, the dynamic
variation of power systems can be simulated by successfully
running load flows at each time sample with different loading
conditions. The outcome of the power flows serve as true values
of measurements (z) and true states (a;) that includes line
flows, bus injections and bus voltages. Then, the actual mea-
surements can be obtained by adding z; with random Gaussian
noises.

The measurement configuration for the different test systems
are provided in Table I, where NS, NPJ, NPF, and NV denote
the number of states, power injections, power flow and voltage
measurements, respectively. The selection of the two smoothing
parameters is important for the accuracy of state prediction
model (3). In our research, they are estimated by the method
in [38] and the identified results of them are o = 0.601 and
=107, respectively. The threshold for the convergence is
10~%. All the tests are implemented in MATLAB environment
using a computer with Intel Core CPU i5-6500 @ 3.2 GHz and
8-GB RAM.

In these test systems, the following four comparative experi-
ments are carried out:

Case Study 1: The proposed AHEKF approach, HEKF [19]
and EKF [25] are implemented for the test systems with fully
known and accurate parameters.
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Fig. 1. Estimated results of the voltage angle at Bus 13 in IEEE 118-bus test
system by using different methods for Case Study 1.

Case Study 2: When the two smoothing parameters are un-
known, the uncertainties of them are considered as 15%—20%,
the discussed approaches are conducted on the all test systems.

Case Study 3: The noise statistics of process noise and mea-
surement noise are unknown. The initial variances of process
noise and measurement noise are set as 1072, 10~3 respectively,
while their corresponding true values are 1074, 1075,

Case Study 4: The efficacy of the discussed approaches
against sudden load change are compared.

In addition, in order to obtain more general and significant
simulation results, Ny, = 100 Monte-Carlo-Simulations are
run in all case studies. The notion of mean relative error (MRE)
is adopted to evaluate the performance of the propesed method
and the approaches in [19], [25]. The MRE of estimated voltage
angle OrrrE and voltage magnitude Vi e Bican be expressed by

MEE ™ Nyé = No 6]
Nye
. 1 |V V|
VMRrE = Noro Z Ny 4 Z ; (33)

where 6;40; represent the true and estimated voltage angle of
the 7th bus, respectively; V7, VZ indicate the true and estimated
voltage magnitude value of the ith bus, respectively; Ny denotes
the number of voltage angles, Ny represents the total number
of voltage magnitudes.

B. Case Study 1: Normal Operating Condition

In this case study, the test systems at normal operating con-
dition are taken into account, where the parameters of the test
systems are assumed to be known exactly. The estimated results
of the voltage angle and voltage magnitude at Bus 13 in IEEE
118-bus test system by using HEKF [19], EKF [25] and the
proposed approach are shown in Figs. 1 and 2, respectively. It can
be observed that the proposed approach can track the trajectory
of voltage changes accurately, and provides the superior perfor-
mance compared with the other two methods. Due to the fact
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0.982

0.98

0.978

0.976

0.974

Estimated Voltage for Bus 13

0.972

0.97 -

Fig. 2. Estimated results of the voltage magnitude at Bus 13 in IEEE 118-bus
test system by using different methods for Case Study 1.

TABLE IL
COMPARISON OF ESTIMATION ERROR FOR VOLTAGE ANGLES IN
DIFFERENT TEST SYSTEMS

Method 14-bus 30-bus 57-bus 118-bus
EKF 0.0119 0.0251 0.0276 0.0281
HEKF 0.0117 0.0238 0.0247 0.0253

AHEKF 0.0006 0.0027 0.0028 0.0032

TABLE III

COMPARISON OF ESTIMATION ERROR FOR VOLTAGE MAGNITUDES IN
DIFFERENT TEST SYSTEMS

Method 14-bus 30-bus 57-bus 118-bus
EKF 0.0016 0.0041 0.0045 0.0048
HEKF 0.0014 0.0037 0.0039 0.0041
AHEKF 0.0007 0.0009 0.0012 0.0015

that it can adaptively update both the state estimation error co-
variance matrix and noise covariance matrices simultaneously,
which can mitigate and suppress the state estimation error caused
by the linearization. In addition, the HEKF method presents a
little better performance than EKF, which only considers the
uncertainties.

In addition, in order to further demonstrate the efficacy of
the proposed method, extensive simulations are also conducted
on the other test systems. The state estimation results of all the
test systems are shown in Tables II-III, which show that the
proposed method is able to obtain the most accurate estimation
results compared with HEKF and EKF. These results further
prove the superior performance of the proposed method.

C. Case Study 2: Uncertain Parameters of State-Space Model

In this subsection, in order to investigate the effects of un-
certainties on the performance of each discussed approach, the
values of two smoothing parameters «, [ are assumed not
identified exactly. The uncertainty of their values are considered
to be 15% ~20% (the true value of them are 0.601 and 1072,
respectively).
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Fig. 3.  Estimated results of the voltage angle at Bus 13 in IEEE 118-bus test
system for Case Study 2.
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Fig. 4. Estimated results of the voltage magnitude at Bus 13 in IEEE 118-bus
test system for Case Study 2.

TABLE IV
COMPARISON OF ESTIMATION ERROR FOR VOLTAGE ANGLES IN
DIFFERENT TEST SYSTEMS

Method 14-bus 30-bus 57-bus 118-bus

EKF 0.0121 0.0264 0.0281 0.0287
HEKF 0.0118 0.0245 0.0253 0.0256
AHEKF 0.0009 0.0030 0.0031 0.0039

Figs. 3 and 4 display the estimated results of voltage angle
and voltage magnitude at Bus 13 in IEEE 118-bus test system,
respectively. In addition, the other test results are also provided
in Tables IV and V. From these test results, it can be found
that the estimation errors of EKF, HEKF and the proposed
method increase obviously if compared with the normal op-
eration scenario. Specifically, the estimated results provided by
the EKF method are biased significantly as it is not taken into
account the effects of parameter uncertainties. Both the proposed
method and HEKF method outperform the EKF approach, due
to their robustness, they are able to effectively mitigate the bad
effects by parameters uncertainties. In addition, as expected,

TABLE V
COMPARISON OF ESTIMATION ERROR FOR VOLTAGE MAGNITUDES IN
DIFFERENT TEST SYSTEMS

Method 14-bus 30-bus 57-bus 118-bus
EKF 0.0033 0.0058 0.0061 0.0067
HEKF 0.0027 0.0057 0.0059 0.0064
AHEKF 0.0014 0.0018 0.0023 0.0027
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Fig. 5. Estimated results of the component of system noise covariance matrix
&1 and the component of measurement noise covariance matrix 1 in IEEE
118-bus test system for Case Study 3.

the proposed method presents much better performance than
HEKEF, since its estimation covariance matrix shown in (23)
can be dynamically adjusted to the best status according to the
changing environment, which could mitigate the adverse effect
of the uncertain model parameters more effectively. Therefore,
it is not surprising that the AHEKF approach outperforms the
HEKF method and shows more robust to the uncertainties of
model parameters.

D. Case Study 3: Uncertain Noise Statistics

In this scenario, the noise statistics of the process and mea-
surement noise are assumed unknown. The covariance matrices
of process noise and measurement noise are set as 10721 and
10~3 1 with appropriate dimensions, respectively, while the cor-
responding true values of them are 10T and 107°1.

In order to show the efficiency of the noise statistic estimator,
the estimated results of the components of process and mea-
surement noise covariance matrices are shown in Figs. 5 and
6 (actually, all the estimated results of the noise covariance
matrices have been analyzed and the simulation results are
similar. Therefore, due to the page limit, only two elements of the
covariance matrices are randomly selected and presented). As
can be seen from the results shown in Figs. 5 and 6, the developed
method could revise the noise covariance matrices accurately
and timely, which is important for effectively bounding their
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Fig. 6. Estimated results of the component of system noise covariance matrix
&10 and the component of measurement noise covariance matrix r1¢ in IEEE
118-bus test system for Case Study 3.
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Fig. 7. Estimated results of the voltage angle at Bus 13 in IEEE 118-bus test
system for Case Study 3.

adverse effects. Then, the estimated results of voltage angel and
magnitude at Bus 13 in IEEE 118-bus are shown in Figs. 7
and 8, respectively. The estimated error results of all the test
systems are also presented in Tables VI and VIIL. It can be
observed from these test results that the performance of the
three approaches are heavily affected by the mismatched initial
covariance matrices of process noise and measurement noise if
compared with the normal operation condition. Specifically, the
performance of EKF method are degraded the most severely.
HEKF method outperforms EKF, due to it can bound the esti-
mation errors to some extent. However, HEKF method can not
correct the mismatched initial covariance matrixes dynamically
and adaptively update the estimation covariance matrix with re-
sponding to the changeable conditions, thus the estimation errors
are still large. With the utilization of the dynamic correction
technique, the proposed method achieves the best performance
of the three methods, which exhibits strong robustness to the
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Fig. 8.  Estimated results of the voltage magnitude at Bus 13 in IEEE 118-bus
test system for Case Study 3.

TABLE VI
COMPARISON OF ESTIMATION ERROR FOR VOLTAGE ANGLES IN
DIFFERENT TEST SYSTEMS

Method 14-bus 30-bus 57-bus 118-bus

EKF 0.0129 0.0311 0.0319 0.0324

HEKF 0.0127 0.0304 0.0309 0.0317

AHEKF 0.0003 0.0027 0.0028 0.0039
TABLE VII

COMPARISON OF ESTIMATION ERROR FOR VOLTAGE MAGNITUDES IN
DIFFERENT TEST SYSTEMS

Method 14-bus 30-bus 57-bus 118-bus
EKF 0.0048 0.0117 0.0127 0.0139
HEKF 0.0039 0.0102 0.0116 0.0128
AHEKF 0.0008 0.0009 0.0012 0.0017

noise uncertainties. These comparisons further prove the supe-
rior performance of the proposed method.

E. Case Study 4: Sudden Load Change

In this case, in order to further demonstrate the robustness
of the proposed method, the sudden load change of system is
also investigated. It is assumed that the active power of the load
at Bus 5 in IEEE 14 test system changes from 0.076 p.u. to
0.4 p.u. during ¢t = 1.67 min and ¢ = 2 min (actually, the three
approaches have been tested in the all test systems with sudden
load change, and the simulation results are consistent with the
test results in IEEE 14-bus test system. However, due to the page
limit, only the results of IEEE 14-bus are presented).

The simulation results of voltage angle and magnitude at Bus
5 in IEEE 14-bus test system are shown in Figs. 9 and 10,
respectively. Due to the voltage angle and magnitude are closely
related to the change of active and reactive power, therefore, the
sudden load change will cause large variations in the voltage
angle and magnitude. This can be observed through the test
results from the time ¢ = 1.67 min to ¢ = 2 min, where the
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Estimated results of the voltage angle at Bus 5 in IEEE 14-bus test

system for Case Study 4.
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tune the estimation error covariance matrix with respecting to
the changeable conditions. As a result, not only the difficulty
of choosing a suitable upper bound of state estimation error is
avoided and but also a higher accuracy of forecasting-aided state
estimation can be achieved. Extensive simulation tests carried
out on the different IEEE benchmark test systems under various
situations demonstrated the effectiveness and robustness of the
proposed method.

APPENDIX

In this section, more detailed derivations of the state estima-
tion covariance matrix in (23) and the stability analysis of the
proposed AHEKF method are presented.

A. Derivation of the Estimation Covariance Matrix

It is worth pointing out that the solution of the objective
function in (15) could be presented to.be equivalent to that of

1.034 Krein space Kalman filer [39]. By converting the suboptimal
H filtering problem to an indefinite form, then the Krein space
1.0321 s
Kalman filer can be utilized [40]. Formally, we get
o 1.03f N¢—1 N¢—1
o o~ 2 2 2
T = Mg wols + > el + > ol
5 1028 L — Y k=0 "
% 1.026 -1
g 2 52
g > |l —wk“p;l
& 1.024} k=0
1ozal 1025 Ny—2
- = llzo = @oll s + > llwil
= ||zo — Zol|%- wy 5=
o = @oll2 + D lwonlZs
1.7 1.8 1.9 k=0
1.02 : : ‘ - ‘ :
0 3 6 12 15 18 21 24 1
tmi - - -
min N;—1 25 — h($k) Rk 0
Fig. 10. Estimated results of the voltage magnitude at Bus 5 in IEEE. 14-bus + Z: T — & 0 —)LQLng
test system for Case Study 4. k=0
Zk — h(iL‘k)
. ; (34
L — T

voltage angle and magnitude at Bus'5 are with large variations
when the load change occurs. It is obviously seen that, with
sudden load change, both EKF and HEKF can not track the
dynamic changes of the voltage angle and magnitude accurately.
However, the proposed method canéffectively track the dynam-
ics by adaptively updating the estimation covariance matrix and
noise covariance matrices, which exhibits strong robustness.

V. CONCLUSION

Accurate forecasting-aided state estimation is paramount for
power system monitoring and control, especially with volatile
renewable generation. In this paper, a novel robust adaptive H .,
extended Kalman filter for power system forecasting-aided state
estimation against uncertainties was proposed. It mainly has the
following advantages: (i) the modified innovation based Sage-
Husa estimator of noise statistics can dynamically revise the
covariance matrices of process noise and measurement noise
timely and accurately, which plays an important role in bounding
the adverse effects of noise statistical uncertainties; (ii) based
on the H, criteria in robust control theory and the adaptive
technique, an adaptive strategy was designed to automatically

On the other hand, the system function (1) and measurement
function (2) are linearized using a first-order Taylor series ex-
pansion at the predicted state vector &y, yielding

(35)
(36)

Ty = Frrp1 +xp — Frai_ + wy,
zr = Hyxp 4+ 2, — Hpay + vy,

where F'j,, H}, indicate the Jacobian matrices of system and
measurement function, respectively; Z, = h(&y) represents the
predicted measurement at time instant k.

Then, by substituting formulas (35) and (36) into (34) and
following the steps of the Krein space Kalman filter [39], the
state estimation error covariance matrix that satisfies the criteria

(15) can be derived as follows
Py = (m — 2 LiLy) ! (37)

where Lj, € R™*"™ represents a matrix to be designed, n;, and

P j, are calculated by
- L1
m.=P, + HIR, H,, (38)

P.,=H,P.H} + R,. (39)
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In [19] and [33], by designing Ly, as an identity matrix I with
a appropriate dimension, Pj, could be enlarged by decreasing A.
However, it may be impossible to select a suitable A such that P,
is sufficiently large. Moreover, the modulation of X is another
difficulty. In fact, these problems can be solved by design the
matrix L, as

Li = M1 — P )2, (40)
where (-)2 denotes the matrix square root, ¢2, I indicates
the upper bound of the P,,, which can be obtained from the
information of practical systems.

Nevertheless, the utilization of the upper bound @2 , T might
be too conservative, due to the overemphasis of accommodating
the worst condition (largest uncertainties) at the cost of optimal-
ity of the method. Thus, in order to improve the robustness of the
proposed method without decreasing accuracy, a novel adaptive
strategy that makes P, adapt to the dynamically changing
environment is proposed in (23).

B. Stability Analysis of the Proposed AHEKF Method

In the part, based on the final results in [41]-[43], the stability
and convergence properties of the proposed AHEKF approach
are investigated. At first, by utilizing the Taylor series, the system
function f and measurement function h can be expanded to the
linear and nonlinear parts as

(41)
(42)

f(xx) — f (&) = Fr (2 — 1) + @ (@1, T1)
h(xy) — h(xy) = Hy, (xx — 1) + X (235 21)

where F', and H, represent the Jacobian mattices of system
and measurement function, respectively. ¢ and X denote the
nonlinear parts.

For convenience, the estimation error 1S defined as

Cr =@y — T, (43)

where (), represents the €stimation.error.

Based on the research resultsin [39] and [41], the sufficient
conditions to ensure the stability of the / AHEKF approach are
demonstrated in'the following theorem.

Theoremd: Consider the discrete time state-space model
shown in/(1) and (2), and the proposed approach as stated in
(16)—(23). Let the following assumptions hold for all £ > 0

(a) There are positive real numbers f, h,p,D,q,r > 0, such

that the following bounds are fulfilled

[Fxl| < F. IH| < R,

pI <Py <pI, qI <&, rI<R, (44

(b) Fiisa nonsingular matrix.

(c) There are positive real numbers €, €, Ky, Ky > 0 such
that the nonlinear functions ¢ and x is able to be
bounded as

- A2
o (mr, k) || < sl — Tl|7 (45)

X (@, @) || < Fxllor — 27, (46)
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for xy, &, € RP with ||z, — k]| <e, and ||z —
-’ﬁk” S Ex-

Then the forecasting-aided state estimation error ¢, is ex-
ponentially bounded in mean square and bounded with prob-
ability one, provided that the initial state estimation error
satisfies

1Skl <e, 7

for some € > 0.

In practical power system, the conditions of noise covariance
matrices and state estimation error covariance matrices in (44)
are obvious satisfied and can be easily verified in practice. There-
fore, in what follows, the remaining conditions in Theorem 1
are analyzed to investigate the stability property of the proposed
method.

Proof:

(1) Constraints.on the Linearized System Matrix

According to Theorem 1, the lineafized matrix Fj, needs to
satisfy the conditions that: (i) the norm of it should have an upper
bound; (ii) it i§ anonsingular matrix. The infinite norm of F', is

n
b = max > [P | (48)

j=1

If each element of F', is bounded for all k, then its infinite norm
can be bounded for all k. It can easily derived from (6) that all
the elements of F'j, are constants, therefore, F'y, is clearly upper
bound. And the same constraints on H; can also be verified
from the measurement equations in (11)—(14).

In addition, due to F';, have full rank for all & > 0, therefore,
the nonsingular constraint on it is satisfied.

(2) Lipschitz Bounded Nonlinear Functions

The last condition for the forecasting-aided state estimation
error ¢, to be exponentially bounded is that the inequalities
presented in (45), (46) must be satisfied. In the forecasting-aided
state estimation model utilized, the system function f(xy) is
linear, so ¢ = 0 and thus the inequality clearly holds for this
function. In addition, to investigate the inequality for the function
X, the jth element of x can be expanded as follows

1 ’h,
X (mk,ﬁ:k) = 5 (.’Bk — :f?k)T <aa:l:ij (:f)k)+ .. > (.’I}k — ik) .
(49)

Utilizing the triangular inequality

R 1 /0%h; . .
s ol < |3 (Gt @0+ ) H6en = @i,
(50)

since all elements in the derivatives of h are bounded for all
k > 0, therefore, there is a constant F; such that

Ix; (@, &) || < B (2 — &)1 (51)
I (@), = max (By) | — @)% (52)
I (s @)|| < iy (ke — 20) 12 (53)

where k., represents a positive constant.
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It follows from the above analysis that all the conditions in
Theorem 1 are fulfilled. Therefore, the forecasting-aided state
estimation error ¢;, of the proposed approach is exponentially
bounded. |
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